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ON PROJECTIVELY FLAT HERMITIAN MANIFOLDS 

JUN LI, SHING-TUNG YAUf, AND FANGYANG ZHENGJ 

Let (Mn,g) be a n-dimensional compact hermitian manifold, with n > 2. 

(M, g) will be called projectively flat, if its curvature matrix is of the form 

0 = a/n, where a is a (1, l)-form. Note that any metric conformal to g would 

also be projectively flat. In §1, we shall classify such manifolds, and in §2, we 

will give an application which may be considered as a generalization to higher 

dimensions of the Bogomolov's Theorem on VIIQ surfaces. 

First of all, let us correct an error in our previous paper [L-Y-Z]. We found 

this error after the paper was in print. On page 220, the vanishing of c^ 

and C2 does not imply that the Hermitian-Einstein metric h is flat, but only 

projectively flat, i.e., © = 0/2- So the argument there is incomplete. However, 

this gap can be easily fixed by applying the results of P. Gauduchon ([G]) and 

D. Fried ([F]). Start from the projectively flat compact hermitian surface 

(5, /i). By [G], h is locally conformally Kahler. That is, there exists a covering 

{[/QJ, and fa € C00
(?7Q!, i?), such that each e^ag is a Kahler metric in Ua. Note 

e^g is also projectively flat, hence flat, and in Ua fl C/^, fa — fp is a constant. 

Therefore, S is a complex similarity manifold. By Theorem 2 of [F], it is either 

covered by a complex 2-torus or a Hopf surface. This completes the proof of 

Bogomolov's theorem.1 

1. PROJECTIVELY FLAT MANIFOLDS 

Now let us consider the projectively flat manifolds in general dimensions. 

First let us fix some notations.   On a hermitian manifold (Mn,g), let e = 

tResearch partially supported by the NSF grant DMS-92-06938. 
IResearch partially supported by the NSF grant DMS-93-08239. 
^his error was also recently pointed out to us by A. Teleman, who found another 

interesting way to correct it. 
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(ei,... , en) be a local unitary frame and (p = ((p1,... , (pn) its dual coframe. 

Let 9, 0 the n x n matrices of connection and curvature under e, and r = 

(TI, ... , Tn) the torsion forms under e. Each r* is a (2,0)-form. The structure 

equations and the first Bianchi identity are: 

d(p = (pA6 + T ,    d6-9A6 = e,      dT = (pAG-TA9 

Write n = 5 YJj,k=i TjkPj A ^fc? where T^. = — T^-, and denote by a; = ^ A tp* 

the Kahler form of g (we omit the factor V^T). 

Consider the Gauduchon torsion 1-form ry ([G]) defined by 

It is easy to check that 5(a;n"'1) = (n—IJr/Aa/1"1, hence is uniquely determined 

and globally defined. First of all, one has: 

Lemma 1. If ® = aln, then Or] = a. 

Proof. Write the (0,1) part of 9 as 0^ = X)JLi ^ijJ^Pi an(i a — Z)^=i ^fj^Pi^Pj- 
By the structure equation and the first Bianchi identity, 

dtp = p A 9 ;       dr = cp Aa — T A9 

Hence for each i, j, A;, and /, one has: 

n n n 

Vrr;fc = 8^ - 8ikafl + Y, Tl
rkAjrtT - £ T^A^j - ^ T^kArij 

r=l r=l r=l 

Therefore 

J2 VTTfk = -(n - l)afl+ j^ Tr
k
kAjrj 

k=l r,k=l 

This leads to  drj = a , and the lemma is proved.    □ 

Next let a = (r — ry A (p) ® % . Then one has da = (a — dr])<p) (8) *e = 0. So 

a is a holomorphic section of E — 0M ® f2M ® TM, where TM, ^M denotes 

the holomorphic tangent and cotangent bundle of M. Let h be the hermitian 

metric on E induced from g on TM. Fix a point x G M, choose holomorphic 
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frame Vi,... ,VN of E near x, so that at x, hij = 5^-, d/i^ '= 0.  Write a = 

Eili^i^tj ^en at re: 

AT 

sdlMI2 = E^ A ^ - e"W ^ llall2a 

2=1 

Here we used the fact that @(h) = —al^- Note that if <9<9a;n 1 = 0 , then 

^77 A CJ
71-1

 = 7] Arj A u/1-1. When M is compact, 

0=1 dd\\a\\2 A a;71"1 >  / ||a||2r7 A 77 A a;71"1 

therefore we have 

Lemma 2. If M is compact, 6 = aln, and dduo71'1 = 0; tfeen either rj — 0 or 

r = rj Acp. 

When 77 = 0, ((M,g) is called balanced,) the first Ricci form r equals to the 

third Ricci form 5: 
n n 

rij ~ Si~3  ~ 2^ R'kki'j ~~ ^ikkj —   v j 2_^ Tik = 0 
fe=l k=l 

But for projectively flat metric, r — s — (n — l)a, so 77 = 0 implies 0 = 0 in 

this case. 

While when T = rjA(p, duo = r Aip* = 77Ao;. Hence dr]Auj = 0. When n > 3, 

this gives drj = 0, while when n = 2, since ^77 = a is closed, 0 = f dr] A dr) 

implies ^77 = 0. Therefore ^(77 + 77) = a + a = 0, so locally </ will be conformal 

to some Kahler metric, which is necessarily flat. So M is a complex similarity 

manifold. By [F], (M,g) is a finite undercover of either a flat complex torus, 

or a Hopf manifold of the form (Cn \ 0)/Z(f), where ^(z) = azA is a complex 

expansion: A G C/(n), a > 1 and z = (21,... , zn). 

In conclusion, one has: 

Theorem 1. Let (Mn,g) be a compact projectively flat hermitian manifold, 

and suppose its Kahler form ou satisfies ddu)71'1 — 0. Then either (M, g) is flat 

and balanced (dujn~1 = 0), or M is a finite undercover of a quotient C71 \0/Z</> 

with (j) a complex expansion. 
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Note that by [Gl], for any compact hermitian manifold (M,g), there exists 

an unique (up to homothety) metric h in the conformal class of g such that 

ddoUfr'1 = 0; and if g is projectively flat, so is h. Therefore, any projectively 

flat metric on M is conformal to one of the metrics in Theorem 1. 

For compact hermitian flat manifold (M, 5), the torsion tensor is parallel. So 

the first Bianchi identity gives exactly the Poisson identities, and the universal 

covering space is a complex Lie group G equipped with an left invariant flat 

metric. That is, M — r\Gr, where T C G • C is a discrete subgroup of the 

semidirect product of G with a compact subgroup C C Aut(G). See [Go] or 

[K-T] for example. 

As a byproduct, we get the following 

Corllary 2. Any compact hermitian flat manifold (Mn,g) is balanced, i.e., 

duj™-1 = 0. 

This is because we can first conformally deform g to get a balanced and 

projectively flat metric h = efg. Since any connected Lie group G is either 

a K(7r, 1) or has ^(G) / 0, so G can not be homotopic to S2*1'1 if n > 3; 

while when n = 2, there are only two simply-connected complex Lie groups, 

both biholomorphic to C2, so M can not be Hopf. Therefore, by Theorem 

1, we know h is again flat, so / is pluriharmonic, hence a constant, and g is 

balanced. 

In particular, for n = 2, we get the well-known fact that any compact hermi- 

tian flat surface has to be Kahler, namely, a complex 2-torus or a hyperelliptic 

surface. 

2. AN COROLLARY 

By the proof of [L-Y-Z], the theorem of Bogomolov on VIIQ surfaces ([B], 

[Bl]) can now be stated in a slightly more general way, namely, if M2 is 

a compact complex surface with stable tangent bundle TM (with respect to 

a hermitian metric) and with cf = C2 = 0, then M must be either flat or 

similarity Hopf. 

In this section, we want to generalize this into higher dimensions by apply 

Theorem 1 in §1. First let us recall the definition of refined Chern classes by 
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Bott and Chern ([B-C]). Suppose E is a holomorphic vector bundle over a 

compact complex manifold Mn. Then for any two hermitian metrics /i, /*/ on 

JE, there always exists smooth functions /& such that y/^lddfk = Ck{h) — 

Ck{hf), where Ck denotes the Chern forms. Hence the Chern forms define the 

refined Chern classes ck(E) in Hk>k(M) = Ker(d) n A^/Imiy/^dd). Here 

Ak'k is the space of all smooth real (fc, k) forms on M. 

Next, let us recall the definition of astheno-Kdhler from [J-Y]. A hermitian 

metric g on a compact complex n-manifold M is called astheno-Kahler, if its 

metric form cjg satisfies ddujg~2 = 0. 

Any product manifold of curves and surfaces is astheno-Kahler. However, 

it would be more intersting to construct some "non-trivial" examples. 

A necessary condition for the existence of such metrics is that, any semiposi- 

tive (2,2) current can not be 99-exact (unless it is trivial). Note that for n = 3, 

this is also a sufficient condition. (More generally, on a compact complex man- 

ifold, the non-existence of (non-trivial) 99-exact positive (n — 1, n — 1) current 

(acting on (1,1) forms) always implies the existence of a hermitian metric g 

with ddutg = 0. Following the work of Harvey and Lawson ([H-L]), this is not 

hard to show.) 

In particular, any global holomorphic 1-form (p on M must be closed, as 

dd{(pf\Tp) = —dip A dip > 0. So, for example, a compact complex parallelizable 

manifold M (i.e., TM holomorphicly trivial) can not be astheno-Kahler unless 

it is a complex torus. However, we believe that this definition has its potential 

in the future study of the non-Kahler geometry. 

Now if we start off with a compact astheno-Kahler manifold (Mn, #). Let 

E be a g-polystable holomorphic vector bundle of rank r on M (i.e., E is 

the direct sum of ^-stable bundles with the same g-slope (^-degree divided 

by rank)). Then by [L-Y] (when n = 2, also by Buchdahl [Bu]), E admits 

a hermitian metric h which is ^-Einstein: trg(@h) = fJilr for some constant 

/x. By the Liibke-Kobayashi inequality, (Cf(E9 h) - -^^(E, h)) A UJ^
2
 < 0 

pointwisely. So if c?(£) - ^^{E) = 0 in H2>2(M) (or > 0 in the obvious 

sense), then (E, h) is projectively flat: 0^ = alr. In particular, when E = TMl 

by Theoreml, we get the following: 
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Corllary 3. Let (Mn^g) be a compact hermitian manifold which is astheno- 

kdhler (i.e., ddcUg~2 = 0). Suppose that TM is g-polystable and the refined 

Chern classes satisfy c\ = £2 = 0 in H2'2(M). Then either M is similarity 

Hopf or it admits a flat hermitian metric h. 

Obviously the condition on the refined Chern classes can be replaced by crj* — 

^Zi £2 ^ 0 in the sense that it can be represented by a pointwisely nonnegative 

(2,2) form, or that its product with any [Q] is nonnegative, for any <9<9-closed 

nonnegative (n — 2, n — 2) form O on M. 

We also conjecture that the non-Kahler flat manifolds or similarity Hopf 

manifolds of dimension > 3 do not admit astheno-Kaider metrics. This is true 

in some special cases, but at this moment we are unable to prove it in general. 

After this, the conclusion of Corollary 3 could be replaced by: "M is covered 

by a complex torus". 

Acknowledgement. We would like to thank the referee of the article for several 

helpful suggestions. 
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