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SUPPORT ANY NONPOSITIVELY CURVED METRIC 

C. S. ARAVINDA AND F. T. FARRELL 

1. INTRODUCTION 

The celebrated theorem of Preissmann says that if M is a compact manifold 

carrying a riemannian metric of strictly negative curvature then the funda- 

mental group 7ri(M) of M has the property (P) that every non-trivial abelian 

subgroup is isomorphic to Z. Since M is also a lf(7ri(M), l)-manifold (cf. 

[Mi, p. 103]) it is determined up to homotopy by 7ri(M). More generally, it 

was proved in [FJ1, Corollary 10.5] that, in dimensions bigger than 4, 7ri(M) 

determines M up to homeomorphism type. Hence one would expect strong 

inter-relations between the algebraic structure of 7ri(M) and the geometry of 

M, when M is a closed K^i^M), l)-manifold, and a natural question (cf. 

[BK, (6.2.1)]) to ask would be the following: If TT^M) has property (P), does 

M necessarily admit a metric of negative curvature? While this question still 

remains open, we prove, in this paper, that there are a large class of closed 

manifolds M which are i^yr^M), l)-manifolds and such that 7ri(M) shares 

all the properties of the fundamental group of certain compact nonpositively 

curved manifolds whereas M does not admit any metric of nonpositive cur- 

vature. In fact, we construct two classes of examples of compact topological 

manifolds M supporting at least two distinct smooth structures Mi and M2 

where Mi is a compact, rank 1 (in the sense of [BBE]) nonpositively curved 

manifold while M2 cannot support a nonpositively curved metric. These con- 

structions are motivated by and closely follow the paper [FJ4] where exotic 

smoothings of complete, finite volume, real hyperbolic manifolds which do 
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not support any complete, finite volume, pinched negatively metrics were con- 

structed. 

In §2, we discuss the first of these examples. We begin by recalling a 

certain construction of E. Heintze (cf. [BBE, p. 174]) of compact, rank 1, 

nonpositively curved m-dimensional manifolds M which contain isometrically 

immersed flat (m — l)-tori. Then, following [FJ3], we try to change the dif- 

ferential structure on M by removing an embedded tube S1 x D771-1 from M 

and then reinserting it with a 'twist' on the boundary of the tube. That is, 

let f : S1 x D™"1 -► M be a smooth embedding and ^ : S™"2 -> S™'2 be 

an orientation-preserving diffeomorphism. The new smooth manifold Mf^ is 

obtained as a quotient space of the disjoint union 

S1 x B™-1 JJ M - /(S1 x Int D™"1) 

where we identify points (x,v) and f{x,(j){v)) if (x,v) £ S1 x Sm~2. Here, 

Int ED™-1 denotes the interior of B™-1 and dB171'1 is identified with S171'2. The 

smooth manifold Mf^ is canonically homeomorphic to M but is not always 

diffeomorphic to M. In fact, the Flat torus theorem can be used to show that 

some of these smooth manifolds Mf^ do not support a nonpositively curved 

metric. 

§3 deals with the second class of examples constructed by changing the 

smooth structure on certain of V. Schroeder's construction [S] of compact, 

rank 1, nonpositively curved m-manifolds M (m > 5) which contain totally 

geodesically embedded flat tori of codimension 2. Here, we follow a topological 

approach to change the differential structure. We use the fact that there is 

a one- one correspondence (cf. [FJ2]) between concordance classes of smooth 

structures on M and the homotopy classes of maps from M to TOP/0 (de- 

noted by [M, TOP/0]), provided m > 5, with the original Schroeder smooth 

structure on M corresponding to the class of the constant map. Changing the 

smooth structure on M by constructing a suitable map from M to TOP/0, we 

again invoke the Flat torus theorem to argue out that this smooth structure 

on M cannot support any nonpositively curved metric. 
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2. EXAMPLES FROM HEINTZE'S CONSTRUCTION 

Consider a complete, finite volume, non-compact, connected, constant neg- 

atively curved m-dimensional Riemannian manifold. For simplicity, assume it 

has only one cusp. The cross-section of the cusp is a compact, flat (m — 1)- 

dimensional submanifold T. Cut off the cusp and flatten the manifold near the 

cut to make it locally isometric to the direct product of T and the unit interval. 

Now consider another copy of this and glue the two together along T. The re- 

sulting manifold has nonpositive sectional curvature and is compact containing 

an isometrically immersed flat (m — l)-torus inside it. For our purposes here 

we begin with a real hyperbolic finite volume m-manifold having at least two 

cusps and follow the above procedure at each cusp seperately to get a compact 

manifold M with sectional curvature < 0. Considered only as a smooth man- 

ifold, M is the double of the given hyperbolic manifold with its cusps cut off. 

Since the portion where the two copies were glued together is important for 

our discussions we refer to it as neck. Now pick a smooth closed path in M, 

with trivial normal bundle, passing through one of the necks where the two 

copies were glued together such that the path intersects the cross section T 

of the neck transversally in exactly one point. Note that one can always find 

such a path passing through any designated T. Take a tubular neighborhood 

of this path and let /: S1 x P771"1 —> M denote the embedding of this tubular 

neighborhood in M. We can now state, 

Theorem 2.1. Let M,T and f: S1 x O™"1 -> M be as above and m>7. If 

the diffeomorphism (f): S'm~2 —> S™'2 represents a non trivial element o/©m_1; 

the group of oriented diffeomorphism classes of oriented homotopy (m — 1)- 

spheres and T is a torus, then the smooth manifold Mj^ is 

1. homeomorphic to M, and 

2. does not support any metric of nonpositive sectional curvature. 

Before setting off to prove the theorem we recall and prove a few preliminary 

lemmas necessary for both the proof of the theorem and to show that its 
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hypotheses are frequently satisfied. Corollary 2.4 will also be used in §3. 

Lemma 2.2. Let X be a complete, finite volume real hyperbolic manifold with 

one cusp C. Then there exists a finite sheeted covering space X', i.e., TT: X' —> 

X, of X corresponding to a finite index normal subgroup K ofiri^X) such that 

X/ is a finite volume real hyperbolic manifold having more than one cusp. 

Proof The cusp C topologically has the structure T x [0, oo) where T is a 

compact, flat, codimension 1 submanifold of X. Denote by F and S the 

fundamental groups of X and T respectively. It is known that S is a subgroup 

of F. If (j) : F —> G is the projection map onto the finite quotient group 

G(= F/if), then we claim that the covering space X' has more than one cusp 

provided <t)(S) ^ G. This is easily verified by restricting the covering map TT 

to the closed subspace 7r~1(C) of X and observing that 7r~1(C) is connected if 

and only if S — 7ri(C) acts transitively on the fibers. Furthermore, the number 

of connected components of 7r_1(C) is precisely equal to the cardinality of the 

coset space G/(j){S). 

We next show that it is possible to find such coverings that, with the nota- 

tion as above, 0(5) / G. Now, 5 being the fundamental group of a compact, 

flat, (n — 1)- dimensional manifold, is an extension of a finite group F by I/1'1. 

That is, we have the following short exact sequence 

1 _> Zn-1 _, S _^ F _, L 

Let k be the order of the finite group F. Since F contains a nonabelian free 

subgroup (cf. [BE, Theorem A]), there exist elements a, b which freely generate 

a nonabelian free group F2 contained in F. Put g = [ak, bk]. Since g ^ 1, by 

residual finiteness of F, (cf. [Ma, p. 309]), there exists a finite group G and 

an epimorphism (ft : F —> G such that (ft(g) ^ 1. Now, if (ft(S) = G, then 

there exist x,y € S with (ft(x) = (ft(a) and (ft(y) — (ft{b). Consequently, both 

(j){ak),(ft(bk) e (ft{Zn-1) which is abelian. Therefore, 1 = [(ft{ak), (ft{bk)} = <j)(g) 

which is a contradiction. Therefore we must have 0(5) 7^ G. Thus, the finite 

covering space Xf of X corresponding to the finite index subgroup K.= ker((ft) 

of F has more than one cusp.   □ 
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Lemma 2.3. Let S be a Bieberbach group of rank n — 1, i.e., the fundamental 

group of a closed, flat (n — 1)-dimensional manifold and </> : S —> G be an 

epimorphism where G is finite and non-abelian. Then ker((j)) is a Bieberbach 

group whose holonomy group has strictly smaller order than the holonomy 

group of S. 

Proof. Let 1 —> Zn_1 —>'S—>F—>lbe such that F is the holonomy group of 

S. Then (j){Jjn~l) is normal in G. Consider the short exact sequence of chain 

complexes, 

1 >      Zn-1    ► S  ► F  > 1 

1  ► (j){Zn-1)  > G  > G/^TT-
1
)  ► 1 

The corresponding exact sequence in homology is 

1 —► ker{4>) —>• ker((j)) —> ker((j)) —> 1 -» 1.—>• coker^) —> 1 

Consequently </> is an epimorphism and we get the following short exact se- 

quence: 

1 —> ker(^) —► ker((f)) —> ker((f)) —> 1 

Since ker((f)) is free abelian and ker(<p) is finite, the holonomy group of ker((j)) 

is a quotient group of ker{(f)). But order(ker (/)) < order(F) since the quotient 

group F/ker((j)) ~ G/0(Zn~1) is non-trivial because G is non-abelian and 

^(Z71-1) is abelian.    □ 

Corollary 2.4. Let Xn 6e a complete, non-compact, finite volume real hyper- 

bolic manifold. Then there exists a finite sheeted covering space of X whose 

cusps are all diffeomorphic to Tn_1 x [0, oo) where T™-1 is the (n — 1)-torus. 

Proof. Let Ci be a cusp of X whose cross-section T* is not an (n — l)-torus. 

Since the number of cusps is finite, i = 1, 2,...., k enumerates all such cusps. 

Then, by the structure theorem for Bieberbach groups, we can choose two 

elements a^,^ in 7ri(Ci) which do not commute. Let ^ = [a^bi]^ 1). By 

residual finiteness of 7r1(X) we can find a finite group Gi and an epimorphism 

(pi : 7v1(X) —> Gi such that (f>i(gi) ^ 1. Clearly Gi is not abelian. In fact, 

^i(^i{Ci)) is not abelian. Let G = Gi x G2 x • • • x Gfc and (/): TT^X) —> G be 
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(j)i x 02 x • • • x <f)k. Now, for the finite sheeted covering of X corresponding to 

ker((f)), by Lemma 2.3, the fundamental groups of the cusps lying over d have 

smaller order holonomy than that of ir^Ci) since <j)(7ri(Ci)) is non-abelian. 

Hence the maximum order holonomy of the fundamental group of a cusp of 

this cover is smaller than the maximum order holonomy of the fundamental 

group of a cusp of X. Therefore, repeating this procedure, after a finite number 

of times we get a finite covering of X in which the fundamental groups of the 

cusps are all equal Z71"1.   □ 

Lemma 2.5. (Borel [B]) In each dimension n > 2, there exists a complete, 

real hyperbolic n-dimensional manifold which has finite volume but is not com- 

pact. 

Lemma 2.6. (cf. [FJ4, Lemma 4]) Let Tn, (n > 4) be a closed flat manifold 

which is also stably parallelizable. Let En be a homotopy sphere which is not 

diffeomorphic to Sn. Then the connected sum Tn#Sn is not diffeomorphic to 

any closed flat manifold. 

Proof of Theorem 2.1. Since the cross-section of the distinguished neck of M is 

an (ra — l)-torus T771-1, in the new manifold M/^, this cross section becomes 

rm-1#Sm-1. Note that Z™"1 C 7ri(M) ~ TT^M/,^). Suppose, now, that 

M/,0 admits a Riemannian metric of nonpositive sectional curvature. Then 

the Flat torus theorem [EHS, §6] implies that the covering space C of M/^ 

corresponding to the subgroup Z™-1 of 7ri(M/^) is diffeomorphic to Tm_1 x M. 

But, being the covering space over Mf^C also has Tm~l#Tl
Tn~1 embedded in 

it as a deformation retract. Since both Tm_1 and j1171'1^^171'1 are compact 

there is a smooth /i-cobordism between them in C. But then they must be 

diffeomorphic because the Whitehead group W.h Zrn~1 — 0 which contradicts 

Lemma 2.6. Hence the theorem.    □ 

Remark 2.7. Lemmas 2.5,2.2 and Corollary 2.4 show that in each dimension 

m > 7 there is an ra-dimensional manifold M satisfying the hypotheses of 

Theorem 2.1. 



RANK 1 ASPHERICAL MANIFOLDS 71 

3. EXAMPLES FROM SCHROEDER'S CONSTRUCTION 

Schroeder's construction [S], which involves modification of a finite volume 

real hyperbolic manifold near the cusp, is a variation of Thurston's cusp closing 

result for hyperbolic 3-manifolds which generalises to higher dimensions also. 

Consider an n-dimensional (n > 4) real hyperbolic manifold M of finite volume 

and one cusp C diffeomorphic to Tn~l x [0, oo) where Tn~l is an (n — 1)- 

torus. Now cut off the cusp to obtain a manifold M with torus Tn_1 as 

boundary. This boundary is then closed by a tube D2 x Tn~2 around a flat 

torus of codimension 2 by identifying d(D2 x T71"2) = S1 x T"1'2 with T71"1 

by a diffeomorphism of T""1. (Caveat: The notation D2 x T71'2 and S1 x 

Tn~2 denotes the product smooth manifolds but not product metrics.) We 

then say that the cusp C can be closed relative to a where a G TT^T
72-1

) = 

7ri(C) is a basis element and is topologically represented by S'1 x * in the 

above identification. After glueing and smoothing the metric we get a compact 

smooth Riemannian manifold M{a) with sectional curvature K < 0 which 

contains a totally geodesic embedded flat torus rn~2 c M(a) of codimension 

2 such that the sectional curvature is strictly negative on all 2-planes which 

are not tangent to Tn~2. The closing of the cusp is possible because of the 

following lemma which is implicit in Schroeder's paper. 

Lemma 3.1. (Schroeder [S]) Given n, there exists an I > 0 such that for any 

finite volume, complete, real hyperbolic manifold M of dimension n and any 

cusp C on M with torus cross-section, the cusp C can be closed relative to 

a G TTifT71""1) where Tn~l is a cross-section of C, provided that the length of 

a closed geodesic in the homotopy class of a in Tn~l is bigger than or equal 

to I. 

We allow, more generally, for the possibilty that the real hyperbolic hyper- 

bolic manifold M has more than one cusp (cf. Corollary 2.4). So, we modify 

the above notation to M having finitely many cusps Ci = T/1-1 x [0, oo), M = 

M - UiU^T"1 x [a^00) for a* € [0,oo) and M is the resulting manifold 

obtained after applying Schroeder's construction to each cusp C*, i.e., closing 

them by ED2 x T/1"2 where I7"2 for z =1, 2,...., fe, is a flat torus of codimension 

2. We also identify T/1"1 with Tf"1 x a* and assume that M is orientable. 
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Lemma 3.1 necessitates the following lemma to make room for the closing 

of a cusp. 

Lemma 3.2. With the notation as above, by going to a finite sheeted cover of 

M we can assume that the torus TJ2"1 x a^ in the cusp Ci, for all i, of M has 

injectivity radius > 1/2; I as in Lemma 3.1. 

Proof. Let 7J, ....,7* be a list (up to free homotopy) of all closed geodesies in 

T/1-1 x di which have length less than or equal to /. Choose a point q G M 

and elements aj,....,^ in 7ri(M, q) such that a] is freely homotopic to 7] 

(j = 1, ....,r). Since 7ri(M, q) is residually finite, there is a homomorphism 

hi: 7(i(M,q) —> Gi onto a finite group Gi such that ^(a}) / 1 for all 2,j. Let 

G = Gi x • • ♦ x Gfc and h = hiX- - -xhk and consider the map /i: TTI (M, q) —» G. 

Now, the finite sheeted covering space of M corresponding to the kernel of h 

has the following property. If C is a cusp of this cover lying over Ci(i = 1,...., fc) 

then the cross section of C lying over Z^1-1 x a^ has injectivity radius > 1/2.    D 

We now prove the following Homology lemma which will be used later in 

changing the smooth structure on M. 

Lemma 3.3. For each prime p, there exist elements Xi G HiiT™'1,!*) such 

that 

1. EjLja^ = 0 where xl is the image of Xi in i?i(M,Zp). 

^ ©Li^i € 0f=1 HiiTJ1'1^) is a basis element. 

Proof. We first observe that to prove the lemma it is enough to show that there 

exist yi G iJ^T/1-1, Z) such that S^=1y7 = 0 and y^ / 0 for some i. To verify 

this let 0^! yi = ^(0^! x^ where 0^! Xi is a basis element and ^(^ 0) G Z. 

If p|rf, then 0^=1 W = ^(©£=1 xi) = 0 and hence yl — 0 for all i = 1,2,...., A: 

which contradicts the assumption that y^ 7^ 0 for some i. Therefore, (p, d) = 1. 

We then have, 0 = E^L^ = ^S^=1x7 where d = d + pZ which is an unit in Zp. 

This implies Ejl^ — 0 thereby proving the lemma. 

Now, since ^(Tf'^Z) —>• Hi(T™~1 ,ZP) is an epimorphism, we only need 

to find elements Zi G Hi(TP~1,Zp) such that some Zi 7^ 0 and S^jf^ = 

0 where £$ is the image of Zi in Hi(M,Zp). Suppose on the contrary that 

there does not exist any such ^'s.  This means that EjL^ = 0 implies each 
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Zi — 0; in other words, the map </>* : Hi(dM,Zp) —> ^(M,Zp) is monic 

where ^: 9M —► M is the inclusion map. This is equivalent to saying that 

(/>*: H 1(Mi Zp) -> Hl(dM, Zv) is an epimorphism. Let b^ € H1^'1, Zp), j = 

1,...., n — 1; i = 1,...., fc, be such that the cup product 6^ U 6^ U • • • U 6m-i 

generates H71-1^'1, Zp) for each i = 1, 2,...., fc. Let n: dM -> T^1"1 be the 

unique map (up to homotopy) such that r^ restricted to T"-1 is the identity 

map and r* restricted to Tj1-1 is a constant map for all j ^ i. Let 6^- = 

r^fty-) where r* : H*(T^~l,Zp) -> H\dM,Zp) is the induced cohomology 

map. Further, since 0* is an epimorphism, let JB^ £ £r1(M, Zp) be such 

that ^(Bij) = bij. Put Ba U • • • U Bin_i = S^; ^i U • • • U 6in_i = ^ and 

bn U • • • U &in_i = bi. Therefore, ^*(J3i) = 6^ and r*(^) = 6^. 

Claim: 6i, 625 ••••) &fc generates Hn~1{dM) Zp). 

We defer the proof of the claim for the moment and finish the proof of the 

lemma using the claim. Clearly, it follows from the claim that the map 

0*: Hn-l{M, Zp) -» Hn-l{dM, Zp) is an epimorphism. Now look at the coho- 

mology exact sequence, iJn-1(M,Zp) -> H^^dM.Zp) -> Hn(M,dM,Zp) -^ 

Hn(M,Zp) -> Hn(dM,Zp). Since iJn(aM,Zp) = 0, it follows that 

tfn(M, aM, Zp) - Bri(M, Zp). 

Also, by using Lefschetz duality, we have 

ifn(M, 3M, Zp) - ifo(M, Zp) and i7n(M, Zp) - iIo(M, dM, Zp). 

But then, Ho(M,Zp) = Zp and since Ho(dM,Zp) -> Ho(M,Zp) is onto, 

Ho(M,dM)Zp) = 0 which is impossible. This concludes the proof of the 

lemma. 

Proof 0/ t/ie aaim; Since H^^dM.Zp) = 0j=1 H^iT?-1^) and fc = 

dimzp ir
n_1(9M,Zp) = number of components of dM, we need only show 

that bi,i = !,....,&, are linearly independent. Let cr^ : Tf-1 —> 9M be the 

inclusion map. Note that r* o cr^ = identity on T/1-1 if i = j and is a constant 

map if i ^ j. Suppose Sf=15i6t = 0 where Si G Zp. Applying cr*, we have 

o^Z^sA) = Etx^WCfri)) = S^^^r, o ^&) = 0. 
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Therefore, Sjbj = 0, which is an equation in Hn~l(T™~1 ,Zp) = Zp for which 

bj is a generator. This implies Sj = 0. Thus {bi;i = !,....,&} are linearly 

independent which concludes the proof of the claim.    □ 

Pick a prime p ^ 2 and such that p\order(@n-2) (e.g., n = 9 and p = 7). We 

assume through the remainder of this paper that n > 9. Let x^ G H^TJ1"1, Z) 

be as in Lemma 3.3. Write Xi = d^ where y^ is a basis element in iJ^T/1-1, Z) 

and di> 1 is an integer. Put M(yi,...., J/A?) — ^ where M(yi, ....,yk) is the 

compact manifold obtained after applying Schroeder's construction to M by 

closing the cusps d relative to basis elements y*. (See Lemma 3.2.) We then 

have, 

Theorem 3.4.   There exists a smooth manifold Ai such that 

1. M. is homeomorphic to M = M(yi, ....,yk)- 

2. M does not support any nonpositively curved metric. 

Proof. Let E G en_2 - [S^^TOP/O] such that orderZ = p. To produce M 

we find a map M G [M, TOP/0]. Note that M = MU^T?'2 xP2 where T?'1 

is identified with a(7;n~2 x D2) so that * x S1 represents ^ G JH
r
1(27"1,Zp). 

We will show that there exists a continuous map A4 : M —> TOP/0 such 

that A^ restricted to T/1-2 x P2 is a composite of the maps 

77»-2 x ^      ^     ^n-2      ^      ^n-2      ^      gn-2      ^     TOP/0 

where Pi is the projection map, (pi is the degree 1 map, di is the degree di map 

and E is the exotic structure on S'72-2 regarded as an element in [5n_2, TOP/0]. 

(Note that the homotopy classes of (p^d^ and E are uniquely defined.) 

Recall that Sn~2 is contained in the Eilenberg-Maclane space K(n — 2, Zp) 

and any element in Hn~2(M, Zp) is actually a map M —> K{n — 2, Zp). And 

by Cellular approximation theorem the image of such a map resides in the 

n-skeleton of K{n — 2, Zp) which, for odd primes p and n > 9, is the Moore 

space S'n~2UpDn_1. On the other hand, since orderE = pin the group &n-2 = 

7rn_2(T0P/O),E extends to a map 77: S71'2 UpW'1 -+ TOP/0. Therefore, by 

composing 77 with a suitable element in Hn~2{M, Zp) we get a map M.: M —» 
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TOP/0. This is illustrated in the following diagram: 

K{n - 2, Zp) 
T cr 

M Sn-2VJPW-1 

Define fa — r o di o fa o P^ and fa = a o fa where cr, r and a^ are the inclusion 

maps. 

Claim: There exists </> G i?n~2(M,Zp) such that 0|r»-2xD2 ~ ^*- 

This amounts to showing that there exists a map </> : M —> K(n — 2,ZP) 

and from our remark earlier we actually have 0 = a o 0 where </> is a map 

M -+ 5n~2UpD
n"1. Further, 770^ = Eo^o^oP^ since ryor = S. Therefore, 

by defining M. = r/o^, we do the construction posited in the second paragraph 

of this proof. 

Proof of the Claim: Since M C M, we have the following commutative coho- 

mology diagram: 

#n-HM,<9M,Zp)     <     Hn-2{dM,Zp)    <  Hn-2(M,ZP) 

Hn-l{M,TxB2,Zp) ^— ifn-2(rxD2,Zp) <  Hn-2(M,ZP) 

where T = n^"2 and Hn-l(M, dM, Zp) - Hn-\M, TxD2, Zp) and also note 

that Fn-2(r x D2,ZP) = QtiH^iT?-2 x P2,ZP) and Hn-2(dM,Zp) = 

®k
i=1H

n-2{T?-\ZP)- Now eti^i € ^n-2(r x ©2,ZP). It is enough to 

show that 6(®fa) — 0 which proves that there exists a 0 E Hn~2(M,Zp) 

such that 0 H-> 0^. This is equivalent to showing that the image of (Bfa in 

iJn-1(M,aM,Zp) via Hn-2(dM,Zp) is zero which again, from the following 

commutative diagram (which we get by using Lefschetz duality) 

iTiCS^Zp)        <     H^dM.Zp)    <  H2(M,dM,Zp) 

J _ L L 
ff-^M.aAf.Zp) <  Hn-2{dM,Zp) <     Hn-2{M,ZP) 
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is equivalent to showing that the image of the element ©^ in Hi(M, Zp) via 

Hn~2(dM,Zp) and Hi(dM,Zp) is zero. Let &i denote the image of xi under 

the homomorphism determined by the change of homology coefhcients Z —■» 7JP. 

Then, by our construction, the image of ©^ in Hi(dM, Zp) is ffix^ which, by 

Lemma 3.3, goes to HxJ = 0 in Hi(M,Zp). This concludes the proof of the 

claim. 

We now proceed to show that M cannot support any nonpositively curved 

metric. Suppose on the contrary it does. 

Since TJ1-2 is totally geodesically embedded in M, -K^T?'
2
) = Z71'2 is a 

subgroup of 7ri(M). Let Mi denote the covering space of M corresponding 

to 7r1(r/l~2). Note that T/1-2 lifts to a unique totally geodesic submanifold of 

Mi which we identify with T/1-2 and by [BO, Lemma 3.1] the normal bundle 

vT™~2 of T/1-2 is diffeomorphic, via the exponential map, to M*. But the 

normal bundle of T/1-2 in Mi is the same as the normal bundle of T™~2 in 

M. Therefore, vT?~2 is diffeomorphic to T?~2 x R2 which means that Mi 

is diffeomorphic to T/1-2 x M2. Now M is another smooth structure on M 

given by M : M -^ TOP/0 such that M\Tri-2xB2 = E o di o fa o P^. Hence 

M\Tr>-2xlnt B2 is diffeomorphic to (77~2#(iiS) x M2. 

Let Mi be the cover of M corresponding to TT^TJ
1
'

2
) C TT^M) = 7r1(M). 

Then this smooth structure on Mi corresponds to the map M. opi: Mi —> M —> 

TOP/0 where p^ is the covering map. Also, T/1-2 x D2 c Mi is a homotopy 

equivalence. From this we conclude that 

Mi is diffeomorphic to (T^ftdiZ) x M2. (3.1) 

Since M is nonpositively curved, by our hypothesis, and closed we can apply 

Flat torus theorem to TT^T/
1-2

) C 7ri(M) = 7ri(M) to get an embedded totally 

geodesic flat torus % C Mi inducing a homotopy equivalence. Therefore, by 

using [BO, Lemma 3.1] once again, we see that 

Mi is diffeomorphic to v{Tj) (3.2) 

where ^(^i) is the normal bundle of %. Because of (3.2), Mi can be smoothly 

compactified with d = 5z/(7J), the sphere bundle of u(7l). But by (3.1), Mi 

has a second smooth compactification with d' = (TJl~2#diT,) x S1.  But the 
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boundaries of any two compactifications of the same space are h- cobordant 

and since /7r1(9
/) is free abelian, the /i-cobordism is a product; in particular, d 

is diffeomorphic to d', i.e., 

Su(Tl) is diffeomorphic to (l^-^E) x S1. (3.3) 

Now consider the following homotopy sequence of the S1 fiber bundle F : 

M%) -> KIS
1
 -+ MSviTi)) - ^T, - TTO^

1
. (3.4) 

Clearly TTOS'
1
 and 7^(7^) are both zero and by (3.3), 7ri(Su(7i)) is an abelian 

group. Also, since TTIT^ is free abelian, the map F#: iri(Sv(Ti)) —> TTIT^ splits. 

Since Su(Ti) is a if (TT, 1) space, the higher homotopy vanishes by considering 

the rest of the homotopy sequence (3.4), this splitting is induced by a cross 

section to F. Hence the Euler class of the oriented vector bundle u{Ti) is 0. 

Consequently, v(Ti) is the trivial 2 plane bundle; in particular, 

Su(7l) =TixS1. (3.5) 

Combining (3.5) with (3.3) implies 

Ti x S1 is diffeomorphic to (Tf-^E) x S1. (3.6) 

Under this identification, since every element in GLn_i(Z) — Autf^^Ti x S'1)) 

is induced by a self-diffeomorphism of % x 51, we can assume that 7r1(7J) is 

identified with 7r1(r/l~2#diS). Take the covering space X corresponding to 

this subgroup. Then (3.6) yields X = % x R and X = (27"2#diE) x R, i.e., 

% x R - (T?-2#diE) x R. (3.7) 

Using (3.7), we obtain a smooth /i-cobordism between % and T^^ftdiE. 

Again since TTIT^ is free abelian, this /i-cobordism is a product. In particu- 

lar, % is diffeomorphic to T?~2#dil}. But since T^ and Tf"2 are diffeomor- 

phic we have Z^^E = I™-2.  This implies that ^E = 0 in Gn_2.  Since 

(di,...., dk) = 1, there exist integers ai,...., ak satisfying aidi -\ + akdk = 1. 

Therefore ai(diE) H h afc(<ifcS) = E in @n-2 and hence E = 0 in ©n_2 con- 

tradicting the assumption that it is non-zero. Therefore our assumption that 
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Ai admits a metric of nonpositive curvature must be false which completes 

the proof of the theorem.    □ 
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