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The purpose of this paper is to prove the following result. 

Theorem 1. (a) // d > 4 there is a smooth function u : Rd —> R, not 

identically zero, which vanishes to infinite order at the origin and satisfies 

I A u(x)\ < Cirri-11 V u(x)\ for a certain constant C. 

(b) // d > 5 then the function u in (a) may be taken so that in addition 

\Au\<V\\/u\ with V E Ld. 

Part (b) complements work of Jerison-Kenig [3] and the author [6, 8]. 

Namely, the analogous question for Schrodinger type inequalities is whether 

there can be a function satisfying | A u\ < V\u\ with V G Ld/2 and vanishing 

to infinite order at the origin, and in [3] this is shown to be impossible in all 

dimensions d > 3. In [8] it is shown that there is no function satisfying the 

inequality of (b) and vanishing on an open set, and in [6] it is shown that if 

d < 4 there is no function satisfying this inequality and vanishing to infinite 

order at a point. Analogous positive results are also known for the inequality 

in (a): see for example Pan [4] where it is shown that there is no function 

vanishing to infinite order at the origin and satisfying lA^I^CI^I-2!^!, and 

also that examples as in (a) are impossible when d=2. Note that we leave it 

open whether such examples exist when d=3 and more significantly do not 

answer the question of what is the best Lp exponent to replace d in (b). It's 

not clear to us whether d + e should work or whether possibly the exponent 

^Y^ obtained in [6] is optimal. There is a procedure going back to Plis (e.g. 

[5]) and P. Cohen for constructing such counterexamples and we will follow 

this procedure here, at least in principle. It can be thought of as taking place 
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in two stages: a finite construction followed by an iteration. Section 1 of this 

paper contains the finite construction and Section 2 contains the iteration. We 

will use the notation x < y to mean that x < Cy where C is a constant de- 

pending only on the dimension or other clearly specified quantities, and x & y 

for "£< y 8indy<x". 

We are expending quite a lot of effort to gain comparatively little, since it 

is easy (in any Rd) to find functions u : Rd —» R vanishing to infinite order at 

the origin and such that T^T £ Lp for all p < d. On the other hand, in order 

to prove Theorem 1 it is necessary to work with highly oscillatory functions, 

for reasons which are discussed at the end of [7], and it seems unlikely (to the 

author at least) that there is a way of doing this which does not involve a fair 

amount of calculation. 

Acknowledgement. I thank Wensheng Wang for comments on a preliminary 

version of this paper. 

1. PROOF OF THEOREM 1, PART 1. 

In this section we prove Lemma 1.1 stated below. 

We always assume d > 3, and denote variables in Md by x = (x, x) with 

x G M2 and x £ Rd~2. We identify x with the complex number Xi + 1x2, and 

define r, 6 and p by x = (rcos0,rsmO) and \x\ = p. We let a and /3 be 

two small positive constants to be specified later and define An = {x £ Rd : 

1 - a < r < 1 + a,/9 < /Sn"1/2}, 

Lemma 1.1. Assume d > 4. If n is sufficiently large then there is a smooth 

function un : Rd —> M which is even if n is even and odd if n is odd, and such 

that 

(i) un{x) = 0(\x\n) at oo, Unix) = 0(|x|n+2) at 0. 

(ii) supp Aun C A^. 

(hi) |Aun|<rn onAn. 

(iv) I V^nl Zrn on An. 

Remark. 1) The constants in (iii) and (iv) are of course independent of n. 
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2) The "shape" of the An (two long sides, d — 2 short sides) should be com- 

pared to known counterexamples involving Carleman inequalities and related 

oscillatory integrals, e.g. [1, 2]. 

3) An immediate consequence of (ii), (hi), (iv) is that || |^
rt

[ \\d < n~^d~2\ 

This is best possible, in the sense that there is a constant C such that any 

function un with A^n G C^o(]Rd\{0}) and satisfying (i) must also satisfy 

lli^ti lU ^ Cn~^d~2\ This is a consequence of a Carleman inequality proved 

in Lemma 3.1 of [6] - see [9] for further discussion. 

4) Note that the functions in Lemma 1.1 as well as in Theorem 1 are real 

valued. It is slightly easier to obtain complex valued examples, but we regarded 

this as cheating, for several reasons, especially the fact that topological issues 

are in principle relevant when one wants a lower bound on the gradient such 

as (iv). On the other hand, all the positive results mentioned above including 

the one in remark 3) are proved using versions of the Carleman method and 

are therefore valid also for complex valued or for that matter vector valued 

functions (Added in proof: the two dimensional result in [4,Theorem 3] should 

be excepted here). 

The proof of Lemma 1.1 is based on considerations involving certain explicit 

functions wn which we now define. Assume d > 3 and let 

(1) Qn(x) -  f (|3f - e^|2 + |i|2)-<^>ein*<ty 
J — TT 

where we are identifying x with xi + 1x2 as previously discussed. Up to a mul- 

tiplicative constant Qn is the potential of the measure eined61 so is harmonic 

except on {x : r = l,p = 0} and vanishes at infinity. Qn obeys the following 

symmetries: 

(2) Qn(eiex^) = eineQn(x,W) 

(3) Qn{x,x) = Qn{x,y)      if     M = 

It follows that Qn has the form 

(4) Qn{x) = dn{r,p)rneine. 
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The function dn is real since the definition (1) shows Qn is real on the Xi axis. 

Let qn be the degree n Taylor polynomial of Qn at the origin. The symmetry 

(2) is valid for qn and it follows that qn has the form 

(5) qn(x) = cid)rneine 

where c^ is a real constant. (To see this, write out qn in the form 

£  pJfc(i)(re")'(rc-")\ 
j+k<n 

and then compare coefficients of powers of e10 in 2). We will show below that 

cid) ± 0. 
Let </> be a nonnegative C^ function on M with support in (-1,1) and with 

J (f) = 1 and (for a certain e > 0 to be determined later) let 0£(s) = e_10(i^). 

Define wn : Rd\{x :l-e<r<l + e,/9 = 0}-^Cby 

(6) Wn(x) = (c^y1 J M^Qn^-qntydS. 

The properties we need for wn are given in the next lemma. 

Lemma 1.2. Suppose that 6 > 0 is given. Then provided e> 0 is sufficiently 

small and n > n(6, e) is sufficiently large, the function wn will have the fol- 

lowing properties: wn is even if n is even and odd if n is odd and 

(i) wn = 0(\x\n) at oo, wn - 0(\x\n+2) at 0. 

(ii) Awn = 0. 

(iii) wn(x) — an(r, p)rnem9 where an satisfies:   let Rn — {1 — 4e < r < 

1 + 4e, p < n-1/2}\{l - 2e < r < 1 + 2e, p < (f )1/2}.  Then 

(7) |a„|<C(^e),   ifxeRn, 

(8) \^\ + n-l^\<C(6,e),   x G Rn, 
dr dp 

1 A 
(9) - < |an| < 2,   ifx e Rn  and p > (-)1/2. 

Remark. The set Rn is of course a rectangle containing the singularities of 

wn with a smaller such rectangle deleted. The estimates (7)—(9) say that 

as long as one stays away from the singularities, an will be a slowly varying 

"amplitude" function.  Furthermore, as indicated by (9) an will be bounded 
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away from zero and actually will be a small perturbation of the constant 

function — 1 provided p is kept bounded below by a constant multiple of n~^. 

These properties give a lower bound on |Vwn|, since |V(rnem^)| is of course 

large. This will eventually imply (iv) of Lemma 1.1 for the function un defined 

by (19) below. 

In fact, it is clear from the definitions that 

an(r,p) = (c«>)-1 [<l>e(*)dn(-,-)d8- 
J s   s 

1 

and dn(r, p) will turn out to be small when p is on the order of n 2. This will 

follow from Lemma 1.6(i) and the bound for (^)n given by Lemma 1.5(i). 

Proof of Lemma 1.2. The symmetries (2) and (3) are clearly also valid for wn 

and imply that wn is even if n is even and odd if n is odd, since #_x = 9X + TT. 

Next Qn — qn is (9(|x|n) at 00 since Qn is bounded and qn is a polynomial 

of degree n. Consequently wn is (9(|x|n) at 00. Qn — qn is (!?(|x|n+1) at 0 by 

Taylor's theorem and therefore wn is C?(|x|n+1) at 0. But wn is even or odd 

depending on n and it follows that there are no degree n +1 terms in its Taylor 

expansion. So wn is C?(|x|n+2) at 0. This proves (i). To prove (ii), observe 

that qn is harmonic since Qn is harmonic near 0 (or by (4) ). It follows that 

Qn — qn is harmonic except on r = 1, p = 0 and therefore wn is harmonic on 

its domain Ed\{l - e < r < 1 + e,p = 0}. It is clear from (4) , (5) , (6) that 

wn has the form an(r, p)rnein6, so we only need to show that c^ 7^ 0 and to 

prove the estimates (7)—(9). 

We fix x G Md, with 6 = 0 and r ^ 0, (r,p) jL (1,0).Then 1+y/^2 > 2 so 

the equation 

(io) t2-1 + r2 + ^ + i = o 
r 

has two roots uo and a;-1 with UJ G (0,1).  Our calculations will be based on 

the following contour integration formula. 

Lemma 1.3. // 9 = 0, r / 0, (r, p) / (1,0) then 

Qn(x) = / (CHC - Ijr^V1 - uQ-^C^: r-^u* 

for any contour 71 C D(0,ct;~2)\[0,1] with'm&^i, 1) = 1. 
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Remark. The function (C_1(C — l))-^1^ has a single valued branch on C\[0,1] 

and the function (a;-1 — a;^)-^-1-^ has a single valued branch on D(0,u;~2). 

We take the branches which are positive when £ = — 1. 

Proof of Lemma 1.3. We have 

Qn{x) = r (|r - e^|2 + p2)-^)e^# 
J — TT 

= /    ((C-rKC^-O + p2)-^^- 
•/|CI=i < 

Also (C-O^^-O+p2 = -rC-i(C2-i±4±^ + l) = -r-C-i^-^CC-c-1), 

so in view of the remark before the proof we can write 

Qn(x) = [      (C-'(C - u,))-^)^ - Q-^C^r r-^>. 
^ICI=l < 

By change of variables £ —* aX^ 

and the lemma now follows by Cauchy's theorem.    □ 

Lemma 1.4. Ifn is sufficiently large then |c^| « n^~2K In particular cffl ^ 

0. 

Proof. Clearly cffl = limr^o 'r~nQn{r10,... ,0). Since a;(r, 0) = r we have 

(11) 

W - Hm / (CHC " l))-m(l " r2)-^)^- 

= /(c-1(c-i))-(-)cf- 
c 

^ = 2f\x-\l-x))- 
Jo 

l/2xn[ 

If d — 3, the integral can be moved onto the segment [0,1], i.e. 

tdx 
x 

This easily implies |c^| ~ n-1//2 as claimed. Also c^ can be evaluated using 

the residue theorem at the pole -1, leading to c^4) = 27r for all n, again as 

claimed. When d > 5 the integral is less easy to work with, so we proceed as 

follows: denoting Qn(r,0,... ,0) by r^(r), the definition (1) implies 

dTnd)  _ (n      J\(rT
d+2       1T(d+2)        1T(d+2h 

"dT"1 K    n     "2  n-1   "2  n+1   j' 
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Comparing terms of degree n — 1 in the Taylor expansion at 0 gives 

1 

and therefore also 

ncW = (2-d)(-^_+
1
2)) 

c£0 = (^-l)-1(n + l)cK1
2). 

The lemma now follows from the three and four dimensional cases by induction 

on d.    □ 

We want to use Lemma 1.3 to do asymptotics for Qn. We need some bounds 

for a;, which we formulate as a lemma. 

Lemma 1.5. Assume | < r < 2, p < 1. Then 

(i) u < min(r, r-1) and min(r, r-1) — u « M^M   ♦ 
(ii) a;-1 — UJ ~ p+ |1 — r|. 

("i) 1^(7)1 ^ 1- 
(iv) ||;(^)|<(nzfe)2^enr<l. 

Cv) |-9-('^,)| < e  
Vv/    lapV^I ~   |l-r|+p' 

Proof, (i) By the quadratic formula 

1 + r2 + p2 - y/(l + r2 + p2)2 - 4r2 

6J —  
2r 

which may be rewritten as 

l + ^ + ^-dl-r^ + p2) 
OJ =  

2r 

|l-r2|+p2    /!     2^(1 + ^-11-^1) 
2r (V (|l-r2| + p2)2 j' 

The first term on the right side is min(r, -).  Estimating the second term 

using -v/1 + x — 1 « min(a;, i/x) gives 

.        1 |l-r2| + p2     . 
min(r, -) — u; « mmfx, v^j 

r 2r 

where x = ^i^^r'Vp    • The assumption on r implies 2r^l, 1 + r2 — |1 — 

r2| « 1, |1 — r2| « |1 — r|, so 

mm(r, -) - a; « min(p, |1_^| + p2)- 
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Considering cases (/? < |1 — r|,p > |1 — r|) we see that this implies (i). 

(ii) We record the fact that 

(12) |i_.r|+[i_^ + ^|i-r| + p 

which follows by considering cases |1 — r|<p, |1 — r\ > p.  Since CJ « 1, (i) 

implies a;-1 —cu^l—u^\l — r\+ \i^r\+ - 

(iii) and (iv) Differentiate equation (10) for r obtaining 

/n        l + r2 + p2.aa; d ,1 + r2 + p2. 
(2UJ )—- = CJ—- ( ). 

r or or r 

Part (i) implies that 

l + r2 + p2     ^        l + r2     rt    .   ,    1N      „ 
-— ^- - 2a; 2min(r, -) + E 

r r r 

= \--r\ + E 
r 

with E « ,, ^.,   . Therefore |l-r|+p 

CJ 
-iduL_i= $-r-\$-r\ + Zr-E 

dr      r r(\l-r\ + E) 

l-r- II -r\ + ^--E 
r^j 

\l — r\+p 

by (12). If r < 1 it follows that 

g. _ i < y + g ^ 
ar      r1 - |l-r|+/»~ (|l-r|+p)2 

by the bounds on £. This implies (iv) since ||:(^)| = ^k"1^ - i|. If r > 1 

we have instead 

1       Or      r1^    ^(|l-r| + p)2~ 

which implies (iii). 

(v) Differentiate (10) for p obtaining 

,„        l + r2 + p2
xduj dl + r2 + p2 

(2u )— = u- 
dp dp 

__-, duj 2p ^dcj =       2p/r       < p 
dp      \l-r\ + E~ \l-r\+p 
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by (12). This implies (v).    □ 

Lemma 1.6.  With dn defined by (4) we have 

(i) K(r,p) - c^r-(^'(u,-1 - u/TW(*r| < n^ur1 - W)-*(^)" 

(ii) It^l < ni-'gnu-1 - u,)-* + n*-\*nu,-1 - ^^\^\ 
Hl^l^n*-1^.)"^-1-")-^!5^!. 

provided |<r<2, p <l and |1 — r| + p > ^. 

Proof. Lemma 1.3 implies that 

(13)   dn(r,p) = r-^^r [ (C^C-l))-^-1-^)-^"^ 

where we take 71 to be the positively oriented rectangle with vertices at ^—i^, 

1 + - — i-, 1 + - + i-, — + i-, with b being a small positive constant. Using 

(11) to evaluate cff we obtain 

|dn(r,p)-c^r-^)(a;-1-a,)-^)(^r| 

< / IC-1^-!)!-^!^-1-^)-^-^-1-^-^! 
.|n|dCl ..-(i^ww^ xicr^r-^'(-r. 

Here 

Ka;-1 - cO-W - (a;"1 - a;)-(-^)| < |C - 1| max luT1 - uz\-i 

by the mean value theorem. The segment (1 is inside the rectangle 71, which 

is contained in .D(0,1 + :^), hence in D(0,c<;_1) if b is small, by assumption 

and (ii) of Lemma 1.5. We conclude that 

■Kw-^-wO-^Mw-1-")-^!   SIC-iK"-1-!)-* 
wIC-iKw-1-^)-*. 

Therefore 

\dn(r,P)-c^r-^(u^-u)-^^r\ 

< /7iic-
1(c-i)i-(-)ic-iiicr^i(a;-l-a,)-*r-^)(^r. 
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The integral is easily seen to be < n%~3 ( the main contribution is when 

ICI > 1 - £) and (i) follows. 
Note that (i) implies 

(14) KlSnl-V-1-*)-^-)" 
r 

since \c^\ w n^~2 and the right side of (i) is lower order since a;-1 — cv > ^ 

by Lemma 1.5(ii).  The right side of (ii) dominates the right side of (14), so 

by the product rule it suffices to prove (ii) with dn replaced by r^'~1dn on the 

left hand side. With the same ^i as before we have 

(15) 

+^r-'^ij) JJCK -1))-<-v- - Ki-'-'cf. 
Here ^(a,"' -wCy'^l < Ifel K1 - wCI"* which is < IfKa,"1 - w)"*, as 

above. Using (iii) of Lemma 1.5 we may bound the first term on the right side 

of (15) by 

(^HuT1 - u)-* £ IC^C - ir^lCP^1 < n*-2(^r(a;"1 - a;)"*. 

The second term is similarly < n^-1(^)n(u;-1-a;)-(^)||:(^)| and (ii) follows, 

(iii) may be done essentially the same: taking the p derivative of (13) , then 

putting absolute values inside leads to 

xddn.    '        d_c1(LO _1 \-*\   9   ,&.. d-i/Usn,    _i ^-(±z2),   d   ,LO.. |_|<n2   2(_r(a;  i_w)   *\—(-)\ + n^   ^-J-Ca,  ^w)  < » ^^l- 

Lemma 1.5 (ii) implies that the second term on the right hand side dominates 

the first and (iii) follows.    □ 

Completion of proof of Lemma 1.2. We have (from the definitions) 

(16) an{r,p) = (ci)'1 U^s)dn{-, ^)ds - 1. 
J s   s 

We assume (r,/9) belongs to Rn and e is small and n large.  Then (j, f) will 

satisfy the hypotheses of Lemmas 1.5 and 1.6, e.g.    ^   G   (|,2).    Formula 
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(14) and Lemma 1.4 imply that \dn{^ f )| < I^Kw"1 - w)-(Ta)(^)n, where 

CJ = W(^£). Therefore 

We record the fact that 

(17) (—r<C2min(l,-)2"e-Cllii^ 
r r 

when (r,p) € jRn and 1 — e < s < 1 + e, for certain constants Ciand C2. 

Inequality (17) is proved as follows: Lemma 1.5 (i) implies 

— <min(!,(- 2)-Co        ^ 
r r |s - r] + p 

<min(l?(^)2)(l-^r-^ ) 

where the last line uses - < 2. Consequently 

(—)   ^ min(l, -)2ne~~T^l+7 
r r* 

and (17) follows with d = ^, C2 = eCl. 

Define Sfc : M-1" —> M by Ek(x) = x^e~Clx.   Lemma 1.5 (ii) implies that 

a;-1 — u) « |s — r| + p. So by (17) 

= / ^e(s)(s-r + V)   ( 2 )^-2(n  ,  ,       )^- J \s - r\ + p 

We now prove (7). Namely, if (r5p) G i?n, 1 —e < 5 < 1 + e, then \s — r\ + np2 > 

min(5, e). Therefore 

\l + an(r,p)\<C(6,e) f 4>e{s)Ed_2^f^^-)ds. 
J \s — r\ +p 

Ed-2 is of course a bounded function, so (7) is proved. Next we prove (9). If 

p > yfl then by (18) 

\l + an(r,p)\<C(6) Uc{s)Ed^
S~A^p2)ds 

J \s - r\ + p 

<C(8)     max    ^(J^lLt^). 
■■■-       V   Jl-e<S<l+e     d   A    |s_r|+p    J 
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Of course Ed_2{x) —> 0 as x —» +00. On the other hand, if A is any preassigned 

number then by taking e small enough and n large enough we can insure that 
|a|7ll|+f ^ ^ for a11 r G (1 -4€, 1 + 4e),p > ^/f and 5 G (1 - 6,1 + e) If we do 

this with ^4 = ^^y we have proved (9). 

It remains to prove the derivative estimates (8).   We first consider ^^. 

Differentiating (16),      . 

dp ~{Cn) J 0eW0p VsV 
By Lemma 1.6(iii) and Lemma 1.4, 

ldani 
dp 

where 

A(S) 

i^i^nJusXyn^-ur^rnds 

op    s  s 
<  C  
~ \s-r\ + p 

by Lemma 1.5 (v) and (ii). So 

dp 
<np J Us){^-n\s-r\ + p)-ids 

^np jMs)(\s- r\ + np2)-?Ed( 
\s — r\ + np 

|s — r\ + p 
)ds 

<C(6,e)np. 

In the next to last inequality we used (17) in the same way as in the proof of 

(7). Since p < n" on Rn it follows that n* j^j < C(<5, e) as claimed in (8). 

We now prove the bound for —^ in (8). We differentiate (16) for r: 

dan 

dr 
ddn ,r  p ds = (c«)-'/*.(»)f(^) 

We now proceed as before, estimating ^ via Lemma 1.6(ii). This gives 

da, 

where 

\^\< J UsX^n^1 -^ds + n J MsX^T^-1 -u;)-^^(s)ds. 

K(S) = 
or    s   s 

< 
if s < 

'^rrf    ifs>r 

by Lemma 1.5 (hi), (iv). The first integral may be estimated by C(<5, e) just as 

in the proof of (7): the only difference is the exponent — | instead of — (^p). 
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We omit the details of this and will now consider the second integral.   We 

split it into /s>r and /s<r, and substitute in the bound for K and the bound 

uj-1 — uo « \s — r\ + p. This gives 

dr Js>r f 

+ nf    ^(5)(|S - r| + py^i—Tds 
J s<r T Is<r 

The s > r integral here may be estimated by C(£, e) as before (again the only 

difference is in the exponent of |s — r| + p). We therefore have 

,<9an, 

dr js<r 

<    C(6,e)(l + np2) 

'-\    <    C{6,e){l + nf) + n[    Ua)(\s - r\ + p)-^\^Yds 
Js<r r 

2 

+   Cnf    Ms^s-rl + npr^E^C8.    r| +np )(-)2"<fe 
Js<r \s-r\+p      r 

where we used (17). Each of the factors in the integrand is bounded by a 

constant (7(5, e) so we obtain 

\^\<C(6,e)(l + npi + njsJ
S-rds). 

The integral here is < -, so 

|^|<C(5,e)(l + np2) 

and now we are done, since by assumption p < n~ *    Q 

Proof of Lemma 1.1. We start by constructing the function un. Let 7 be a 

sufficiently small positive constant to be specified later. Let e1 and e2 be the 

first two standard basis vectors and define e\ and e2 by 

el = (l + ^)-*(l,0,(^)*,0,...,0) 
n n 

e2 = (l + 2)-*(0)l>0,(2)*,0,...)0). 
n n 

It is here that we use that d > 4. For given x G R.d define coordinates 7%, 0*, p* 

via 

x = r* cos 0*el + r* sin ^e2 + x*  , p* = jx* 
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where x*J-sp(el, el). In other words r*, 0*, p* are defined like r, 0, p but using 

the vectors el and el instead of e1 and e2. Next let 6 be small enough and 

choose 6 and functions wn(x) = an{r,p)rneine by Lemma 1.2. Let p and gn 

be C^0 functions on M with p(r) = 1 when \r — 1| < 26, p(r) = 0 when 

\r — 1| > 3e and qn(p) = 1 when p < w^, ^(p) = 0 when p > y™, and with 

101 < e'M^I < (|)-i Let xn(r,p) = 1 - p(r)qn(p) and define 

(19) 

Un(x) = -(xn(r,p)an(r,p)rncos n6> + Xn(^*,P*)ttn(^*,P*)r* sin n^*)- 

It is clear that un is even if n is even and odd if n is odd and has property (i) 

of Lemma 1.1. To prove (ii) - (iv) we need the following (elementary) lemma. 

In parts (iv) and (v), of course we are regarding J^ etc. as vector fields. 

Lemma 1.7. //1 < r < 2 and p is sufficiently small (independently 0/7 and 

n) then 

(i) |r-r,|<C(pV^+^). 

(ii) le-Otl^Cipy/z + z). 

(iii) \p-p*\<Cfi. 

V     /    1 dr dr* l  —        y  n' 

I r dO        r* 80* I  — 

Furthermore if \ <r <2 then 

(vi) maa{p,p*) > C'1^. 

Proof. For (i)-(v) the relevant properties of the el and el are that 

(20) |(e*_e:,^)|<^, i,j€{l,2} 

(21) le'-etl^C^.tefl^} 

and are easily checked. 
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To prove (i) and (ii) we use (20): 

|r-r,|<|r2-r,2|    =    |J>>C*)2 - <:c,ei)2| 
2=1 

1=1 

Replacing x here by its projection on the orthogonal complement of sp{ei, 62} 

introduces an error of < ^ by (20) and therefore |(x,el — el)\ < C(pJJ + ^), 

which gives (i). 

To prove (ii) write 

Ax.e1)      (x,el) 
\cos9 — cost/*  = . 

r r* 

For sufficiently small p the bound on \r — r*| implies r* > ^ so 

I cos6 — cos0*1    <    C\r^(x)e
1) — r(x,el)\ 

< C(\r-r*\\(x,el)\+r\(x,e'-el)\) 

< Cdr-r.l + Kx.e^ei)! 

< c(P*p+3-): 
V n     n 

Likewise | sin^ — sin0*| < C(pJ^ + ^) (replace e1 and el by e2 and e2 in the 

preceding argument) and therefore \0 — #*| < C(pJ^.+ ^), i.e. (ii) holds. 

For (iii) we write 

|p ~" P*\    —    I lx — r cos^e1 — r sin#e2| — |x — r* cosO^el — r* sin#*e2| | 

<    \r cosOe1 — r* cos^e^j + |rsin^e2 — r* sin^*e2|. 

(iii) now follows easily using (i), (ii) and (21) and the triangle inequality. 

For (iv) and (v) write 

IT; o—I = Icosfle1 + sin#e2 — cos^e^ — sin^e2!, 
or     or* 

\--K7: T^TTI = I ~ sinOe1 + cosOe2 + sin0*e\ — cosQ*el\. woe   r+oe* *' 

Now argue as in the proof of (hi). 
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We now prove (vi). The definition of el shows that 

E<^i>2<(i + VE<^>2+(i + V-P2. 
Therefore 

= 2(i + 2)-'(|x|*-^) 

so that p < ||a:| implies ^ > C~lJ^. This proves (vi).    □ 

Completion of proof of Lemma 1.1. We need to define a and /? and prove 

(ii)—(iv). We can take a — |e, /? — C^/7 + 2\/5 where C is the constant 

in Lemma 1.7. Then (ii) is proved as follows: supp(A^n) C B U B* where 

B = {x : \r — l'| < 3e} fl {x : p < 2A/|} and 5* is defined similarly replacing r 

and p by r* and p*. If n is large, then (ii) follows using (i) and (iii) of Lemma 

1.7. 

Next (i) and (ii) of Lemma 1.7 imply 

(22) |rn - r?! < -yr" 

(23) |e^_etefl-|<7 

on An, provided we have chosen 8 < 7. 

We now prove (iii). Constants in this argument may depend on everything 

except n. We have 

A(xn(r, p)an(r, p)rn cos nO) 

=   A(xn(r, p)K(r, p)rn cos(n0) + 2 y (Xn(r, p)) • vK(r, /?)rn cos(n^)) 

=    A(xn(^ p))an(r, p)rn cos n<9 + 2 v (Xn(^ p)) * Vfanfa p))rn cos nl9 

+2an(r, p)-^(r, p)^71-1 cos n^. 
ar 

The various terms here may be bounded by nrn using the derivative bounds 

on p and qn and the estimates in Lemma 1.2 (iii). Namely, | A xn| < n and 

\an\ < 1 on Rn (note that i?n contains the set where Xn 7^ 0), so the first term 

is < nrn. Likewise | V Xnl ^ n^5 and | V an\ ^ ^ on i?n, so the second term 

is ^ nrn. Finally the last term is ^ nrn since |-^r| ^ 1 and \an\ < 1 on i?n. 
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Similar estimates can of course be made for the second term in (19), so we 

conclude that 

|Aun|<rn + r;\ 

But this implies (hi) in view of (22). 

To prove (iv) we first isolate the terms in \jun where the derivative falls on 

rncos n6 or r^sin n0*, i.e. 

V «« = Xn{r, p)an(r, /^"^(cos n^— - sin nd-—) 

+ Xn(r*, p^an^p^r^^sin n6*- h cos n0* — -Qf) + Ei 

where 

Ei = -(v(Xn(^p)a>n{r,p))rncos n6 + v(Xn(^*,P*)ttn(r*,p*))r^sin n6>*). 

It is easily seen (using the bounds from Lemma 1.1 and the derivative bounds 

for Xm as in the proof of (hi)) that \Ei\ < C(5, e)n~2 (rn + r™), and therefore 

|J5i| < C{8,e)n-^rn by (22). Next, (22) , (23) , and (iv), (v) of Lemma 1.7 

imply that 

Irr^sin n^*^ + cos n0* ——) - r^^sin n0— + cos nO-—)| < CV* 

with C an absolute constant. We therefore obtain 

(24)    V un = Xn(r, p)an(r, p)^-1^ n(9— - sin ^-QQ) 

+ Xn{rr*,p*)an(r*)p*)rn~l{sinn6— + cosn9-—) + E1 + E2 
or r ou 

with \Ei\< C(6,e)n~irn and l^l < CVn|Xn(r*, p*)an(r*, p#)\. By the trian- 

gle inequality 

I V^n| > J - C(<S,e)n~^rn - C7rn|xn(^,p*)an(r*,p*)|, 

where J, the absolute value of the first two groups of terms on the right side 

of (24), may be calculated explicitly using that sin2 n9 + cos2 n0 = 1. This 

gives 

J = y/2rn-y(xn(r,p)an(r,p))2 + {Xn{r*, p*)an(r*, p*))2 

> {\Xn(r,p)a-n(ryp)\.+ \Xn{r^p^an(r^p^Dr71'1. 
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Therefore, using the bounds for Ei and E2 and that r < 2, 

I V^n| > (^(\Xn(r,p)an(r,p)\ + \xn(r^p*)an(r^p*)\) 

- ClflXnir*, p*)an(r*,p*)\ -C(6,e)n  *)rn. 

The term involving 7 may be dropped if 7 has been chosen sufficiently small. 

Furthermore estimate (9) implies that |xn(^ p)«n(^ p)|+|Xn(^*5 P*)an(r*, p*)\> 

I provided 6 is small enough, since then either p or p* will be > 2(^)2 by 

Lemma 1.7(vi). Estimate (iv) now follows by taking n sufficiently large.    □ 

2.   PROOF OF THEOREM 1, PART 2. 

We first prove a certain genericity statement. Denote 

Tik = homogeneous harmonic polynomials of degree k 

Til = {Y e Hk :  sjY vanishes only at 0} 

Let re(x) = \x — e\2~d, let ei be the first standard basis vector and Zk 

(a normalization of the kth zonal harmonic) the degree k term in the Taylor 

expansion of Tei at 0. Let 0(d) be the orthogonal group. If p G 0(d) maps e 

to ei then F6 = F61 o p, so Zk o p is the degree k term in the expansion of F6 

at 0. 

Lemma 2.1. IfY G Hk then the set {(pu ... ,/9d,a) G 0(d)x.. .xO(d)xRd : 

^ + Ej UjZk o pj eHl) has full measure in O(d) x ... x 0(d) x Rd. 

Proof. We first show that the set E = {(pi,... ,pd) G C?(d) x ... x 0(d) : 

Zk0Pi', - • • 5 Zk0Pd have no common zeroes except the origin } has full measure. 

For this, consider the map 

F : 0{d) x ... x (9(d) x S*'1 -> Md, 

F(pl5... ,pd,x) = Zkfax),... , Zk(pdx). 

For z, j G {1,... , d} the pi - derivative of Zk(pjx) clearly vanishes identically 

if i ^ j, and if i = j vanishes only when pjX is a critical point of Zk\sd-i. 

We conclude: if (pi,... , p^ x) is such that PjX is a regular point of Zk for all 

j G {1,... , d}, then (px,... , pd, x) is a regular point of F. 
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On the other hand 0 is a regular value of Zk\sd-i by uniqueness for ODE's 

since Zk\sd-i is a solution of a second order ODE in the variable Z • Oei. So if 

F(pi,... , pd, x) — 0 then (pu ... , pd, x) is a regular point of F, i.e. F is trans- 

verse to zero. Define Fpl...Pd : S^"1 -^ Md by ^..^(x) = F(pu ... , pd, x). By 

the transversality theorem 0 is a regular value of FPl...Pd for a.e. (pi,... , p^). 

But by dimensional considerations 0 can only be a regular value of FPl„.Pd if 

it is an omitted value. This proves the claim. 

If (pi,... , pd) G E then the function 

G : Rd x S*-1 -► Rd, 

G(a,a:) = y(x) + V^Z^p.x) 

is transverse to zero, since its ctj derivative is Zk{pjx). So 0 is a regular value 

of the function Ga : 5d~1 —> R, ^(x) = Y(x) + YljajZk{Pjx)i for a full 

measure set of a. But if 0 is a regular value of Ga on S^-1 then (by Euler's 

identity for homogeneous functions) Y + X^. o^ Zk o p^- has no critical points in 

Rd\0. This finishes the proof.    □ 

We will now make a certain technical modification in Lemma 1.1. Let An 

be as there. 

Lemma 2.2. Assume d > 4. Then there is UQ < oo and a sequence of smooth 

functions un : Rd —> R (no < n < oo) 5itc/i t/iai 

(i) un = C?(|x|n) a^ oo, ixn = 0(|x|n+1) a^ 0. Furthermore let pn and qn 

be respectively the degree n term in the expansion of un at oo and the 

degree n-hl term in the Taylor expansion at 0.   Then pn G 7i*  and 

qn =Pn+l. 

(ii) supp(Ann) C An. 

(hi) | A^n| < r]nr
n and | V^nl ^ 'HrJ71 on An, where the {r}n} are constants. 

Remark. Perhaps we should be more precise about the definition of the func- 

tion pn. If u is a harmonic function defined on the complement of a compact 

set in Rd with d > 4 and u(x) = (9(|;c|n) at oo, for some n then it is not hard 

to show the 
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Claim 2.3. There is a harmonic polynomial p such that u — p is 0(\x\2~d) at 

oo. 

Given the claim, we may let pn be the terms of degree n in the polynomial 

p. The claim is probably fairly well known but we will sketch the proof since 

we do not know a reference. We use induction on n, where n is the smallest 

integer such that u(x) = 0(|x|n) at oo. If n < 0 the statement is standard 

and follows from the removable singularities theorem for harmonic functions 

by using the Kelvin transform. Now suppose n > 1 and u(x) = 0(\x\n) at oo. 

Then \/u(x) = Od^l72-1) so may be assumed to have the form of the claim. 

Now write u(x) = f* \/u • dx + u(xo) , x large, for a fixed XQ ^ 0 . The 

assumption d > 4 implies that \x\2~d is integrable on rays not containing the 

origin. It follows that u(x) has the form polynomial + bounded and then the 

claim follows from the n = 0 case. 

Proof of Lemma 2.2. We claim first that Lemma 1.1 is valid with the addi- 

tional conclusion that the degree n term in un at oo and degree n + 2 term at 

0 belong to W* and H*+2 respectively. 

For this, let un be the function from Lemma 1.1 and pn and qn its degree n 

term at oo and degree n + 2 term at 0. By Lemma 2.1 the set 

{ fa,... ,pd,a£ 0(d) x ... x 0(d) x Rd : 

d d >. 

3=1 j=l j 

has full measure. Hence, letting Z%. be the degree k term in Te at 0, the set 

J= {(*!,... iXditfeS*-1 x ...x^"1 xRd: 
d d 

pn-J2 *jZxnj e w;, ?n + E ai^+2 e w;+2} 

has full measure. 

If n is even, then we choose {xj}d
=1 C An so that (xi,... x^ oi) G J for a 

full measure set of a G IRd. Let F^. be a smooth function which agrees with 

F^. outside An, let T^71^ be the degree n Taylor polynomial of F^. at 0 and 
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consider the function 

^(X) = Un(x) + HZ^ix) - Tif{x) + fx,(-*) - ^(-X)] 

where the QLJ are very small and (xi,... , Xd, a) 6 J. If the QLJ are small enough 

then clearly (hi) and (iv) of Lemma LI will still hold. Moreover un is 0(|x|n) 

at oo, 0{\x\nJrl) at 0, and being even, must in fact be 0(|x|n+2) at 0. The 

degree n term at oo and degree n+2 term at 0 are respectively pn — XljLi aj^nj 

and qn + 2j=i aj^n+2 an(i therefore belong to W* and H*+2 by construction. 

This proves the claim for n even. If n is odd we define instead 

^{x) = un{x) + IJ^a^ix) - T%\x) - (fXi(-x) - T^\-x))} 
1 3 = 1 

and proceed the same. 

To finish the proof of the lemma let un be as in the claim and denote its 

degree n term at oo and degree n + 2 term at 0 by an and bn respectively. 

Let Vn = un — an which is (!7(|x|n"*2) at oo, 0(|x|n) at 0, with the order n 

term at 0 being — an. Consider the functions wn = un — cnvn+i where en is a 

small positive constant. wn is 0(|x|n) at oo, 0(|a;|n+1) at 0, with the order n 

term at oo being an and the order n + 1 term at 0 being enan+i. Also supp 

Awn C AnUAn+i = An , and if en is small then clearly (hi) and (iv) of Lemma 

1.1 will hold for w^ 

Now define the function un of Lemma 2.2 by un — (rif<n6j) ' wn' Since 

un is a scalar multiple of wn it has properties (ii) and (iii) of Lemma 2.2 and 

is (!?(|x|n) at oo, (9(|x|n+1) at 0. The order n + 1 term in un at 0 and order 

n + 1 term in ^n+1 at oo are both equal to (Il^n+i ei) ' an+i so the proof is 

complete.   □ 

We will now proceed more or less as in our earlier paper [7] , although the 

details are simpler in the present context. 

Lemma 2.4 (gluing lemma). Assume d > 4. Let un be as in Lemma 2.2 

and suppose e > 0 is given. Then if s > 0 is small enough and r < oo large 

enough there is a function gn : Rd —> R such that 

(i) gn{x)=rn+lun{r-lx) if\x\>2. 
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(ii) gn(x) = sn+1un+i(s~120 if\x\ < f 

(iii) |A^|<6|V5n| if±<\x\<2. 

Furthermore gn satisfies bounds \Dagn\ < C^nlxl7^1-1^ independently of r 

and s provided r and s-1 are sufficiently large. 

Proof Simply choose a smooth function ifj with if;' = 1 when \x\ < ^ if; = 0 

when x > 2 and define 

gn(x) = if;(x)snun+1(s'
1x) + (1 - ip(x))rnun(r~1x). 

We need only prove the estimates. However, in the region | < \x\ < 4 we have 

\rn+1
Un(r-1x)-qn(x)\<Cnr~1 

since un — qn = 0(\x\n+2) at 0. By the derivative estimates for harmonic 

functions we also have 

(25) ^(r^u^r^-q^x^l^C^r-1 

when | < x < 2, for any a. Using that un+i — pn+i = 0(|x|n) at oo and 

arguing in the same way we obtain a similar bound 

iD^s^u^is-'x) - pn+i(a;))| < C^s,     l<\x\< 2. 

Since pn+1 = qn this may of course be written as 

(26) ^(s^Un^is-'x) - qn(x))\ < Ca,ns. 

By (25) and (26) 

I V 9n\ >  I V Qn\ - C^nir'1 + s) 

\&gn\<Ccltn(r-
1 + s) 

when | < x < 2. Since gn G H*+1 the bound (iii) now follows immediately. 

Next by (i) of Lemma 2.2 and derivative estimates for harmonic functions we 

have \Daun(x)\ < C^n\x\n+1-^ for small |ar|, \Daun+l(x)\ < Ca^x^1-^ 

for large \x\. The last statement in the lemma follows by scaling arguments, 

which we omit.    □ 
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Proof of Theorem 1. Let {rn}™=n be a sequence decreasing rapidly to zero. 

Define gn using Lemma 2.4 with e = 2~n,r = J^r2^, s = J1^ and let 

K(x) = (Vrnrn+1)n+1^n(VF-^). This is possible provided rn+1 is small 

enough compared with rn. Then 

1 
^n^) = ^n+l^n+l^+l^). M <  o>/rnrn+l 

(27)       | A /in| < 2 n(rnrn+1)   »| y ^n| , -^rnrn+l <x< 2y/rnrn+1. 

The derivative bounds in Lemma 2.4 translate to bounds |jDa/in| < CQ^IXI
77

"
1-1-

'"' . 

Define the function u of Theorem 1 by 

u{x) = rn^hno(x)     if |x| >rno 

u(x) = (11 rj)~1 ' hn(x)     if n > no,rn+i < |x| < rn. 

Then n is smooth on the boundaries |x| = rn, since when \x\ G (2^/rnrn+1, rn) 

we have ix(x) = (nj<nrj)_1 * C4"1^^1^) and when |x| 6 (rn)2y/r^~{7\i) we 

have ix(x) = (Jlj<n-i rj)~1 ' rnun{rnlx) which is the same. 
Furthermore all derivatives of u go to zero as \x\ —> 0 provided the {r^} 

decrease fast enough. Namely, the derivative bounds on the hn translate to 

bounds 

\Dau(x)\ < Ca,n(n ^^ ■ Mn+1"la|, rn+1 < \x\ < rn. 

If n > |a| this is < Ca.nCn^nr,-)-1^1-!-! = ^(n^M^^nM^n^ 
which goes to zero as n —> oo for all a provided (say) —— <   min   C"^ TT r^. 

Next we show that | A u\ < Clxl-1] V ^1- Define Bn = {x : l^rnrn+i < 

\x\ < 2^rnrn+i}. Then Au vanishes except on the sets rriAn and the sets Bn. 

If x e Bn then \Au\< 2-n|x|-1|y^l by (27). On the other hand, if x G rnAn 

themusing scaling and (hi) of Lemma 2.2, we obtain , u]x\\ = r~l i,™^]] < 

Cr"1, and therefore | A u(x)\ < C\x\~l\ V u(x)|, as claimed. 
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This completes the proof of part (a) of Theorem 1.   Now we prove (b). 

Namely, 

v       » n=no      ri-^-n n=7io       n 

^EKI+E2"nd- 

dx 

The second sum is obviously finite, and \An\ « n ( 2 ) so the first sum is finite 

as well, provided d > 5.    □ 

We remark that in part (b) of the theorem, the Ld norm of V may be taken 

arbitrarily small: just start the construction at a high finite stage rti instead 

of at no- 
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