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1. 

In this paper we prove the following result. 

1.1. Main Theorem. Let Mn be a smooth strictly convex complete hyper- 

surface bounding a region in IRn+1. Suppose that its second fundamental form 

is e-pinchedj in the sense that 

Hij > eHgij 

where g^- is the induced Riemannian metric, Hij the second fundamental form, 

and its trace H is the mean curvature, for some £ > 0.  Then Mn is compact. 

This result can be used to simplify the proof of Huisken's theorem [Hul] 

for the mean curvature flow of a convex hyper surf ace in Euclidean space. We 

would especially like to thank Mike Gage, who pointed out the relation of the 

pinching condition to quasi-conformal maps, and Burt Rodin, who showed us 

the basic estimates for quasi-conformal maps. 

2. 

Suppose now that Mn C Mn+1 = IRn x R1 is written as the graph over a 

convex open set U C W1 of a strictly convex function 

such that y —> +00 as X = (xi,.... ,xn) approaches the boundary of U. By 

translating upward if necessary, since y is bounded below we can assume y > e 
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everywhere, so that £n£ny > 0. Let 

ds2 = gijdx'ldx:j 

be the Riemannian metric induced on M, so that 

- r , dy dy 9ij - hj + dxi dxj . 

The following observation is fundamental to the proof. 

Theorem 2.1.  The conformally equivalent metric 

ds 
ds = 

yiny 

is complete with finite volume. 

Proof. First we show ds is complete. For any path going to oo we have y 

+oo and ds > dy. Therefore its length L satisfies 

dy >-i ytny 
= £n £n y = .oo 

which is what we desire.    □ 

To estimate the volume, we observe that, because y is a strictly convex 

function of x, outside of a compact set we must have 

dy 

dx1 >8 

for some <5 > 0. Let dV denote the volume element on M in the induced metric 

ds, which in X coordinates is 

dV = Wdet (la + -l^r ^-\ dx'dx2 --dxn 

V        V dx1 dxJ) 

and let dVy denote the volume element of the part of M between height y and 

height y + dy. We can divide M into n pieces where dy/dx1 is largest, or 

dy/dx2, or so on, and estimate dVy from above on each piece. Where dy/dx1 

is largest, we take y, x2,... , xn as coordinates. Then 

\H^¥1)^ dy 
dx1 
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since dy/dx1 is larger than the other derivatives, and \dy/dxl\ > 6 > 0. This 

makes 

dV <Cdydx2'"dxn 

on this patch. Moreover our gradient estimate shows that 

\X\ < Cy 

for a suitably large constant. Therefore 

dVy<Cyn-ldy 

since the region of integration over x2,... ,xn to get dVy from dV has its 

volume bounded by Cy71'1. Then 

dVv < -^r- dy       and       V < C f -^- < oo y- ylnny "     J  ylnny 

3. 

By contrast we have the following result. 

Theorem 3.1. Let U be an open subset of the unit sphere Sn which is not 

empty and whose closure is not the whole sphere. Then there is no metric on 

U conformal to the round metric which is complete with finite volume. 

Proof. By hypothesis we can find some point N which is contained in f7, and 

some point S which avoids the closure U. By a conformal transformation, we 

can take N to be the north pole and S the south pole. We can then find an 

s > 0 so that the £-ball around iV lies in U, while the £-ball around S avoids 

U. We can then find a conformal map of the sphere Sn minus these two balls 

to the cylinder S'n~1 x [0, L], taking the boundary of the e-ball around iV to 

S,n_1 x {0} and the boundary of the e-ball around S to S'n~1 x {L}. The part 

of U outside the £-ball around N will map to some relatively open subset W 

of the cylinder which contains S71"1 x {0} and avoids 5n-1 x {L}. The subset 

W will be a non-compact manifold with one compact boundary component 

iSn_1. Any complete metric on U wuth finite volume conformal to the round 

metric on Sn would give a complete metric with finite volume on W conformal 

to the product metric on S71'1 x [0, L]. We show that such cannot erist. 
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We introduce coordinates O = (0i,... , #n_i) on S'n~1 and t on [0, L]. Let 

da denote the metric on Sfn~1 and dfi the volume form. Then ds2 = da2.+ dt2 

is the product metric on S71'1 x [0, L], and dF = <i/i<i£ is the product volume 

form. For every 0 6 5n~1, there will be a first point t = h(&) where the pair 

is no longer in W, Of course h may not be a continuous function, and the pair 

may re-enter W for larger values of t. This does not matter. Any conformally 

equivalent metric on W is given by 

ds = p(0, t)ds 

for some function p defined at least for 0 < t < h(@).   The corresponding 

volume form is 

dV = pndtJLdt. 

If the total volume V of the conformally equivalent metric is finite, we have 

pndiidt = V < oo . 
iw 

By Holder's inequality 

ff   pdpdt < I fJ   pndp,dt\      Iff Id/jdtl "' 

and surely 

ldpdt<L vol(5n-1)<oo. 

J Jw 

JJw 
Therefore 

// p(Q,t)dndt <oo. 
jJo<t<h(G) 

On the other hand, if we integrate first in t, we see that 

/       1 /       p(e, t)dt > d/z > vol (5n-1) inf /       p(e, t)rft 

and therefore 
/•Me) 

inf /       p(6, t)dt < oo. 0 Jo 
But along a path where 0 is constant we have ds =. pdt. Thus there is some 

O where the path from (O,0) to (©, h(@)) has finite length. This shows that 

the metric is not complete, and proves Theorem 3.1.  . □ 
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4. 

It only remains to observe that the Gauss map gives a diffeomorphism of 

the convex hypersurface Mn onto an open subset U of the sphere Sn which 

lies in a hemisphere. Thus U is not empty and its closure is not all of Sn. 

However, the pinching condition 

Hij > eHgij 

is equivalent to the assertion that the Gauss map is quasi-conformal. Since M 

has a confermally equivalent metric which is complete with finite volume, so 

must U. But this is impossible. 

Finally we indicate how to use this result to prove Huisken's result [Hul] on 

compact convex hypersurfaces shrinking to a point under the Mean Curvature 

flow. Huisken shows that the pinching estimate 

Hij > eHgij 

is preserved by the flow. This is an easy consequence of the maximum princi- 

ple. The usual derivative estimates guarantee that after a short time we can 

control all the covariant derivatives of the H^ in terms of the size of H^ itself, 

which in turn is controlled by H alone when H^ > 0. As a result, the solution 

surely exists until H is unbounded as t —» T for some T < oo. 

Moreover a standard argument allows us to "blow up" the singularity by 

taking a limit of a sequence of translations and dilations of solutions. We 

distinguish two cases. In Case I, where we have 

limsup (T - t)H2 = A<oo 

the limit will be a solution to the Mean Curvature flow on — oo < t < A with 

H = 1 at the origin at time 0 and 

A 
0<H < 

A-t 

everywhere for all time.  Because of the pinching condition our result shows 

the limit must be compact, and then Huisken's uniqueness result [Hu2] shows 
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it must be the round sphere as desired. In Case II, where we have 

limsup(T-t)H2 = 00 

the limit will be a solution to the Mean Curvature flow on — 00 < t < 00 with 

H — 1 at the origin at time 0 and 

0<iJ< 1 

everywhere for all time. The Harnack estimate applied with the strong maxi- 

mum principle [Ha] shows this limit must be a translating soliton. All we need 

observe, however, is that it lasts forever and hence cannot be compact. Then 

the pinching estimate gives a contradiction, so this case is ruled out. 
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