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1. INTRODUCTION 

Let M be a complete non-compact finite dimensional Riemannian manifold 

andp(a;, y, t) be the heat kernel of the corresponding heat equation Ut — Au = 0 

associated with the Riemannian metric. In this paper, we are concerned with 

obtaining heat kernel upper bounds reflecting global geometric properties of 

the manifold. One of the simplest and the most natural forms of expected 

estimates reads as follows 

(1.1) p(x, y, t) < f{t) exp    -const — 

where r = dist(x,y). For example, in the Euclidean space Rn one can put 

/(*) = const • t_n/2 while in the hyperbolic space Hn f(t) = exp(—const • i) 

for large t. There are examples of manifolds for which the heat kernel has an 

intermediate decay (see [17]). 

There are two approaches to a question. The first one is to obtain an 

estimate covering the widest possible class of manifolds while the second is 

to try to estimate the heat kernel as sharply as possible, for example, to find 

the best function /(£), using for this purpose as much information about the 

manifold as required and, hence, having to consider a more particular variety 

of manifolds. 

An example of the former approach is the statement that for any manifold 

of bounded geometry the heat kernel decays at least as fast as 1/y/i. It was 

first understood by Varopoulos [15], [16], and he proved a little bit weaker 

statement. The result was independently announced also in the note [6]. 
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A complete proof was first given by Chavel and Feldman [2] and for a 

more general conception of bounded geometry by Coulhon [4]. Both these 

proofs were based upon a discretization technique (developed in [9], [10], [11], 

[13] etc.), whose main idea is to replace a manifold by an appropriate graph. 

From this point of view, the rate 1/y/i is not unexpected because this is the 

magnitude of the heat kernel on the thinnest graph Z. 

In this paper, we present a direct proof for manifolds which seems to be more 

flexible. It is interesting that the proof needs the same geometric hypotheses 

as discretization arguments of [4] despite the approaches are quite different. 

We discuss below the class of manifolds which appear as a generalization of 

the notion of a manifold of bounded geometry. 

The second set of results presented in this paper is related to a connection 

between the heat kernel decay in time variable as t —> oo and an isoperimetric 

property of a manifold.   We refer the reader to [8] for the history of this 

question. In that paper, a theorem was proved which establishes equivalence 

between the heat kernel on-diagonal estimate 

, ■   . , const 
(1-2) p^.ar.tX^y 

supposed to be true for alH > 0 and the isoperimetric inequality of the Faber- 

Krahn type 

(1.3) Ai(ft)^A(Volfi) 

where Ai(f2) is the first Dirichlet eigenvalue of a pre-compact region O and 

functions ti.{v) and V(t) are expressed each through the other by means of the 

following transformation 

(L4) * = /       ^TT Jo      vA(v) 

Whenever we want to restrict our considerations to large values of time 

only, it becomes natural to take into account only big regions O. The theorem 

cited above does not allow us to do that because for its application we need 

to control A(v) for small v so that the integral in (1.4) converges. To avoid 

having to consider small regions, one should assume a manifold to possess a 

priori a uniform structure . 
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Localization at infinity was done by Chavel and Feldman [2] for manifolds 

of bounded geometry in the case of a polynomial decay of the heat kernel. 

They considered a classical (as in Euclidean space) isoperimetric inequality 

between the area of the boundary and the volume of any region containing 

a ball of a given radius (they referred to such a situation when dealing with 

regions containing a fixed-size ball as a modified isoperimetric inequality ) and 

showed that it implies a corresponding heat kernel long time upper estimate. 

In this paper, we consider a modified isoperimetric inequality for the first 

Dirichlet eigenvalue in the spirit of [2], but one which, in addition, covers a 

superpolynomial scale too. A localization at time infinity becomes possible 

due to our understanding of a structure of the heat kernel's level sets on a 

locally Harnack manifold to be defined below. 

Let us concentrate now on the notion of bounded geometry, which reflects 

the fact that a manifold is arranged similarly in a fixed size neighbourhood 

of any point. There are different definitions of this notion. The following one 

was introduced in [3]. 

DEFINITION 1. The manifold M is said to have Ck- bounded geometry if an 

injectivity radius at any point is bounded away from 0 and the covariant 

derivatives up to the order k of the curvature tensor are bounded from above 

and below. 

The next definition occurs the most frequently (see, for example, [11], [2]). 

DEFINITION 2. The manifold M is said to have bounded geometry if an in- 

jectivity radius at any point is bounded away from 0 and a Ricci curvature at 

any point is bounded from below by a (negative) constant. 

Finally, a definition of weak bounded geometry was applied in [5]. 

DEFINITION 3. The manifold M is said to have weak bounded geometry if 

there is a positive radius p such that any geodesic ball of this radius is uni- 

formly quasi-isometric to a Euclidean ball which means that there exists a 

diffeomorphism of any geodesic ball onto a Euclidean one changing the metric 

at most in C times, the constant C not depending on the ball. 
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Each of these definitions covers a wider class of manifolds than the preceding 

one. The Varopoulos's conjecture is proved in [2] for manifolds of bounded 

geometry in the sense of Definition 2. The proof of [4], as well as that of the 

present paper, covers a class of manifolds which is even wider than that of 

Definition 3. But first, we introduce a notion of locally Harnack manifolds . 

DEFINITION 4. The manifold M is said to be locally Harnack manifold if there 

is a positive radius p > 0 (which will be referred to as Harnack radius ) such 

that for any point x G M the following is true 

(a) for any positive numbers r < R < p 

(1•5, w^^h) 
(b) Poincare inequality: for any smooth function f(x) in the ball B^ of a 

radius R < p the following inequality is valid 

b 
(1-6) /   \VffZjrJ     (/-/) 

provided 

/S        1 f      f 
where a, 6, n are positive constants (n is normally but not necessarily 

the dimension of M). 

Let us explain why we apply the name "locally Harnack manifold" in con- 

nection with properties (a), (b). The cause is that (a) and (b) are equivalent 

to the Harnack inequality for the heat equation in any cylinder B^ x (0, R2) 

where R < p (see [14] and also [7]). 

The conditions (a) and (b) are valid, for example, whenever the manifold has 

Ricci curvature bounded from below by some (negative) constant — K (see [1]). 

On the other hand, there are manifolds of constant negative curvature (being 

therefore locally Harnack manifolds ), for example, those of finite volume, 

which may in no case be regarded as manifolds with a locally uniform geometry. 

To avoid such situations we have to assume some lower bound of the volume 

of a geodesic ball to be valid. 
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Theorem 1.1. Suppose that M is locally Harnack manifold and the following 

hypothesis holds for any x G M 

(1.7) Vo\Bx
p>v0r-« 

where r = dist(x^ y), y being a fixed point on M and VQ > 0, 1 > a ^ 0; then 

for any D > 4, t > p2, x G M 

,     . / x       const f    r2 "j 
(1-8) p(x,y,i)<^=exp^- —J 

where const depends on a,b,VQin,a,p,D . 

Let us put, for example, a = 0 i.e. we have independently of the point y 

that 

(c) for any x G M    Vol JB£ > Vo 

Then by Theorem 1.1 for all x, y G M and for all £ > p2 

. , N      const f    r2 \ 
(1.9) p{x,y,t) ^ —r-exp [-^1 

A manifold satisfying the conditions (a),  (b),  (c) may be considered as a 

natural generalization of a notion "manifold of bounded geometry". 

As far as behaviour of the heat kernel for small t is concerned, the following 

general estimate is a consequence of results of [8] and [7]. 

Proposition 1.1. If M is locally Harnack manifold with property (c) then the 

heat kernel satisfies for all x, y G M the inequality 

fexp f-Ai(M)£--£] , t^ p2 

(1.10, ^MKc^J^jJ,^ 

where Ai(M) is the bottom of the spectrum of the operator —A in L2(M), 

D > 4 is arbitrary and const depends upon a,6,v^^n^p^D. 

This result yields also a sharp long time heat kernel estimate provided the 

spectral gap A1(M) is positive; but if A1(M) = 0 then it does not ensure any 

decay of the heat kernel in contrast to Theorem 1.1. 

Another example where Theorem 1.1 is applicable is the following manifold. 

Let us consider a surface M of revolution around a straightline in Rn+1 of a 

graph of some function /(r) defined on R (=the straightline). Suppose that 
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/ is smooth so that M is a manifold, and /(r) = |r|~ , /? > 0 for large values 

of r, then for a fixed y G M, p > 0 and for any x G M 

VolB^ const pr-n/3 

Since the curvature of the surface in question is bounded from below this 

manifold is locally Harnack one. Theorem 1.1 gives us (1.8) for a = —n(3 

provided (3 < jk It is interesting that for this surface a lower bound is valid 

with the same power of t so that Theorem 1.1 gives in this case a sharp 

estimate. Note that for /? > 1/n the manifolds under consideration has a 

finite volume and, thereby, the heat kernel does not approach to 0 at all. 

Finally, we consider a modified isoperimetric inequality on the manifold in 

question. 

Theorem 1.2. Suppose that M is a locally Harnack manifold with the condi- 

tion (c). Let any region f2 containing a ball of radius p satisfy an isoperimetric 

inequality 

(1.11) Ai(n)^ 'A(fi) 

where h(v) is a positive continuous decreasing function in (VO,OQ). Let the 

function V(t) be defined by means of the following identity 

,     x r^w   dv 
(1.12) t-to= -Tr- 

where to = constaj&jn p2 > 0, then for t > t0 and all x, y G M 

(1-13) p(x'y'*)<^^' 

Moreover if the function V(t) satisfies some additional conditions (see section 

4 for details) then for all x, y G M, t > to, D > 4 

/ / x      const (    r2 "I (1.14) p(aj>y>t)<__«p^-_J 

where r — dist(x, y) and constants const, c depend upon a, 6, n,p,Vo,D. 

Acknowledgement. The author is very grateful to W. Hansen for his help and 

hospitality during his staying in Bielefeld University where this work was done. 
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2.   A LOWER BOUND FOR THE FIRST DlRICHLET EIGENVALUE 

ON A LOCALLY HARNACK MANIFOLD 

The main purpose of this section is to obtain a lower bound for A1(n) via 

the volume on a locally Harnack manifold. To understand the idea behind the 

proof, let us first suppose that M is a manifold of weak bounded geometry in 

the sense of definition 3. 

Consider a bounded region Q with a smooth boundary 90 and its inter- 

sections with different balls of radius p which are similar to a Euclidean one. 

If in some of these balls the set Q covers at least a half of its volume then 

by continuity arguments there exists another ball of radius p where fi covers 

approximately a half of its volume. Therefore, the surface <9fi divides the ball 

into two approximately equal parts and by the isoperimetric property of a 

partition in the Euclidean ball we have that the measure of dft is bounded 

from below by a positive constant. 

Otherwise, Q occupies in any ball of radius p less than a half of the volume 

and we can devide O into many small parts each of them lying in some of the 

balls in question and apply the isoperimetric inequality in any ball once again. 

Omitting details we shall only note that the final result in this case is that the 

measure of dQ is at least as large as const (Vol Q)~^~ as it takes place in Rn. 

Hence, in either case we have obtained some lower bound for the measure of 

the boundary via the function of the volume of fi. 

Let us note that the isoperimetric inequality of a partition in a ball is nothing 

but an L1-version of Poincare inequality (b). If we have instead the normal 

L2- version, then we cannot hope to estimate the area of the boundary via the 

volume, but we are able to prove a L2- version of this inequality—namely, a 

lower bound for the first Dirichlet eigenvalue of a region via its volume. 

Theorem 2.1. Suppose that the manifold M is a locally Harnack one, then 

for any pre-compact region Vt C M the estimate holds 

M Mn,^mm((^)2,(^ 
2/n 
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where p is the Harnack radius, 

(2.2) Vo = inf{Vol B* \ Bx
p n fi ^ 0} 

and consi > 0 depends on constants a, &, n /rom Definition 4- 

Proof. Let us consider a non-zero Lipschitz function u ^ 0 in ft such that 

u|an = 0. It suffices to prove that the ratio 

(2.3) /"|V^12 

/n«2 

is bounded from below by the expression on the right-hand side of (2.1). To 

this end, let us consider a family of level sets of the function u: Qt = {u > t} 

for any t > 0 (here t is not a time !) and set Vol Qt = m(t). Let us associate 

to any t > 0 some t' > t such that 

(2.4) Vol(fit\JV)<$Voiftt 

where 8 G (0,1) is to be chosen later as a function of VQ/ Vol fi. Our first step 

is to estimate from below the integral 

(2.5) I   | vd2 

nt\ntl 

via the function m(t).  For this purpose we shall apply the following lemma 

proved in [7] (lemma 1.1 from that paper). 

Lemma 2.1. If the conditions (a) and (b) of the Definition 4 hold in the ball 

B* then for any Lipschitz function u in this ball and for all t < t' 

(2.6) / 
,2 (f - t)2A-A+ 

Vu    ^ const 
r2Vol^ 

{t<u<t'} 

where 

A- = Voi ({«<t}ns?/2) 

A+ = Vol ({u ^ t'} n B*/2} 
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Next we shall consider two cases. 

CASE 1. Suppose that there exists a ball B^^Q in which the set Q,t occupies 

at least a half of its volume i.e. 

(2.7) Vol ( {u > t} n B;/10 ) > 1 Vol B*p/1Q 

Then by continuity arguments there exists a point x at which the equality 

attains in (2.7) (here we have made use of unboundedness of the manifold). 

We intend now to apply lemma 2.1 in the ball B*/5. First we need to estimate 

from below the corresponding volumes A~, A+. Due to the choice of x we have 

that A~ = | Vol Bp,10. Obviously, we have the following inequality for A+ 

A+>±vo\Bx
pno-vo\(nt\nt,) 

^ ^ Vol Bx
p/10 - 6 Vol fi ^ cVo - 6 Vol ft ^ | 

where c = \a    10 n and b is assumed to satisfy the inequality 

(2.8) b Vol ft ^ l^o 

Hence, we get 

(2.9) A+ ^ const Vb 

and by lemma 2.1 

/ 
|2 (f-t)M-A+     _(t'-tf 

| Vn|   ^ const —_  ^ const ^-V^ 
p2VolB-/5 p 0 

or taking into account (2.8) and Vol Vl ^ Vol Vtt we get finally 

(2.10) I   [Vul2 ^ const ^ "^ bm{t) 

CASE 2. Suppose now that in any ball -B^10 of radius p/10 the set Vtt 

occupies less than \ of its volume, then for any x G VLt there is a radius 

r{x) < p/10 such that 

Vol {B*{x)nnt) =\vo\B; (x) 
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because for a very small r the ball B* lies completely in Qt. The union of balls 

■^2r(x) covers ^V Hence, by means of Banach process we can select from them 

at most a countable sequence {B^.} so that they do not intersect each other 

while the balls B^. cover together fi£. We are going to apply lemma 2.1 in 

every ball 3%^ • Let us denote by A~, Af the corresponding volumes from this 

lemma. Since A~ = | Vol 3** it follows that 
> 

Vu    > const ^ o-2-^?" • 

We have by the condition (a) that 

fVolBfO 

/ 

^< 
Vol B** 

1/n ( \T^ o ^ !/« 
^ const 

r Voi ^ ^ 

whence 

{t<n<t,}nB^. 

Next, note that ^ Vol B^on is at least as large as the volume VLt .   Hence, 

according to hypothesis (a) we obtain that 

^VolB£ ^ const Vol a 
i 

Taking into account that 

A+'=ivoiB£-voi ((a\n^nB^) 

and, therefore, 

y^ At ^ const Vol Jlf — Vol  I VLt \ VLtf j  ^ const m(t) — <5ra(£) ^ -const m(t) 

(where we have assumed that <5 ^ |const) we obtain from (2.11) 

(2.12) /   |Vu|2 ^ const ^^ (^] ^mW 

We see that in both cases we can choose b as follows 

(2.13) «$ = constmm(2,^] 
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Let us combine the inequalities (2.10) and (2.12) together. If Vol Q, ^ -VQ 

then we have 6 = const ^-Q and in either case 1,2 we get 

(2,4,      _/jv^co»st(^mi„((^)2/\^)™(t) 

Otherwise, if Vol O < |Vo, then the case 2 takes place and (2.14) is valid 

again (as follows from (2.12)). Therefore, (2.14) holds always provided £' and 

t satisfy (2.4) and 6 is defined from (2.13). 

Now we shall arrange an infinite sequence 0 = to < ti < £2 < ••• according 

to the rule 

(2.15) tw = min{r| Vol {u > r} ^ (1 - 6)m{tk)} 

Obviously we have that 

m(tk+1) ^ (1 - S)m(tk) 

in particular, ra(ifc) —> 0 as k —> 00. It follows from (2.15) that 

voi(ntt\afc+1)<«vointfc 

so the estimate (2.14) is applicable to t — tk, t' = tk+i ■ 

(2.16) 

y_M   ^ const ^ mm[ivorQj      'Vom 
totk\ntk+1 

m(tk) 

Let us sum up all the inequalities (2.16) over all k — 0,1,2,... and apply the 

following lemma (see lemma 1.2 in [7]). 

Lemma 2.2. Suppose that {t^ is an increasing sequence of real numbers, 

to = 0 and mk is a decreasing sequence of positive numbers such that mk+i ^ 

(1 — 6)mk for some 6 G (0,1) .  Then 

OO c       OO 

(2.17) £>*+! - ifc)2mfc ^ — £*ln(mfc-rftfc+i) 
fe=0 fc=0 
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Therefore, we obtain 

f ,     .o     const c    .    f f    Vo   12/n      Fo    1 A NX 

We are left to substitute here the value of 6 from (2.13) and to observe that 

wi(*fc) —* 0 implies the estimate 

/c=0 

so that 

/» oo 

/ u2 < ^2tl+1(m(tk) - m(tk+1)) 
Jn r~; 

f       2     const    .    f f   Fo   I27"   f   V0   \
2\   f   2 yjvul   >—nnn^ —J      ^__J   j y^ 

which was to be proved.    □ 

3. UPPER BOUND FOR THE HEAT KERNEL 
ON A LOCALLY HARNACK MANIFOLD 

We are going to obtain upper bounds for the heat kernel applying arguments 

of [8]. Let us introduce the notation 

(3.1) ED(x,t) = J^p2(x,y,t)exp ^j dy 

where r = dist(x, y), D > 2. As was proved in [8] for any manifold M and for 

any D > 2 the function ED(x11) is always finite and decreasing in t. Moreover, 

the following estimate always holds 

(3.2) pfoy,*) <.exp (-^) yJED{x^)ED{y^) 

where r = dist(x, y) (see proposition 5.1 from the paper cited above ). This 

estimate enables one to obtain a Gaussian pointwise upper bound whenever 

one has proved an estimate of the following kind : 

(3.3) ED(x,t)^f(t) 

To obtain such an estimate we shall use another result of [8]—a particular 

case of Theorem 4.2 and Corollary 4.2 from there which reads as follows. 
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Proposition 3.1. Suppose that for some (fixed) ball B^ C M and for any 

subdomain Q C B^ the following isoperimetric inequality is valid 

(3.4) A^O)^ .A(Volfi) 

where the function A(v) is as follows 

(3-5) A(v) = I 
[Bv v, V^VQ 

AiB,a,(3 being some positive constants and VQ is determined from the condi- 

tion 

(3.6) AV0-
a = BV0-

p 

Let the functions V(t), lZ(t) be defined by the identities 

rvw   dv 

Jo       vA(y) 

and 

rv{t)    dv 
(3.8) K(t) = /       -==. 

Assume also that R and t are related as following 

(3.9) K(t) < cR 

where c = c(a, (3) .  Then 

(3-10) EoixJX^ 

with the constant const depending on D and supttA(V(t)). 

Remark. The corresponding assertion in [8] was proved for a more general 

function A and the statement reads even more bulky. Some simplification 

occurs here due to the particular polynomial form of A. 

Functions V(t), TZ(t) are easily computed and admit the following estimates. 

Let us set 

(3.11) tQ = -A^B^ 
a 
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(this value is found from the condition V(to) = V0). Then we have for any 

* < to 

(3.12) V(t) = (Aat)1^,    K(t) = 2A/^ 
V a 

and for t ^ to 

(3.13) V(t) > (Bmm(atp)t)1/I3,    K{t) ^ 2A/^ + 2J| 
V a y p 

In particular, we see that tk{V{t)) ^ const a^ . Therefore, the constant in 

(3.10) depends only on D, a, (3 and what is important to underline it does not 

depend on A, B as well as the estimates of 7£(£) in (3.12) and (3.13). 

The relations (3.12) are obtained by a direct computation from the definition 

of V(t),1Z(t). To explain estimates (3.13) let us note that for t ^ t0 we get 

from (3.7) 

rV(t) J^ 

JA(V) ~ B(3K 

that implies 

<3-i4>    '-'•-r^si'ww-rt 

Comparing with 

rVW        dv 

'At) - K(t0) = I 

we see that 

R(t) - Rfo) < 2W^ 

whence, the estimate (3.13) for R(t) follows. To prove the lower bound of V(t) 

in (3.13) let us note that according to (3.6), V(to) = VQ and (3.12) we have 

\tf = ^V0
a = Bato. Hence, it follows from (3.14) that 

V(ty - Vf + Bf3{t - t0) = Bato + BP(t - to) ^ B min(a, (3)t 

The following theorem ensures an upper estimate for ED{x)t) on a locally 

Harnack manifold. 
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Theorem 3.1. Let. M be a locally Harnack manifold with a Harnack radius 

p. Let us define a function Vo(x, R) as the infimum of volumes of all balls By
p 

having a non-empty intersection with the ball B^, then for D > 2, x G M, t > 

0 

(3.15) ED{x,t)^ COnSt 

where const depends on D and on the constants a, 6, n from definition 4, c = 

c(n) . 

Proof According to Theorem 2.1 any region fi G B^ satisfies the inequality 

(3.4) with function A from (3.5) where a — 2/n, /? = 2 and 

const    ,     _No/„     _     const 
(3.16) A = ^-Vo(x, R)2/n,   B = -—Vo(x, R) 2 

Calculating to as it is required for proposition 3.1 we get from (3.11) the 

following 

to = const • p2 

To apply proposition 3.1 we choose for any t > 0 the corresponding R so that 

the relation (3.9) is satisfied. Let us show that for R — -y/8nt (3.9) is valid. 

Indeed, if t < to this is obvious because TZ(t) — y/2nt. Otherwise, if t ^ to we 

apply the estimate (3.13) for TZ(t) and see that 

cR = \/8nt ^ V2n^ + V^t ^ K(t) 

We are left to show that 

/       /-x    .    (Vi   ( t )n/2) 
V{t) ^ const Vo(x,cVt) mm    —,    -^r 

I P    IP2 J      J 

Indeed, for t < to we get from (3.12) and (3.16) 

V(t) = const • Vo{x, R) J -j j 
n/2 

For t ^ to we have in the same way 

1/2 

V(t) ^ const • T;o(a:, R) f -^ ] 
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Substituting here the value of R and applying finally proposition 3.1 we obtain 

the desired inequality (3.15).    □ 

Corollary 3.1. If M is a locally Hamack manifold with a Harnack radius p 

satisfying to the condition (c) of section 1 (i.e. the volume of any ball of radius 

p is at least as large as VQ > 0) then for all t > p2] x G M, D > 2 

/o iirrx *-.  /    ,\  ^ const -OVQ
1 

(3.17) ED{x,t)^ -p- 

where const depends on a,b,n,D. 

Combining Theorem 3.1 with the relation (3.2) we obtain a heat kernel point- 

wise estimate. 

Corollary 3.2. For a Harnack manifold M the following estimate holds for 

allx.y e M, t> p2, D > 2 

(3.18) p{x,y,t) < ^^ "jexp (-^) 

In particular, we have under conditions of corollary 3.1 

/o -.^x /        ,N ^ const 'pvn1 (     r2  ) 
(3.19) P(x,y,t) < ^-^exp {~2Di) 

In both inequalities the constants const depend on a, b, n, D; c is the same as 

in Theorem 3.1. 

The estimate (3.18) can be transformed to be expressed via another function 

of volume. Indeed, let us fix some point z and put 

(3.20) w{R) =  inf Vol B; 

Obviously, we have 

VQ{X,R) > w(d(x) + R + p) 

where d{x) = dist(x, z). Applying the foregoing corollary we obtain for t > p2 

and any a;, y G M 

/« ^..N     / x const • p (     r2  "1 
(3.21) .p(x,y,t) < ^ -rexp   -— 

Vt [w{d(x) + cVi)w(d(y) + cVt) J 2 k ; 
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where c = c+ 1. 

For example, if w(R) ^ const • i?~7, 7 > 0 it follows that 

In particular, if we put here y = z and note that the polynomial {c + r/y/i)1^2 

2 
is majorized by the exponential multiple exp(£Y) with an arbitrarily small 

e > 0 then we obtain nothing but Theorem 1.1. 

4. MODIFIED ISOPERIMETRIC INEQUALITY 

The heat kernel estimates obtained in the preceding section are valid for a 

wide class of locally Harnack manifolds but of course as any general estimate 

they are not sharp for more particular classes of manifolds. Here we impose 

an additional restriction that a locally Harnack manifold with the condition 

(c) satisfies some isoperimetric inequality for large domains and obtain a more 

precise information about the heat kernel decay in time via the isoperimetric 

function. As was mentioned in Introduction, the main difficulty lies in the 

fact that we are not given a priori an isoperimetric inequality for all regions 

(otherwise we could simply apply [8]). 

The key point of our proof is that we are able to show that the level sets 

of the heat kernel on a locally Harnack manifold are similar to geodesic balls. 

More precisely, a level set (for a fixed time) either lies in some ball or contains 

a smaller ball, the radii of the balls being finite proportional to the Harnack 

radius p. To prove this we apply locally Harnack inequality. Afterwards, to 

estimate the heat kernel we can repeat arguments of [8] because as turned 

out they require the isoperimetric inequality only for the level sets of the 

heat kernel rather than for all regions. We apply for large level sets a given 

isoperimetric inequality and for small level sets - the isoperimetric inequality 

inside a small ball (in fact, Theorem 2.1). 

Theorem 4.1. Let M be a locally Harnack manifold with a Harnack radius 

p7 then for any positive s < £0 = £Q(a)b^n) there exists 8 = 8(e,a,b,n) > 0 

such that for all x G M, 0 < t < 6p2 the level set 

(4.1) Gt = {yeM\ p(x,y,t) > ep(a;,a:,2t)} 
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lies in the ball B*ip while for t ^ 6p2 the set Gt contains the ball B*2P , where 

0 < C2 < Ci < 1 and Ci^ depend only on constants a, &, n from the conditions 

(a), (b). 

Proof The proof will be split onto three steps. 

STEP 1. Let us first prove that if t < p2 and r = dist(x, y) < p then 

(4-2) p(x,y)i)^___exp^_J 

Let us take some x G M, R < p and notice that for any region Q C B^ we 

have according to Theorem 2.1 

™      ^^mr 
To explain this first, note that the value of VQ defined from (2.2) is finite 

proportional to Vol B^ so that we may replace it by Vol B^ . Second, the 

estimate (2.1) of Theorem 2.1 includes one more term: 

2 

fJ4_l 
I Vol Q J 

but in the case under consideration it can be omitted for 

(4.4) Vol ft ^ Vol B% = consta,n V0 

Next, we apply proposition 3.1 in the ball B^ and due to (4.4) we have for 

t < const„ R2 , D > 2 that 

COnstD)aifcin ^ 
(4.5) ED(x,t)^ 

tn'2 Vol BX
R 

Since En(x, t) is decreasing in t it follows that the following estimate holds for 

alH > 0 

Applying the estimate (3.2) we get that for all x, y £ M, t > 0, R < p 

Rn constD<aAnexp f-^J 
(4.7) P(x,y,t)^ 

min(i,i?2)"/2 ^Vol Bx
RVol By

R} 
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where r = dist(a;,y).   If now t < p2 and dist(^,y) < p then we set D = 

2.5, R = y/t and apply the property (a) in a suitable way that yields us that 

the volumes of balls B^ By
R are finite proportional whence (4.2) follows. 

STEP 2. Let us proof that for t < p2 

(4-8) *x>x>W>^i^ 

Indeed, let us consider the function u(y^r) = fBX    p(y, ^,T)d^ (where t < p2 

y/i/A 

is fixed) which satisfies the heat equation and to the initial value w(y, 0) = 1 

if y € -B^/4. Hence, we can extend this function by 1 for r < 0, y E B^q/4 so 

that the extended function satisfies the heat equation in 5^/4 x (—oo, +oo). 

Applying the Harnack inequality in the cylinder 5^/4 x (—i, t) we obtain 

/       P(^5 £? *)^ = w(^) *) ^ consta565T] 
BU/4 

where consta^n > 0 is the corresponding Harnack constant. Therefore, there 

exists a point y E -E^/4 such that 

/ A f\\ (        JA \ consta 5 n 
(4-9) ?(*,»,*)> "^i^T 

Applying Harnack inequality once again for the function p(x, •, •) in the cylin- 

der 5^/2 x (0,2t) we get 

p(x, x, 2t) ^ consta56)n p(x, y, t) 

whence (4.8) follows. 

Combining the estimates of steps 1, 2 we claim that 

(4-10) K^^)^ consta,Mexp^-J 

provided y E B*, t < p2. 

Let t < dp2 and y $. B^ip where constants 5, Ci are to be chosen later. Then 

(4.10) implies that 

^ i-n POM/**)   /        . f    ci ) 
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If the right-hand side of (4.11) is less than e then any point y under consider- 

ation does not land at Gt that means that Gt lies in the ball B*ip. Thus, the 

first condition to be satisfied by the choice of ci, 8 is the following 

c2 1 
(4.12) ^->consta,M(l + log-) 

0 6 

STEP 3. It is standard that Harnack inequality implies the following esti- 

mate for any positive solution u(y,t) to the heat equation in B* x (0, +oo): 

there exists r < t such that 

(4.13) U(X,T) ^ exp   consta,6,n(l + —)    u(y,i) 

provided r = dist(x,y) < ^p (see [12]). Indeed, let m > 2 be an integer such 

that 

r2      / 
(4.14) -<7 

m      4 

In particular, m can be taken to satisfy also the inequality 

r2 

m<4(l + —) 
b 

Let us divide a shortest geodesies connected points x, y into 2m equal parts 

denoting the corresponding points as Zk, k = 0,1, "...2m where ZQ = y, 2:2m = x 

and consider a sequence of times tk = t — k(^)2. Let us apply Harnack 

inequality in any cylinder 

^mx  (**.**-2(£)2) 
(note, that ^ - 2(^)2 > 0 due to (4.14)) which gives us 

tt(2k+i,ifc+i) < consta)6,n ^(zfc, tfc) . 

By induction we obtain 

u{x, t2m) < (consta56)n)2m^(y, t) 

whence (4.13) follows. 

Applying (4.13) for ^(y, t) = p(x, y, t) and noting that p(x, x, 2t) < p(x, x, r) 

(which simply means that p(x, x, •) is a decreasing function) we have 

p(x, x, 2t) ^ exp    consta)6>n(l + —)    p(x, y, t) 
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or 

Suppose now that t > 6p2 and r < C2P. Then (4.14) implies 

MjSexp(-co„SWl + |)) 

Thus, if the right-hand side of this inequality is greater than e i.e. 

c2 1 
(4.16) 1 + -j < consta,6,n log - 

then the entire ball B*2p lies in Gf 

We are left to compare the relations (4.16) and (4.12) to show that they 

can be satisfied simultaneously. Indeed, we set, for example, ci = | and find 

6 so that (4.12) is true: 

(4.17) 6=const^ 
V      / 1 + log^ 

Substituting this value into (4.16) we obtain the following inequality to be 

satisfied by choosing of C2 

2 consta,6,n log ^ - 1 
c2 ^ consta,fe,n ———f  

1 + log f 

Obviously, for sufficiently small e < eo(a,b,n) the corresponding value of C2 

exists and does not depend on e.    □ 

Now we can prove the main result of this section - a heat kernel estimate under 

an isoperimetric inequality supposed to be valid only for large sets. 

Theorem 4.2. Iabelthm4.2 Let M be a locally Harnack manifold with the Har- 

nack radius p and x be some (fixed) point on M. Suppose that for any pre- 

compact region Ct containing the ball B* the following inequality holds 

(4.18) A^fi) ^ A(Vol fi), 

A being a positive continuous decreasing function defined on (Vol B*oo), then 

for all t > to = 8p2 where 6 = 6(a, brn) > 0 we have 

ConstaAn (4.19) p(x,x,2t)^ 
V(t) 
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where the function V(t) is defined from the relation 

rv{t)    dv 
(4.20) t - to = /       -^ 

Jvn VA(V) 

and VQ = Vol B* 

Remarks. 1. The estimate (4.19) is more rough than it is expected in view of 

the Theorem 2.1 from [8]. In fact, one can prove that 

const 

where 7 may be taken arbitrarily close to 2, but under the condition that the 

ratio 4" is large enough. We have preferred to present a less sharp inequality 

which however is valid for a more definite range of time. 

2. In the course of the proof we find a certain value of 6 = <5(a, 6,n) for 

which the statement of the theorem holds. In fact, the estimate (4.19) remains 

valid for smaller values of 5, too but in this case the constant consta)5)n has to 

depend on 6 as well. 

Proof of theorem. To find 6 we choose first some positive e < min(|, SQ) where 

£0 is the same as in Theorem 4.1 (e will be specified at the end of the proof) 

and put 6 = 6(e) from the relation (4.17) of Theorem 4.1. Let us consider 

again a set 

Gt = {y e M\ p(x,y, t) > ep(x, x, 2t)} 

If t > to = 6p2 then the set Gt contains by Theorem 4.1 the ball S* where 

C2 is the constant from Theorem 4.1. We want to estimate from below Xi(Gt) 

according to (4.18) but we may apply this inequality only for sets, containing 

the ball B*. This is why we shall consider the union Gt U B*. Due to the 

monotonicity of the first Dirichlet eigenvalue we have 

X1(Gt) ^ X1(Gt UBx
p)^A (Vol (Gt U B*)) 

Evidently, we can compare the volumes as follows 

Vol (Gt U Bx
p) ^ Vol Gt + Vol B* ^ Vol Gt + acn

2 Vol B^p < C Vol Gt 
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(where (7=1 + ac^) whence the desired estimate follows: 

(4.21) A1(Gt)>A(CVolG'£) . 

We shall apply (4.21) to obtain an upper bound of the function 

/(«)= /  p{x,y,t)2dy = p(x,x,2t) 
JM 

Note that for any positive numbers _p, £ the following inequality is true 

which follows obviously from considering of two cases: p < £ and p ^ £. Let 

us set £ = ££>(#, x, 2t) = el(t) and apply this inequality to the heat kernel 

/ p(x, y, tfdy ^ f       {p- £)2dy + 2£ / p{x, y, t)dy 
JM J{P>£} JM 

or, applying fMp(x,y,i)dy ^ 1 

(4.22) /      (p-O'dyS* / P2dy-2t; 
J{P>0 JM 

Now we are going to estimate the integral over Gt — {y\ p(x, y, t) > £} on the 

left-hand side of (4.22) through the Dirichlet integral of the heat kernel over 

the same set. To this end, we have to show that the level set Gt is bounded for 

any t > 0. Indeed, it follows from corollary 3.2 that for a large r = dist(a;,y) 

the value of p(x, y, t) becomes arbitrarily small so that Gt lies in some big ball. 

Hence , we have that 

/       \7p\2dy > X1(Gt) [      {p-02dy > A(CVol {p > £}) /      (p-tf . 
J{P>0 J{P>0 J{P>0 

On the other hand 

Vol{p>0^. 

Combining these inequalities with (4.22) we get 

(4.23) /  | Vp|2 dy > AiCC1) f / P2 - 2^1   • 
JM yJM ) 

Finally, observing that /'(£) = — 2/M|Vp|   and replacing £ by its value we 

obtain a differential inequality 

(4.24) J'(t)<-2(1- 2£)A(i:^]/(i) 
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which is easily integrated and yields for t > to 

rHt)     di /•* 
(4.25) /       f-y < -2(1 - 2e) /  dt < -(t - t0) 

(we have applied that e ^ \). Changing a variable v = C/(eI) we obtain 

(4.26) rFw   *L 
J  c    vA(v 

nt)    dv 
>t-to 

  uA(v) 
el(t0) V     J 

We are left to relate jj^p; to ^o = Vol B*, namely, we should find s so that 

the following is true 

<427> "»< im 
—as soon as this is done one can substitute it into (4.26) and a comparison 

with (4.20) gives 

C 
>V(t) 

c 

elit) 
and 

p(x,x,2t) = m^ 

which was to be proved. 

Returning to (4.27) we shall apply the estimate (4.2) from the proof of 

Theorem 3.1 (or directly this theorem) which gives in this case 

ru \        r        o+ \ / constaj6)n      constai6,n /(to) = P(x, x, 2to) < ^^ < -^j^- 

Comparing this with (4.27) we see that (4.27) is satisfied provided 

6n/2 ^ constaAn e 

For sufficiently small e this is true due to the fact that 6 is a rational function 

of log ^—see (4.17).    □ 

Corollary 4.1. Suppose that M is a locally Hamack manifold with the con- 

dition (c) i. e. the volume of any ball of the Hamack radius p is bounded from 

below by VQ > 0. Let any region Cl containing a ball of radius p satisfy the 

inequality 

(4.28) \1(Q)^A(Q) 
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where A(v) is a positive continuous decreasing function in (VQ, OO). Let t0 be the 

same as in Theorem 4-2 and the function V(t) is defined by means o/(4.20). 

Suppose that the following additional condition holds: 

(4.29) function tA(V(t)) is increasing on (T,+oo) for some large T. 

Then for all xyy G M, t > to the following estimate holds 

/. ^^x / Const (    r2 1 (4.30) p(x,^K__exp^_] 

where r = dist(x,y), D > 4 is arbitrary, c and const depend on all constants 

a,6,n, Vo,p,T,D. 

Remark. The condition (4.29) is required to apply a theorem from [8]. It puts 

some restrictions on a possible behaviour of V(t) as t —> oo. Let us note that 

as follows from (4.20) A(V(t)) = -j/rT) • ^ny a more or less regular function 

V(t) of at least a polynomial growth, for example, ta,exip(ta) etc. satisfies 

(4.29). On the contrary, the function V(t) = logt does not suit it. We do not 

lose much with such functions because on the manifold under consideration 

the heat kernel decreases always at least as fast as l/\/t. 

Proof. The idea behind the proof is, first, to obtain a heat kernel on-diagonal 

estimate being valid for all t > 0, second, to deduce from it an isoperimetric 

inequality for all bounded domains (including small ones which are not covered 

by (4.28) ) and, finally, to apply the theorem [8] which ensures a heat kernel 

bound with a Gaussian term. 

Indeed, (4.2) implies for t < p2 and for all x that 

(4-31) pfoMX^j 

while for t > 2to = 26p2 we have by Theorem 4.2 

(4-32) p(x,X),)^__L_ 

where Ci^ depend on a, 6, n,p, ^Q. Since we can take 8 to be smaller than |, 

it follows that for all x G M, t > 0 either (4.31) or (4.32) is valid. 
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(4-33) V{t)=^„,^n,   _    2 

Let us define a new function V € C^O, +00) so that 

'CiW2, t ^ 2t0 

C2V(t/2), t > p2 

and in the interval (2io,/?2) 

(4.34) V".(t)<max (Ci^.C^V^)] 

Hence, for alH > 0 we have 

(4.35) ?(*,*,*)< ~^- 

For the further considerations we need that V'(t)/V(i) is a decreasing function 

which is certainly true for small arguments as well as for large ones (the latter 

follows from Vf(t)/V(t) = A(V(t)) and from monotone decreasing of A). For 

intermediate values of t that can be achieved by a proper choice of the function 

V(t) - so far it had only to satisfy the inequality (4.34). Moreover, we need 

also that this function V'(t)/V(t) has at most polynomial decay that follows 

from the condition (4.29) for large £, from a polynomial form of V(t) for small 

t and for intermediate values of t can be again obtained by a choice of V(t). 

Let us define the function A(v) by the identity 

(4.36) A(V(t)) = jQ 

Obviously, for large v we have 

while for small v A(v) ~ v~2^n. By Theorem 2.2 from [8] the on-diagonal 

bound (4.35) implies under the conditions on V(t) specified above the following 

isoperimetric inequality for any bounded region Q 

(4.37) Ai (ft) ^ const A(Vol ft) 

On the other hand, this isoperimetric inequality implies by Theorem 5.1 of [8] 

that for all x, y G M, t > 0 a Gaussian upper bound holds 

const i      v    i 
(4.38) p(x,y>t)<__CTp[--J 
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provided the function.tV'{t)lV{t) is increasing for large t and bounded for 

small t which is obviously valid in our case. We are left to replace in (4.38) 

the function V'(t) by C2V(£/2) for t > p2.    □ 

As it is seen from the proof, the modified isoperimetric inequality (4.18) is not 

only sufficient but necessary condition as well for the upper bound (4.19) to be 

valid (up to constant multiples). Indeed, as soon as we have got the estimate 

(4.19) for large t we can combine it with the estimate (4.2) for small t as it has 

been done in the course of the proof and obtain the isoperimetric inequality 

(4.37) for all domains which acquires the desired form for large regions. 
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