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In 1979, I was at the Institute for Advanced Study organizing the special 

year in geometry. I had many interactions with Elliot Lieb. I was very much 

interested in the log concavity theorem that Brascamp and Lieb [1] did on 

the eigenfunctions of the Laplacian. I was trying to see the meaning of this 

theorem for eigenfunctions defined on a curved manifold. Since the original 

argument of Brascamp-Lieb [1] cannot work on a curved space, I developed a 

continuity argument which was able to treat some cases. While I gave several 

seminar talks on this argument in 1980, it appeared partially in the joint paper 

with other coauthors [4]. Since I am invited to write an essay for Elliot, I have 

decided to give more complete discussion on this topic. 

I also found some improvement of my previous work with Peter Li [3]. It 

is a curiosity that a similar calculation appears for the wave equation. In my 

previous work with Li, we derive a sharp estimate for the heat kernel based on 

the Harnack inequality. I expect that Harnack inequality for other equations 

should give some fundamental information about the equations. 

1. HARNACK INEQUALITY FOR SEMILINEAR ELLIPTIC EQUATIONS 

In this section, we recall our result with Peter Li. Theorem 1.1 is somewhat 

unnatural. But it shows how the argument can be used to treat semilinear 

equation. Theorem 1.2 does sharpen the work of [3]. 
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Let ds2 be a complete metric defined on a manifold M (with possibly- 

nonempty convex boundary). Then we shall consider the equation 

— = A^ - Vu at 
where u > 0 and V = h(x) + k(u). 

Let cp = — log IA. Then 

(1.1) ^ = A^ + y-|V^|2. 

As in my work with Peter Li [3], 

(1.2) 

^(|V^|2 + <pt-V) = At(|V^|2 + <pt-V)- 2<pi(\V<p\2 + <pt- V^ 

+ (^At)(¥>) -2Y,Rij<Pi<PJ -2j2tfj + &h + A(fc(«)). 

Then for any c, c 

(1.3) !(|Vda + <ft-V + -cfe + c-£) 

<At(|V^|2 + ^-y + cA; + c-^) 

- 2^(| V^|2 H-^-F + cfc + c- (2_
n
c,p» 

- 2 ^ ^ + (-cu2kuu - 2cuku + uku + u2kuu)\V(p|2 

- 2 £ ^-^^ + A/i - ^n(A^) - cVu— + f(ip) + —. 

We shall assume that 

(1.4) -cu2kuu - 2cuku + uku + u2kuu < 2 inf Ru. 
i 

For simplicity, we assume that M is compact with no boundary. (The 

general case can be treated as in [3]). Let (XQ, to) be the point so that | V(^|2 + 

(pt — V + ck + c — H) < 0 in M x [0, to) and is equal to zero at (XQ, to)- Then 

it follows from the maximum principle and (1.4) that 

(1.5) 0 < -2 £ <pl + Ah- cV^ + /(„) - ufc^A^) + ^. 
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But 

(1-6) =i(|vy,|2 + y,t-y)2 

Hence 

(1.7) 
0 < -(cfc + c)2 + 2(ck + c)*-1 + uku(ck + c) 

nufcu+A/i-cyufc„ + /(e-"). 
2t 

Hence if we assume that 

(1.8) 2(ck + Z)-^<0 

and 

(1.9) -(cfc + c)2 > (cfc + c)uku + Ah- cVuku + f(e-u). 
n 

then inequality (1.6) becomes equality and the maximum principle shows that 

71 
(1.10) |V^|2 + ^-F + cfc + c--<0 

foralU>0. 

We have therefore proved the following theorem which generalizes the pre- 

vious work with Peter Li [3]. 

Theorem 1.1. Let M be a compact manifold, let u be a positive solution of 

the equation 

- = Atu-Vu, 

where At is the Laplacian of metrics dsf and V = h{x) -b k{u). Assume that 

(14), (1.8) and (1.9) hold, then 

1      '   - — - V + ck{u) + c< —. 
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Corollary 1. Let M be a compact manifold with nonnegative Ricci curvature. 
du 
dt Let u be a positive solution of the equation fjjf- = Au + ua+1 such that either 

0<a<±-lor±-l<a<Oora<-l.  Then ^- - ^ + ^- < % for 

all t>0. 

Corollary 2. Let M be a compact manifold with nonnegative Ricci curvature. 

Let u be a positive solution of the equation |^ = Au — ua+1 such that either 

a + l> ± or-l<a<±-l<0. Then ^# - ^ - J£- < % for allt > 0. 

Let us now improve the basic estimate in [3].  For simplicity, assume that 

At is independent of t. We shall consider the function 

</, = |V<p|2 + <pt - V - a^\Vip\2 + p - 
nt'1 

where a, (3 > 0 are constants. 

By computation, 

(i.n) 

= -2 J2 Rijm - 22 tfj +AV + a(|V^|2 + /?)-1/2 E ^ W 

OLnx„^rt     n 
< [-2 + o(|V^|2 + Z?)-1/2] Y. RiSViVi - 2 E 4 + A1/ + ^1 V^l + ^r2. 

As before, we conclude that when ip achieves its maximum, 

(1.12) 
2(|V¥>|2 + ^-1/)2 = 2(A^)2 

<2nE^ 

<nAV+^\VV\ 

+ n [-2 + a(|V^|2 + Z?)-1/2] E BtiWPi + ^ 
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Hence if a < 2(3?, 

(1.13) 

IV^I2 + VH-VK ^r1 + [^(AV) + ^|W| + (-ninfRu)^^. 

Hence if 

(1.14)        ^(AV) + ^|W| + n(-inf ^)|V^|2 < a2(|V^|2 + /3) 

we can prove -0 < 0 for all t. 

Theorem 1.2. Let M be a compact manifold and u be a positive solution of 
du 
dt the equation % = Au — Vu. Let a, (3 be positive constants so that 

a<4(3 

a2>(-infi^) 

Then 

for all t. 

u2 u V    vr 2t 

Note.   Theorem 1.2 should be used to improve the heat kernel estimate for 

manifolds with negative curvature in [3]. 

2. THE HEAT EQUATION FOR THE HESSIAN OF <p 

Prom this section, we shall restrict ourselves to metrics independent of t for 

simplicity. We shall find a lower estimate of the Hessian of — logu. 

Let ij) be the minimum eigenvalue of the Hessian of </? and e* be the corre- 

sponding eigenvector. Then ^ = Vu and ipij = 0 for Sj JL e*. We can then 

conclude A^ = Ej(^i)ii = Y,jViijj> 

By the commutation formula for covariant derivatives, we have the following 

formula 
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(2.1) 

j k 

= ^L ^w* ~ 2_^Rik,i(Pk — / RikVki 
k 

= Zs Ww ~~ / jVijReiij — Z^PiiRejij ~ Z^Rik.i^k — /   RjkVki 
j,t j,i k k 

= / ,<Piijj + Z^{Rijik^Pk)j — /.JPljRuij — Z^PitRejij — /   RjkVki 
k,j k 

=' /ZPHJJ + zZiRijik^kjj - y^ejReuj 

~ Z-^VitRtjij ~~ /^Rik.i^Pk — / .Rjk^fki 

= A^ + ^   Y^Rijikj   Vk + YlRiJik^kJ ~~ YlvtjRuij 
k     \  j ) k,j e,j 

~ Z-jVitRtjij — / ^ijRuij — 2^ Rik,i<Ph ~ / ^Rik^Pki- 

By the Bianchi identity, 

(2.2) A; j j 

—      ■K'ik,i ~r ■K'ii,k' 

Hence 

(A^)^ = A^ - 2 J^ -Riife,i¥? + & + J^ -Rii,jb^ib 

(2.3) .-        * v^ 
+ 2 2_^ RijikPkj — 2 2^ RikPki- 

k,j 

Similarly, 

(I V^|2)u = 2 ^ ^ + 2 ^ ^-^ij + 2 53 RijikVjiPk 
(2.4) J-* 

= 2^2 + 2 53 V^j + 2 53 RijikVjVk- 
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Hence from equation (1.1) 

— = A^ - 2 Y* RiktVk + 52 RiitVk + 2 52 RijikVkj 
(2.5)       dt V k 

- 2Rii?l) + Va - 2^2 - 2 52 ^j^j - 2 5] RihikVjVk- 

By the second Bianchi identity, 

2JR2/C,2 + i?n,fc = 0. 

Hence 

(2.6) 
^ = A^ + VK - 2ip2 - 2Ritl) + 2^ Rijikykj 

3 
- 252RijikVjVk - 252 Vjty - 7;Rii)j> 2 

Let us now assume that M is flat so that Rijik = 0. If we know that 

^ > y 4^2 + inf* Vu at 0 < t < to and that for some (ZQ, to), ^ = y ^2 + inf* Fn, 

then it follows easily from (2.6) and the minimal principle at (xo,to), that 

(2.7) 0>inf^-2^2 + ^ 

which violates the sharp minimum principle. 

Theorem 2.1. Let V be a potential defined on a compact flat manifold and 

u be a positive solution of |j = Au — Vu. If —(loguju > J^2 + infi Vu for 

t = 0; then it is true everywhere as long as inf^ Vu + -^5 > 0. 

Note.  Theorem 2.1 can be generalized easily to non compact manifold as in 

[3]. 

If we do not want to make any assumptions on the second derivatives of V, 

we can proceed as follows. Let V = AF and we find that 
7-1 -j 

(2.8) -(V + Fa -jt) = Aty + Fu) - 2^ + —. 

Suppose there is a function / so that 

(2.9) ^>A/ + 2sup(/ + Fw)2. 

Then we can conclude that if ^ + Fa + f — -^ > 0 for t = 0 and Fii + f > 0, 

theni/j + Fu + f-^ > 0 for all t. (Note that when tf + Fa + /- ^ = 0^ < ^.) 
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Theorem 2.2. Let F and f be functions defined on Rn so that mf^Fn + 

/) > 0 and |£ > A/ + 2supi(/ + Fa)2. Then for any positive solution u of 

§ = Au-(Ai>, 

-(logu)y+Fy + (/-^)^>0 

for all t > 0 as long as it is true for t = 0. 

3. CONCAVITY ESTIMATES ON CURVED MANIFOLDS 

In order to compensate the curvature terms in §2, we shall use the following 

equations 

(3-1)   fotf = A^2 - 2 J2 vAvbi -2 E tfi -2 E RiJtoViVk - ivm 
3 3M 

(3.2) jfipt = A<pt -2j2<Pj(<Pt)j- 

Let a, (3,7 be contents. Then 

(3.3) ^(V - atf - !3<pt +W- \Rii + c(t)) 

= A(V - av? - ftft + 7^ - 2^ + c(i)) 
3 

- 2 S W & ~~ ad ~~ PV* + ^ ~~ 2 Rii + C^j 

3 
3 

+ Vu + c'(t) - 2a<piVi + -ARu - 2Rii^ 

+ 2 ^ RijKVkj + (2a - 2) ^ ^ 
j,fc 

+ (2a - 2) £ RijikVjVk + 7l V^|2 - 7^. 

We shall assume that 

3 
(3.4) (pij - atpitfj - PptSij + wSij - -Rij + ctySij > 0 

for 0 < t < to and its minimal eigenvalue is zero at some positive (xo,to). We 

shall denote its minimal eigenvector to be e^. Let A be the minimal eigenvalue 
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oiRijik. Then 

(3.5) 

3,k j,k 

3 
> ^2(Rijik - Mj^oupjipk + PVtdjk + -Rjk - IV^jk - c{t)8jk) 

j,k 

+ A(|v^|2 + ^-y) 

= aY^RijikVjVk + (A - aA)|V^|2 

3 3 
+ pRuVt + (A - \pri)<pt + - Y^ RijikRjk - ^R 

3,k 

- jRutp + X^mp - (Ru - nA)c(t) - XV. 

Choosing /3 = ^ and a = 1, the above equation can be simplified. By 

the minimal principle, we conclude, by setting (3.4) to be zero, the following 

inequality 

3 
0 > Vu + c'(t) + nXc{t) - ZipiVi + -kRa - 2Riiip

2
i 

(3.6) — 3Rii + 3 2^ R^ikRjk — 3Ai? + 2 ^ RijikVjVk 
3,k 

+ 2Ximp - (7 + 2X)V + 7|V^|2. 

If \ip > 0, (3.7) implies the following inequality 

,     ,       0 > Vu + c'(t) - 2ipiVi + ^ARii - 2Riitf - 3i?2 

(3.7) 2 
+ 3 ^ RijikRjk + 2J2 RijikVjVk - (7 + 2A)V + 7IVc^l2 

We can choose 7 so that 

(3.8) 7|V^|2 + 2 ]r RijikVm - 2RiHp2i - tf > 0. 

Then (3.8) implies 

(3.9) 0>Vii + d{t) - V? + ^ARu - 3Rl + 3 £ RijikRjk " (7 + 2A)V. 
j-k 

Theorem 3.1. Let M be a complete manifold with curvature bounded from 
du 
dt below by A. Let u be a positive solution of the equation f^ = An — Vu so that 

-Xlogu > 0. Suppose that l^-^+fAi^-Si^+S £** RijikRjk > (7+2A)y 
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for some constant 7 which dominates the eigenvalues of the quadratic form 

-2Rijik + (2i?ii + l)8ij8ik. Then forip = - logu, 

1 3 
(3.10) ifij > tpitpj + -tptSij + jipSij + -Rij - c^Sij 

To Zi 

if such an inequality holds fort = 0. Here c is any function such that cf(t) > 0. 

By examining the proof, we can derive the following: 

Corollary. IfM is an Einstein manifold with sectional curvature greater than 

A and u is any solution of the heat equation ^ — Au with —Xlogu > 0, then 

(3.10) holds as long as it holds when t = 0. Here 7 is any constant which 

dominates the eigenvalues of — 2i?^^ — 2Rii8ij8ik. 

Note that if we assume A = 0, there is no assumption on u. For the general 

case, we need to put an assumption on a lower bound of u. 

In fact, we can choose 7 so that 7 is greater than the eigenvectors of 

—2Rijik + (2Rii + l)6ji6ki. Then it follows from (3.7) that 

0 > Vu + cf(t) + n\c(t) - \VV\2 + ^ARu - 3Rl 
(3 11) / 

+ 3^2 RiJikRjk - 3Ai? + 2A7n<£ - (7 + 2A)V. 
3,k 

Theorem 3.2. Let M be a complete manifold whose sectional curvature is 

bounded from below by A. Let c(t) be any function so that cf(t) + nXc(t) > 0. 

Let 7 be any number greater than the eigenvalues of —2Rijik + (2Rii + l)8ji6ki. 

Then if 

(3.12) 

Vu > \VV\2 + (7 + 2A)V + SRl - 3 JT RijikRjk - §A^ - 3XR - 2X7mp1 

the following inequality holds 

(3.13) 
1 3 

-(logu)^ > {logu^logu^ Qogu)t6ij - 7(logu)<^ + -Rij - c(£)<^ 
To & 

for all t > 0 as long as it holds also for t = 0. Here ^ = Au — Vu. 

When A = 0, we can take (3 to be any number as long as a > 1. In 

particular, the same argument shows the following 
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Theorem 3.3. If M is a complete Einstein manifold with nonnegative cur- 
du 
dt vature and if u is a positive solution of the heat equation ^ = Au, then for 

a> 1, 7>2supi-Rii, 

-(logu)^ > a(logvfiiilogu)^ - P(logu^Sij 

(3-14) .      Ar       3 lilogv^Sij + -Rij - cfydij 

for t > 0 as long as it holds for t = 0. Here c(t) is any function so that 

cf{t) > 0. 

We leave as an exercise to derive similar inequality when M is not Einstein 

and V ^ 0. 

So far, we are assuming a > 1.  Let us now consider the case a = (3 = 0 

and Rijik > 0. We also assume that the function ip + jtp—^Ru is greater than 

zero at t = 0. Then for the first time when it becomes zero, 

3 
0>Vii + -ARu — 3i^ + 3^ RijikRjk 

(3.15) Z 3 

- 2(-7¥> + -Ra)2 -2J2 RijikVm + 7lV^|2 - 7V. 

Hence we choose 

(3.16) 7 > swpRijij 

and 

(3.17) Vu - 7V > —ARa + 3Rl - 3 £ i?^fci?^ + 2(-1cp + ^i?,,)2, 

We arrive at the following theorem. 

Theorem 3.4. Let M be a complete manifold with nonnegative curvature. Let 

7 be a constant greater than supl?^-. Suppose that V is a function satisfying 

(3.17). Then for any positive solution u of || = Au — Vu, the following 

inequality holds: 

(3.18) -(logu)^ - 7(logu)^ " \Ri3 > 0 

for t > 0 as long as it holds att = 0. 
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4. GRADIENT ESTIMATES FOR SYSTEMS 

In this section, we study gradient estimate for harmonic maps. Let u : M —> 

N be a map which is a critical point of the functional | JM \Vu\2 + fM V(u) 

where V is a function defined on N. Using the normal coordinate for M and 

TV, the critical map satisfies the equation 

dV 
(4.1) Aua-^— = 0. 

dy« 

The gradient flow satisfies the equation 

v    ' dt dya 

Let F be any smooth positive function defined on iV. Then 

(4.3) 

(| - A)(l^f _ c{t)) = _2F-2 £K.)2 _ 2jp-2 ^ J^^a 

+2F-2 x; i^ («?«?«?«? - «?«XU?) 

z^ dyady^ 3  3 ^     dya 

+ 2|Vn|2JP-4[^(F^ - FaF0)Vua ■ Vu0] - c'(t). 

We shall assume that for some Ci > 0, 

(4.4) FF^-FaFpK-a. 

Then at the maximum point of ^pj c(t), 

(4.5) 0 £ ^I^H^iff + 2sup^ + 2F-' EF.^l 
+ 2F~'(supF2<„„,)|V«|4 - 2ClF

4|V»|4 - c'(t). 

If we aissume 

(4.6) d > sup(F2
JR^Q/3) 
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then 

(4.7) 
(d-supF2^)^2^ 

-he- suj>(F>Ra0ae))-\- inf R» + sup -^ + F"1 £ i^) 
^(ar)2 ''   ^'adr 

' < I(Cl-Sup(F2ila^))-1(-inf^ + sup^^ + F-15:FQ^)2-C'(i). 

If we choose 

(48)     cW^I-inf^+supl^ + F-SF^I 

[1 + (ci - sup(F2i?Q^))-1] + (ci - supF2^^)"1*"1 

then we can prove that F~2|V^|2 — c(t) < 0 for all t. 

Theorem 4.1. Let u be a map from a complete manifold M into another 

manifold N which satisfies equation (4-2). Suppose that for some function F 

defined on N, (4-4) and (4-6) hold. Then F(u)~2\Vu\2 < c(t) where c(t) is 

defined by (4-8). 

Note that if the curvature of AT is nonpositive, (4.6) and (4.8) can be sim- 

plified by dropping the term R^afS- 

5. ESTIMATES FOR THE WAVE EQUATION 

Let u be a positive solution for the wave equation 

(5.1) ^ = Au-Vu 

where V may depend on u. 

Then ip = log u satisfies the equation 

(5.2) ^ + ¥)2 = A^+|V^|2-y. 

Let 

(5.3) il> = <Ptt + <fil + V- 
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Then using equation (5.2), 

(5.4) 

^tt = Aifu + 2 Y^Vt)] + 2Y, <Pj(.<Ptt)j 

= A(iptt + (p* + V)- 2ipt(A<p)t - AV + 2 £ ^-(^Oi 

= A(^ + ^ + F)-2^(^-|V¥>|2)t-AF + 2^^^-^2-n- 
= At/; - 2^Vt + 2 2 Vrfi -AV-2J2 ?&. 

Rewriting (5.4), we find the following fundamental equation 

(5.5) (e2^)t = S^^Ji - £(^)r 

Let p be any function with compact support in M. Then we can form the 

energy 

(5.6) EM) = f ?*>{$ + m\2). 
JM 

By computation, we obtain 

= 2 / (pfte^tf + |V^|2) + 2 / p2^(e2^t)^ 
7M JM     «I (5.7)    d* 

- 2 /"p2e2^2 + 2 /"p2e2vvpt|V^|2 + 2 jp2e2vViP ■ V^. 

Integrating by part, we obtain 

(5.8)   2 / ^1(6^)^ + 2 / pV^V^-VVt 

= 2 f p2[^(e2^t) - V • (ea*W)]^ - 4 / pe^^Vp • V^ 
7M      ut JM 

= -2 / p22ptV(e2(pVV) - 4 / pe^faVp • V^. 
7M JM 
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Hence 

(5.9) 
d-Ep = 2 / ppte^(^t + |V</f) - 4 / p2e2^tV^ • W - 2 / p2

e
2^4Ay 

./M ^Af VM dt 

- 4 / pe2*YtVp ■ViP + 2 [ p2e2v^(|Vt/;|2 - ^) 

Pt + Wt 

+ 2/   pe^U-p^-JMLW 1 / ^^ (■ JM \ Pt + PVt, 

- 4 / p2e2*iptVw 'VV-2 [ p2e2ip^tAV. 
JM JM 

Assume that 

(5.10) pt + p(pt<0 

and 

(5.ii) p? > PV? + IVPI
2
 - cp(pt + m), 

where € > 0. Then it follows from (5.9) that 

In conclusion, 

(5.13) Ep(t) < EM + i /* / p2(V(e^Vy)|2. 

Note that if F = 0, (5.13) says that 

(5.14) Ep(t) < Ep(0). 

Theorem 5.1. Let u be a positive solution of the wave equation (5.1). Let 

(p = logu. Then (5.5) holds. Furthermore, let p be any function which satisfies 

(5.10) and (5.11). Then (5.13) holds for Ep defined by (5.6). 

If V is independent of t, then ^ — V satisfies an equation similar to (5.5) 

with V = 0. Hence if we define the energy to be fM p2e2lp(^2 + |V(^ — ^)|2)5 

it will decrease in time as long as (5.10) and (5.11) hold (with e = 0). 

Note that a function p can be constructed in the following way to satisfy 

(5.10) and (5.11):   If we have constructed a function p which satisfies the 



446 SHING TUNG YAU 

inequalities ppt < 0 and $ > |Vp|2, then p = pexp(—ip + Cp), where C is a 

large constant, will satisfy (5.10) and (5.11). The function p can be constructed 

by taking a function with compact support composite with (1 — e)r +1. 

6. HARNACK INEQUALITY FOR DEGENERATE ELLIPTIC EQUATIONS 

Let us now consider a nonlinear equation of the type 

(6.1) |£ = A(F(ti)) 

with F' > 0. 

For simplicity, we shall assume that the equation is defined on a compact 

manifold. It is straightforward to generalize all the theorems to complete 

manifolds. 

Let G be a function such that G'it) = t~1F,(t). Then setting (p = ^ log^2, 

we have 

(6<2) ^ = ^M = A(G(tt)) + VG(tt) • V^. 

We shall consider G(u) = Gie?) for u > 0 and G(u) = G(-ev) for u < 0. 

We shall write it as G((p). Then we are dealing with the equation 

(6.3) ^ = AG + VG • Vyj. 
at 

Let 

(6.4) ^ = |VG|a-a-s-. 

Then 

V« = 2VGt • VG - a(Gt)t 

A^ - 2 £ (% + 2 J2(AGhGJ + 2 E ^G*Gi " a(AG0< 
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and 

(6.5) 

V't - G'M> = 2V(Gt - G'AG) ■ VG + 2G"(AG)V¥P • VG - 2G' £ G|. 
*.j 

- 2G' ^ -RyG^G^- - a(Gt - G'AG)* - aG"(ptAG 

= 4 ]r GiG^Gy + 2G"AGVG • V^ - 2G' ^ G^ 

- 20' ^RiiGiGj - 2a ^ G^G^i - aG"<ptAG 

= 2VG • V^ - 2G' J] G^- - 2G' ^ HyG^Gj 

+ 2G"AGVG • V^ - aG'VtAG 

= 2VG • VV - 2G' J2 Gl - 2G' ^ RijGiGj 
i,j 

- aG"(AG)2 + (2 - o!)G"AGVG • Vy>. 

Let c(t) be any smooth function of t. Then 

(6.6) ±^-c(t))-G'A^-c(t)) 

= 2VG • V(</> - c(t)) - 2G' ^ Gl - 2G' ^ ^GiG^ 

- aG"(AG)2 + (2 - a)G"AGVG • V^ - c'(t). 

We assume that ■0 — c(i) < 0 for t = 0.   If ^ — c(i) < 0 for i < io and 

^(rco) — c(to) = 0 for some XQ, we would have 

0 < -2G' Y, Gl - 2G' E RaGiGj 
(6.7) id 

- aG"(AG)2 + (2 - a)G"AGVG • V^ - c'(t). 

Since AG = ^ + (a - 1)VG • S7<p, we obtain 

0 < -2G' Y, Gl - 2G' E iiii^G^ 

(6-8) - aG"(AG)2 + (2 - a)G"c(i)VG • V^ 

+ (2 - a){a - 1)G"(VG • V^)2 - c'(t). 
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We shall assume Rij >0,G'>0 and ip is a smooth function. Then 

(6.9) (^- - aG") (AC)2 

< (2 - a)c(t)G"VG ■ V<p 

+ (2 - a){a - 1)G"(VG • Vy>)2 - c'{t). 

At (x0, t0), AG = ip + (a- 1)VG • V^ = c(to) + (a - 1)VG • Vy>. Hence 

(6.10) [(2 - a)(a - 1)G" - (— - aG")(a - 1)2](VG • V^)2 

4 2G' 
+ [(2 - a)G" - (a - 1)(-G' - 2Q;G")]CVG • Vip - c'(t) - (— - aG")c2 > 0. 

n n 

Note that VG • Vy> > 0. Hence we have the following theorem. 

Theorem 6.1. Letu be a solution of the equation ^ = A(F(u)) with F; > 0. 

Let G be defined by G' = t-lF\t). Then for G = G(u), 

(6.11) | VG|2 - aGt - c(t) < 0 

if the following quadratic inequality holds for all x > 0 

(6.12) [(2 - a)(a - 1)G" - (-<5' - aG")^ - 1)2}x2 

n 

[(2 - a)G" -{a- l)(-G, - 1aG")\c(t)x - d{t) - (-^- - aG")c2 < 0 

and | VG|2 — aGt — c(t) is smooth and < 0 att = 0. iJere ^(t) zs either G{et) 

orGify^Gi-e*). 

Theorem 6.2. Let u be a solution of the equation |^ = A(F(w)) m^/i F' > 0. 

Let G(t) be defined by Gr = t~lFr{t). Suppose c(t) is a function such that 

c'(t) > 0, uF"(u)c < 0 and {^F' + uF"(u))c2 > 0 for all u. Then 

(6.13) | VG|2 - Gt - c{t) < 0 

if |VG|2 — Gt — c(t) is a smooth function which is nonpositive at t = 0. In 

particular, if c = 0; ^Zie only condition on F is Fr{u) > 0. On the other hand, 

if cf{t) > 0, we can replace the condition F'{u) > 0 by F'(u) > 0. 
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Theorem 6.3. Let u be a solution of §| = A(F(u)). Suppose F^u) > 0 

and ^'(u) + uF'l{u) > 0. Then for any nonnegative function c(t) such that 

c'it) > 0; 

(6.14) |VG|2 - 2Gt - c{t) < 0 

where G is defined by G'{t) = t^F^t). We assume that |VG|2 - 2Gt - c(t) 

is a smooth function which is nonpositive at t = 0. // either c'(t) > 0 or 

^F(u) + uF"{u) > 0, we can replace the condition F'(u) > 0 by Ff(u) > 0. 

The condition Ff(u) > 0 is used to guarantee the strictly parabolicity of the 

equation (6.1). Suppose the solution u of (6.1) is stable in the following sense: 

Perturb F to F€(t) = F(t) + et. If there is a sequence of solutions ue of the 

equations ^ = A(F€(u)) so that ue approaches u in C1-norm as e —» 0, we 

say that u is a stable solution of (6.1). In this case, Theorem 2 and Theorem 

3 remain true for these stable solutions by assuming only F' > 0. 

The estimates (6.13) and (6.14) should give certain descriptions of the be- 

haviour of those points where Ff(u) = 0. We shall come back to this later. 

For the convextiy question, we can only understand the case when dim 

M = 1. As 

,      x ^rGii = G"fcp2
iAG + G"ipiiAG + 2G"ipi(AG)i 

(6.15) "* 

we can derive that at the maximum point of the function Gu — c(t), 

0 < G",<p2
iAG + G'ViiAG + 2G2 - c'(t) 

(6.16) (G")2 G" 
= (G'" - iy-)^G« + ^(G,,)2 + 2G» - c'(t). 

If we assume G^ — c(t) = 0 at the maximum point, 

(6.17) 0 < (G'" - ^)c(t)^ + (2 + ^)Gl - d{t). 

Hence if 

(6.18) (GT - ^)c(t) < 0 
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and 

(6.19) (2 + ^-^X0 

we arrive at a contradiction. 

Theorem 6.4. Let u be a solution of the ^ = -^(Ffa)) such that F' > 

0. Then for any c(t) such that [u2F",F' + u^'F' - u2{F")2}c{t) < 0 and 

(2 + 1L^-)c2 < cl{t), we have the inequality G{u)xx < c(i) for all t if it is true 

att = 0. 

Corollary. If F(u) = u™, we can choose c{t) = — (m+1!(Wo). 
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