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In 1979, I was at the Institute for Advanced Study organizing the special
year in geometry. I had many interactions with Elliot Lieb. I was very much
interested in the log concavity theorem that Brascamp and Lieb [1] did on
the eigenfunctions of the Laplacian. I was trying to see the r'ileaning of this
theorem for eigenfunctions defined on a curved manifold. Since the original
argument of Brascamp-Lieb [1] cannot work on a curved space, I developed a
continuity argument which was able to treat some cases. While I gave several
seminar talks on this argument in 1980, it appeared partially in the joint paper
with other coauthors [4]. Since I am invited to write an essay for Elliot, I have
decided to give more complete discussion on this topic.

I also found some improvement of my previous work with Peter Li [3]. It
is a curiosity that a similar calculation appears for the wave equation. In my
previous work with Li, we derive a sharp estimate for the heat kernel based on
the Harnack inequality. I expect that Harnack inequality for other equations
should give some fundamental information about the equations.

1. HARNACK INEQUALITY FOR SEMILINEAR ELLIPTIC EQUATIONS

In this section, we recall our result with Peter Li. Theorem 1.1 is somewhat
unnatural. But it shows how the argument can be used to treat semilinear
equation. Theorem 1.2 does sharpen the work of [3].
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Let ds? be a complete metric defined on a manifold M (with possibly
nonempty convex boundary). Then we shall consider the equation

ou
—=Au—-V
ot u—Vu
where u > 0 and V = h(z) + k(u).
Let ¢ = —logu. Then
(1.1) o =Ap+V = |Vopl’.

As in my work with Peter Li [3],
(1.2)
d
Z (VP + 0= V) = AV’ + 0. = V) = 20:(IV¢” + . = V)

+ (%At)(w) — 2" Riwip; — 2 % + Ah+ Ak(uw)).

Then for any c, ¢

d 0 _n
(1.3) = (VeI + o =V +ck+E- )
SAt(|V90|2+<pt—V+ck+a_2ﬁt)

— 20, 2 _ o™
20,(IVol* + ot =V +ck+¢ (2—c1)t)1

-2 Z gofj + (—culkyy — 2cuk, + uky, + u?ky, )| V|?
iy

n

ok

We shall assume that
(1.4) —cukyy — 2cuky + uky, + u?ky, < 2inf R;;.

For simplicity, we assume that M is compact with no boundary. (The
general case can be treated as in [3]). Let (zo, %) be the point so that |V|? +
pr—V4+ck+C—%)<0in M x [0,%) and is equal to zero at (zo,%o). Then
it follows from the maximum principle and (1.4) that

ok n
. < - 2 —cV= — uky (A —
(1.5) 0< -2 ;j @i+ Ah cVau + f(p) — uku(Ap) + o2
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But
Y6k > 2(Ag)
— " T
1"]
1
(L6) = (Ve + o = V)?
1 - Mg
= ﬁ(—Ck—C'f‘ Q—t) .
Hence
0< g(ck +2)? + 2(ck + &)t~ + uky(ck + €)
(1.7) n ik
- 2tu + Ah — cVuk, + f(e™).
Hence if we assume that
k.
(1.8) 2(ck+3) — =2 <0
and
2
(1.9 ;(ck +0)% > (ck + Q)uk, + Ah — cVuk, + f(e™™).

then inequality (1.6) becomes equality and the maximum principle shows that
(1.10) |Vga|2+got—V+ck+E—%§0

for all t > 0.
We have therefore proved the following theorem which generalizes the pre-
vious work with Peter Li [3].

Theorem 1.1. Let M be a compact manifold. let u be a positive solution of

the equation
ou

i A — Vu,

where A is the Laplacian of metrics ds? and V = h(z) + k(u). Assume that
(1.4), (1.8) and (1.9) hold, then
|Vul2

02 —Z—V'FC]{:(’UI)'FES

SIE
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Corollary 1. Let M be a compact mam'fold with nonnegative Ricci curvature.

Let u be a positive solution of the equation 3% = Au + u®* such that either
v u

Ogasn 1 or;—lgagﬂorag—l. Then'ul;l — u +1‘jra_ 2 for

allt > 0.

Corollary 2. Let M be a compact manifold with nonnegative Ricci curvature.
Let u be a positive solution of the equation 2% = Au — u°‘+1 such that either

ot
a+1>;or 1<a<——1<0 Then'vul —w_u < forgllt > 0.

u 1+a = 2t

Let us now improve the basic estimate in [3]. For simplicity, assume that
A; is independent of ¢. We shall consider the function

_ . g " 3 nt~!
Y =|Vol*+ o, =V —ay/|Vop|? + 5 5

where o, f > 0 are constants.

By computation,

(1.11)
0
¢ — Adp+2 Z Pt
= —22 Rijpip; —2) ¢l + AV +a(|Vel> + )72 Rijpip;
,j 2,5
_ AL nt—?
— oIVl +B)7 3 orpspupy — e et
% 2 J lv |2 2

< [-2+ o[Vl + 8)7 Zszwj—2Zsoz,+AV+—|VVl+ St

1.7

As before, we conclude that when 1 achieves its maximum,

(1.12)
2(|Vol® + @ — V)? = 2(Ap)®

<2n Z ‘Pfj
4]
< nAV + %’3|VV|

n?
n[-2+ o(|Ve® + 8)? ZRIJ(p'L(p] _2_t—2.
7-1
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Hence if o < 243%,

(1.13)
2 — — 1 — — — 3 .. 21/2
Vol + ¢ -V < 2t +[2(AV)+ 5 |VV| + (—ninf R;)|V|*]"/2.

Hence if
n an . 2 2 2
(1.14)  S(AV) + —[VV]+n(=inf Ry)|Vel” < o(|Vel” + F)
we can prove 9 < 0 for all t.

Theorem 1.2. Let M be a compact manifold and u be a positive solution of
the equation ¢ 8’“ = Au— Vu. Let a, 3 be positive constants so that

a<4p
062 > (— inf Ru)
n an
> = — .
> 2(AV)+ 5 [VV|

[Vul? |Vu|2
u? U v u? +'B_2t

Note. Theorem 1.2 should be used to improve the heat kernel estimate for

Then

for all t.

manifolds with negative curvature in [3].

2. THE HEAT EQUATION FOR THE HESSIAN OF ¢

From this section, we shall restrict ourselves to metrics independent of ¢ for
simplicity. We shall find a lower estimate of the Hessian of — log u.

Let ¢ be the minimum eigenvalue of the Hessian of ¢ and e; be the corre-
sponding eigenvector. Then 9 = ¢;; and ¢;; = 0 for e; L e;. We can then
conclude A = 3,(ii)j5 = 22;uijs-

By the commutation formula for covariant derivatives, we have the following

formula
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(2.1)
(Ap)i = Z Pjjii
= Z(pjiji - (ZRikSOk)i

= Z Yijji — ;Rik,ﬁ% - ZRik(pki
= Z Pijij — ZZWJ‘R&@ - Zz%eszij - Xk:Rik,iSDk - Xk:RikSOki
Jy Ts

= wuji+ ij:(Rijik(pk)j — Y 0ejReii; — Y _pieReji; — Z;Riksoki
= ZSOiijj + ;(Rijik(pk)j - ZWJ‘RMJ‘

- Z%zﬁiﬁj = > Ririor — O _Rirtpri
=AY+ ; (JZRijik,j) pr + ;Rmk%]’ - ;SOejReﬁj

3J sJ
- Z(Piszjij - ;W;‘ij - Z Rik,itpk - ZRik(Pki-
J

By the Bianchi identity,

> Riji; = — D Rihjs — D Rujsik
P i i

(2.2)
= —Rik,; + Rii -
Hence
(Ap)ii =AY — 2> Ruip + k+ Y Rinor
(2.3) k k
+2 Z Rijirpor; — 2 Z RipPri-
k’j
Similarly,
(IVel*)s =2 Z 03 +2 Z ipi; +2 Z Rijikpjon
(2.4) ik

=20+ 23 @0+ 2> Riyunpispr
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Hence from equation (1.1)

%—f =Ap—2 Z Rikior + Z Riior +2 Z Rijikprj
k k

— 2R + Vi — 20 — 22 ith; — 2 Z Rinikp;j k-
By the second Bianchi identity,

(2.5)

2Rk + Risx = 0.

Hence
oY _ 9
B = A+ Vi — 29" — 2R;0p + 2 Z RijikPr;
(2.6) t ]
=2 Rijuwpjor—2) @i — §Rii)j-

Let us now assume that M is flat so that Rz = 0. If we know that

¥ > /45 +inf; V;; at 0 < t < g and that for some (z0, %), ¥ = |/ 51z + inf; V5,
then it follows easily from (2.6) and the minimal principle at (zg, ¢), that
1
2.7 0> infV,; —2¢% + —
(2.7) >in )° + 57
which violates the sharp minimum principle.

Theorem 2.1. Let V be a potential defined on a compact flat manifold and
u be a positive solution o ‘Z—lt‘ = Au—Vu. If —(logu)y; > 1/ gz + inf; Vi for

t =0, then it is true everywhere as long as inf; V;; + ﬁ > 0.

Note. Theorem 2.1 can be generalized easily to non compact manifold as in
[3]-
If we do not want to make any assumptions on the second derivatives of V,

we can proceed as follows. Let V = AF and we find that

d 1 2 1
(2.8) Et‘(d’ + Fii — ﬂ) =A@+ Fy) —2¢° + BYoR
Suppose there is a function f so that

Then we can conclude that if ¢+ F;; 4+ f — 2. > 0 for ¢t = 0 and Fj; + f > 0,
then 9+ F;+ f —5; > 0 for all . (Note that when ¢+ Fj;+ f— % = 0,9 < =)

2t — 2t
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Theorem 2.2. Let F' and f be functions defined on R" so that inf;(F;; +

f) >0 and & 5 > Af + 2sup;(f + Fi;)®. Then for any positive solution u of
& = Au— (AF)u,

—(logu);; + Fy; + (f — )513 >

for all t > 0 as long as it is true for t = 0.

3. CONCAVITY ESTIMATES ON CURVED MANIFOLDS

In order to compensate the curvature terms in §2, we shall use the following
equations

0
(31) ol =ApF =23 0i(¢]); =23 ¢ — 23 Rujupsion — 2Vagps
) gk

6’
(3:2) Bt = Ap; — 22901 ®1);

Let a, 8,7 be contents. Then

(3.3) %(1# —ap} — B, +1p — ng’i +c(t))
=AW — ago? — By +yp — gRii + c(t))

3
- 22901'('4/’ — ap? — By + vy - §Ru’ + c(t));
J

+ ‘/1;1' + C/(t) - 2ag0iVi + ;—ARii - 2Rii7j}

+2 Z Rijicpr; + (20— 2) Z ‘pgj
jk J
+ (20— 2) ) Rijupspn +7|Vel|* — V.

‘We shall assume that

3
(3.4) i = 0pip; = Bipebi; + 198 — 5 Ryj +c(t)6i; 2 0

for 0 < t < ty and its minimal eigenvalue is zero at some positive (zg,tp). We
shall denote its minimal eigenvector to be e;. Let A be the minimal eigenvalue
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of Rijz'k‘ Then

(3.5)
Z Rijiror; > E(Rijik — Ajk)pr; + Mg
J.k Jk

3
2 Z(Rijik — Adjk) (apjion + Bpibjk + iRjk — ¥k — c(t)6sk)
gk
+A(IVel* + ¢ = V)
=« Z Rijikpjpr + (A — aX)|Vel|?
dik

3 3
+ BRupe+ (A= ABn)er + 5 > RiikRjk — AR
ik
— YRiip + Ayngp — (Rii — nA)c(t) — AV.

Choosing 8 = -71; and a = 1, the above equation can be simplified. By

the minimal principle, we conclude, by setting (3.4) to be zero, the following

inequality
0 2 Vie +¢'(t) + nAc(t) — 2¢,V; + gARii - 2Rii(p?
(3.6) — 3R, 43> RijikRjk —3AR+2>  Rijikpsipn
ik

+ 2Xynp — (74 20)V + 7|V
If Ap >0, (3.7) implies the following inequality
g O VetdO-2evit S ARy~ 2R ~ 3R},
+3Y RyuRjk + 2 Rijuspsoor — (7 + 20V + 4| Ve|?

We can choose v so that

(3.8) YVl +2) Rijinpson — 2Risp} — o} 2 0.
Then (3.8) implies
3
(39) 0>Vu+cd(t) -V + 5AR: — 3R}, +3>  RijwRj — (v +2\)V.
ik
Theorem 3.1. Let M be a complete manifold with curvature bounded from
below by . Let u be a positive solution of the equation 2% = Au— Vu so that

at
—Alogu > 0. Suppose that V},-—Vf—i-%ARii—3Rfi+3 >k BigieRie > (v+20)V
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for some constant v which dominates the eigenvalues of the quadratic form

3
—Z'Rij - C(t) 61'_7'

if such an inequality holds fort = 0. Here c is any function such that ¢'(t) > 0.

1
(3.10) Yij 2 pip; + ;L'(Ptaij + vpbi; +

By examining the proof, we can derive the following:

Corollary. If M is an Finstein manifold with sectional curvature greater than
A and u is any solution of the heat equatzon = Au with —Alogu > 0, then
(3.10) holds as long as it holds when t = 0. Here v is any constant which

dominates the eigenvalues of —2R;j — 2R;;0:;6,.

Note that if we assume A = 0, there is no assumption on u. For the general
case, we need to put an assumption on a lower bound of w.

In fact, we can choose 7 so that - is greater than the eigenvectors of
—2R;jik + (2R;; + 1)6;:65;. Then it follows from (3.7) that

0> Vi + ¢(t) + nAc(t) — |VV|* + gARi,- —3R2

+33 RyaRj — 3AR + 20nep — (v + 2\)V.
ik

(3.11)

Theorem 3.2. Let M be a complete manifold whose sectional curvature is
bounded from below by X. Let c(t) be any function so that c'(t) + nAc(t) > 0.
Let v be any number greater than the eigenvalues of —2R;ji + (2R +1)6;:0k;-
Then if

(3.12)
Vi 2 [VVP+ (y+20\)V +3R% — 3> RyjuxRjx — gARﬁ —3AR — 2\ynyp,
jik
the following inequality holds
(3.13)
~(logu)y; > (logu)(logu); — (logu)5i; — ¥(logu)6i; + 3 Ry — e(2)5
for all t > 0 as long as it holds also for t = 0. Here 2% S =Au—Vu.

When A = 0, we can take # to be any number as long as ¢ > 1. In

particular, the same argument shows the following
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Theorem 3.3. If M is a complete Einstein manifold with nonnegative cur-
vature and if u is a positive solution of the heat equation % = Au, then for
a>1, v > 2sup; Ry,

—(logu);; > a(logu);(logu); — B(log u):bs
(3.14)

3
— Y(log u)d;; + §Rij — c(t)b;;

for t > 0 as long as it holds for t = 0. Here c(t) is any function so that
cd(t) > 0.

We leave as an exercise to derive similar inequality when M is not Einstein
and V # 0.

So far, we are assuming o > 1. Let us now consider the case a = =0
and R;;;x > 0. We also assume that the function ¢ +yp — %Rii is greater than
zero at t = 0. Then for the first time when it becomes zero,

3
0>V, + §ARfii ~3R%2 +3 Z R;jix Rjx
(3.15)
3 2 2
= 2(=vp + 5Ru)* -2 Y Rijipier + vIVel* — V.
Hence we choose
(3.16) v = sup Rjy;
and
3
(3.17) Vui—AV > —gARii +3R% -3 Z RijitRjk + 2(—vo + ‘2‘Rii)27

We arrive at the following theorem.

Theorem 3.4. Let M be a complete manifold with nonnegative curvature. Let
v be a constant greater than sup R;;;;. Suppose that V is a function satisfying
(8.17). Then for any positive solution u of %’ti = Au — Vu, the following
inequality holds:

(3.18) ~(0gu); ~1(logu)6, — SRy 20

fort >0 as long as it holds at t = 0.
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4. GRADIENT ESTIMATES FOR SYSTEMS

In this section, we study gradient estimate for harmonic maps. Let u : M —
N be a map which is a critical point of the functional 1 [, |Vul|?> + [,, V(u)
where V is a function defined on N. Using the normal coordinate for M and

N, the critical map satisfies the equation

ov
4. Au® — =0.
( 1) u aya O
The gradient flow satisfies the equation
ou® ov
. = Au®— )
(4.2) 5 u By

Let F' be any smooth positive function defined on N. Then
(4. 3)
lvul . F—2 2F 2 R
(& )V o)) = 272 (g > Ry
+ 2F~ 2ZRaﬁaﬁ u; uﬁu u? — uguu; uf)

J

a4 oV

-2 a,,B 2-3

+2F Zmujuj +2|Vul’F ZFa%
2

TPACIR (E D)

+ 2|Vul?F4) (FFap — FoF5)Vu® - VU] — ¢ (t).
We shall assume that for some ¢; > 0,
(4.4) FF.3—F,F3 < —c,.

Then at the maximum point of '—VF’QE —c(t),

0 < F7?|Vul|’[-2inf R} + 2sup 72253 OV op ZF V
(4.5) - (0y=)?
+2F~ (supF2Raﬁaﬁ)|Vu|4 — 2¢, F4|Vu|* — ¢(¢).

If we assume

(4.6) ¢1 > sup(F?Rijs,s)
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then
(4.7)
(cl - SupF Raﬁaﬁ)[F2|vu|2
- 5(01 — sup(F?Ropap)) ' (—inf RM + SUp 5 oys CRE + F! ZF&%EV

oV _ ov ,
(3:1/_“)2 +F IZF"‘aya)z —c(t).

1
< Z(Cl — sup(F?Rypap)) " (—inf RY + sup
o

If we choose

_L1 . M O’V F-t
(4.8) c(t) = 2] inf R + SUp 5 7 @ a)2 ZF
L+ (a1 — sup(F2 Rapap))” ] (c1 —sup F2 aﬂaﬂ)_lt_l

then we can prove that F~2|Vu|? — c(t) < 0 for all t.

Theorem 4.1. Let u be a map from a complete manifold M into another
manifold N which satisfies equation (4.2). Suppose that for some function F
defined on N, (4.4) and ({.6) hold. Then F(u)~%|Vu|? < c(t) where c(t) is
defined by (4.8).

Note that if the curvature of N is nonpositive, (4.6) and (4.8) can be sim-
plified by dropping the term Ri"ﬁa 5

5. ESTIMATES FOR THE WAVE EQUATION

Let u be a positive solution for the wave equation

0*u

where V may depend on w.

Then ¢ = logu satisfies the equation
(5.2) @i+ 0} = Ap + |Vl —
Let

(5.3) Y=opu+¢; +V.
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Then using equation (5.2),

(5.4)
Vi = Dy + 2 Z(@t)? +2 Z ©;(s)
= Alpu + @] + V) = 20,(Ap) — AV +2 0;(i0u);
= A(pu+9f +V) =208 = [Vol*)e = AV +2) (¥ — 9] = V);
= Ay — 2049, + ZZ%T/)J' —AV - ZZ‘PJ‘VJ"

Rewriting (5.4), we find the following fundamental equation

(5.5) (ez‘p%)t = Z 2“’% Z(CMV)J

J

Let p be any function with compact support in M. Then we can form the

energy
(56) B,W)= [ e +IVuP)

By computation, we obtain

dE d
=2 [ (opt(+ (VU +2 | e,

(5.7)
~2 [ Pt +2 [reaivil +2 [ feevy- v,

Integrating by part, we obtain

638) 2 [ P pnr [ Pevi-vy,
d
=2 [ () =V (@ Vel —4 [ pepiTp- v

— 2 / PV (2VV) — 4 / PP,V p - V.
M - M
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Hence
(5.9)
E,=2 / pp:e® (7 + |VY[*) — 4 / PP,V - VV -2 / P h AV
M

—4/ e, Vp - V1j1+2/ p*e* oy |V¢|2 “Tﬁ?)

Y Vp
=2 / + v
Mp(pt ppe)e?| Vi P A

B\
vz o (oo 2 200)
P\ P ot o U

—4 / P2V VV — 2 / PN
M M

Assume that

(5.10) pe+ ppy <0
and
(5.11) i 2 p*0} + [Vol* — eplp: + pipy),

where € > 0. Then it follows from (5.9) that

d 1 / P2V (e**VV)|.
M

. —F < —
(5.12) dt™? ~ 4e

In conclusion,

(5.13) E,(t) < E,(0) + — / / p*(V(e**VV)|%.
Note that if V' =0, (5.13) says that
(5.14) E,(t) < E,(0).

Theorem 5.1. Let u be a positive solution of the wave equation (5.1). Let
= logu. Then (5.5) holds. Furthermore, let p be any function which satisfies
(5.10) and (5.11). Then (5.13) holds for E, defined by (5.6).

If V is independent of ¢, then ¢ — V satisfies an equation similar to (5.5)
with V' = 0. Hence if we define the energy to be f;, p?e®**(¢? + |V( — V)|?),
it will decrease in time as long as (5.10) and (5.11) hold (with € = 0).

Note that a function p can be constructed in the following way to satisfy
(5.10) and (5.11): If we have constructed a function g which satisfies the
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inequalities pp; < 0 and p? > |Vp|?, then p = pexp(—¢ + Cp), where C is a
large constant, will satisfy (5.10) and (5.11). The function p can be constructed
by taking a function with compact support composite with (1 — €)r + ¢.

6. HARNACK INEQUALITY FOR DEGENERATE ELLIPTIC EQUATIONS

Let us now consider a nonlinear equation of the type

(6.1) S — A(F()
with F’ > 0.

For simplicity, we shall assume that the equation is defined on a compact
manifold. It is straightforward to generalize all the theorems to complete
manifolds.

Let G be a function such that G'(t) = t~'F’(t). Then setting ¢ = logu?,

we have

(6.2) ili—(’: = —A—(@ = A(G(u)) + VG(u) - Vo
We shall consider G(u) = G(e¥) for u > 0 and G(u) = G(—e?) for u < 0.

We shall write it as G(y). Then we are dealing with the equation

(6.3) -‘% — AG+VG Ve
Let
dG
— 2_
(6.4) ¥ =IVGP - o
Then

’l,[)t = 2VGt - VG — a(Gt)t
AY =23 G%L+2Y (AG);G; +2) R;G.G; — a(AG),
J

i!j
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and

(6.5)
P — G'AY =2V(G, — G'AG) - VG + 2G"(AG)Vy - VG - 2G' Y " G5,
i?j

—2G' Y R;;GG; — a(G: — G'AG), — aG"p,AG
%]
=4Y GGGy +2G"AGVG -V —2G' Y G,
—2G" Y Ri;GiG; —2a Y Gi(Gy); — aG" 0, AG
=2VG-Vy—2G"Y G%-2G'> R;GiG;
+2G"AGVG -V — aG" o, AG
=2VG-Vy—2G'Y G} — 2G'zRijGiGj

—aG"(AG)? + (2 — a)G"AGVG - V.
Let c(t) be any smooth function of t. Then

(66) (b~ c(t) ~ AW - clt)
=2VG V(¢ - c(t)) — 2G'Y G} - 2G' > R;;GiG;

2%

—aG"(AG)? + (2 — @)G"AGVG - Vi — C/(¢).

We assume that ¢ — ¢(t) < 0for t = 0. If p —c(t) < 0 for t < ¢p and
P(zo) — c(to) = 0 for some z,, we would have

0<-2G") G —2¢ Z R;;G:G;
0 aG"(AG)® + (2 — a)G”AGVG -V — ().
Since AG =9 + (a — 1)VG - Vi, we obtain
0<-2G') G, - 2G’2 R;;GiG,;
Y -

(6-8) — aG"(AG)? + (2 — a)G"c(t)VG Vo
+(2- a)(a— 1)G"(VG - Vi) — (%)
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We shall assume R;; > 0, G’ > 0 and % is a smooth function. Then

(6.9) (2—5— - aG”) (AG)?

<(2—a)c(t)G"VG -V
+(2—a)(a—1)G"(VG-Vp)? - (1)

At (20,%0), AG=19 + (a —1)VG -V = c(ty) + (« — 1)VG - Vio. Hence

(6.10) [(2 - a)(a—1)G" — (-2—5—' — aG")(a - 1)Y(VG - Vi)?

2G’
n

+[2-a)G"—(a— 1)(%6" —2aG")cVG -V - (t) — (— —aG")c* > 0.

Note that VG - Vp > 0. Hence we have the following theorem.

Theorem 6.1. Let u be a solution of the equation % = A(F(u)) with F' > 0.
Let G be defined by G' =t='F'(t). Then for G = G(u),

(6.11) [VG]? — aGy —c(t) <0

if the following quadratic inequality holds for all x > 0

(6.12) [(2—a)(a—1)G" — (%é' — aG")(a - 1

20"

(2= )3 - (a— 1)(%6:' ~2a8")e(t)e ~ (1) = (=~ aG")e* <0

and |[VG|? — oG, — c(t) is smooth and < 0 at t = 0. Here G(t) is either G(e)
or G(t) = G(—e).

Theorem 6.2. Let u be a solution of the equation & = A(F(u)) with F' > 0.
Let G(t) be defined by G' = t~1F'(t). Suppose c(t) is a function such that
d(t) >0, uF"(u)c <0 and (2F' 4 uF"(u))c® > 0 for all u. Then

(6.13) VG| — G; —c(t) <0

if [VG|* — Gy — c(t) is a smooth function which is nonpositive at t = 0. In
particular, if c = 0, the only condition on F' is F'(u) > 0. On the other hand,
if c(t) > 0, we can replace the condition F'(u) > 0 by F'(u) > 0.
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Theorem 6.3. Let u be a solution of ¢ = A(F(u)). Suppose F'(u) > 0
and 2F'(u) + uF"(u) > 0. Then for any nonnegative function c(t) such that
c(t) >0,

(6.14) IVG|]> —2G, —c(t) <0

where G is defined by G'(t) = t~1F'(t). We assume that |VG|? — 2G; — c(t)
is a smooth function which is nonpositive at t = 0. If either c'(t) > 0 or
2F(u) + uF"(u) > 0, we can replace the condition F'(u) > 0 by F'(u) > 0.

The condition F’(u) > 0 is used to guarantee the strictly parabolicity of the
equation (6.1). Suppose the solution u of (6.1) is stable in the following sense:
Perturb F to F.(t) = F(t) + et. If there is a sequence of solutions u, of the
equations ¢ = A(F.(u)) so that u, approaches u in C'-norm as e — 0, we
say that u is a stable solution of (6.1). In this case, Theorem 2 and Theorem
3 remain true for these stable solutions by assuming only F' > 0.

The estimates (6.13) and (6.14) should give certain descriptions of the be-
haviour of those points where F”(u) = 0. We shall come back to this later.

For the convextiy question, we can only understand the case when dim
M=1. As
(6.15) %Gﬁ = G"P’AG + G"puAG + 2G"p;(AG)i

+GAG; +2) G4 +2) GGy

we can derive that at the maximum point of the function Gy; — ¢(t),

0< G"PIAG + G"puAG + 2G5 — ()

(616) "2 "
= (G”I - (—G’—)—-)(,Dme + gf’—(c;’n)2 + 2Gi — C,(t).
G’ G'
If we assume G;; — c(t) = 0 at the maximum point,
GI/ 2 G/I
61 os@ e+ 2+ Sycs - .
Hence if
1m\2
(6.18) (G" — Lq—l)c(t) <0

GI
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and

G//
(6.19) 2+ —G—,)c2 —-d(t) <0
we arrive at a contradiction.

Theorem 6.4. Let u be a solution of the §¢ = Z(F(u)) such that F' >
0. Then for any c(t) such that [u*F"F’ + uF"F' — u?(F")%c(t) < 0 and
2+ “;,If")c2 < c(t), we have the inequality G(u)z. < c(t) for all t if it is true
att=0.

Corollary. If F(u) =u™, we can choose c(t) = ~ gy -
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