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STABLE QUOTIENTS OF PERIODIC MINIMAL SURFACES 

MARTY ROSS AND CHAD SCHOEN 

ABSTRACT. Let L c R3 be a discrete lattice and suppose x : M —* 
R3/!/ is a complete and connected minimal immersion. Assuming 
that x is stable and M has finite genus we prove that if rank L = 1 
or 2 then x(M) is a quotient of the plane, the helicoid or a Scherk's 
surface. The proof combines minimal surface theory with techniques 
from algebraic geometry. 

1. THE MAIN THEOREM 

Suppose L C R3 is a discrete lattice and x : M—>R3/L is a complete and 

connected minimal immersion. Such an x lifts to (and may be obtained as the 

projection of or quotient of) a minimal immersion x : M—»R3; x need not be 

periodic but this will be the case if x is proper ([MR, §1]). a; is stable if the 

second variation of the area of M (in the induced metric) is nonnegative for 

every compactly supported C1 variation. By [FS], if x is stable and orientable 

then x(M) is totally geodesic (Th3, Cor4 and their proofs) and consequently 

lifts to a plane in R3. In this paper we investigate the case where x is stable 

and nonorientable, and we give conclusions under the additional assumption 

that M has finite genus. 

In [LS] it is proved that a complete nonorientable minimal immersion in R3 

with finite genus and infinite total Gaussian curvature is necessarily unstable: 

there is a compact set K CC M such that M — K is orientable, and thus 

Theorem 1 or Corollary 1 of [F] can be applied. Since the results in [F] 

apply to immersions into any flat 3-manifold (and much more generally), the 

arguments in [LS] apply mutatis mutandis. We conclude that ifx : M—>R3/L 
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is complete, nonorientable and has finite genus and infinite total curvature then 

x is unstable. 

If M has finite total curvature we can begin by taking the orientable double 

cover iV of M: if TT : N —> M is the natural projection then we obtain an 

immersion x = x on. By Huber's Theorem, if we restrict to oriented isother- 

mal parameters then N = N — {pi,... ,pk} is conformally a finitely punctured 

compact Riemann surface - in particular the assumption of finite total curva- 

ture automatically implies M has finite genus. There is also an antipodal map 

/ : N —►AT, an anticonformal fixed-point free involution for which vf o / = jr. 

As well, because iV is orientable and x(N) C R3/£, there is a meromorphic 

Gauss map G : iV—>S'2, and 

(1) GoI = -G. 

The existence of G implies that a number of results for immersions into R3 

may be established for immersions into R3/L with only minor modifications 

in the proofs. Of specific interest to us are the following: 

(a) ([0,Lemma 9.5], [Mel, §3.6])    G :N^S2 extends to a meromorphic 

function on all of iV; 

(b) ([0,Th 9.2,9.3], [N,§55])  -27rdegG = JMK < 2TTX{M) where K is 

the Gauss curvature of M and x(M) is the Euler characteristic of M; 

(c) ([BCa]) If /M K = -27r then x is stable; 

(d) ([Rl,Th 1])  Suppose there is a meromorphic function H : N -^ S2 

satisfying (1) and for which either 

(i) deg H < deg G or 

(ii) deg H = deg G and H ^ T o G for any Mobius transformation 

T:S2-+S2. 
Then x is unstable. 

(There is also a Weierstrass representation for nonorientable immersions 

into R3/!/, which we apply in §3). 

The inequality in (b) is known as Cohn-Vossen's inequality and holds for an 

arbitrary complete Riemannian 2-manifold of finite Euler characteristic. For a 

minimal immersion x : M—>R3 there is a precise version available [JM, Th 4]: 
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(2) [ . K = 2ir (x(M) - n(M))        x{M) C R3, 
JM 

where n(M) is the number of ends of x(M) at oo, counting multiplicity. 

Now, if M is nonorientable then n(M) > 3 ([K,Corl]). Therefore (2) and the 

equality in (b) imply that deg G > 7 + 3 where 7 is the genus of N. Thus, 

since AT always admits meromorphic functions satisfying (1) of degree at most 

7 + 1, it follows from (d)(i) that any nonorientable x : M—»R3 of finite total 

curvature is unstable.* 

This result is the main conclusion (Th 3) of [Rl], and it is the above ar- 

gument which we attempt to adapt for immersions into R3/L. The one and 

only difficulty is that the degree of the Gauss map G need not be so high. In 

general, if rankL = 1 or 2 one may have equality in (b) ([MR, Th 2], [Mel, Th 

1.8]), and of course if rankL = 3 and a; is a proper immersion then M =M is 

compact and equality in (b) follows from the Gauss-Bonnet Theorem. Thus 

the most we can obtain from (b) is deg G > 7 — 1 if rank L = 3 and deg G > 7 

if rankL = 1,2. By [Ma, Lemma 1], degG = 7 + 1 mod 2 and thus we can 

improve this to 

fdegG>7 + l    rankL = 1,2 

|deg G > 7 — 1    rankL = 3. 

We cannot apply (d)(i) (see, for example, [Rl, Th 5, Cor 6]), but the following 

allows us to apply (d)(ii) in the first case above: 

Theorem 1. Suppose N is a compact Riemann surface of genus 7 with an- 

tipodal map I. Then the space of meromorphic functions of degree 7 + 1 onN 

which satisfy (1) has real dimension 7 + 3. 

The space of rotations of S2 (= the space of Mobius transformations which 

preserve (1)) has real dimension 3. Therefore we can apply (d)(ii) when 

rankL = 1 or 2 and 7 > 1.   Analyzing the possibilities when 7 = 0, and 

*In the context of minimal surfaces the estimate 7 -f 1 on the degree is Lemma 2 
of [Rl]. More general results are given in [Ma], [G], and [GH]. The first author would 
like to thank the second author for bringing these references to his attention. 
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combining with the work of [FS] and [LS], we obtain our conclusion regarding 

minimal surfaces: 

Corollary 2. Suppose that M is connected and has finite genus, and suppose 

that x : M —>T\?/L is a complete, stable minimal immersion. If rankL = 1 or 

2 then x(M) is a quotient of the plane, the helicoid or a Scherk's surface. 

□ 
Remarks. 

(i) The maximal quotients of the helicoid and the Scherk's surfaces have 

total curvature —27r and thus are stable by (c). All other quotients are 

unstable by (b) and Theorem 1. 

(ii) If rank L = 2 and L = (^1,^2) is incommensurable (i.e. L is not gener- 

ated by two vectors of equal length) then R3/i contains no Scherk's 

surface. In this case all proper stable immersions into R3/L are de- 

rived from the plane. (Taking a quotient of the helicoid in R3/^) and 

projecting into R3/L gives rise to an improper stable immersion). 

(iii) The classification problem when rankL = 3 is harder, as no simple 

analogue of Theorem 1 holds for functions of degree 7 — 1. Nonori- 

entable quotients of Schwarz's P and D surfaces give stable genus 3 

examples ([R2]), and these can be perturbed to give a 5-parameter 

family of stable embeddings ([Me2, Th 7.1]). We do not know if sta- 

ble minimal surfaces of higher genus exist, but examples such as the 

Stessman surface ([FH,p581]) show that the methods of this paper 

will not apply in general. The Stessman surface is of genus 4 with a 

well-defined nonorientable quotient x : M —> R3/L. The underlying 

Riemann surface is w3 = z5 + z which admits, up to isometries of S'2, 

exactly one degree 3 meromorphic function satisfying (1) (JFK, M.S.7, 

VE.3.1]). Thus x cannot be shown to be unstable using (d)(ii). (That 

x is in fact unstable can be shown by a direct test function argument). 

(iv) It is an open question whether the assumption of finite genus is neces- 

sary, even for immersions into R3. 

In the following section we prove Theorem 1, and in §3 we classify the 

possibilities in the case 7 = 0. 
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2. PROOF OF THEOREM 1 

The theorem will be proved by applying standard tools of algebraic geom- 

etry to real algebraic curves. Here the term real algebraic curve means one 

dimensional, non-singular, projective variety over the field of real numbers 

([GH]), where by convention a variety must be geometrically irreducible [Ha, 

II.Ex 3.15]. Associated to each real algebraic curve is its field of rational func- 

tions. As is well known, the field of functions completely determines the curve, 

and there is in fact an equivalence of categories ([Si, Thm 2.4], [Ha, 1.6]): 

' finitely generated field extensions' 

R C F satisfying 

1. trans. deg.R(i71) = 1, and 

2. R is algebraically closed in  F. 

Given a compact Riemann surface iV of genus 7 with antipodal map /, write 

FJV for the field of global meromorphic functions, FN for the fixed field of the 

involution h^hol ( " denotes complex conjugation), and X for the real 

algebraic curve corresponding to FN via (4). Similarly write F^ for the field 

of global meromorphic functions on 52, Fg for the fixed field of the involution 

h(s) —>/i(—s), and Q for the corresponding real algebraic curve. To give a 

holomorphic map G :N—>S2 is equivalent to giving a homomorphism of fields 

¥3 —>FJV which is the identity on the subfield of constant functions C ([FK, 

11.11.16, IV.11.17]). The existence of G satisfying (1) is equivalent to the 

existence of a homomorphism Fs —> FN which is the identity on the field of 

constants R. By (4) this is equivalent to giving a morphism of real algebraic 

curves, 

g : X -> Q. 

Furthermore, giving such a map g of degree 7 + 1 is equivalent to giving a 

subvariety (the graph of g) Tg C X x Q, whose projection onto the first factor 

has degree 1 and whose projection onto the second factor has degree 7 + 1. 

The totality of all such (irreducible) subvarieties form an algebraic family 

p : r — H, 
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where H is an open subset of the Hilbert scheme of X x Q ([S, §7], [H, §21]**). 

This family is non-empty ([Ma, Satz]). The tangent space to H at the point 

[g] G H corresponding to the graph Yg is canonically isomorphic to the space of 

global sections of the normal sheaf, H0(Fg,Afrg/xxQ) ([S, 8.1]). Furthermore 

n will be non-singular at [g] if H^Tg.Afrjxxq) ^ 0 ([S, 8.6]). 

For any real algebraic curve Y we write Oy for the sheaf of regular functions, 

fiy/R for the sheaf of regular differential forms, and Ty := Hom0v (fiy/R, Oy) 

for the tangent sheaf. Projecting rg onto X gives isomorphisms 

Now we compute the degree of TQ by noting that it is the same as the degree of 

the tangent sheaf of the corresponding complex curve, namely deg.(Tpi) = 2. 

Thus deg.(g*TQ) = 2(7+1) and deg.{Q.x/n®{g*TQ)-
1) = 27-2-2(7+1) < 0. 

By Serre duality ([Se, 11.8-10], [Fo, 17.9]**) 

H\x,g*TQ) ~H0(x,nx/R® (g*TQyy ~0. 

By Riemann-Roch ([I, 4.11;p. 187] or [Se, II.4], [Fo, 16.9]**) 

h0{X, g*TQ) = h0(X, g*TQ) - h\X, g*TQ) = 1 - 7 + deg.(g*TQ) =7 + 3. 

Thus H is non-singular of dimension 7 + 3 ([S, 8.5]). The fibers of p over the 

real points of the scheme TC are precisely the graphs of the distinct morphisms 

g : X —> Q of degree 7 +1. These in turn are in bijective correspondence with 

holomorphic maps G : iV —> S2 of degree 7 + 1 satisfying (1). Since the real 

points of H form a manifold of real dimension 7 + 8 the theorem follows. 

3. THE CASE OF GENUS 0 

Suppose iV = C is of genus 0. By (d)(i), we need only consider degG = 1. 

Thus, by suitable choice of coordinates oniV, we can assume g(z) = z where 

g = TT o G and TT : S2 —► C is stereographic projection. By (1), I(z) = —1/z. 

The Weierstrass representation for x : N—+~R?/L can now be written as 

dz 
(5) x(p) = Re f (1 - z2,2(1 + z2), 2z) 

Jp0 P(z)' 

**References marked ** are introductory in nature and might be useful if additional 
background material is desired prior to consulting the actual reference needed. 
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where P{z) is a polynomial ([0, Lemma 9.5], [BCo, §2.1], [Mel, §3.6]). ((5) 

gives a multiple-valued immersion of iV into R3; the periods given by (5) are 

contained in L because the integral represents a single-valued immersion of N 

into R3/L. Similarly, because x : N —> R3/L is invariant under /, integrals 

obtained by taking p = I(po) are also contained in L). Since x o I = x, we 

have ([BCo, pl04]) 

(6) z4P{-l/z) = -P(z). 

By (b),M has either one or two punctures, and thus AT has either two or four 

punctures, occurring in antipodal pairs. This makes it easy to classify the 

possibilities for P(z). 

Suppose M has only one puncture. By rotating the immersion in R3 and 

making a corresponding change of coordinates on//, we can assume that N = 

C — {0}. Then P(z) can only have a zero at z = 0, and thus P(z) = czk. 

(6) implies that k = 2 and c = ai is purely imaginary, giving scalings of the 

helicoid. 

Now suppose M has two punctures. We again rotate and change coor- 

dinates, after which we can assume the punctures of N occur at the points 

.e*, e-*, -e**, -e"**, where 0 < 6 < 7r/4. Then 

P(z) = c(z - eie)ni(z - e-ie)n2(z +":eie)n*(z + e''6)714 

with each rij > 1. (6) implies En^ = 4 and thus each rij =•!. It follows that c 

is real and we obtain the Scherk surfaces. 
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