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ABSTRACT. Gauge theoretic version of Aronszajn's unique continu- 
ation principle are proved here for the anti-self dual equations. (This 
system of non-linear, partial differential equations does not have an 
elliptic symbol.) For example: Two anti-self dual connections on a 
4-manifold which are gauge equivalent to infinite order at a single 
point are gauge equivalent on some neighborhood of any point. 

The purpose of this note is to state and prove five unique continuation theo- 

rems for solutions of the anti-self dual equations on 4-dimensional Riemannian 

manifolds. These theorems make global statements about pairs of solutions 

to the anti-self dual equations which happen to agree on some subspace. The 

first theorem is an analog to Aronszajn's unique continuation principle [Ar] 

for solutions to Laplace's equation on a manifold. The second theorem is an 

analog which considers anti-self dual connections on manifolds with boundary 

which agree on the boundary. 

The second theorem generalizes a result of Donaldson [D] about anti-self 

dual connections on holomorphic bundles over Kahler manifolds with non- 

empty boundary. Neither theorem can be obtained (to the author's knowledge) 

by simple quoting theorems about elliptic equations (e.g. [Ar]), for the anti-self 

dual equations do not linearize as elliptic equations for the connection. 

The third theorem is an infinitesimal version of the second, and the fourth 

and fifth theorems are essentially corollaries to the first and second; they con- 

cern anti-self dual connections on a 4-dimensional manifold which are reducible 

on some subset. These last two theorems generalize Lemma 4.3.2 in [DK]. 

Supported in part by the NSF. 
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0. THE THEOREMS 

The setting for the first theorem is as follows: Consider a smooth, connected, 

4-dimensional Riemannian manifold W. Let G be a compact, simple Lie group, 

and let P —» M be a principal G bundle. A connection A on P will be called 

anti-self dual if A's curvature 2-form, FA, obeys FA + *FA = 0. (See, e.g. 

[AHS].) 

A pair of connections on P, A and A\ are said to be gauge equivalent if 

there is an automorphism of P which pulls A' back to equal A. Say that A 

and Ar are locally gauge equivalent if each point in W has a neighborhood 

on which A and A' restrict to be gauge equivalent. (These two notions are 

not generally equivalent, as any two connections with vanishing curvature will 

be locally gauge equivalent to each other.) Say that A and A' are gauge 

equivalent to infinite order at a point, p, of W if the following is true: There 

is a neighborhood, U C W, of p and an automorphism, 77, of P 1^, such that 

77* A' — A vanishes at p as well as all partial derivatives of 77* A' — A to all orders. 

(Even though 77* Af — A is a section of a vector bundle over W, the assertion 

of the vanishing of 77*A' — A and its partial derivatives up to some order at 

a point is well defined and independent of choices of coordinates, and bundle 

trivializations.) 

Theorem 1. Let W be a smooth, oriented 4-manifold with Riemannian met- 

ric. Let G be a compact Lie group. Consider a principal G bundle P —> W. 

Let A and A be anti-self dual connections on P which are gauge equivalent 

to infinite order at some point p in W. Then A and A! are locally gauge 

equivalent. 

Note that the conclusions of Theorem 1 cannot, in general, be strengthened 

to claim that A and A are globally gauge equivalent. Just consider the flat 

connections. (Theorem 1 is stated as part of Theorem 1.5 in unpublished 

versions of [T], but the proof in these versions of [T] has a gap. The published 

version refers here.) 

Here is the setting for the second theorem: Consider a smooth, connected, 

4-dimensional, Riemannian manifold W. Assume that W has a smooth, com- 

pact,  non-empty boundary,  dW.    Let M  C  dW be a component,  and let 
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i : M —> W denote the boundary inclusion. Again, let P —> W be a principal 

bundle with structure group G, a compact Lie group. 

The second theorem asserts that the boundary values of an anti-self dual 

connection essentially determine the connection. 

Theorem 2. Let W, M and P be as described above. Let A and A' be anti- 

self dual connections on P which are Sobolev class L\ on some neighborhood 

of the boundary. If i*A is gauge equivalent to i* A on M, then A is locally 

gauge equivalent to Ar on W. 

(A connection A on a bundle Q over a compact manifold with (or without) 

boundary, X, is of Sobolev class L2
k for integer k > 0 when the following 

conditions are met: Let B C X be any open subset with compact closure such 

that Q \B is trivial. For any smooth trivialization 77 : B x G —> Q |B, the 

components of 77* A and their partial derivatives up to fc-th order should be 

square integrable over B. After embedding G faithfully in a matrix group, a 

similar definition describes the Sobolev class Z/| automorphisms of Q. One 

can also define these Sobolev classes for fractional fc, see [Ad].) 

(An anti-self dual connection which is of Sobolev class L^ on X will be 

smooth on the interior of X; see [U]. If the connection is of Sobolev class L3, 

then it will be continuous (at least) as a 1-form on Q.) 

As remarked, Donaldson [D] proved a related theorem about anti-self dual 

connections on holomorphic bundles over Kahler manifolds with boundary. 

Theorem 2 also has an infinitesimal version which is stated in Theorem 3, 

below. However, a two-part digression is required to first set the stage: Let W, 

M and P be as described in Theorem 2. To start Part 1 of the digression, fix a 

point p G M and let G0 denote the group of Sobolev class L4 automorphisms 

of P which restrict to the identity at p. Let 9Jt0 denote the quotient by G0 of 

the space m of Sobolev class L|, anti-self dual connections on P. It is proved 

in Proposition 2.2 of [T] that 9Jt0 is a smooth manifold, a priori of infinite 

dimensions. With DJl0 understood, introduce B0(M) to denote the quotient 

of the space of Sobolev class L^ automorphisms of P which restrict to the 

identity over P. This B0(M) is a smooth, infinite dimensional manifold. End 

Part 1 of the digression. 
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Part 2 of the digression introduces the notion of a locally reducible connec- 

tion on P. Here, a connection A will be said to be locally reducible if every 

point in W has a neighborhood on which there exists a non-zero, A-covariantly 

constant section of P xG g. 

Theorem 3. Let W, M and P be as in Theorem 2. Then, the pull-back by 

the boundary inclusion map i : M —» W defines a smooth G-equivariant map 

i : 9Jt0 —> B0(M) which is an immersion at orbits of connections which are 

not locally reducible on W. (Here, the term ('immersion,J is used to described 

the map whose differential is everywhere injective.) 

Theorems 2 and 3 have some relevance vis-a-vis Floer cohomology, as will 

now be explained. When defined, Floer cohomology ([F] and [TWZ]) for a 3- 

manifold M is constructed from the moduli space of anti-self dual connections 

on R x M. There is a formal analogy between Floer cohomology and the 

cohomology of a compact manifold as computed using Morse theory. (See, 

e.g. [CJS].) The analogy starts with the observation that the anti-self dual 

equations on W = interval x M are, formally, the gradient flow equations for 

a functional on the space of equivalence classes of connections on a principal 

bundle over the 3-manifold in question. 

A gradient flow (with time parameter t € [0,1)) of a function / on a finite 

dimensional, Riemannian manifold defines a map from [0,1) into the mani- 

fold in question. And, as the solution of a first order ODE for finitely many 

unknowns, this map is determined completely by its initial conditions at t = 0. 

Formally, the anti-self dual equations on [0,1) x M can be thought of as a 

first order ODE in infinitely many unknowns, but the standard theorems about 

the initial values determining the flow do not hold. None-the-less, because of 

Theorem 2, one knows that the time zero values of anti-self dual connections 

on [0,1) x M essentially determine the connection at all later times. 

By the way, for a gradient flow on a compact, finite dimensional manifold, 

every point is the starting point of some flow line defined on [0,1). There is 

no direct analogy for anti-self dual connections on [0,1) x M. Indeed, one can 

write down orbits of smooth connections in B0(M) which cannot be extended 

as anti-self dual connections on [0,1) x M or on (—1,0] x M. (As an exercise, 
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try to do so with a U(l) connection on a trivial U(l) bundle over T3 or S3.) 

However, it is reasonable to conjecture that the initial values of anti-self dual 

connections on [0,1) x M are dense in B0(M). There is some evidence for 

this assertion: Look at the restriction map to B0(M) from the space 9J10 as 

defined on [0,1) x M. Then, at any point in 9Jt0, the closure of the image 

of the differential of this map has empty compliment (consider the proof of 

Proposition 2.2 in [T].) See also Marini [M]. 

The last two theorems generalize Lemma 4.3.2 in [DK] which asserts that an 

anti-self dual connection which is reducible on a ball in W is locally reducible 

on W. The context for Theorem 4, below, is the same as for Theorem 1. 

Theorem 4 discusses connections which are reducible to infinite order at a 

point in W. (A connection A on P is reducible to infinite order at a point 

p G W if there exists a section of P x G P which is not zero at p, but whose 

^4-covariant derivative vanishes to infinite order at p.) 

Theorem 4. Let W and P be as described in Theorem 1. Let A be an anti- 

self dual connection on P which is reducible to infinite order at some point in 

W.  Then A is locally reducible on W. 

The argument for Theorem 4 is similar to that for Lemma 4.3.2 in [DK]. 

The statement of Theorem 5, below, requires a preliminary digression to 

introduce the following terminology: Let G be a compact, simple Lie group, 

and introduce G = G/ Center(G). Introduce p : G —> G to denote the natu- 

ral group homomorphism, and let Adp denote the composition of p with the 

adjoint action of G on itself. 

Now, say that a connection A on a principal G bundle, P, over a manifold 

is G-reducible if there is a non-trivial, A-covariantly constant section of the 

associated bundle P xAdp G. (If A is of Sobolev class 1^, then the section 

in question will be required to be Sobolev class Ljfe+1.) Say that A is locally 

G-reducible if every point has a neighborhood to which A restricts as a G- 

reducible connection. 

Theorem 5. Let W, M and P be as described in Theorem 2. Let A be a 

Sobolev class Ll, anti-self dual connection on P. Suppose that i*A is G- 

reducible on M. Then A is locally G-reducible on W. 
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The remainder of this note contains the proofs of these theorems. 

1. PROOF OF THEOREM 1 

The purpose of this section is to present a proof of Theorem 1. Before 

starting, remark that the strategy here will follow closely that of [Ar]. Roughly, 

this strategy argues as follows: Given A and A\ introduce the set U C W of 

points which have open neighborhoods to which A and Af restrict as gauge 

equivalent connections. By definition, U is open. If U is also closed and 

non-empty, then U = W. To prove that U is non-empty, one must establish 

Theorem 1 in the case where W C M4 is an open 4-ball about the origin, and 

where A and A' are anti-self dual connections on M4 x G which are gauge 

equivalent to infinite order at the origin. Here, the metric on W need not be 

Euclidean. 

Note: Proving this special case also proves that U is closed. Here is why: 

The connections A and A' will be gauge equivalent to infinite order at every 

point in U and so they will be locally gauge equivalent at every point in the 

closure of U. Then, to show that a point in the closure of U has a neighborhood 

on which A and A' are gauge equivalent, one need only appeal to the special 

case above. Thus, Theorem 1 is proved in general if it can be established for 

the case of a ball in M4 as described above. 

With the preceding understood, let ds2 be a smooth metric on an open set 

in E4 which contains the origin. Use gaussian normal coordinates to write ds2 

on a ball, B, about the origin, as 

(1.1) ds2 = dxa ® dxa + h, 

where h obeys the conditions 

(1)     \h\(x) <c-|x|2. 

(L2)        (2)     |V/i|(x)<c.|x|. 

(3)    The unit radial vector field dr on M4 — 0 is tangent to 
the <is2-geodesic through 0. 

Now, let G be a compact, simple Lie group.   Let A and A' be a pair of 

connections on B x G which are anti-self dual for the metric ds2.   Let F 

denote the product connection on B x G.   Write A = F + a with a being 
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a section over B of T*B x g. Thus, the anti-self dual equations say that 

P+FA = P+(da + a A a) = 0. (Here, P+ : f\2T*B -► f\2T*B is the (ds2)- 

orthogonal projection onto the subbundle of self dual (with respect to ds2) 

2-forms.) 

Likewise, write Af = T + af. 

suppose that a and af agree to infinite order at the origin. Here is the goal: 

find s : B —» G such that a" = s • a • a-1 + 5 • ds-1 and a agree on a non-empty 

open set about the origin. With the preceding understood, the following steps 

produce the gauge transformation s as above. 

Step 1. Find separate gauge transformations of A and A' (if necessary) so 

that after applying these gauge transformations, 

(1) a |o= af |o= 0 
(1.3) 

(2) The contractions of a and a' with dr satisfy drLa = c^a7 = 0. 

The "gauge" change which affects (1.3) for A is obtained by parallel transport 

from 0 along radial geodesies. Thus, the invocation of (1.3) does not affect 

the assumption that a and a7 agree to infinite order at 0. 

Step 2. Let u = a — af. then u satisfies 'u(O) = 0, drtu = 0 and obeys the 

partial differential equation 

(1.4) P+du + - • P+(u A (a + a') + (a + a') Au) = 0. 

Notice that (1.3) and (1.4) imply that 

(1.5) \P+dv}\   < ci • \x\2 - \u\2 , 

for some constant Ci which is determined by the C1 -norms of a and a'. 

Step 3. The strategy now will be to mimic, as much as is possible, the 

approach used by Aronszajn in [Ar]. The following lemma—which is proved 

below in Step 6 is crucial. 

Lemma 1.1. There is a constant c > 0, and there exists an increasing, smooth 

function p : [0,1] —► [0,1]; and these have the following properties: 

(1) They are determined by the metric ds2 on B. 

(2) p-^O) = 0 and (dtp)(0) > 0. 
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(3) Let r G (0,1) be less than the diameter of B, and let Br C B denote 

the ball of radius r about the origin. Let v be a smooth, g-valued 1-form 

on B with compact support in B — {0} and with drtv = 0. Then for 

all a > 0, 

(1.6) c ■ r2 J p(\x\)-2a \P+dvf > J'/>(Wr2Q • M2 • 
Br Br 

Step 4. Fix a smooth, non-negative function /? on [0,1] which vanishes on 

[3/4,1] and which is identical to 1 on [0,1/4]. Then, fix ro > 0 so that Bro C B. 

For r < ro, define f3r : B —» [0,1] to have value at x equal to l3(\x\ /r). 

Argue as in [Ar] that v = f3r -u obeys (1.6) for all a. > 0. (Because u vanishes 

to all orders at the origin, the integrals in (1.6) are absolutely convergent. 

With this understood, it is relatively straightforward to approximate /?r • u by 

a sequence, {un}, where each un has compact support in B — 0 and where 

the sequences of values of both sides of (1.6) for {v = un} converge to the 

respective values of both sides of (1.6) for v = /?r • u.) 

Step 5. Use (1.5) with (1.6) to conclude that 

(1.7) J    p(|x|)-to.|u|a>  J p(\x\r2°-\u\2, 
Br — Br/2 Bv/2 

for all a > 0 if r is sufficiently small. Then, note how (1.7) implies that 

Br — Br/2 Br/2 

for all a. Since p is increasing on [0,1], Equation (1.8) can hold for all a only 

if u = 0 on jBr/2. 

Step 6. This last step proves Lemma 1.1. The proof of this lemma requires 

several parts. The first part defines the function p. The definition requires the 

following digression: Think of S3 as the unit sphere in R4. Let TQ = — ln(ro) 

and introduce the diffeomorphism 

(1.9) #:[ro,oo)xS3-+£ro-0 

which sends (£, y) to the point e_t • y G M4. Pull ds2 back by * to obtain a 

metric e~2t - (dt2 + ra), where m |t= mt is a smooth metric on S3. 
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The set of metrics {mt}t>T0 defines a smooth map, which will also be de- 

noted by ra, from [T0l oo) into the Frechet space of smooth metrics on S3. The 

limit as t —» oo of {mt} converges as t —> oo to the standard round metric on 

S'3. This convergence is exponentially fast. In particular, 

(1) \mt-m00\rn<C2-e-2t, 

(2) |^m,|m<c2.e-2i, 

where dt denotes the derivative with respect to the coordinate t E [TQ, OO) and 

where C2 is some constant. 

End the digression. 

Following an idea from [Ar], define p by 

r-\n(s) 
(1.11) p(s) = exp[- / dr • exp(1000 • c2 • e"2')] 

Jo 

where the C2 is the constant in (1.10). 

Part 2 of the proof of Lemma 1.1 involves translating (1.6) to an inequality 

for g-values 1-form on [T, oo) x S3 with T > TQ. Indeed, (1.6) is implied by an 

analogous inequality for z/ = ty*v on [T, oo) x Ss. In deriving the inequality 

for z/, remember that the operator P+d pulls back to [T, oo) x S'3 as P_<i (the 

operator d and the subbundles P± /\ T* pull-back naturally under conformal 

diffeomorphisms, but \I/ reverses orientation). 

Then (1.6) is equivalent to the following assertion: 

Lemma 1.1'. There exists c > 0 with the following significance: Let T > TQ 

be given. Let v be a compactly supported, g-valued 1-form on [T, oo) x 53, 

and suppose that the contraction dtiv vanishes so v has no dt component. Let 

pit) = ^(e-*), with p as in (1.11).  Then, for all a > 0, 

(1.12) 

c • e-2t     j     p(t)2a • \P-dv\2g • dvolg >       f     e-2tp(t)2a • \u\2g • dvo\g . 
[T,oo)x53 [T,oo)x53 

Here, P_ is the anti-self dual projection for the metric g = dt2 + m, and |-| 

is the norm for said metric, while dvo\g is g 's volume form on [T, oo) x S3. 

Thus Lemma 1.1 is proved with a proof of Lemma 1.1'. 
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Proof of Lemma 1.1'. The proof begins by analysing the integral on the left 

side of (1.12). Introduce d to denote the exterior derivative along the constant 

t hyper surf aces. (So the contraction of df with dt is zero.) Since z/ has no 

dt component, one can think of u in (1.12) as a time dependent section of 

T*^3 (8) 0. Let dtis denote its derivative in the ^-direction. Then, 

(1.13) \P_du\2g = ^-^11, 

where |-|m is the norm on r*^3 using the metric m; and where * is the Hodge 

star on S'3 for the metric m. 

Next, one should introduce w = pa • u and note that (1.12) can be rewritten 

in terms of w as 

(1.14) 

c-e~2*       /      \dtw + a-f'W-*dw\n-dvo\g>       /      e~2t \w\^ • dvo\g, 

[T,oo)x53 [T,oo)x53 

where 

(1.15) /(*) = -p-1 • dtp = exp(1000 • c2 • e-2t). 

The integral on the left side of (1.14) can be rewritten as 

(1.16) 

/      (l^tHm + \a ' f ' w - *^Mm + 2 * (^J a- f -w- *dw)mj dt • d volm, 
[T,oo)x53 

where ( , )m is the inner product on T*S3 using the metric m. 

It turns out that all three terms in the integrand of (1.16) integrate to 

non-negative numbers. Indeed, the first two terms in (1.16) are obviously 

non-negative. And, integration by parts can be used to analyze the integral 

of the last term in the integrand of (1.16). In particular, as w has compact 

support on [T, oo) x S3, the last term in (1.16) is equal to 

(1.17) a •      J      (-dtf • \w\2m -f.(w,H' w)m) dt • d volm, 
[T,oo)xS'3 

where H \t is an endomorphism of r*^3 which is constructed out of <9tra. 

(Integration by parts shows that the term (dt'w,*dw)rn contributes zero to 

(1.16).  In fact, (1.17) arises when integrating (dtw,a • / • w)m by parts; the 
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iJ-term contains all time derivatives of the metric m and its volume 3-form.) 

In any event, 

(1.18) \(w,H- w)m\ < 102 • \dtm\m ■ Hi <W2-z- e'2* • \w\2m . 

Because — dtf = 2 • 103 • z • e~2t ♦ /, the integral in (1.17) (which equals the 

integral of the last term in the integrand in (1.16)) is positive as claimed. 

Thus, the integral in (1.16), and so the integral on the left side of (1.12), is 

greater than 

(1.19) J     \dtw\2mdt-dvo\m. 
[T,oo)x53 

The proof of Lemma 1.1' continues by analyzing the integral on the right 

side of (1.12). Set w = pa • is and this integral becomes 

(1.20) f     e-2t-\w\2mdt-dvo\m. 

[T,oo)x53 

Since the metric m on [T, oo) is uniformly close to the metric moo, the integrand 

in (1.20) is smaller than a constant, C3, times the the same integral but for 

moo replacing m. (By taking TQ large, one can assume that C3 < 2.) With the 

preceding understood, consider (1.20) with m = moo- Write 

(1.21) e-2t • dt = -2-1 • d(e-2t) 

and integrate by parts in (1.20). Since w is assumed to have compact support 

on [T, 00) x S'3, there will be no boundary contribution. The result is an 

equality between (1.20) and 

(1.22) /     e-2t • {dtw,w)mdt • dvolm. 

[T,oo)x53 

Holder's inequality applied to (1.22) finds (1.20) bounded by 

(1.23) J     e-^-ldtwlldt-dvol^. 

[T,oo)x53 

This 1st integral is written using the metric m^, but with the addition of a 

constant C4 in front, (1.23) with the metric m is seen to bound (1.20) with the 

same metric m. (If TQ is large, one can assume C4 < 2.) 
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Lemma l.l7 follows now because consists (1.23) is no larger than e~2T times 

(1.19).    □ 

2. PROOF OF THEOREM 2 

The proof in Section 2 for the unique continuation theorem can be modified 

to prove Theorem 2 of the Introduction. The details of this modification, and 

the resulting proof of Theorem 2 are given in this subsection. 

To begin, note that it is sufficient, after Theorem 1, to consider the case 

where operatornameW = M x [0,1) and with the metric, g, any smooth 

Riemannian metric on M x [0,1). This will henceforth be assumed. 

For the metric g as above, the exponential map along geodesies normal to 

the boundary gives a 6 > 0 and an embedding \!> : M x [0, 8) —> M x [0,1) 

with 

(1) * : M x {0} -* M x {0} is the identity. 
(2-l) 

(2) **g = dt2 + m. 

Here, m is a smooth map from [0,6) into the Frechet space of smooth metrics 

on M. With (2.1) understood, notation will be simplified by assuming that \I/ 

is the identity map and that the metric g has the a priori form dt2 + m with 

m a described above. 

Now, suppose that A and A' are a pair of g-anti self dual connections on 

the principal G-bundle (M x [0,1)) x G which are gauge equivalent upon 

restriction on M x {0}. To be precise, introduce i : M —> M x [0, 6) to denote 

the boundary inclusion. By assumption, rj : M —► G should exist such that 

i*A' = ^A + T}'1 'dA7i. 

Use parallel transport to extend 77 to a map from M x [0, S) to G with the 

property that 

(2.2) A'= A + T)"1 ■: dAri + a, 

where a is a g-valued 1-form on M x [0, 8) which obeys 

(1) a|£=o=0, 
(2.3) 

(2) dtia = 0. 
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With (2.2) understood, remark that there is no generality lost vis a vis 

Theorem 2 to consider only the case 77 = 1 in (2.2). (Change notation so that 

A henceforth denoted (2.2)'s A + r?-1 • dAr].) 

Because A and A' are assumed anti-self dual, the 1-form a obeys 

(2.4) P+(dAa + aAa) = 0, 

where P+ is the self-dual projection for the metric dt2 + m. It follows from 

(2.3, 4) that there is a constant Ci which is such that 

(2.5) \P+dAa\g < ci • t1/2 • \a\g 

holds at all times t G (0,6). In this form (with the factor T1/2 instead of £), 

a Sobolev inequality shows that the constant Ci depends only on the L2 norm 

of a. 

Lemma 2.1. There exists an increasing function r : [0,(5) —> [0,oo) and a 

constant c > 0 with the following properties: Let t £ (0, 6) and let v be a 

Q-valued 1-form with compact support on M x [0, t) whose contraction with dt 

vanishes.  Then, for all a > 0, the following inequality holds: 

(2.6) c-t2     f    e-2aT iP+dAvll - dvo\g >     I    \e-2a-T 'v\2g'dvo\g. 

Mx[0,t) Mx[0,t) 

(Note that r{t) =  /   e~2c2Sds for an appropriate constant C2 > 0.) 
Jo 

Proof of Lemma 2.1. Introduce dA to denote the covariant derivative along 

the fibers of the projection from M x [0,t) to [0,t). Note that (2.6) is true if 

w = e~oc"r - v satisfies 

(2.7) c-t2      /     \dtw + a - f - w + ^d^]2^ - dvo\g >      /     |iy|^-dvol^, 
Mx[0,t) Mx[0,t) 

where / = dtT. 

consider first the integral on the left side of (2.7). It is equal to 

(2.8) 

/     (l^tHm + \a- f'W + *dAw\l\ + 2 • '{dtw, a- f 'W + *dAw)m^ • dvo\g 

Mx[0,t) 
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The claim is that there is a choice of function / (and hence, of r in (2.6)) 

which makes each term in (2.8) positive whenever W is a g-valued 1-form on 

M x [0,1) with no dt component. 

To prove this claim, note first that the integrand in (2.8) is observedly a 

sum of three terms, the first two of which are clearly non-negative. Integration 

by parts shows that the integral of the last term in the integrand of (2.8) is 

equal to 

(2.9) a-     /    (w,-dtf 'W + f - H •w)m'dvo\g, 

Afx[0,t) 

where H is a smooth map from [0, t) into the vector space of smooth endo- 

morphisms of T*M. (Note that H is computable from c^ra, and vanishes if 

the latter is zero.) In particular, there is a constant, C2 > 0, which is such that 

(2.io) l<C,tf-C)m|<c2-|C|2 

for any covector £ and at any time t £ [0, 6). 

Set / = e"2c2-*, with C2 as in (2.10). This choice of / makes (2.9) non- 

negative and completes the proof of the claim about (2.8). 

The claim about (2.8) implies that the integral on the left side of (2.7) is at 

least as large as 

(2.11) I    \dtw\2mdvo\g. 
Mx[0,t) 

Now, the metric m is everywhere close to the ^-independent metric mo = 

m \t=o on M x [0, t) (if 6 is small), and w has compact support, so (2.11) is at 

least as large as 

(2.12) /    |c?H^vol5>Cl-r
2/ Iwtdvol,. 

J JMx[0,t) 
Mx[0,t) 

This last equation proves (2.7).    □ 

To finally prove Theorem 2, fix a non-negative function /?, on [0,1] which 

equals 1 on [0,1/2], and equals 0 on [3/4,1]. Then, for t < 5, introduce 

A • [0)£) —^ [0j 1] whose value at s is equal to /3(s/t).   Set v = j3t • a with a 
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as in (2.3-5). Then (2.5, 6) imply that there exists C3 > 0 such that for small 

t > 0 and for all a > 0, one has 

(2.13)      cs-     I     e-^-\v\2
mdvo\g>      f     e-^.\v\2

mdvo\g. 
Mx[t/2,t) Mx[0,t/2] 

Since r is increasing, (2.13) can hold for all a > 0 if and only if a vanishes on 

some open neighborhood of M x {0} in M x [0,1). Thus, A and Af are gauge 

equivalent on an open set, and then an application of Theorem 1 shows that 

A and A' are locally gauge equivalent on all of W. 

3. PROOF OF THEOREM 3 

The assertion that L is G-equivarient follows by construction. The assertion 

that L is smooth follows from a Sobolev embedding theorem, see [T]. The 

immersion assertion will follow if one can establish the following claim: 

Proposition 3.1. Let A be a smooth, anti-self dual connection on int(W) 

which is Sobolev class L\ near W's boundary. Let a be a Sobolev class L\ 

section over W of T*W (g> (P xadG g) which obeys P+dAa = 0. Suppose that 

i*a = dA(j) for some Ly2 section (j) over M of P \M xadGg. Then every point 

in W has a neighborhood on which a's restriction is d A (something), where 

"something" is a Sobolev class L\ section over the neighborhood in question of 

the vector bundle P xadG g. 

The immersion assertion of Theorem 3 follows from this proposition when 

the tangent space to 9Jt0 at any orbit [A\ (of a connection A on P) is written 

as the direct sum of two vector spaces. The first is the Lie algebra of the 

stabilizer of [A] under the natural action of 50(3) on 9J10. The second is the 

vector space quotient ke^P+d^/im^A), where ker(P+(i^) are the Sobolev 

class L\ sections over w of T*W ® (P xadG g) which are annihilated by P+dA. 

With regard to Theorem 3, the tangent space to B0(M) at an orbit, [F] (of a 

connection F) should also be written as the direction sum of two vector spaces. 

The first is the Lie algebra of the stabilizer of [F] under the action of 50(3). 

The second is the quotient of the vector space L^2(T*M ® (P \M xadG;g)) by 

the image of the operator dp. 
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By mimicking the proof of Theorem 2, it is straightforward to show that 

Proposition 3.1 holds when W is a suitable neighborhood of M x {0} inside 

M x [0,1) with an arbitrary smooth metric. (The precise form of w will 

depend on this metric.) The general case of Proposition 3.1 then follows from 

the following local form of Theorem 1: 

Proposition 3.2. Let ds2 be a smooth Riemannian metric on a ball B C M4 

containing 0. Let A be a {ds2)-anti-self dual connection on B x G and let a be 

a smooth Q-valued 1-form over B which obeys P+dAd = 0. Let (/> be a smooth 

g-valued function on B such that a — dA^ vanishes to infinite order at 0. Then 

a = dA<t>r, where (j)' is a smooth, Q-valued function B. 

Proof of Proposition 3.2. Mimic the proof of Theorem 1. To be precise, the 

given assumption imply that there exists a g-valued function (pi on B such 

that u = a — dA4>i vanishes to infinite order at 0 and also annihilates any 

vector on B which is tangent to a radial geodesic through 0. Fix r > 0, and 

apply Lemma 1.1 to v — a2 = fir * ^ where /3r is as described in Section 1. 

Therefore, if r is small, then u will obey (1.7) for all a > 0, thus proving that 

u = 0 on some ball about 0.    □ 

4. PROOF OF THEOREM 4 

To prove Theorem 4, introduce a set U C W which is defined as follows: A 

point p € U if there is a section of P xG Q which is non-vanishing at p and 

which is A-covariantly constant on a neighborhood of p. This set is open, by 

definition. Theorem 4 is proved by establishing that U is non-empty and also 

closed. The proof that U is non-empty also establishes that U is closed. The 

argument goes as follows: Let p be a point where A is reducible to infinite 

order. Trivialize P near p so that A = F+a, where F is the product connection 

and where a is a g-valued 1-form which vanishes at p and which annihilates any 

tangent vector to any radial geodesic through p. Suppose that 0 is a g-valued 

function near p which is non-zero near p and which is such that 0^0 vanishes 

to infinite order near p. Let a = (j)(p) G g. For small, nonzero e, introduce 

r] = exp(e • a) G G. The connections F + a and F + r)~1ar] are both anti-self 

dual near p, and they agree to infinite order at p.   The proof of Theorem 1 
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shows that they are equal on a neighborhood of p. Since this is true for all 

e, the constant g-valued function which sends the neighborhood of p to a is 

A-covariantly constant. 

5. PROOF OF THEOREM 5 

Suppose that i*A is G-reducible on M. The proof of Theorem 5 has two 

parts. Part 1 establishes that i*A is G-reducible on some neighborhood of 

M x {0} C M x [0,1) C W. Part 2 establishes that the set of points in W 

which have neighborhoods where A is G-reducible is open and closed. Since 

this set is non-empty, it will equal W. 

To prove the Part 1, use geodesic normal coordinates to give a diffeomor- 

phism from a neighborhood of M x {0} to M.x [0,6) for some 6 > 0. Let 

TT : M x [0,6) —> M denote the resulting projection. 

Parallel transport by A along the fibers of vr defines a bundle isomorphism 

(5.1) (/>: P IMXIO,*)-^ n*P \M • 

This isomorphism has the property that A = (j)*i*A + a, where a vanishes on 

{0} x M and annihilates any tangent vector to any fiber of TT. 

Use p to define A as a connection on P x p G. The hypothesis that A is 

reducible along M means that there is a i*A-covariantly constant section, /i, 

of P \M xadpG. As connections on P xp G over M x [0,(5), both </>*{*A + a 

and also </>*i* A + h • a • /i-1 are anti-self dual. They agree on a neighborhood of 

M x {0}. The proof of Theorem 2 shows that they agree on a neighborhood 

of M x {0}. Thus, h is A-covariantly constant on a neighborhood of M x {0} 

in W. (Given that h is i*A-covariantly constant, the assertion that the two 

connections agree and the assertion that h is A-covariantly constant are two 

ways to say the same thing.) 

The proof of Part 2 mimics the proof of Proposition 3.2 and it is left to the 

reader. 
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