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THE BRIDGE PRINCIPLE FOR UNSTABLE 
AND FOR SINGULAR MINIMAL SURFACES 

BRIAN WHITE 

INTRODUCTION 

Let 5 be a two dimensional minimal surface in RN, and let P c RN be a 

thin curved rectangle whose two short sides lie along dS and that is otherwise 

disjoint from S. More generally S can be an m-dimensional minimal surface 

and P can be a set homeomorphic to [0,1] x i?™-1. Typically S will have two 

connected components, and P will join one to the other. The bridge princi- 

ple for minimal surfaces is the principle that it should usually be possible to 

deform S U P slightly to make a minimal surface with boundary d(S U P). 

In a previous paper, we showed that it is possible provided that S is smooth 

and strictly stable, that P is sufficienty thin, and that, at each end of P, the 

angle between P and S is strictly between 0 and 27r. ("Strictly stable" means 

"stable and having no nonzero jacobi fields that vanish on the boundary" 

or, equivantly, "having index 0 and nullity 0 as a critical point for the area 

functional".) In §1 of this paper we extend that result to all unstable smooth 

surfaces S that have nullity 0. As a corollary we prove that a certain simple 

closed curve in dB3 that is smooth except at one point has the following 

property. For every genus g < oo, every area a in some interval [L, +oo], and 

every index i < oo, there exist uncountably many (namely 2^°) embedded 

minimal surfaces with genus g, area a, and index L. 

In §2 we give two examples to show that the nullity 0 assumption is nec- 

essary. First, we show that if M is a catenoid of nullity 1 with boundary in 

dB3, if iV is a minimal surface with boundary in one of the simply connected 
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components of dB3 \ (9M), and if P is a bridge in the region of dBs between 

dM and dN that joins them, then there is no connected minimal surface hav- 

ing the same boundary as M U P U N. We also give a similar counterexample 

when M and N are both disks. 

In §3, we show that the bridge principle is true for any surface 5, possibly 

singular, that is uniquely area minimizing (as a current or a flat chain mod p) 

in some open subset of the ambient space. The resulting minimal surface will 

be diffeomorphic to S U P except near the singularities (if there are any) of S. 

Now let Ci and C2 be smooth curves in R3 and let C be the connected curve 

formed by joining Ci to C2 with a thin bridge P. The theorems described so far 

assert (under suitable hypotheses) that given minimal surfaces Si bounded by 

Ci, there exists a minimal surface S close to S1UPUS2 and with boundary C. 

One can ask if there is a converse: given a minimal surface S with boundary 

C", must there exist minimal surfaces 5* with boundary Ci such that S is 

close to Si UPUS^? In other words, does the bridge principle describe all the 

minimal surfaces bounded by C"? In §4, we give two examples to show that 

the answer is, in general, no. However, we also prove that (roughly speaking) 

if Ci and C2 are not too close together and if the bridge is not too crooked, 

then the answer is yes. 

This is useful for the following reason. Although there are various interesting 

theorems about the number of minimal surfaces bounded by a curve, there are 

rather few kinds of curves for which this number is known. Using the converse 

to the bridge principle described above, we construct for every k a connected 

curve that bounds exactly 3k stationary integral varifolds; all are embedded 

disks of nullity 0, and exactly (k)2k~p have index p. This seems to be the first 

example of a connected curve for which the exact number of minimal surfaces 

is known and is greater than 3. 

In §5 we offer some partial answers to the question: for which pairs of 

curves Ci and C2 are we guaranteed the existence of minimal surfaces Si 

(with dSi = Ci) that can be joined by a bridge? 

We remark that §1 and §3 (which are about unstable and singular surfaces, 

respectively) are entirely independent of each other. We also mention that the 

main theorems (1.2 and 3) hold for arbitrary ambient riemannian manifolds 
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and, except for the uniqueness assertion at the end of 1.2, for arbitrary smooth 

parametric elliptic functionals. (The proof of the uniqueness uses Allard's 

regularity theorems, which are not known to hold for elliptic functionals other 

than area.) No significant change is required in the proofs. (The device in [W4, 

§8] lets one deduce the results for general ambient manifolds from Euclidean 

case.) 

The history of the bridge principle is discussed in [Wl]. Until now, the only 

published proofs of bridge principles for unstable or for singular surfaces seem 

to be those of N. Smale. His first bridge theorem [SN1] applies to all smooth 

unstable surfaces of nullity 0, but the bridge has to be tailored to the surface in 

a way that precludes using it for nonexistence examples such as the one given 

in this paper. (Also if one wishes to bridge surfaces with boundaries in dBn, 

[SN1] requires the bridge to extend out of Bn.) In a subsequent paper [SN2], 

he joined minimal surfaces with isolated cone-like singularities by bridges to 

obtain connected minimal hypersurfaces with many isolated singularities. His 

result is more general than the ones here in that his surfaces can be both 

singular and unstable. The results here are more general in that the bridges 

do not have to be tailored to the surface, and that the singularities need not 

be isolated. 

This paper is a sequel to [Wl], and the reader is referred there for definitions 

of terms such as bridge, skillet, and shrinking nicely. As in that paper, a 

nonzero stationary integral m-varifold V is said to have boundary C if 6V < 

7Ym~1LCf, where 6V is the first variation measure associated with V. 

1. UNSTABLE SURFACES 

For the next two theorems it is necessary to consider functionals of the form: 

(*) S»8ie&(S) + <Kj.f) 

where S is a submanifold of U C RN > and f : U —> Rp and </> : Rp —► i?+ are 

smooth functions such that 

(sup|£^|)(sup|/j)<l 
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(This inequality implies that the functional is lower semicontinuous with re- 

spect to weak convergence and that the basic GMT regularity theory applies 

to minimizing surfaces: see [W2, §1 and §3].) 

The first theorem simply says that the bridge principle for strictly stable 

surfaces [Wl, §2] applies uniformly to families of functionals. 

1.1. Theorem. Let U be a bounded open subset of RN and let C be a smooth 

compact (ra — 1) manifold in U. Let Fv,v G Bk{e) be a smooth k-parameter 

family of smooth functionals of the form (*). Let Sv
yv G Bk(e) be a k- 

parameter family of smooth surfaces in U such that each Sv has boundary 

C o,nd is strictly stable and uniquely homologically minimizing in U for the 

functional Fv. LetY C RN be a smooth curve such that for each v, 

• r n sv = r n asv = ar 
• At each of its endpointSj T makes a nonzero angle with the tangent 

halfplane to Sv at that endpoint. 

Then 

(1) there is a bounded open set U' containing U U T such that each Sv is 

homologically Fv minimizing in IP, and 

(2) there is a sequence Pn of bridges on C shrinking to T nicely. 

If Pn is such a sequence of bridges, let T^ be an Fv-minimizing surface in 

U' with boundary d(Sv U Pn). Then for sufficiently large n, T" is unique and 

strictly stable for Fv and: 

(3) FV(TZ) -> FV{SV) uniformly in v, 

(4) for all v, there is a diffeomorphism ./£ : Sv UPn —» T^ with 

Zix) = x for x e d(Sv U Pn) 

and 

max|a;-/^(x)| = 0(wn) 

where wn is the width of Pn. 

(5) The maps f% converge uniformly smoothly on compact subsets of Sv\r 

to the identity map Sv -^ Sv. 
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Proof. In [Wl, §1.1 and §2] this was proved for k = 0. The general case is 

proved in exactly the same way. (See also [Wl, §5.1].)    □ 

Corollary.  The T" depend smoothly on v. 

Proof. Continuous dependence (which is all that we will use) follows from the 

uniquely minimizing property of T%. Smooth dependence then follows (by the 

implicit function theorem) from the strict stability of T%.   □ 

1.2. Theorem. Let S C RN be a compact, smooth, embedded minimal sub- 

manifold with boundary C, and with index k and nullity 0. Let T be a smooth 

arc such that 

YnS = TndS = dT 

and such that at each of its two endpoints, Y makes a nonzero angle with the 

tangent half-plane to S at that endpoint. 

Let Pn be a sequence of bridges on dS that shrink nicely to T. 

Then for sufficiently large n, there exists a minimal surf ace Tn with bound- 

ary d(S U Pn) and a diffeomorphism fn:SU Pn —» Tn such that 

• area(Tn) —► area(5) 

. fn{x) = xforx£d{S\JPn) 

• \x — /n(#)| — 0(w„) where wn is the width of Pn. 

• The maps fn converge smoothly on compact subsets of S \T to the 

identity map S —> S. 

® Tn has index k and nullity 0. 

Furthermore, the Tn are unique in the following sense. IfVn is any stationary 

integral varifold with boundary dTn and if the Vn converge as varifolds to S, 

then for large n, Vn is the varifold associated toTn. 

Proof. By theorem 6 of [W2] there exist smooth functions / : RN —> Rk and 

(j): Rk -> R+, an open set U C RN containing 5, and an e > 0 such that: 

(1) 0(x) = K\x\2 for sufficiently small |x|. 

(2) (supP0|)(sup|/|)<l. 
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(3) For each v € ^(e), there is a unique surface Sv that minimizes the 

functional 

FV(M) = area(M) + <!>([ f-v\ 

among surfaces in U with boundary dS. 

(4) Each Sv is strictly stable for Fv, 

(5) Sv depends smoothly on v, 

(6) 5° = 5, 

(7) The map 

$ :vt->       f — v 
Jsv 

is a diffeomorphisms from Bk(e) onto a neighborhood of 0. 

By lemma 2.1 of [Wl], we can assume that U contains F. We then let U' = U. 

Now let T^ be the surfaces given by theorem 1.1. Let 

By theorem 1.1 and its corollary, we know that the $n are continuous (even 

smooth) and converge uniformly to $. Thus (7) implies that for sufficiently 

large n, there is a vn = v(n) such that 

(*) *n(Vnj = 0 

Let Tn = T^n\ If w is a smooth normal vectorfield on Tn that vanishes on 

<9Tn, then by (*), 

Fv{n){Tn + tw) = area(rn + tw) + 0(O(t)) 

= area(rn + tit;) + 0(t2) 

It follows that since Tn is stationary for Fv^n\ it must also be stationary for 

area. 

To prove that Tn has index k and nullity 0, we will first show that it has 

index > fc, and then that it has index plus nullity < k. 

Since S has index fc, there exist k linearly independent normal vectorfields 

^i> • • • > wk on S that vanish on dS and are such that 

d^2 

,  ,      area(5 + tw) < 0 
dtjt=0 
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if w is a nonzero linear combination of the Wi. Note if we perturb the Wi 

slightly in L1'2, this remains true. Thus we may choose the Wi to be compactly 

supported in the interior of 5. Extend each vectorfield so that it is a smooth 

vectorfield on RN that vanishes on a neighborhood on FU^S'. By the smooth 

convergence (on compact subsets of RN \ F) of Tn to 5, 
(i \ 2 •   j \  2 

—■ )      area(rn + tw)= [ — )      area(5 + tw) < 0 
dtjt=0 \dtjt=0 

if it; is a nonzero linear combination of the Wi.   Also, for the same reason, 

for sufficiently large n, the vectorfields u>i|Tn (i =/l,...,fe) will be linearly 

independent. This proves that the index of Tn is > k. 

We now show that the index plus the nullity of Tn is < k. Suppose not. By 

passing to a subsequence, we can assume that 

index(Tn) + nullity(Tn) > k 

for all n. It follows that for every n, there is an eigenfunction un of the jacobi 

operator on Tn that has eigenvalue < 0 and that is orthogonal to each Wi\xn 

(i = 1,..., A;), where the Wi are as above. 

Let \un\ achieve its maximum at zn G Tn. We normalize 1^(^)1 to be 1. 

Claim:   zn is bounded away from dTn.   For suppose not.   By passing to a 

subsequence we may assume that 

(i/dist(^,5rn))#(rn-^) 

converges to a limit L, which must be either 

(1) a halfspace, or 

(2) an infinite strip, or 

(3) a skillet-like minimal surface (cf. [WI, §1]) 

By the standard regularity theory, the convergence is smooth (on compact 

subsets of RN.) Thus the u^s converge to a bounded eigenfunction u on L 

with eigenvalue < 0. But the surfaces (l)-(3) do not have such eigenfunctions. 

This proves the claim. 

It follows from the claim that (after passing to a subsequence) the un con- 

verge smoothly on compact subsets of RN\T to a bounded nonzero eigenfunc- 

tion u on S \ dT. Since u is bounded, it in fact extends smoothly to all of S. 



520 BRIAN WHITE 

Now for each i = 1,..., fc," 

/ Wi • u= lim  / 
Js n^00JTr, 

Wi'Un = 0 
is n^™JTn 

Thus u is an eigenfunction on S that has an eigenvalue < 0 and that is or- 

thogonal to wit..., wk. But that contradicts the fact that 5 has index k and 

nullity 0. 

Finally, the uniqueness of the Tn is proved exactly as in [Wl, 5.3].    □ 

Remark. Note that the proof actually shows somwhat more: that there is a 

neighborhood G of T such that the index of Tn \ G is k. In fact, if S consists 

of two components that F joins, then the index of each component of Tri\G 

is equal to the index of the corresponding component of S. 

It follows that all the theorems in [Wl], stated there for strictly stable 

surfaces, continue to hold for unstable surfaces of nullity 0. For theorem 3 of 

[Wl], one should add the conclusion that there is a neighborhood G of F such 

that 

(1) nuUity(5n) = 0, 

(2) index(5n) = index(5n \ G) = index(S), 

(3) each connected component of Sn \ G has the same index as the corre- 

sponding component of S. 

This allows one to add 
oo 

index lim cr(5i,..., 5n) = V^ index(S'n) 
n=l 

to the conclusions of theorem 4.1. 

We then also have the following improvement of [Wl, 4.2]: 

1.3. Theorem. There is a connected embedded curve C in dB3 that is smooth 

except at one point and there is a number L such that for every 

a e [L,oo], 

5E{0,l,2,...}u{oo}, 

LE {0,1,2,... }U{oo} 

there exist uncountably many (2*°) embedded minimal surfaces with boundary 

C, area a, genus g, and index L. 
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Proof. The proof is exactly as in the stable case [Wl, 4.2], except that we let 

p(i) be a sequence of 1's, 2's, 3's, and 4's such that 2 occurs exactly g times 

and 4 occurs exactly i times.    □ 

Remark. If the reader examines the proof of [Wl, 4.2], he or she will see that 

we appealed to minimax theory to produce an index 1 embedded minimal disk 

S* bounded by Cn (we already had two strictly stable disks S* and S^.) If we 

allow C to lie in the boundary of a convex set other than the sphere, then we 

can give a more elementary proof that uses degree theory instead of minimax 

theory. We begin by choosing in the z = — 1 plane a smooth convex closed 

curve S that includes a straight line segment. Now we let M be the cone 

{tp : t E [0, oo),p G £}; this cone will take the place of the 2-sphere. 

As before, for n = 1,2,..., we let C'n and C^ be horizontal slices of M 

with C^ very close to C^, and we join C^ and C^ by a very thin bridge to 

get a connected curve Cn. Note we can choose bridges that lie in the planar 

portion of the cone M. We perturb the bridges slightly (keeping them in the 

planar portion of M) so that Cn bounds no regular minimal surfaces with 

jacobi fields. As before, Cn will bound two strictly stable embedded disks 

S* and S^ and a strictly stable embedded surface S^ of genus 1. By degree 

theory ([W5, 2.1] or [TA]), the number of embedded disks of even index minus 

the number of odd index is 1. Thus Cn must bound an odd index disk S*. 

Note that the total curvature of Cn is Gn. (This is why we use the cone M; 

the corresponding curve in dB3 has total curvature slightly greater than Sir.) 

By the Gauss-Bonnet formula, S* has total curvature less than 47r. Thus the 

nodal line of the second eigenfunction of the jacobi operator divides S* into 

two regions, at least one of which has total curvature less than 27r. By the 

theorem of Barbosa and do Carmo [BC], this region is strictly stable. Note 

that the second eigenvalue of the S^ is equal to subregion's first eigenvalue, 

which we have just seen to be positive. Thus S* has index 1.    □ 

2. COUNTEREXAMPLES: WHY NULLITY IS BAD 

In this section we give two examples to show that it is not always possible 

to connect minimal surfaces by bridges. 
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EXAMPLE 1. Consider an entire catenoid centered at the origin. As is well 

known, there is an r > 0 such that the intersection M of the catenoid with 

B = Br(0) has index 0 and nullity 1. Let Pi and P2 be the planes that contain 

the boundary circles of M. We may assume that the planes are horizontal and 

that Pi lies below P2- Now let N be any smooth embedded minimal surface 

below Pi with boundary in dB. 

Theorem. Let P be a bridge in dB that joins dM to ON and that lies below 

Pi. Then there is no connected minimal surface having the same boundary as 

MUPUN. 

Proof. Let V be a minimal surface with the same boundary as M U P U N. 

Since dV G dB, V cannot have boundary branch points [N, §366]. 

Let Co = dM = dBr n (Pi U Pa), and for t > 0, let 

ct = dBr+t n (Pi u P2) 

Thus Ct is a pair of circles. Note that for t > 0, Ct bounds exactly two 

catenoids, one strictly stable and the other unstable. Let Mt be the stable 

one and M_t be the unstable one. (One can obtain each Mt by dilating the 

original entire catenoid a suitable amount and then intersecting with the slab 

between Pi and P2. The asserted properties of the Mt follow readily from this 

description.) We let M0 — M. Note that the Mt (t G R) form a continuous 

one parameter family, and that the Mt with t > 0 foliate the region between 

Pi and P2 and outside of M. Hence by the maximum principle, V does not 

touch that region. In other words, V lies in the simply connected component 

of B \ M. By the Hopf boundary maximum principle, V is never tangent to 

M along the boundary. Thus for t < 0 near 0, Mt is disjoint from V. Hence 

Mt is disjoint from V for all t < 0 (since otherwise the maximum principle 

would be violated for the greatest t < 0 for which Mt intersects V.) Likewise, 

V must be disjoint from all translates Mt + v where v is a horizontal vector of 

length less than \t\. But such translates fill up the entire slab between Pi and 

P2. Thus the slab separates V into two connected components.    □ 

EXAMPLE 2. Similar situations arise even when one considers only disk-type 

surfaces. Recall ([W4, §8] and [W5, §1 and §2]) that if X is the space of all 
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smooth closed embedded curves in the two sphere dB and if M is the space 

of all embedded minimal disks with boundaries in X, then M is a Banach 

manifold and the map 

n(5)= dS 

is a proper real-analytic Predholm map of Fredholm index 0. 

Let Co G X be a circle, and let Ci E X be a curve that bounds more than 

one embedded minimal disk. Let 

tv-^Ct       (0 < t < 2) 

be a real analytic curve in X (starting at Co and passing through Ci) that is 

transverse to 11. Then 

X = IT^Ct : 0 < t < 1} 

is a compact real-analytic 1 manifold with boundary, and 

7r(= n|*) : X - X 

is real-analytic. 

Let r be the infimum oft for which 7r~1(Ct) contains more than one element. 

Note that r > 0. For 0 < t < r, let Dt be the unique minimal disk bounded 

by Cf Let Dr = limt_r_ £>t. 

If .DT is a regular point of TT, then TT is strictly monotonic on a neighborhood 

of DT. If JDr is a critical point, then by analyticity it is an isolated critical 

point, so there is a neighborhood / of DT in X such that TT is strictly monotonic 

in each component of I \ (DT). Thus if it were not monotonic on all of /, then 

TT would "turn around" at DT, contradicting the fact that 7r"1(Ct) has only 

one element for t < r. Thus TT must be strictly monotonic near DT. 

It follows that 7r~1(CT) contains more than one element. Now for any curve 

such as Cr that bounds more than one minimal variety, there is a region 

W bounded by two stable disks in 7r"1(CT) such that all stationary varieties 

bounded by Cr lie in W (see [MY] or [W5, corollary 2.2] or [L]). Thus one of 

these two extreme disks, call it M, must be different from DT. Let U+ be the 

connected component of B \ M that does not include W, and let U" be the 
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other component. Note that M does not minimize area in any open subset of 

J5, since if it did, it could not disappear under boundary perturbations such 

as CT —► CT_e. 

Theorem. Let M be the minimal disk described above. Let N be any regular 

minimal surface in U~ \M with boundary in dB. Let P be a bridge in U~ HdB 

joining M to N, and let V be a minimal surface with boundary d(MUPUN). 

Then V is bounded away from M (independently of P). That is, there is an 

open set O containing the interior of M such that no such V intersects O. 

Proof. Each stable embedded minimal surface ^ M bounded by Cr divides 

B into two connected components, one of which contains M (this is by the 

extreme property of M). Let O be the intersection of those components that 

contain M. Since CT can only bound finitely many stable embedded minimal 

surfaces [M], O is open. 

First note that V cannot intersect f7+. For let M' be minimize area among 

all surfaces in U+ that have boundary Cr and that are disjoint from V. Then 

M' is a minimal surface bounded by Cr, so it must lie in U~ by the extreme 

property of M. Thus M' C U^ fl TF so M' = M, which forces V C U~ by 

the maximum principle. Since dV lies in the boundary of a convex set, V is 

a smooth embedded manifold at the boundary. Thus by the Hopf boundary 

maximum principle, V is never tangent to M along dM. Now let D' minimize 

area among all surfaces that are homologous to M in B \ V. Then D' is a 

minimal surface that does not (by the maximum principle) touch V except at 

the boundary. Thus D/ is locally minimizing. Consequently, D' ^ M, so D' is 

disjoint from O by definition of O. It then follows that D7 separates V from 

O.   □ 

3. SINGULAR MINIMIZING SURFACES 

3.1. Theorem. Let U be a bounded open subset of RN and let S be a integral 

current (or flat chain modulo p) supported in U that uniquely minimizes area 

among currents supported in U. 

Let F be a smooth embedded arc whose endpoints are regular boundary points 

of S and that is otherwise disjoint from S. Suppose also that at each of its two 
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endpoints, T makes a nonzero angle with the tangent half-plane to S at that 

endpoint. 

Then there is an open set W containing T and a bounded open set U' con- 

taining U U W such that if Pn is a sequence of bridges on OS shrinking nicely 

to F and ifTn is an surface that minimizes area among all surfaces in U' with 

boundary d(S U Pn), then 

(1) Tn —» S weakly as currents, 

(2) dist(rn,sur)->(v 
(3) for sufficiently large n, Tn does not touch dll' and is therefore station- 

ary, 

(4) Tn converges smoothly to S on compact subsets of RN \ (F U sing(S,))7 

where sing(5) is the set of singularities of S, and 

(5) for sufficiently large n, TnnW^ is diffeomorphic to a strip B171'1 x (0,1). 

Remark. For the purposes of this theorem, a singular point is any point that 

has no neighborhood in which T is a smooth manifold (or manifold with 

boundary) with multiplicity 1. (So a smooth surface with multiplicity > 1 

is considered to be singular.) 

Proof By lemma 2.1 of [Wl] there is a bounded open set U' that contains 

UUT and in which S is uniquely area minimizing. 

The first two conclusions are proved exactly as in the smooth strictly stable 

case [Wl,. 2.2]. The third follows immediately from the first two. The fourth 

conclusion is an immediate consequence of the basic GMT regularity theory. 

Let W C U' be a neighborhood of F such that W fl S is diffeomorphic to 

the union of two closed m-balls, and such that dW is transverse to S. (Note 

that dW is not transverse to dS] otherwise W D S would have corners). 

Let r; = Tn H W and S = S n W. Note by (3) that T^ converges smoothly 

to T D W away from F. Let 

Cn = [(dW) H interior(rn)] U [W n dS] 

Then Cn converges smoothly to dSf. Let S'n be the area minimizing (in U') 

surface with boundary Cn. Then by standard regularity theory, 5^ converges 

to S' smoothly. Note also that T^ and Sf
n U Pn have the same boundary. 
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Thus we have: 

(1) A smooth strictly stable and uniquely minimizing surface S' = S D W 

in an open set U\ 

(2) An arc F G U' joining two points of dS' nicely, 

(3) A sequence of smooth minimal surfaces S'n converging smoothly to S' 

and such that dS'n coincides with 55" near the endpoints of F 

(4) a sequence of bridges Pn shrinking to F nicely, and 

(5) for each n a surface T^ with boundary d(Sf
n U Pn) that minimizes area 

(among surfaces in [/' with the same boundary). 

The last conclusion of the theorem now follows immediately from [Wl, 

2.2].    □ 

4. THE CONVERSE OF THE BRIDGE PRINCIPLE 

Let C be the connected curve formed by joining two curves Ci and C2 by a 

thin bridge. We have proved various theorems showing that minimal surfaces 

bounded by Ci and C2 can be joined to form a minimal surface bounded by 

C". One can ask whether all the minimal surfaces bounded by C arise in this 

way. The answer is in general no, unless we impose fairly strong hypotheses 

on the bridge. Consider the following examples: 

EXAMPLE 1. Let Ci and C2 be horizontal circles in SB3, one slighly above 

and one slightly below the equator. Let F be an arc in dBs joining Ci to C2, 

and let Pn be a sequence of bridges in dB3 shrinking nicely to F. Let C^ be 

the curve formed by joining Ci to C2 with Pn. Now Ci U C2 bounds exactly 

three classical minimal surfaces [SR], namely 

(1) a pair of disks, 

(2) a stable catenoid, and 

(3) an unstable catenoid. 

These have nullity 0, so the bridge theorem 1.2 gives us a corresponding set 

of three minimal surfaces bounded by C'n, namely a disk and two genus 1 

surfaces. Note that the area of the disk is approximately 2. However, C^ 

bounds a disk with far less area (for instance, the component of dB3 \ C'n that 

lies between Ci and C2). Thus the least area disk does not resemble a minimal 
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surface with a bridge attached. (It looks like a thin ribbon near the equator.) 

Example 2. Let Ci and C2 be the boundaries of a pair of disjoint disks. Let 

F be a "geometrically knotted" arc joining Ci to (72- In other words, there 

should be a convex open set U such that U fl F is a connected arc that is 

knotted in U\ see [DW]. We may choose F so that U does not intersect either 

of the two disks. Let Pn be a sequence of bridges shrinking to F nicely, and 

let C'n be the connected curve formed by joining Ci to C2 with Pn. Then by 

[DW], there will be a soap-film-like minimal variety bounded by a portion of 

one of the bridge arcs (and not touching Ci or C2!) 

The problem in example 1 is that the curves Ci and C2 are two close to- 

gether. The problem in example 2 is that the arc F is not straight enough. 

Prom now on we will avoid these problems by making the following hypotheses: 

4.1. Hypotheses. Let X be a catenoid centered at the origin, and let X* 

be the union of all dilates of X. Note that X* is a cone whose complement 

consists of two convex components. Let Ki (i = 1,2,) be convex sets, one in 

each component of R3\X*. Let Ci be a smooth embedded curve in Ki, and let 

Pi be a point in Ci fl dKi. Let F be a smooth arc such that 

(i) TnKi = dTnKi = Pi, 

(2) F H X* = 0, and 

(3) there is a vector v in R3 such that F is never perpendicular to v. 

Let Pn be a sequence of bridges on Ci U C2 that shrink to F nicely, and let C'n 

be the curve obtained by joining Ci to C2 along Pn. 

4.2. Lemma. Assume the hypotheses 4-1- Let Vn be a nonzero stationary 

integral varifold bounded by Cr
n. Then every sequence of the Vn has a sub- 

sequence that converges (in the sense of varifolds) to a limit Si U S2, where 

Si C Ki is a stationary integral varifold with boundary Ci. 

Proof. Existence of subsequential limits follows from Allard's compactness the- 

orem (see [AW1] or [SL, §42.8]). Let V be any subsequential limit. We claim 

that V H X* = 0. For if not, some of the dilates of X would intersect V. 

Since V is compactly supported, there would then be a largest such dilate X'. 
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But at the point of contact between V and X', we would have a contradiction 

to the maximum principle [SW]. 

It follows that V decomposes into two pieces 5i and 52, one in each of 

the connected components of R3 \ X*. Furthermore, 5* is stationary with 

respect to Ci U F. By using catenoidal barriers as in [DW], one can show that 

the support of 5* does not touch F except at p^. Thus 5?; is stationary with 

respect to d. Finally, the convex hull property implies that 5* is in Ki.    Q 

We remark that the same proof shows that any minimal variety bounded 

by Ci U C2 is the union of two components, one bounded by Ci and the other 

byC2. 

4.3. Theorem. For smooth closed curves C in R3, let K{C) denote the set 

of all genus 0 classical minimal surfaces bounded by C. Assume the hypotheses 

4.1 and suppose there are only finitely many surfaces in K(Ci UC2), and that 

each such surface has nullity 0 and has no branch points. Then for sufficiently 

large n, the surfaces in K{C'^) have nullity 0 and no branch points, and there 

is a one-to-one correspondence between K(C^) and K{Ci U C2) = K{Ci) x 

K{C2). The correspondence preserves index, and pairs embedded surfaces with 

embedded surfaces. 

Proof. Suppose first that K{Ci) contains only embedded disks. Theorem 1.2 

guarantees the existence of a one-to-one map 

<l>n-K{C1UC2)-*K{C'n) 

with all the desired properties except surjectivity. 

Suppose the surjectivity failed for arbitrarily large n. Then (passing to a 

subsequence) we may assume that for each n, C^ bounds a disk Dn that does 

not arise (as in theorem 1.2) from connecting disks in K{Ci) and if (C2), and 

that the Dn converge as varifolds to 5i U 52 as in lemma 4.2. Because the 

genus and total curvature of Dn is bounded (the latter by the Gauss-Bonnet 

theorem), it follows (see theorem 3 of [W6]) that there is a finite set Z C R? 

such that the second fundamental form of Dn is uniformly bounded (for large 

n) on compact subsets of R? \ (Z U F). Consequently 5^ must be a regular 

immersed minimal surface except possibly at the points Z U dT. Now a finite 
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genus minimal surface with smooth boundary that is regular except at finitely 

many points is in fact a classical minimal surface (possibly with branch points). 

Thus Si £ K(Ci) and therefore has no branch points. But now it follows from 

the uniqueness assertion in theorem 1.2 that Z)n = <^n(5i U S2) for sufficiently 

large n. 

The case of immersed disks can be reduced to the embedded case by the 

device given in [Wl, §5.2].    □ 

4.4. Theorem. Fix any 0 < g < 00 and any 0 < L < 00, and let K(C) 

denote either 

(1) all classical minimal surfaces of genus < g and index < L that are 

bounded bounded by C, or 

(2) all classical minimal surfaces of genus < g and index < t that are 

bounded by C and that have no self-intersections, or 

(3) all nonzero stationary integral varifolds bounded by C (If C is not 

connected, we require the varifold to have support that touches each 

connected component of C.) 

Assume the hypotheses 4-1- Suppose also that K(Ci U C2) is finite, and that 

each of the surfaces in K(Ci U C2) has nullity 0 and is a regular embedded 

surface with no boundary branch points. Then for all sufficiently large n, 

there is a bijection 

<l>n:.K(C1\JC2)»K(C'n) 

For each S G K(Ci U C2), ^>n(S) is a regular embedded surface with the same 

index and genus as S. 

Proof Essentially the same as 4.3.    Q 

EXAMPLE. Let E C i?3 be Enneper's surface as represented in'fN, §88-93]. 

Let Er be the portion of E inside the ellipsoid 

2   1      2.^2 *■    2/o   1      2\2 x +y + 3^ = ^ {3 + ry 

Then by a theorem of Ruchert [R], dEi bounds exactly one minimal disk, 

namely Ei, which has nullity 1. Furthermore, by work of Beeson and Tromba 

[BT], for every r slightly larger than 1, dEr bounds exactly 3 minimal disks 
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near Er. Two are strictly stable and the other (namely Er) has index 1 and 

nullity 0. 

By [MY] (or [W5, corollary 2.2] or [L]) an extreme curve either bounds 

exactly one minimal variety or bounds more than one minimal disk. Conse- 

quently Ei is the only stationary integral varifold bounded by dE1. It follows 

(by the Allard regularity theorems [AW1, AW2]) that for r slightly larger than 

1, every stationary integral varifold bounded by C = EndBr is an embedded 

disk near Er (and thus one of the three disks mentioned above). 

Hence if we connect two translates of such a C by a suitable bridge as in the- 

orem 1.2, we get a smooth unknotted curve that bounds exactly 9 stationary 

varifolds. Each of the 9 varifolds is a smooth embedded disk. 

Similarly (proceeding inductively), we can connect k translates of C to- 

gether to get a curve that bounds exactly 3k stationary integral varifolds. All 

are embedded disks with nullity 0, and, for 0 < p < k, exactly (/c)2/c~p have 

index p. 

5. A QUESTION RAISED BY NITSCHE 

Professor J. C. C. Nitsche raised the following question. Let Ci and C2 be 

simple closed curves in B?. Can one join Ci to C2 by a thin bridge to get 

a curve C that bounds a minimal disk that can be perturbed slightly to the 

form Di U D2 U P where Di is a minimal disk bounded by d and P is a thin 

ribbon? The problem is that one does not know if d bounds any minimal 

surface that satisfies the hypotheses of any of the theorems of this paper or 

its companion [Wl]. For instance it is conceivable that there is a smooth 

curve C that bounds a continuous family of area minimizing disks (each with 

a boundary branch point) but no other minimal surfaces. 

The first answer is yes, provided the curves Ci and C2 are real analytic. 

This implies that each Ci bounds only finitely many area minimizing disks 

(by [TF]), none of which have branch points (by [O] together with [G] or 

[AH1-2]) or boundary branch points [GL]. Let A be one such disk. If the 

proof of [W2, theorem 2] shows that there is an open set U C B? containing Di 

in which Di is minimizing as a current. The desired result follows immediately 

from theorem 3. If Di is immersed, we use the trick in [Wl, §5.2] to reduce to 
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the embedded case. 

The second answer is yes, provided Ci and C2 are not too close together 

and provided we can choose the arc F along which we put the bridge. That 

is, suppose we have the hypotheses 4.1 of the previous section. Let Dn be a 

least area disk bounded by C'n. The argument in the proof of theorem 4.3 

shows that a subsequence of the Dn converges (in the sense of varifolds) to 

Si U 52, where Si is a minimal disk bounded by Ci. That Dn is an embedded 

ribbon near Y is proved by essentially the same argument used for theorem 3. 

Note also that Dn has no interior branch points, and has no boundary branch 

points except near boundary branch points of Si U 82- 
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