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DIFFERENTIAL GEOMETRY OF TODA SYSTEMS 

ALEXANDER V. RAZUMOV AND MIKHAIL V. SAVELIEV 

ABSTRACT. In the present paper we give a differential geometry for- 
mulation of the basic dynamical principle of the group-algebraic ap- 
proach [18] — the grading condition — in terms of some holomorphic 
distributions on flag manifolds associated with the parabolic sub- 
groups of a complex Lie group; and a derivation of the corresponding 
nonlinear integrable systems, and their general solutions. Moreover, 
the reality condition for these solutions is introduced. For the case of 
the simple Lie groups endowed with the canonical gradation, when 
the systems in question are reduced to the abelian Toda equations, we 
obtain the generalised Pliicker representation for the pseudo-metrics 
specified by the Kahler metrics on the flag manifolds related to the 
maximal nonsemisimple parabolic subgroups; and the generalised in- 
finitesimal Pliicker formulas for the Ricci curvature tensors of these 
pseudo-metrics. In accordance with these formulas, the fundamental 
forms of the pseudo-metrics and the Ricci curvature tensors are ex- 
pressed directly in terms of the abelian Toda fields, which have here 
the sense of Kahler potentials. 

1. INTRODUCTION 

The aim of the present paper is to describe some aspects of a differential 

and algebraic geometry foundation of a wide class of nonlinear integrable sys- 

tems generated by a flat connection in the trivial fibre bundle M x G —► M, 

with a complex Lie group G and a two-dimensional manifold M supplied 

with a complex structure. The principal example here is the well-known finite 

nonperiodic Toda systems (abelian as well as the nonabelian versions) asso- 

ciated with an arbitrary finite-dimensional simple Lie group, and their affine 

deformations resulting in the periodic Toda systems. 

At present, there is the so-called group-algebraic approach [18] which proved 

itself very efficient for a constructive investigation of the integrability problem 
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for nonlinear systems in low dimensions. In the framework of this method, 

the integrability criteria is related to such properties of the internal symmetry 

group of the equations under consideration, as its solvability and finiteness of 

the growth; and in turn is realised in the relevant properties of the character- 

istic algebra of the corresponding dynamical system [20, 19], whose generators 

can be written, speaking in modern terms, as a VF-algebra elements. At the 

same time, a differential and algebraic geometry setting of nonlinear integrable 

systems, which seems to be quite important, however, is not clear enough yet. 

Our present paper is mainly devoted to the extrinsic geometry of integrable 

systems. Here we give a differential geometry formulation of the basic dynam- 

ical principle of the group-algebraic approach [18] — the grading condition, 

and its realisation in terms of some holomorphic distributions on flag mani- 

folds F± — G/BT, where B^ are the parabolic subgroups of G associated with 

a given Z-gradation of the Lie algebra g of the Lie group G. Such distribu- 

tions have already been studied in mathematical literature as superhorizontal 

distributions [6]. Moreover, the consideration of the nonlinear Toda type sys- 

tems given in our paper seems to be closely related to variations of the Hodge 

structures in the spirit of Ph. A. Griffiths [13, 24]. Further, we consider the 

derivation of the related nonlinear systems. In particular, for the simple Lie 

groups one comes to the Toda systems, and just for them we reproduce a con- 

struction of their general solutions already known from [18], where they were 

obtained using purely Lie group methods. Moreover, here we introduce the 

reality condition for these solutions in terms of the corresponding mappings 

M —> F±. Finally, for the case of the complex simple Lie algebra endowed 

with the canonical gradation, when the systems under consideration are re- 

duced to the equations of the abelian Toda system, we derive the generalised 

Pliicker representation for the pseudo-metrics on M specified by the Kahler 

metrics on the flag manifolds related to the maximal nonsemisimple parabolic 

subalgebras (closely related to the fundamental representations of g); and the 

generalised infinitesimal Pliicker formulas for the Ricci curvature tensors of 

these pseudo-metrics. In accordance with these formulas, the fundamental 

forms of the pseudo-metrics on M and the Ricci curvature tensors are ex- 

pressed directly in terms of the abelian Toda fields, which have here the sense 
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of Kahler potentials. 

Note that the fact that for the case of the canonical distributions the Ricci 

curvature tensors are connected with the corresponding fundamental forms of 

the pseudo-metrics has been conjectured in [10] and then proved in [22], see 

also [25] for the symplectic algebra, while in a very brief form, and without 

any relation to integrable systems. Moreover, this generalisation of the Pliicker 

representation and formulas has been obtained in [9] by an explicit calculation 

of the Kahler potentials on the corresponding manifolds associated with the 

fundamental representations of the classical simple Lie algebras (series A, B, 

C, D) endowed with the canonical gradation. This last paper comes back to 

the pioneering, and also quite recent investigation [7, 8] of some geometrical 

structures behind W-algebra for the case of the abelian A-Toda system as a 

notion of a W^-geometry of the complex projective target manifolds associated 

to this system. In fact, just the very remarkable papers [7, 8], together with 

numerous discussions and contacts with J.-L. Gervais, both illuminating and 

pleasant, served as a vigorous stimulus for our present study of the generalised 

Pliicker relations. 

It seems to us very believable that the relevant modification of the last part 

of our present paper, concerning generalised Pliicker representation and formu- 

las, can be done for a more wide class of nonlinear integrable partial differential 

equations, in particular for nonabelian versions of the finite nonperiodic Toda 

system. Moreover, all what we have said up to now, mainly concerns with the 

finite-dimensional manifolds associated with finite-dimensional Lie algebras, 

and in turn with the finite systems. There is also a number of very interesting 

papers where the infinite-dimensional Kahler geometry and Grassmannians 

associated with the group of smooth based loops on a connected compact Lie 

group were investigated, see e.g. [16] and references therein; and some aspects 

of the differential geometry of the affine Toda systems are treated, see e.g. 

[4, 5, 3, 2]. Here the arising (flag) manifolds behave in many respects like 

finite-dimensional ones. At the same time, a study of the infinite-dimensional 

Kahler manifolds associated with infinite-dimensional Lie algebras, in partic- 

ular, algebras of the diffeomorphisms groups, should deal with the notions 

and objects of a novel nature, see e.g.  a consideration of the Woo-geometry 
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of the continuous ^oo-Toda system in [23]. However, the W-geometry of the 

dynamical systems related to the infinite-dimensional Lie algebras represents 

much more complicated problem, and we will not discuss it here at all. 

Concluding the Introduction, we would like to explain why we supply our 

paper with the appendices containing more or less known information concern- 

ing the geometry of the complex and real Lie groups; the parabolic subalgebras 

of the simple Lie algebras and the associated flag manifolds; and Z-gradations. 

The point is that at present many theoreticians work with the problems related 

to the Toda systems, while our language is mainly differential and algebraic 

geometry one. Since, as far as we know, it is not commonly accepted by them 

in a whole extent, we give there some notations and definitions to simplify 

reading of our paper. Moreover, some definitions used in the main body of 

the paper, e.g. a relation of g-valued 1-forms and a connection forms, vertical 

automorphism group and gauge group, are figured in physical and mathemati- 

cal literature in different forms and, sometimes, with different meanings; some 

notions are defined on a different level of generality, e.g. matrix-valued and 

generic 1-forms taking values in a Lie algebra; this is why we found it possible 

and reasonable to give some definitions which synthesize and interpolate, in a 

sense, between them. 

2. ZERO CURVATURE REPRESENTATION OF TODA EQUATIONS 

2.1. Flat Connections. Let M be a two-dimensional manifold supplied 

with a complex structure JM, so that M can be considered as a one-dimensional 

complex manifold. Let G be a complex semisimple Lie group, and Q be the 

corresponding complex Lie algebra (see appendix A). Consider a g-valued 1- 

form to on M. Note that any such a form corresponds to a connection form of 

some connection in the trivial holomorphic principal fibre bundle M x G —> M, 

so we call uo also a connection form, or simply a connection. Suppose that the 

form u satisfies the condition 

(2.1) dw{X,Y) + [u{X),u{Y)] = 0 

for any vector fields X, Y on M. In this case the corresponding connection in 

M x G —► M has zero curvature, in other words it is a flat connection. Hence, 
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it is natural to call relation (2.1) the zero curvature condition. Using a local 

coordinate z in M, one can write 

(2.2) {jj = uj-dz + uj+dz, 

where u± are some mappings from M to g. In what follows the superscripts — 

and + mean for 1-forms on M the corresponding components in the expansion 

over the local basis formed by dz and dz. In terms of UJ± the zero curvature 

condition takes the form 

(2.3) dzcj+ - d-zu_ + [a;.,«;+] - 0. 

Here and below we use the notation 

(2.4) dz = d/dz,        dz = d/dz. 

Choosing a basis in Q and considering the components of the expansion of 

UJ± over this basis as fields, we can treat the zero curvature condition as a 

nonlinear system of partial differential equations for the fields. 

Note that the group of vertical automorphisms of the fiber bundle M x G —> 

M is parametrised by a mapping from M to G. According to the tradition 

accepted in the physical literature, we call this group the group of gauge 

transformations. Let I/J be a mapping from M to G, and ou be a connection 

form; the gauge transformed connection form ou^ is given by the relation 

(2.5) ^{x) = AdOT^Mz) + il>*9(x) 

for any p G M and x € T^(M). The notation '0~1 in (2.5) means the mapping 

connected with the mapping if; by 

(2.6) ^-1(p) = OKp))-1. 

Relation (2.5) can be written formally as 

(2.7) a/ = Ad^"1) o u) + ^6, 

where o means the composition of the mappings. For the case of a linear group, 

a; is a matrix valued 1-form, ^ is a matrix valued function, and Eq. (2.7) takes 

the form 

(2.8) a;^ = V1a;^ + ^-1d^. 
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The zero curvature condition is invariant with respect to the gauge trans- 

formations (2.7). In other words, if a connection u satisfies this condition, 

then the connection u^ also satisfies it. It is convenient to call the gauge 

transformations defined by Eq. (2.7), G-gauge transformations. 

Suppose that the manifold M is simply connected, then for any flat con- 

nection u there exists a mapping <p from M to G such that 

(2.9) u = y*e, 

where 6 is the holomorphic Maurer-Cartan form of the group G (see appendix 

A). Note that for a linear group one can write 

(2.10) u = ip~ld^. 

Prom the other hand, for any mapping <p the connection ^u) given by 

(2.ii) *UJ = w*e, 

satisfies Eq. (2.1). Moreover, ^uo — 0 if and only if y? is a constant mapping. 

For any two mappings (p,i/j : M —> G we define a new mapping ynj; by the 

relation 

(2.12) V*l>(p) = <p(p)il>(p)- 

Proposition 2.1. For any two mappings ip, ip : M —» G, the relation 

(2.13) ^u) = Ad^"1)^ + ^co 

is valid. 

Proof. For any p G M and x G T^(M) we have 

(2.14) ^u{x) = {^ye{x) = 6((v»l>).p(z)). 

It is not difficult to show that 

(2.15) (^,0)*p = RIP(P)*<P(P) 
0 ¥?

*P + ^,
<P(P)*IP(P) 

0 ip+p- 

Now using Eqs. (A.6) and (A.7), we arrive at Eq. (2.13).    □ 

Corollary 2.1. For any two mappings tp, ip : M —» G, 

(2.16) (*(*;)* = **u),        *~*w = - Ad(^)(M. 
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Proposition 2.2. // the equality 

(2.17) ^ = ^0;, 

is valid, then ^V-1 ^s a constant mapping. 

Proof. Performing the gauge transformation corresponding to the mapping 

y?-1, from Eq. (2.17) we get the equality 

(2.18) v,/v,"1a; = 0; 

hence, ^V"1 'ls a constant mapping.    □ 

Therefore, in the case under consideration, any flat connection can be gauge 

transformed to zero. In this sense system (2.3) is trivial. From the other 

hand, the majority of two-dimensional integrable equations can be obtained 

from system (2.3) by imposing some gauge-noninvariant constraints on the 

connection CJ. Note that, in general, for the case of infinite dimensional Lie 

algebras and Lie groups one needs a generalisation of the scheme, see Refs. [18, 

21], but in the present paper we restrict ourself to the finite dimensional case. 

Consider one of the methods to impose the conditions in question, giving, in 

fact, a differential-geometric formulation of the group-algebraic approach for 

integrating nonlinear systems in the spirit of Ref. [18]. 

2.2. Grading Condition. Suppose, following Ref. [18], that the Lie algebra 

0 is a Z^graded Lie algebra, (see appendix B). The first condition we impose 

on the connection u is the following. Let b± be the subalgebras of g defined by 

Eq. (B.28). Require that the (l,0)-component of the form u takes values in b_, 

and its (O,l)-component takes values in b+. We call this condition the grading 

condition. Any connection u satisfying the grading condition is of the form 

^ou for some mapping tp : M —» (7; however not any mapping tp leads to the 

connection ^u satisfying this condition. Let us formulate requirements which 

should be imposed on tp to guarantee the validity of the grading condition. 

Denote by £?± the connected subgroups of G corresponding to the subal- 

gebras b±. Since b± are parabolic subalgebras of g (see appendix B), the 

subgroups B± are parabolic subgroups of G; hence, the homogeneous spaces 
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F± = G/B^ are flag manifolds. Let TY± : G —> F± be the canonical projections. 

Define the mappings <p± : M —* F± by 

(2.19) (p± = 7r± o p. 

Theorem 2.1.  The connection ^u satisfies the grading conditions if and only 

if the mapping <£>_ is holomorphic, and the mapping (p+ is antiholomorphic. 

Proof. Suppose that the 1-form (^u;)^0,1^ takes values in b+.   Thus, for any 

x e Tf(M) we have 

(2.20) (7r-.eoM^M(s)) = 0, 

where the mapping P™ projects the tangent vector x to its (0, l)-component. 

Equality (2.20) can be rewritten as 

(2.21) e((V>^poPp
M)(x)) = 0. 

Note that, since 9 is a form of the type (1,0), the equality 

(2.22) 9(x) = 0,        x e Tf(G), 

is valid if and only if 

(2.23) Ps
G(x)-0 

(see appendix A). Hence, from Eq. (2.21) we have 

(2-24) if_(p)Oy-.pO^ = 0 

for any point p G M.   The mapping (p+*p is real; thus, after the complex 

conjugation of Eq. (2.24), we get 

(2.25),. Pl(p)o^poPp
M = 0. 

It follows from Eqs. (2.24) and (2.25) that 

(2.26) , J^vV-^P^V-^vJp, 

and so the mapping (^_ is holomorphic. 

Suppose now that the mapping <p_ is holomorphic. Reversing the arguments 

given above, we conclude that the form a/0,1* takes values in b+. 

The case of the mapping (p+ can be considered in the same way.    □ 
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We call a mapping <p generating a connection satisfying the grading con- 

dition, a mapping satisfying the grading condition. Now, following again 

Ref. [18], perform a further specification of the grading condition. Here we 

confine ourselves by a special choice of such a specification leading to the Toda 

type systems; for a more general case see Ref. [18]. 

Let us require that the (l,0)-component of the connection u takes values 

in the linear space 0_i © go? and the (O,l)-component of it takes values in 

the linear space go ©fl+i- To reformulate the grading condition as a condition 

imposed on the corresponding mapping <£>, we introduce some holomorphic 

distributions on the manifolds F+ and F^. To this end, define subspaces m± 

of g by 

(2.27) m+ = 0 gm,        m_ =  0 0m. 
m<l m>—1 

According to the convention of appendix B, in the case of the canonical gra- 

dation we use the notations without tildes. Note that in this case we can also 

define the subspaces m± as 

(2.28) tn± ={x G g | [x,[bT,bT]] G M. 

The subspace m+ is invariant with respect to the adjoint action of the 

subgroup B- in g. Let p G F+, and g be any element of G such that 7r+(^) = p. 

Define the subspace M+v C rp(1'0)(F+) by 

(2.29) yW+p = 7r+*(m+J, 

where 

(2.30) m+, = L^(m+). 

The subspaces .M+p, p G F+, generate a distribution on F+ which will be 

denoted .A/f+. In the same way we can define an analogous distribution M- 

on JFl. 

Theorem 2.2. The connection ^u satisfies the grading condition if an only if 

the mapping <£_ is holomorphic and (p-*(dzp) G M.-ip_{v) for any p G M, while 

the mapping (p+ is antiholomorphic and (p+*(dzp) G M+lp+(p) for any p G M. 

Proof. The proof is similar to the proof of Theorem 2.1.    □ 
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It is natural in the situation, described in theorem 2.2, to say that the 

mapping y?+ is tangent to the distribution M+, while the mapping (p_ is 

tangent to the distribution M-. Note that this condition is directly related 

to the notion of a super horizontal mapping [6]. 

It is clear that the grading condition is not invariant under the action of 

an arbitrary G-gauge transformation, but it is invariant under the action of 

gauge transformations (2.7) generated by the mappings taking values in the 

subgroup ff, corresponding to the subalgebra t) = QQ. Such transformations 

form a subgroup of the group of G-gauge transformations. Below we call a 

gauge transformation from this subgroup an J^-gauge transformation. To get 

a system of equations having not ff-gauge invariance, we should impose fur- 

ther restrictions on the connection form. In fact, we choose following Ref. [18] 

another way leading to the system in question. It consists in constructing 

some ff-gauge invariant quantities, and in rewriting the zero curvature con- 

ditions in terms of them. To this end, let us first consider the structure of the 

holomorphic principal fibre bundles G —> F±. 

2.3. Modified Gauss Decomposition. Recall that the subspaces n± de- 

fined by Eq. (B.26) are subalgebras of g. Denote by N± the corresponding 

connected subgroups of G. Let us formulate and prove two useful lemmas. 

Lemma 2.1. Let h be an arbitrary element of G; if the set N+ fl hB- ^ 0, it 

contains just one element of G. 

Proof Note that iV+ nfL = {e}. Suppose that ni, n2 G iV+ DgB-, then there 

exist the elements 6i, 62 £ 5_, such that 

(2.31) ni = hbi,        n^ = hb2. 

This relation implies the equality 

(2.32) niln2 = b^. 

Hence, we have n^1/^ = e. That was to be proved.    □ 

Lemma 2.2. The set 7r+(N+) is an open set 



DIFFERENTIAL GEOMETRY OF TODA SYSTEMS 471 

Proof. It is clear that 7r+(iV+) = 7r+(N+B^). The subspaces n+ and b_ are 

such subalgebras of g that 

(2.33) 0 = fi+©b_; 

hence, the mapping (n, b) G N+ x B- —> nb G G is regular for any (n, b) G 

N+ x S_ (see, for example, [15, Ch. VI]). It follows from this property that the 

set iV+B_ is open. From the other hand, the mapping 7r+ is an open mapping; 

thus 7r+(iV+) is an open set.   □ 

Using the assertions of these two lemmas, we can define a local section s+ 

of the fibre bundle G —> F+, assuming that 

(2.34) 8+{p) = N+n (7r+)-1(p),        p G 7r+(iV+). 

Since N+ is a holomorphic submanifold of G, the section s+ is holomorphic. 

The subspaces n+5 = L^5k(n+), g G G, generate an involutive holomorphic 

distribution A/+ on G. The image iV+ of the section s+ is an integral manifold 

of this distribution. Note that for any g G G the set giV+ is also an integral 

manifold of the distribution A/+. The following proposition is now almost 

evident. 

Proposition 2.3. There exists an open covering {(7+a}aG^ of the manifold 

F+, and a family of local holomorphic sections {s+a}a(EA : U+a —> G of the 

fibre bundle G —> F+j such that for any a G A the set s+a(U+a) is an integral 

manifold of the distribution N+. 

Proof. As the first element of the required covering and the corresponding 

section we can take the set C7+ = 7r+(iV+) and the section s+ defined above. 

Let p $ U+, and g G (7r+)"1(p). The set gN+ possesses properties similar 

to the properties of the set iV+. Namely, if gN+ Pi /iJ5_ ^ 0, then the set 

gN+ fl hB- contains just one point, and the set 7r+(gN+) is open. Therefore, 

we can define a local holomorphic section s+ : U+ —> G, where Uf
+ = 7r+(^iV'+). 

Here the set U+ contains the point p. Repeating this procedure, we get a family 

of local holomorphic sections of the fibre bundle G —» F+ with the required 

properties.    □ 
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Actually we shall consider families of local sections constructed with the 

help of the procedure used in the proof of Proposition 2.4. In this case, for 

any a G A we have 

(2.35) s+a{U+a) = g+aN+ = N+a 

for some g+a £ G. It is clear that a similar family of local sections can be 

constructed also for the fibre bundle G —► F_. If the Lie algebra g is endowed 

with an involutive antilinear automorphism consistent with the Z-gradation, 

such a family of sections of the fibre bundle G —» F_ can be constructed on 

the base of the given family of sections of the fibre bundle G -» F+. The 

corresponding method to do that is considered in section 3. 

It is known that any family of holomorphic local sections of a holomorphic 

principal fibre bundle, covering the base space, allows to introduce an atlas 

of the fibre bundle under consideration. The corresponding procedure in our 

case looks as follows. 

Let a G A, consider a holomorphic mapping m+a : (7r+)~1(t/+a) —> G defined 

as 

(2.36) m+a(g) = s+a(7r+(<7)),        g G (7r+)-1(Kfa). 

This mapping allows to introduce another holomorphic mapping b_a defined 

on (Tr+rHEZ+a) by 

(2-37) 6_a(5) = (m^G/jrV 

Thus, for any g G (7r+)~1(C7+a) we can write 

(2.38) g = rn+a(g)b-a(g)- 

Since s+a is a section of the fibre bundle G —► -F+, i.e., 

(2.39) 7r+ o 5+a = idu+a, 

we have 

(2.40) 7r+(m+a(<7)) = 7r+(<7), 
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and from (2.38) it is readily seen that the mapping 6_a takes values in the 

subgroup B_. Note here that the mappings m+a and b_a have the following 

properties: 

(2.41) m+a(gb) = m+a(flf),        b^a(gb) = b.a(g)b 

for any b G J3_. 

It is clear that the mapping ^+a : (7r+)~1(C/+a) —> U+a x 5_, defined as 

(2.42) ^+a(ff) = (7r+(ff),6.a(5)), 

provides a local trivialisation of the fibre bundle G —► F+. Considering all 

possible values of the index a, we get an atlas of this fibre bundle. 

Let g be such an element of G that 7r+(p) 6 £/+a fl ?7+5. In this case, using 

Eq. (2.41), we can write 

(2.43) b-a(g) = 6_a(5+6(p)6_,(5)) - 6_a(5+6(p))6_6(5), 

where p = 7r+(g). Hence we have 

(2.44) M5) = 6-„6(7r+(g))6_b(5), 

where 

(2.45) b-ab = 6_a o s+6. 

It is clear that the mappings &_a&5 a, 6 G ^4, are the transition functions of the 

atlas we have defined. These transition functions are evidently holomorphic. 

Let again 7r+(g) G U±a fl U+i,. In this case we have 

(2.46) g = m+a(g)b-a = m+b(g)b_b(g). 

This relation, with the account of Eq. (2.44) gives 

(2.47) rn+h(g) = m+a(g)b_ab(7r+(g)). 

The groups B± have the holomorphic decomposition 

(2.48) B± = N±H. 

Thus, in our case we can uniquely represent the mapping b-a in the form 

(2.49) &_0=-n_a/i-a, 
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where n_a and /i_a are holomorphic mappings from (7r+)~1(C/+a) to the sub- 

groups AL and H, respectively. Analogously for the transition functions b-ah 

we have 

(2.50) 6_afo = n-abh-abj 

where n_a6 and h-ab are holomorphic mappings from U+a fl U+b to iV_ and H, 

respectively. 

Prom Eq. (2.41) we get the following relations 

(2.51) m+a(gn) = m+a(g),        m+a{gh) = m+a(g), 

(2.52) n-a{gn) = n_a(^)/i_a(5)n(/i_a(^))"1,        n^a{gh) = n_a(p), 

(2.53) h-a{gri) = h-a(g),        h-a(gh) = h_a{g)h, 

which are valid for any n G N- and h G H. 

Using Eq. (2.44), for any g 6 G such that p = 7r+(g) e U+a fl U+b, we also 

obtain 

(2.54) n-a{g) = n_a6(p)/i_a6(p)n_6(5)(/i_a6(p))~1, 

(2.55) h-a = h_ab{p)h_b{g)- 

Proposition 2.4. Any element g G (7r+)~1(f7+a) = N+aB- can be uniquely 

represented in the form 

(2.56) g = ra+n_/i_, 

where m+ G iV+a, n_ G iV_; /i_ G H. The elements m+, n_; and /i_ /io/o- 

morphically depend on g. 

Proof. We come to the representation (2.56) putting 

(2.57) m+ = m+a(g),        n_ = n_a(#),        /i_ = h-a(g). 

The uniqueness of the decomposition (2.56) follows directly from the fact that 

N+DN- = N+nH = N-nH = {e}.   D 

There takes place the proposition similar to the previous one. 
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Proposition 2.5. Any element g G (7r_)~1(C/_a) = N-.aB+ can be uniquely 

represented in the form 

(2.58) g = m_n+/i+, 

where ra_ G iV-a, w+ G iV+, /i+ G ff. T/ie elements m_; n+; and /i+ /io/o- 

morphically depend on g. 

We call decompositions (2.56) and (2.58) the modified Gauss decompositions. 

2.4. Toda Equations. Now we shall use the modified Gauss decomposition 

to define the needed .ff-gauge invariant quantities, and to derive the equations 

they satisfy. 

Proposition 2.6. Let ip : M —> G be an arbitrary mapping, and p G M. 

(i) There exists an open neighborhood V+ of the point p, such that the map- 

ping ip restricted to V+ has a unique decomposition 

(2.59) tp = n+v-r)-., 

where the mapping /i+ takes values in N+a for some a G A, while the mappings 

V- and r]- take values in iV_ and H, respectively. 

(ii) There exists an open neighborhood V_  of the point p, such that the 

mapping (p restricted to V- has a unique decomposition 

(2.60) <p = fZ-i/+77+, 

where the mapping /x_ takes values in N-a for some a G A, while the mappings 

v+ and r]+ take values in 7V+ and H, respectively. 

Proof. The proof is based on the modified Gauss decomposition (2.56). It is 

clear that we can find a G A such that (p(p) G (7r+)~1(f7+a). Define a mapping 

M+ by 

(2.61) /i+ = m+a o (f = s+a o 7r+ o tp = s+a o ^+. 

The domain of the mapping /x+ is the open set V+ = (^+1(i7+a). Introducing 

now the mappings 

(2.62) v__ = n_a o y>,        ry_ = /i_a o ip 
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with the same domain, we come to the required decomposition (2.59). 

The second part of the proposition can be proved in the similar way.   □ 

Corollary 2.2. For any p G M, there exist an open set V, such that p £ V, 

and the mapping </? restricted to V possesses simultaneously decompositions 

(2.59) and (2.60). 

Proposition 2.7. // the mapping (f : M —> G satisfies the grading condition, 

then the mapping /i_ is holomorphic and the holomorphic 1-form ^~UJ takes 

values in g_i; while the mapping 11+ is antiholomorphic and the antiholomor- 

phic 1-form ^u takes values in g+i. 

Proof. The required properties of the mappings ii± follow directly from the 

grading condition.    □ 

Let x± be some fixed nonzero elements of g±i. In the case when we consider 

the Z-gradation of g associated with an integral embedding of 51(2, C) into g, 

we can take as x± the corresponding elements defined by this embedding. Let 

0± be the orbits of the restriction of the adjoint action of the group G to the 

subgroup H, generated by the elements x±. Note that the orbits 0± have 

the following property. If the element x belongs to O+ (CL) then for any 

nonzero c G C the element ex also belongs to (9+ (CL). This follows from 

the fact that the gradation operator q (see Appendix B) generates similarity 

transformations of the subspaces g±i. 

Denoting by H± the isotropy subgroups of the elements x±, we identify 

the orbits 0± with the homogeneous manifolds H'/H±. More precisely, we 

establish such identification putting into the correspondence to a coset hH±, 

h E H, the element x(hH±) G 0± given by 

(2.63) x(hH±) = V-lAd(h)x±. 

The factor V^-T is introduced in this relation for the future convenience. 

Let 0±g be a subset of T^(G) defined by 

(2.64) 0±g = Lg*(0±). 

We call a mapping y?: M —> G an admissible mapping, if it satisfies the grading 

condition, and, moreover, ip_*(dzp) G TT^CL^) and ¥>+*(#2p) G 7r+*(0+g) for 
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any p G M and g G G such that 7r± (g) = p. Due to the properties of the orbits 

0± discussed above, this definition does not depend on the choice of the local 

coordinate z. If the mapping ip is admissible, then we can write 

(2.65) "-(*) = \-dz,        ^CJ = A+dz, 

where jU± are the mappings arising from the local decompositions (2.59), 

(2.60), and X± are the mappings taking values in H/H±. The mappings \± are 

defined in the open set V from Corollary 2.2. It follows from Proposition 2.7, 

that the mapping A_ is holomorphic, and the mapping A+ is antiholomorphic. 

Let 7± be local lifts of the mappings X± to the group H. These mappings are 

defined in some open set W C V, and satisfy the relations 

(2.66) A± = Vc^lAd(7±)x:t. 

Note that in the case when the groups H± are nontrivial, the mappings 7± 

are defined ambiguously, but in any case they can be chosen in such a way 

that the mapping A_ would be holomorphic, and the mapping A+ would be 

antiholomorphic. In what follows we will use in our consideration such a 

choice. 

Theorem 2.3. Let </?: M —> G be an admissible mapping. There exists a local 

H-gauge transformation that transforms a connection^u to the connection*'u 

of the form 

(2.67) *'u) = (x/^lz- + Cuj)_)dz + V^lAdi-y-^x+dz, 

where 7 is the mapping taking values in H and given by 

(2.68) 7 = 7; Vr- 

with 

(2.69) V^V-Vl1- 

Proof. Using representation (2.60) and Proposition 2.1, we can write 

(2.70) vu; = "-"+''+0; = Ad^;1!/;1)^) + Adfa^C+u;) + "+««;. 
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In the same way, representation (2.59) gives 

(2.71) V
UJ = ^"-"-a; = Adfol^I^C+u;) + Ad^Z1)^-^) + "-w; 

and since the form ^-OJ is holomorphic, and the form M+a; is antiholomorphic, 

(2.72) ("-«)+ = 0,        C+w)- = 0. 

Taking into account these relations, we come to the following consequences of 

Eqs. (2.70) and (2.71): 

(2.73) 

(M+ = Adfo;1)ra;)+ + CM+,        (M- = Ad^Z^ro;). + ("-a;).. 

Consider now the mapping 

(2.74) « = /z+V— 

Proposition 2.1 and Corollary 2.1 provide the relation 

(2.75) «u = v-u) - M{K-
1
){^U). 

Using Eq. (2.65), we come from this relation to the equalities 

(2.76) {"u))+ = - Ad(^-1)A+5        (
K

UJ)_ = A_. 

Thanks to decompositions (2.59) and (2.60), we conclude that the mapping K 

can be also represented as 

(2.77) ft = i/-77i/+1. 

Representation (2.77) leads to the equality 

(2.78) "u = Ad(z/+77-1)(I/-a; - ^u - Ad(7?)(
I/+a;)), 

which results in the formula 

(2.79) Ad(77i/;1)A_ = ("-(*>)_ - (^u)- - Ad(77)(^cj)_. 

Taking the n_-component of Eq. (2.79), we come to the relation 

(2.80) (u-uj)-=Ad(ri)\_. 

Similarly, it follows from Eq. (2.78) that 

(2.81) - Ad(ry-1z,I1)A+ = Adfa"1)?'-")+ + (^)+ " ("+»)+, 
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and n+-component of this relation is 

(2.82) C+w). = Ad(j?-1)A+. 

Substitution of Eqs. (2.80) and (2.82) into Eq. (2.73) gives 

(2.83) (V)+ = Ad(r?:
1)A+ + ("+£«;)+,        (*u))- = Ad(?7;1)A_ + ("-w),. 

Taking into account Eq. (2.66), we come to the relations 

(M+ = V/::lAd(7?Z
17+)x+ + ("M-H 

(2-84) r_ 
(M- = VZTAd(7?;

17-)a;- + C-w)- 

Performing now the gauge transformation defined by the mapping ?7+17_, we 

arrive at representation (2.67) with the mapping 7 given by Eq. (2.68).   Q 

For the case of a linear group one can rewrite relation (2.67) in the form 

(2.85) "w = (v^lx- + 7-1dz7) dz + ^/^\^-1x+^)dz, 

which allows to present the zero curvature condition (2.3) in the form 

(2.86) aJ(7-1az7) = [7-1a:+7,a:-]. 

In a general case, instead of Eq. (2.86) we have the following equation 

(2.87) Ww)-) = [Adfr-1)^, z-], 

which is given here without proof. In concrete examples we usually deal with 

linear groups and use Eq. (2.86). 

The system of equations for parameters of the group H, which follows from 

Eq. (2.86), is called the Toda equations. In the case of the canonical gradation, 

the subgroup H coincide with some Cartan subgroup H of G, and is, by 

this reason, an abelian subgroup. The corresponding equations in this case 

are called the abelian Toda equations. In the case of a general Z-gradation 

associated with an integral embedding of sl(2,C) into g, the subgroup H is 

not necessarily abelian, and we deal with the abelian Toda equations and their 

nonabelian versions. 

Let us derive the concrete form of the abelian Toda equations. These equa- 

tions will be used in section 4 to prove the generalised Pliicker relations.  In 
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the case under consideration, we can locally parametrise the mapping 7 by 

the set of complex functions /$ as 

(2.88) 7 = exp(J2fihi), 

where r = rankg, and the elements hi G f) correspond to the simple roots of 

0 (see appendix B). Choose as the elements x± G g±i the elements describing 

the corresponding principal embedding of 51(2, C) in Q. The concrete form of 

such elements is given by Eq. (B.42). Using Eq. (B.ll), we get the relation 

r 

(2.89) 7-1x+7 = X>A;i)
1/2exp[-(fc/)i]x.H, 

i=l 

where 

(2.90) '(fc/)i = E**i/r 

From this relation we immediately have 

r 

(2.91) fr'^+T, ^-] = E 2ki exphCA;/)^. 

From the other hand, it is clear that 

(2.92) d-z (7-^7) = Ytid&fthi. 
2=1 

Thus, in the case under consideration, equations (2.86) can be reduced to the 

system 

(2.93) d-zdzfi=2kieM-(kf)i\,■■   ■ ■ t = 1,... ,r. 

Introducing the functions 

(2.94) ^ = (A;/),-ln(2A:,), 

we rewrite equations (2.93) in the form 

r 

(2.95) 9z3zUi = EfcuexP(~,ui)' 
j=i 

which is standard for the abelian Toda equations. 
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2.5. Gauge Invariance and Dependence on Lifts. Consider now the 

behaviour of the mapping 7 under the jkT-gauge transformation. Let y/ = y?^;, 

where the mapping ip takes values in H. It is clear that to define the mapping 

7' corresponding to the mapping y/, we can use the same modified Gauss 

decompositions, which we have used for the construction of the mapping 7. 

From the relations (2.61) and (2.51) we have fjL+ = /x+. Using the same lift 

from H/H+ to JEZ", which was used in transition from the mapping ^+ to the 

mapping 7+, we obtain 7^ =7+. From the other hand, relations (2.62) and 

(2.53) give r]f_ = rj-i/j. In the similar way we have jf_ =7-, and 77^ = 77+^. 

Thus, it follows from Eq. (2.68) that 7' = 7. Just in this sense the mapping 7 

is -ff-gauge invariant. 

The last question we are going to consider in this section, is the dependence 

of the mapping 7 on the choice of modified Gauss decompositions and local 

lifts from H/H± to H. Let we have two local decompositions of the mapping 

(2.96) (/? = /x+z/_77_,        <p = ii+vLriL, 

which are obtained with the help of the modified Gauss decompositions cor- 

responding to the indexes a and 6, respectively. Using Eqs. (2.47) and (2.50), 

we get 

(2.97) fjL+ = ra+6 o (p = [jL+v-ahri-ab, 

where 

(2.98) v_ab = n_a6 o <p+,--       7/_a6 = h_ab o </?+. 

It is evident that the mappings i/_a& and r?_ab are holomorphic, and take values 

in iV"_ and H, respectively. From Eq. (2.97) it follows that 

(2.99) ' *<J = Ad(Ti2lb)(Ad(vllh)(^u) + v-*u)+ ''-«». ■ 

Since the forms M+u; and^+o; take values in g^, we actually have the relation 

(2.100) »'+<*> = AdiTizUC+u). 
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Taking into account Eqs. (2.65) and (2.66), we get 

(2.101) M(i+)x+ = Ad(77_a67+)a;+. 

It follows from this relation that 

(2-102) 7; = 7?:l67+£+, 

where the mapping £+ takes values in H+. It is clear that the mapping £+ is 

antiholomorphic. 

Further, Eq. (2.55) allows to write 

(2.103) V-^V-abV'-- 

Combining now Eqs. (2.105) and (2.103), we obtain 

(2-104) 7+y-=£17;V- 

In the similar way we have 

(2.105) <-y_=f7;17-£-, 

where £_ is a holomorphic mapping taking values in If_. Finally, we come to 

the relation 

(2.106) y = e;17e- 

Resuming our consideration, we can say that any admissible mapping ip 

leads to a set {7^}^/ of local solutions of equations (2.86). These solutions, in 

the overlaps of their domains, are connected by the relations 

(2-107) 7i = £4-7^-«, 

where the mappings £_i:7- are holomorphic and take values in ff_, while the 

mappings f;+ij are antiholomorphic and take values in ff+. Note here that 

Eq. (2.105) describes symmetry transformations of equations (2.86). For the 

case of the canonical gradation, the subgroups H± are discrete and isomorphic 

to Z2 x • •• x Z2. 
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3. CONSTRUCTION OF SOLUTIONS AND REALITY CONDITION 

In the previous section we have shown that any admissible mapping <p : 

M —■> G allows to construct a set of local solutions of equations (2.86). From 

the first glance, the problem of constructing admissible mappings is rather 

complicated. In fact, any admissible mapping ip is defined by the correspond- 

ing mappings </?+ and (/?_ up to an .ff-gauge transformation. In other words 

the following proposition is valid. 

Proposition 3.1. Let </? and ip' be two mappings from M to G. The equalities 

(3.1) <p+ = ip+,        </?'_ = <£>_ 

are valid if and only if ip' = ipip, where the mapping ij) takes values in H. 

Proof The assertion of the propositions follows directly from the fact that 

B_ U B+ = H.   □ 

Since the mapping 7 is H-gauge invariant, we conclude that this mapping 

can be constructed using only information contained in the mappings </?±. In 

practice, it can be done in the following way. 

Let cr be an involutive antilinear automorphism of g. It is known that the 

mapping a defines a real form 9^ of the Lie algebra g by 

(3.2) Qa = {x E g I a(x) = x}. 

Introduce the a-hermitian conjugation as a mapping from g to g which assigns 

to any element x G g the element x* G g, defined by 

(3.3) x* = -a{x). 

It is clear that the cr-hermitian conjugation is an antilinear antiautomorphism 

of g satisfying the condition 

(3.4) (x*)* = x 

for any x G g. An element x G g is said to be cr-hermitian if x* = x, and it 

is said to be cr-antihermitian if x* = —x. The subalgebra gCT is formed by all 

cr-antihermitian elements of g. 
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Suppose that a can be extended to an antiholomorphic automorphism S of 

the group G. In this case we have S2 = id^. The E-hermitian conjugation in 

G is defined then as a mapping g € G -+ g* € G, where 

-i (3-5) g* = S^"1) = (Efo)) 

It is evident that E-hermitian conjugation is an antiholomorphic antiautomor- 

phism of G satisfying the condition 

(3.6) (g*)* = g 

for any g G G. An element g G G is called Y.-hermitian if g* = #, and it is 

called E-unitary if g* = g"1. In the case when the mapping E is originated 

from the mapping cr, giving a compact real form of g, we say simply 'hermitean' 

and 'unitary'. The real Lie group Ga corresponding to the real form g^., is 

formed by all E-unitary elements of G. 

Suppose also that the mapping a has the property 

(3.7) <T(flm) = 0-m,        mGZ. 

In this case one has 

(3.8) ir = #,     (N±y = NT. 

A representation p : G —► GL(V) of the group G in the linear space V over 

the field C is called E -unitary, if the space V is equipped with a hermitean 

scalar product ( , ) such that 

(3.9) p(gr = p(g*), 

where * in the left hand side means the hermitean conjugation with respect 

to the scalar product ( , ). It can be shown that the representation p is 

E-hermitean if and only if the restriction of p to the real Lie group Ga is 

unitary. 

Let us consider now an arbitrary E-unitary representation of the group G 

in a linear space V. Denote by V+ the subspace of V formed by all elements 

v G V, such that 

(3.10) p(g)v = v 
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for all g E N+. For any mapping (p : M —> G and any vectors u, v G V we 

denote by (i&, (^v) the mapping from M to C, defined as 

(3.11) (u, ¥?v)(p) = (u, p{<>p(p))v)- 

Theorem 3.1, For any urv G V+ the following relation is valid: 

(3.12) (u, 7^) = (ti, (/i+7+)~1(M-7-)^). 

Proo/. Comparing Eqs. (2.74) and (2.77), we get 

(3.13) v_riv+1 = //+V-- 

Now, using the definition (2.68) of the mapping 7, we come to the relation 

(3-14) 1/T^-
1
 = (/*+7+)-V_7-), 

where 

(3.15) 1/ = 7+1i/-7+,        < = 7l V7- • 

Then, the validity of Eq. (3.12) follows from Eq. (3.14) and the definition of 

V+.    □ 

Thus, we can find some matrix elements of the linear operators correspond- 

ing to the mapping 7 in a E-unitary representation of the group G, using only 

the mappings /x±, which in their turn are determined only by the mappings <p±: 

It is natural to suppose here that using a reach enough set of representations, 

one will be able to recover the mapping 7 from the mappings ip±. It is likely 

that for the case of simple Lie groups, it is enough to use only fundamental 

representations, that is confirmed by the consideration of concrete examples. 

Let us consider now a special class of the solutions which will be called real 

solutions. To this end, introduce two antiholomorphic mappings E± : F± —> 

Fzp defined by 

(3.16) S±(^T) = E(<7)B±. 

It is easy to get convinced that the mappings E± are defined correctly. Directly 

from the definition of these mappings, we get the equalities 

(3.17) E+ o 7r+ = 7r_ o E,        E_ o 7r_ = 7r+ o E. 
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Moreover, these mappings are mutually inverse: 

(3.18) E+ o S_ = idF_,        E_ o £+ = idF+ . 

A mapping ip : M —> G is said to satisfy the reality condition if 

(3.19) E+oV+ = v_, 

that can be also written as 

(3.20) E_o^_ = ^+. 

Proposition 3.2. A mapping (p : M —> G satisfies the reality condition if and 

only if 

(3.21) I}otp = ifn/>, 

where the mapping r/j takes values in H. 

Proof. Let y> satisfies the reality condition. Using Eq. (3.17) in Eq. (3.19), we 

get 

(3.22) 7r_ o E o y> = 7r_ o y?. 

Hence, E o y> = y?^, where if) takes values in JB^.. In the similar way, from 

Eq. (3.20) we see that ^ takes values in £_. Since 5+ fl JB_ = JY, we conclude 

that -0 takes values in H. 

The inverse statement of the proposition is evident.    □ 

A mapping ip : M —> G is called T,-hermitean if for any p E M the mapping 

ip(p) is a E-hermitean element of G. 

Proposition 3.3.  The mapping ip from proposition 3.2 is Y^-hermitean. 

Proof Since E2 = idc, from Eq. (3.21) we get 

(3.23) ^=(Eo^)(Eo^), 

that can be written as 

(3.24) Eo^r^Eo^)-1. 
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Comparing Eq. (3.24) with Eq. (3.21) we have 

(3.25) (So^)-1 =</>• 

Hence, the mapping ^ is E-hermitean.   □ 

Proposition 3.4.  The reality condition is H-gauge invariant 

Proof. Let a mapping ip satisfies the reality condition, and (pf = ip^ with £ 

taking values in H, be a gauge transformed mapping. Using Eq. (3.21) we 

have 

(3.26) Eoy/rry/o^7, 

where 

(3.27) ^ = rV(EoO. 

Since E(fl") = H, the mapping ^'satisfies the reality condition.    □ 

Let s+a, a G ^4, be a family of local holomorphic sections of the fibre bundle 

G -> F+ with the properties described in proposition 4.3. The mapping E 

allows us to construct the corresponding family of local holomorphic sections 

of the fibre bundle G —> F_. For each open set U+a we define the open set 

U-a by 

(3.28) U-a = £+([/+„). 

Using Eqs. (3.17) and (3.18), it is easy to get convinced that for any a G A, 

the mapping s_a : U-a —> G given by 

(3.29) 8_a = SoS+aoE_, 

is a local holomorphic section of the fibre bundle G —> F_. Since E(iV+) = iVL, 

we also have 

(3.30) VM+=M-\ 

hence, the set s_0(lL0) is an integral manifold of the distribution A/L. Thus, 

we get a family of holomorphic sections of the fibre bundle G —* F_ with 

the required properties.   Now, to construct the mappings needed to define 
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the mapping 7, we will use for any section s+a the corresponding section s_a 

defined with the help of the procedure described above. 

Proposition 3.5. If a mapping cp satisfies the reality condition, then the map- 

pings [1+ and fi- entering proposition 2.6 are connected by 

(3.31) ^ = x;o^±. 

Proof. Recall that the mappings fi± are given by 

(3.32) fJ>± = s±aOv±. 

Prom this relation we have 

(3.33) fxT = £ o s±a 9 ST o (pT = E o s±a o ip± = E o ii±. 

This chain of equalities provides the assertion of the proposition.    □ 

Proposition 3.6. If a mapping <p satisfies the reality condition, then the map- 

pings 7-|- satisfying Eq. (2.6Q) can be chosen in such a way that 

(3.34) SO7± = 7T. 

Proof. First, let us show that the mappings A+ and A_ are connected by 

(3.35) A_=croA+. 

Prom Eq. (3.31) we have 

(3.36) "-w = (/*; o E*)0. 

Now, using the equality (A.33), we get 

(3.37) "-w^) = E*0(/z+,(z)) = a ("Mx)) 

for any x G T^{M), p G M. In particular, we can write the equality 

(3.38) "-<*&) = vC+utd,)), 

which directly leads to Eq. (3.35). 

From Eqs. (3.35) it follows that 

(3.39) Ad(7_)x_ = (o-:oAd(7+))x+. 
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Suppose now that the elements x± entering Eq. (2.66) are chosen in such a 

way that 

(3.40) cr(x+) = -X-. 

Taking into account relation (A.10), we conclude that one can choose the 

mappings 7+ and 7_ satisfying Eq. (3.34).    □ 

Theorem 3.2. // a mapping ip satisfies the reality condition, then the map- 

ping 7 can be chosen to be H-hermitean. 

Proof. From proposition 3.2, using Eqs. (2.59) and (2.60), we get 

(3.41) E o (p = (E o M+)(E o i/_)(E o Ty,) = ii-V+rj+ip. 

Since decomposition (2.60) is unique, we have 

(3.42) E o r/_ = 77+^, 

and hence, can write the equality 

(3-43) r,. = (T?;
1
)^-

1
, 

which leads to the relation 

(3.44) r/^YrV- 

As it follows from proposition 3.3, the mapping ij) is E-hermitean, thus the 

mapping 77 is also E-hermitean. Taking into account proposition 3.6 and 

the definition of the mapping 7, we conclude that it can be chosen to be 

E-hermitean.   □ 

Thus, we can say that using the mappings tp satisfying the reality condi- 

tion, one can construct hermitean, in a sense real, solutions of the equations 

(2.86). Since the solutions are actually determined by the mappings <p±, then 

to get real solutions of the equations under consideration, we should choose 

the mappings <p± satisfying relation (3.19). Note that, in general, not any pair 

of the mappings <p± can be used for the construction of a solution. Actually, 

there are mappings </?± which do not correspond to any mapping (/p. We call 

mappings (p± : M --* F± consistent if there is a mapping </? : M —> G such that 

^± = 7r± o (p. 
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Suppose now that the involutive antilinear automorphism a is defined by 

Eq. (B.9), so that the corresponding real form u of g is compact. In this case 

the gradation operator is a-hermitean, and Eq. (3.7) is valid. 

Theorem 3.3. If mappings ip± : M —> F± satisfy relation (3.19), then they 

are consistent. 

Proof. It is enough to show that if two points p+ £ F+ and p_ £ F- are 

connected by the relation 

(3.45) p- = E+(p+);' 

then there exists an element g G G such that 

(3.46) p+ = 7r+(<7),        p_=7r_(5). 

This fact can be proved using the Iwasawa decomposition (B.18). Let g' be 

any element of G, such that 7r+(<7/) = p+. This element can be written as 

(3.47) g' = un+a, 

where u G £/, n+ G N+ and a G A*, and the subgroups 17, ./V+ and A* are 

defined in appendix B. We have iV+^4 C B+ C 5+) hence 7r+(^) = p+. Using 

now Eq. (3.17) one gets 

(3.48) (E+ o 7r+)(u) = (TT. O E)(ti) = 7r_(W) = E+(p+). 

Thus, the element u can be taken as the element g we are looking for.    □ 

The generalisation of the results proved in this section and in the previous 

one, to the case of the semi-integral embeddings of 5/(2, C) into g is straight- 

forward, and can be performed following the consideration given in Ref. [18]. 

Recall that in that case we deal with Z/2-gradations of g (see appendix B). 

4. TODA FIELDS AND GENERALISED PLUCKER RELATIONS 

In this section we give a derivation of the generalised Plucker relations. 

Recall first some definitions. Let M be a complex manifold, and JM be the 
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corresponding complex structure on M. A metric g on M is called hermitean 

if 

(4.1) g(JMX,JMY) = g(X,Y) 

for all vector fields X, Y on M. Let g be a hermitean metric on M. The 

2-form $ defined by 

(4.2) $(x,y) = <Kx,jMy) 

for all vector fields X, Y on M is called the fundamental form associated with 

g. A hermitean metric g on M is called a Kahler metric if the fundamental 

form $ associated with g is closed, i.e., 

(4.3) d$ = 0. 

The fundamental form $ associated with a hermitean metric g can be locally 

represented as 

(4.4) $ = -2y/^lddK, 

where K is a real-valued function. The function K entering Eq. (4.4), is called 

a Kahler potential of the hermitean metric g. 

Let z1 be local coordinates in M; introduce the notation 

(4.5) dzi = d/dz\        d-zi = d/d?. 

For any hermitean metric g on M we have 

(4.6) g(dzi,dz3) =g(dZ3,d2i), 

while 

(4.7) gid^dj) = 0,       g{d#,d#) = 0. 

Hence, we can write 

(4.8) g = ][] gi3{dzi ® d2J' + dZ* ® d^) = 2 ^ gi3dzidzj, 

where 

(4.9) gi3 = 9{dz^d-zi). 
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For the fundamental form $ associated with g, we get the representation 

(4.10) $ = -2y/^lYl9i~3dzi A d~zJ' 

Note also that the expression for the Ricci curvature tensor R in the case 

under consideration has the form [17] 

(4.11) R = 2V=ldd]ng, 

where Q is the determinant of the matrix (fl^). 

Let V be a complex linear space, and P(V) be the projective space associated 

with V. In other words, F(V) is the set of all lines (one-dimensional subspaces) 

in V. Denote by pr the canonical projection from the set Vf = V — {0} onto 

P(V). Suppose that V is endowed with a hermitean scalar product ( , ). Let 

.F be the function on Vf given by 

(4.12) F(v)^ln\\v\\\ 

where ||i>||2 = {v,v). The Fubini-Study metric on P(V) is defined by its asso- 

ciated fundamental form $FS, which is a unique form satisfying the relation 

(4.13) pr* $F5 = -2V^lddF. 

Let G be a complex semisimple Lie group of rank r, Q be its Lie algebra 

endowed with the canonical Z-gradation, and f) be the corresponding Cartan 

subalgebra. Consider the Borel subgroup S+, corresponding to the Borel 

subalgebra b+ defined by Eq. (B.14). Let </?_ be a holomorphic mapping 

from complex manifold M of complex dimension one to the flag manifold 

JP_ = G/B+. Using the language of the algebraic geometry, we call <£__ a 

holomorphic curve in F-. For any parabolic subgroup P containing .B+, there 

is a natural projection from F_ onto the flag manifold Fp = G/P; denote this 

projection TTp. Using such a projection, we can define a holomorphic curve 

(p-P in Fp as 

(4.14) (f-p = 7r_p o (p_. 

Thus, any holomorphic curve <£>_ in F- generates a family of holomorphic 

curves (f-p labelled by parabolic subgroups containing the Borel subgroup 

B+.   We are especially interested in holomorphic curves generated by the 
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parabolic subgroups of the form F+i/, i = 1,... ,r (see appendix B). Denote 

the corresponding flag manifolds by F_i5 and the projections from F_ onto 

F-i by TT-i. Note that the projections TT^ are defined by the relation 

(4.15) ir-i(gB+) = gP+i*. 

The flag manifolds F-i are closely related to the fundamental representa- 

tions of the group G and the corresponding representations of the Lie algebra 

g. It is well-known that for a complex semisimple Lie group of rank r there 

are r fundamental representations. Let pi : G —> GL(V^), i — 1,... ,r5 be 

a family of fundamental representations of G. We use the notation pi also 

for the corresponding fundamental representation of the Lie algebra g. Recall 

that the i-th fundamental representation of the Lie algebra g is characterised 

by the highest weight vector Vi E V*, satisfying the relations 

(4.16) Piih^Vi = Sij,        j = 1,... , r. 

Since Vi is the highest weight vector, we have 

(4.17) Pifa+^Vi = 0,        j = 1,... , r. 

Moreover, it can be shown that 

(4.18) pi(x-J>i = 0,        i^j, 

and 

(4.19) Piix^Vi ^ 0. 

It follows from Eqs. (4.16)-(4.19) that the line in Vi containing the vector Vi is 

invariant under the action of the parabolic subgroup P+i>. Note that, as any 

representation, the fundamental representation p^ defines a left action of the 

group G in the projective space P(Vr
i). Here for any g £ G we have 

(4.20) g • pr4(t;) = pr^foji;),        v G V?, 

where pr^ is the natural projection from V{ onto P(K). Thus, we can say 

that the parabolic subgroup P+i' is the stability subgroup of the point Pi £ 

P(Vi), corresponding to the highest weight vector t^. The above consideration 
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shows that we can define an embedding tF_. of the flag manifold F-i into the 

projective space P(V^) by 

(4.21) *F-«(0P+<<) = ff-Pi- 

The Fubini-Study metric on P(V5) induces a Kahler metric on F^ hence the 

flag manifold F-i is a Kahler manifold. The Kahler metric on F-^ via the 

mapping 

(4.22) (p-iZzir-iOtp., 

specifies a pseudo-metric on M. The fundamental form ^ associated with 

this pseudo-metric, is given by 

(4-23) *i = «°7rVo4J$fs, 

where $fs is the fundamental form associated with the Fubini-Study metric 

onP(^). 

Proposition 4.1. i4ny holomorphic local lift (p- of the mapping (f- to G leads 

to the following local representation of the fundamental form <lv 

(4.24) $, = -2v/=T^ln ||^-^||2. 

Proof By definition, the mapping </L satisfies the relation 

(4.25) (f- = 7r_ o (p_. 

Define the mapping r* : G —> VI by 

(4.26) r^g) = piigfa,        g G G, 

and prove the following equality 

(4.27) pr^ 07; = ^F.i o TT-z 0 TT- . 

Indeed, using Eq. (4.20), for any g G G we get 

(4.28) (pr^ oTi)^) = pTMgfa) = p • p.. 

From the other hand, it follows from Eqs. (4.15) and (4.21) that 

(4.29) (IF^ o Tr-i o n-)(g) = Lp-iigP+i') = 9 'Pi- 
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Hence, equality (4.27) is true. 

So, Eqs. (4.25) and (4.26) results in 

(4.30) iF_. O TT^i O ip_ = pr^ OTi o(p_. 

Taking into account Eqs. (4.23) and (4.13), we get 

(4.31) Qi = {(pi o r* o pr*)$r = ^v^da^I o n o F). 

The assertion of the proposition is the direct consequence of Eq. (4.31).    □ 

Proposition 4.1 shows that the function 

(4.32) Ki^biWip.ViW2 

is a Kahler potential of the pseudo-metric gi on M, having <f>i as its funda- 

mental form. Choosing different lifts <£L, we get different Kahler potentials. 

Suppose now that the hermitian scalar product in Vi is chosen in such a 

way that the corresponding representation of the group G is unitary. Let 

(p-*(dzp) G 7r-*(0-g) for any p E M and 7r_(^) = p. Consider an arbitrary 

local lift (p of (p- to G, and construct for it a local decomposition of the form 

(2.60). With the help of Eq. (2.66), define the mapping 7_, corresponding to 

the mapping /i_, and the mapping <£_ by 

(4.33) </3-=M-7-. 

It is clear that <£_ is a holomorphic local lift of (/?_ to G. It follows from 

theorem 3.1 that for such choice of <j3_ the functions fc = Ki are real solutions 

of the Toda equations (2.95). 

Theorem 4.1. Under the conditions described above, the Ricci curvature ten- 

sors Ri of the pseudo-metrics gi on M are connected with the corresponding 

fundamental forms $« by the relations 

(4.34) i^^fc^. 

Proof. Prom Eq. (4.24) we get 

(4.35) ^ = -2V=iddfit 
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where fi are real solutions of equations (2.95). Comparing Eqs. (4.8) and (4.10) 

and using equations (2.95), for the pseudo-metrics gi we find the expression 

(4.36) Qi = 2ddfidzdz = 4** exp[-(A:/)i]^^. 

Taking into account Eq. (4.11) and again using equations (2.95), we have 

r 

(4.37) Ri = -2yf=lY,k^d'dfv 
3 = 1 

and, with account of Eq. (4.35), we come to Eq. (4.34).    □ 

Relations (4.34) are called the generalised infinitesimal Plucker formulas. 

As we have already noted in the introduction, the validity of these relations 

was conjectured in [10], and proved in [22]. Our proof is based on the special 

choice of the Kahler potentials of the pseudo-metrics, and in this sense is 

similar to the proof of the usual Plucker formulas [14]. Note also, that the 

relation between the abelian Toda fields and the Kahler potentials in question, 

has been established for the ^4-case in [8], and for the other classical series 

(5, C, D) — in [9], using explicit calculations in a coordinate parametrisation 

of the corresponding coset spaces. 
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APPENDIX A. GEOMETRY OF COMPLEX LIE GROUPS 

In this appendix we collect some information about complex Lie groups 

which is needed in the main text; for more details see e.g., [1, 15, 17]. 
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Let us begin with the necessary definitions and facts about real Lie groups. 

Consider an arbitrary real Lie group G with the unit element denoted e. Let 

x € Te(G), define the vector field X by 

(A.l) Xg = Lg.(x),       geG, 

where Lg : h G G —► gh G G is the left translation by the element g. It is 

clear that X is a left invariant vector field. The Lie bracket of any two left 

invariant vector fields is a left invariant vector field. The same is true for an 

arbitrary linear combination of left invariant vector fields; thus the space of 

left invariant vector fields is a Lie subalgebra of the Lie algebra of vector fields 

on G. This Lie algebra is called the Lie algebra of the Lie group G; we denote 

it 0. 

Let X be a left invariant vector field on G; associate with it an element 

x = Xe G Te(G). Such a correspondence is clearly a linear mapping. Moreover, 

since X is left invariant, then Xe = Lg-i (Xg) for any g G G. Hence, we see that 

different left invariant vector fields correspond to different elements of Te(G), 

and we have an isomorphism of linear spaces. This isomorphism becomes an 

isomorphism of Lie algebras if we introduce in Te(G) the structure of a Lie 

algebra by 

(A.2) [x,y} = [X,Y}e,        x,yeTe(G), 

where X and Y are left invariant vector fields defined with the help of Eq. (A.l). 

Thus we can identify the Lie algebra g with Te(G). Below we use the latter 

interpretation of the Lie algebra of a Lie group. 

The adjoint representation Ad : g G G —» Ad(g) G GL(0) of the group G is 

defined by the relation 

(A.3) Ad{g)x = {Lg o R9-i)*{x),        g G G, 

where Rg : h G G —» hg G G is the right translation by the element g. The 

corresponding adjoint representation ad : x G 0 —> ad(x) G GL(g) of the Lie 

algebra g is given by 

(A.4) ad(:r)y= [a;,y],        x,i/Gfl. 
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The Maurer-Cartan form of G is a 1-form 9 on G taking values in g and 

defined by the relation 

(A.5) e(x) = Lg-u(x) 

for any x G Te(G). The Maurer-Cartan form is left invariant, i.e., 

(A.6) LgJ = 9 

for any g G G. The transformation of 9 under the right translations is described 

by the formula 

(A.7) RgJ = M{g-l)o9. 

It can be also shown that 

(A.8) d9{X,Y) + [9(X)J{Y)} = 0 

for any vector fields X and Y on G. 

Let E be a homomorphism of the group G, and 

(A.9) a = £*e 

be the corresponding homomorphism of g. It follows from the definition of the 

adjoint representation of G that 

(A.10) a o Ad{g) = Ad(E(^)) o a. 

Furthermore, it can be easily shown that 

(A.11) Z*9 = ao9. 

In this paper we mainly deal with complex differentiable manifolds. Recall 

some relevant definitions and introduce notations. Let V be a complex linear 

space. On the space V^ there is a natural complex structure Jv generated by 

the multiplication by V~T in V- Consider the space (T4)c- The linear space 

VJR can be naturally considered as a real subspace of (T4)c. Any element v of 

(T4)c has a unique representation of the form 

(A. 12) v = u + \^::lw, 
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where u, w E VR. The complex conjugation in (VE)
C
 is defined by 

(A.13) v = u- y/^lw, 

where u, w are elements of VR entering representation (A. 12). 

Let W be another complex linear space, and ip be a linear mapping from 

(^R)
€
 to (WR)

C
. The complex conjugate mapping fp acts on the elements of 

(VR)
C
 according to the rule 

(A.14) {pv = fiD,        ve (FM)
C
. 

The mapping (p is called real if Ip = (p. 

The operator Jv can be naturally extended to the linear operator on {VR)
C

, 

which will be also denoted Jv. Define the subspaces V^1,0) and V^0,1^ of the 

space (T4)€ by 

(A.15) V(1'0) = {ve (VR)
C | Jvv = V^lv}, 

(A.16) VW = {ve (Vm)
c | Jvv = -V^Iv}. 

The space (VK)
C
 is a direct sum of the subspaces V*1,0) and V^0)1\ Hence, any 

element v G (VR)
C
 can be uniquely written in the form 

(A.17) v^v^+v^, 

where v^0) G V{1>0) and v^1) G T/^'^. The linear operators 

(A.18) Pv = ^(/ - V=IJV),        ^ = \(I + >/=! J^), 

project (VR)
0
 on the subspaces V^1,0) and V^0,1), respectively. Note that Pv 

and Pv are connected by the complex conjugation, that is already reflected 

in their notation. 

Let M be a complex manifold. The natural complex structure on M will be 

denoted JM; by TKp(M) we denote the usual real tangent space to M at the 

point p, where M is considered as a real manifold; and the complexification of 

TRp(M) is denoted by T^(M). As above, we have the decomposition of T^(M) 

into a direct sum 

(A.19) rp
c(M) = T(1'0)(M) 0 T^M). 
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Let P™ be the mapping projecting an element of T^(M) to its (1,0)-component, 

in other words 

(A.20) pMx = ^{x_JZijMx) 

for any vector x € Tjp(M). The mapping PM projecting a vector field X on 

M to its (1,0)-component is defined by 

(A.21) (PMX)P = P^X, 

for any vector field X on M. The projection mappings to the (0,1)-component 

of a tangent vector and a vector field are defined similarly. 

Now, let G be a complex Lie group. In this case the group operation (#, h) G 

G x G —> gh'1 G G is, by definition, a holomorphic mapping. The group G 

can be considered as a real Lie group supplied with a complex structure JG. 

Denote the corresponding real Lie algebra AR. Since the group operation in G 

is holomorphic, we have 

(A.22) Lg*oJG = JGoLg^ 

(A.23) Rg*oJG = JGoRg*. 

The restriction of the complex structure JG to Te{G) generates a complex 

structure Jm on the Lie algebra 0R. It follows from Eqs. (A.22) and (A.23) 

that 

(A.24) adfc) o J0K = JSR o ad(x) 

for any x G 0M. Hence, Jm is a Lie complex structure, and 0K has the structure 

of a complex Lie algebra; denote it g. Actually the real Lie algebra g^ is the 

realification of the complex Lie algebra g, that is already reflected in the 

notation gK. The (complex) Lie algebra g is called the Lie algebra of the 

(complex) Lie group G. In fact, there exists another interpretation of the Lie 

algebra of a complex Lie group, that is more convenient for our purposes. To 

give this interpretation let us recall some facts from the theory of Lie algebras. 

Let g be a complex Lie algebra. Consider the space (gR)c. This space 

has a natural structure of a complex Lie algebra. It can be shown that the 
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decomposition 

(A.25) (gR)c = 0(1'o)e8(o'1). 

is a decomposition of (Qm)c into a direct sum of two Lie subalgebras. Moreover, 

we have 

(A.26)   P9(ax + bJmx) - (a + V^lb)PQx,        PQ[x,y] = [P0x,P5y], 

(A.27)   P9(ax - bJQRx) = (a + y/-ib)P9x,        PQ[x, y] = [Pgx, PQy] 

for all a, b € R and x, y G (0IR)
€

. Restricting P0 and P0 to 0M, we get bijective 

mappings from g^ to g^1,0^ and g^0,1^. Taking into account Eqs. (A.26) and 

(A.27), we see that the first mapping sets an isomorphism between the Lie 

algebras g and g^1,0^, while the second one sets an isomorphism between the 

Lie algebras g and g^0,1^. Here g is a complex Lie algebra which is obtained 

from gR with the help of the Lie complex structure — J0E. 

Thus, we can identify the Lie algebra of the Lie group G with the holo- 

morphic tangent space r^1,0^(G) C Tf(G). Actually, any element of the space 

re
(1'0)(G) generates a holomorphic left invariant vector field on G given by the 

relation of form (A.l); and the Lie algebra operation in g is related to the 

Lie bracket of the corresponding holomorphic left invariant vector fields by 

Eq. (A.2). Note that any left invariant vector field on G of the type (1,0) is a 

holomorphic vector field. 

Considering G as a real Lie group, we can define on it the corresponding 

Maurer-Cartan form #M taking values in gR. It is clear that 

(A.28) 0E(JG(X)) = Jfo0R(X) 

for any vector field X on GR. The complexification (0K)
€
 takes values in (gR)c. 

The Maurer-Cartan form 6 of the complex Lie group G is defined by 

(A.29) 9 = Pe
G o (0E)C. 

It follows from this definition that 6 takes values in the Lie algebra g. Using 

Eq. (A.28), we get 

(A.30) 9(X) = (0R)c(PGX); 
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hence, 9 is a 1-form of the type (1,0). Moreover, it can be shown that it is a 

holomorphic 1-form. 

Actually, we can define 9 as the unique 1-form of the type (1,0), satisfying 

relation (A.5), where X now is an arbitrary left invariant vector field on G 

of the type (1,0). It can be shown that in the case of a complex Lie group 

we still have relations (A.6)-(A.8). The situation with relation (A. 11) is more 

complicated. In fact, it is natural to consider only holomorphic and antiholo- 

morphic automorphisms of G. For a holomorphic automorphism S we have 

that Eq. (A. 11) is valid with a defined by Eq. (A.9). If E is an antiholomorphic 

automorphism of G, then 

(A.31) E,erc
(1^(G) = ri0'1)(G). 

In this case we define a as an antilinear automorphism of g by 

(A.32) Gx = Yl*e(x)       xGg. 

This definition leads to the equality 

(A.33) Y?9{X) = {(TO9)(X), 

which is valid for any x G T^{G), g G G. Note that relation (A.10) is valid for 

both cases with the mapping a defined either by Eq.(A.9), or by Eq.(A.32). 

APPENDIX B. COMPLEX LIE ALGEBRAS, FLAG MANIFOLDS, AND 

Z-GRADATIONS 

In this appendix we present some facts on complex semisimple finite dimen- 

sional Lie algebras, see e.g. [1, 12, 15, 11], needed in the main text. We also 

consider here the concept of a flag manifold and its relation to the concept of 

Z-gradation of a Lie algebra. 

Let Q be a complex semisimple Lie algebra, and f) be a fixed Cartan subal- 

gebra of g. Further, let A be the system of the nonzero roots of g with respect 

to 1). The root subspaces fl", a G A, are defined as 

(B.l) ga = {x e g | [h, x] = a{h)x for all h <E f)}. 
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All the root subspaces are one-dimensional, and the Lie algebra g is repre- 

sented as a direct sum 

(B.2) 0 = F,e0g". 

Choose in each subspace ga a nonzero vector xa, then 

(B.3) [XaiXp] = n^pXa+p, 

if a + P e A, while 

(B.4) [XaiX0] =0, 

if a + 13 £ A and a + /? ^ 0. 

Let (., ) be the Killing-Cart an form of g. Define the vectors /ia G I), a G A, 

by 

(B.5) (Ma) = a(/0, fc€f>. 

It can be shown that the vectors xa can be chosen in such a way that 

(B.6) [xa,x-.a\ = /la, 

and the constants na>/3 satisfy the relation 

(B.7) na>i9 = -n-a-p. 

In this case naj/3 are real numbers.   The set of the xa, a G A, having the 

properties described above, is called the Weyl basis of g modulo f). 

Recall that any involutive antilinear automorphism a of g specifies a real 

form g^ of g defined by 

(B.8) g,, = {x G g | a(x) = x}. 

Using the Weyl basis of g, we can define an antilinear automorphism a of g 

with the help of the relations 

(B.9) a(ha) = -/ia,        a(xa) = -x_a. 

The corresponding real form u in this case is compact. 

Let A = A_ U A+ be a representation of the root system of g as a disjoint 

union of the positive and negative roots with respect to some lexicographic 
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ordering, and 11 C A+ be a system of simple roots. Denote the elements of U 

by oji, i = 1,... , r = rankg. Let {xa} be the Weyl basis of $. The elements 

2 
(B.10) hi = rhai        x±i = x±ai 

generate the whole Lie algebra g. Under an appropriate normalisation, the 

elements a;±i, together with the Cartan generators h^ satisfy the defining 

relations 

(B.ll)      [hi, hj] = 0,        [h^ x±j] = ±kjiX±j,        [x+i, x-j] = S^hi, 

where k is the Cartan matrix of g. The elements x±i are called Chevalley 

generators of g. 

A Lie subalgebra b is called a Borel subalgebra of g if b is a maximal solvable 

subalgebra of g. Denote by G a complex connected Lie group having g as its 

Lie algebra. A subgroup B of G is called a Borel subgroup if its Lie algebra b 

is a Borel subalgebra of g. According to the Borel-Morozov theorem, all Borel 

subalgebras of g are connected one to each other by the action of the group 

Aut g of automorphisms of g. The similar statement is valid also for the Borel 

subgroups of G. 

The root decomposition (B.2) of g implies that 

(B.12) g = n_e()©n+, 

where 

(B.13) n± = 0 ga 

aeA± 

are nilpotent subalgebras of g. The corresponding connected nilpotent Lie 

subgroups of G will be denoted N±. It can be shown that the subalgebras 

(B.14) b± = l)®n± 

are Borel subalgebras of g. The Borel subalgebra b_ is called opposite to the 

Borel subalgebra b+. The subalgebras b± generate Borel subgroups denoted 

B±. 

A parabolic subalgebra of g is, by definition, a subalgebra of g which con- 

tains a Borel subalgebra of g.  A subgroup P of the Lie group G is called a 
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parabolic subgroup if it contains a Borel subgroup of G. Any subsystem \I/ of 

the system of simple roots 11 generates parabolic subalgebras 

(B.15) P±* = b±©    0    Qa, 

where [\I/] is the set of all roots from A which can be represented as linear 

combinations of the roots from \I/. It can be shown that, up to transformations 

of the group Aut g, any parabolic subalgebra of g can be obtained in such a 

way. Thus, we have a transparent classification of the parabolic subalgebras 

of any complex semisimple Lie algebra. One usually writes p±{n,... ,ik} for the 

parabolic subalgebra corresponding to the subsystem \I/ = {a^,... , a^fc}. The 

parabolic subalgebras corresponding to a subsystem which consists of just one 

simple root c^, is denoted p±i. At last, the parabolic subalgebra corresponding 

to a subsystem consisting of all simple roots except c^, is denoted p±if. 

Let P be a parabolic subgroup of G. The homogeneous space F = G/P 

is called a flag manifold or, quite rarely, a parabolic space. It is clear that F 

has the natural structure of a complex manifold. Let u be a compact form 

of g defined by the antilinear involutive automorphism a given by relations 

(B.9), and a be a maximal abelian subalgebra of u. Denote by U and A the 

corresponding real connected Lie groups. According to the Borel-Hirzebruch 

theorem, the flag manifolds G/B± are diffeomorphic to the homogeneous space 

U/A. It follows from this fact that for any Borel subgroup S, the flag man- 

ifold G/B is compact. Since any parabolic subgroup P contains some Borel 

subgroup 5, there is the natural projection from G/B to G/P; hence all flag 

manifolds are compact. 

Consider the realification g^ of the Lie algebra g. Let J0R be the linear op- 

erator in 0R, corresponding to the multiplication by V^~l in 0- The expansion 

of gR into the direct sum 

(B.16) gR-ue J9Kaen+R, 

where subalgebras u, a and n+ were defined above, is called the Iwasawa 

decomposition of g. Note that 

(B.17) f)R = aeJ«Ra. 
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There is the corresponding analytic decomposition of the Lie group G consid- 

ered as a real Lie group. It has the form 

(B.18) G = UN+A*, 

where A* is the real connected Lie group corresponding to the subalgebra Jma. 

A decomposition of Q into a direct sum of subspaces gm, 

(B.19) .        0=00™, 

such that 

(B.20) [flmjflfc] C-flm-Hb, 

is called a Z-gradation of g. For any Z-gradation of g we can construct a 

homomorphism p : C* —» Aut g, where C* = C — {0} is considered as a 

complex Lie group with respect to the multiplication. The homomorphism p 

is defined by 

(B.21) p{\)x = p(A) ( E x-) = E AmSm,        A e C*. 
\m€Z        / m€Z 

Actually, the mapping p takes values in the connected component of the group 

Aut g containing unity, which, for the considered case of a semisimple Lie 

algebra, coincides with the Lie group Int g of internal automorphisms of g. 

The Lie algebra of the group Int g is the Lie algebra ad g. Hence, there exists 

an element q of g such that 

(B.22) [g, xm] = mxm 

for any xm G gm. The element q is called the gradation operator of a given 

Z-gradation. Thus, for a complex semisimple Lie algebra, any Z-gradation 

may be defined with the help of the corresponding gradation operator. 

It is clear that the linear operator ad(g) is semisimple and satisfies the 

relation 

(B.23) exp(27rz ad(g)) = id0 . 

Since we consider the case of a semisimple Lie algebra, the element q is 

semisimple.   From the other hand, it is clear that any semisimple element 
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q of g satisfying Eq. (B.23), can be considered as the gradation operator of 

some Z-gradation of g. 

Since the element q is semisimple, without any loss of generality we can 

suppose that q G f) and OLi{cj) > 0, i = 1,... ,r. It follows from Eq. (B.23) 

that for any i, the number n* = ai(q) is an integer. The element q is uniquely 

defined by the numbers r^. Indeed, from Eq. (B.ll) we have 

(B.24) q=iriKj
1njhi., 

Note that the subspace gm is the sum of the root spaces 0a, corresponding 

to the roots a =  ^ QC^ with   ^ CiUi = m. The subspace go includes also 
l<i<r l<i<r 

the Cartan subalgebra I). Any positive root belongs to some subspace 0m with 

m > 0, while any negative root belongs to some subspace Qm with m < 0. 

Further, if Qa C 0m, then Q~a C 0_m; hence, we have 

(B.25) dim gm = dim g_m. 

The subspaces n±, defined by 

(B.26) ft_ = 0 gm,        n+ = 0 gm. 
m<0 m>0 

are nilpotent subalgebras of g. It is clear that 

(B.27) n± C n±. 

Introduce the notation 

(B.28) b_ = 0gm,        b+ = 0gm 
m<0 m>0 

Since I) C go, we conclude that b± D b±. Hence b± are parabolic subalgebras 

of g. Defining the set HQ C 11 by 

(B.29) U0 = {ai€U\ai{q)=0}1 

we can write 

(B.30) b± = P±no- 
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From the other hand, let a parabolic subalgebra p# with ^ being a subsystem 

of E, be given. Consider an element q G f), such that a*(g) = 0 if and only if 

cti G \I/, and all numbers C£i(q) are nonnegative integers. It is clear that the 

element q is the gradation operator for a Z-gradation of g with 

(B.31) b± = P±*. 

Thus, for any parabolic subalgebra p of g we can find a Z-gradation of g, 

such that the corresponding subalgebra p+ (or p_) is connected with p by a 

transformation of the group Aut g. 

It is natural to denote the subalgebra go by I). Recall that fy is not, in general, 

a Cart an subalgebra of g, but it contains some such subalgebra. Using the 

notations introduced above, we can write 

(B.32) b± = fj0n±, 

and 

(B.33) 0 = n_©f)en+. 

For any complex semisimple Lie algebra there is one distinguished Z-gradation, 

arising when we choose all the numbers n^ equal to 1. The corresponding gra- 

dation operator have in this case the form 

r 

(B.34) q = Y.kih" 
1=1 

where 

(B.35) -fci^E^1- 
j=i 

Such a gradation is called the canonical gradation. For the canonical gradation 

all the quantities with tildes defined above are equal to the corresponding 

quantities without tildes; and, of course, the subalgebra go is abelian; it is a 

Cart an subalgebra. Note also that in this case the subspaces g-ti coincide with 

the linear spans of the vectors x±j, i = 1,... , r. 

It is convenient for our purposes to consider Z-gradations of g related to 

the embeddings of the Lie algebra sl{21 C) into g. Recall that the Lie algebra 
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sl(2, C) consists of all traceless 2x2 matrices. The matrices 

(B,e)   ,. = (»»),     fc-(J_!),     x+s(»J 

form a basis in s[(2,C) called the canonical basis. For these matrices we have 

(B.37) [h, x±] = ±2x±J        [a;+, re.] = h. 

By an embedding of 51(2, C) into g we mean a nontrivial homomorphism from 

s[(2, C) into g; their complete classification has been done by E. B. Dynkin. 

The images of the elements h and x± under such a homomorphism are denoted 

usually by the same letters. From the properties of the representations of the 

Lie algebra st(2, C) it follows, that the element h of g should be semisimple, 

and the elements x± G g should be nilpotent. Moreover, it is clear that 

(B.38) exp(27ri ad(/i)) = idJ s 

As above, without any loose of generality, one can suppose that h G f), and 

oci(h) > 0 for all o^ G 11. It can be shown that the numbers a^h) are equal only 

to 0, 1 and 2. So, the element h can be considered as the gradation operator of 

some Z-gradation of I). In fact, it is more convenient for our purposes to define 

the gradation operator q, connected with the given embedding of s[(2,C) into 

g, by the relation 

(B.39) h = 2q. 

It is clear that this definition leads to the necessity to consider also Z/2- 

gradations of g. If, instead of Eq. (B.38), we have the relation 

(B.40) exp(7ri ad(/i)) = id0, 

we call the corresponding embedding integral, otherwise we deal with a semi- 

integral embedding. For an integral embedding the numbers a^h) are equal 

to 0 or 2. 

The properties of the representations of the algebra 51(2, C) imply that if 

we consider a Z-gradation, or a Z/2-gradation, associated with an embedding 

of si(2, C) into g, then 

(B.41) dim go > dim g±1. 
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For any complex semisimlpe Lie algebra there is an embedding of sl(2, C) 

leading to the canonical gradation. This embedding is defined by 

(B.42) x± = J2(2ki)
1/2x±i,        h = 2J2 hK 

i=l 2=1 

with ki, given by Eq. (B.35), and is called the principal embedding; its ex- 

haustive investigation has been done by B. Kostant. 

It is known that not any element h G 1), even satisfying the requirement 

oci{h) = 0,1 or 2, can be considered as the corresponding element of some 

embedding of 51(2, C) into g, and we have not here a direct relation to parabolic 

subalgebras, as it was for the case of a general Z-gradation. 
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