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1. INTRODUCTION AND MAIN THEOREM 

In Floer's instanton homology theory for homology 3-spheres, the Chern- 

Simons function (or a suitable perturbation of it) is used as a sort of Morse 

function on the space of SU(2) connections modulo gauge equivalence. The 

chain complex for the homology theory is generated by the critical points, 

namely the equivalence classes of flat connections, of this function (excepting 

the trivial connection). 

In this paper we consider .M, the critical set of the Chern-Simons function 

on the space of SU(2) connections modulo gauge equivalence for arbitrary 

oriented 3-manifolds with boundary. Generically, M is a smooth manifold of 

dimension 3g — 3 except for several types of singularities. These singularities 

arise from connections which either are reducible on Y or are reducible when 

restricted to dY. We describe the structure of M near these singularities. 

There is a natural restriction map from the flat moduli space on the 3- 

manifold to the (6g — 6)-dimensional flat moduli space for its boundary M^. 

Goldman described a symplectic structure on the latter in [G], and with re- 

spect to this structure the restriction map is Lagrangian. In fact, there is a 

Legendrian lift of the restriction to a U(l) bundle with a contact structure 

over .ME. The main theorem of the paper, roughly stated, is the following. 

Theorem 1.  Under perturbation of the Chern-Simons function, the flat mod- 

uli space for a 3-manifold changes by oriented Legendrian cobordism. 

The author was partially supported by NSF Grant DMS9002517. 
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This paper involves both gauge theory and symplectic geometry. We include 

in the first few sections some basic material from both areas with the hope 

that the reader who is well-versed in one area but not the other will have an 

easier time. 

This paper is organized as follows. In Section 2, we make some basic def- 

initions from symplectic geometry which will be needed in the remainder of 

the paper. Section 3 contains basic gauge theory results for manifolds with 

boundary. Section 4 reviews the topology of the flat moduli space for the 

boundary 2-manifold and the symplectic structure on it. 

Our situation differs from the case of closed 3-manifolds in that here the 

Chern-Simons function is not quite gauge invariant (even modulo the integers). 

The problem is a boundary integral which arises from an integration by parts. 

To remedy this situation, we construct a U(l) bundle of which the Chern- 

Simons function determines a gauge invariant section, following [RSW]. This 

is described in Section 5. 

In Section 6, we describe an admissible class of perturbations. We prove that 

for generic perturbations the flat moduli space is a compact set. In Section 7, 

we describe the various strata of the flat moduli space. 

The main theorem of the paper is proved in Section 8. We show the existence 

of the Legendrian lift of r : M —> Mx and show that any two such Legendrian 

lifts, corresponding to different perturbations, differ by a Legendrian cobor- 

dism. Orientations for the M and for the cobordisms are discussed in Section 

9. Section 10 contains a number of technical results about the perturbations 

used elsewhere in the paper. 

Finally, Section 11 contains some remarks about the topological invariant 

of a 3-manifold Y given by the equivalence class of M up to perturbation. 

In particular, we give examples to show that this equivalence class contains 

elements outside of the equivalence class determined by Hamiltonian flows and 

is strictly smaller than the one determined by oriented Legendrian cobordism. 

This paper grew out of the author's thesis at the University of California, 

Berkeley. The author would like to thank his thesis advisor Rob Kirby and Ron 

Stern for many helpful discussions and for their support and encouragement. 

He is also grateful to Alexander Givental, Eric Klassen, Paul Kirk, Stamatis 
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thanks of all to Tom Mrowka, another member of his thesis committee, for 

suggesting this problem and for generously sharing his time and expertise. 
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2. THE BASICS 

In this section we outline the basic framework for gauge theory on 3- 

manifolds with boundary and the symplectic geometry definitions needed in 

the paper. We also give a general definition of stratified spaces. 

2.1. Gauge Theory. We begin by establishing some notation. Let Y be 

a compact, smooth, oriented 3-dimensional manifold with boundary and let 

S = dY denote its boundary. We assume that S is connected, although 

many of the results hold in the general case. We let P(Y) = Y x SU(2) and 

P(E) = E x SU{2) be the respective trivial bundles and, for concreteness, we 

fix once and for all trivializations and an identification of P(E) with P(y)|s. 

Let the respective gauge groups be denoted by Q and Q^. Using the fixed 

trivializations these may be identified with C^QT, 517(2)) and C00^, SU(2)). 

The space of connections on the respective bundles will be denoted by A and 

A^. By fixing the trivial connection coming from the trivialization of P{Y) 

we obtain identifications A = Q1(Y^su(2)) and A^ = Q1(T,^su(2)). We will 

take completions using Sobolev norms. This will be made explicit in Section 

3. The gauge group acts on connections by 

(p, A) h-> g*A = g^dg + g^Ag, 

where g € G and A G A. The stabilizer Stab(^4) of a connection A on either Y 

or E is isomorphic to Z2, J7.(l), or SU{2). If the stabilizer is Z2 the connection 

is called irreducible, if 17(1) it is called abelian, if SU{2) it is called central. 

This is more restrictive than the standard terminology. A central connection is 

usually considered to be abelian. To avoid ambiguity in this paper we reserve 

the term abelian for noncentral abelian connections. 

The curvature of a connection A, which we denote by F(A), is defined to 

be the su{2) valued 2-form dA + A A A, A\s called flat if F(A) = 0. 



340 CHRISTOPHER M. HERALD 

We let B and B^ denote the quotients A/G and AZ/G-L, respectively. We 

will denote by Ay the space of irreducible connections on Y and we will sim- 

ilarly adorn other spaces of connections or equivalence classes of connections 

whenever we wish to refer to only the irreducibles. 

2.2. Sobolev Norms. Let Mn be a smooth manifold. We will be concerned 

mainly with the quotient space of connections modulo gauge equivalence. In 

order to define a Hilbert manifold structure on this infinite dimensional space 

we must take Sobolev completions of the gauge group and the space of con- 

nections. 

Let E be a vector bundle over M. We define LV
S(M,E) to be the || \\Lp 

completion of the space of C00 sections of E. When p = 2, LP
S(M,E) is a 

Hilbert space. 

We will need several standard results about Sobolev spaces (see [P],[H]). 

Rellich Lemma. If t < s then the inclusion of LP
S(M,E) into Ll{M^E) is 

compact. 

Sobolev Theorems.        (a)'LJ(M,£;) C L^M.E) if s - * > s' - % and 

s>sf.Ifpf = ooorp=l then strict inquality is required. 

(b) Ifs-^>r then LP
S(M, E)cCr. 

Multiplication Theorems.        (a) // (s1 - £) + (s2 - £) > (s - a) with 

«i-^<0,52-^<Oand5-2<o, ttcnLJi(M,S)®Lg(M,S)-> 

LP
S(M,E) is defined and continuous. 

(b) Ifps>n andp's' > n and if LP(M,E) C L^(M,E) then LP,(M,E) 

is an LP(M,E) algebra. 

Composition Lemma. If ps > n then composition on the left by a smooth 

function maps LP(M,E) to itself. Composition on the right by a smooth func- 

tion is always a linear map from LP{M, E) to itself. 

We will also need the following theorem. 

Theorem (([H). , Theorem B.1.9] If N - dM and i : N -+ M is the inclu- 

sion, then the restriction map i* : L2
S(M,E) —> L2 i{N^E) is continuous and 

surjective as long as s > \. Furthermore, i* has a continuous right inverse. 
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2.3. Definitions from Symplectic Geometry. In this subsection we re- 

call the necessary definitions and properties from symplectic geometry. We 

begin by defining symplectic manifolds, contact structures and Lagrangian 

and Legendrian submanifolds. 

Let M be a smooth Hilbert manifold. A symplectic structure on M is a 

closed, nondegenerate 2-form Q, on M. The nondegeneracy requirement on fi 

may be described as the requirement that 

(a, b) i—► f2(a, b) 

is a bounded linear functional on TPM <g) TPM and for every tangent vector 

a G TpM, the map b i—> fi(a, b) is a nonzero linear functional on TPM. The 

existence of such a structure implies that M is either even dimensional or 

infinite dimensional. 

We will be interested in only a special type of contact manifold, namely a 

U(l) bundle with connection over a symplectic manifold. The connection is 

required to have curvature 2-form equal to i times the symplectic form on the 

base manifold. Let p : L —> M be a smooth (7(1) bundle over the symplectic 

manifold (M,0). Let a; be a connection on L with F(UJ) = iCt. Note that the 

holonomy of u> around the boundary dS of any surface S is then given by 

holas u; = exp(—i / fi). 
Js 

We next define Lagrangian and Legendrian immersions. Let L and (M, fi) 

be as above, but assume M has finite dimension 2n. A Lagrangian immersion 

into M is an immersion g : iVn —> M with the property that g*Q = 0. By the 

nondegeneracy condition on fi, n is the largest dimension for which such an 

immersion is possible. A Legendrian immersion into L is a horizontal lift of a 

Lagrangian immersion into M, or, equivalently, an immersion g : Nn —► L such 

that for each p E N g*TpN is contained in the horizontal subspace of Tg^M 

determined by a;. In this U(l) bundle context, a Lagrangian submanifold of 

M which has a Legendrian lift is sometimes called a Bohr-Sommerfeld orbit 

(see [JW]). 

We finish the subsection by defining Legendrian cobordism (see [A], [Au]). 

Let (M, Cl) be a symplectic manifold and let (L,u;) be a U(l) bundle with 
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contact structure over M. We define a contact structure on L x T*[0,1] as 

follows. We will use TTI and TTg to denote the projections onto the first and 

second factors in both M x T*[0,1] and L x r*[0,1]. Let (t, i/) 6 [0,1] x R be 

coordinates on T*[0,1]. A connection on L x T*[0,1] is given by the connection 

1-form TTiCJ — ^{vdt). This determines a contact structure compatible with 

the product symplectic structure on M x T*[0,1] given by the symplectic form 

Trjn + Tr^dtAdi/). 

For i = 0,1, let gi : A^ —» L be immersed Legendrian submanifolds. A Leg- 

endrian cobordism between go and ^i is an immersed Legendrian submanifold 

g : N -+ L x T*[0,1] which is transverse to d(L x r*[0,1]) and 

P o g\dN = fifi(M) x {1} U g0(N0) x {0} 

where p : T*[0,1] —> [0,1] is projection. Two oriented Legendrian submanifolds 

A^o and A^i are oriented Legendrian cobordant if there is an oriented Legendrian 

cobordism N with dN = Ni — N0 as oriented manifolds. 

2.4. Stratified Spaces. In this subsection we define stratified spaces. The 

existing definitions of stratified spaces in the literature are many and varied. 

We adopt a definition that is only as general as necessary for the purposes of 

this paper. For any smooth manifold M, denote the cone on M by c(M). 

A stratified space is a topological space S which may be partitioned into a 

collection of locally closed C00 manifolds 

S = S1U'"USn 

satisfying three requirements. The manifolds Si are called the strata. For each 

stratum, let dSi denote Si\Si. The requirements are: 

(a) For each 1 < i < n, dSi C Uj<i Sj- 

(b) For each j < i, dSi D Sj is a smooth submanifold of Sj. 

(c) For each j < i, 9^ fl S^- has a neighborhood in S'i U (dSi fl 5^) home- 

omorphic to a bundle over S^ fl Sj with fiber c(M) for some smooth 

manifold M and the homeomorphism is a diffeomorphism on each stra- 

tum. 

We call the neighborhood described in .(c) the normal bundle of Si in Sj. We 

shall say a homeomorphism between two stratified spaces is a diffeomorphism 
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in the stratified sense if it preserves the stratification and is a diffeomorphism 

on each stratum. 

3. CONNECTIONS MODULO GAUGE EQUIVALENCE 

We begin by making precise our definitions of the spaces of connections 

and gauge transformations. In particular, we define the Sobolev completions 

necessary for our analysis as follows. For simplicity of notation, we will denote 

r(M; Ap(T*M) ® su(2)) by np{M,su(2)). 

A = Lltt1(Y,su(2)) 

Aj: = Lla1{J:,su{2)) 

g = {ge LJ(End(P xsu{2) C))| g*g = 1 a. e. } 

fe = {9 e L|(End(P|E) xsu(2) C)| g*g = 1 a. e. } 

The following are standard facts. Proofs may be found in [FU] or [L]. 

Proposition 2. The curvature map F : A —» L^2(y, su(2)) is a smooth 

function. Likewise, F : A^ —> L2
1Q'2CE,su{2)) is smooth. 

2 

Proposition 3. Q and Q^ are Hilbert Lie groups with Lie algebras 

Ll(n0(Y,su(2))) andLi(n0(Z,su(2))), respectively. 

Proposition 4. Q acts smoothly on A and Gn acts smoothly on A^. 

Lemma 5. The following are equivalent conditions for any SU(2) connec- 

tion A on Py (the corresponding statement for E with appropriate changes in 

Sobolev norms is also true). 

(1) dA : L2
?pP{Y,su{2)) -> LlVLl(Y,su(2)) is not injective. 

(2) Stab(A)/{±id}. 

// these conditions hold, then we call A reducible. Furthermore, if A is re- 

ducible, then either Stab(A) = 17(1) or Stab = SU(2). In either case, the 

kernel of the map in (1) is equal to the Lie algebra o/Stab(.A). 
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We fix a Riemannian metric on Y and hence on E. This allows us to define 

an L2 inner product on Jlp(y, su{2)) by the formula 

(a, b) = — I tr(a A *&), 

where * : OP —► r2n~p is the Hodge star operator and tr : su{2) ® su(2) —^ R 

is the ordinary trace of the product. For this particular group, the bilinear 

form given by trace of the product coincides with the Killing form. When it 

is necessary to refer to the Hodge star operator on S, we will denote it by *s- 

For each A G A we define the slice 

XA = {A + a\ a e 1serdrA D L^(y, su(2))} 

where d*A = — * CJA* is the adjoint of dA : L|fi0 —> L^1, and 

ft£(Y,su(2)) = {a G ^(y, w(2))|  *a|s = 0}. 

This is motivated by the following proposition. 

Proposition 6. The slice XA is the L2 orthogonal complement to the tangent 

space TA(Q(A)) of the gauge orbit G(A) through A. 

Proof. We begin by noting that 

TA(g(A)) = dA(Lln0(Y,su(2))). 

The condition that 

a±TA(G(A))cTAA 

is equivalent to the condition that for all 7 G Z^O^Y, su(2)) we have 

0 = (a, dAj)    =   - I tr(*a A dAj) 

=    — / tr(*aA7)+ / tr(dA* a Aj). 

By choosing 7 to be zero near the boundary, we see that d*Aa = 0, which then 

implies that *a|s = 0.    □ 

Let M equal either Y or S. 

Theorem 7.  Tfee quotient B*M is a smooth manifold. 
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Proof. The only difference between this and the cases described in [FU] and 

[L] is the fact that Y has boundary. The only thing to check is that the second 

partial of the map 

QA'-Axg-+ L?fi0(y, su{2)) e Lln1^, su(2)) 

given by 

QA(A + a,g) = {d^g-^Ag + g-1ag),*g-1dAg\x) 

is surjective. The derivative of Q is the map 

(6A, 6g) >-> 

(d*A{-g-l8gg-ldAg+g-ldA8g-g-l8gg-lAg+g-l8Ag+g-lA8g),*g-1dA8g\1;)- 

At (0, id) this simplifies to 

{6A, 8g) i-> {d*A(dA8g + 8A), *dA6g\v). 

Lemma 8. d*AdA®*dA\v : L2
3Q

0(Y, su(2)) -+ L2
in

0(Y,su{2))^Lln1(i:ysu(2)) 

is an elliptic boundary value problem. 

It follows from the lemma that (with the prescribed boundary conditions) 

dAdA is Fredholm, and hence has closed range. Thus to show that dAdA is 

surjective, it is sufficient to show that the image of dAdA contains all smooth 

sections. To do this, we begin by showing that dAdA is injective. Suppose 

some smooth I/J G Lln0(Y) su(2)) satisfying *dAip\x = 0 is in keT(dAdA). Then 

0 = (d^d^, il>) = -     tr(*dA^ A Tp) + (dAip, dA*p) 

which implies that dAip — 0. Since A is irreducible, this implies that ij) — 0. 

Suppose now that some smooth </> G Lgfi^Y, 5^(2)) has the property that 

(fy^d^dj^) = 0 for every ip G Llfl0{Y) su(2)). Then, integrating by parts, 

0 = (0, dAdAil;) = - 7 tr(0 A *dA'0) + {dA^ dAip) 

= 0 - / tr(*dA</> A if)) + {d*AdA(j), il>). 
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By choosing I/J with support in the interior of Y, this shows d*AdA(j) = 0. Thus 

(j) also satisfies the boundary condition ^(IA^Y, = 0. Therefore, (/) = 0, and 

d*AdA is surjective.    D 

Let M be either Y or E. For A reducible, we can describe a neighborhood 

of [A] G BM in a similar fashion, but we must take into account the gauge 

symmetry of A. 

Theorem 9. For each reducible A in AM> there is a neighborhood of [A] in 

BM homeomorphic to Oyi/Stab(A) where OA C XA is a neighborhood of A in 

the slice. 

■4. THE TOPOLOGY OF THE FLAT MODULI SPACE FOR A RIEMANN 

SURFACE 

In this section we review the structure of the moduli space of flat connections 

modulo gauge equivalence for a surface S of genus g. 

Let 

^ = {A G A^ I F(A) = 0}, 

and define 

MY = FY/GY 

to be the flat moduli space. We will denote the irreducible part of MY by 

A^|2, the abelian part by M^    , and the central part by M^      . 

Fix a basepoint XQ G E. If 7 : i?1 —» M is a loop based at XQ and P is 

an SU{2) bundle over M, then let hol7(A) denote the holonomy of A around 

7. The condition that A is flat is equivalent to the condition that hol7(A) 

depends only on the homotopy class [7] G 7ri(M). 

The association of each flat connection to its holonomy representation gives 

an identification of MY with 

Hom(7r1(E),5C7(2))/5C/(2), 

where SU(2) acts on representations by conjugation. 

The space Hom(7ri(E), SU(2))/SU(2) is also called the character variety of 

E. It was studied extensively by Atiyah and Bott and by Goldman (see [AB], 

[G2]; see also [Wa] for more details). We review the relevant results now. 
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For any tensor product V ® W, we call an element decomposable if it is of 

the form v <g) w for some i; G V and-IU E W. We let (V ® W)b denote the set 

of decomposable elements and (V <g)Wy = (V ®W) \ (V ® W)b denote the its 

complement. 

Theorem 10. .Ms Z5 a stratified space. The strata are M^^M^ , and 

A^s , which have dimensions 6g — 67 2^, anrf 0, respectively. M^ has 

normal bundle fiber c(S29~3 x S29^)/U{1) in M^2. (U{1) acts by the diag- 

onal action on S29~3 x S2g~3 C C2g~2.) M^U<<2) has normal bundle fiber in 

Ml2 equalto{(TL29®su{2)Y)/SU(2). The normal bundle of M^ in M^ 

has fiber ((R2^ ® su{2))b)/SU{2) = Il29/Z2. 

For any flat connection A, the Zariski tangent space to 

Hom(7ri(E),Stf(2))/Stf(2) 

is if1(S;a(ip), where p is the holonomy representation of A. Since we work 

with flat connections instead of representations, we identify this with the de 

Rham cohomology for the flat connection A (we will always identify this with 

the space of harmonic su(2) valued forms). We denote this cohomology by 

7Y^(E). In the gauge theory context, instead of being the Zariski tangent 

space, this is the space of tangent vectors to paths along which the curvature 

vanishes to first order. 

The main step in proving this theorem, first done by Goldman, is to identify 

which elements of 7i\(£) are in fact tangent vectors to paths of flat connec- 

tions. Let [• A •] : W^(S) x 7^(£) —> H\{S) denote the combined Lie bracket 

on su(2) elements and the wedge product on forms. Note that [a A a] = 2a A a, 

since both the wedge product and the Lie bracket anticommute. 

Theorem 11. (Theorem 3 of [G2]; see also [MMR], Prop, 13.2.3) An element 

a G l-L\{Ti) is tangent to a curve in MY, if and only if [a A a] = 0. 

The proof of Theorem 11 falls into three parts, corresponding to the different 

strata. The irreducible case is the easiest, and follows immediately from the 

Kuranishi picture outlined in Section 6. The proof in the abelian case will be 

sketched in Section 7.2. With that as a template, the central case can safely 

be left as an exercise for the reader. 
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All that remains to prove Theorem 10 is to identify the zero set of the map 

a H-* [a A a] in each case. For the irreducible case, W^(S) = W^(E), which is 

zero since A is irreducible. The abelian case is worked out in [Wa]. We leave 

the central case as an exercise for the reader.    □ 
There is a symplectic structure (see [Gl], [AB]) on M^ i.e. a closed non- 

degenerate exterior 2-form on each Zariski tangent space H^(S), given by 

fi(a,/?) = ^jftr(aA/?). 

Atiyah and Bott [AB] showed that this symplectic structure can be constructed 

by symplectic reduction from the symplectic structure on AY. given by exactly 

the same pairing on su^2) valued 1-forms on E. (The reduced symplectic 

structure is then the same form restricted to the space of harmonic 1-forms.) 

The symplectic structure is compatible with the stratification in the follow- 

ing sense. If \A^ G A^E is a sequence converging to [A], then there is a natural 

inclusion H^.(S) —> W^(E) for i sufficiently large. The symplectic form on 

H^.(S) is the pullback of the symplectic form on W^(S) under this inclusion. 

Notice that the symplectic form is related to the I? inner product on forms 

by 

n(a,/?) = ^(a,*E/?). 

5. CHERN-SIMONS THEORY 

In this section we review Chern-Simons gauge theory for 3-manifolds with 

boundary. In the first subsection, we define a {7(1) bundle with connection 

over B of which the Chern-Simons function induces a section. In the second 

subsection, we show the gradient of this section is ^ times the Hodge dual of 

the curvature. 

5.1. Construction of the £7(1) bundle. We begin by recalling the defini- 

tion of the Chern-Simons function. Define the map CS : A —> R by 

CS{A) = -?- / tr(i4 A dA + %A A A A A). 
ATT JY 3 

On a closed manifold Y, changing the connection by a gauge transforma- 

tion changes the value of the Chern-Simons function by 27r times an integer. 

The proof of this fact involves an integration by parts.   If Y has boundary 
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there is a correction term which is an integral over the boundary. Following 

[RSW], we use this correction term to define 8,17(1) bundle over 13 of which 

exp(iCS) determines a section. The U(l) bundle is a special case of a general 

construction outlined in [PS]. 

We define a map 9 : A^x GT, —> ^(1) by the formula 

(1) e(A,g) = exp(i(CS(~9*A) - CS(A))), 

where A and g are any extensions of A and g to Y. 0 is independent of these 

extensions and is given explicitly by 

(2) Oi^g) =.exp{i^J trig-1 Adg)). 

It is clear from equation 1 that 0 is a cocycle, i.e. 

e(A,g)e(g'A,h) = e(A,gh). 

Note that if g is in the stabilizer of any connection, then @(A,g) — 1 for all 

A G AT,- Thus we get a topological U(l) bundle £s over BY, by dividing out 

by 0. In other words, we define 

£E = ^EXetf(l)=^xtf(l)/~, 

where the equivalence relation is 

{A,u)~(g*AMA,g)u) 

for all g G £/£. 

Lemma 12. 0 is smooth. 

Proof. This follows immediately from the Multiplication Theorems and the 

formula (2).    □     - ■ 

In [RSW] a connection is defined on AT, X U(l) as follows.   We define a 

global connection 1-form using the trivialization AY, X {1} by the formula 

uiot) = ^- l tr(A A a) 
47r ./s 

for a G TAAY, and extend 17(1) equivariantly. 
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The curvature of the connection CJ, evaluated on two tangent vectors a, ft € 

=    i/tr(aA/3). 

This 2-form, without the factor of i, defines a symplectic structure on ^4^. 

Thus the connection u determines a contact structure on ^4S 
x ^(1)- The 

symplectic structure on H\(E]Su(2)) induced from this one coincides with 

that described in Section 4. 

Lemma 13. 0% acts, using 0/ by contactomorphism, i.e. Gx preserves the 

connection UJ. 

Proof. First, we compute the derivative 

e-^e = -L / tridSgg-1 A A- dgg^Sgg'1 f\A + dgg'1 A 6A). 
47r JT, 

Consider a tangent vector {8A^u8u) G T^A^AY, X U{1). Its image under the 

action of Q{A-1g) is 

{g-l8Ag, Q{A, g)u(± J trig^SA A dg) + 6u)), 

a tangent vector at (g*A, Q(A,g)u). It is easy to check that UJ evaluated on 

the second tangent vector is -^ /E tr(A A 6A) + 6u, as required.    D 

Corollary 14. The restrictions C^\Mz2 and Cx\M
uw are smooth bundles 

which inherit connections induced by UJ. 

Proof. That the bundles are smooth follows from Lemma 12. After the last 

lemma, all that remains to check is that the connection UJ evaluates to zero 

in directions tangent to the © action orbits in A^ x U(l). Given. £ € TidC/s, 

the corresponding orbit tangent vector at (A, u) is (cU^? ^(^ /E tr(.A A <!£))). 

Plugging this into the connection UJ gives 

i 

Air 
[ tr(A A dAZ) + -^ / tr(A A (%) = -^ / tr(2<L4 A ^ + A A [A, <£]) 

JE 47r JE 47r JE 

= ^(^(^),*E0.   D 
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^Ve next define the pullback bundle 

CY = r* Ci: = Axr.eU(l). 

The connection ou pulls back to give a connection cuy on A x U(l). 

5.2. The Chern-Simons Function as a Section. We next study the sec- 

tion of Cy induced by the Chern-Simons function. We will see that its critical 

set (where the derivative is taken with respect to uy) is the moduli space of 

flat connections on Y x SU(2). 

From the definition of £y, it is clear that the map 

s:A^AxU(l) 

given by 

s(A) = (A}exp(iCS(A))) 

is © equivariant. Thus it descends to a continuous section s of the quotient 

bundle  Cy. 

We compute the derivative of s using the connection cuy.   Let a G TAA. 

Then 

(3) 
DujystA)^) = s 1ds(a)+u;(a) 

= 4-      tr(d A dA + da A A 
47r Jy 

2 
+ -(a A A A A - A A a A A + A A A A a)) + uj(a) 

o 

= i Xtr(c*A F(A))+i Xtr(d(a AA))+u{a) 

= h Xtr(a A F{A)) 

= i(a,±*F(A))Li. 

Thus the gradient vector field of the section is 

VUJYS(A) = ^*F(A) 
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Here the subscript Uy is a reminder that the derivative of s was taken using the 

connection ouy In the next section, we will describe a method of perturbing 

CS. We will replace s by sh(A) = (A,exp(i(CS,(A) + h(A))) where h is 

a suitably chosen function on the quotient space By, or, equivalently, a Q 

equivariant function on A. Repeating the calculation (3) gives 

DU;Ysh{A)(a) = i(d{CS{A))(a) + dh{A))+u(a) 

= i(a,±-*F(A) + Vh(A))L2 

where Vh is the ordinary gradient of h with respect to the L2 metric. 

We will denote the gradient vector field of Sh by ^. We define 

to be the zero set of this vector field, modulo gauge equivalence. When we have 

a fixed perturbation h in mind, we will call connections in C^CO) perturbed 

flat, and we will call Mh the perturbed flat moduli space. 

6. PERTURBATIONS OF THE CHERN-SIMONS FUNCTION 

The aim of the next two sections is to describe Mh for generic perturbations 

h. We begin this section with a statement of the main result. In the next two 

subsections, we define a class H of admissible perturbation functions h and 

show that A4h is compact for any admissible function h. Section 6.3 contains 

a brief review of Hodge theory for manifolds with boundary. The notation 

and results explained there are the main tools used in the proof of the later 

theorems. Section 6.4 outlines the Kuranishi technique for reducing the infinite 

dimensional problem of describing Mh to a finite dimensional model. 

There is one technical point that should be made regarding what is meant 

by generic h € TC. The space H is not connected; its components are in 

bijective correspondence with the isotopy classes of links in Y. When we use 

the term generic in the following statements, we will always mean generic in 

the component of H corresponding to a sufficiently large link. Proving that 

an arbitrary link may be made sufficiently large by adding a finite number of 

components is the main purpose of Section 10. 
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Let g denote the genus of the boundary surface E. We divide our structure 

theorem into the cases g > 3,5 = 2,g = 1, and g = 0. Note that if g = 0 

the perturbed fiat moduli space for Y is naturally identified with that for the 

closed 3-manifold Y Us-D3, since any flat connection on S2 extends in a unique 

(up to gauge equivalence) way over the 3-ball. 

For each ordered pair (G, H) of elements of {Z2,17(1), 517(2))} with G C H 

we define 

A(G,H) = {A e A\ Stab(A) £ G and Stab(A|E) ^ H}. 

Similarly, we define 

B(G,H) = A(G,H)ig and M(G,H) = ^ n ^(G^) 

Theorem 15. For generic h, Mh is a compact stratified space with the fol- 

lowing smooth strata: 

(a) If g > 3, then 

Mh=Mf-^ n^f {i)'u{i)) ]iMisu{2)>su{2)). 

(Note that this means the (Z2> U(l))-, (Z2, SU(2))-, and (U(l), SU(2))- 

strata are empty.) The (Z2, Z2)-stratum is (3g — 3)-dimensional. The 

{U(l), U(l))-stratum is g-dimensional and has a normal bundle in the 

(Zi2,Zi2)-stratum with fiber c(CF^-1'); the cone on (g — 1)-dimensional 

complexprojective space. The (SU(2), SU(2))-stratum is 0-dimensional; 

it has a normal bundle in the (Z2, Z2)-stratum with fiber 

(R9^su(2))t/SU{2) 

and normal bundle in the (U(l), U(l))-stratum with fiber 

(R9 ® su(2))b/SU(2) = Rfl/Z2. 

(b) Ifg = 2, then 

Mh = Mf2,Z2) U-^f2^1" ]\Mf{1)mi)) ft Mf u^su^\ 
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The (Za, Z2)-; (17(1), 17(1))-, and (517(2), SU(2))-strata have the struc- 

ture described in (a). The (7*2,^(1))-stratum is O-dimensional It has 

normal bundle in the (Z2, Z2)-stratum with fiber c(S1 x S1). 

(c) jfjfg = 1, then 

Mh = MF'ull))]lMFll)'ull))]lMF;m'sam). 
The (Z2,E7(1))- and (U(l),11(1))-strata are both 1-dimensional, the 

(SU(2))SU(2))-stratum O-dimensional The (SU(2),SU(2))-stratum 

has normal bundle in the (£7(1), U(l))-stratum with fiber c(pt) = R/Z2. 

There is a O-dimensional submanifold of the (C7(l), U(l))-stratum which 

makes up the boundary of the (Z2, U(l))-stratum, and this submanifold 

has normal bundle in the (Z2, U(l))-stratum with fiber c(pt) = R/Z2. 

(d) lfg = 0, then 

f(Z2>5^(2)) TT^(C/(l),SC/(2)) JJ  KA(SU(2),SU(2)) 

All these strata are O-dimensional 

Mh = M^'su(2)) U-Mf (1)'Sf/(2)) U-^1 

6.1. Admissible Perturbation Functions. We now define a class 7i of 

admissible perturbation functions h. We shall use the same class of functions 

as was used by Floer and Taubes in their work on closed 3-manifolds having 

the homology of 53. We will prove various technical results concerning these 

functions in Section 10. See also [T], [F] and [DFK]. 

Let (f) = {7i}iLi be a finite collection of disjoint embeddings of solid tori, 

ji : S'1 x D2 —> Y. Choose a corresponding collection of functions hi G 

C2([-2,2],R), and let hi = h o tr : 5(7(2) -> R. Let H denote the space of 

such functions h. We give ti the compact-open C2 topology. 

Let r](x) : D2 —> R be a radially symmetric bump function on D2 with 

support away from the boundary. Given the collections {7;}£Li and {hi}^ 

we define a function h : A —> R (we suppress from notation the dependence 

on (/> when <f) is thought of as fixed) by 

k       r 

/i^hoLy^a;, A))ri(x)dx, h(A)=U' ID2 

where x is a pair of coordinates on D2 and d2x is the standard measure on 

D2.   Of course, a basepoint must be chosen before the holonomy around a 
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loop 7i(51 x {x}) is defined. The Ad-invariance of the {hi} insures that the 

resulting definition of h does not depend on such choices. We define functions 

constructed in this manner to be admissible. We shall denote the space of 

admissible functions by H. The gauge invariance of admissible functions is 

immediate. 

The components of H are in bijective correspondence with isotopy classes 

of links in Y. Let 

Tn = i[sixj>a:" 

Given an embedding (f> : rn —> y, we use HQ to denote the corresponding 

component. Let 

Embw(rn,y) 

denote the space of C2 embeddings isotopic to 0, also with the compact-open 

C2 topology. The component Ti^ is parametrized by H71 x Emb[^](rn,y). 

For the purpose of this section and the next, namely finding sufficient per- 

turbations to make M.h nondegenerate, we need only vary the TLn component 

of our perturbations. By abuse of notation, we will leave off the Emb[0](rn, y) 

factor since we mean for (j) to be fixed. 

If■ (j> : rn —> y and ip : Ym —* Y are disjoint embeddings, we denote by 

W(^u^) the component of Ti corresponding to the union. 

The following lemma and corollary summarize the other important prop- 

erties of these functions. The lemma follows from the results in Section 10. 

Recall that the L2 gradient of a function on A is an su(2) valued 1-form Vh 

with the property that for any tangent vector a G T^A, 

Dh(A)(a) = (Vh{A),a)L2. 

Lemma 16. Let h be an admissible function. 

1.  The 1-form Vh is zero outside ofU^S1 x D2) and is given at a point 

Ji{s,x) by 

Vh(A) = feJ(tr(hoLy.(x,A)))nim(hol7.(s;x, A))ri(x)ds. 
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2. The Hessian of h is given by the formula 

Hess/i(i4)(a,6) = 

tr(P7. [t, 5, x] A]a(s, x)Pri [s, t, x; A]b(t, x))dt Ads Ar](x)dx 
[0,l]x[0,l]xD2 

where Py[tys,X]A] is the 577(2) element determined by parallel trans- 

port along 7^(»S,1 x {x}) from t to s with respect to the connection A. 

3. h is a smooth function on A with respect to the Ll topology for any k. 

In the first assertion of the lemma, Iiim : SU(2) —► 5^(2) is defined as 

follows. Any 577(2) element g can be decomposed uniquely into a constant 

real multiple of the identity matrix plus an su(2) element. Tlim(g) is that 

■ su(2) element. Also, hol7i(5;x,A) is the SU{2) matrix which defines parallel 

translation around 7;(51 x {x}) starting at 7^(5, x). 

The following properties of Vh(A) and Hess h(A) are direct consequences 

of Corollary 57 and Lemma 58 along with the Rellich Lemma. 

Corollary 17. Let h be an admissable function. 

1. The map A »-> Vh{A) is a smooth map from A to L'ffi-iY, su{2)). 

2. Hess h{A) : L\ —* L\ is a compact operator. 

The following proposition, which will be needed for the compactness re- 

sult in the next subsection, follows immediately from the formula for V/i and 

Corollary 62. 

Proposition 18. Let h be an admissible function. Then there is a constant 

C depending only on h such that \\S/h(A)\\L2 < C for each A in (^ 1(0). 

6.2. Compactness of the Perturbed Critical Set. We next adapt Uh- 

lenbeck's compactness results [U] to our situation to show that, for admissible 

perturbation functions /i, Mh is compact. 

We first establish some notation. For a connection A we define a Sobolev 

norm || \\L
2
,A by using the associated covariant derivative V^ : £ —> V£ + 

A ® £ in place of the standard covariant derivative V in the definition. A 

standard argument using the Sobolev Embedding Theorem, the Multiplication 

Theorem, and Holder's inequality shows that this norm is equivalent to the 
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standard one by a constant C depending on ||^4||L
2
 which goes to zero as 

miU2 -* 0- Note that || \\L
2
,A 'ls gauge invariant in the sense that for any 

gauge transformation g and any £ E fip(M, 5^(2)), 

b'^ghig-A = UWLIA- 

We begin with a local theorem. Let D3 denote the unit 3-balL 

Theorem 19. ([U], Theorem 2.1) There exist numbers K > 0 and c such that 

every A E L^AD
3
 with ||.F(yl)||£2 < K is gauge equivalent to a connection A' 

where A! satisfies 

(a) d*A' = 0 

(b) * A' |aD3=0 

(c):||A'||L?<c||F(A)|Ua. 

Corollary 20. For K small enough, there exists a constant C such that if 

\\F{A)\\L
2
,D < & then the connection A' in Theorem 19 also has the property 

that 

\\A'\\Ll<C\\F(A')\\Ll. 

Proof. The proof is a standard bootstrapping argument. By condition (a), 

II^'IIL
2
,^ is bounded by a constant times HdA'H^^/. We write dA' = F(A/) — 

A7 A A'. Then, using Holder's inequality and the Sobolev Embedding Theorem, 

we get 

\\dA'\\LlA, < H^AOHL;^ + CilKIU^IKIUi,^ 

When K, < 2^-, this implies 

\\A'\\LlAI<c"\\F(A')\\LlAl. 

By the above comment about equivalence of norms, this implies that 

\\A'\\Ll<C\\F(A)\\LlA. 

One more application of the same argument gives the result.   □ 

Next we show that Uhlenbeck's global (weak) compactness result, along 

with our additional assumption of L^ bounded curvature, implies strong com- 

pactness. 
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Lemma .21. ([U], Lemma 3.5) Let Ai be a sequence of connections in A with 

II-^C^OIU2 -^ B- Then there exists a fixed open cover {Ua} ofY and trivializa- 

tions aayi of P\Uct which induce connection forms aa^Aia~^ = Aaji satisfying 

(a) The Aaii satisfy (a)-(c) of Theorem 19. 

(b) The overlap functions ga,/3,i — VajCpji are uniformly bounded in Ll(Uan 

Up,SU{2)). 

(c) For a subsequence, we have weak convergence 

(d) The Aa represent a connection A on a bundle (trivial, by obstruction 

theory) presented in terms of a trivialization with overlap maps ga^. 

Corollary 22. In the situation of Lemma 21, if ||F(i4i)||x,2}A. < B, then for 

a subsequence we have strong convergence 

Aayi' —> Aa in 1^2 
L2 

Proof By Corollary 20, the connections actually converge weakly in L3, hence 

strongly in Z^- The proof of the second assertion is a standard argument to 

get one more L2 bounded derivative on a gauge transformation between two 

connections than one has on the connections themselves (see [U] Lemma 1.2, 

for example).    □ 

Finally, Uhlenbeck's weak compactness theorem, combined with the above 

corollaries, gives the following theorem. 

Theorem 23. Let Ai € A be a sequence of connections with \\F(Ai)\\L2iA. 

bounded. Then there is a subsequence which, after L\ gauge transformation, 

converges strongly in A. 

Corollary 24. For heH, CjT^O)/*/ is compact 

Proof Fix any perturbation heH. For any connection A, (h(A) = 0 implies 

F(A) = -27rV/i(4), and so 

\\F(A)\\Ll    = ||27rVfc(A)||L!    <C. 
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The last bound comes from Proposition 18.    □ 

Let TT : B x H -> H be projection and define P : A x H -> fi1^ 5^(2)) to 

be the ^ equivariant map P(A, h) = Ch(A). 

Corollary 25. 7r\p_1,Q),g is a proper map. 

6.3. Hodge Theory. In this subsection, we recall some basic facts from 

Hodge theory for manifolds with boundary and give two orthogonal decompo- 

sitions of I^fl^y, su{2)). 

Let h £ 7i and A e CZTHO) be fixed throughout this subsection. We consider 

the deformation complex for the moduli space of perturbed flat connections 

near A. 

The linearization of ^ at A is *^:GU + Hess /i(-A), which we denote by *<ii4,/i- 

Since a satisfies Cfc(ffM) = s"1^)^ if ^ € &(¥, ^(2)), 

Consider the complex 

(4)0 -> n0(y,5tx(2)) ^4 ^(Yis^)) *^h n1^^^)) ^4 fi0(y,5n(2)) -> 0. 

Note that this differs from the standard twisted de Rham complex only in 

that we have identified ft2 with Ql and Q3 with tt0 by the Hodge star isomor- 

phism. To make this an elliptic complex, suitable boundary conditions must 

be imposed. 

Let AAyh = ^A^A + (*dA,h)*^A,/i be the corresponding Laplacian on 1-forms. 

It differs from dd* + d*d by a lower order, and hence compact, operator. Inte- 

gration by parts gives 

(A^a, /3)   =   (a, A^/?) - /s tr(*^,ha A /?) - JE tr(d> A */?) 

-/E tr(a A *dA%hp) - /s tr(*a A d\(3) 

Define 

V^^GLjn1^*^))!  *a|E = 0,*dAf|la|E = 0} 

and 

Wp = {a G ^(y^^))! a|E = 0,d>|E. = 0}. 
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The operators AAj/l : Vp -+ Ll^Q,0(Y, su(2)) and AAih : >VP -* L%_2 are 

elliptic boundary value problems with kernel (= cokernel) equal to 

K1
Ath(Y) = {aenl(Y,su(2))\d*Aa = 0,*dA,ha = 0} 

and 

HAtfrdY) = {a e Q1
T(Y,su(2))\d\a = 0,*dA,ha = 0}, 

respectively, where Ql{Y,su(2)) (Q^(Y, su(2))) is the space of 1-forms whose 

normal (tangential) components vanish along the boundary. 

Lemma 26. L^Q1 (Y,su(2)) can be decomposed into the following two orthog- 

onal decompositions: 

(a) L2
pQ\Y, 5tt(2)) - dA(Ll+in

0(Y, su(2))) 

© n^on © *dA,h(L2
p+1n

1
T(Y, 5u(2))) 

(b) L^Q^y, Sn(2)) = dA(Ll+in
0

T(Y, su(2))) 

© w^fcCy, ay) © *dA,ft(^+1fii(y, SW(2))). 

Proof. We demonstrate the first decomposition; the second follows as easily 

with the other choice of boundary conditions. 

Given a G Lpf21(Y, 5^(2)), we simply write a = a + dAd\b + *dA^h * dA,hb 

for a € Ti^Ah^X) an(i & ^ H>.  By the choice of boundary conditions for Vp, 

*dA^&|s = 0.    D 

6.4. The Kuranishi Picture Near a Point in Mh- The purpose of this 

subsection is to describe a finite-dimensional local model for Mh- The ba- 

sic tool is the Kuranishi deformation complex. This is described nicely, for 

example, in [MMR]. The main theorem is the following: 

Theorem 27. Fix h G H and fix a smooth connection A G (^(O). Then 

there are: 

(a) a Stab(A) equivariant neighborhood VA ofOin 'HAih(Y), 

(b) a Q equivariant neighborhood UA of A in A, 
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(c) a Stab(A) equivariant real analytic embedding 

<t>A:VA^XAn UA 

whose differential at 0 is just the inclusion of HA h(Y) into kerc^ n 

L?fii(y,5t*(2)), 

(d) and a Stab(A) equivariant map 

^-.VA^HXhiYtdY) 

such that (J)A maps $^"(0) homeomorphically onto the zero set of 

ChlxAni/A- 

The only thing nonstandard about the proof of the theorem in this case is 

that the linearization 

*dAth : LlCt^Y, su{2)) -> L2
in

1(Yysu(2)) 

of 

Ch:A-^L2
in

1(Y,su(2)) 

at A has infinite-dimensional' cokernel, and hence is not elliptic, even after 

taking into account gauge symmetry. We therefore replace the condition 

(5) Ck(A') = 0 

with the condition 

(6) UACh(A
,)=0 

where 

ttA:Ljn1(Y,su{2))-*kerd*AnL2
in

1(YJsu(2)) 

is the orthogonal projection onto kerd^ fl Z^fi1 (Y,stt(2)). The following two 

facts insure that maps (5) and (6) have the same zero set near A. 

Lemma 28.  (see [MMR]) Let h £ H and let A be a smooth connection with 

Ch(A) = 0.  There exists an e > 0 such that if A £ A and \\A' — A\\r2 < e then 

UAerd'A,nLln\Y,su(2)) ■■ tec<rA,nLl&{Y,8u(2)) - kev d*A n LjQ1 (Y, su(2)) 

is injective. 

The second fact is a corollary to the Bianchi identity. 
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Lemma 29. Let h be any gauge invariant function on A. Then if A £ A, 

(h{A)ekerd*Annl(Y,Su(2)). 

Proof. The equation 

0 = {Vh(A), dAu) = (d*AVh(A), u) - /s tv{*Vh(A) A u) 

holds for all u € Q,0{Y,su(2)). Thus d*AVh(A) = 0 and *V/i(yl)|s. The proof 

now reduces to the Bianchi identity.   □ 

We now complete the proof of Theorem 27. We begin by decomposing 

ker d*A D Llnl(Y, su(2)) into 

ker <rA n LIQXY, su(2)) = H^iY) 0 *dA,hLlQ1
T(Y, su(2)) 

as in Proposition 26. Define the map 

BA,h: nxh(Y) e *dAffcLinj(y> ^(2)) -» ^A^LIQ^Y, SU(2)) 

by 

BAth(a,a) = 'n!A(h(A + a + a) 

where U.fA : keYd*A D L^Q1 (Y, su(2)) —> xd^hLlQ,1 (Y, su(2)) is orthogonal pro- 

jection. 

The second partial d*'h (0,0) = 11^ o *dAjh of this map is surjective. By the 

implicit function theorem, there is an open neighborhood VA of 0 G T~CA^(X) 

and a map ipA : VA —> H^d^^LgO^y, 5^(2)) with the properties that 

n,
Aa(i4 + a + ^A(a)) = 0 

and that this equation parametrizes the zero set of JIA(h(A + a + a) in some 

neighborhood NA of (0,0). We define the map <f)A to be 

(j)A(a) = A + a + tp^a). 

Finally, we set 

$A(a) = nACh(A + a + il>A(a)).    D 
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7. THE GENERIC PERTURBED FLAT MODULI SPACE 

In this section we use the tools outlined in the last section to prove a series 

of local results about the structure of Mh for generic perturbations. Section 

7.1 discusses the (Z2, Z2)-stratum of Mh- This argument is the basic model 

for the ones that follow in Sections 7.2-7.5, where we modify it as necessary 

to handle the other strata. In Section 7.6 we restate Theorem 15 in a slightly 

more precise fashion and prove it by combining the local results into a global 

one. 

We should make one comment about the notation. The setup in each of 

the first five subsections is slightly different. The approach is always roughly 

the same, however. We apply the implicit function theorem to a map from a 

space of connections times a space of perturbations to show that the universal 

zero set Z is smooth in a neighborhood V x U. To stress the similarities and 

yet avoid confusion between the slightly different frameworks in the different 

subsections, we label the objects (for example, Z, J7, and V) with subscripts 

which coincide with the subsections in which the objects are used. For any 

product of spaces, let TTI and 7r2 denote the projections onto the first and 

second factors. 

We also make this suggestion to the reader. An overview of the proof of 

Theorem 15 can be obtained by perusing the theorems in Sections 7.1-7.5. The 

proof of each of these, however, depends on one or two technical results which 

have been relegated to Section 10. Hence, once the overview is understood, 

the careful reader may wish to read Sections 7 and 10 in parallel. 

7.1. The (Z2,Z2)-Stratum. In this subsection we will show that M^2,z^ 

is a smooth (3g — 3)-dimensional manifold near any fixed [A] G M^ 2' 2 for 

generic perturbation h'. 

Fix an arbitrary admissible perturbation function (/i, </>) and a point [A] in 

the (Z2, Z2) part of Mh- Enlarge the collection of solid tori <£ to a collection 

(/) U ip which satisfies the conclusion of Lemma 63 and let Hi = H^ut)- We 

now identify h with the corresponding perturbation function in Hi which has 

hi = 0 for all the new components. 

Recall that P : A x H -> £ll(Y, su(2)) was defined to be the map P(A, h) = 
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Ch(A). We consider its restriction to XA x Tii. 

Theorem 30. In the situation described above, there exist a neighborhood 

Vi C XA fl A
{Z2iZ2) of A and a neighborhood Ui.C Hi of h such that Zx = 

P"1(0) D (Vi x Ui) is a smooth submanifold. 

Proof. By Lemma 28 and the implicit function theorem, it is sufficient to check 

that 11,4 o P restricted to XA x Hi is a submersion at (A, h). 

The linearization 11^ o P at (A,h) is given by 6(11 A O P) = *dA,h(8A) + 

V6h(A). By Lemma 26, the first partial derivative has cokernel H\h(Y, dY). 

We must check that Sh t-> VSh(A) is transverse to Hl
Ah(Y, dY) . For this it 

is enough to show that for any a € H\^h(Y, dY), there is a tangent vector 6h 

at h such that (V<5/i(,4),a) ^ 0. 

Suppose a G H^Y.dY) and a ± V6h(A) for all Sh G T^Wi. Using the 

decomposition of Lemma 26 we get a = (3 + dAb for some /? G HAh(Y) and 

b G Q0(Y,su(2)). If /? 7^ 0, then by Lemma 63 there is a tangent vector 

6h G ThHK with (6h(A),(3} j^ 0. The gauge invariance of the admissable 

functions implies that (6h(A),dAb) = 0, so (6h(A), a) ^ 0, and this contradicts 

our hypothesis. On the other hand, suppose /3 = 0. In the long exact sequence 

of the pair (Y", S), the map HAih(Y, dY) —» HAih(Y) is simply the orthogonal 

projection fi^Y, su(2)) -> Hi^(Y) restricted to Wi^(Y, aY). Thus a is in the 

image of H0(E). Since A\^ is irreducible, this implies a — 0, and the theorem 

is proved.    □ 

Let Vi be the image in B of 1^. 

Theorem 31. For an open dense set of h' G Ui C Wi, A^^ D t^ is a smooth 

submanifold of dimension 3g — 3. 

Remark. In the cases # = 0 and 5 = 1, OiC^) — 0 implies A Is is flat and hence 

reducible, so M^2       is empty. 

Proof. This is essentially the same argument as the proof of Theorem 3.17 

in [FU]. Consider the restriction of the projection ^2 ■: Vi x Ui —* f7i to Zi. 

By the Sard-Smale Theorem, the regular values of this map form an open 

dense set.  Let hf be a regular value.  Then {^2\z1)~
l{h')) which corresponds 
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to Mw H Vi under the quotient map, is a smooth submanifold. Its dimension, 

by a standard argument, is the index of the Kuranishi complex, namely 

dimA^ H (Vi/Q) = dimT-ft^y) - dimHXhtX, dY) = 3g - 3. 

The latter equality follows from Poincare Duality and the long exact sequence 

at the pair (Y, S) and the fact that 7^(E) ■= 0.    Q 

The long exact sequence and Poincare Duality also imply that the image of 

H\h(Y) in Ti\{T,) has dimension 3# — 3. This gives the following important 

corollary. 

Corollary 32. For generic perturbations h! € Ui, the restriction map r : 

-Mw H Vi —» M^2 is an immersion. 

We conclude this subsection by proving that Zi/G maps submersively to 

A^|2. Let TTI : BY X 7Y —> By denote the projection. 

Lemma 33. The composition r OTTI : (Zi/Q) fl (t^. x J7i) —> A^^2 ^ a submer- 

sion. 

Proof. We have chosen Vi and C/i small enough that P is a submersion at 

every point in Zx fl (Vi x Ui). In other words, for any [A', h!) € Zi D (Vi x I7i), 

the image of the map V : T^Ux -> Sll(Y,su(2)) given by 6h' »-> Vtf/i^A7) 

orthogonally projects onto W^/ ^/(Y). Let ao G 7^1(S). Extend ao to a 1- 

form a G n1(y,su(2)). Note that *dA^hta G kerd^, 0 0^(^5^(2)), since ao is 

harmonic. 

We decompose *<iA/^a orthogonally into *dA',h'a> = P + *dA',h'b where .6 G 

n].(Y, su(2)) and a G -W^y). Choose a tangent vector Vtf/i' = 13 + *dA',h>c 

for some c G Cl].(Y^su(2)). Let a' = a + c — b. Then *d^/j^a/ = V^/i' (which 

means (a', tf/i') G T^/^/jZi D (Vi x Ui)) and af\x = QQ.    D 

7.2. The (Z2, (7(1))-Stratum. We shall call a connection A boundary-abelian 

if A|E is abelian, boundary-central if A|s is central (recall that according to 

the conventions of this paper, the adjectives abelian and central are mutually 

exclusive). In this subsection we will explore the structure of Mh near equiv- 

alence classes of irreducible connections that are boundary-abelian.  We will 
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use a similar approach for the irreducible boundary-central case in the next 

subsection. 

Our task is complicated by the fact that, at an irreducible boundary-abelian 

connection A, the linearization of the map U.AoPi used in the last section is no 

longer surjective. The reason for this is purely topological. In the long exact 

sequence of the pair, the inclusion of the relative cohomology of Y into the 

absolute cohomology is not injective. In terms of the harmonic representatives 

for the cohomology, this means that part of Ti^^Y^dY) is orthogonal to 

^A,/IOO> 
namely the image of the coboundary map 7i^(S) —> H\h(Y^ dY) in 

the long exact sequence of the pair. This fact prevents us from applying the 

implicit function theorem to EU o P1 directly. 

We get around this difficulty by considering, instead, the composition of 

EU o P1 with the projection onto the orthogonal complement of this "extra 

cokernel." This composition is surjective, and the implicit function theorem 

therefore applies to it, giving a smooth universal zero set. We must then cut 

this zero set down by setting the "extra cokernel" component of ^ equal to 

zero. 

Before stating and proving the local result about the (Z2, C/(l))-stratum of 

Mh, we make a brief digression to prove, using the Kuranishi technique, that 

ME has the structure described in Theorem 10 near the abelian stratum. The 

framework and notation which we establish during the digression will be useful 

later in this subsection. 

Fix an abelian flat connection A on E. Consider the Kuranishi picture for 

A^E near [A]. Let X^ denote the slice to the gauge group action at A. Choose 

a nonzero 70 G W^(E). Notice that *E70 generates the cokernel H\(T,) = R 

of the linearization of the curvature map F : X^ —> fi2(E, su(2)). 

Define the map U0 : f22(E, su(2)) -> 02(E, su(2)) n (*s7o)J- be the orthogo- 

nal projection. We identify X% with ^(E^G^n^E, su(2)). The second par- 

tial derivative of UQ O F is surjective. Thus there are neighborhoods UA C XA 

of A and Vj C Wi(s) of zero and a maP <I>A
:V

A^ ^ft^E, su(2)) such that 
the zero set 

z^iUooFr^nu^ 
is the graph of (j)^. If we identify W^(E) with R using *S7o as a basis vector, 
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then the Kuranishi map $5 : ^A(^) —* R- is 

^(a) = (F(^(a)),*^Q)LHB). 

Using integration by parts, this can be simplified to 

$A(a) = ([aAa],*E7o)L2(E). 

Having completed our digression, we return to the problem at hand. Let 

A G A and (/i, </>) be fixed with A irreducible and boundary-abelian and with 

Ch(A) = 0. Let 70 € H0
A(T,) be a generator and let 70 be an extension of 70 

toy. Let Lb :ker^n^1(r,5w(2)) -^kerd*Ann1(Y,su(2))n{dAjo)1- be the 

orthogonal projection. 

We enlarge the collection 0 so that the conclusion of Lemma 63 is satisfied 

at A, Call the component of H corresponding to the new collection 7^2 • 

One slight technicality is that the zero set of E^oEUoP! : ^4x7^2 —> ker d*An 

n1(Y, su(2)) PI (GU7O)
J

~ is not gauge invariant. For this reason, we consider its 

restriction to XA x 7^2, where XA is the slice to the gauge group action. 

(Alternatively, we could have made a connection-dependent 70 which changed 

by ad{g~1) when we moved away from the slice by a gauge transformation g. 

Then the zero set would have been gauge invariant.) 

Let Z2 = (TIs o nA o Pi)-1^) H (XA x W2). Let Z£ be as defined in our 

digression above. 

Proposition 34. There is a neighborhood (V2 x U2) C (XA Pi Ay) x H2 of 

(A, h) satisfying the following four conditions: 

(1) Z2 fl (V2 x U2) is a submanifold. 

(2) For A' E V2, (nA(^7o),nA(dA7o)> ^ 0. 

(3) Z2 fl (V2 x C/2) ^ap^ to ZQ  under the map r O.TTI. 

(4) T/ie map in (3) is a submersion. 

Proof The implicit function theorem argument in the last subsection implies 

that Z2 is a smooth submanifold in some neighborhood of (A, h). That the 

second condition can be met follows from the fact that EU(<iA7o) / 0 and 

dA'7o varies continuously in A'. 
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Suppose (A',h') e Z2 and (ir(A,)|E,*E7o>L2(E) = 0. By Stokes' Theorem 

this last equality is equivalent to (Oi^O'^To)!,2^) = 0, which implies that 

(n^(C^(^))5^nA(7o))L2(y) = 0. Since ^oPA{C,h\A!)) = 0, using condition 

(2), this means that IlA((h>(A')) .= 0. By Lemma 28, for A' close enough to A 

this implies that Ch'(A') — 0; in particular, it implies F(A
,
)\Y: = 0. This shows 

that the third condition will be satisfied if V2 is small enough. 

For the fourth condition, we simply note that r o TTI : Z2 —> ZQ is a submer- 

sion at (A, /i), by the proof of Lemma 33.    □ 

Theorem 35. There exist neighborhoods V2 C By of [A] and U2 C TC2 of h 

such that for generic b! E U2, Mh> n % is a stratified space with the following 

structure: 

(a) If g > 2, then A4h' H V2 is empty. 

(b) 7/0 = 2; then 

Mh. nV2 = (M^Z2) n V2) ]I(M%2'UW) n y2). 

The (Z2, 7i2)-stratum is (3^—3)-dimensional and the (Z2, U{1))~stratum 

is ^'dimensional. The latter has normal bundle in the former with fiber 

c{Sl x Sl). 

(c) If g = I, then Mw fl V2 is a smooth 1-dimensional submanifold ofV^. 

Proof. The standard argument used in the preceding subsection now shows 

that for regular values h' of ^ : Z2 —* t/2, Z2 H (V2 x {h'}) is a smooth 

manifold of dimension 

dim Wiifc(r) - dimCH^Y, dY) n (^7o)X). 

This dimension is easily calculated from the long exact sequence of the pair 

to be 3g — 2. 

Let U2 and V2 be as in Proposition 34 and let V2 to be the image in By of 

V2. By the Stokes' Theorem argument in the proof of that proposition, 

Pf^o) n (C/2 x V2) = (r o Tn)-1^ n ^). 

In other words, the final equation (OI'C^OJ^^O)!,
2
^) = 0 by which we must 

cut down is, for (A'^h') G Z2 Ci (JJ2 x V2), equivalent to the condition that 

$5(^|s) = 0. 
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Define Z0 ' C ZQ to be the graph of (f^ln1 (E;R)- This is exactly the 

preimage in ZQ of the abelian stratum of M^ in the slice tangent space. 

Therefore, 

M(^U(l)) ny2c± ZU(l) n (y2 x l^l) 

where Z^(1) = Z2n{7rz^)-1(Z^u(1)). Z^ has codimension 45~4 in Z2. The 

index of the restriction 7r2 : ^2 ~~* ^2 is therefore 2 — g. This proves the 

assertions about the (Z2, £/(l))-stratum in all cases. It remains to prove the 

assertion about the normal bundle in the genus 2 case. 

Assume g = 2. Let /*/ be a regular value of 7r2 : ^2 —> #2 and let (.A7, /z/) G 

Z2 n (V2 x {/*/}). Since (A7, /i7) is a regular point of both 112 o n^ o Pi and 7r2[za 5 

it follows that W\/fW(y,9y) n (dATTo)1- = {0}. Thus H^^Y) -> W^(E) - 

W^E) = R2g © C2^-2 .= R4 © C2 is an injection (and hence by Poincare 

duality, T~i\^hf(Y) is 4-dimensional). Since Z2 meets V2 x {/i7} transversely, 

r*(H\,ihf(Y)) is transverse to R4. The zero set of a »-> (/E[a A a],70) on any 

Lagrangian subspace of 7^(E) transverse to R4 is homeomorphic to c^1 x 

Remark. The calculation of the zero set above differs from the calculation of 

the structure of M^, near the abelian stratum in that there is no U(l) stabilizer 

by which to divide out once we have found the zero set in the slice. 

7.3. The (Z2,5f7(2))-Stratum and the ((7(1),5C7(2))-Stratum. In this 

section we state an analogue of Theorem 35 for the irreducible boundary- 

central stratum. The formal dimension of the this stratum is —Sg. Thus 

regardless of the genus of the boundary, this stratum is generically empty 

(unless 3 = 0). The proof is so similar to that of Theorem 35 that we omit it. 

One simply must repeat the digression, this time for a central flat connection 

on S, replacing the single *S70 with a basis for the 3-dimensional H\{S). One 

then repeats the rest of the argument, recalculating all the dimensions. 

We again assume we have fixed a component Hz of H for which Lemma 63 

is satisfied for the connection A in question. 
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Theorem 36. If g > 0, then for any irreducible boundary-central A G C/T^O) 

there exist neighborhoods V3 C By of [A] and Us C Tis of h such that for 

generic h' G U^ the (Z21U(I))-stratum of Mv does not intersect V3. 

A similar argument gives the following proposition. For the basic setup, 

see the proof of Theorem 50, where we prove a similar result for 1-parameter 

families of perturbations. 

Proposition 37. The formal dimension of the (U(l), SU(2))-stratum is —g. 

Therefore, for generic perturbations, this stratum is empty unless g — 0, in 

which case it is O-dimensional 

7.4. The (C/(1),C/(1))-Stratum and its Normal Bundle. In this subsec- 

tion we describe the abelian stratum and its normal bundle. 

Let U(l) C SU(2) be fixed and decompose 5^(2) = R © C where R = 

TidU(l). Consider an abelian connection A. After gauge transformation we 

can assume A G ^(Y, R). 

Each admissable function h is Q equivariant and hence, in particular, Stab (A) 

equivariant. Since Stab(A) acts with weight two on the coefficients of ^(Y, C) 

and fixes n1(Y, R), this implies that VSh(A) is orthogonal to r21(Y, C) for any- 

tangent vector Sh G ThH. In particular V6h(A) _L n\(Y,dY]C). It follows 

that 

Hess/i: TAA = nl(Y,su(2)) -* fi1(Y,5^(2)) 

preserves the splitting 

n1(y>5w(2)) = f21(y,R)e«1(y,c). 

The maps d^ and *dA also preserve the splitting. 

Let 114 denote the orthogonal projection from 01(y, 5^(2)) to kerd*A fl 

fi^R). We denote by Symc/(1)(^^(y;C)) the set of all symmetric U(l) 

invariant bilinear forms on H\h(Y; C). 

Lemma 38. Let (h, (/>) be an admissible perturbation. For any abelian [A] G 

Mh, the collection (j) may be enlarged to a finite collection (j)U ip = {7i}^i 

such that, if TL^ = Ti^uip) the map 

P4:XAn fi^y, R) x n4 -> ker d*A D O^Y, R) x Symc/(1)(H^h(Y; C)) 
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given by 

PM'^') = (n4onA((h,(A')),-Ressh'(A')) 

is a submersion near (A, h). 

Proof. Corollaries 64 and 66 guarantee that we can find a collection of solid 

tori such that the two components of the linearization of P4 

(6A 6h) h-> *dAth6A + U4o UAV6h(A) 

and 

(6A,6h)^Hess6h(A) 

are surjective. To get a submersion onto the product, consider the loops 

required for the two proofs. The only potential problem is that the loop with 

noncentral holonomy used to prove Corollary 66 may be among the list of 

curves needed for the proof of Corollary 64. In case this is true, we simply 

note that for any x € [—2,2] we can vary the first and second derivatives of 

the component functions 6hi(x) independently.    □ 

To study the abelian stratum itself, it would suffice to study the first com- 

ponent of P4, and the argument in the proof of Theorem 31, with slight modi- 

fication, proves that for generic hf the (17(1), J7(l))-stratum of Mh is a smooth 

manifold near [A] of dimension 

dimW]i(y;R)-dimW]i(y,ay;R) = g. 

By considering both components, we will achieve this result and simultane- 

ously obtain a description of the normal bundle. The key to describing the 

normal bundle is to show that H\fih,(Y1 dY; C) vanishes everywhere along the 

abelian stratum for g > 1 and everywhere except at a finite number of points 

for 5 = 1. 

Theorem 39. Let [A] be an abelian boundary-abelian point of Mh- Let H4 

be as in Lemma 38.  Then there exist neighborhoods 

V4 c B{Z2'Z2) I J BlZ2iUil)) I J B{u{l)>u{1)) 

of [A] and U4 C H4 of h such that for generic h' € U^, Mw H V4 is a stratified 

space with the following structure: 
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(a) If g > 1, then 

Mh, n v, = M%2'Z2) n v4 U M w«.^)) n v4. 

The (Z2,Z2)-stratum is a (3g — 3)-dimensional manifold and the 

(U(1),U(1))-stratum is g-dimensional. The latter has normal bundle 

in the former with fiber^(CP^-1)). 

(b) If g = 1, then 

Both strata are 1-dimensional The boundary of the (Z2, U{l))-stratum 

in the (C^(l), U(l))-stratum is a O-dimensional submanifold, with nor- 

mal bundle in the (Z2, U(l))-stratum with fiber c(pt) = R/Z2. 

These identifications are diffeomorphisms in the stratified sense. 

Proof. Let n = diuiH^^(Y, dY] C). Since *dA,h is already a Fredholm isomor- 

phism from the orthogonal complement of its kernel to the orthogonal comple- 

ment of its cokernel, the effect on the Kuranishi map of adding a small pertur- 

bation 6h to h is determined by B.ess6h\ni (y;c)'. (We will consider the Hes- 

sian sometimes as a bilinear form and other times as a linear map, opting for 

whichever simplifies the notation and terminology at the moment.) Thus we 

will be interested not in the corresponding element B of Symu^1\Ti^h(Y] C)) 

but in the composition Il'4oB where I^ : ft^y, su(2)) -> H^Y, dY; C) is or- 

thogonal projection. Such a composition can be any complex linear map from 

7i](h(Y;'C)to- H\ h(Yy dY; C) which, when precomposed with the inclusion of 

Wjif/l(y, dY; C) into W^(y; C), is Hermitian. 

For each k = 1,..., n, let 

Nk = {B e Symt/(1)(^^(y; C))| U^ o'B has complex rank n - k}. 

For each fc, Nk is a submanifold of Symu^1\TC1Ah(Y; C)) of codimension k2 + 

2k (g — 1). Note that for the Hessian of a small perturbation to be less than 

full rank is equivalent to the existence of nontrivial H1(y, dY; C). 

By Lemma 38, P4 is a submersion in some neighborhood of (.A, h) which we 

may as well take to be a product neighborhood V4 x U4. 

Z, = P4-\{0} x Sym^W(74,(7; C))) n (V4 x U4) 
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is a smooth submanifold of V4 x U4. By the argument sketched before the 

statement of this theorem, the projection from this submanifold to U4 has 

index g. 

Consider now the smaller set P^dO} x Nk). This must also be a subman- 

ifold, and its projection to U4 has index g — (k2 + 2k(g — 1)) = (1 — 2k){g — 

1) + 1 — fc2, which is negative if k > 1. If k = 1, this index is negative unless 

g = 1, in which case it is 0. 

In the g > 1 case, an application of the Sard-Smale Theorem now implies 

that for generic h' G U4 the cohomology H^^/(y;C) vanishes for all [A'} e 

Z4 fl (V4 x {h'}). In the g = 1 case, there will only be finitely many points 

in Z4 H (V4 x {h'}) where W^/Q^C) - ^A',h'{Y^Y]C) is nonzero, and at 

those points 7Y^, ^(Y; C) = C. Transversality of the intersection of P^Z^ fl 

(V4 x {/i7})) fl ({0} x iVi) means that the Kuranishi picture for Mv fl V4 near 

such a point where the complex cohomology jumps is that of the zero set of 

the map R x C —► C given by (t, z) H-> tz. Dividing out by the 17(1) stabilizer 

completes proof of the theorem.    □ 

7.5. The (5C/(2),SfC/(2))-Stratum and its Normal Bundle. In this sub- 

section we describe a neighborhood of the central stratum for generic pertur- 

bations. The ideas in the proof are very similar to parts of the arguments 

in the previous subsection. We will highlight the differences. One difference 

simplifies our work. That is that the central part of Mh does not change 

under perturbation. This is due to the fact that V/i vanishes at any central 

connection. 

Let h be any admissible perturbation. Enlarge the collection of solid tori 

used to define h until the cores of the solid tori span i7i(Y;R). Call the 

component of H corresponding to this new collection H5. 

Lemma 40. Let A be aflat central connection. Then there is a neighborhood 

U5 CHs of h such that for an open dense set of h' G U§, T^h'O^ dY) = 0. 

Proof. Let Ilg : ^(Y, su(2)) —> H\ih(Y^ dY) denote the orthogonal projection. 

Then TC\ h, (Y, dY) = 0 if and only if n^oHess hf is surjective when restricted to 

Ti\ih(Y). In the discussion preceding Proposition 67, we describe the space of 

all maps B : T~i\(Y) —> H\(Y) which can arise as these Hessians. By analogy 
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to the previous subsection, the composition of one of these maps with II^ can be 

any SU(2) equivariant map from Ti\(Y) to ^(Y", dY) whose precomposition 

with the inclusion Ti\(Y,dY) —* 7i\(Y) is symmetric. An easy dimension 

count shows that the codimension of the stratum of maps which don't have 

full rank is g + 1. Now an easier version of the proof of Theorem 39 gives the 

result. (Here everything is much simpler because we don't actually perturb 

the central stratum, just the Hessian at the central point.)    □ 

Corollary 41. For generic hf G Hs, [A] has a neighborhood in Mh> homeo- 

morphic to R9 <g> su(2)/SU{2). The abelian stratum corresponds to the image 

of the set of decomposable elements ofH9 ® su(2) in the quotient. Thus, the 

abelian stratum near [A\ is homeomorphic to TO?/Z2. 

7.6. Proof of Theorem 15. In this subsection we combine all the earlier 

local results in this section to prove a global theorem, Theorem 15. We first 

restate the genericity hypothesis in this theorem more precisely. 

Clarification of Theorem 15. Let (h, </>) be an arbitrary admissible func- 

tion. Then </> can be enlarged to a finite collection </>Uip such that there is a 

neighborhood UQ C H^U^) 
0f h w^ the following property. For any element 

hf of an open dense subset ofUo, Mv has the structure described in Theorem 

15. 

Proof of Theorem 15. The idea of the proof is straightforward. The compact- 

ness of Mh insures that we can find a finite collection of points {[-AJ}-^ £ Mh 

such that the corresponding neighborhoods Vj^j C B constructed in the local 

results cover Mh- The only thing to check is that, in the local results, adding 

more solid tori to (j) does not force us to take smaller neighborhoods V[A] - 

Lemma 42. For any of the local results in this section, the neighborhood V C 

B may be chosen so that, if (j) is enlarged to any <f)U tpj there is still some 

neighborhood Uf C Ti^uip) of h so that V x U' satisfies the result. 

Proof of Lemma 42. The general setup in all the local results is the same. We 

have manifolds Wi and W2 and a submanifold W3 C W2 and we consider 

a map P : Wi x Ti^uifj) —> W2 (or Pi for some i) which is a submersion 

at one point (A,h) G Wi x H^u^y   We let Z = p-1(Wz).   The implicit 
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function theorem shows that Z is a submanifold in some neighborhood V x U 

of (A, K). By taking a slightly smaller neighborhood V with closure(F/) C V, 

we can get a uniform lower bound e on the norm of a one-sided inverse for 

the Hessian of P restricted to the normal directions to Z on the compact set 

Z fl (closure^7) x {/i}). 

If a new solid torus 70 is added to $ and the function 

/    /io(tr hol7/(x, A))77(x) 

is added to the old perturbation function /i, the difference between the new 

Hessian of the function P and the old Hessian is bounded by the C2 norm of 

/io- With this in mind, we define for each <5 > 0 the neighborhood 

tf(6, K) = {K e H] fh - hf\\cH[-2,2)) < 6}. 

For an admissable function h = (/ii,..., hm) defined using solid tori 0 = 

{7z}£li> we define a neighborhood 
m       f   - 

i=i     z 

It follows that P is a submersion along Z fl (V" x Ue{h)), regardless of the 

number n of components in F.  Note that Lemma 33 and its generalizations 

in the other subsections depend only on this property of P. This proves the 

lemma.    □ 

Now we finish the proof of Theorem 15. The local results together with 

Lemma 42 imply that we can enlarge 0 once and for all (combining the en- 

largements of the n applications of the local results to [Ai],..., [An]) to a 

collection <p U xp = {jiJiLy There are neighborhoods VQ = U^VJA;] C B of 

Mh and UQ = C/(eo, h) C H^^) of /i, where 60 is the minimum of the lower 

bounds e on the sets Vjy^j fl Mh, such that for generic hf €.UQ, M.h' ^VQ has 

the structure described in the theorem. 

It is now sufficient to show that for h! close enough to /i, Mu C VQ. Suppose 

that this were not true. Then we could find a sequence h • —> /i and a sequence 

[Aj] G Mh'. \VQ' By Corollary 25, a subsequence of [A^j)] of the latter sequence 

must converge to some [AQQ], which, by the continuity of P, must lie in Mh- 

This implies that for i{j) large enough [A^)] € t^o, giving a contradiction.    □ 
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8. LEGENDRIAN SUBMANIFOLDS AND COBORDISMS 

In this section we examine the symplectic properties of the restriction map 

r : Mh —> A^s- In the first subsection, we show that r o Sh : .M^ -^ £E is 

Legendrian. In the second subsection, we show that when the perturbation 

h is varied, Mh changes by a Legendrian cobordism. Of course, technically, 

these results must be stated with greater care due to the singularities. 

8.1. Symplectic Properties of the map r : Mh —> M.^. We begin by 

making an observation which follows immediately from the definition of Oi as 

the gradient of s with respect to the connection uy. 

Proposition 43. If 7 : [0,1] —> A is a smooth curve such that OICTW) = 0 

for all t 6 [0,1], then Sh 07 is a horizontal lift 0/7 to A x U(l). Consequently, 

r o sh o 7 : [0,1] -» Ax x [/(I) 

is a horizontal lift of r o 7. 

Combining Proposition 43 with the immersion results of Section 7 gives: 

Corollary 44. For generic h, the compositions r o s^ : Mh —» >Cs are Zeg- 

endrian when restricted to the (Z2,Z2)- and (£/(!), £/(!))-strata and, in the 

g = 1 ca5e; a/so £/ie (Z2,t/'(1))-stratum. 

Corollary 45. £e£ 7 : [0,1] —► A^/j 6e a closed continuous curve which is 

the image of a piecewise smooth path 7 : [0,1] —> CZTHO) ™^ 5*7(0) = 7(1). 

Choose a smooth path gt : [1,2] —* Q with gi = id and 52 = 5; ^nd define 

i:[^2)^Q\0)tobe 

Then r o 7 : 51 —► ^"s extends to a map S : D2 —► ^s, and /or any suc/i map 

O = 0 modulo 27r. 

7(t) if0<t< 1" 
r7(l)i/l<«<2. 

/. 

Proof The fact that ^ is simply connected is known [D]. The basic argument 

is that if W C A-z is the set of higher index critical points of the Yang-Mills 

functional, then W has codimension greater than 2. Thus Aj; \ W is simply 
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connected. The Yang-Mills flow gives a deformation retraction onto T?,. Since 

A^yS = 0 along 7, 

But 

5(7(0)) = 5(7(2)) = ^1,(^)5(7(0)). 

hol^(u;y) = holro7(cj) = exp(—i \ fi).    D 

Remark. If S maps the complement of a measure zero set in D2 to one stratum 

of ^E, then by symplectic reduction the integral can be performed in M^. 

If g = 1, then M-z is equal to T2 /Z2. This is topologically 2-sphere but 

with 4 special points, the fixed points of the involution. It is often referred to 

as the pillowcase. 

Corollary 46. If g = I, and 7 : [0,1] —» Mh is a closed curve, then r o 7 

bounds zero symplectic area modulo the symplectic area of M^. 

Proof. It is sufficient to verify that the symplectic area of MY, equals — 27r. 

For simplicity, we perform the calculation on the double cover of A^s, a torus, 

which we denote by M.^. We may think of the M^ as the set of equivalence 

classes of based flat connections with holonomy in a prescribed circle subgroup 

17(1) C £17(2), modulo U(l) gauge equivalence. The lift of the symplectic form 

Q on .ME, which will also be denoted by fi, is still given by 

n(A,/i) i/E«r(AArt 

for A and /J, in n1(S, su(2)). 

We will parametrize .ME by the set of constant 1-forms with Lie algebra 

parts lying in the Lie algebra of the prescribed circle subgroup, i.e. 

.ME = 
0i27ra 

0 
0 

-—i2Tva dx, 
ni2ivb 

0 
0 

D-i2irb dy 

Here (#, y) are coordinates on the circle such that 

/   dx = /   dy = 1. 

Consider the universal cover / : R2 

ei27za 0 
/(a, b) = 0 -i27ra 

.ME given by 
z27r6 Q 

dx, 
0 D-i27r6 dy 
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Then 

= \l     rm^ljdaAdb 
* 7[o,i]x[o,i] da  ub 

0 
-i27r 

dx, 
i27r       0 

0     -z27r 
dy ) da A db 

da A db ) Q 
i2ir 

0 

0 
-i27T 

0 
-i27r 

i27r 
0 

dx, 

0 
-i27r 

i27T 
0 

0 
-i27r dy 

dx A dy 

- T-MTT
2
) = -27r.    □ 

8.2. The Legendrian Cobordism Equivalence Relation. In [A], ori- 

ented Legendrian curves in R3 (with the contact form dz — ydx) are completely 

classified up to oriented Legendrian cobordism (which we will from now on re- 

fer to simply as cobordism). This involves describing a series of cobordisms 

which generate the entire group of cobordisms. 

By the Darboux Theorem any 3-dimensional contact manifold is locally 

contactomorphic to R3, and so the group of cobordisms in an arbitrary 3- 

dimensional contact manifold is generated by the same list of local operations. 

Theorem 47. (see Section F of [A]) Two oriented Legendrian submanifolds 

of a 3-dimensional contact manifold are oriented Legendrian cobordant if and 

only if they differ by a sequence of the following moves: 

(a) Isotopy through immersed Legendrian curves. 

(b) Birth or death of small immersed Legendrian circle components. 

(c) The switch of a nontransverse crossing described in Figure 1, performed 

when the two parts of (possibly the same component of) the Legendrian 

curve intersect and their oriented tangents agree at the point of inter- 

section. 
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Figure 1 

In our g = 1 case, where the contact manifold is a J7(l) bundle p : L —* 

M over a symplectic 2-manifold M, then these moves may be described in 

terms of the projection of the Legendrian curve into M. Note that if g : 

N —> L is Legendrian then g = p o g is Lagrangian and each null homologous 

closed component of g(N) bounds zero symplectic area modulo 27r. All other 

Legendrian lifts of such a g differ by £7(1) rotations. 

The corresponding moves on Lagrangian submanifolds are 

(a5) Isotopy through immersed Lagrangian submanifolds such the annulus 

traced out by the isotopy has zero symplectic area. 

(b5) Birth or death of small figure-eights which bound zero symplectic area. 

(c')  Oriented band connect sum by a band with a half twist when every null 

homologous components created by the switch bounds zero symplectic 

area modulo 27r. 

The integrality condition on the symplectic area bounded by any closed 

component generalizes to higher dimensions in the following sense. If g : N —> 

L is any Legendrian submanifold of a contact (7(1) bundle p : L —> M, then 

for any curve 7 C N whose image 5(7) is null homologous 5(7) bounds zero 

symplectic area modulo 27r. Thus there is an immediate generalization of 

move (a') to higher dimensions. The remaining moves have yet to be classified 

for contact manifolds of dimensions 6g — 5 when g > 2. These are the other 

dimensions with which we will be concerned in this paper. 
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8.3. The Cobordism Theorem. To define a Legendrian cobordism be- 

tween Legendrian submanifolds of £EJ we consider the larger bundle £s x 

T*[0,1] over MY, X T*[0,1]. We obtain a natural contact structure on >CS x 

T*[0,1] corresponding to the connection 1-form TT^S — mfadt). 

To form cobordisms, we must consider paths of perturbations. The basic 

paths we work with will be C2 paths ht : [0,1] —► H. Given any two admissible 

perturbations defined using the same collection of solid tori, it is easy to find 

such a path connecting them. In fact, if ho and hi are defined using </>o and 

0!, respectively, where (froUfii is a disjoint collection solid tori, we can identify 

them with corresponding perturbations in a single larger component (J)Q U </>I . 

A problem arises, however, if a solid torus in 00 intersects one in fa but the 

two solid tori are not equal. 

To handle this situation, we must consider a slightly more general type of 

path. Given any two collections fa-and fa, there is a smooth isotopy of one 

which makes it disjoint from the other. Combining the functions of trace for 

the corresponding perturbation with this isotopy gives a path. 

Lemma 48. // (/i, fa) is nondegenemte in the sense that it is a regular value 

of all the projections to Ti used in the proof of Theorem 15, then for any fa 

isotopic to (j), M(h,<t>) and M.^^') are canonically diffeomorphic in the stratified 

sense by a map $ such that r o $ = r. 

The proof of this lemma requires a straightforward generalization of the 

argument to follow, which covers the basic type of paths. 

Remark. Alternatively, we could choose a slightly different perturbation space, 

namely JJSi Emb^1 x D2, Y) x 0°^ ft. Then we would have to arrange our 

paths to stay within the subset where the solid tori for which the functions hi 

don't vanish are disjoint. 

A path of perturbations ht : [0,1] —> H determines a section S{ht} of Cy x 

[0,1], namely the one induced by the Q equivariant map 

~s{ht}{A,t) = jVsw+hM)) : A x [0,1] _> [/(i). 

Let 

M{ht} = {([A],t) eBYx [0,1]| Chl(A) = 0}. 
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As an immediate consequence of Corollary 25 we have the following fact. 

Proposition 49.  The set M{ht} is compact. 

To prove nondegeneracy results about paths near a fixed path /it, ht must 

sit inside a complete Banach manifold of paths so that arguments analogous 

to the proof of Theorem 15 can be used. For basic paths, where the collection 

(j) remains fixed, we can take for this space of paths C2([0, l],^). (For the 

paths of the isotopy type, where the functions hi are don't vary, we may take 

the space of paths of perturbations in which the functions hi are constant in 

t.) 

Let 

Mfhy=M{ht}n(B^x[0,l}). 

Theorem 50. Any two admissible perturbations ho and hi which are generic 

in the sense of Theorem 15 can be connected by a path ht such that M{ht} is 

a stratified space with the following structure: 

(a) If g > 3, then 

M{ht}=Mf^u^r(i))UMZ{2)'sum- 
The (Z2,Z2)-stratum is (3g — 2)-dimensional. The (f7(l), J7(l))- 

stratum is (g + 1)-dimensional and has normal bundle in the (Z2, Z2)- 

stratum with fiber c(CP^-1>). The (SU(2),SU{2))-stratum is 1- 

dimensional. It has normal bundle in the (Z2, Z2)-stratum with fiber 

(R? ® su(2)f/SU{2) and normal bundle in the (C/(l), 17(1))-stratum 

with fiber (W ® su(2)f/SU{2). 

(b) If g = 3 or g = 2, then 

The (Z2,Z2)-, (U(1),U(1))-, and (SU(2),SU(2))-strata are as in (a). 

The (Z2, U(l))-stratum is (3 — g)-dimensional with normal bundle in 

the (Z2, Z2)-stratum with fiber c{S^-^ x S^-3*). 

(c) If g = 1, then 
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The (Z2,£7(l))- and the (C/"(l), U{1))-strata are 2-dimensional. The 

boundary of the (Z2, U(l))-stratum is a smooth 1-dimensional subman- 

ifold of the (U{1), U(l))-stratum, with normal bundle fiber c(pt). The 

(SV (2),311(2))-stratum is a union of I-dimensional arcs which are 

constant in t. It has normal bundle in the (U(I), U(I))-stratum with 

fiber c(pt). The ({7(1), SU(2))-stratum is O-dimensional Each point in 

this stratum has a neighborhood in M{ht} consisting of a 2-dimensional 

half-ball whose straight edge lies in another 2-dimensional ball. The in- 

terior of the half-ball lies in the (Z2, U(I))-stratum. One point in the 

arc of intersection is the ({7(1), SU(2)) point, and the remainder of the 

2-dimensional ball lies in the (V'(1), V"(1))-stratum. 

(d) lfg = 0, then 

MM = M^fUi2))UMZhSUm 
4M 1{M 

The (Z2,SU(2))-, (U(1),SU(2))- and (SU{2),SU(2))-stratum are 

all 1-dimensional. The (Z2jSU'(2))-stratum meets the (U(1),SU(2))- 

stratum at isolated interior points. The ({7(1), SU(2))-stratum meets 

the (SU(2),SU(2))-stratum at isolated interior points. 

/ 
jifWi).^(i)) 

M{U{i)tuW)i 

XCZa.C/d)) ^(Zi.tfCD) 

Figure 2a Figure 2b Figure 2 c 

Remark on the genus 1 case. Figure 2a illustrates a neighborhood of a point 

in the ({7(1), 5{7(2))-stratum.   Figures 2b and 2c show the pictures of the 
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image in the pillowcase for t-values just before and just after this point in the 

cobordism. 

Remark on the genus 0 case. If g = 0 the theorem basically says that just 

keeping track of the cobordism class of Mh, i.e. the number of points in the 

different strata, yields no information. We will describe an example in Section 

11 of a closed 3-manifold on which we can explicitly describe a path of pertur- 

bations during which a (Z2,5'J7(2)) point is cobordant to two ([/(I), 517(2)) 

points, and then one of the (E/(l), 517(2)) points and an (517(2), 5/7(2)) point 

are cobordant to a single (5?7(2), SU(2)) point. 

Proof. The proof works just like in the single perturbation case. The only 

difference now is that there is one more dimension in the domain, and thus 

the index computations all change by 1. 

For example, let [A] € Mht be irreducible and boundary-irreducible.  The 

linearization of 

at (A,t) is 

EUa : XA x [0,1] -> kerd*A n Lffi^y, 8u(2)) 

(6A,St) ~ *dAM{6A) + V-ht(A)6t. 

The index of 

lU o (*dAM 0 0) : TAXA 0 rtR -> ker d*A n Lln^Y, 5u(2)), 

is 3g — 2. The map 

St ^ V—ht(A)6t 
ot 

has finite dimensional range and hence is a compact operator and does not 

affect the index. 

The abelian boundary-central singularities in the genus 1 case require more 

explanation, since they did not arise in the single perturbation theorem. We 

provide this explanation next. 

For the moment, we consider 17(1) connections modulo ?7(1) gauge transfor- 

mations, as in Section 7.4. Let A be a perturbed flat abelian boundary-central 

connection for a fixed (hto1(j)) in a fixed path (/it, 0). Assume that (j) has been 

enlarged as in Corollary 64. 
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We roughly follow the proof of Theorem 39, replacing the function P4 by 

the corresponding function 

p6: (xA nfi^y.R)) x [0,1] x c2([o,i},n) 
-> ker <rA n Q\Yt R) x Sym^CH^Y; C)) 

given by 

(A',t', h't) » (II* o n^ o <:h'(t')(A'),Eessh't,(A')). 

Exactly the same argument shows that P6 is a submersion near (A, to, ht). 

We will, as before, obtain results about nearby irreducibles by first determin- 

ing what the complex cohomology along the abelian stratum is. In the present 

case, however, we must deal with extra cokernel coming from the image of 

ft0(£) ^ ReC ^4 nXh(Y, dY). Let ^ € n0(Y, R) be a generator for H0
Ath(Y) 

and let 72,73 G O0(Y, C) be forms such that {72|EJ73|S} span W0(E; C). Let 

n6 denote the orthogonal projection ft^Y, su(2)) -> ^(Y", 9Y; C) fl (rfA72)"L n 

(^73)"L- Instead of the singular strata Nk C Symu^1\H\h(Y')C)) discussed 

in Theorem 39, we consider 

N'k = {Be Sym^(1)(W^(Y; C))| U6oB has complex rank n - k}. 

(Here n again denotes the complex dimension of ^(Y; C).) N^ is a subman- 

ifold of codimension k2 + 2k (recall that we are in the g = 1 case; n6 o B is a 

map from Cn © C to Cn which is Hermitian on Cn). Let 

Z6 = P6-\{0} x Symuw(HXh(Y; C))). 

(For ease of notation, we will not bother to keep track of the neighborhoods in 

which ZQ, for example, is a manifold. These details are completely analogous 

to the single perturbation case.) The standard argument now shows that for 

generic paths h't near ht, 

Ze(h't) = Ze n ((XA D &(¥, R)) x [0,1] x {tit}) 

is a smooth 2-dimensional submanifold near (A, to, ht) whose image misses 

{0} x iV£ for all k > 1.   In other words, for (A^t^h^) in this submanifold, 

ny^ (Y, dY; c) n (^72)
x n (d^)-1 = {o}. 
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Next we show that for generic paths the boundary-central points in this 

2-dimensional submanifold are isolated. This amounts to observing that Z6 

maps surjectively onto W1(S; R) (by the argument in Lemma 33 applied to the 

R-valued forms). This implies that the boundary-central points of Z6 form a 

submanifold of Z6 of codimension 2. 

Fix a path hf
t which is generic in both the above senses. Choose any abelian 

boundary-central connection, which we now call A, with [A] G My ♦ Rede- 

fine Z6, etc., for this choice of A. 

We first verify that the entire 2-manifold Z6(^) lies in the cobordism My . 

We must check that the remaining equations (C/I;5^A72) = (OI^ATS) = 0 are 

already satisfied by everything in this set. This follows from the fact that 

C^A)enl(YiR)8JiddA>y2,dA'y3en1{Y,C). 

We still need to determine the nearby irreducibles. To this end, we broaden 

our attention now to the entire slice at A. It follows from the above arguments 

that the zero set in XA x [0,1] of the projection of ^ to ker d*A flfi-^Y, su{2)) Pi 

(dA
fy2)'L H (d^s)-1 is a smooth 4-dimensional manifold, modelled on the 2- 

manifold Z6(h
f

t) crossed with C. The stabilizer of A acts on the second factor 

with weight two. 

Finally, we examine the zero set in this 4-manifold of the two remaining 

components of ^. By an argument similar to that in Section 7.2, in a neigh- 

borhood of (i4,t) this zero set corresponds to the set of tangent vectors (a,r) 

at (A, t) such that 

[a A a]|E G R C ft2(£) = R 0 C. 

This implies that near abelian boundary-central points the cobordism has the 

structure described in the theorem.    □ 

We next define a lift 

X:M{ht}^ /:ExT*[0,l] 

of r as follows. First, we let 

A : A x [0,1] -► ^E x U(l) x T*[0,1] 
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be given by 

\(A,t,u) = (A\2,sht{A),t,Qiht(A)). 

Since A is equivariant with respect to the gauge group actions, it induces a 

map on the quotient, and we let A be the restriction of this induced map to 

M{ht}. 

Theorem 51. If M{ht} is a nondegenerate cobordism as in Theorem 50, then 

A : M,{ht} —► CY, is a Legendrian cobordism on the (Z2, Z2)- and (U(l), U(l))- 

strata, and in the g = 1 case the (Z2, U(l))-stratum. The other strata are also 

horizontal 

Proof. We must show that A is an immersion on each of these strata and that 

A is horizontal. We will prove that the restriction of A to the (Z2, Z2)-stratum 

is an immersion. The proofs for the other strata are easy generalizations. 

Let ([A], to) € M{ht}. Either 

T{[Ahto)M{ht} - (H^JY) 0 {0}) + span(a, St) 

for some (a, 6t) E TAXA 0 Tto[0,1] with St^O which satisfies 

*dAMoa + V-^t\t=t0ht(A)6t = 0, 

or else 

T(iA],to)M{ht} = H1
Athto(Y)®{0}. 

In the first case, r* : H\iht (Y) —> 7^1(E) is injective and \*(a,6t) has 

nontrivial 6t component. In the second case, the kernel of r* : HAiht (Y) -^ 

Hl(Ti) is 1-dimensional, say spanned by a. Then a — /?+GU& for some nonzero 

fi € H^JY.dY) and some b e n0(Y,su(2)). But 0 ^ (V^t-MA), 0) = 

£\ (V§-t\t=MA),a). Thus, 

A*(a,0) - (0,0,0,(V-|,=to/i,(A),a)) ^ 0. 

Next we show that the tangent vectors to any stratum are horizontal. This 

has already been done for those in Ti\ht (Y) © {0}.  For any tangent vector 
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(a,6t)eT(A,to)(Ax[0,l}), 

X.(a,6t) = (als.s^C^t^^.o) + ^ Jtx(ay A) + ^\t=toht(A)6t], 

6t,—\t=tMA)6t). 

If ([A], to) £ -^{ht} then the (^   (A), a) term vanishes. Now suppose (a, St) G 

Evaluating the connection 1-form on its image gives 

(u^du + w-ivdt)(\*(a,St)) = 0.    □ 

9. ORIENTATIONS 

In this section we show that all the nondegenerate flat perturbed moduli 

spaces (for different h G H) and the cobordisms between them inherit natural 

orientations from a choice of orientation for iT*(Y;R) and an orientation for 

su(2). (These two together induce an orientation for H*(Y] su{2))). 

Theorem 52. An orientation on H2(Y]TL)  along with an orientation for 
(7    7  } 

su(2) induces a natural orientation on any nondegenerate A4h 
2'     . 

Proof. We outline a standard argument (see Chapter 5 of [FU], for example, 

for details). We associate to a family of Fredholm maps K : X —> Fred(V, W) 

between real Hilbert spaces its index bundle, a virtual vector bundle over X 

defined as the formal difference 

Ind Kx = ker K(x) — coker K(x) 

(where dim ker K(x) is not necessarily continuous but 

dim ker K(x) — dim coker K(x) 

is). An orientation of a virtual bundle is defined to be a section of the deter- 

minant line bundle 

detfo - Z2)(x) = Adim^\^(x)) ® (Adim^\^(x))r. 

When ^2 = 0 this is equivalent to the usual definition. 
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The family of Fredholm maps we have in mind is 

K : Ay x n -> Fred(L^o(y7 ^(2)) 

e Llnl(Y, su{2)), L^0(y, su^)) e L^^y, ^(2))) 

given by 

K(Ath) fa r) = {d*AT, dAa + *dA,hT). 

Notice that for a nondegenerate perturbation h and A G (h1^), 

kerKiA,h) = T[A]Mt'Z2) and cokeri^,^ = 0 

for each [A] in Mf2'Z2). 

Since .A x H is simply connected, Ind K is an orientable virtual bundle. A 

choice of an orientation at one point, for example at the trivial connection AQ 

and the zero perturbation, determines one on all of Ind K. Since Ind K is Q 

equivariant it descends to a (virtual) bundle over 23y, which we will also call 

IndiiT. Thus we have an inclusion of virtual bundles 

rA^(z2,z2)  ^    lndK 

Mt2*2)    ► B*Y x H. 

To finish the proof, it is sufficient to show that Q is connected, since this 

implies that By x H is simply connected. A standard argument shows that 

7ro(0) = [Y,SU{2)} (see [FU], Theorem 5.13) and [Y, 577(2)] = [y,53] consists 

of a point since Y is has nonempty boundary.    □ 

Next we wish to obtain similar results for the (Z2, {7(l))-stratum and the 

([/(I), {7(l))-stratum. In the first case, ker K is the tangent space, but coker K 

is nontrivial (this was the "extra cokernel" we had to project away). The 

long exact sequence of the pair gives an isomorphism of this cokernel with 

7^(E). In the second case, H\{Y) 2* 7^(£). Either ^Xh(Y) - R and 

W^(y,ay) = 0 or W^fc(y) = Re C and nXh(Y,dY) ^ C. In either 
situation, the real part of T-C\ hiY) is the tangent space to the abelian stratum. 

In the latter situation, as we will see below, the complex structures on these 

copies of C are canonical given an orientation on TCA(Y).   Thus to orient 



LEGENDRIAN COBORDISM AND CHERN-SIMONS THEORY        389 

either stratum it is sufficient to orient IndK and 7-^(£). This leads us to the 

following construction. 

We begin by fixing an oriented maximal torus U(l) C 517(2). This induces 

a decomposition su(2) = R© C where R = TidU(i). Next we define 

A = {AeA\A\Een1(x,R)} 

G = {geg\g\xeMw(^U(i))}. 

Several comments are in order here. First, any boundary-abelian A G A is 

gauge equivalent to one in A. Second, the only gauge transformations leaving 

A invariant which are not in Q restrict to be the involution on the boundary 

values of connections in A coming from multiplication of the R valued forms 

by —1. By choosing the smaller gauge group, we will obtain the branched 

double cover Mh of the union of the boundary-abelian and central strata of 

Aih with a restriction map to the branched double cover M.^ of the abelian 

and central strata of A1E- Both are branched along the central stratum. 

We first set up the deformation complex for the perturbed flat moduli space 

in this boundary-abelian framework. We drop the Sobolev norms; they are 

the same as before. We define for p = 0,1, 

ftj(y) = {(ai,a2) G ^(y,R) ©^(y,C)| a2|s = 0} 

n?(y) = {(ai,a2)Gfip(y,R)efip(y,C)|  *a2|E = 0}. 

For A G C^^O) H A) consider the complex 

0 -+ Cll{Y) d-A (lHY) *d-$h Cl\{Y) ^ Cl0T(Y) -> 0. 

This complex could have been used to analyze the boundary-abelian strata of 

Mh- In fact it has the same cohomology groups as the standard one so long 

as A|s is not central. For the problem of orientations on these strata, it has 

the benefit that for any perturbed flat connection here H^(S) is oriented. 

We argue in analogy with the last theorem. Denote by K the correponding 

family of Fredholm operators. With the same initial data as before, we get 

an orientation on IndK. The group G is no longer simply connected. Thus, 

in order to argue that the orientation descends to Mh) we must show the 

following: 



390 CHRISTOPHER M. HERALD 

Lemma 53. The boundary-abelian gauge group Q preserves the orientation of 

IndK. 

Proof. The standard argument shows 7ro((/) = 7ro[(Y,£), (31/(2), U(l))] = 

7ro([E, [/(!)]). The latter equality holds since 7ro(SU(2)) = ^(317(2)) = 

7^2(31/(2)) = 0. In fact, we can find a representative g of each homotopy class 

[g] £ ^(G) which is the identity off of a collar neighborhood E x [0,1] C Y of 

E. Let g be such a representative. 

It is sufficient to show that when g acts on the standard trivial connection 

AQ = 0 (taking it to another trivial connection) the induced map ad(g) : 

T'CioO'') ~~* ^irAoOO ^s orientation preserving with respect to the orientation 

on Ind K. By the excision property of orientations of index bundles (see [Do]), 

the problem reduces to considering a solid handlebody, where the necessary 

property is easily verified. For example, let Y = S1 x D2, and consider the 

gauge transformation g(eze,x) = exp(i27rfc0). 

Consider the path of connections At = it27rkd6 connecting AQ to g*Ao. One 

easily checks that during the jumps in cohomology at t = 0 and t = 1 the 

induced orientations coincide with the following identifications: 

H*Ao(Y,su(2)) - iJ*(Y;R) ® (R© C), 

H*At(Y,su(2)) ^ H*(Y',TL) for 0 < t < 1, 

and 

H*Al(Y,su(2))9*H*(Y;IL)®(R®C).    □ 

This proves the following generalization of Theorem 52 to the boundary- 

abelian case. Let M^ denote the double cover of 

M(Z2yU(l))\    \M(U(1),U(1))\    \M(SU(2),SU(2)) 

branched along the centrals. 

Theorem 54. M^ inherits a preferred orientation from the one given on 

W5(y;R). 
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Note. The Z2 action on Mh does not preserve this orientation. This argument 

easily generalizes to give orientations on the cobordisms. Let M{ht} denote 

the double cover of the (Z2,[/(l))-, (J7(l), 17(1))- and (SU(2), SU{2))- strata 

of M{ht} branched along the central points. 

Theorem 55. An orientation on 7~C*d(Y', R) and one on [0,1] induce one on 

MihA      and one on M..{ht}' 

Remark. In a future paper we will use this result to give a gauge theoretic 

proof of the generalization of Lin's theorem [Li] pointed out by D. Ruberman. 

The theorem states roughly that the number of trace-free irreducible represen- 

tations of a knot group into SU(2) is the signature of the knot, counted with 

signs, equals one half of the signature of the knot. The generalization relates 

the number of representations where all the meridians go to group elements 

with arbitrary fixed trace to the corresponding equivariant knot signature. 

Note. There is no continuous lift of a neighborhood of an abelian boundary- 

central point in M{ht} to ME- This may be seen as follows. 

Let Ai(t), 0 < t < 1, be a smooth path of perturbed flat boundary-abelian 

connections (where the perturbation depends on t) whose image in M^,} lies in 

the boundary of the (Z2, C/(l))-stratum and passes through the (C/(l), SU(2))- 

stratum. Similarly, let ^(t), 1 < t < 2, be a smooth path of perturbed flat 

connections such that ^(1) = Ai(l) and ^(2) is gauge equivalent to A1(0), 

and such that for 1 < t < 2, [^(t)] is in the (Z2, i7(l))-stratum of M^}. 

Then the composition A(t) = (A2 o J4I)(£), 0 < t < 2, is a path with [A(t)] 

tracing out the loop in the cobordism shown in Figure 3. 
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Figure 3 

If the loop [A(i)] is sufficiently small then there is some loop 7 C E such that 

hol7 ^4.(0) and hol7 A(l) are in different components of (7(1) \{± Id}. The path 

holyAtf) C 81/(2), 1 < t < 2 connects hol7A(0) to hol7 A(l) without hitting 

±Id. Thus it is impossible to conjugate the path hol7 A(t) C SU(2), 1 < t < 2 

into U(l) by a path of SU(2) elements fixing the endpoints. In other words, 

the path .A(£), 0 < £ < 2, is not gauge equivalent (by a continuous family of 

gauge transformations) to a closed loop of boundary-abelian connections. 

This implies that the end of the (Z2, (7(l))-stratum of M^ limiting to a point 

in part of the (C/(l), f/(l))-stratum of M^ becomes, after the boundary central 

point in the cobordism, an end of the (Z2, t/(l))-stratum of Mhl limiting to 

the opposite lift of the (17(1), C/(l))-stratum. In other words, the way that 

the (Z2, £/(!))- and (J7(l), C/(l))-strata of the M^ connect changes. Figure 4a 

and Figure 4b show the image of M^ in the pillowcase before and after the 

boundary-central abelian point in the cobordism. 
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Figure 4a 
Figure 46 

This phenomenon can be realized by enlarging the bump functions in Exam- 

ple 2 (in Section 11) sufficiently that the top abelian arc goes over the central 

point in Ms. 

10. TECHNICAL RESULTS ABOUT THE PERTURBATIONS 

In this section, we prove some technical lemmas concerning properties of the 

admissable perturbation functions. The results are necessary for the proofs of 

the genericity results in Sections 6 and 7. We begin by examining functions of 

the type tr h.ole(A) where £ : S1 —> Y is an embedding. Let £ be such a loop, 

and let a be any 1-form. We will think of £ as a map £(s) : [0,1] —► Y. The 

definitions of hole(s,A) and i^fs, i; A] are given in section 6.1. 

Lemma 56. (This is equation 8.3 in [T].) The first and second derivatives of 

tr hol^ A are given by 

Dtr holi(A)(a)= [    tr(hole(s,A)a(£{s))(£*A))ds 
J[ori] ds 
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and 

D2tr hol*j4(a,&) 

=      f     tr(P4t,5;A]a(£(5))(4(^))P4^^^]K^))(4(^)))^A^. 
[0,1] x [0,1] 

Proof. We follow the proof in [DF]. By pulling back the connection and the 1- 

form a along £, we reduce the problem to the case of an SU{2) bundle over the 

circle. Fix a trivialization of this bundle, and let P(s, A) denote the parallel 

translation by A from 0 to s. P(s, D) satisfies the equation 

^sP{s,A) = -A{s)P{s,A). 

In terms of this notation, the problem reduces to showing that 

4|tassotrP(l,il + to)= / ti{P{s,A)P{l,A)P{s,A)'1a{s)) 
at Jo 

for any 1-form a on the circle. 

First consider the case where A and a take their values in a 1-dimensional 

subspace ^(1) C su(2). Then 

P(l,A + ta) = exp(     A(s) + ta(s)ds) 
Jo 

Therefore, 

d f1 f1 

— \t=o tr P(l, A + ta) = ti /   a(s)ds exp( /   A(s)ds) 
at Jo Jo 

- / tT(P(l,A)a(s)ds) 
Jo 

= [ tr(P(s,A)P(l,A)P(s,A)-1a(s)ds). 
Jo 

This proves the lemma in the abelian case. 

Next we note that there is a (^-dependent) gauge transformation gt = 3(5, t) 

on the bundle S1 x SU(2) such that g^(A + to) is abelian. Let £(s) = 

5(s,0)~1^|t=o3(5,t), and let Af = g^A. A gauge transformation doesn't 

change the trace of the holonomy of a connection. Thus 

^|t=otr P(l,5t*(A + ia)) = ^|t=otr P(l,A + ta). 
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On the other hand, since g^ (A + ta) is abelian, we can compute 

||t=otr P(l,g;(A + ta)) 

= ^|t=o tr exp( /  g^—gtds + g^Agt + tg^agt) 

= tr (exp( /  {go1—gods + g^Ago + tg^ago) 

^l*=o(^r]'^dtds + gtlAgt + tg^agM 

= f tr(hol«(s,5*A)5o-1a5o)+ / tr(ho\e{s,g*oA)g*0{A)0 
Jo Jo 

= [1tv(go1P(s,A)P(l,A)P(S,A)-1gogo1ago) + f' tv(Ulmhok(s,A')A'0 
Jo Jo 

= f1 tr(P(s,A)P(l,A)P(s,A)-1a(s)) 
Jo 

= / tr(hol^(5,A)a(5)) 
Jo 

= [ tr(nIm holi{s,A)a{s)). 
Jo 

The term /0 tr(nimhol^(5, A^A'f;) vanishes because, since A' is abelian, 

rtimhol^s, A')A' is a multiple of the identity, which means Ilimho\e(s^Af)Af^ 

is in su(2) and hence is traceless. 

The formula for the second derivative, like that for the first, is easily verified 

in the abelian case, and the general case is handled by noting that the formula 

is gauge invariant.    □ 

The above computations immediately give the following bounds. (See [T] 

for some more details.) 

Corollary 57. For any smooth 1-forms a, b and embedded loop H, 

ptr hol£(A)(a)|<C||a||L2CS1) 

and 

|£>2tr hole(A)(a,6)| < C\a\^(s-m^^) 

for a constant C independent of A. 
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If 7 : 51 x D2 —» Y is an embedded solid torus, we can mollify the function 

tr hol7(,9ix{o,o})(^4) by averaging over the disk D2. Let r](x) be a radially sym- 

metric bump function on D2 with support away from the boundary satisfying 

fD2 rj(x)d2x = 1 where d2x is the standard measure on D2. Define 

py(A) = /   tr(holy{six{x})(A))r)(x)d 
JD

2 

2x. 

Lemma 58. Given any embedded loop £ : S1 —> Y and any smooth 1-forms 

a,b on Yj the function Dtv hol£^4(a) : A —> R can be approximated by the 

function Dp7(A)(a) for a suitably chosen thickening 7 : 51 x D2 —> Y of L 

Proof. For a E fl1^1 x D2,su(2)), let ||a||L2 ^XD
2
) denote the anisotropic 

Sobolev norm (see [H]) which meatsures only second derivatives of the form 

dxdx a ^or coordinates x = (xi,X2) on D2. Then 

IKz)||L2(D2) = \\<l\\Ll2(SixD*) < IM|L2(SixD2), 

where a(x) : D2 —> L2(S1,su(2)) is the map corresponding to a. Combining 

this with Lemma 57, we get that 

£>tr hol7isix{x})A(a) G L2{D2). 

It is now a standard fact that D tr(hol7(six{(u,v)})(A))(a) can be approximated 

inL2(Z>*jty- 

/. 
DtT{hoi^s^x{x}){^))W —2 " X 

ID2   t2 

(see, for example, [GT]), letting t —> 0. Since by the Sobolev Embedding 

Theorem L\ —> C0, the convergence is pointwise in the disk, which means that 

we can approximate Dtr hol£^4(a) for any loop L The effect of shrinking t 

may also be accomplished, however, by choosing 7 to be a narrower thickening 

of (.. Essentially the same proof works for the second derivative.    □ 

Before showing that there are sufficient perturbations available to prove the 

genericity results in this paper, we recall some relevant facts about twisted 

cohomology and homology with coefficients in a flat bundle. 

Let A be a flat connection and consider the homology of Y with coefficients 

in the flat su{2) bundle, which we will denote by adA, determined by A. The 

chain groups are generated by covariantly constant lifts of simplices in Y. 
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(One could just as well take covariantly constant lifts of singular chains in Y.) 

By the de Rham Theorem for twisted coefficients, H^Y) £ H^Y^adA) ^ 

Hi(Y',adA)*, where the last isomorphism is Horn duality. Note that for any 

loop £, the lift of £ to adP given at the point £(s) by nIm hol^A, s) is covariantly 

constant. We denote this lift simply by Ilimhol^ A 

Proposition 59. // A is an irreducible flat connection, then there exists a 

basis for the twisted homology consisting of covariantly constant lifts of loops 

in Y each of which has noncentral holonomy. 

Proof Since A is irreducible, we can find 3 loops ai, a2, and as with a common 

basepoint such that nIm holai A are 3 covariantly constant lifts of these loops 

whose values at the basepoint are linearly independent. Reorder, if necessary, 

so that the first k of these horizontal lifts are linearly independent in homology 

and the remainder are linearly dependent with the first k in homology. 

Now consider a loop £ around which A has central holonomy. The space V^ 

of covariantly constant lifts of £ is 3-dimensional (note that some lifts might 

be homologically nontrivial). The span in H\(Y) of 

{nIm holai A,..., nim holafc A, nIm holai*i A, Uim hola2*€ A, Uim ho\a3#i.A} 

is the same as that of 

Span{nim hol0l A,..., nim holafc A) + V*. 

Using this fact the construction of a basis satisfying the proposition is straight- 

forward.    □ 

Choose a basis {di}^=1 for Hi(Y]adA) as in the Proposition. Then we can 

find a Horn dual basis {c^}^ for H\(Y) satisfying 

/  tr^aj-) = -Sij. 
J en 

Here a* is a horizontal lift of a*. This choice of bases will simplify our compu- 

tations enormously. 

Consider a loop a* : [0,1] —> Y in this collection. Use parallel translation to 

trivialize the pulled back bundle a*ad(P) —> [0,1]. With respect to this triv- 

ialization, a* is a constant element of su(2), and /   ^(a^a^) = — (a^, fa.'cti). 
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Since A\ai has noncentral holonomy, then the only possible covariantly con- 

stant sections di are multiples of nIm holai (^4). 

Lemma 60. Given any flat irreducible connection A, there is a finite collec- 

tion A = {A}£=i of disjoint loops £ : S1 —» Y such that the map 

(D tr hoi,,,..., D tr hol£J : H^Y) C TAA - Rm 

is injective. 

Proof Choose bases {ai}*=1 and {®i}i=i as above. It is then clear that 

/  tr((holaiA)aj) = -(ai,      a^djSij. 
J di J (Li 

with dj 7^ 0. (This is because a* and 11^ holai A are both nonzero sections 

of the 1-dimensional space of covariantly constant sections over a*.)    D 

In order to generalize this result to perturbed flat connections, we need the 

following explicit description of the perturbed flat connections on one of the 

solid tori 7i(5
1';x D2). Let A* = 7i(5

1 x {!}) and ^ = 7,({1} x dD2). 

Lemma 61. If^A) = 0 then A is flat onYXU^-y^xD2). If holXi(A) = 

exp(i0Ai); then 

ho\fli(A)=exp(igi(Oxi)) 

where 

&(0Ai) = -27r^(2cos^i)sin0Ai. 

Remark. Any arbitrary smooth odd 27r periodic function g^O) with ^(0) = 0 

can be achieved by a suitable choice of hi. 

Proof. From the formula for V/i, hol^^xix}) A is independent of x, since 

the curvature has no ds component. Since the curvature is abelian on each 

solid torus, we can exponentiate the integral over {s} x D2 to determine the 

meridinal holonomy.    □ 

This relation between the longitudinal and meridinal holonomies makes it 

possible to explicitly calculate the perturbed flat solutions in certain cases. 

We describe some examples in Section 11. It also implies that we could define 

the perturbations solely in terms of the representations of TTI. It is possible to 
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reinterpret the problem as follows. We can view Mh(Y\Ur=i lii^1 x D2)) as a 

symplectic relation in -MEXIIILI •A^a(7i(51xD2))' -Mh is then the composition of 

this relation with a well understood symplectic submanifold of M.d(ri(s
1xD2)) 

(the perturbed solutions on the solid tori). There is some trickiness when 

hoUi = 1. See Example 2 in the next section. 

The above description of perturbed solutions A makes it also possible to 

write down, up to gauge equivalence, what the connection 1-form of A is. 

Corollary 62. For A G CJTHO)* A^^XD
2
) is gauge equivalent to a connec- 

tion of the form 

■ igj{eyiY>iO)r]{xi^)d^]dxi 

for some 9, where x = (aa,^) are coordinates on the disk. 

Lemma 63. Let (/i, 0) be a fixed admissible perturbation and let A G C/^W 

be irreducible. The collection (j> may be enlarged to a collection (fiUip of disjoint 

embedded solid tori 7i : 51 x D2 —> Y such that the subspace of Lift1 (Y, su(2)) 

spanned by {V /D2 tr(hol7.(x) A)r](x)d2x}i==1 orthogonally projects onto H\ih(Y). 

Proof. By Lemma 58, we may as well consider loops instead of solid tori. 

Lemma 60 proves the desired result in the case when h = 0. Suppose that 

a G H\h(Y) and Dtr hol7A(a) = 0 for all £ disjoint from (/). Then the 

proof of Lemma 60 shows that a = 0 on the complement of </>. By the Mayer- 

Vietoris sequence, it suffices to show that if al^^xD2) is a nonzero element 

JDtr(hol7i(A)(a))^0, 

which can be seen directly from the explicit description of the perturbed flat 

connections on the perturbation solid tori.    □ 

Consider now the case of an abelian perturbed flat connection A. The 

action of the stabilizer of A gives a decomposition of 7i\(Y) into H^Y; R) © 

H^Y] C). The proof of Lemma 60 has the following corollary. 
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Corollary 64. For any abelian connection A £ C/T^O) there is a finite collec- 

tion A = {li}^ of disjoint loops £ : S1 -* Y such that for each A G K'the 

map 

(D tr hole, ,...,£> tr hol.J : H^Y; R) ^ Rm 

is injective. 

Suppose for the moment that A is an abelian flat connection. We decompose 

i7i(y; adA) into #1(1^; It)®Hi(Y; adAc) where adAc is the corresponding flat 

C bundle. Notice that it is impossible to find a loop £ with fe tr(hol£(>l)/3) 7^ 0 

for any /? G H^(Y,C). Because of this, a different approach is needed to 

understand the normal bundle of the abelian stratum. We lay the groundwork 

for this approach with the following lemma. 

We choose a complex basis {an}^=1 for Hi(Y] adAc) and a curve ao around 

which A has noncentral holonomy. We may assume that the holonomy is e^0, 

for some 0 < #0 < ^ and that the curves an are disjoint and all have the same 

basepoint j/o- 

Let S = [0,1]UA%=1S
1/ ~ where the wedge point is identified with 1 G [0,1]. 

Let a' = (ao, ai,..., a^) : S —> Y and let a*(adP) be identified with '5 x 577(2) 

by picking an identification at yo and using parallel transport to extend it. 

Note that under the map ao : S —> Y the fibers at 0 G [0,1] and 1 G [0,1] are 

identified by the action of holao A on su(2). 

In particular, we will be interested in the complex line sub-bundle of adP 

(and its pullback to S) arising from the decomposition of the Stab A action 

into irreducible representations. The holonomy subgroup of U(l) acts with 

weight two on this complex line bundle. We identify sections of the complex 

line bundle with maps to the j — k plane, using the trivialization above. By 

modifying the basis for -ffi(Y; adAc) chosen at the outset, we can assume that 

the {a>n}n=i have no component in the k direction, which will simplify some 

of our computation. 

Let {ai, iai,..., a^, io(.N} be the real basis for Ti}A{X] C) which is Horn dual 

to the real basis {ai, iai,..., a/v, WN} for Hi(Y\ adAc). 

Let {£i}fLi be the following set of loops in Y: 

{ttn}o<n<iV U {an * am}o<m<n<iV U {an * am * tXo}l<m<n<iV- 
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Here an * am means the product of an and am as fundamental group elements. 

Let Sym£/^(?^(Y'; C)) be the set of all symmetric, U(l) invariant (here U(l) 

acts by the diagonal action on pairs of complex-valued forms), real-valued 

bilinear forms on H\(Y] C), which we identify with the set of all Hermitian 

complex matrices by using the basis {an}. 

Proposition 65. Given a flat abelian connection A, if {4}^i are chosen as 

above, then the map RM —> Sym^^if^y; C)) given by 

M 

(&1, • • • , M -> (E bmD2 tr   h01^ A)\n\(Y;C) 
771=1 

is a submersion. 

Proof. We begin with the loops of the form an. In this case, since there is no 

holonomy and we have trivialized using parallel transport, it is easy to check 

that 

D2 tr holan A(ap, aq) = tr(( /   ap){      aj), 
Jan Jan 

and by our choice of basis, (/a ap) is nonzero exactly when n = p. Further- 

more, 

D2 tr ho\an A(ap, iaq) = 0 

for all i,p, and q. Thus loops of this form allow construction of arbitrary real 

diagonal matrices. 

Next we consider loops of the form an * am. Again there is no holonomy 

and one easily checks that the matrix corresponding to 

£>2tr holari*aTn A 

has (the same) nonzero real entries in the nm and mn entries. The condi- 

tion that they are real is again verified by noting that the second derivative 

evaluates to zero on (Q>P, iaq) for all p and q. 

It remains to show that by using curves of the third type, we can achieve 

arbitrary imaginary parts to the off-diagonal matrix entries (subject to the 

Hermitian condition). We do that now. 

Consider the loop an*am*ao, where n < 'm' We break up the interval domain 

of an * am * ao into thirds (corresponding to the three factors) and integrate 
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over the 9 resulting regions separately. Note that the parallel transport factors 

in the formula for D2 tr hol^ A simplify to 

n ' '   J      \ exp(z0o) for s > t. 

when we compute in the trivialized pulled-back bundle over S. 

One can check, in this manner, that 

D2 tr holari*flm*ao A{ap, iaq) - D2 tr holaT7*ao A{QIP, iaq) 

L 
D tr holam*ao A(ap, iaq) + D2 tr holao A(ap, iaq) 

tT(exp(i90)ap(an(s))iaq(a7n(t)))ds A dt 
[0,1] x [0,1] 

+ / tr(ap(am(s))exp(i60)iaq(an(t)))ds Adt 
«/[0,l]x[0,l] 

=   tr(zexp(i(9o)( /   ap)i( /    aq) + {       ap) exp(z0oM /   ceg)) 

=    -sm9otr((      ap)(      aq) - ( /   Q;P)(/    a,,)) , 

which is nonzero exactly when the unordered pairs {p, q} and {m, n} are 

equal.    D 

Corollary 66. For any abelian A G (^(O), there is a finite collection A = 

{£i}i=i of disjoint loops such that the map RL —> Sym(H\ h(Y; C)) given by 

L 

(bu...,bL)->y£biD
2tT hok, A 

2 = 1 

is a submersion. 

Proof. The generalization to the perturbed case follows from a Mayer-Vietoris 

argument and the fact that Ti^^(jiiS1 xD2); su(2)) is either 1- or 3-dimensional, 

the latter only when ^l^ixD2 is central, in which case A is actually flat on 

S1 x D2.    □ 

Finally we need a version of the last result for central connections. Note that 

the stratum of flat central connections does not change under perturbation, 

because the gradients of the perturbation functions vanish if the holonomy 

along the perturbation curves is central. Our problem is to understand the 

normal bundle of these points. 
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Let A now be a central flat connection. If we pick a basepoint in Y and an 

identification of the fiber of adP with su{2) and also pick a 1-dimensional sub- 

space R C su(2), then there is a canonical isomorphism H\th(Y) = H\h(Y\ R) 

®su{2). 

There is one difference from the abelian case considered above. Since 

Himhol^A = 0 for every loop £, one can check from the formula for the 

second derivative that for any orthogonal su(2) elements v and w and any 

a,/?e«iffc(y;R), 

D2 tr ho\e A(a ®v1p®w) = 0. 

The bilinear form D2 tr hol^ A is invariant under the action of Stab A = 517(2). 

For simplicity choose a basis {(^i}i=i for JU^yjR) and let {^1,^2,^3} be an 

orthonomal basis for su(2). In terms of the basis 

{ai (8) vi, ai <g> V2, OLI ® V3,..., a^ ® Vi, ai ® ^2, «i ® V3} 

the bilinear form D2 tr hol^ ^4 has the form of a symmetric matrix built up of 

3x3 blocks each of which is a multiple of the identity matrix. We denote the 

space of such matrices by Syio[iSU^2\H1
Ah(Y)). The following proposition is an 

easier analogy of Proposition 65. 

Proposition 67. For any collection of loops {ii}^=1 which generate Hi(Y] R), 

the map Kk -+ Symst/(2)(^^(y)) given by 

k 

{bu...,bk)^Y/biD
2ti holt, A 

1=1 

is surjective. 

11. SOME REMARKS AND EXAMPLES 

One should like to understand the equivalence class of r o Sh : Mh —> £>i± 

up to perturbation in its own right. This equivalence class is a topological 

invariant of Y. Theorem 50 provides an upper bound for this equivalence 

class. 

Theorem 68. Not every oriented stratified Legendrian cobordism ofros^My) 

can be achieved by a perturbation of the Chem-Simons function.   In other 
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words, the equivalence relation defined by the cobordisms in Theorem 50 is in 

fact larger than the equivalence class defined by perturbations. On the other 

hand, the equivalence defined by area preserving ambient isotopy or Hamilto- 

nian flow is smaller. 

Proof. We prove the first statement by showing that there are Legendrian 

cobordisms which, if possible, would violate the invariance of Floer homology 

under perturbation. For the second statement, we demonstrate a perturbation 

which changes the topology of a stratum of the moduli space. 

The unperturbed flat moduli space for the right-handed trefoil knot com- 

plement consists of an abelian arc together with an arc of irreducibles which 

hits the abelian arc at two interior points. The image in the pillowcase MT* 

is drawn in Figure 5a. 

When a +1 surgery is performed on the right-handed trefoil knot, a homol- 

ogy 3-sphere is obtained which admits exactly two irreducible flat connections 

(up to gauge equivalence), namely the two intersections of the r(A4y) with 

the straight arc of abelian connections which extend over the Dehn filling. See 

Figure 5b. 

Figure 5a Figure 56 

The Floer graded chain complex (from which the homology is defined) is 

generated by these two flat connections. By [Y], the difference in gradings 

between them can be calculated as follows. Let 71 and 72, respectively, be the 

irreducible arc of M(S3 \ trefoil) and the abelian arc of M(S1 x D2) between 
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the intersection points. The difference in grading is equal to a relative Maslov 

index of the pair (71,72) plus twice the number of corners (fixed points the 

Z2 action) bounded by 71 o 72. For our purposes, the sign conventions are 

not important. The gradings of the generators are easily seen to differ by 4. 

Hence the boundary operators are trivial and the Floer homology consists of 

two copies of Z whose gradings differ by 4. 

Now suppose we perform the series of oriented Legendrian cobordisms shown 

in Figure 5c and 5d. The result is that we now have two generators whose grad- 

ings differ by 2, and so this cobordism has altered the Floer homology. Floer 

showed the invariance of the homology under perturbation, so this Legendrian 

cobordism cannot be possible by perturbation. Notice that it is also possi- 

ble to create this pair of cancelling kinks by a homotopy through immersions 

preserving the integrality condition (without a birth of a figure-eight).    □ 

Figure 5c Figure 5d 

Remark. It follows from a similar argument that the Maslov index plus twice 

the number of pillowcase corners enclosed must be zero modulo 8 for any 

smooth closed irreducible component in Mh(S3\knot) for any knot. A similar 

statement can be made about smooth closed abelian components there is a 

correction term involving the number of bifurcation points counted with sign. 

Next we give some examples of paths of perturbations during which changes 

in the topology of the strata of Mh take place. The first will demonstrate that 

births of figure-eights sometimes occur and that at least sometimes moves of 

type (c) in Theorem 47 sometimes occur. In this example, the changes take 
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place in the ({/(I), f7(l))-stratum of Mh for Y = S1 x I?2, but we explain at 

the end how to generalize to get the same changes in the (Z2, C/(l))-stratum 

for other knot complements. The second example will demonstrate an instance 

when g = 1 in which a cancelling pair of bifurcation points are born along the 

([/(I), [/(l))-stratum, with a (Z2, U(l)) arc connecting them. 

We first make one observation regarding the framings chosen for the per- 

turbation solid tori. The map 7; : S1 x D2 —> Y determines a natural choice 

of longitude A; = 7^(S,1 x {1}) and meridian fc =. 7z({l} x dD2) for the im- 

age solid torus. As described in Lemma 61, the perturbed flat solutions on 

7i(5f.1 x D2), up to gauge equivalence, have the form 

hol^i = exp^Oxi) and hol^ = expfi^J 

where 0^ = ^(^AJ? SO they form the graph of the fuction gi (in the appropriate 

angle coordinates). If we describe these solutions in terms of a different framing 

A = Xi — k/jti (and the same meridian /Zf), the solutions solve the equation 

Olii=gi(0x + keIH). 

This is no longer the graph of a function of 0\. It is, however, the image of 

the earlier graph 0^. = g^xj under the linear shearing homomorphism 

(0WA) = 
1  0 

-k   1 
^ 
e K 

EXAMPLE 1. Let Y = S1 x D2. Let A = 51 x {1} and n = {1} x dD2 be a 

longitude and meridian for Y. Let 71 and 72 be disjoint thickened curves in Y 

which are parallel to A but whose framings differ from those coming from the 

trivialization of Y by — 1 and +1, respectively. The effect of choosing these 

framings is that the solutions will satisfy 

Next we choose functions giit as follows. Let <7i,t(#) be a fixed small pos- 

itive bump function with support, say, in [f, f ], independent of t (t is a 1- 

dimensional parameter which will parametrize our path of perturbations). Let 

92,t{0) be a slightly taller positive bump function centered at t for ^ < t < ^L. 
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Figure 6 shows solutions (0W,0A) (we only show the solutions with 0Mi ^ 

0) and the resulting solutions (0M, 0A) for descending values of t. Note that 

holM(A) = hol/11(A)hol/w(i4). 

9i(flx) 
r(A4) 

Figure 6a 

I 

Figure 66 

Figure 6c 



408 CHRISTOPHER M. HERALD 

Figure 6d 

Figure 6e 

Remark. To accomplish the same topological changes in of the (Z2,£7(l))- 

stratum of, for example, the trefoil knot complement, we can simply do the 

same perturbation on the same pair of solid tori 7* contained in a neighborhood 

AT of a linking circle to the knot. See Figure 7. Let Ain be a longitude for the 

knot which passes just inside of N (further from d(S3 \ knot)) and let AoUt be 

the usual longitude on dY. Then Aout and Ain differ by 

Aout = Ain/Xjv 

and /Xknot = A*. The net effect of doing the perturbation on N is to super- 

impose the pictures in Figure 6 onto each section of r(M(S3 \ knot)) which 

passes through the band -2 < tr(^knot) < 2. 
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Knot 

Figure 7 

Remark. It appears from the computer generated pictures made by Mathias 

Rogel that for the lOs knot complement M has a figure-eight component before 

perturbing. This was pointed out to me by Eric Klassen. 

Figure 8a 
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EXAMPLE 2. For simplicity we situate our second example on Y = S1 x D2. 

Choose 71,72 parallel to A, both with framing —1. In this example, the odd 

parity of the functions ^ will be crucial. Thus we draw the solutions for 

6\ € [—7r,7r]. Let gi,t(Q) = 2sin(0) be fixed (independent of t). Note that the 

sheared graph of glit hits the vertical line 9\ = 0. Let g2,t be a small bump 

function with g2,t(0) = 2t0 when 0 < 6 < e and #2,t(#) = 0 when 6 > 2e5 

extended to be odd and periodic. When t is slightly less than 1, the picture 

in the double cover of the pillowcase looks like Figure 8a. When t > 1 there 

are two new intersections of the graph with the vertical line 9\ = 0 near each 

previous intersection, having the form hol^A) = exp(^/Xl ± 0M2) where the 

Op. 7^ 0 satisfy 0^ = gi^O^). These two abelian perturbed flat connections 

are connected by an arc of irreducible perturbed flat connections, namely 

Yio\x{A) = 1 and holMl(A) = exp(i^1), 

and 

holM2(A) = exp((cos</>i + sin^j)^). 

The image of this (Z2, U{\)) arc in the pillowcase is vertical. See Figure 8b. 

Figure 86 
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Theorem 69. There is a perturbation along curves contained in the unknot 

complement so that there are irreducible perturbed flat connections on S3. 

Proof. If we consider 53 to be the ^-surgery on the unknot, then the perturbed 

flat solutions on the unknot complement which extend over the Dehn filling are 

exactly those whose images in the pillowcase lie on the vertical edge {hoUCA) = 

id}. Therefore, the perturbation in the preceding example provides whole arcs 

of irreducible perturbed flat solutions on S3. This situation is degenerate, of 

course, since the (Z2,C/(l))-stratum for a 3-manifold with empty boundary 

should be O-dimensional. It can easily be made nondegenerate by adding 

another small perturbation along the curve /x. This is left to the reader.    D 

Finally we give the example promised in the remark after Theorem 50. 

EXAMPLE 3. We use consider again the +1 surgery on the trefoil knot. We 

consider a family of perturbations using a curve 7 contained in the Dehn filling. 

We draw the images of the flat moduli space for the knot complement and the 

perturbed flat moduli space for the Dehn filling, and the cobordism for the 

closed manifold is traced out by their intersections. See Figure 9. 

Figure 9a Figure 96 
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