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ABSTRACT. We consider an energy minimizing map from a bounded 

domain Q of a complete, smooth, Riemannian manifold Mn to a 

metric space X of nonpositive curvature. We show regularity of the 

map near the boundary assuming that its trace is either Lipschitz or 

Holder continuous. 

1. INTRODUCTION 

This paper was initially motivated by the work of M. Gromov and R. Schoen 

[G.S.] on p-adic superrigidity for lattices in groups of rank one. The main tool 

in the Gromov-Schoen paper is a theory of harmonic maps into a special class of 

singular spaces (locally compact Riemannian simplicial complexes embedded 

into Rn). They prove existence of a unique Sobolev space solution to the 

Dirichlet problem and interior Lipschitz continuity of that solution. However, 

they do not address boundary regularity questions. 

More recently N. Korevaar and R. Schoen [K.S.] found a more general way 

of studying Sobolev spaces and harmonic maps into non-smooth targets. Con- 

sequently, they generalized many of the results regarding harmonic map theory 

from the Gromov-Schoen paper to the case when the target is an arbitrary 

length space of nonpositive curvature. In particular, they showed existence 

of a unique solution to the Dirichlet problem for maps into such targets and 

again, the interior Lipschitz continuity of that solution. 

Our goal in the present paper is to prove boundary regularity for solutions 

to Dirichlet problem, in the generality of the Korevaar-Schoen work. 

Throughout this paper (X, d) will denote a complete metric space and 
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On will be a bounded domain in a smooth, complete, Riemannian manifold 

(M»,g). 

DEFINITION. We say that a Borel-measurable map u : (tt,g) —> (X,d) is in 

L2(0, X) if it has separable range and for some point Q G X 

/ d2{u{x),Q)dLig(x) < 
Jn 

oo. 

The set L2(fi,X) is a complete metric space (see e.g. [K.S.], §1.1) with the 

distance function defined by 

D(u,v) = (  /   d2(u(x))v(x))dfjJg(x) 

L2(Q^X) contains a subset W1,2(fi,-X") consisting of finite energy maps. 

The energy of a map u G L2(0,X) is defined as follows (after [K.S.], §§1., 

1.3). 

First we observe that for every e > 0 

JdBt(x) e 

is well defined for almost all x G fi (if dist{x,d£l) < e then let ee{x) = 0). 

Moreover, ee(x) G L1^), and therefore it defines a functional Ee on the space 

of compactly supported functions CC(Q) (via integration). 

DEFINITION. ([K.S.], 1.3ii) The map u G L2(fL, X) is said to have finite energy 

if 

sup       (limsup2?c(/)) = E <. oo. 

0</<l 

If u has finite energy then in fact there exists a function e(x) G Ll(fl) so 

that ee(x)dng{x) —^ e(x)d/ig(x) as measures. In particular 

E —  I e(x) d/jJg(x). 
Jn 

The function e(x) is called the energy density of u, and E is defined to be 

the (total) energy of u. 
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For two finite energy maps u and v the distance d(u, v) : fi —» R+ between 

them belongs to the Sobolev space Wl'2(Q,) ([K.S.], 1.6vi). Therefore one can 

make the following definition 

u = v on  dQ  if d(u,v) G W0' (f2). 

DEFINITION. We say that a finite energy map u : ft —> X is energy minimizing 

if 

Eu = m£{Ev : v has finite energy, v = u on dtt}. 

In this paper we want to study boundary regularity of energy minimizing 

maps in the case when the metric space X satisfies some additional conditions. 

Consider a continuous path 7 : [0,1] —> X joining two points P = 7(0) and 

Q = 7(1). Obviously d(P, Q) < 1,(7) = length^). 

DEFINITION. The metric space (X, d) is called a length space if for every pair 

of points P, Q £ X there exists a distance realizing path 7 : [0,1] —> X, that 

is a path satisfying 7(0) = P, 7(1) = Q, and £(7) = d(P, Q). Observe that 

every such distance realizing path can be parametrized proportionally to the 

length, and then 

d(7(0),7(*))=*d(7(0),7(l)). 

Distance realizing paths parametrized proportionally to length are called 

geodesies. 

DEFINITION, (cf. [G.S.]) We say that a length space (X, d) has nonpositive 

curvature if for every geodesic 7 : [0,1] —> X and point Q 6 X 

d2{l{t)iQ)  < td2(7(l),Q) + (l-^2(7(0),Q)-i(l-iK(7(0),7(l)). 

Geometrically this means that if we compare a geodesic triangle in X to a 

triangle in the Euclidean plane with the same side lengths, then corresponding 

secants are longer for the Euclidean one. 

Let (X, d) be a length space of nonpositive curvature and let £1 be a bounded 

Lipschitz Riemannian domain. Let 0 : Vt —> X be a given finite energy map, 

(j) G Wrl'2(f2,X). Korevaar-Schoen showed that there exists a unique, finite 

energy map u : fi —► X satisfying 

(i) Eu = inf{i^ : v has finite energy, v = (j> on <9fi} 
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(ii) u — (j) on dSl. 

([K.S.], Theorem 2.2). 

In particular the map u is energy minimizing. Furthermore, they proved 

that this map u is Lipschitz continuous in the interior of fi ([K.S.], Theorem 

2.4.6). In case X is a Riemannian simplicial complex isometrically embed- 

ded in Euclidean space, this theorem was proven by Gromov-Schoen ([G.S.], 

Lemma 1.1 and Theorem 2.3). 

Though Korevaar-Schoen in their paper work only with Lipschitz domains 

(and develop trace theory for W1,2 maps), the above existence result holds for 

an arbitrary (non-Lipschitz) domain fi. 

Namely, if {ui} C W1'2{Q,)X) is a sequence such that 

d{uu(t>) € Wo1,2(«)' 

and 

EUi \Eo = mf{Ev :  v has finite energy and d(v, (/>) £ W^2(n)} 

then from energy convexity ([K.S.], 2.2iv) 

lim   ['\Vd(ui,uj)\2riii = 0 

Therefore (by Poincare inequality) {ui} C Z/2(fi, X) is a Cauchy sequence with 

uniformly bounded energies, and hence u^ —> u G W1,2(Q. X) ([K.S.], Theorem 

1.6.1). What must be checked is that d(u,</>) e Wo'2(n). 

From the triangle inequality 

\d(u(x),Ui(x)) -rf(w(y),iAi(y))| 

< d(u(x),ui+k(x)) + |rf(^(x),^+/e(x)) -diui^iUi+kiy))] 

+ d(u(y),ui+k(y)), 

we deduce that for any fixed e > 0 

£f*'Ui) < ^\\d(u,ui+k)\\2L2 + 3||Vd(txi,^+,)||
2

L2. 

In particular, for given 6 > 0, by choosing i large enough to have 

\\Vd(uilui+k)\\l2<6 
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and letting k —> 0, we get that e-energy of d(u, Ui) is bounded by 36. Conse- 

quently, Ed<<u^ -> 0 and therefore d(u,^) -* 0 in W1*2^). 

Since  |d(u, (/)) — d{u, Ui)\ < d{uu (j)) G W0
1,2(n)  and d(iA, 0) = lim (d(u, 0) — 

i—>oo 

d(u,Ui)) we conclude that d(ii, </>) G W0
1,2(f2) and hence u is an energy mini- 

mizing map. 

We will prove that the energy minimizing function u is Holder continu- 

ous near the boundary dVt, assuming that its trace is so (meaning d{u^ <f>) G 

WQ
,2

(Q) for a Holder continuous map 0). The modulus of the continuity of 

ti, roughly speaking, depends on the regularity of the trace of u and on the 

"regularity" of the boundary dQ itself. The latter will be formulated in terms 

of local exterior cones. 

DEFINITIONS. For a point p G M and a unit vector V G TPM (\V\ = 1), we 

define an (open) 'tf-cone at p in direction V as 

C£(p, V) = {q = expp(sW) :  0 < s < a, \W\ = 1, g{V, W) > costi}. 

lip G dn then for each a > 0 we set B+(p) = ^(p)nfi and S+(p) = 5^(p)nn. 

Furthermore by ^(cr) we denote an angle of the biggest exterior cone at p. 

More precisely, ^p(cr) is the biggest $ G [0,7r/2] such that for some unit vector 

V G TPM an 79-cone locally lies outside ft 

C£(p,y)nfi = 0. 

Note that i?p(cr) is monotone. Finally we introduce the quantity 

m(a)   . [sin(7r - ^(a))]"-2   TT 

We remark here that for a Lipschitz domain, there is always a uniform lower 

bound on the angle ^(cr), and hence on mp(cr). If dQ, has a tangent plane at 

p, then mp(a) —> 1 as a \ 0. 

The results of this paper are: 

Theorem. Suppose that (j) : (nn,g) —> (X, d) is a /imie energy map from 

a bounded domain in M to a length space of nonpositive curvature. Let u : 

(flri,g)  —>  (X,d)  be the energy minimizing map such that u — (j) on dQ. 
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Assume that for relatively open subset T C dQ we have <$ G C^J^VL U F). Let 

m > 0 be (the biggest) constant such that for all p G F 

rap(cr) >m — 0(a) 

(with 0(a) uniform inp).  Then 

(A) OL = m=>ue Cfoc(n U F)   for every 0 < /? < a 

(B) a^m=>^GC^c(fiur) for f3 = min(a,m). 

Remark. The estimates for the Holder exponents are not sharp. This is due 

to the fact that mp(a) is not the best constant in (9). In the case n = 2, using 

conformal change of coordinates one shows that (9) holds with mp(a) = 2,J_tf), 

and it is easy to check that the resulting estimates are sharp. (Consider 

harmonic function u(z)'= $t:(za) on Q = {| arg(^)| < 7r/2a}.) 

Corollary. Suppose that (j) : (£ln,g) —> (X,d) is a finite energy map from a 

smooth bounded domain in M into a length space of nonpositive curvature. 

Let u : (fin, g) —> (X, d) be an energy minimizing map such that u = cj) on dQ. 

Then 

(A) <£ G Lip(n) =>ue C^U), for every  0 < 0 < 1 

(B) (f) G Ca(n) =>u£ ca(n). 

Proof. The Corollary follows immediately from the observation that in this 

case we have t 

l-O(a).    □ 

TT 
case we have a uniform bound ,dp(a) > — — 0(a) and consequently mp(a) > 

2. PRELIMINARY LEMMAS 

In our proof, generally, we intend to build on the ideas of Gromov-Schoen. 

However, we will use techniques of Korevaar-Schoen to carry out the arguments 

in needed generality. 

The Gromov-Schoen proof of interior regularity depends on two specific 

families of variations (domain variations, range variations) and the resulting 

estimates. Below we summarize relevant parts of their proof. 

For a point Q G X they consider the function x \—* d2(u(x),Q) (note 

that d2(u(x), Q) G W^1,2(J1)). Their range variations (which use essentially the 
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nonpositivity of the curvature of X) lead to the (weak) differential inequality 

([G.S.], Proposition 2.2) 

(1) Ad2(u(£),Q)-2|Vu|2>0. 

(In particular, the functions d2(u(x), Q) and even d(u(x), Q) are (weakly) sub- 

harmonic.) Consequently, for almost all a > 0 they deduce 

(2) 2/   \Vu\2diig{x)< I     ^-d2{u,Q)dX. 
JBa JdBv or 

Using domain variations they show that ([G.S.], 2.3) 

(3) 

0 = (2-n+0(<T2)) /       \Vu\2diig{x)+<j I        |W|2d£-2<7 /        &2d£. 
JBV(P) JdBrip) JdB^p)  or 

The rest of their argument for interior Lipschitz continuity (which we will 

not repeat) involves differential inequalities for 

E(<J)= [       \Vu\2dng{x)   ,   /(a)- /        d2(u,Q)d^ 
JBa{V) JdBvip) 

which follow from (1), (2), (3), and Calculus. 

One further conclusion (see the differential inequality for Ha) in the proof 

of [G.S.] Theorem 2.3) which we will need is that for Q = u(x) 

(4) a 1—> —— / d2{u{y)^Q)dTi    is nondecreasing. 
crn+1      JdB(7(x) 

Korevaar-Schoen remark that (1), (2), (3) and hence their consequences 

generalize to nonpositively curved length spaces X. They follow a different 

approach in showing regularity, however, and do not supply in [K.S.] the details 

for this claim. We note here that the consequences of domain variations (3) 

follows exactly as in ([G.S.], §2) using ([K.S.], Theorem 2.3.2) to justify various 

steps. The subharmonicity statement (1) (hence also (2)) follows from triangle 

comparisons, and we present an argument of Korevaar-Schoen which they did 

not include in [K.S.]. 

As X is assumed to have nonpositive curvature, there is a unique geodesic 

joining any given pair of points P, Q G X. Therefore, given Q € X and A G 

[0,1] one can define a map R\ : X —> X via the formula 

R\{P) = VK^)) where ^(s) is unique geodesic with ^(0) = Q and -0(1) = P. 
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The maps R\ are Lipschitz continuous and satisfy d(R\(Pi), R\(P2)) < Ad(Pi, P2). 

Let r] G C^0^), r/ > 0. For i > 0 we consider a finite energy map ut(x) = 

Ri-t'n(x)(u(x)). As 77 = 0 on dft it follows that Ut = u = </> on dQ. Therefore 
Eut  > Eut 

If we can show that 

(5) EUt < Eu - t I [Vr? • Vd2(u, Q) + 2rie{x)] + 0(t2) 
Jn 

then, by letting t —> 0, we deduce the weak version of (1) 

(6) - / Vr? • W20, Q)  >  2 [ r)e(x), for any rj G Cf^), 77 > 0. 
Jn Jet 

Inequality (5) follows from the distance comparisons as follows . For a pair of 

points x,y G fi we consider a geodesic triangle in X with vertices u{x),u(ij), 

and Q. Note that points Ut(x) and Ut(y) lie on the triangle sides. Moreover 

dMx), Q) = (1 - tri(x))d(u(x), Q),   d{ut(y), Q) = (1 - tn{y))d(u{y), Q). 

A consequence of the nonpositive curvature condition is that d(ut(x), Ut(y)) 

is bounded above by the distance between the corresponding points of the 

Euclidean triangle with side lengths d{u{x),Q)) d{u(y),Q), d(u(x), u(y)). By 

explicit computation this yields 

d2{ut{x),ut(y)) 

<    (1 - tr1{x)fd\u{x), Q) + (1 - tr,(y))2<P(u(y), Q) 

+ (1 - tn{x)){l - tr,(y))[d2(u(x), u(y)) - d2{u{x), Q) - d2{u{y), Q)} 

=   d2(u(x), u(y)) - t[(ri(x) + r)(y))d2(u(x), u(y)) 

+ (t/(x) - nmifW*), Q) - d2{u{y), Q))) + 0{t2). 

As the definition of the energy is based on averaging distances, this estimate 

and ([K.S.],1.6.2) imply inequality (5), hence (1). 

The following estimate is an adaptation of (1) for boundary estimate. 

Let K be a compact subset of ft U T (K CC ft U T). Denote by K* a 

a-neighborhood of if in ft 

K* = {x G ft : dist(x, K) < a}. 
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Note that K*7 is also a compact set. As F C 9$! is assumed to be relatively 

open, there exists CTQ > 0, such that K*0 CC O U F. Therefore (because of 

assumption that (j) G C£c(fi U F)) 

dMs),0(y)) ^ 
CR =   0 a,K-o  =      SUp      :  < OO. 

^GK-O     |x - y\a 

Let p € F D K, Q = ^(p), and d(x) = rf(iA(x),Q). For a < ^a0 we define 

da = (d-2cKaa)+. 

The following lemma is a consequence of (6). 

Lemma 1. Let rj be a non-negative Lipschitz function with support supp TJ CC 

nuB^{p).  Then 

(7) - [vv.Vdl  >  2 [ V\Vda\2. 

Proof. The fact that d(u, (/)) G WQ
1
'
2
^) together with the inequality 

0 < d^x) < d(u{x),(f){x))    for x e Bt(p) 

implies that d^ = 0 on ^(p) fl 90 (that is, rpda G Wo1,2(^) for a11 ^ ^ 

Cc(fi U BQ'CT))- In particular d^ can be approximated in W1,2-sense by C1 

functions vanishing on the neighborhood of B2a{p) H 90, and consequently 

can be extended by zero across the boundary of O. 

Since inequality (1) implies weak subharmonicity of d in fi, it follows that 

da is subharmonic as well. Because d0 has finite integral over O and da = 0 

on B2a{p) H 90, we can conclude that da is bounded on the neighborhood of 

supp r) (that in turn shows boundedness of d < da + 2cKaa). 

From rj we construct the auxiliary test function 

da da- 
d max(d, 2cKcra)' 

Since da is zero on B2a{p) H 90, and r? is zero on 90 \ I?2a(p), it is also true 

that £ G WQ
1,2
^). These two facts and standard approximation arguments 

imply that £ is an admissible test function in (6). Thus 

-fv^.Vd'  >  2Jy±)e{x). 
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By simple manipulations, one can rewrite this inequality as 

-J^.Vdl  >  2^77 [^e(x) + (l-^plVd, 

Inequality (7) follows from the observation that e(x) > \Vd\2.    □ 

By taking rj to approximate the characteristic function of B+ in (7), we 

obtain a boundary analog of (2) 

(for almost all sufficiently small a): 

(Existence of the left-hand-side integral follows from the absolute continuity 

of<T.—+/s+e£.) 

We shall also use the following Calculus estimate, which allows us to pursue 

boundary regularity without an exact boundary analog of (3). 

If / € W1'2(B+) satisfies / = 0 on dQ n Ba(p) then 

(9) <rfm\2  >  (mp(a) - 0(a2)) f   f 

where 0(cr2) depends on Jl and g (but not on function /). 

It suffices to prove (9) for a smooth function / G C00{B^) which vanishes 

(/ = 0) on the neighborhood of d£l fl B(r(p). Choose x — (xi,..., xn) to be the 

geodesic normal coordinates centered at p. By definition of ^(cr) there exist 

a cone C — C# ^{p, V) so that C fl Jl = 0. Without loss of the generality we 

can assume that V = — ^f-. Further we may extend the function / by zero to 

all of Ba (p). Then we compute 

/   \Vgf\2dpg(z) = (1 + 0(a2)) /       \Vxffdx 

where \Vxf\2 = ^2(§^:)2 and dx — dxi...dxn, are Euclidean gradient and 

volume form. 

Let D = {y : \y\ < a and yn > 0} and D' = D fl {\y\ = a}. On D we 

introduce spherical coordinates (r, u;,0). For y — (y\yn) we have 

\yI = r)   yf — ruJ sin 9->   Vn — r cos 6- 
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We define one-to-one Lipschitz map h : D —-* Ba\C via 

h(y) = hiy'jyn) = (ru sm(aO), r cos(aO)) = (a;7,^) = rr 

where a = 2- ^p(cr). 

One verifies that the Jacobian of h and operator norm of dh are estimated 

as follows 

i) a(sinaf)n-2 < \J(h)\ < a71'1 

ii) \\dh\\ = a 

Therefore integration by substitution yields: 

/       \Vxf\2dx   -    [ (\Vxf\2oh)\J(h)\dy 

> f \Vy(foh)\2\\dh\nj(h)\dy 
JD 

> a-\sma*-)n-2 jD{\SJyUoh)\2dy 

Using the fundamental theorem of calculus to integrate in yn direction (and 

noting that / o h = 0 on {yn = 0}) one sees that 

<*[ \Vy(foh)\2dy> f (fohfdZy 
JD JD' 

Finally (again integrating by substitution) we find that 

JD' JS+ 

Js+ 

=   ^-"(l + OitT2)) f   f2dZg(x) 

Altogether we get 

a f    \Vgf\2dpig{x) > a-n(sina|)"-2(l - Oia2)) f   f2dZg(x) 
J Bv ^ J Sfj 

(sina-)n-2 

This completes the proof of (9) as mp(a) = — .    Q 

Combining (8) and (9) yields 

(10) a/s+|:^    ^    2(mp(a)-0(a2))Js+dl. 
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3. PROOF OF THE BOUNDARY REGULARITY 

The strategy is to use the differential inequality (10) to deduce a Holder 

estimate for d{u{x),u(y)) when either x or y is a boundary point. Then, we 

employ this estimate and the interior machinery developed in [G.S.] (which 

we summarized in §2), to prove full Holder continuity of u. 

Our notation is as in Lemma 1. That is, K is a compact subset of £1 U F, 

oo > 0 is such that K*0 CC fi U Y (note that we can assume CTQ < 1), 

CK — [(t^ocK^o, and for a given point p £ K D F we let 

d^x) = [d(u(x), 0(p)) - 2cKa<*}+. 

For clarity, we present the proof only in case a / m. Let then /? = min(a:, m), 

and let 1(a) = /       d^(x) dY,. All the constants in the lemmas below (ci, C2,...) 

depend on metric #, restriction of (j) to Kao (in particular on c^), bound on 

supd, and finally on CTQ. It is crucial that they do not depend on the point 

peKnr. 

Lemma 2. For some positive constants cuC2 the expression 

r „  /   lip) a*-771        .    . . e    \  77^—1~ c2        is increasing m a. y crn-n-2m a-m 

Proof. First we compute the derivative of I(o). Using Calculus, 

!>{*) = (^ + 0{a)) 1(a) + J^ Ifi - AcKaa^ f^ da. 

We can use (10) on the second term and the Holder inequality on the third 

one to get the differential inequality below 

r{a) > (n~1
o
+2m - 0(1)) I{a) - c(l + 0(cr)y«+t-i ^^ 

which (after division by yjl(a)) formally yields the differential inequality for 

m /      \ fn—l+2m ^,^S\     „/      x C /H ^,     XN       n-3-f2ct 
f{<r) > ( ^ 0(1)J /(cr) - -(1 + 0(a))a^—. 

Hence for Ci determined by the 0(1) term , 

(e^V-21-^/)' > -|eCl<T(l + 0(<r))<Ta-m-1. 
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Hence for C2 depending on c? Ci, and the 0(a) term 

eClV —f + c2      >0. 
a — mj 

Because / is an absolutely continuous function of cr, the conclusion of the 

lemma can be derived from that formal differential inequality by considering 

the open intervals on which / is positive.    □ 

Lemma 3.  There exists a constant c6 such that for all a < |<Jo 

d < CQ (J^ on a ball B^. 

Proof. Let a < CTQ. Lemma 2 implies 

4T
7

(^)    ^    e-c^(c3a
rn-c2-^-)<csam-c2   

a 
Tn—i x n — rn/ a — m a — m 

\a — m\ 

where 
a—m 

<-1+2m a-m 

From lemma 1 follows immediately that (if extended by zero) d^. is (weakly) 

subharmonic on the whole ball Ba and hence 

1 
supda  <  C5-—r/((7). 
B+ cr 

72 

■'o-/2 

Finally as d < d^ + 2CKO'
(X
 we obtain that d < sfc^c^ + 2ci<:crQ; on Ut, and 

for ce = 2/3(v/c^C4 + 2^) the conclusion of the lemma holds.    □ 

Lemma 3 states that 

d{u(x),IA(XO)) < celx — x^ 

whenever XQ G K fl Y and |x — XQI < ^o- 

Let a' = cro/2 and let JK"' = Ka'. Then ^ is a compact subset of ft U F. 

Moreover (JK
7
)*

7
' 

= j^ao- Therefore for some constant c7 

(11)       (i(n(x),u(xo)) < Cylx — Xol^   if XQ e K'DV  and   |x — rco) < ^tr'. 

(We cannot take C7 to be equal to c6 because cr7 7^ CTQ.) 
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Let x G K and assume that dist(x,d£l) < ^CTQ. Then there exists point 

XQ G dfi, such that \x—x0\ < |<Jo. In particular x0 G K' and as i^'fl^ = K'nT 

we have XQ G K' fl F. Hence, by (11), 

(12) d(u(x),U(XQ)) < c7\x — Xof. 

Let Xi,X2 G K. To prove Holder continuity of u on K it is enough to show- 

that 

(13) d(u(xi), u(x2)) < Cfa - X2\(3  if  \xi - X2| < —do, 

for some constant C Therefore we will assume that a = |xi — 0:21 < ^cro- We 

define pi, ^2 to be the distance to the boundary <9fi of Xi, X2 respectively. We 

can always arrange to get pi < p2- Now, we consider three possible cases. 

Case 1. Assume that pi > JQCTQ. 

Then Xi G {x G ft, : dist(x, dQ) > JQCQ} and hence from the interior Lipschitz 

continuity of u it follows that (13) holds with some constant C depending on 

(JQ, the total energy Eu of u, and the metric g (see [K.S.], Theorem 2.4.6). 

Case 2. Assume that pi < ~a0 and P2 < 2a. 

Let y^ G d£l be a nearest boundary point for Xi.   Note that from what we 

assumed P2 < ^CTQ. Therefore, (12) holds for both pairs (x^y^), and hence 

d(u(xi), u(x2))   < rf(u(xi), u(yi)) + d(w(yi), ^(2/2)) + d^ufa), u(x2)) 

< c7p
0

1+cK(p1+a + p2)
a + c7p% 

< c7(2a)/? + c^(5a)Q + c7(2a)/3 

< (407 + 5^)^ 

and (13) holds with C = 4c7 + Sc^. 

Case 3. Assume that pi < ^CTQ and P2 > 2(7. 

Then the ball i^a^) is entirely within fi. As function x 1—► d2(u(x), 14(^2)) 

is (weakly) subharmonic in 0 

d2(^(a:i),w(x2))    <     sup d?(u(x), ufa)) 
Ba(X2) 

<    c8/0  N^X  / d2(^(x),^(x2))rfE. 
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Now we can apply (4) to the integrals over 2a- and pi- ball. This yields 

(14) d\u{xl)Mx2)) < CB]*^® ^ / d*(u(x)Mx2))dX. 

Let y2 G d£l be as in Case 2. Then, for x G BP2(x2) by the triangle inequality 

\x — 2/2! ^ 2p2- On the other hand P2 < pi+v < |cr0, and hence |x —1/21 < ^o- 

Therefore, from (12) and triangle inequality we estimate that for x G BP2(x2) 

d(u{x),u{x2)) < d(u{x),u(y2)) + d(u(x2),u(y2)) 

(15) <c7|x-y2|
/3 + c7|x2-2/2|

/3 

< 3c7pf. 

We can use this estimate in (14) to get 

cr2     r 
d2(u(xi),u(x2))    <   cg-^ri / d?(u(x),u(x2))dE 

p2        JdBP2(x2) 

/   ^   \       2/3 _ ^      /   &_ \ 2/3   / ^        2/3 

Thus (13) holds with C = ^/c^. 

This completes the proof of the Theorem in case a i=- m. The proof for 

a = m is completely analogous.    □ 
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