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Consider a smooth compact strictly convex body Mn C Mn+1 subject to 

wear under impact at a random angle, such as a stone being tossed on a 

beach. The probability of impact at any point P is proportional to the Gauss 

curvature K. Thus the surface evolves in time by the Gauss curvature flow 

where iV is the unit outward normal. This equation was first studied by Firey 

[Fi]. Later Tso [Ts] showed that the solution exists and stays smooth and 

strictly convex until t —* T for some time T when the diameter L shrinks to 

zero. Thus we can assume Mn shrinks to the origin 0. Recently Chow [Ch] 

proved an entropy and a Harnack estimate for this flow. We use these results 

to derive two useful corollaries. 

Main Theorem 1.  The diameter L satisfies a dilation-invariant bound 

£<C(T-£)1/(n+1) 

This follows by combining Chow's upper bound on the entropy with a lower 

bound in terms of the least shadow area. 

Main Theorem 2. The Gauss curvature K satisfies a dilation-invariant 

bound 

-\t)       T-t 

where S — {P, N) is the support function around the limit point 0.  This result 

follow immediately from considering the Harnack estimate along radial lines. 

Combining these gives us the following. 
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Corollary.  The Gauss curvature flow satisfies a dilation-invariant bound 

K < C/(T - t)nl{n+l). 

This follows since S < L everywhere. 

Our appreciation to Ben Chow and Mike Gage for many useful conversa- 

tions. 

1. 

In this section we study the entropy integral 

E= f K£nKdaM 

where daM is the area element on the surface M. 

la. In his important paper [Ch], Ben Chow proves the following result. Let 

Et be the value of the entropy at time £, EQ its initial value, and an the area 

of the unit n-sphere. 

lal Theorem. (Chow).  The entropy has an upper bound 

Et < E0 + aJn(T/T - t)n^n^ . 

Proof. See [Ch] p. 481.    □ 

lb. Now we give a useful lower bound on the entropy of any compact convex 

smooth hypersurface Mn in Mn+1. 

Ibl Definition. The least shadow area A# of M is the least area of the 

image of M under any projection onto a hyperplane Mn in Mn+1. 

Again we let an be the area of the unit n-sphere Sn
J and we define the 

constant Cn < oo by 

Cn = /     in sec ^(iag 

where SJ is the unit northern hemisphere, ^ is the angle of declination from 

the north pole, and das is the area element on the sphere. The improper 

integral is finite because sec ifj is inversely proportional to the distance from 

the equator, and the logarithm grows quite slowly. 
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lb2 Theorem. The entropy E has lower bound in terms of the least shadow 

area A# given by 

E > aJn{an/2A#) - 2Cn . 

Proof. Let P be the projection whose shadow has the least area A#. The 

surface Mn divides into two regions B, and B" such that the projection P is 

one-to-one on each region with image A#, while the orientation of the pro- 

jection is opposite on their interiors. We then apply the following Lemma on 

both Bf and B" and add^ Note that the images of B' and B" in the Gauss 

sphere are two hemispheres of area crn/2.    □ 

lb3 Lemma. Let P be any projection of a convex surface Mn on a hyperplane 

Rn in Rn+1, let B be any subset of Mn with unit normal N lying in one 

hemisphere, let Ap(B) be the area of the image of B under the projection P, 

and let AS(B) be the area of the image of B in the Gauss sphere under the 

Gauss map G. Then the entropy of B 

E(B) = f   K£nKdaM 
JB 

has a lower bound 

E{B) > As(B)en{As(B) /AP(B)] - Cn . 

Proof Let das) daM, and dap denote the area elements on the Gauss sphere 

Srn, the surface Mn and the plane Rn which is the image of the projection P. 

Rotate so the projection is vertical onto the horizontal hyperplane i?n, with 

the normal N on B always in the northern hemisphere 5^, and let ^ be the 

angle of declination from the north pole. Then 

das = KdaM    and   daM = sec ipdap . 

This makes 

f       ldas = AJB)    and     f       —  das = Ar(B) 
JG(B) JG(B)  Kseci/j pV   J 

while 

/    en(iFr77)das = -E(B)-c»- JG(B)       \KsecipJ 
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Now Jensen's inequality tells us that the average value of the logarithm is less 

then or equal to the logarithm of the average, since the logarithm is concave. 

Hence 

JG(B)       KKseci/iJ jG{B) ldas \JG(B)  Ksec 

daG 

'seCflPlG(B)ldasJ 

and the result follows.    □ 

1c. If we combine the upper bound and the lower bound on the entropy we 

get a lower bound on the least shadow area A#. 

Icl Theorem.  The least shadow area A# satisfies 

A#(t)>C#(T-£)n/(n+1) 

where the constant C# is given by 

C^ = CJn p-{Eo+2Cn)/an 

Proof. We have 

Gjn{Gn/2A#) -2Cn<E<Eo + (7jn(T/T - t)^n+1 

and the result follows if we solve for A#.    D 

The bound on the least shadow area gives us a bound on the diameter. 

Idl Definition. The diameter L of a compact convex body M is the length 

of the longest line segment contained in M. The volume V of M is the volume 

of the region enclosed. 

162 Lemma.  The volume V in the Gauss curvature flow is given by 

V = an(T-t). 

Proof. We have 

at          JM 

and V —* 0 as t - + r. □ 
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ld3 Theorem. The diameter L in the Gauss curvature flow satisfies dilation- 

invariant bounds 

c(T - t)ll{n+l) <L< C(T - ty/{n+1) 

for some constants c > 0 and C < oo which depend only on n; T and EQ. 

The proof depends on a geometric Lemma, which we give first. 

Id4 Lemma. For any convex body Mn, the volume V', diameter L and least 

shadow area A# are related by 

V>\LA#. 

Proof. Find a line segment in Mn with length L, let P be the projection 

orthogonal to it, and let AD be the area of the shadow, the projection of Mn 

under P onto a hyperplane. Rotate so the projection P is vertical onto a 

horizontal hyperplane Mn, and translate so the line of length L lies over the 

origin 0 in W1. 

Introduce cylindrical coordinates r, 6 and z, where r is the distance from 

the origin in Mn, 0 G Sn~l the angle, and z the height in the perpendicular 

direction. The shadow of Mn under P will be a set given by an inequality 

0 < r < f{6) 

for some function /(#), and the set Mn itself will be the graph over this set of 

two functions ^(r, 6) and /^(V, 0), while the region inside is given by 

hi{r,0)<z<h2{r,0). 

Note that when r — f{9) we have 

h1{m,e) = h*{m,9) = h{6) 

for some function h{6). If we translate in the z-direction so that the line 

segment of length L starts at the origin in i?n+1, we get 

/ii(O,0) = O    and    /i2(O,0) = L 

for all 0. 
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Since hi is concave and /i2 is convex, we must have 

hi(r,e)<j^h(e) 

and 
r h2(r,e)>j^h(6) + 1 m L. 

The volume V inside Mn is given by 

V = 
JS"-1 Jr=0    Jz=h1(r, 

rdzdrdQ 
e) 

in cylindrical coordinates.   Using the above inequalities and doing the two 

inner integrals gives 

v>±l   m2dB. 
On the other hand, the area of the shadow is given by 

Ab= /       rdrde 
JS"-1 Jr=0 

in polar coordinates, so 

I I     f(ef Ab = - I       HdYdB 

which makes 

V > ^LAb. 

Since A# is the least shadow area, Ab > A#. This proves the Lemma.    □ 

Now we can finish the proof of Theorem ld3. We have 

L < W/A# 

by the previous Lemma, 

V = an{T-t) 

by Lemma ld2, and 

^#>C#(T-i)n/(n+1) 

by Theorem lei. This gives 

L < C(T - tjVtn+i) 
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for a constant C determined by C# and n. Finally, Mn must be contained in 

a ball of radius L, so 

V < <7nLn+1 

which gives a lower bound on L of the form 

L>c(T-t)1/{n+1) 

where c depends only on n. 

2. 

In this section we study the Harnack inequality for the Gauss curvature 

flow. It tells us that if the Gauss curvature K is large at some point after 

some time has elapsed, it must be comparably large at nearby points after 

some more time has elapsed. This is a common feature in heat equations 

where some function is always positive, as K is in this case. 

2a.    The Harnack estimate for the Gauss curvature flow was derived by Chow 

in [Ch]. He proves the following result (in his Theorem 3.7). 

2al Theorem. (Chow). For any points Xi on Mn at time ti and X2 on Mn 

at time £2 with 0 < ti < t2 we have 

K{X2,t2) > ftA^ c_m 

where 6 is the integral over any path X = X(t) on the surface at each time t 

with X = Xi at t — t\ and X = X2 at t = ^2 given by 

rt2 1 0=1     KH^V'V'dt 
hi 

where H^1 is the inverse of the second fundamental form and V1 is the tan- 

gential component of the velocity of the path X, so that 

dXa 

—— = -KNa + ViDiX* 
at 

in local coordinates on Mn. 

Chow obtains this result by integrating the following differential Harnack 

inequality over the path. 
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2a2 Theorem.   (Chow).   In any solution to the Gauss curvature flow for 

t > 0, we have 

Proof. See [Ch], p.478 and multiply by K.    □ 

2b. A very useful version of the Harnack estimate can be obtained by inte- 

grating over a path in Mn+1 which is just a straight line segment. Of course 

the velocity will not be constant, but must be adjusted to stay on the surface 

Mn at each time t. This requires that the line segment from beginning to end 

must always be transversal to the surface Mn. 

2bl Theorem. Along any straight line segment transversal to Mn the func- 

tion 
tn/(n+i)Ksece 

always increases, where 6 is the angle between the line segment and the normal 

to the surface. 

Proof Suppose the line segment has a unit velocity vector U. Then 

dt 

where a must be adjusted to stay on the surface.  Dividing dX/dt into tan- 

gential and normal components 

dXa 

—— = -KNa + ViDiX
a 

dt 

as before. Since N -U = — cos #, we need to take 

a = KsecO    and    V* = Ua - DiX
a 

as we see by dotting with U or DjXa. 

The space and time derivatives of the unit outward normal iV are given by 

Chow in [Ch] as 

DiN" = HijDjX" 

and 

^— = DtKDiX" . 
dt 
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Now along the line segment 

dNa     dNa 

az oz 

dNa 

dt dt 

so 

= DiKDiX* + HijViDjX" . 

Then 
dN   dX     TrT^ r^     rr TrTr -. — -WJC + HM 

Now since a = i^sec 0, 

N>U = -case = -K/(T 

and 

so 

Also 

so 

d^X_da 

di V    ' It) ~     dt 
differentiating along the path, where 

dK      dK     Tr n Tjr 

Finally, note that 

— I N ) = AT • 1 —- . 
dt V       dt J dt2       dt     dt 

Combining these results gives 

— + 2ViDiK + HyVM = K- £n(Ksec 0) 

along the straight line segment. 

Now Chow's differential Harnack inequality (Theorem 2a2) is equivalent to 

the statement that 

— + VViDiK + HyViVi > -.    "...g 
OT (n + 1)* 
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for any vector Vi, as the worst possible choice of Vi is 

v. = -H^DiK 

and even this works. Therefore 
rj ft 

K— £n(Ksec 6) > —( -K 
dt      K ) -     {n + l)t 

or equivalently 

jtn(tn/{n+l)Ksece) >0 

which shows tn^n+VjKsec 6 increases along the line segment, as desired.    □ 

2c.    We can apply this result to radial paths out of the limit point 0, since 

they must all be transversal to the flow. 

2cl Theorem.  The Gauss curvature satisfies the bound 

-\t)       T-t 

where S = (P, W) is the support function around the limit point 0. 

Proof. The angle 6 between the radial line and the unit normal iV is given by 

S=(p,W)=rcos6 

where r = |P| is the distance to 0. Now along the radial line 

^--ifsecfl 
dt 

and we know 

tn(n+1)Ksec8 

is increasing. Thus for t0 < t < T we get 

and using t <T and 

sec 0o = ro/So 

we get 

ro(V7T/("+1)iVSo<-^- 

Now 
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so we have 

ro(io/r)n/(n+1)(r - to)K0/S0 < ro 

after integrating, or 

which proves the Theorem if we replace to by t.    □ 
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