
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 2, Number 3, 533-562, 1994 

MOMENT PROBLEMS FOR BOUNDED FUNCTIONS 

KONSTANTIN M. DYAKONOV 

CONTENTS 

1. Introduction 533 

2. The Abstract Interpolation Theorem 535 

3. Applications 537 

3.1. Interpolation by bounded harmonic functions 

3.2. Interpolation by mean values and nondifferentiability of inte- 

grals in Rn 

3.3. Systems of powers on a half-axis and the radial behavior of 

entire functions represented by gap series 

3.4. Interpolation by BMOA functions and embedding theorems for 

coinvariant subspaces in H1 

3.5. Prescribing partial sums of Fourier series for bounded functions 

4. A question on translates of an L1 function 560 

Acknowledgement 561 

References 561 

1. INTRODUCTION 

Given a measure space (X,/x), let {$j} be a sequence of functions ("ker- 

nels") in I/1(X, fjb) normalized by 

(1.1) IIMi=/|*il<*M 1. 
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Consider the moment problem (or interpolation problem) 

(1.2) //VM = Oi        (j = l,2,---), 

where {a^} is a prescribed data sequence and / is a (measurable) function on X 

to be found. (Throughout, all the functions and number sequences involved 

are assumed to be complex valued). We will be concerned with bounded 

solutions / to (1.2), so of course we have to make the obvious restriction that 

Now a natural question is: Which sequences of kernels {$j} have the 

property that, for any {a^} G ^00, the moment problem (1.2) has a solution 

feL">(x,ri? 
Although there is little hope for a complete answer to be provided in such a 

general setting, we nonetheless point out a simple sufficient condition, which is 

in many cases close to necessary. Namely, we show that if there exist pairwise 

disjoint subsets Ej(j = 1,2, • • •) of X such that essentially more than 50% of 

$j is supported on Ej, in the sense that 

(1.3) wEj\$j\dvL>± 

then there always is a bounded solution / to the moment problem (1.2) when- 

ever {aj} e t00. 

A slightly more precise version of this result is stated, as Theorem 1, and 

proved in Section 2 below. Our method is, perhaps, somewhat crude; it hinges 

on the elementary fact that a bounded linear operator T satisfying || /—T ||< 1 

has to be invertible. However, unexpectedly enough, the arising condition (1.3) 

turns out to be sharp; examples will be furnished to show that the constant 

1/2 in (1.3) is best possible! 

Further, because of its simplicity and generality, our "abstract interpolation 

theorem" (see Theorem 1 below) has a wide range of applications. It often 

yields satisfactory results in some obscure cases where more special methods 

fail. In particular, it enables us to develop a unified approach to such miscel- 

laneous topic as 
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• interpolating sequences for bounded harmonic functions in higher di- 

mensions and/or in multiply connected domains, 

• nondifferentiability of integrals in M92, 

• growth of entire functions represented by gap series, 

• interpolation problems for analytic functions of bounded mean oscilla- 

tion and embedding theorems for coinvariant subspaces in iJ1, 

• Fourier series of L00 functions. 

These applications are collected in Section 3. Finally, Section 4 contains an 

open problem concerning translates of L1 functions. 

2. THE ABSTRACT INTERPOLATION THEOREM 

Theorem 1. Let {<£7}!*Li be a sequence of functions in ^(X, fi) normalized by 

(LI), suppose there is a collection {Ej}^ ofpairwise disjoint measurable sets 

Ej C X, for which (1.3) holds true. Then, for any data sequence {aj} G i00, 

the moment problem (1.2) has a solution f £ L00(X, ju) satisfying 

(2.1) || / IU ^/x-ess sup |/| < (2(7- I)-1 sup 1^1, 
X j 

where a is the value of the infimum in (1.3) (so that a > 1/2). 

Proof We construct the desired solution in the form 

(2.2) / = gcj|4i^ 

where {ck} G i00 and XEk stands for the characteristic function of Ek (at those 

points where $k = 0, set \$k\/$k — !)• For such an / one has 

(2.3) ||/||oo=sup|cfe| 
k 

and 

(2-4) / /$idM = E6ifcc*' 
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where bjk = JEk (1^1/^) $jd/x. Thus we are led to consider the linear operator 
T-.i™ ->&<> defined by 

{OO ^j  ^ 

k=l ) j=l 

Clearly, for j = 1,2, • • • 

(2.5) J2 M ^ E /   I^MM ^ / l^ildA* = 1, 
A; A: fc "^ 

and so T is bounded with || T ||^oo_>£«>< 1. 

To prove that Ti00 = i00, we verify that || / - T ||^oo^«x>< 1, where / = 

ideoo. The operator / — T is generated by the matrix {6jk — ^7c}j0fc=i- Since 

0 < bjj < 1, we have 

|| / - T \\ioo^£oo = snp^2\sjk - bjk\ 
i    k 

= sup    1-6^+ ^ |6ifc| 
(2.6) J    \ k''k^ 

= 8^(1-26^ + ^16^11 

<2sup(l-^-): 
j 

here the last inequality relies on (2.5).  Because by (1.3) bjj = fE. \$j\dfi > 

a > 1/2, the right-hand side in (2.6) is bounded by 2(1 — a) < 1. It follows 
OO 

that T is invertible and T"1 = £ (/ - T)fc, whence 
fc=0 

IIT-
I
II/~^~<I:III-TII*»^ 

k=0 
oo 

<^2fc(l-(7)fe 

ife=0 

= (2*-I)-1. 

Finally, given {a^} G ^00, let {cfc} = T"^^} so that 

OO 

Y^bjkCk = Q>j        (j = 1,2, •••) 
fc=i 
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and 

sup |cjb| < {2a — I)-1 sup la^j. 
k j 

In view of (2.3) and (2.4), the function / defined by (2.2) satisfies (1.2) and 

(2.1), as required.    □ 

3. APPLICATIONS 

3.1. Interpolation by bounded harmonic functions. Let 

R-+ldJ:f{(x?y):a;GMn,y>0}. 

The unsolved problem is to characterize, in the case n > 1, the sequences 

{ZJ} C M++1 such that every interpolation problem U(ZJ) = dj (j — 1,2, • • •) 

with {a^} G i00 has a solution u in the class of bounded harmonic functions 

on R!^1. (If {ZJ} has this property, it will be called a harmonic interpolating 

sequence). See [CG] and [Am] for some partial results to this end; see also 

[G2, chapter vii] for a complete solution in the case n = 1. 

For a fixed point z G M+4"1, denote by Pz the corresponding Poisson kernel 

and by u;(2, E, R!J:+1) the harmonic measure, evaluated at z, of a Borel set 

E C Mn with respect to M^+1; thus UJ{Z,E.W^1) = JEPz{t)dt 

Theorem 2. Given a sequence {ZJ} C R++1
7 suppose there are pairwise dis- 

joint Borel subsets Ej    (j = 1,2, • • •) ofRn such that 

(3.1) ii>f<j(zJ,Ej,Rl+1)>± 
3 Z 

Then {ZJ} is a harmonic interpolating sequence. 

Proof. Apply Theorem 1 with X = Rn, /i = the Lebesgue measure on Rn, and 

Since the harmonic measure u)(z, E, R!j:+1) has a nice geometrical meaning (it 

equals the normalized angle at which E is seen from z), condition (3.1) makes 

it an easy matter to construct numerous examples of harmonic interpolating 

sequences. 

We now show that the constant 1/2 in (3.1), and hence also in (1.3), is 

sharp. Moreover, we will see that in (3.1) one cannot even replace > by =. 

To this end, we construct a sequence {ZJ} of points in the upper half-plane 
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C+ = {Im z > 0} = R^. and a collection {Ej} of pairwise disjoint subinter- 

vals of R, so that inf a;(^,£,
J-,C+) = 1/2, and yet {ZJ} is not a (harmonic) 

interpolating sequence. A similar construction can be carried out in higher 

dimensions. 

For k a fixed positive integer, set p~£ = k~1 + i and p^ = — fc-1 + i, where i = 

V^I. For the half-axis R+
d=f(0, +oo) we have a;(pj, R+5 C+) > 1/2; let 4 > 0 

be so large that the interval (0,^) = /^ still satisfies a;jk=a;(pjJ",7A:,C+) > 1/2. 

We also have then u(p^1—IkjC+) = Uk > 1/2, where — Ik = (—4?0). As 

A; —> +oo, one has 4 —► +oo and cjfc —> 1/2. The desired sequences {ZJ} and 

{£?j} are now obtained by shifting the already chosen points and intervals to 

the right. For k = 1,2, • • • set 

Z2k-1 = Pk  + Tkr Z2k=Pk+rk, 

Elk-l — ""Jfc + rfc5 ^2fc = 7fc + 'Tfej 

where 0 = Ti < r2 < • • • and rfc+i is chosen inductively so as to ensure that the 

left endpoint of E^fc+i be greater than the right endpoint of i^. The arising 

intervals Ej are thus pairwise disjoint. 

Clearly, for all k — 1,2, • • • 

U>(22fc-lJ#21fe-ljC+) =Cj(z2/c,£2/c,C+) = UJk > 1/2, 

and so inf LO(ZJ) EJ, C+) = 1/2. On the other hand, 
j 

Z2k - Z2k-1 - Pk   - Pk   '= 2fc~1  ^ '  0- 
k-+oo 

Since Im^- = 1, this means that the points {ZJ} are not separated. In other 

words, they do not satisfy 

(3.2) inf \ZJ - zil/lmzj > 0, 

whereas it is easily shown that (3.2) is a necessary condition for {ZJ} C C+ to 

be a (harmonic) interpolating sequence (see [G2, chapter vii]). We are done. 

Theorem 3. Let {ZJ} C R^+1
; so that Zj = (xj,yj), where Xj G Rn and 

i/j > 0.   There is a constant c = cn > 0 making the following statement true: 
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If 

(3.3) \ZJ — Zk\ > cyj       whenever j / fc, 

then {ZJ} is a harmonic interpolating sequence. 

Before proceeding with the proof, we remark that the mere existence of some 

constant c > 0 for which (3.3) holds is exactly the separation condition, reduc- 

ing to (3.2) in the planar case. It is well known that, in any dimension n, this 

separation condition is necessary but not sufficient for harmonic interpolation. 

Another important necessary condition is that the measure Yly^zp where SZj 
3 

is the unit point mass at Zj, must be a Carleson measure (for a more detailed 

discussion of these matters, see [CG] and the references therein). However, 

Theorem 3 says that, for c large enough, the harmonic interpolation property 

is ensured by (3.3) alone. 

Next, we remark that the Poisson kernels Pz. can be written in the form 

p.M=vrp(^-), te 

where P(£)=7n(l + |^|2)~(n+1)/2 and 7n is the normalizing constant factor. 

Thus, Theorem 3 is a special case of the following result. 

Theorem 4. Let {ZJ = 0^,%)} C M++1.  Suppose that K e L^R71) satisfies 

JRn \K(x)\dx = 1 and Kj is defined by 

KM-vrxi1^-)'   ^ 
Vi 

There is a constant c(K) > 0 making the following statement true: If (3.3) 

holds with c > c(K) then, for any {a.,} 6 i00, the moment problem 

j f(x)Kj(x)dx = dj        (j = 1,2, • • •) 

has a solution f G L00(Mn). 

Proof. Let B denote the ball {x € Rn : |a;| < i?}, where R is large enough, so 

that JB \K(x)\dx > 1/2. For j = 1,2, • • • set 

Bj^ix G Mn : \x - Xjl < yjR}. 
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A change of variable yields 

f   \Kj(x)\dx = J\K(x)\dx>± 
j B 

and so condition (1.3) is fulfilled with $j = Kj, Ej = Bj and dfi(x) = dx. To 

apply Theorem 1, it remains to make sure that the balls Bj be disjoint. 

Assume that x G Bj fl Bklj ^ k. We may also assume that yj > yk, so we 

have 

IZJ - zk\ < [xj - xk\ + yj - yk 

< \XJ - x\ + \x - xk\ + yj - yk 

(3.4) <yjR + ykR + yj-yk 

= yj(R+l)+yk(R-l) 

where c^ = max(2i?, i?+ 1). On the other hand, by (3.3), \ZJ — zk\ > cyj. For 

c > CR, this obviously contradicts (3.4), whence Bj Pi Bk = 0. Thus, CR is 

eligible as c(iif), and the proof is complete.    □ 

For one-dimensional Poisson kernel, P(t) = 7r~1(l + t2)""1, one can take R to 

be any number which is > 1. Therefore, the above proof yields the following 

Corollary. Suppose that the points {ZJ = Xj + iyj} c C+ satisfy (3.3) with a 

fixed c > 2.  Then {ZJ} is an interpolating sequence. 

(Recall that, by a theorem of Garnett, "harmonic interpolating sequences" 

in C+ coincide with "analytic interpolating sequences", defined in terms of 

if00 functions; both are characterized by the Carleson condition 

I zk - zj inf n 
3 

>0. 
I Zk - Zj 

See [Gl] and [G2, chapter vii].) 

We conclude this section with a few remarks. 

1) In Theorem 2, one can safely replace R++1 by an arbitrary domain 

$7 (planar or spatial) that is regular in the potential-theoretic sense. 

Namely, if {ZJ} C Q and Ej are pairwise disjoint Borel subsets of 

dQ such that in£uj(zj,Ej,Q) > 1/2 (here <j(-,-,n) is the harmonic 
3 
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measure with respect to Q) then, given any values {aj} € £°°, one can 

find a bounded harmonic function u on fi satisfying U(ZJ) = a.,-    (j = 

1,2,---)- 
In particular, this is true for infinitely connected planar domains, in 

which case harmonic interpolating sequences need not coincide with 

analytic ones (see [Gl] for an example). 

2) A similar theorem remains valid for bounded harmonic functions with 

values in a Banach space. This can be derived from the appropriate 

vectorial of Theorem 1. 

3) In addition, we have a nice linear operator of interpolation at our 

disposal (it appears in the proof of Theorem 1). 

4) Theorem 2 was announced, without any proof, in [Dl]. 

3.2. Interpolation by mean values and nondifferentiability of inte- 

grals in Mn. . 

Let A be a (Lebesgue) measurable subset of Rn with 0 < \A\ < +oo, where 

\A\= JAdx. Given a function / G L1^) = L^A.dx), denote by SDT(/,i4) the 

mean value of / over ^4, i.e., 

m(f,A)^±-Jj(x)dx. 

This section deals with interpolation problems of the form 

(3.5) Wt(f,Aj) = aj       (j = l,2,...), 

where Aj are given (distinct) subsets of M71, {o^} G i00 is a prescribed sequence, 

and / G L00(Mri) is the function we are looking for. Of course, if the A^'s are 

disjoint, the problem becomes trivial (to solve (3.5), put / = X]ajXA7-)- The 
j 

next theorem shows that, if the A^s are now allowed to overlap to a limited 

extent, then it is still possible to find a bounded solution / to (3.5) whenever 

Theorem 5. Let {Aj} be a family of measurable subsets ofM71 withO < \Aj\ < 

+oo.  Suppose there are pairwise disjoint measurable sets Ej    (j = 1,2, • • •) 
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such that Ej C Aj and 

(3.6) m£\EJ\/\Aj\>l/2. 
J 

Then, for every {aj} € i00, the interpolation problem (3.5) has a solution 

feL^iW1). 

Proof. Apply Theorem 1 with X = Rn,d^(x) = dx and ^ = IAJ^XAJ-    D 

EXAMPLE 3.1. "Consider the intervals Ai = (-1,0), A2 = (0,1) and A3 = 

(-1,1) together with their subintervals E1 = (-1,12/2), E2 = (1/2,1) and 

E3 = (-1/2,1/2). Obviously, for j = 1,2,3 one has ^ C Aj and l^l/lAjl = 

1/2; besides, the Ej's are disjoint. On the other hand, the three kernels 

lAjl-1;^- are linearly dependent. For this stupid reason, the interpolation 

(3.5) is not possible for arbitrary alla2,a3 G C with a function / £ L00(M). 

Thus, a weaker version of (3.6), with > replaced by =, is no longer sufficient 

for the "mean value interpolation property" of {Aj}. 

EXAMPLE 3.2. Let XQ G Mn and let {Qj} be a sequence of open cubes1 con- 

taining XQ and such that sup |QJ+I|/|QJ| < 1/4. Letting Ej = Qj\ UfeLi Qk, we 
j 

have Ej C Qj and Ej 0 2^ = 0 for j ^ £. Furthermore, 

00 00 

1 U QJ Z E 10*1 
fc=7 + l k=j+l 

00     /-j \ fc 

hence |^| > ||Qj|. By Theorem 5 we conclude that every interpolation 

problem 

m(f,Qj) = aj    (j = l,2,---),    {ajjee™, 

can be solved with a function / in L00(Mn). In particular, choosing an appro- 

priate sequence "{%}, we obtain a function / G L00(En) whose integral is not 

differentiable at XQ, in the sense that 9Jl(/, Qj) has no limit as j —► 00. 

1 Throughout, a "cube" means "a cube with edges parallel to the axes" 
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Now a classical theorem of Lebesgue says that, for / £ L1
1
oc(E

n) and for 

almost all x G Wl
) one has the differentiation property 

(3.7) ton Ott (/,Qf) =/(*), 

whenever \ Qj \ is a sequence of open cubes containing x with Qj —> 0. 

(See [Gu] for a proof, as well as for an exhaustive discussion of what happens 

when the cubes are replaced by other families of contracting neighborhoods of 

X). 

Our next theorem can be regarded as a refined version of Example 2. In 

particular, it implies that Lebesgue's differentiation property (3.7) can be 

violated, in a very drastic way, for a bounded function / at every point x of a 

prescribed compact set of measure zero. 

Theorem 6. Let F be a compact subset ofM71 with \F\ = 0. To each point 

x G F one can assign a family of open cubes I nf > in such a way that the 

following statements hold true: 

(a) The family \JxeF { Rj   \ ^ countable. 

(b) For every x G F, one has x G fl^li Rj    and lim \Rj   I = 0- 

item[(c)] For every {a^} G i00, there is a function f G L00(Rri) such 

that M (/, R^) = dj for j = 1,2, • • •  and for all x G F. 

Proof Let Cli be an open set such that F C Qi. There is a partition Qi = 

UfcLi Qi where Q^ are pairwise disjoint half-open cubes. (A "half-open cube" 

means the Cartesian product of n half-open intervals of the form [ai,ai + 

^), • • • , [an, an + £).) Let Qi denote the open cube with the same center as 

Qf, for which |Q{| = ||Qj|. Clearly, Qj C Qj and so F C fti C bigcupf^Ql 

Since F is compact, one can find a finite subcollection {Qi}kii covering F, so 

thatFGU^iQt- 
Now let £12 be an open set such that F C ^ C 0,1 and 

\02\< imin{iQj| il^k^N^. 

As above, we write O2 = Ufc=i Q25 where Q^ are appropriate disjoint half-open 

cubes.  For each fc, we consider the corresponding open cube Q%, concentric 



544 KONSTANTIN M. DYAKONOV 

with Q2 and satisfying IQJI — flQll- Finally, we choose a finite subfamily 

{<&}& with F C U^Ql 

Continuing by induction, we construct for each j = 3,4, • • • an open set Ctj 

such that F Cttj C fij-i and 

(3.8) \nj\<±min{\Qk
j_1\:k = l,---,Nj_1} 

(this is always possible because |F| = 0); then we obtain the families of cubes 

{Qjj _  J {Qj} _   ailcl {^} L   exactly as before. 

Since F C Ufcii Qj (j = !>2, • • •), for each x E F and for each j there 

is a fy = kjix),! < k5 < Njy such that x 6 Q*/. Set R^Q^. This 

done, conditions (a) and (b) are easily verified (in particular, (3.8) implies 

that IflW |-*()). 

To prove (c), we are going to apply Theorem 5 to the cubes Q* (j = 1,2, • • • ; 

k = 1, • • • jiVj), the corresponding subsets Ej defined by Ej=Qj\Qj+i. Ob- 

viously, Ej C Q*. Next we notice that E* fl E™ = 0, provided that either 

j ^ £ or k ^ m. Indeed, assuming j < £, one has 

E™ c Q™ c rz^ c Oj=i, 

whereas Ef D Qj+1 = 0. Otherwise, if j = £ but k ± m, we have Q^nQ™ = ® 

and so £* n iSf = 0. 

In order to estimate the ratio [^l/jQ^I from below, we write 

|Q*| = |£;j!| + |Q*nni+1| 

<\E*\ + \nJ+1\ 

<\E}\ + \\Q5\, 

where the last inequality relies on (3.8). Hence 

i^i>|i9ji = (|)2i«i- 

Fortunately (|) = ^ > |, and so the hypotheses of Theorem 5 are ful- 

filled, when applied to JQ*} and {E*}     (J = 1,2,-•• ;    fc = I,--- .A^). 
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Consequently, given {dj} E i00. Theorem 5 provides a function / G L00^71) 

satisfying, for every fixed j, 

m(f,Ql])=aj       (k = l,---)Nj). 

Recalling that, for each x E F, Rf' is contained among Q^ (k = 1, • • • , A^), 

we arrive at (c).    □ 

3.3. Systems of powers on a half-axis and the radial behavior of 

entire functions represented by gap series. In this section Theorem 1 

will be applied to the following special case: X = R+ = (0, +oo),diJ,(x) = 

exp(—f3xp)dx, where (3 > 0 and p > 0, and 

(3.9) $k(x) = 7/cX ,     where    7^ =     /r iiX, 

so that JQ
00
 $i>k(x)dii(x) = 1. It turns out that if k ranges over a certain sparse 

subset {kj} of N (here N denotes the positive integers) then condition (1.3) 

holds true for the corresponding family {$&.,}• 

We begin with some technical preparations. Once ■/? > 0 and p > 0 are 

fixed, to each integer k > p — 1 we attach a new positive number kf= (fc^ , 

further, for 5 E (0, V^fc7) we let 

1 

ak(6)= ( I       and    ^(5)= I—— j    . 

Lemma. There are absolute constants 6 > 0, a E (|, 1) and k0 > 0 making the 

following statement true: //^(x) is defined by (3.9) for k E N and (i/i(x) = 

exp(—/3xp)dx, then 

$k(x)diJL(x) > a 1 Jak lak{6) 

whenever k > k^p. 

Proof. Denote the integral in question by lfc(<S), so that 

pQk' + l        fbk(6) 

r(kf + 1) Jak(6) 
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A change of variable, u = (/3aypfc ^ > yields 

When k —>• oo (or, equivalently, A/ -» oo), the factor in front of the last 

integral tends to (27r)~2 by Stirling's formula, whereas the integrand tends to 

exp(^). Thus, 

(3.11) Urn Ik{8) = (27r)-* ^exp ^) d^. 

Since (27r)~i /^ exp (^f-J du = 1, we can fix any number a G (5,1) and find 

a 6 > 0 for which the right-hand side in (3.11) is > a. This done, (3.10) shows 

that Ik(S) becomes > a as soon as k' is larger than suitable M > 0. Thus 

ifcC^Xjif ^>M + ld=ffeo.    □ 

Remark. In what follows, it will be desirable to make 6 as small as possi- 

ble. The tables for the normal distribution, contained in most textbooks on 

probability theory, tell us that one can take e.g. 6 = 0.68 and a = 0.503. 

Now we consider an increasing sequence {^j}^ C N and look at the kernels 

S^., defined as above. In connection with the arising moment problem, our 

plan is to apply Theorem 1, where the corresponding subsets Ej are chosen as 

intervals (a^. (<!>), 6^.(6)). To do that, we have to make sure that our intervals 

are disjoint. Clearly, this last requirement means that 

which in turn can be rewritten as 

(3.12) fci+1 - kj > 6^p ^kj+1 + l-.p + y/kj + l-pj . 

We arrive at the following result. 

Theorem 7. Let ^(x) be defined by (3.9) and dfi^x) = ex.p(—l3xp)dx, where 

(3 > 0 and p > 0. There exist absolute constants 77 > 0 and ko > 0 making the 

following statement true: If a sequence {kj}(^=1 C N satisfies 

(3.13) kop< fci < k2 < ••• 
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and 

(3.14) kj+1 - kj > fiy/pkj+1    (j = l,2,...), 

then every moment problem 

poo 

/    f(x)$kl(x)drtx) = aj    (j = l,2,---),     i^e^, 
Jo 

can be solved with a function f € L00(IR+) whose norm ||/||oo is bonded by 

another absolute constant time sup |aj|. 
j 

Proof. Let 6, a and ko be chosen as in Lemma/, An obvious estimate yields 

^kj+1+l-p + ^kj + l-p < 2V2yJk~Z. 

It follows that, for rj = 2\/2<5, (3.14) implies (3.12), and so the intervals 

Ej= (akj(S)Jbk.(8)) are pairwise disjoint. By Lemma, we have 

J  $k.(x)diJL(x) > a > -    (j = l,2,-..), 

since kj > K^p. Applying Theorem 1 (with <J>j replaced by $k.) completes the 

proof.    D 

Now we point out man amusing restatement of Theorem 7. Of concern will 

be the growth of a "lacunary" entire function 

oo 

/(z^X^-A   zee 
3 = 1 

with coefficient Cj decreasing in a prescribed way, along various rays {argz = 

cp}. Roughly speaking, it turns out that for every fixed (/?, —TT < </? < TT, f(reiip) 

enjoys the maximal possible growth rate as r —> +oo, the growth being mea- 

sured in terms of weighted L1 means 

1(1^)= r |/(re^)|exp(-/3r0^. 
Jo 

Some related results and the open problems can be found in [M]. 
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Theorem 8. Let (3 > 0 and p > 0. Assume that {kj}^ C N satisfies (3.13) 

and (3.14), the constants ko and rj being the same as in Theorem 7. Suppose 

that f is an entire function with the power series expansion (3.15) for which 

<s({c,})d=V1f:ic,r^r(^)<+oc 
3=1 \       P      J 

Then, for every ip G (—TT, TT], one has 

(3.16) const -S {CJ}) < J(/, tp) < S ({c,}) 

with an absolute positive constant on the left. 

Proof The right-hand inequality in (3.16) is immediate. Indeed, since 
poo 

Jo 

where d^x) = exp(—/3xp)dx and 7^ is defined in (3.9), we have 
OO nOO OQ 

j=i       Jo 3=1 

Now we turn to the left-hand inequality in (3.16).  By Theorem 7, under 

the stated hypotheses on {kj}j the operator 
f pOO \ 00 

9 >-> llkj I    g(x)xkjdiJJ(x)\ 

maps L00(M+) onto i00. A standard duality argument yields 

N 

3=J Jo     jssl 

d[j,(x) > const y^ |Aj| 

with some absolute positive constant, whenever N € N and Ai, • • • , XN £ C. 

Setting Xj = Cjj^1 we get 

N 

(3.17) / 
Jo 

iV 

djL4.(a;) > const^l^^^.1. 
.7=1 

iV 
The assumption S {{CJ}) < +00 ensures that the polynomials J] c^x^ con- 

verge to /(a;) in L1(M+,(i/i) as AT —> 00, and so (3.17) implies 

poo oo 
/     \f(x)\dn(x) > const J2 Wjhk,1' 

Jo , ! 
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Thus J(/, 0) > const • S ({CJ}). Replacing / by 
CX) 

we obtain X(fJ if) > const • S ({c,}), as required.    □ 

We proceed with the following observation: The smaller is p (i.e., the milder 

is the decay rate of the weight exp(—fix9) at infinity), the weaker become gap 

conditions (3.13) and (3.14) imposed on {kj} in Theorems 7 and 8. Our present 

purpose is to show that, for suitable amild" weights, one can do without any 

gaps at all. 

We restrict ourselves to one typical example.   Namely, we consider the 

weight 

(3.18) w(a;)d=fexp (--log2a:J ,    0 < x < +oo. 

A direct computation shows that 

/    xkw{x)dx = 2^e{k+l) , 
Jo 

so the kernels involved are the normalized powers 

(3.19) $fc(x)^(2>/5F)-1
e-(*+1)V    (fe = 0,l,2,---). 

Theorem 9. Letw(x) andQ^x) be defined by (3.18) and (3.19) respectively. 

Then every moment problem 

f Jo 
f{x)<$>k{x)w(x)dx = ak    (k = 0, !,•••)»     W} ^ ^0O, 

/o 

can be solved with a function f E L00(]R+), whose norm is bounded by an 

absolute constant times sup |afc|. 
k 

Proof. For k = 0,1, • • • consider the intervals Ek= (e2/c+1, e2k+3).  Obviously, 

they are pairwise disjoint subsets of R+. Further, 

/    $k(x)w(x)dx 7= 7    e~u2du 
JEk V71" J-h 

(here the two variables are related by logx = 2(u + fc + l)), and this last 

integral, while independent of fc, turns out to be >  |.    (Once again, the 

normal distribution enters in.) Applying Theorem 1 completes the proof.    □ 
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The next theorem on entire functions is but a restatement of Theorem 9. To 

derive it, one employs standard duality considerations, similar to those used 

in the passage from Theorem 7 to Theorem 8. So we merely state the result. 
oo 

Theorem 10. Let f(z) = J2 ckzk be an entire function such that 

oo 
kdef 

k=0 

Set 

^(K}) = Ei^ie(/c+1) <+00- 

J(f,<P)=J~ |/(re*)| exp (-1 log2r) dr. 

Then, for every tp G (—TT, TT], one has 

const .^({cfc}) < J(f,(p) < 2V^n({ck}) 

with an absolute positive constant on the left. 

Remarks. 1) It is well known that entire functions of slow growth behave, in 

many respects, like polynomials. Theorem 10 provides one more result to this 

end, showing that such functions enjoy the maximal possible growth rate along 

every ray {arg2 = y?}. 

2) It seems amazing that one can prove theorems on entire functions by 

purely "real variable" means, as above, without even being aware of Cauchy's 

theorem! 

3) Similar strategy can be used in the case where rays are replaced by certain 

curves ending at oo. Also, it enables one to handle analytic functions on the 

disk. Further generalizations (e.g., in several complex variables) are possible 

as well. 

3.4. Interpolation by BMOA functions and embedding theorems for 

coinvariant subspaces in H1. Let D denote the disk {\z\ < 1} and T its 

boundary. Further, let m stand for the normalized Lebesgue measure on T, 

so that 7n(T) = 1. A function 5, analytic in D, is said to belong to the class 

BMOA (^bounded mean oscillation + analyticity) if there exists an / G L00 = 

L^OT,™) such that 

(3.20) g(z)= [J^-dm(0,    zeB. 
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The BMOA norm is then introduced by 

II 9 HBMOA = inf{|| / Hoc: / 6 L00 and (3.20) holds} . 

See [G2, chapter vi] for alternative definitions and for a systematic treatment 

of the spaces BMO and BMOA. The reader is also refered to [G2] for some 

standard facts about Hardy spaces Hp and Blaschke products, occurring in 

this section. 

It is not hard to see that every g G BMOA satisfies 

g{Z) = 0(\0gT^,      |*|-1. 

So a natural question arises: Which sequences {ZJ} C ED have the property 

that, for any {dj} G ^00, the interpolation problem 

(3.21) gW = a,- log —\-        (j = 1, 2, • • •) 

can be solved with a function g £ BMOA? 

Here we provide a simple sufficient condition. 

Theorem 11. Suppose that the points {ZJ} C ED satisfy 

(3.22) |^_^|>.c(i_|^|)^    jjtk, 

for some fixed c > 0 and s G (0, |).   Then every interpolation problem (3.21) 

has a solution g G BMOA whenever {aj} G ^00. 

Proof. As easily verified, 

/ 
Jj T |1 - Z(\ TT 1 - |^| 

Consequently, there are positive numbers jj tending to 1 and such that the 

kernels 
Ndef        A 1      \ 1 

(we may assume 0 ^ {ZJ}) become normalized, i.e. /T 1^1 dm = 1. 

Further, for j = 1, 2, • • • we consider the subarcs 

£/={ceT:|C-^|<|(i-Mr}, 
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where c and s are the same as in (3.22). We claim that the Ej's axe disjoint. 

Indeed, assuming that £ € Ej n Ek    (j ^ k) and \ZJ\ < \zk\, we have 

\ZJ - zk\ < {zj -C\ + \C-zk 

<|(i-N)J 

<c(l-M*, 
<|(i-N)J + |<i-N 

which contradicts (3.22). 

It remains to estimate /E_. \$j\dm from below, so as to make Theorem 1 

applicable. Let CCJ = -rh be the midpoint of the arc Ej, and let /?,• be one of 

its endpoints, so that \aj — Zj\ = 1 — \ZJ\ and 1^- — Zj\ = SilzialL, Now if j^. 

is the subarc with endpoints «_,- and ^j, one has 

r    dm{Q   =     j _c dm(C) 

*,-CI 
= 1 /■  1^1 

= - |log(^ - «i) - log(aj - ^)|, 
TT 

where log is a suitable branch of the logarithm. The last quantity is 

> - (log Ifc -Zj\- log \(Xj - Zj\) 

^H(1"s)losT^N"los^}- 
Eventually, we have 

/ JMO >I{(i-s,i„g_>    -i„g?}. 

Multiplying both sides by TTO,- flog (rzjjTj))     gives 

1 

JE, 
|$i(C)|dm(C) > OLi log 

1 - \z< 
log- 
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As j —> co,. this last expression on the right tends to 1 — s > |. Consequently, 

for a fixed a € (|, 1 — s) and a suitable N + N(a) G N we have 

1 
inf / 
J>NJE 

^l^m > a >    . 
Ej 2 

Now, given a sequence {a^} € f*3, Theorem 1 ensures the existence of a func- 

tion / E L00 for which 

[.f(0$j(0dm(0 = 7njaj,    j>N, 

or equivalently, 

gizj) = dj log l_ j > AT, 

where # is obtained from / as in (3.20). 

Finally, let BN be the Blaschke product with zeroes {ZJ : j > N} (it does 

exist because (3.22) implies ^-(l — \ZJ\) < +oo), and let h G H00 be a solution 

of the finite interpolation problem 

Clearly, the function G = g + BNh is in BMOA and 

_1 
l" 

so we are done.    □ 

G(zj) = a^- log -—nrrfor a11  <? G N 

Given a sequence {ZJ} C D of pairwise distinct points with ^-(1 — |^j|) < 

+oo, let B '= S{z.} denote the Blaschke product with zero sequence {ZJ}. 

Define the subspace K^ of H1 as follows: K^^H1 fl 5^, where H1 is the 

classical Hardy space, #* = {/ E i?1 : /(0) = 0} and the bar denotes complex 

conjugation. One easily verifies that KQ is closed and invariant under the 

backward shift operator f H-► ^~^0)) acting on H1. (Equivalently, K^ is a 

coinvariant subspace of. the forward shift f H-» zf.) Also, it can be shown that 

KQ equals the L1-closed linear hull of the family of rational fractions 

rj(0«_j_, i=1,2,... 

This enables us to restate Theorem 11 in terms of K^. 
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Theorem 12. Suppose that {ZJ} is a sequence of points in ^\{0} satisfying 

(3.22) with 0 < s < |. Let B^K^ and Tj be defined as above. The following 

assertations hold true: 

(a) The family {rj} forms an unconditional basis in K^. More precisely, 

there are constants Ci > 0 and C2 > 0 such that 

(3.23) 
N -j N N * 

ci J2 N log i ,|y.| ^11 J2 X3rJ \\HI< ^2 Y, \
X

J\ 
log TZTiTA 

whenever N G N and Ai, • • • , A^ G C. 

(b) Given a linear operator T, defined originally on the (non-closed) linear 

hull of {rj} and taking values in a Banach space Y, the existence of a 

bounded linear extension T : K^ —> Y is equivalent to the condition 

(3.24) HrrjIlr^log^-L-j) as   j —> oo. 

Proof, (a) The right-hand inequality in (3.23) is immediate. The other one is 

readily derived from Theorem 11 by a duality argument. Perhaps, the best 

way to do it is to construct a function g G BMOA with 

9^)= nrTlog 1-k 
r,     II 9 ||BMOA< const, 

rdef and to consider the integral /= L^^jdm.   On the one hand, Cauchy's 
9 1 

formula says that 

AT N 

I = J2~Xj9(zj) = E\Xi\loST 

On the other hand, 

|/| <|| 9 IIBMOA 

N 

E^ < const 
H1 

N 

]LVJ 
H1 

in view of the (if1, BMOA) duality. 
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(b) The necessity of condition (3.24) is obvious. Conversely, if (3.24) holds 

then, for any finite linear combination J^XjVj, we have 
3 

\   o- /    Y j 

const^lAjllogj—r 

J2xJrj 

y     3 

< 
3 

< const 
H1 

where the last inequality is contained in (3.23). Because the finite sums X) Xjrj 
.3 

span Kg, there exists a bounded linear extension of T going from Kg to Y.    □ 

Remarks. 1) The situation in Theorem 12 is reminiscent of the so-called atomic 

decomposition of H1 (see e.g. [G2], chapter vi, Exercise 11). 

2) Theorem 12 remains valid if one drops the assumption 0 ^ {ZJ} and 

replaces log (1_1   ,, by log (1_?  ,v on the right-hand side of (3.23). 

The rest of this section is devoted to some embedding theorems for the 

subspace Kg and to the study of tangential limits of functions in Kg. 

Theorem 13. Suppose that a sequence {ZJ} C IP satisfies (3.22) with some 

c > 0 and s G (0, |). Let fi be a positive Borel measure on closD such that 

/i(T fl clos{^}) = 0. Necessary and sufficient that 

(3.25) Q C Lp(tj), 

where B = B{Zjy and p G [l,+oo); is the condition 

Proof. Apply Theorem 12, part (b), to the inclusion map that sends each finite 

linear combination ]r\ X^j to itself, regarded as an element of Lp(n). Note 

that, by the closed graph theorem, (3.25) is equivalent to the fact that the map 

in question possesses a bounded linear extension going from Kg to Lp (/J,) .    □ 
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Theorem 14. Let ft be an open subset ofB, and let {ZJ} be a sequence of 

points in D satisfying (3.22) with some c > 0 and s € (0, ^). The following 

are equivalent 

(i) KQ C H00^), where H00^) stands for the space of bounded analytic 

functions on ft. 

(ii) For every function f G Kg and every point Co € Tflclosfi, there exists 

the limit     lim     f(z). 

(iii)   lim inf |dist(^, fl*) • log 1 *   . 1   >  0;   w/iere fi* = {1/^ : 2; G fi}  and 

dist(-, •) denotes the usual Euclidean distance. 

In the proof below we assume, without any loss of generality, that o fi {ZJ} 

and nc{!<|£|<l}. This last assumption yields 

(3.26) (dist^fi*))"1 < sup 1^(^)1 <2(dist(^,fi*))"1. 
zen 

Proof. (i)=>(iii). If (i) holds then the arising inclusion map has to be contin- 

uous, hence 

sup 1^(^)1 =o(log- j—7) as   j 

In view of (3.26), we arrive at (iii). 

(iii)=^(ii). Given a function / G i^, write 

00 

i=i 

where the series converges in H1 (and hence also pointwise in D). By Theorem 

12, part (a), it follows that 

00 -1 

l£iAjilogi_iy 1 <+00- 
3=1 '   J, 

Combining (3.26) and (iii), we get 

sup 1^(^)1 < 2 (dist(zj,Q*)~   < const • log j—-. 
zen l-\zj\ 

Consequently, for z G ft one has 

lA.r^z)! < const • [A,! log 1 _ ,    ,- 

00. 
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Now if Co €■ T fl ciosQ we conclude that 

oo 

z-+Co,zeQ *—' 

by the dominated convergence theorem. 

(ii)=>(i). This is obvious.    D 

Remarks. 1) Let ^ : (0,2) —> (0,1) be an increasing continuous function with 

lim ^(t) = 0 such that t H-> t — ip(t) is also an increasing function for t small 

enough. Consider the domain 

ft = ft/Jf {z e D : 1 - \z\ > V>(|1 - ^1)} , 

so that clos Q fl T = {1} and ^ is responsible for the order of contact between 

dfi and T at 1. It is not hard to see that for ft = Q^ condition (iii) in Theorem 

14 can be rewritten in the form 

lim inf^(|l - ^Dlog,    1,    , > 0. 
j->oo 1 — \Zj\ 

In particular, letting ^(i) = c£, 0 < c < 1, we get 

lim inf 11 — zA log :—r > 0, 

which is necessary and sufficient (once (3.22) holds) that all functions in Kg 

have nontangential limits at 1. Related results for coinvariant subspaces in 

Hp, with p > 1, can be found in [AC] and [Cl]. 

2) In convention with Theorem 13 above, we cite [C2], [C3], [D2], and 

[D3], where similar embedding theorems are established for the coinvariant 

subspaces Kg=Hp fl 6HQ generated by various inner functions 9. 

3) In connection with Theorem 11 above, we mention the paper [S], where 

the values of BMOA functions on generic interpolating sequences are charac- 

terized. However, the author does not see how that characterization might be 

possibly used to derive Theorem 11. 
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3.5. Prescribing partial sums of Fourier series for bounded func- 

tions. Given a function / G L00(—7r,7r), denote its k-th Fourier coefficient by 

/(fc), so that 

f{k)-^F_j{t)e~iktdt {kGZ) 

and consider the partial sums Snf of its Fourier series, 

n 
xdef   V^    }(i\ikx {Snf){x)dM J2 f(k)eik*       (n = 0,l,---). 

k=—n 

It well know that 

(Snf)(x) = i-1^ f(t)Vn(x - t)dt, 

where Vn is the Dirichlet kernel given by 

Because / is bounded and 

(3.27) Ln^± I' |2?B(<) \dt ~ ^ log n 

as n —> oo (see [Z], chapter ii, section 12), it follows that || Snf \\oo= O(logn). 

In this section we deal with moment problems of the form 

(3.28) {Snif)(xj) = ajlognj, 

where rij are positive integers, Xj are fixed points in (—TT, TT), {O^} is a pre- 

scribed sequence in i00 and, finally, / G L00(—7r,7r) is a function to be found. 

Theorem 15. Let {rij} be an increasing subsequence on N such that YfjLi nJ2 

< +oo for some a G (0, |). Then there exist a sequence {XJ} C (—7r,7r) and 

a number N G N with the following property: Whenever {a^} G ^00
; one can 

find a function f G L00(—7r,7r) satisfying (3.28) for all j > N. 

Proof It can be shown that 

rr/n' 

(3.29) ±-rn   \Vn(t)\dt=^(l-a)logn + 0(l) 
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as n —► oo. The computations involved are almost identical to those used in 

[Z] to derive (3.27), so we do not include them here. Dividing both sides in 

(3.29) by Ln and taking (3.27) into account, we get 

i   r/na,_ , ^dt 1      Z471"/71 (it 
\imj- |2>B(t)|£ = l-a. 

Consequently, for a fixed a € (|, 1 — a) and a suitable iV G N we have 

1    r^/nOC di 
(3.30) — / \Dn{t)\—>(T    whenever n > N. 

Making A^ still larger, if necessary, we can arrange it so that    Y^   nj a < 1- 
j=N+l 

This enables us to choose a family of non-overlaping intervals Ij (j > N), 

contained in (—TT, TT), of length |/j| = 2Tm~a. This done, let Xj be the midpoint 

of /j, so that Ij = (Xj — ^^Xj + ~r I • Now if j > N then also rij > N, and 

(3.30) yields 

1     r Ht       1     /'7r/n? 
±-     \Vni{xj-t)\^- = ^- \Vnj{t)\-. 

r^l^j dt 1 

Finally, we apply Theorem 1 with X = (-TT, TT), d/i(t) = ||, $(t) = Pn.(XJ — 

i)/Lnj and JSy = Ij(j > N). Condition (1.3) has already been verified; thus, 

given {a^} G I00, Theorem 1 provides a function / G L00(—TT.TT) such that 

^ £ fms(t)dt = a,^,       i > AT. 

This condition coincides with (3.28), and the proof is therefore complete.    □ 

Remark, One might wish to prescribe the values of Sn.f at a fixed point XQ 

(say, #0 = 0). In this case the above method yields the following: If the 

sequence {n^} is so sparse that inf f1^1^1) > 2, then every moment problem 

(5ni/)(0) = ailogni,        {a,} G ^00, 

has a solution / G L00(—7r,7r). However, a more precise result can be found 

in [Al]. 
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4.   A QUESTION ON TRANSLATES OF AN L1 FUNCTION 

Suppose that K G JL
1
(R) and /^ \K(x)\dx = 1. Consider the family of 

translates K(' — Xj), where {XJ} is a certain sequence of real numbers. The 

question we are going to discuss is: What are the conditions on K and {XJ} 

under which every moment problem 
/oo 

mK(t-xj)dt = aj    (j = l,2,-.-),    K}€^, 
-oo 

has a solution / G L00(M)? Equivalently, when is it true that 

/oo 

]rXjKit - Xj) dt > const ^ lA^I 
■00   i i 

with const > 0, uniformly for all finite sequences {Xj} of complex numbers? 

It is easily shown that a necessary condition is 

(4.2) m£{\xj''Xi\:j^Z}>0 

(cf. [G2], chapter vii, section 4). On the other hand, Theorem 1 (see also the 

proof of Theorem 4) provides a nice sufficient condition, which can be viewed 

as a refined version of (4.2). Namely, if there exists an interval / C M of length 

| J| such that 

(4.3) [\K(x)\dx>l     and      infflx,- - xe\ : j + £} > |J|, 
Ji 2 

then we have (4.1). 

To see that (4.3) is sharp, consider the case where K — |x(-i,i)> x5 = 3 an(l 

I == (0,1). Obviously, we have 

/ 
\K(x)\dx = -     and      inf{|a;j — Xe\ : j ^ £} = \I\ = 1, 

/ 2 
whereas 

/oo 

-oo 

N 

Y,{-iYK(t-j)\dt 
;=0 

1 ,  , 1 

00    j=0 

dt 
/oo     1 -^ 

^ 2X(-i,o)(*) + 2(-1)WX(Ar,iV+i)(t) 

= 1 

and so (4.1) fails for Xj = (-l)j (j = 0, • • • ,N with iV large enough). 
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It should be mentioned, however, that sometimes condition (4.2) alone is 

sufficient for (4.1) to hold. In particular, this happens [CG] when K is a 

rational function. Thus, dealing with generic K's one has to integrate, as it 

were, between (4.2) and (4.3). 

Acknowledgement. I would like to thank Michael Sodin for bringing the paper 

[M] to my attention. 
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