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ENTROPY ESTIMATES FOR EVOLVING HYPRSURFACES 

BEN ANDREWS 

ABSTRACT. We consider parabolic curvature flows for hypersurfaces 
in Euclidean space, defined in terms of the mixed discriminants of 
Aleksandrov. Dilation-invariant curvature integral estimates are proved 
for convex hypersurfaces evolving by these equations, generalising the 
so-called entropy estimates which have been proved for special cases 
by Richard Hamilton, Ben Chow, and the author. The earlier proof 
by contradiction is replaced here by a new proof which is more di- 
rect and applies more generally, and which demonstrates the intimate 
connection between entropy estimates and the Aleksandrov-Fenchel 
inequalities. 

1. INTRODUCTION 

In this paper we consider parabolic evolution equations for convex hyper- 

surfaces in Euclidean space: Suppose <po • Mn —> Rn+1 is a strictly convex 

initial embedding. We allow this to evolve according to an equation of the 

following form: 

(1_1) —<p(x, t) = F(W(x, t), i/(x, t))i/(x, t); 

ip(x,0) = (po(x) 

for all x in Mn and t in [0, T). Thus the function F gives the speed of motion 

of the hypersurface, in terms of the Weingarten curvature W and the outward 

normal direction v. Equation (1-1) is parabolic provided that F is monotonic 

in the Weingarten curvature at each point—precisely, the derivative of F with 

respect to the curvature, Fjf — ^7, is required to be negative definite. 
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These evolution equations can also be written as evolution equations for the 

support function s : Sn —> R of the hypersurface (see section 2): 

(1-2) ^,*) = Wz) 

for all z in Sn and t in [0, T). 

Several so-called entropy estimates have been proved for hypersurfaces evolv- 

ing under parabolic equations of this kind. These estimates give dilation- 

invariant integrals of curvature which are monotonic in time; such estimates 

are useful in controlling the types of singularites which may occur under the 

flow. The first such estimate was proved by Richard Hamilton [Ha] for the 

curve-shortening flow, in which we take n = 1 and F = —A;, the curvature of 

the curve. Hamilton showed that the following quantity decreases in time for 

a convex embedded solution to the flow: 

(1-3) A*expj^- /  Infcdflj, 

where A is the area enclosed by the curve. Here it is understood that a point 

on the curve is associated with a point on S'1 via the Gauss map v. 

This result was extended to higher dimensions by Chow [Ch] for the Gauss 

curvature flow, in which n is arbitrary and F = —K, where K is the Gauss 

curvature. The entropy estimate in this case states that the following quantity 

is decreasing: 

(1-4) ^expl^ln;^} 

where V is the volume enclosed by the convex hypersurface, |5n| is the n- 

dimensional area of the unit hypersphere Sn in Rn+1, and dji is the area 

element on 5n. 

These estimates have been generalised by the author [Anl] to certain other 

flows, where the speed of the hypersurface is given by F = —s 
K rX] = 

—5fc[^]-1, for k = 1,... ,n. Here K is again the Gauss curvature, and Se[X] 

is the £th elementary symmetric function of the principal curvatures of the 

hypersurface, for £ = 0,..., n (interpreting So[X] = 1); Sk[K,] is the kth elemen- 

tary symmetric function of the principal radii of curvature. In these cases we 
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have the following decreasing quantity: 

(1-5) ^expj^^lnlFl^u} 

where Ve = JSn sS^-if^c] dfi is the £th integral cross-sectional volume of the 

hypersurface, for £ = 1,..., n + 1 (see section 2). 

In all of these papers, the proofs of the entropy estimates are similar: De- 

noting by E the integral fs.n In |F| of/x, one calculates the second time derivative 

of i?, showing that it satisfies an estimate of the following form: 

(!-«) 1 (1B) > k-±± (1B {     ; dt \dt   ) - k\S"\ \dt 

This estimate is closely related to the Harnack inequalities satisfied by the 

solutions. It is known that the interval of existence T of the solution to these 

equations is just proportional to Vfc+i[<p] (the area A in the case of the curve 

shortening flow, and the enclosed volume V in the case of the Gauss curvature 

flow). If — E were initially too large, then the estimate (1-6) would force it 

to become infinite before the final time was reached; the estimate obtained 

on — E from this argument is just enough to show that the entropy quantity 

decreases. 

In this paper, we prove new entropy inequalities for a much wider class of 

evolution equations. Furthermore, the indirect proof used in the previous cases 

is replaced by a direct application of the Aleksandrov-Fenchel inequalities (see 

section 2). The results hold for a class of evolution equations defined in terms 

of the mixed discriminants of Aleksandrov, which are more general than those 

mentioned above, in several respects: Firstly, we allow flows which have speeds 

homogeneous of any degree in the curvature; secondly, the speed is allowed 

to be anisotropic (so that it depends nontrivially on the normal direction, as 

well as on the curvature). Precisely, we allow evolution equation with speed 

F defined as follows (see section 2 for the definitions): 

(I-T) F = sgna„w(awy 
where a is a positive, smooth support function of a fixed bounded convex 

region, and Qk[f] is a mixed discriminant, defined for any function / in terms 
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of smooth support functions s^+i,..., sn of fixed bounded convex regions: 

(1-8) Qfc[/] = Q(/1_^I/,sfc+i,...,sn]. 
k times 

s is the support function of the evolving region decribed by (p, and Q denotes 

the mixed discriminant, a is allowed to be any non-zero real number. 

The main theorem is as follows: 

Theorem 1-9. For any strictly convex solution to equation (1-1) with speed 

given by (1-7), the following quantity is decreasing in time: 

(1-10) V&Z[8] 

where we define 

(1-11) Ve = Vls^^,  CT, ...,cr ,5fe+i,...,sn] 

£ times     k-\-l—£ times 

for t = 0,1,..., k + 1.  V[/o, /i,..., /n] is the mixed volume of the functions 

fo,...<ifn> and Z[s] is defined as follows: 

sgn Q 

(1-12) 7[.]=<(*j'-'a'w(«Hr <*•)"* ^^-i'- 
,«xp{i/5.<'2*Wln(f{|j)*}  '    fora = -l. 

Note that the flows considered here include the flows where the speed is 

given by a power of the Gauss curvature (the case k = n, a = 1), and also the 

flows by powers of the harmonic mean curvature (k — 1, cr, 52,..., sn = 1). 

Section 2 of the paper introduces the notation used in the paper, including 

that required for the description of hypersurfaces using the support function. 

The mixed volumes and mixed discriminants are introduced, along with some 

of their important properties, including the Aleksandrov-Fenchel inequalities. 

The proof of the entropy estimate is given in section 3. With the machinery 

set in place in section 2, this requires only a short calculation. This section 

also proves some global lower bounds oii the entropy quantities. 
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2. NOTATION FOR CONVEX REGIONS 

This section introduces the basic notation and preliminary results required 

for the paper: We review the use of support functions to describe convex 

regions, and introduce the mixed volumes, the mixed discriminants, and the 

Aleksandrov-Fenchel inequalities. For a detailed exposition of the material in 

this section, see [BZ]. 

Support functions. 

The support function s : Sn —> R of a convex region D in Rn+1 is defined 

as follows: 

(2-1) s(z) = sup(y, z) 

for each z in Sn. This gives the distance of each supporting hyperplane of D 

from the origin. The region D can be recovered from s as follows: 

(2-2) D=  f){y£-Rn+1:(y,z)<S(z)}. 
zesn 

If D is smooth and strictly convex one can construct an embedding (p of Sn 

to the boundary dD of D which associates to each direction z in S'n the point 

of dD with normal z. This is given by the following expression: 

(2-3) (p(z) = s(z)z + Vs(z) 

where Vs is the gradient vector of s with respect to the standard metric g on 

Sn. This leads to a simple expression for the Weingarten curvature W of dD: 

From any function / on Sn, we can construct a map A[f] oiTSn, the tangent 

bundle of 5n, as follows: 

(2-4) A[/]=5*HesSv/ + /Id. 

Here Hessy / is the Hessian form of / with respect to the standard connection 

V on 5™, and g* Hessy / is the corresponding map of TSn obtained using g: 

(2-5) g (n, g* Hessy /(«)) = dudvf - d^uVf 



58 BEN ANDREWS 

for all vector fields u and v in TSn. This definition gives the following expres- 

sion for W (see [Anl] for details): 

(2-6) W-1 = A[s}: 

For any two convex regions Di and Z^ we can take the Minkowski sum 

Di + D2 given by {a + b : a € Di, b € .D2}. This sum is again a convex region. 

If Di and D2 have support functions Si and 52 respectively, then Di + D2 has 

support function s given by 

(2-7) s{z) = s1(z) + s2(z). 

Mixed volumes. 

The volume V(D) of a convex region D can be calculated in terms of the 

support function by the following integral over Sn: 

(2-8)       V(D) = -^— I   sdet (W"1) dn = -^—' /   ^det A[s] dfi 

where d/j, is the standard measure on Sn. 

Now we consider a linear combination of convex regions (in the Minkowski 

sense): Let £)*, i = 1,..., iV be convex regions with support functions s^ and 

consider the Minkowski sum X)i=i ei^i for arbitrary positive e^ (here multipli- 

cation by a scalar corresponds to scaling about the origin). The expressions 

(2-4), (2-7) and (2-8) show that the volume V(13ei^) is a homogeneous 

polynomial of degree n + 1 in the variables ef. 

(2-9)      v (J2 e<A) = ^     E     e'o • • • ci„ v (Ao, • • •, AJ 
l<zo,...,iTl<-/V 

where the coefficient F (-Dio • • • 5 -D^) is called the mixed volume of the n + 1 

regions Dio,..., 1}^, and is given by the following expression in local coordi- 

nates: 

(2-10) 

V^Ab-.-jAO = /   soQ[su...ysn]dfjL 
JSTI 

(2-11) 

Q[fl,-..Jn}=^    E   (-l^'^^t/llrS'-^MS- 
<7,T<ESn 
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The operator Q is a multilinear operator acting on n functions si,..., sn on 

Sn; it is called the mixed discriminant of Si,..., sn. It has several important 

properties: 

Lemma 2—12. 

(1). Q is independent of the order of its arguments: 

for every permutation a G Sn. 

(2). Q[/i,..., fn] is positive for any n functions /i,..., fn with each A[fj\ 

positive definite. 

(3). ///2,... ,/n are fixed smooth functions, and A[fi] is positive definite for 

each i, then Q[f] := Q [/7/2, •. •, fn] is a nondegenerate second-order 

linear elliptic operator, given in local coordinates by an expression of 

the following form: 

(2-13) Q[/l = E2iJ'(V«Vi/ + ^/) 

where Q is a positive definite matrix at each point of Sn, depending 

only on the functions /2,..., /n. 

(4).  The following identity holds for any fe,..., fn as above: 

(2-14) J^ViQ^O. 
i 

The formula (2-14) follows from the definition (2-11) and the Codazzi equa- 

tions, which imply the symmetry of VA [fi] for every i. 

These properties of Q allow us to deduce some important properties of the 

mixed volumes: 

Lemma 2—15. Let D0,D
f

0,Di,,.. ,Dn be bounded convex regions.   Then we 

have the following facts: 

(1). Symmetry: Let a be a permutation of the set {0,..., n}.  Then 

V(D(h...,Dn) = V(Da(oh.:.,Da{n)). 

(2). Invariance under translations: If p is any point o/Rn+1, then 

V{Do+p,Du ...,£>„) = V(A>,£i, • • •, AO. 
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(3). Positivity: 

F(Do,...,I>n)>0. 

(4). Monotonicity: Suppose D0 C DQ.  Then 

V(D0,Du...,Dn) < V(D'0,Du...,Dn). 

Property (1) follows from the identity (2-14), which allows us to integrate 

by parts. Property (2) then follows because we have A[(z,e)] = 0 for all e 

in Rn+1
? so that A[so] is not affected by translations. Positivity follows since 

we can choose the origin to make SQ positive, and Q[si,...,sn] is positive. 

Monotonicity follows since So < s'o and Q[si, ♦ • •, sn] is positive. 

It is interesting to note certain special cases of mixed volumes: For any 

strictly convex region D, define M^ to be the mixed volume of k copies of D 

with n — k + 1 copies of the unit ball i?, for k — 1,..., n + 1: 

(2-16) Mk(D) = Vir^J), JV^) 

k times       n+1—k times 

For k = n + 1 this gives the volume V{D). For k = n we have Mn(D) — 

Hn(dD), the Hausdorff n-measure of the boundary of D. For k < n these 

mixed volumes are called the integral cross-sectional volumes of D, and give 

the average k-measure of projections of D onto k- planes. 

The Aleksandrov-Fenchel inequalities. 

The Aleksandrov-Fenchel inequalities relate the different mixed volumes 

which can be formed from a collection of convex regions (see [All-2], [F]): 

Theorem 2—17 (Aleksandrov, Fenchel). Let DQ, ..., Z)n be bounded con- 

vex regions in Rn+1.  Then the following inequality holds: 

(2-18) 

V(D(hDo,D2,...,Dn)V(D1,DuD2,...,Dn)<V(D0jDuD2,...,Dn)2. 

Certain of the flows given by (1-7) have been used by the author to give 

a simple proof of the Aleksandrov-Fenchel inequalities (see [An3]). The basic 

inequality has many useful consequences: For the special case of the integral 

cross-sectional volumes Mk(D), we have the following: 

(2-19) Mk(D)2 > Mfc-iCl^Mfc+xCD) 
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for k = 1,... ^n, where we interpret Mo(D) = V(-B), the volume of the unit 

ball. By applying this several times, we obtain the Minkowski inequalities: 

(2-20) Mk(D)a+b > Mk_a{D)hMM{DY 

for 0 < k — a < k < k + b < n + 1. The case k — a = n^b = 1 is the 

isoperimetric inequality. 

The Aleksandrov-Fenchel inequality can be interpreted as a kind of Poincare 

inequality: For any function / in VF1,2(S'n), and any a, §2,. • •, sn the support 

functions of fixed smooth, strictly convex bounded regions, we have the fol- 

lowing inequality: 

(2-21) 

^ /   QijVif Vsf dpi > 1 /   Q(Id)/2 dM - (1 /  fQ[a} dp 

Note that this inequality is invariant under the transformation f —> f + Ca 

for any C. This allows us to prove the inequality without requiring that / be 

the support function of a convex region. 

3. DECREASING ENTROPY 

Now we can proceed to calculate the rate of change of the entropy under 

these evolution equations. To simplify the calculations, we use the following 

notation: 

(3-1) Qs[f} ~ Q[/, 5, . ... , 5, Sfc+i, . . . , Sn] 

k—1 times 

for any function /. In particular we have Qk[s] = Qs[s]. For the mixed 

volumes we use the corresponding notation 

(3-2) Vs[fu /s] := V[fu /s, s,..., 5, sfe+1,..., sn} 

k—l times 

for any fx and /2. 
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First consider the mixed volume Vfc+ifs]■= V3[s, s}: 

mVk+M = dtJsJ
QMd^ 

(3-3) = L FQs[S] dfx + kJSn
sQs W *» 

= (fc + l) /  FQs[s]d^ 
JS" 

= (k + l)Va[F,8]. 

Next we calculate the time derivative of the integral Z. First consider the case 

where a ^ —1: 

(3-4) = ksgnaZ^™^ ±r[   a (^Y Q.[F\dv 

= A:Z1-sgna(1+a)-^K[F,F]. 

In the case a = — 1 we have: 

(3-5)        ^I'IH2'1^1* 

The time derivative of the entropy quantity (1-12) can be found in the case 

a 7^ —1 by combining equations (3-3) and (3-4): 

(3-6)    | (^ z) = kZ-^+Wk-+t (VS[S, s] V.[F, F] - VS[F, sf) , 

noting that V^[F, 5] = VoZ^^. The term in brackets we recognize as the 

quantity in the Aleksandrov-Fenchel inequality (2-17), which is therefore neg- 

ative. 

In the case a = — 1 we have: 
 i_ 

f)   /      k      \        hV   k+l 

(3-7) I \V^Z) = -^- {V.[8, s] V.[F, F] - y0
2). 
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Since VQ = V^[F, 5] in this case, the Aleksandrov-Fenchel inequalities apply 

again to show that the bracket is negative. The result follows. 

If F is isotropic and homogeneous of degree one (a, Sfc+i,..., sn = 1, a = 

—~), it is known that the solutions become spherical at the end of their interval 

of existence (see [An2]). Hence the entropy converges to that for the sphere; 

we have the following result: 

Theorem 3—8. For any smooth, strictly convex region with support function 

s, the following inequalities hold: 

(3-9) VkflZk,a[s} > \Sn\^ 

for k — l,...,n and a < -; where Zfc)a[s] is the isotropic entropy given by 

equation (1-12). 

Corollary 3—10. For any smooth a, s^+i? • • • 5 sn, k = 1,..., n, and any a < 

— ^ there exists a constant C(a, k, s/c+i,..., sn, a) > 0 such that the following 

estimate holds for all support functions s of convex regions: 

(3-11) v^z[s} > a 

Proof The theorem follows in the case a — — \ simply from the fact that the 

entropy decreases and converges to that for the sphere. The result for lower a 

follows from this by the Holder inequality. The corollary follows because the 

entropy for any anisotropic flow is bounded above and below by multiples of 

the entropy for the isotropic flow.    □ 

A simple application of the entropy estimates also shows that solutions 

do not in general converge to the homothetic solution a for small negative 

exponents a: Observe that the limit as a tends to zero of the entropy is just 

the isoperimetric ratio VQV^
1
 VJT1, which is less than or equal to V^/e+1 by 

the Aleksandrov-Fenchel inequalities. Furthermore, if s is not a translated 

multiple of cr, the inequality is strict.  Hence for any 5, there is some e > 0 
k k 

such that the inequality Vk
k+i Z < V0

k+1 holds for all a in the range (—£,0). 

It follows that the flows with initial condition s and a in this range do not 

converge to a after rescaling, because the entropy is already less than that for 

a. 
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