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CONFORMALLY FLAT 3-MANIFOLDS 
AND EUCLIDEAN POLYHEDRA. 

SER PEOW TAN 

ABSTRACT. In this paper, we study the deformation space C(M) of 
flat conformal structures on a compact hyperbolic 3-manifold M by 
using a geodesic simplicial decomposition A of M. In particular, we 
demonstrate the relations between flat conformal structures, singu- 
lar pleated hyperbolic structures composed of ideal tetrahedra and 
euclidean polyhedra. 

1. INTRODUCTION AND PRELIMINARIES 

A flat conformal structure (f.c.s.) on a n-dimensional manifold M is a 

maximal system of coordinate charts based on Sn such that locally, the co- 

ordinate changes are local conformal diffeomorphisms of Sn. For n > 3, by 

Liouville's theorem, any local conformal diffeomorphism of Sn is induced by a 

global Mobius transformation so a f.c.s. on M is also called a Mobius struc- 

ture. This is a (G, X) structure in the sense of Thurston [22] with the model 

space X = Sn and the transformation group G = M6b(5n). A f.c.s. is also 

equivalent to the conformal class of a conformally locally Euclidean metric on 

M. Such structures are important in many different contexts, for example, 

as a class of structures, they naturally contain the spherical, similarity and 

hyperbolic structures. The literature on such structures is extensive, see for 

example [2], [7], [13], [14], [17] and the references contained therein. 

If / : M i—> N is a covering map and AT has a f.c.s. then we can pull-back 

the f.c.s. on N to obtain a f.c.s. on M. If M has a f.c.s. to start with, 

we say that the map / is a conformal map if the two structures on M are 

the same. There are two natural equivalence relations on the set of all flat 

conformal structures on M as follows:  Given two f.c.s.   on M, (M,pi) and 
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(M, P2)) (M, pi)~i{M, P2) if there is a diffeomorphism from M to itself which 

is a conformal map with respect to (M, pi) and (M, p2)> and (M, pi)~2(^ P2) 

if there is a diffeomorphism from M to itself isotopic to the identity which is a 

conformal map with respect to (M, pi) and (M, ^2)- The space of f.c.s. on M 

modulo ~i is called the moduli space of f.c.s. on M while the space of f.c.s. 

on M modulo ~2 is called the deformation space or Teichmuller space of f.c.s. 

on M which we denote by C(M). Clearly, the moduli space is obtained from 

the Teichmuller space by the action of Diff(M)/Diffo(M). The elements in 

C(M) are called marked f.c.s. on M. 

The aim of this paper is to study the space C(M) in the case when M is a 

closed oriented 3-manifold admitting a hyperbolic structure. Note that in this 

case, the space C(M) contains T(M), the space of hyperbolic structures on 

M. By the celebrated Mostow rigidity theorem [18], T(M) is trivial, however, 

the space C{M) need not necessarily be trivial. The first non-trivial defor- 

mations of f.c.s. on a closed hyperbolic n-manifold (n > 3) was constructed 

by Apanasov in [1]; subsequently, Kourouniotis [12] and Johnson and Millson 

[7] generalised a bending construction of Thurston's to construct non-trivial 

deformations of f.c.s. on manifolds M admitting totally geodesic hypersur- 

faces. In particular, Johnson and Millson were able to construct examples of 

hyperbolic n-manifolds (n > 4) whose deformation spaces C(M) are singular. 

They did this by constructing manifolds M which have intersecting totally 

geodesic hypersurfaces (bending can be carried out independently along non- 

intersecting totally geodesic hypersurfaces) and using group cohomology to 

show that there are obstructions to bending simultaneously along both in- 

tersecting hypersurfaces. This provides a striking contrast to the dimension 

2 case where C{M) is the deformation space of CP^structures on a closed 

oriented hyperbolic surface M of genus g > 2 and C(M) is homeomorphic to 

R12p~12. The case when n = 3 is particularly interesting, the obstructions 

of Johnson-Millson vanish and it is not clear if it is possible for C(M) to be 

singular when M is a closed oriented hyperbolic 3-manifold. 

The first non-bending deformations were constructed by Apanasov (see [2]) 

using a pea-pod group construction, he called these 'stamping' deformations. 

Using the maximal ball technique, we independently constructed and gener- 
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alised these deformations in [20]; in fact we showed that both bending and 

stamping deformations were generalisations of Thurston's bending construc- 

tion for dimension 2 and that in higher dimensions, it is sometimes possible 

to bend along intersecting totally geodesic hypersurfaces as long as a spheri- 

cal polygonal condition was satisfied by the bending parameters and dihedral 

angles in a link of the intersection. Furthermore, the underlying structure can 

now be deformed to cone hyperbolic structures with cone singularities at the 

intersection of the hypersurfaces. However, none of these constructions gave 

the complete local picture of C(M). The only complete results we know of in 

this case are results of M. Kapovich [10] where he showed that C(M) is locally 

trivial about the hyperbolic structure for infinitely many hyperbolic manifolds 

M obtained by hyperbolic Dehn surgery on hyperbolic two bridge knots. 

In this paper, we present a different approach to this problem using the 

following facts: 

(1) There exists a geodesic simplicial decomposition of M; 

(2) For any four distinct points in 53 in general position, there is a unique 

sphere passing through all four points so that the convex hull of the 

four points in H4 is an ideal tetrahedron which lies on a totally geodesic 

hypersurface in H4; 

(3) Combining (1) and (2), we can associate to a quasi-Fuchsian struc- 

ture on M a singular pleated hyperbolic structure made up of ideal 

tetrahedra pieces; 

(4) The singular pleated hyperbolic structure of (3) determines and is de- 

termined by the induced singular pleated euclidean structures on the 

links of the vertices, up to similarity, in other words, euclidean poly- 

hedra. 

To state our result more precisely, we start with some definitions. Let 

(M, p) be a closed oriented hyperbolic 3-manifold. It is well known that (M, p) 

admits a geodesic triangulation, we fix one such triangulation and denote it 

by A. Suppose further that there are k vertices and m tetrahedra in the 

triangulation A. Let C(M, k) denote the deformation space of marked f.c.s. on 

M with k distinguished points. The hyperbolic structure on M together with 

A determines a point (pjvi,..., v*) € C('M,fc) where Vi, ...,Vk are the vertices 
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of A. Note that there is a natural projection map p : C(M, k) H-> C{M) which 

'forgets' the distinguished points; the fibre of the map has real dimension 3A;. 

If Vi is a vertex of A, let L(vi) be the link of v^ it is topologically a sphere 

and the triangulation A induces a triangulation A(^) of L{vi). We have the 

following: 

Lemma 1. Let (M,p) be a closed orientable hyperbolic 3-manifold and let A 

be a topological triangulation of M isotopic to a geodesic triangulation with k 

(fixed) vertices Vi,..,Vk> Then the hyperbolic structure p on M together with 

the triangulation A determines the following: 

(a) a distinguished point (p; v^ ..., Vk) G C(M, A;); 

(b) a singular pleated hyperbolic structure MPiA on M composed of ideal 

tetrahedra with pleating locus contained in the faces of A; and 

(c) a set of k euclidean polyhedra Pi up to similarity which are the struc- 

tures induced by M^A on the links L(vi). 

More generally, we have the following: 

Theorem 1. The triangulation A determines a local homeomorphism beween 

the following three spaces: 

(a) the space C(M, k) about (p; vu ..., Vk); 

(b) the deformation space of singular pleated hyperbolic structures on M 

composed of ideal tetrahedra with pleating locus contained in the faces 

of A, about the point MP^A; and 

(c) the deformation space of k euclidean polyhedra up to similarity about 

the point (Pll...,Pk) satisfying the following conditions: 

(i) each polyhedron is combinatorially equivalent to A(^). 

(ii) the bending angle at an edge of Pi is equal to the pleating measure 

on the corresponding face of A; and 

(hi) if Fi and F2 are two faces of the (not necessarily distinct) poly- 

hedra Pi and Pj and Fi and F2 are in the links of vertices of the 

same ideal tetrahedron piece T in A, then Fi and F2 are similar 

triangles with appropriate identification of their vertices induced 

by labelling opposite edges of T with identical labels . 
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Much of our construction generalises to higher dimensions. One starts with 

a geodesic simplicial decomposition of the manifold M and use the fact that 

n + 1 points in general position in Sn determine a unique S'n~1 sphere passing 

through all the points so that the convex hull of the n + 1 points in H71"1"1 

is a totally geodesic ideal simplex of dimension n. However, it seems that in 

the dimension 3 case, there is much greater hope of doing the explicit com- 

putations since the problem is now reduced to studying euclidean polyhedra. 

Unfortunately, a rough dimension count shows that there are in general, the 

same number of relations and parameters in the space of such polyhedra satis- 

fying the conditions of (c) in theorem 1 so that to obtain concrete information 

about C(M), it seems necessary to study the equations arising from some 

triangulation in greater detail. In dimension two, the above approach gives 

local coordinates for QcM, the space of quasi-fuchsian structures on a closed, 

orientable surface of genus g > 2 with one distinguished point, see [21]. 

The rest of this paper is organised as follows: In §2, we define singular 

pleated hyperbolic structures and show how such structures can be obtained 

from a triangulation of M with a flat conformal structure close to the hyper- 

bolic structure, giving part (b) of lemma 1 (part (a) is obvious) and the corre- 

spondence between (a) and (b) of theorem 1. In §3, we study in greater detail 

ideal tetrahedra which are the basic building blocks of the singular pleated 

hyperbolic structures and complete the proof by showing the correspondence 

between (b) and (c) of lemma 1 and theorem 1. 

Acknowledgement. The author would like to thank J. Millson, W. Goldman 

and M. Kapovich for their help with various queries, M. Van Loo for help with 

the diagrams and the Mathematics Institute at the University of Warwick for 

its generosity and hospitality during a stay in Spring, 1993 when part of this 

work was carried out. 

2. SINGULAR PLEATED HYPERBOLIC STRUCTURES 

Let S be a complete orientable cone hyperbolic 3-manifold and X C S be the 

discrete set of singular points of co-dimension 3 in S (see [23] for the rigorous 

definition of a cone manifold and the codimension of the singular points). For 

example, if S is obtained by a (compact) hyperbolic polyhedron by isometric 
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pairing of faces, then the points on the edges would be singular and have 

codimension 2 if the total cone angle about the edge is not equal to 27r and 

the vertices which lie on the intersection of singular edges would be singular 

and have codimension 3. If the hyperbolic polyhedron is non-compact and has 

ideal vertices so that some of the edges are infinite, then we must ensure that 

the holonomy about an infinite edge has no translation factor. If the link of 

an ideal vertex is a sphere, then it is still considered to be a singular point of 

codimension 3, we call such singular points ideal 

A singular pleated hypersurface in a oriented hyperbolic 4-manifold N is 

a complete cone hyperbolic 3-manifold S together with a continuous map 

I/J : {S — X} i—> iV, where X is the set of singular points in S of codimension 

3, which satisfies: 

(a) ^ is isometric, that is, every geodesic segment in S — X is taken to a 

rectifiable arc in N which has the same length; 

(b) for each point x G S — X, there is at least one open geodesic segment 

ax through x which is mapped to a geodesic segment in N. 

The cone-hyperbolic structure on S together with the map ip is called a 

singular pleated hyperbolic structure on S. By passing to the universal cover, 

we see that it is independent of TV. The notion of the developing map and 

holonomy representation extends to singular pleated hyperbolic structures, 

the developing map is now a pleated immersion from S — X to H4 and the 

holonomy representation maps TTI^) into Isom(H4). 

If x £ S — X and m is the dimension of the span of the geodesic segments 

ax satisfying (b), then the co-dimension of x is defined to be 3 — m. 

Note that a component of the set of points with co-dimension zero is an iso- 

metrically imbedded totally geodesic hypersurface in iV, possibly with bound- 

ary. The pleating locus, denoted by VC is the set of points with co-dimension 

1. If V is a component of VC, V is two-sided, denote the two sides by U 

and W. The pleating measure on V is defined to be the angle between the 

normal vectors to U and W (with direction determined by the orientations 

of U and W) in N at any point x G V. More generally, one can define a 

transverse measure on the pleating locus (see [4], [9] or [14] for example) but 

for the purposes of this paper, the transverse measure will always be discrete 
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and the above definition suffices. The pleating locus VC together with the 

codimension 2 and 3 singular points can be thought of as a singular geodesic 

lamination on 5, the transverse measure makes it a singular measured geodesic 

lamination, thus a singular pleated hyperbolic structure on S can be thought 

of as a cone hyperbolic structure on 5 together with a compatible singular 

measured geodesic lamination on S. As in the case of f.c.s. on 5, a pleated 

hyperbolic structure on S is defined up to diffeomorphisms of S to itself. 

In general, the topology on the space of singular pleated structures on S is 

that induced by the developing map, i.e., two singular pleated structures are 

close to each other if the corresponding developing images of a fundamental 

domain are close in H4, up to conjugation by an element of Isom(H4). In the 

case where we are only considering the subspace of singular pleated structures 

where the pleating locus is contained in the faces of a fixed triangulation A of 

5, the topology is the same as that induced by the pleating parameters and 

the parameters for the tetrahedra pieces of A. 

Associated to a closed orientable hyperbolic 3-manifold M and a geodesic 

triangulation A of M into hyperbolic simplices is a singular pleated hyperbolic 

structure on M where all codimension 3 singular points are ideal. This is 

constructed as follows: 

Let {vi,...,vk}, {ei,...,em+fc}, {/i,...,/2m}, Oi,...,*™} be the O-simplices 

(vertices), 1-simplices (edges), 2-simplices (faces) and 3-simplices (tetrahe- 

dra) of A respectively. If we perturb the positions of {^i, ...,?;*;} slightly to 

{i^,..., t^}, we get a geodesic triangulation A7 of M which is combinatorially 

the same as A, isotopic to A but geometrically different. Let M be the uni- 

versal cover of M and let A be the triangulation of M which is the lifting of 

A. 

Let S3 be the unit sphere in E4, and JB
4
 the unit ball in M4 bounded by S3. 

BA with the Poincare metric serves as a model for H4. The group of isometries 

of H4, Isom(H4) can be identified with M6b(53). There are natural inclusions 

H3 C H4 and Isom(H3) C Isom(H4) where H3 = S4 n {{xux2,x^xA) e 

M4 |a:4 = 0}. 

Let dev and p be the developing map and holonomy representation associ- 

ated to the hyperbolic structure on M and let T = p(7ri(M)). T is a discrete 
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subgroup of Isom(H3) C Isom(H4) isomorphic to 7ri(M) with domain of dis- 

continuity O in S3 consisting of the upper and lower hemispheres. H4/r is a 

complete hyperbolic 4-manifold and (H4 U il)/T is homeomorphic to M x / 

where / is the closed unit interval. 

If S+ is the upper hemisphere of S'3, then 53 also acts as a model for H3 

with the same Mobius group acting as the group of isometrics. Using S3 as 

the model for H3, the developing map takes M conformally to Sr3. dev(A) 

is then a Mobius triangulation of 53 in the sense of [16], invariant under F. 

(A Mobius triangulation is a triangulation where all the faces are parts of 

2-spheres). 

Let T be a Mobius tetrahedron in dev(A). There is a unique two sphere S*2 

in Ss passing through the four vertices of T, this bounds a complete totally 

geodesic hyperplane, denoted by H(T), in H4. The convex hull of the four 

vertices of T in H4, denoted by C(T), is an ideal tetrahedron in H4 lying on 

H(T). If Ti and T2 are two tetrahedra in dev(A) sharing a common face, then 

C(Ti) and C(T2) also share a common face, they lie on two (not necessarily 

distinct) intersecting hyperplanes in H4 bent at some angle 0, where 9 = 0 

if and only if the vertices of Ti and T2 all lie on the same two sphere S'2, see 

figure 1. 

The union of C(T') where T runs over all the tetrahedra of dev(A) is there- 

fore a singular pleated hypersurface in H4, denoted by S^A, invariant under 

the action ofT. Modulo the action of F, we have S^A/F C H4/r is a singular 

pleated hyperbolic structure on M, dependent only on the original hyper- 

bolic structure and the triangulation A, we denote it by M^A- The points 

Vii.-i'Vk E Mp^ all develop to the sphere at infinity and hence are ideal sin- 

gular points of codimension 3. This gives part (b) of lemma 1. 

We next see what happens when we perturb the point [p; v^ ..,'1^] € C(M, A;) 

slightly. First we recall the holonomy theorem (Hejhal, Thurston, Lok, Gold- 

man, etc., see for example [15], [22]) which states that locally, a (G, X)- 

structure on M is determined by its holonomy or equivalently, the holonomy 

map from the deformation space of (G, X)-structures on a manifold M to the 

space Hom(7ri(M), G)/G is an open map. 

Suppose that [p';^,..,^]  E C(M,fc) is sufficiently close to [pj^i, ...,Vfc]. 



CONFORMALLY FLAT 3-MANIFOLDS 423 

FIGURE 1. Adjacent tetrahedra Ti and T2 such that C(Ti) and 
C(T2) is bent at a positive angle 6 along their common face. 

Then F' = p/(7ri(M)) is still a discrete subgroup of Mob(S3) isomorphic to 

7ri(M) and the limit set of F' is topologically a sphere, by results of D. Sullivan 

[19], P. Tukia [24], and the holonomy theorem, see [11] for details . M = O^/F' 

where Qi is one of the two domains of discontinuity of F' in S3. If A(r/) is the 

limit set of F', then Qi U A(r/) is homeomorphic to the closed ball by results 

of M. Bestvina and G. Mess, see [3]. A triangulation A'of M with vertices 

at v'n ..., v'k isotopic to A lifts to a triangulation A' of M and hence Qi by the 

developing map. If p' is not the hyperbolic structure, then such a triangulation 

can no longer be made Mobius by results of F. Luo [16], nonetheless, for each 

tetrahedron T7 of A', the convex hull of its vertices in H4 will still be an ideal 

tetrahedron C(Tf) whose complex parameter is close to that of C(T). The 

previous construction goes through and we get a singular pleated hypersurface 

£p',A' equivariant under F'. Again, modulo the action of F', we have Sp'^JV 

is a singular pleated hyperbolic structure MP^A' on M close to MpjA. 

Conversely, if we have a singular pleated hyperbolic structure on M satisfy- 

ing the conditions of (b) in theorem 1 and which is close to Mp)A, then we have 

a representation pf of 7r1(M) into M6b(Sr3) close to p. Again by the holonomy 
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theorem and the results of Sullivan and Tukia, this is a quasi-fuchsian represen- 

tation. Passing to the sphere at infinity, we obtain a quasi-Fuchsian f.c.s. on 

M together with k distinguished points which are the ideal codimension 3 sin- 

gular points, thus giving a point (p'; i^,..., v^) G C(M, k) close to (p; Vi,..., Vk). 

This gives the local homeomorphism between the spaces described in (a) and 

(b) of theorem 1. 

3. IDEAL HYPERBOLIC TETRAHEDRA AND EUCLIDEAN POLYHEDRA 

We saw in the previous section that the basic building blocks of the singular 

pleated hyperbolic structures on M were ideal tetrahedra. To specify the way 

two tetrahedra are glued together along a face, it suffices to specify the pleating 

or bending measure along the face. However, to actually obtain a singular 

pleated hyperbolic structure on M, we need to ensure that the holonomy is 

trivial about the edges. Thus the pleating measures as we go around an edge 

are not independent, they need to satisfy certain conditions which we shall 

examine in detail. 

We first recall some well-known facts about ideal hyperbolic tetrahedra (see 

[22] for details). Let T be an ideal tetrahedron in H3 and L{v) the link of 

an ideal vertex v of T. L(v) is a Euclidean triangle defined up to orientation 

preserving similarity and L(v) determines T. L(v) can be concretely realised 

by taking the intersection of T with a horosphere about v. It follows that T 

is determined by the three dihedral angles a, /3 and 7 of edges incident to 

the ideal vertex v, and that a + /? + 7 = TT. Furthermore, the dihedral angles 

of opposite edges are equal and the oriented similarity class of L(v) does not 

depend on the choice of the vertex v, see figure 2. 

The euclidean triangles up to similarity can be parametrised by complex 

numbers as follows: To each vertex v of a triangle A(t, u,v) we associate a 

complex number,1 namely the ratio ^~^ = z(v) of the sides adjacent to v 

where the vertices are labelled in clockwise order so that Im(z(v)) > 0, see 

figure 3. If z(v) = z, it follows that z(t) — ^^ and z{u) — j^. Thus each 

edge e of the tetrahedron T is labelled with a complex number ^(e), opposite 

edges have the same label, and the label on any one edge determines the rest. 

The set of ideal tetrahedra with a distinguished pair of oposite edges can be 
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FIGURE 2. An ideal tetrahedron where L(v) is an (a,/?,7) triangle. 

identified with the complex numbers with positive imaginary part, i.e., the 

upper half plane. 

We now pin down the exact conditions that must be satisfied by the com- 

plex parameters Zi associated to the tetrahedra T; (with distinguished pair of 

opposite edges) and the pleating measures Pj on the faces fj. First, note that 

if we assign independent complex parameters Zi to each of the tetrahedra Ti 

of A and glue the faces together in the combinatorial pattern determined by 

M, we obtain a hyperbolic structure on M — {1 — skeleton}. To ensure that 

the structure is a cone structure, we must ensure that the holonomy about 

each edge is either trivial or a pure rotation, i.e., has trivial translation. Let 

e be an edge of A and let ei, ...,ej be the opposite edges of the tetrahedra 

meeting at e with complex parameters ^(ei),..., z(ei) respectively (recall that 

the complex parameters of opposite edges are equal). The algebraic condition 

that the holonomy about the edges has trivial translation (cf. [22]) is 

(*) \z(e1)z(e2).^z(ei)\ = 1 

If the condition (*) is satisfied about all edges, we obtain a cone hyperbolic 

structure on M with ideal vertices.  To obtain a singular pleated hyperbolic 
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FIGURE 3. Complex parameters associated to the vertices of a 
euclidean triangle 

structure on M with underlying structure the above cone-hyperbolic struc- 

ture and pleating locus contained in the set of faces of A, we also need to 

specify the pleating measures on the faces. As above, let e be an edge of A, 

ei,..., ei be the edges of the tetrahedra meeting at e with complex parameters 

^(ei),..., z(ei), and /i,..,// be the faces meeting at e with pleating measures 

Pi, ..,pj respectively, where fi separates e* and e^i. Also, let Qi = arg(z(ei)). 

For parameters which are sufficiently close to those of the singular pleated 

hyperbolic structure MP)A, a necessary and sufficient condition that we obtain 

a singular pleated structure is that the holonomy is actually trivial about each 

edge (so that we obtain a representation of 7ri(M) into Isom(H4)). Apart from 

(*) above, this means that the link of each edge e, must have the induced struc- 

ture of a spherical polygon where the sides of the spherical polygon correspond 

to the edges e* and have length 0* and the vertices correspond to the faces fi 

with exterior angles Pi. The polygon need not be convex but to ensure that 

the representation actually corresponds to the holonomy of a singular pleated 

hyperbolic structure, the polygon must be proper, i.e., the sides do not cross. 

A negative Pi corresponds to a negative exterior angle which means that the 

spherical polygon is not convex about that particular vertex. In general, this 

gives three independent relations for the parameters 0i,..., 0ZJPIJ —jPi (cf [20]) 



CONFORMALLY FLAT 3-MANIFOLDS 427 

for each edge e of the triangulation A. 

We finish up the proof of lemma 1 and theorem 1 by showing the corre- 

spondence between the respective parts (b) and (c). The singular pleated hy- 

perbolic structures on M satisfying the conditions of part (b) induce singular 

pleated euclidean structures up to similarity on the links of the vertices L(vi). 

To see this, take the developing image and look at the intersection of L(vi) 

with a horosphere in H4. Each link is a euclidean polyhedron up to similarity 

and clearly must satisfy the conditions of part (c) of theorem 1. Conversely, 

given a set of euclidean polyhedra P[,...,P'k close to Pi,...,Pfc satisfying the 

conditions of (c) of theorem 1, we can construct (uniquely) a singular pleated 

hyperbolic structure on M satisfying the conditions of (b) with ideal tetrahe- 

dra building blocks and bending measures specified by the dihedral angles of 

the euclidean polyhedra since the condition (*) and the spherical polygonal 

condition about the edges are equivalent to the fact that the faces of the eu- 

clidean polyhedra P/,..., P^ close up nicely about the vertices. This completes 

the proof of theorem 1. 

We conclude by doing a crude dimension count. Each tetrahedron Ti of A 

gives one complex parameter, this gives 2m real parameters since there are 

m tetrahedra. There are also 2m faces with 2m real pleating parameters so 

that there are altogether 4m real parameters. There are m + k edges and 

for each edge, there is one relation arising from the cone-hyperbolic structure 

condition (*) and three relations from the spherical polygonal conditions that 

ensures that the holonomy about the edge is trivial. This gives 4(m + k) 

relations. Note however that if v is a vertex and ei,..., ei are edges ending at 

v, and if the holonomy around ei,..., ej_i is trivial, then the holonomy around 

ei is also trivial so that we can subtract a set of 4 relations for each vertex. 

This still leaves 4m relations. However, since C(M, k) has dimension at least 

3fc, the 4m relations cannot be independent (compare with [22] where similar 

parameters and relations were obtained when finding the deformation space of 

hyperbolic structures on a knot complement). It seems that we need to study 

the equations arising from the specific cases more carefully if we are to obtain 

qualitative information on the local structure of C(M). 

Finally, we note that in studying singular pleated structures on M relative 
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to A, we could have used as building blocks finite hyperbolic tetrahedra. In 

this case, the cone hyperbolic structure is parametrised by the length of the 

edges, there are still pleating parameters along the faces of A but now the 

corresponding space would be C(M,k) x Rfe. Much of the arguments of [21] 

(where the two-dimensional case was dealt with) would carry through, we refer 

to the details to the reader. 
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