COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 2, Number 1, 167-172, 1994

CONVEX HYPERSURFACES WITH PINCHED
SECOND FUNDAMENTAL FORM

RICHARD S. HAMILTON

1.

In this paper we prove the following result.

1.1. Main Theorem. Let M™ be a smooth strictly conver complete hyper-

surface bounding a region in R"*1. Suppose that its second fundamental form
is e-pinched, in the sense that

Hij Z €Hg¢j
where g;; is the induced Riemannian metric, H;; the second fundamental form,

and its trace H is the mean curvature, for some € > 0. Then M™ is compact.

This result can be used to simplify the proof of Huisken’s theorem [Hul]
for the mean curvature flow of a convex hypersurface in Euclidean space. We
would especially like to thank Mike Gage, who pointed out the relation of the
pinching condition to quasi-conformal maps, and Burt Rodin, who showed us

the basic estimates for quasi-conformal maps.

2.

Suppose now that M™ C R™*! = R" x R! is written as the graph over a
convex open set U C R” of a strictly convex function

y:f(xlv" ,an)

such that y — 400 as X = (z1,...,x,) approaches the boundary of U. By

translating upward if necessary, since y is bounded below we can assume y > e
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everywhere, so that nény > 0. Let
ds® = g;;dz’da’

be the Riemannian metric induced on M, so that

dy Oy
Jis ”+8a:’ oxI

The following observation is fundamental to the proof.

Theorem 2.1. The conformally equivalent metric
- ds

 ylny

is complete with finite volume.

Proof. First we show ds is complete. For any path going to co we have y —
400 and ds > dy. Therefore its length L satisfies

Lz/ -d—yzﬁnﬁny] =00
b b

which is what we desire. [

To estimate the volume, we observe that, because y is a strictly convex
function of z, outside of a compact set we must have

Oy

>
oxt 6

for some § > 0. Let dV denote the volume element on M in the induced metric

ds, which in X coordinates is

_ Oy By) 19,2 n
dV = \/det (LJ + et D dz dx dz

and let dV,, denote the volume element of the part of M between height y and
height y + dy. We can divide M into n pieces where dy/dx! is largest, or
dy/dz?, or so on, and estimate dV,, from above on each piece. Where dy/dz!

is largest, we take y, z%,... ,z" as coordinates. Then

' Oy Oy ) Oy
\/det (I” o0t 0u7) = C|oat
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since Ay/dz! is larger than the other derivatives, and |0y/dz*| > § > 0. This
makes
dV < Cdydz®- - - dz™

on this patch. Moreover our gradient estimate shows that
|X| < Cy
for a suitably large constant. Therefore
dV, < Cy*'dy

since the region of integration over z2,...,z" to get dV, from dV has its

SC/ dr‘i < 00
yln"y

volume bounded by Cy"~!. Then

<

d1~/y < dy and

yln"y
3.

By contrast we have the following result.

Theorem 3.1. Let U be an open subset of the unit sphere S™ which is not
empty and whose closure is not the whole sphere. Then there is no metric on

U conformal to the round metric which is complete with finite volume.

Proof. By hypothesis we can find some point N which is contained in U, and
some point S which avoids the closure U. By a conformal transformation, we
can take NNV to be the north pole and S the south pole. We can then find an
€ > 0 so that the e-ball around N lies in U, while the e-ball around S avoids
U. We can then find a conformal map of the sphere S™ minus these two balls
to the cylinder S™! x [0, L], taking the boundary of the e-ball around N to
5™~ x {0} and the boundary of the e-ball around S to S™~* x {L}. The part
of U outside the e-ball around N will map to some relatively open subset W
of the cylinder which contains S*~* x {0} and avoids S"~* x {L}. The subset
W will be a non-compact manifold with one compact boundary component
S"~1. Any complete metric on U wuth finite volume conformal to the round
metric on S™ would give a complete metric with finite volume on W conformal

to the product metric on S*~! x [0, L]. We show that such cannot exist.
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We introduce coordinates © = (y,...,6,_1) on S* ! and ¢ on [0, L]. Let
do denote the metric on S™! and du the volume form. Then ds? = do? + dt?
is the product metric on ™! x [0, L], and dV = dudt is the product volume
form. For every © € ™1, there will be a first point ¢ = h(©) where the pair
is no longer in W, Of course h may not be a continuous function, and the pair
may re-enter W for larger values of ¢. This does not matter. Any conformally

equivalent metric on W is given by
ds = p(©,t)ds

for some function p defined at least for 0 < ¢ < h(©). The corresponding

volume form is
dV = p*dudt.

If the total volume V of the conformally equivalent metric is finite, we have

// p"dp,dt:V<oo.
w

By Holder’s inequality

n

[ s { o)™ { ], )

// ldudt < L vol (S*1) < oo
w

and surely

Therefore

// p(©,t)dudt < co.
0<t<h(©)

On the other hand, if we integrate first in ¢, we see that

h(®) h(©)
/ { / p(@,t)dt} dy > vol (S™)in / (O, 1)dt
Sn—1 0 0

and therefore
h(©)
inf/ p(©,t)dt < 0.
© Jo
But along a path where © is constant we have ds = pdt. Thus there is some

© where the path from (0,0) to (O, h(©)) has finite length. This shows that
the metric is not complete, and proves Theorem 3.1. [
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4.

It only remains to observe that the Gauss map gives a diffeomorphism of
the convex hypersurface M™ onto an open subset U of the sphere S™ which
lies in a hemisphere. Thus U is not empty and its closure is not all of S™.

However, the pinching condition
Hij > eH Gi;

is equivalent to the assertion that the Gauss map is quasi-conformal. Since M
has a conformally equivalent metric which is complete with finite volume, so

must U. But this is impossible.

5.

Finally we indicate how to use this result to prove Huisken’s result [Hul] on
compact convex hypersurfaces shrinking to a point under the Mean Curvature

flow. Huisken shows that the pinching estimate

is preserved by the flow. This is an easy consequence of the maximum princi-
ple. The usual derivative estimates guarantee that after a short time we can
control all the covariant derivatives of the H;; in terms of the size of H;; itself,
which in turn is controlled by H alone when H;; > 0. As a result, the solution
surely exists until H is unbounded as t — T for some T < co.

Moreover a standard argument allows us to “blow up” the singularity by
taking a limit of a sequence of translations and dilations of solutions. We

distinguish two cases. In Case I, where we have
limsup (T —t)H? = A < o0

the limit will be a solution to the Mean Curvature flow on —oco < t < A with

H =1 at the origin at time 0 and

A
HL —
0< -

everywhere for all time. Because of the pinching condition our result shows

the limit must be compact, and then Huisken’s uniqueness result [Hu2] shows
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it must be the round sphere as desired. In Case II, where we have
limsup (T — t)H? = o0

the limit will be a solution to the Mean Curvature flow on —co < t < co with

H =1 at the origin at time 0 and
0<H<I1

everywhere for all time. The Harnack estimate applied with the strong maxi-
mum principle [Ha] shows this limit must be a translating soliton. All we need
observe, however, is that it lasts forever and hence cannot be compact. Then

the pinching estimate gives a contradiction, so this case is ruled out.
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