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INTRODUCTION 

When one studies variational problems for maps between Riemannian man- 

ifolds one must consider spaces which we denote Vr1'p(r2,X). Here ft is a 

compact domain in a Riemannian manifold, X is a second Riemannian man- 

ifold, p G [l,oo), and W1,p indicates that the first derivatives of the map are 

Lp(0). For p > n such maps will be continuous, and the corresponding space 

WliP(Cl^X) can be given the structure of a smooth Banach manifold. This 

is because, for p > n, any map which is close in W1^ distance to a map ^o 

can be described as a pointwise small deformation of UQ. This linear space 

of W1,p deformations is then a Banach space on which one can locally model 

W1'P(Q^ X). For p < n this is no longer possible, and the definition of the space 

Wl>p{p,,X) becomes much less clear. This problem was first encountered by 

C.B. Morrey [Mo] in case n = dimfi = 2 and p = 2. A great deal of effort 

was spent by Morrey to give a definition of this space. In more recent times 

people have exploited the embedding theorem of J. Nash, and considered X 

to be a smooth submanifold of a Euclidean space M^. If we define W1'p(fi, X) 

to be the subset of the Banach space VF^f^R^) consisting of those maps 

with image essentially in X, it turns out that this gives a workable definition 

for many purposes. An aesthetic drawback of this definition is that the space 

VF1'P(J7, X) should depend only on the metric of X and not on the embedding 

of X into RK. A much more serious difficulty arises if one attempts to con- 

sider maps to spaces X which are not smooth Riemannian manifolds. These 
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could include Riemannian spaces with singularities, smooth Finsler manifolds, 

or infinite-dimensional spaces. In the first chapter of this paper we develop a 

direct intrinsic approach to this problem, and define W1,p(£l, X) for (X, d) any 

complete metric space. This is shown to reduce to the usual space W1,p{fl) 

for X = R, and reduces to the space described above for X a smooth com- 

pact Riemannian manifold. We also derive the results which are essential for 

doing variational theory. These include lower semicontinuity of the p—energy, 

Rellich-type compactness results, and an Lp—trace theory for restrictions of 

maps to hypersurfaces. 

To illustrate the idea of the Sobolev space theory, assume for simplicity of 

notation that Ct C Mn is a Euclidean domain. If u : fi —> X is a map, x 6 O, 

and V e Kn, we can give a formal definition of the norm of the directional 

derivative of u in the direction V at x by 

' d(u(x),u(x + eV))" 
MT/)| = lini 

To define the p—Sobolev energy we can raise the distance quotient to the pth 

power, integrate over the unit vectors V G S,n~1 and let 

Sn-1 

The p—energy density e(x) is then expected to be the limit as e —> 0 of ee(x). 

One of the main results of §1 is that the measures e£{x)dx converge (weakly) 

in an almost monotone fashion as e —> 0 provided that their total masses are 

uniformly bounded. Further it is shown that for p > 1 the limiting measure 

is absolutely continuous with respect to Lebesgue measure, and hence may 

be written as e{x)dx for an L1 function e{x). This convergence result may 

be considered as an analogue to the definition of the length of a continuous 

curve 7 : [0,1] —> X where X is a metric space. The monotone property of 

the ee(x)dx is analogous to the property that the approximation to the length 

given by 
m 

is increased when the partition {XQ,... ,a;m} is refined. The proof of the 

monotone property relies only on the triangle inequality and judicious changes 
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of variable. The convergence of the measures e£{x)dx seems to be essential in 

deriving any reasonable definition of the space Wl'p{VL,X). If we were forced 

to choose a subsequence s* —► 0, we would not be able to show for example 

that a map which minimizes energy on VL is also a minimizer on any subdomain 

of fi. The absolute continuity of the energy is also important in many further 

results. Both of these properties are used heavily in the analysis of energy 

minimizing maps. 

We have not been able to find many references for earlier work in this 

area. H. Federer [Fe] discusses differentiability theory for maps of the real 

line into Banach Spaces. The idea of defining energy (at least for Lipschitz 

maps) in the way we have described has been around for some time. It was 

first proposed to the second author by S. Kerckhoff in the early igSO's. More 

recently, M. Gromov also proposed to use such a definition to study harmonic 

maps into metric spaces of non-positive curvature. As far as we know the 

results concerning the convergence of the e£(x)dx to a limit energy measure 

are new, however, even for Lipschitz maps. 

In §2 we construct least energy maps [p = 2) with prescribed values on 

90, into Alexandrov spaces (X, d) of non-positive curvature. (The curvature 

condition is given in terms of triangle comparisons, see (2.1) for the precise 

definition.) Here an Alexandrov space is a complete metric space for which any 

pair of points can be joined by a curve whose length is equal to the distance 

between the points. The idea of using triangle (or quadrilateral) comparisons 

to define curvature bounds in metric spaces seems to be due to an Austrian 

mathematician A. Wald in the 1930's [Wa]. It has been developed by a Russian 

school of mathematicians centered around A.D. Alexandrov, starting in the 

late 1940's. 

We are able to construct (unique) least-energy maps for the Dirichlet prob- 

lem because the energy satisfies a strong convexity property under the non- 

positive curvature assumption. We do not require the space X to be locally 

compact. We show that the minimizing map is Lipschitz in the interior of 

f2, with the Lipschitz constant locally bounded in terms of the total energy 

and the distance to 90. The proof of continuity given here involves a rough 

form of the Eells-Sampson Bochner formula [ES]. The boundary continuity of 
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a minimizing map to a metric space of non-positive curvature has been ob- 

tained recently by T. Serbinowski [Se]. His result says that the minimizing 

map is C" up to the boundary for any a < 1, provided that the boundary 

map is also Ca. 

An important property which is needed to further advance the theory of 

harmonic maps is derived in §2.3. This is the result that any finite energy map 

into a space of non-positive curvature has an induced distance function which 

yields an infinitesimally Riemannian metric. Thus one can write the usual 

(trace) formula for energy density that holds for maps to smooth Riemannian 

manifolds. Note that for a general metric space target X the induced metric 

will only be Finsler. 

In §2.5 we develop some general averaging methods for maps into non- 

positively curved spaces. We quantify the general principle that averaging 

decreases energy. We then apply these results to the study of homotopy and 

equivariant mapping problems. Precisely, we consider the existence problem 

for equivariant maps defined on the universal covering M of a complete Rie- 

mannian manifold M, into a non-positively curved metric space X. These 

maps are assumed to be equivariant for a given homomorphism p : F —> 

Isom{X), where Y — 7r1(M). Assuming F is finitely generated we construct 

a locally Lipschitz equivariant map with local Lipschitz constant bounded in 

terms of the infimum of the "translation function" 8 : X —» R+ (see 2.6iii). 

If M is compact, this produces a finite energy equivariant map with a sharp 

bound on its total energy. We then use the local Dirichlet problem together 

with a delicate averaging argument to construct a uniformly locally Lipschitz 

minimizing sequence. We prove convergence of minimizing sequences in case 

the domain has a nonempty boundary, or when the maps are lifts of maps 

between compact spaces. 

The theory of harmonic maps into smooth manifolds of non-positive curva- 

ture begins with the work of J.Eells and H. Sampson [ES], and for manifolds 

with boundary with R. Hamilton [Ha]. These theories were developed using 

the heat equation method. A variational approach to these results exploiting 

the energy convexity was given by the second author [Sch]. This was extended 

by him for maps into locally compact polyhedral spaces of non-positive cur- 
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vature, and published jointly with Gromov [GS] (cf. explanation in introduc- 

tion to [GS]), along with certain applications to rigidity questions for discrete 

groups. Our work here is a strong generalization of these results. 

The present paper is the first of three which we are writing in this area. In 

the second paper we will discuss some infinite dimensional applications. We 

will give a new characterization of Kazhdan's property T for finitely-generated 

groups, and a generalization to actions on metric spaces. This can be used 

to derive property T (and more general fixed-point results) using vanishing 

theorems. An L2 version of the cocycle superrigidity theorem of R. Zimmer 

[Zi] follows in a natural way. (See also Cor let te-Zimmer [CZ].) Of course, the 

harmonic map method provides a geometric means for studying actions of 

larger classes of discrete groups, not only those lattices which are superrigid. 

A third paper discusses more refined properties of harmonic (i.e locally least 

energy) maps into arbitrary spaces of non-positive curvature. We will also 

include important monotonicity and tangent cone properties of the images of 

harmonic maps. Finally we will extend the theory developed in [GS] for maps 

to Euclidean buildings to include the case of non-locally compact buildings. 

Acknowledgement. Both authors would like to thank the Institute for Ad- 

vanced Study for its support. This paper was completed while they were vis- 

itors, during the academic year 1992-93. We thank Bruce Kleiner for several 

helpful discussions concerning the geometry of metric spaces. 
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J. Jost in which he also obtains some existence results for harmonic maps to 
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1. SOBOLEV SPACE THEORY FOR MAPS TO METRIC SPACES 

In this chapter we construct the spaces W1,P(Q, X) (for p > 1) and the space 

BV(Q, X) (for p = 1), in case (On,<7) is a Riemannian domain and (X, d) is 

a complete metric space. We only use the triangle inequality in the target to 

define Sobolev maps, much as one does when studying rectifiable curves into 

metric spaces. In fact, our approach represents a higher-dimensional (and 

higher p) generalization of curve theory. 

We recall the definition of Lp(n,X) in §1.1. For fixed u G Lp(0,X) we 

construct an approximate energy-density function e€(x)J by using the distance 

function d to measure average displacements of u in £— neighborhoods about 

x. We average symmetrically, so that if X = M and u is smooth, then e£(x) —*> 

cn#\Vu(x)\p as e —► 0.   For technical reasons it is convenient to work with 
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various symmetric averages: In (1.2ii) we first define e£(x) essentially as in 

the introduction, taking it to be an average of dp(u(x), u(y)), where y is in 

the e—sphere S(x,e) about x. Then for suitable measures u on the interval 

(0,2) we define ue£(x) to be averages (with respect to du(X)) of the spherical 

averages e\£(x). Although this process is technically useful, it adds a layer 

of complication to our arguments. In order to focus on the main idea used 

to construct the Sobolev energy measure, we will restrict ourselves in this 

overview to a Euclidean domain and to the choice of u (1.2vii) which leads to 

ball averages: 

dp(u(x),u(y))dy 
(l.Oi) e£(x) = {n + p)   I 

B(x,e) 

The e£(x) are bounded continuous functions (away from 90), and the corre- 

sponding measures e£(x)dx define linear functionals E£(f) for / € Cc(f2), via 

integration. We say that u G I/P(f2, X) has finite energy E whenever 

(l.Oii) sup    limsupjBe(/) = E < oo. 
o</<i     e-»o 

/GCc(n) 

In this case we write u G W^^X) if p > 1, or u G BV(n,X) if p = 1. (See 

1.3).) For such u we show that 

yimE£(f) = E(f) 

exists for each / G Cc($l). The key idea in this step is a "refinement lemma" 

(Lemma 1.3.1) which generalizes the fact that approximate lengths of curves 

increase when a partition is refined. Since the functional E is linear and 

bounded (l.Oii) it follows from the Riesz representation theorem that there is 

an energy-density measure de for the map n, with e^/ig —* de weakly, and with 

e(fi) = E. We sketch the refinement lemma and its consequences here, for the 

particular approximate energy functions (l.Oi) and a Euclidean domain. For 

/ G Cc(fi) with / > 0, and e > 0 we define the slightly larger function 

fe(x) = f(x)+u(f,e)(x). 

Here uj(fJe)(x) is the oscillation of / in B(x;e) (1.3iii). For small e > 0, 

f£ G Cc(fi).  Now, let any finite partition of the interval [0,1] be given, into 
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subintervals of lengths A*, i = 1,... , m. The refinement lemma is the inequal- 

ity 

(i.oiii) 4(/)1/p<£M^(je))1/p- 
i 

This inequality is a direct consequence of the iterated (X, d) and Lp triangle 

inequalities, as the following argument shows. We may write 

dp{u{x)) u{y)) dydx (l.Oiv) 4(/) = (n + p) j J f(x) 
SP 

\x—y\<£ 

For small e, x in the support of / and \y — x\ < £ we may partition the segment 

xy into pieces of length Xi\x — y|, and call the corresponding partition 

X = XQ, Xij . . . Xm — y. 

The (X, d) triangle inequality implies 
m 

d{u{x),u{y)) < ^d^Xi^.uixi)). 
2=1 

Thus from the iterated Lv triangle inequality we have 

\ I/P 

(i.ov)4(/)i/p<i:((n+p) // /^ 
2        \ |X-1/|<£ 

^(iz^.i), ^(xi)) dydx 
e? 

J 
For each i = 1,... , m we change variables in the corresponding integral, from 

(x,y) to (Xi-^Xi). Write 
i 

Then we have the estimates 

7     . QjXQ/Xi / h^i \n  i CLXi UtXi—iUXi 
dxdy = —— = (—)nda;i_1-ir = —— 

f(xi-i)<f(x)+u(f,e)(x) = fe(x) 

\Xi-.i — Xi\ < Ai£. 

Applying these estimates (and also multiplying and dividing terms by A*), we 

see that (l.Ov) implies (l.Oiii). 

The refinement estimate implies the existence of a limit measure because 

it gives a quantitative estimate of the sense in which the approximate energy 
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functionals increase as e decreases. In particular, for fixed e we let e' be small, 

and take each A^ = -A^i (where [] denotes the greatest integer function) to 

deduce 

E[e/el]£fU)<E£l{fe) 

as a special case of (l.Oiii). We let e' —► 0 and note that the numbers E£{f) vary 

continuously in e (because we used ball-average approximate energy densities), 

to conclude 

4(/)<liminf^a). 
£'-»0 

Noting that 

£<'(/«) = &'(/) +MM/, £)(*)) 

and using the finite-energy hypothesis we see that 

limsupJSe(/) < liminf E£>U)- 

This shows that the limit functional is well defined on non-negative functions 

/ 6 CC{£1). It is then an easy matter to show the limit functional is defined 

on all of Cc(f2), and hence to deduce the existence of the limit Sobolev energy 

measure. 

We carry out the general version of the above argument in §1.2-1.5. The 

lemmas are separated in such a way so that we may appeal to them again in 

§1.7, where we construct directional energy measures for Sobolev maps. In 

this case one fixes a Lipschitz vector field Z and defines the e-approximate 

energy density by 

z __ d?{u(x),u(x{x,e))) 

where x(x, e) is the point obtained by flowing time s along Z, starting at x. 

The approximate directional-energy measures also converge to a limit measure, 

and in §1.8 we derive some useful estimates and properties of the directional 

energies, in addition to proving that the Sobolev energy is an average of the 

directional energies. 

In §1.6 we prove the lower semicontinuity of Sobolev energies: If 

{Ui} C W^faX)    (or {m} C BVfaX)), 
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is a sequence with uniformly bounded energies, and if «, —> u in Lp(f2, X), 

then « is a finite energy map and its energy measure deu satisfies 

deu <liminfdeu*. 
i—*oo 

In this section we also verify that for X = M our construction gives the usual 

Sobolev (and BV) spaces, and that the energy densities correspond in the 

expected way. 

In §1.9 we develop the differentiability theory of directional energies. By 

restricting to integral curves of vector fields, one is able to reduce to under- 

standing finite-energy maps from intervals to X, and so one can mimic classical 

differentiation theory. The final results (Theorem 1.9.6) are that for p > 1 the 

directional energies are absolutely continuous with respect to Lebesgue mea- 

sure, so can be written as 

\ut(Z)\^g(x) 

for an Lp function (^(Z)), and that for suitable choices of u the e-approximate 

energies converge almost everywhere to (^(Z)^. It is then an easy matter in 

§1.10 to show that the Sobolev energy measure is also given by an L1 density 

function, in case p > 1. 

In §1.11 we collect some estimates for the directional energy density func- 

tions which are needed in chapter 2. The Lp trace theory for Sobolev maps 

from Lipschitz domains is developed in §1.12. Our approach is to use auxil- 

iary transverse vector fields and to show that u has well-defined limits along 

almost all of the corresponding integral curves, i.e. we follow the classical ap- 

proach. In Theorem 1.12.2 we show that a sequence of bounded energy maps 

which converges in jLp(fi, X) to a limit map (p > 1), has the property that the 

corresponding trace maps also converge, in Lp(<9fi,X). We also characterize 

maps u, v with equal traces as those for which the real-valued functions c?(u, v) 

are Sobolev functions with trace zero. These facts are useful for the study of 

energy minimizing maps, in Section 2. Theorem 1.12.3 states that if Q can 

be decomposed into Lipschitz subdomains, then finite energy maps with equal 

traces on the boundaries define in the aggregate a finite energy map on fi, 

with total energy given by the sum of the individual energies. This theorem 
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will be used in the second chapter, where we use replacement techniques to 

study the equivariant harmonic map problem. 

Finally, in §1.13, we include a natural precompactness theorem, which gen- 

eralizes the fact that sequences in M/rl'p(r2,R) (or in i?V(f2,R)) of uniformly 

bounded norm have convergent subsequences in Lp(fi,R). We do not use 

this result in Section 2, but it is natural and follows quickly from the tools 

developed in here, so we include it. 

1.1. Preliminary definitions. We will say that (Sl,g) is a Riemannian do- 

main if it is a connected, open subset of a Riemannian manifold (M, g), hav- 

ing the property that its metric completion fi is a compact subset of M. For 

#,7/ E ft we will denote the distance between x and y (on (M, g)) by \x — y\. 

Define 

n£ = {x G fX|dist(a;) dto) > e}. 

For x G fi, v € T^fi, let exp(a:, v) denote the (exponential) tangent map, 

i.e. exp(xjv) = 7(1), where 7 is the constant-speed geodesic satisfying 7(0) = 

x, 7/(0) = v. 

If Z is a Lipschitz vector field on fi, we will write Z G T(TCl). In analogy to 

the exponential map, write x(x, t) for the flow induced by Z, i.e. x(x, t) = 7(4) 

where 7 solves 

f£7 = S(7(t)) 
17(0) = x. 

Write 
zn£ = {x G fi I dist(x,dn) > elZ]^}. 

If (tt,g) is a Riemannian domain, if (X^d) is a complete metric space, and 

if 1 < p < 00, then there is a natural definition of the space Lp(f2,X). It is 

the set of Borel-measurable functions u : Q —> X having separable range for 

which 

/ dp(u(x),Q)dfig{x) < 00 
Q 

for some Q G X. 

If w and v are two Borel-measurable functions with separable range in 

X, then the pair (u(x),v(x)) is a measurable function to X x X. Thus 

dp(n(x),t;(a:)) : Q, —> X x X -+ R is a, measurable function.  Thus integrals 
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of dp(u(x),v(x)) are well-defined, of which the one above is an example ([F] 

2.3.2). It is straightforward to show that Lp(fi, X) is a complete metric space, 

with distance function D defined by 

Dp(u,v) = f dp(u(x),v(x))dfxg(x). 
Q 

The proof of this fact follows from the considerations in ([F] 2.4.12), but we 

quickly sketch the ideas. The triangle inequality for d, combined with that for 

real-valued Lp functions implies that if u is Lp, then 

/ dp(u(x), P) dfjLg(x) < oo 

for any P £ X. Another application of these two triangle inequalities shows 

that Dp(u, v) is finite whenever u, v E Lp(fi, X). The triangle inequality for D 

follows by the same argument. The proof that Lp(£l,X) is complete mimics 

the usual proof for real-valued functions: Given a Cauchy sequence one finds 

a subsequence which converges a.e., shows the limit function is in Z/p(fi,X), 

and then that the sequence converges to the limit function in the D metric. 

1.2. Approximate energies. Fix 1 < p < oo and u G LP(Q,X). Let V € 

r(Tfi) be a smooth vector field on O. Then for e > 0 small the map y = 

exp(a;, sV) is a diffeomorphism between VQ£ and its image, approaching the 

identity map as e —► 0. Therefore the map x —> n(exp(a;, eV) is in Lp(vQej X) 

and we have the estimate 

(1.2i) f dp(u(x),u(x),exp(x,eV)))diJ,g(x) < C, 

independently of e. 

Now, for (#, y) € ft x Jl define 

Ze{x,y) = . 

For x G Oe define 

^(a;, e) = {y s.t. |y - a;| = e} 

daXy£(y) = (n — 1) — dimensional surface measure on S(x1s). 
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Finally, define the (spherically averaged) ^-approximate energy density func- 

tion for x € fig, by 

(1.2ii) ee(x)=   J  c(xly)^M. 
S(X,£) 

(Define e£(x) to be zero otherwise .) We claim that e£ is a real-valued Ll- 

function, with 

(1.2iii) / ee(x)dfjL{x) < Ce~v. 

To see this we reduce (by standard partition of unity arguments) to the case 

where Q has a global orthonormal frame {ei,...en}. Identify u = ujldi G 

S^-^O, 1) C En with ou^i E 5(0, l)x G TQX. Then the map 

(X,UJ) —> ex.p(x,eijj) —> u(exp(x,Eu)) 

is measurable and is easily seen to be in Lp(£l€ x 5(0,1)). In fact, by Tonelli's 

and Fubini's Theorems, and by applying the estimate (1.2i) we have 

/     /   e£(xi exp(x) euj))da(uj)dfji(x) < Ce~p 

V-e  5(0,1) 

(for some other generic constant C). For y = exp(x, SUJ) we note that 

daXie{y) 
en-1da(uj) 

is a continuous bounded function of (x,a;), independently of e. Hence we 

may multiply the integrand above by this factor and maintain measurability. 

Furthermore we may deduce 

/   J  *(x,y)^MdM(x)<<7e-P. 
n£ S(x,e) 

This verifies (1.2iii). 

It is convenient to work with a variety of average energies.  Let v be any 

Borel measure on the interval (0,2) satisfying 

2 

(1.2iv) i/ > 0, i/((0,2)) = 1, f \-pdv(\) < oo. 
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Define the approximate energy density function vee(x) by averaging the spher- 

ical averages ee{x)\ 

(1.2v) vee(x) = /   exe(x)di/(X)1 
Jo 

for x G 02e (and ^e£(x) = 0 otherwise). It is easy to see that ve£{x) is 

measurable, and from (1.2iii) and the integrability requirement in (1.2iv) we 

can estimate 

(1.2vi) f vee{x)dii{x) < Ce-p. 

A particular choice of v which we will have occasion to use (besides the choice 

v = 8(1) which corresponds to our original energy density approximant) is the 

one which leads to uniform ball averaging, namely 

(1.2vii) dv(\) = (n + p)Xn+p-1dX       0 < A < 1. 

For u : fi —> K smooth it is easy to see from our definitions that 

(1.2viii) lim ue£(x) = cn,v \Vu(x)\p 

cn,p=    /   \x1\pda(x), 

(where x = (x1,.. .xn) G En and S'n"1 = {|x| = 1}). In particular, cn)2 = ujn. 

If u : Q, —■> Nk is a smooth map between Riemannian manifolds, then one can 

check that for p = 2, ee(x) —> ujn\Vu(x)\2 as well. For p ^ 2, however, e£ does 

not converge to a multiple of \Vu(x)\p = (\Vu(x)\2)p/2, when k > 1. 

1.3. The functionals iyE£. Let 1 < p < oo, u G Lp(0,X), and u as in 

(1.2iv). Then for e > 0 and / G <7c(fi) define 

(1.3i) „Ee(f) = y /(x) yee(x) dfi{x). 

(In case u = 6(1) we suppress the u in our notation.) We say that u has finite 

energy (and write u G Whp(Q, X) for p > 1 and n G BV(Q, X) for p = 1), if 
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for some v as above 

(1.3ii) sup    (limsup  vE£(f)\ =   yE < oo. 

0</<l 

(We show in Lemma 1.4.1 that the expression above is finite or infinite 

independently of v.) Let Q be a locally compact metric space. For / E Cc(fi) 

define 

|/| = nu«|/(s)| 

(1.3m) w(/)e)(x)=  max   \f(y) - f(x)\ 

u{j,e) = maxa;(/,e)(a;). 
X 

For C > 0 define 

(1.3iv) /f (x) = (1 + Ce) (f(x)+u(f,2e)(x)). 

We now prove a basic "subpartitioning lemma" which will essentially guarantee 

the existence of energy-density measures for finite energy maps. It is the 

integral analog of the (trivial) lemma (for curves into metric spaces) that 

the approximate length of a curve with respect to a partition increases if 

the partition is refined. This monotone property is the essential ingredient 

in showing that rectifiable curves into metric spaces have well-defined length 

measures, and the lemma below will play the same role here. 

Lemma 1.3.1. Let 1 < p < oo, u G LP(£},X), is as in (1.2iv). Then for f 6 

Cc(f2), / > 0, there exists a constant C > 0 (depending only on Ricci curvature 

control of the metric g), so that the following (isub-partition estimate" holds 

for all sufficiently small e > 0: 

(1.3v) ^£(/)1/p < X> („£M/?))1/P • 
i 

Here 

(1.3vi) X^^ = -*-'  eac^1 ^ ^ 0> and the sum is a finite one. 
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Proof. We first consider the case ^ = 6(1), i.e. e£ in (1.2ii). For e > 0 small 

we may write E£(f) more symmetrically as an integral over Q, x Cl: 

(1.3vii) Ee(f)=  J J f(x)e£(x,y)dae(x,y), 
\x-y\=e 

where dcr£(x,y) is normalized (2n — l)-dimensional surface measure on {\x — 

y\ = a:}, which can be expressed in terms of daXj£(y) from (1.2ii): 

(1.3viii) dae(x, y) = d-^M drfx) = ^# d^y). 

Let {Ai... , A^} satisfy (1.3vi). For any x in the support of /, and for e 

sufficiently small, there is a unique geodesic from x to any y with \x — y\ = e. 

Let cp : [0,1] —► fi be the (constant-speed) geodesic path from x to y. Define 

the subdivision 

x0 = x 

Kk=l 

Then 

Ixi-Zt-il = Afs, 

and the X-triangle inequality implies 
n 

rf(^(a;),u(y))< Y^d(u(xi-i)>u(xi))' 
2 = 1 

The standard (iterated) Lp-triangle inequality (applied to (fe^1^ in (1.3vi)) 

yields 

if V^ 
(h3ix)E£U)l/p < E Xi\      j j      f{x) e^ix^Xi) da£{x,y)\     . 

%~ \\xi-Xi-\\=\ie J 

For each fixed i we may change variables from (a;,y) to {x^i^Xi) in the corre- 

sponding term of the above inequality. It is easy to show that 

(1.3x) d(j£(x, y) < (1 + Ce) dax.e (zi-i, ^), 

where the constant C depends on Ricci curvature control of g.   (If Q is Eu- 

clidean, the last inequality is an equality with C = 0.) We dominate f(x) by 
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f(xi-1)+uj(f, e)(xi-i) in (1.3ix) and also use (1.3x) to deduce the sub-partition 

estimate (1.4i) in this case. 

The proof for general u is essentially the same. We may write 

2 

„E£(f) = J  f I  f(x)e£(x,y)daX£(x,y)X-pdp(X). 
0    \x-y\<2£ 

One derives the general version of (1.3ix) by repeating the geodesic subdivision 

detailed above, this time for arbitrary x G supp(/) with \x — y\ < 2e. The 

result is 

(1.3xi) 
v I/P 

vEcif)1'* < E ^ ( /       //       f(x)eXi£(xi^xi)daX£(x,y) \-*dv(\) 
\0    \xi-Xi-i\<2£\i 

Noting that 

da\£(x,y) < (1 + Ce)d<7Xi\e(xi-u xi)i 

we may proceed as above to conclude (1.4i) in this general case.    D 

1.4. Functional analysis lemmas. We prove two lemmas which enable 

us to conclude the existence of the energy-density measures for finite-energy 

maps. We will use these lemmas again when we discuss directional energies. 

Lemma 1.4.1. Let Q, be a locally compact metric space. Let {£e}o<£<eo be a 

family of positive linear functionals on Cc(£l). Let 1 < p < oo. Suppose there 

exists a C > 0 so that for f £ Cc(£)),/ > 0, for the function /f defined in 

(1.3iv); and for any {A^} satisfying (1.3vi) the subpartition inequality below 

holds when e > 0 is small: 

(l-4i) (££(/))1/P<X>(Aie(/f))1/P. 
i 

Let is be a non-negative Borel measure satisfying (1.2iv). Assume 

(1.4ii) Mf)= f Cp£(f)du(p) 
Jo 
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is well-defined (i.e. Ce(f) is Borel measurable in e for any f € CC(Q)). As- 

sume 

sup    (limsup  vC£{f)) =   UL < oo. 
fea 
o</<i 

Then also, 

(1.4iii) sup    (limsup  ££(f)) = L < oo. 

0</<l 

Proof. By hypothesis, if / > 0, / € Cc(ft) then for £ > 0 small 

„£,(/)= [2£pe(f)dv(p)<C\f\, 
Jo 

where C is independent of /. Hence 

f   f ClipE{f)dv{p)dii<C\fl 
Jo Jo 

i.e. 

Now, there is a (5 > 0 so that ^((6,2)) > 1/2. Thus there is a p G (6,2), with 

/1£W£(/)^<2C|/|. 
Jo 

Writing e' = e^, we have 

/l>C^/^(/)d/x<2C|/|. 

Changing variables to // = ^(p/S), noting 1 <   p/6 <   2/<5, yields 

(1.4iv) j*CMfW<jr\fl 

for / € CC(S7) and e' small (depending on supp(/)). 

Now fix / € Cc(fl), 0 < / < 1. We have from (1.4i) 

A(/) < 2p£A£(/£
c) + 2'X(1_A)e (/f), 

for small e. In particular, 

(1.4v) ££(/)<2^1/1£Ae(/f)dA. 
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For £ small the functions f^ have uniformly-bounded supremum and uniform 

compact support. Hence we use (1.4iv) for the function /f to estimate the 

integral in (1.4v), obtaining 

£e(/)<C".   □ 

Lemma 1.4.2. Let Q be a locally compact metric space. Let {££}o<£<£o ^e a 

family of positive linear functionals on Cc(f2). Let 1 < p < oo. Suppose there 

exists a C > 0 so that for f € Cc(Q),f > 0, for the function f^ defined in 

(l.Siii), and for any {A^} satisfying (1.3vi) the subpartition inequality (1.4i) 

holds when £ > 0 is small. Suppose also that the boundedness hypothesis 

(1.4iii) holds. Then 

(1.4vi) Vm£e(f) = C(f) 

exists for any f G Cc(Q)j and defines a positive linear functional C with \\C\\ = 

L. Furthermore, we have the inequality 

(l-4vii) A(/)<£(/f) 

when f G CC(J7), / > 0, and e > 0 is sufficiently small. 

Proof. Let e' <C 5, and write [ ] for the greatest integer function. Let A^ = (j J 

for i = 1,... fc, where A: = [p-]. Let A^+i = 1— (7) fc if necessary. Applying 

(1.4i) and using (1.6i) for sufficiently small e, we estimate 

(1.4viii) 

(A(/))1/p < [J] (^ (M/f))1/p+(7)((i + i)l/fl)] 

Letting e7 —> 0 we see 

(1.4ix) ££(/) < liminf £e, (/f). 

Thus by the boundedness hypothesis (1.4iii) we see that 

£etf) < liminf ££,(f) + \L\ (Ce\f\ + (1 + Ce)u>(f,e)), 

so that 

limsup Ce(f) < liminf 4(/). 

rChVP 
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Thus (1.4vi) holds for / > 0. The statement for arbitrary / E Cc(n) follows. 

It is clear £ is a positive linear functional with ||£|| = L. The estimate (1.4vii) 

follows from (1.4viii), as e' —> 0.    D 

Remark. 1.4.3. If the functionals C£(f) vary continuously in e for any / G 

Cc(fi), then we may deduce (1.4ix) using only the subpartition estimate: (1.4i) 

immediately implies (for e1 < e) 

(l-4x) c^Af) < CAf?) 

which gives (1.4ix) as e' —»• 0. (Without the boundedness assumption (1.4iii), 

of course, both of these numbers may be infinite.) Note that if v satisfies 

(1.2iv) and is absolutely continuous with respect to A, then the functionals 

vEe (1.3i) satisfy the continuity hypothesis. We will use of this fact when 

discussing directional energies. 

1.5.  The energy-density measure. 

Theorem 1.5.1. Let 1 < p < oo, u G Lp(0,X) have finite energy VlE with 

respect to some measure ui satisfying (1.2iv). Then it has finite energy with 

respect to all such v, and each measure lfee{x)dii{x) converges weakly to the 

same "energy density" measure de, having total mass VlE. Furthermore, the 

estimate (1.4vii) holds for C£ = VE£ and C — E. 

Proof. By Lemma 1.4.1 u has finite energy with respect to the standard mea- 

sure, v = 6(1). Hence its energy is finite with respect to any v satisfying 

(1.2iv). From Lemmas 1.3.1,1.4.1,1.4.2, and the Riesz representation theorem 

for continuous linear functionals on Cc(fl) we deduce that each l/e£(x)dfi(x) 

converges weakly to a limit measure. The definition (1.2v) of ^Ee shows that 

the limit measure is the one arising from i/ = (5(1), i.e the weak limit of 

e£(x)dfi(x). The fact that (1.4vii) holds as indicated is clear.    □ 

Remark. 1.5.2. For 1 < p < oo, u G W1,p(f2,X), it is easy to see that u G 

W1,p,(f2, X), for any 1 < p' < p, and that the p'-energy density measure dep> is 

absolutely continuous with respect to Lebesgue measure. (We will say that u G 

VF1'1(f2, X) if u G BV(Q, X) and its energy density de is absolutely continuous 

with respect to Lebesgue measure.) In fact, if E is the total (Sobolev) p-energy 
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of w, then there is a constant C (depending only on dimension n) so that for 

any Borel measurable set S C fi, 

ep,{S)<C{ng{S))E^LEi. 

To see why this is true, it suffices to consider the case 5 CC fl. In this 

case, for any 8 > 0 we may pick / G Cc(fi), 0 < / < 1, with / = 1 on 5 and 

/^(supp(/)< fJig{S) + 6. Then by Holder 

Ee,p'(f) = / f e£,p,(x)dii{x) 

< C j(f7ee,p{xW{x)f  (Msuppt/)))^ . 
SI 

Here we have used Ee^(f) and ee,v(x) to denote the approximate energy func- 

tional and e-approximate energy function, corresponding to the power p. As 

e —> 0 we conclude 

which shows our claim as 6 —» 0. 

1.6. Lower semicontinuity, and consistency when X = R. 

Theorem 1.6.1. Let 1 < p < oo,{uk} C W^foX) if p > 1 ("or {nfc} C 

By(fi, X) if p — 1). Let uk -* u in the Lp metric. Write ek for the energy- 

density measure of Uk, Ek = e/c(r2). Assume there exists E < oo mt/i eac/i 

^ < E. Then u e W^faX) if p > 1 (or u G 5^(0, X) if p = 1), and its 

energy-density measure e satisfies 

de < lim inf dek 

as measures. 

Proof. For du(X) = (n + p)An+p"1 dA (ball averages (1.2vii)) and for fixed 

/ G Cc(fl) we have as a consequence of Lemma 1.3.1, (1.4vii) of Lemma 1.4.2, 

and Theorem 1.5.1, that 

(1.6i) „££(/) < Ek(f?) = Ek(f) + Ek{fC - /). 
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Because we are using ball averages the energy-density functions ^(x) con- 

verge uniformly to l/ee(x) as k —> oo (and e > 0 is fixed). Thus 

(1.6ii) lim „£*(/) = vEe(f). 

Hence 

vEe(f) < liminf Ek(f) + E(Ce\f\ + u{f, 2e)). 
k—*oo 

Thus u has finite energy and if we let e —* 0 we also deduce that 

E{f)< lim inf Ek{f).   U 
k-+oo 

Theorem 1.6.2. 

W1*^ R) - W1*^)    for   p > 1, 

BV(n,R) = BV{n). 

Furthermore, the energy densities are constant multiples of each other in all 

cases. 

Proof We first assume (Q^g) is Euclidean. If u G Lp(f],R) is smooth, then 

e£(x) —» cnj? | Vn(x)|p uniformly on compact subsets of fi, so it is clear that the 

measure de equals cn^\Vu(x)\pdfix. If u G Lp(fi,R) then we mollify it with a 

C00 approximate identity: 

!fc(a:) = rMf) 

fyC^GCJTWO,!)),    v>0,       J   V = l 
B(0,1) 

77(x) = <p(\x\). 

We write Ut = u* rjt. 

It is well-known that if u G 'W/rl'p(n) then ^ —> ix in W^(fi), i.e. on any 

compact subset the convergence is in the W1,p-noiin [GT]. In particular, for 

p > 1 we have that |V^|pd/x —^ \Vu\pdiJ, (weakly) as measures. By (the usual) 

Sobolev-Space semicontinuity, it is also true that fn iVu^dfi —> oo in case 

u G LP(Q) but u £ Whp(Q) . In case p = 1 it is true that u G BV(Q) implies 

\Vut\diJL converges weakly to the BV-measme |V^|, and that u £ BV(Q) 

implies fn \S/ut\d/i -+ oo)[Gi]. Thus Theorem 1.6.2 follows if we can show the 

corresponding statements for our energy densities. 
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If u £ Lp(f2,R) and u does not have finite energy (in our sense) then it 

must follow that JQ \Vut\
pdn —> oo, since otherwise lower semicontinuity (1.6i) 

would be violated by choosing an appropriate subsequence. Thus we need only 

show that if u is a finite-energy map, then cniP\\7ut\pdijL = deUt -^ de. From 

our comments above, and from Theorem 1.6.1, we know that 

(L6iii) deu < liminf deu\ 

so we only need the reverse inequality. We use du(X) = (n + p)An+p~1dA, i.e. 

ball averages, for the approximate energies and we take / G Cc(fJ), / > 0. 

Then 

vE?{f) = Jf{x)ve?(x)dx 

V J JnJB(o,i)JK ) ev 

By properties of convolution and Jensen's inequality 

\u\x) - u\x + ev)^ < \u(-) - u(> + ev)\p * r)t 

=     /    \u(x — tw) — u(x — tw + ev)\vri{w) dw. 

5(0,1) 

Hence 

vE? (/) < ^-^    f      f    f f(x)ri(w) \u{x - tw) - u(x -tw + ev) \p dxdvdw. 
3(0,1) 3(0,1) n 

Letting z = x — tw, estimating \f(x) — f(z)\ < oj(f) t), yields 

„££'(/) <^JJJf(zHw)\U(z)-u(z + ev)\vdzdvdw + Cu;(f,t), 

where C depends on the energy of u (for e small). That is 

„££'(/)< ^(f) + Cu(f,t), 

so (e —> 0), 

£»'(/)<£"(/) + Cu(f,t). 

Hence 

limsup E^(f) <Eu(f), 
t-+o 
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i.e. 

(1.6iv) limsup deUt <deu. 

In case (£},#) is a general Riemannian domain, we proceed as above and 

eventually are left to verify (1.6iv), which we do as follows. Express fi as a 

finite union of open subsets, each of which have approximately Euclidean local 

coordinate charts. Use a subordinate partition of unity {r/^} to express E(f) 

as a sum of E(rji(f)). One may then work as above to estimate ^£^(77^/), 

introducing a small error term into (1.6iv) from the fact that the metric isn't 

exactly Euclidean. This error term approaches zero as one takes subsets with 

diameter approaching zero. Thus one can verify (1.6iv) in the general case as 

well.    □ 

Corollary 1.6.3. Let 1 < p < 00, u^v e Wl^(Q,X) (or u,v G BV(n,X) if 

p — 1). Define the p-distance on X x X, by 

dp((xuX2), (2/1,2/2)) = dp(xllyi) + dp{x2,2/2). 

Let f : X x X —> R be Lipschitz continuous, with Lipschitz constant L (with 

respect to D). Then the map h{x) = f(u(x),v(x)) satisfies h G VF1'P(Q) (or 

h G BV(n) ifp = 1), and 

(1.6v) cn,p|Vh\pdfx < Lp(deu + dev) 

as measures. 

Proof. The ^-energy density for h is an average (with respect to y) of 

\h{x) - hjyW = \f(u(x),v(x)) - f(u(y),v(y))\p 

eP eP 
'dP(u(x),u(y)) + dP(v(x),v(y)) 

<LP 

eP 

The result follows immediately. A special case (which is easy to check directly) 

is fiPil) = d(j>,q), whence if u,v G PF1'P(Q)X) ( resp. BV(Q.,X)) we have 

d(ti, v) € W^{VL, R) {resp. 5F(fi)), and 

(1.6vi) c„,p|Vd(n, v)\*dn < 2p{deu + dev). 
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If v = P, we can argue directly as in (1.6v) and remove the factor of 2P to get 

(1.6vii) CnJVd(iA, P)\pdfi < deu. 

1.7. Directional energies. It is natural to define directional energies for 

maps u G LP(Q,X), that is, measures of their rate of change in directions of 

smooth vector fields. For finite-energy maps (u G WliP(Q) or u G BV(Q)) 

it will turn out that these directional energy densities are always well-defined 

measures, and the resulting calculus will be of use not only in this chapter, 

but in the later sections of the paper as well. Let 1 < p < oo, u G Z/p(fi,X). 

Let Z be a Lipschitz vector field on fi, Z G T(Tft)) and recall the definitions 

x(rr,t) and zCt£ from 1.1. For x G zf2£ define the e energy-density function 

(of u in the direction Z) by 

(1 7i) ze£(x) = ^MsM^fog))). 

(For x ^ zf2e define zee(x) = 0.) As in 1.1 we deduce ze£ G L^fyR), with 

/ ze£(x)dii(x) < Ce-p. 

For a non-negative Borel measure u satisfying (1.2iv) we write (suppressing 

the Z-dependence here and below) 

(1.7ii) „e£(x) =   /  epe{x)dv{p), 
(0,2) 

for x G z£l<2e (vZeix) = 0 otherwise). Clearly l>e£ G L^f^M) as well. For 

/ G Cc(ft) write 

vE£(f)= / f{x)veE{x)dii{x)= /      vEp£(f)dv(p), 

(I Tm\ 0,2) 

VE=   sup   limsup yE£(f). 
0</<l       e-^0 
/€Cc(n) 

In case some ^JE < oo we say u has finite (p—) energy (in the direction Z). 

The analog of Theorem 1.7 for Sobolev (or BV) energies is the following result 

for directional energies: 
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Theorem 1.7. Let 1 < p < oo, u 6 Lp(fi,X), Z as above. If for some Vi 

as above we have VlE < oo, then UE < oo for all such v. For any such v 

the measures I/e£(x)dfi(x) converge weakly to an energy density de as e —» 0, 

which is independent of v and has total mass UlE. 

Proof By scaling the domain metric we may assume \Z\ < 1. If we can 

verify the "subpartition estimate" (1.4i) for C£(f) = yEe(f), then Lemmas 

1.3.1, 1.4.1, 1.4.2, and the Riesz representation theorem immediately imply 

our result, just as they yielded Theorem 1.5.1 Let {A*} satisfy (1.3vi). Given 

x, x(x, s), define ^oO^ e) = x and 

Xi{x, e) = x   x, (^ \j)e    ,        i > 1. 
\ 3 = 1 J 

Now _ 

vEe{f)= /   /   f{x) p pdu(p)dfi(x). 
Jn Jo £p 

Using triangle inequalities as in (1.3ix), we estimate 

For fixed i (and p) we change variables from x to w = Xi-i{x,ep). Note that 

^(x, ep) = x(wi epXi), and estimate f{x) above by f(w)+uj(f, 2e)(w), dn{x) < 

(1 + Ce) dn{w). (In this case C depends not only on the metric g but also on 

the Lipschitz constant of Z.) Hence 

(1.7iv) 

(^(/))i/p < E A. (///f(-) dP^H,gK^))) p-PdI/(p)dMx)y
/p 

= E^ (A.(/f))1/p. □ 
1.8. The calculus of directional energies. We collect some useful proper- 

ties of the directional-derivative measures. We fix 1 < p < oo, u G W1,p(n, X) 

if p > 1 or u G 2?Vr(n,-X') if p = 1. We use £(/) to denote the (Sobolev or 

BV) functional induced by u, writing E for its norm. For Z £ r(rfi) we write 
zE(f) and ^i? for the directional functional and its norm. 
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Theorem 1.8.1. If Z E r(Tf2) then ZE < oo and there is a constant C 

(depending only on the dimension n of Cl) so that we can estimate 

(1.8.i) d(ze)< C\Z\^de. 

If z(x,t) is any one-parameter family of C1,1 diffeomorphisms, having Lip- 

schitz velocity fields and satisfying 

z(x,0) = x, —z(x,t)\t=o=Z(x)(x€Q,) 

for Z € T(Ttt), then 

(i.8ii) drjuMMzfre))) _ d{Ze) 

as e —> 0. 

For p = 1 and W G T(TQ,) we have the triangle inequality 

(l.Siii) d(z+we) < d(ze) + d(we). 

More generally, for any 1 < p < oo and f € CC(Q) with f > 0 we have 

(1.8iv) (z+wE(f)^ < (zE(f))i + (wE(f))i. 

If h is a Lipschitz function on Q, then 

(1.8v) d(hze) = \h\pd(ze). 

In case (fi, g) has an orthonormal frame {ei,... , en} we identify S71'1 C Mn 

with S^-1 C Tnx by 

UJ= (a;1,... ,a;n) i—> ufei, 

and denote u/ei G r(Tfi) by cu as well Then we have 

(1.8.1) E(f) = /       "E(f)d*{u,). 

Proof. These results are consequences of the following technical estimate: 

Lemma 1.8.2. Let ip : ft —> ^(fi) C M be a bi-Lipschitz map from Ct to its 

image. We think of^ being close to the identity map, and write {tp — id]^ = 6. 

Assume 8 is small enough so that the geodesic subdivision techniques of 1.4 

are applicable whenever x G f^ and \x — y\ < 36. Let f G Cc(fi3$,), / > 0. 
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Then there exists a constant C depending only on n,p, on the curvature of 

{Sl,g) and on first-derivative bounds for ip andijj'1, so that 

(l.Svii) J f.(x)dr(u(x),u(1>(x)))dna(.x) < crai/u 

Proof For x G Ct^s we write x for the geodesic midpoint of x and ip(x). Then 

from the triangle inequality and an average of integration over B(x, |) we have 

(F(u(x)M^))) < 2p      / dr(u(x)Mv))dM+ / dr(u(1>(x))Mv)))dM 

^C^esix) + t,es(i>(x)))Sp. 

Here we are using u corresponding to ball averages (1.2vii), and C depends on 

allowed quantities. We apply this estimate to the integrand in (l.Svii), change 

variables from x to ip(x) in the second term, and deduce 

(l.Sviii)  J f(x)<P(u(x)Mil>(x)))dt*(x) < C6p (uE6{f) + vEs{fj) , 
Q 

where 

f(x)=f(x)+u;(f,6)(x). 

From (1.4vii) we see that this last estimate is bounded above by 

C6»(E(fi) + E{{f)cs)) < C^l/loo. 

This proves (l.Svii).    □ 

Our first claim (l.S.i) follows immediately from the reasoning above: We 

take ip(x) = x(x,£) and deduce from (l.Svii) that ZE < oo. Then we take 

6 = ^l^joo in (l.Sviii), divide by £p and let a —> 0, to conclude (l.S.i). 

We show (l.Sii). From triangle inequalities we may estimate 

(/ /(*)dP(u(a)'y(*'£))W) )* - (JmdP{u{x)'fix'£)))dKx)y 

<(//(^)dPK'(x'£)
£
);"("(x'£)))^) 
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For small e > 0 we consider ^ which maps z(x, e) to x(x, e). Since \^ - idloo 

is 0(e) we deduce from (l.Svii) that the right hand side of the above inequality 

approaches zero as e —> 0. This proves (1.8ii). 

We next show (1.8iv), which yields (l.Siii) as a special case. We may assume 

we are working in a local coordinate chart. In this case we write 

mdPHX)Mx + e(Z + W)(x)))Mx)   - 

< (jf{xfMx)M^+eZto»Mx)y 

+ (jmdPHy)Ml+£W{x)))d»{x) ' 

where we have written y for x + eZ(x) in the bottom integral. By (l.Sii) the 

top integral converges to z+wE(f) as s —► 0, and the middle integral converges 

to zE(f). In fact, the bottom one converges to wE(f), as one can deduce 

by changing variables from x to y, dominating f(x) by f(y) +(*;(/, e|W,|0o)(j/), 

and applying (l.Sii) again. This shows (l.Siv). 

We next show (1.8v). We first consider the case of constant h: If h > 0 

then we observe that hp(ze£h(x)) = hze£(x). This implies the result as e —> 0. 

In case h — —1, we note that ~ze£(x(x,£)) = zeE{x), so by the usual change 

of variables arguments we obtain d(~ze) = d(ze). Thus (1.8v) holds when h 

is any constant. 

Next we assume that there is a constant ho and a small number 6 > 0 so 

that \h — ho\ < 6. We apply the triangle inequality (l.Siv) twice, with vector 

fields hZ, (ho — h)Z the first time and hoZ, (h — ho)Z the second time. Taking 

pt/l-powers, applying (1.8i), using the result for constant multiples which we 

just showed, and using standard inequalities, we see that for any e > 0, 

zE(hp
0f) < (1 + enhZE(f)) + (LtlycPEV) 

hZE(f) < (1 + enzE(hp
0f)) + (^TCS^Eif). 

These inequalities imply the measure inequalities 

(1.8ix)        \h0\pd(ze) - c(e, 6)de < d(hZe) < \h0\pd(ze) + c(e, S)de, 
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where c(e, 6) has the property that it can be made arbitrarily small by choosing 

s (and then) 6 small. We can now show the general case of (1.8v). Pick c(£, S) 

small. Cover Q with a finite number of open subsets {Ui} so that there are 

constants {hi} with \h — hi\ < 6 on Ui. Pick a subordinate partition of unity 

{rji} to the {Ui}.  Note that hZE(f) = £ ^Efaf).  We apply the estimate 
i 

(1.8ix) in each Ui and sum, obtaining 

ZE{Y, NW) - cMW) < hZE{f) 
(l-8x) * ^ 

<zE{Y,\hi\
vr1if) + c{e1d)E{f). 

i 

This last estimate implies hzE{f) = zE{\h\pf), which is equivalent to (1.8v). 

(The reason for the implication is that we may choose c(s,8),e,8 —► 0 and 

covers {Ui} with diameters approaching zero. Then the sums Yl \\hi\pr]if con- 

verge uniformly to \h\pf, and then continuity of the linear functional ZE gives 

the conclusion.) Finally, we study (1.8.1). Recall the definition of ee(x) given 

in (1.2ii). Compare this to the approximant obtained using the exponential 

map: 

g>(x)s  J   dv{u{X)Mexp{x,eu>))) da{uj)_ 

Because of the uniform closeness of the respective surface measures, we see 

that 

(1 - o(l))ee{x) < e£{x) < (1 + o{l))ee(x), 

where o(l) is a term which approaches zero uniformly (in x), as e —> 0. Hence 

(1.8xi) e£(x)dfjJ —» de. 

We also note that for the fixed vector field u (as defined above (1.8.1)), the 

two diffeomorphism families ipi(x,t) = x(x,t) and ^(x^t) = exp(x,t(jj) have 

the same velocity vector field u when t = 0. In succession we apply (1.8xi), 

Fubini's Theorem, the Lebesgue Dominated Convergence Theorem (justified 
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by (l.Svii)), and then (1.8ii) for the pair (^i,^)- 

E(f) = limy /(x)ee(x)dM(x) 

= j »E(f)da(u). 

This shows (1.8.1) and completes the proof of Theorem 1.8.1.    □ 

1.9.  Differentiability theory for directional energies. For p > 1, u G 

VF1'p(r2,X), and Z E r(rJl) we show that the directional -derivative energies 

d(ze) are absolutely continuous with respect to Lebesgue measure, i.e. d(ze) = 
ze{x)dn{x), for an L1 energy-density function ze(x). Furthermore, the e- 

energy functions converge almost everywhere to ze{x). When Z is non-zero 

one can always choose local coordinates so that Z — d1. This motivates us to 

first consider the special configuration below: 

(1.9i) DEFINITION. Let Q C Mn be a bounded domain, and let g be the 

Euclidean metric. Let 1 < p < oo, u E Lp(f2,X), u = d1, and let u have 

finite p-energy in the direction a;, 

and write E(f) for the corresponding linear functional. (In the following 

discussion UJ will be fixed and we will frequently suppress it in our notation.) 

Assume that each line in the direction of u; intersects f2 in at most one interval. 

Write 11 for the projection of SI onto the (n — l)-plane {xl = 0}. Thus we may 

write 

ft = {x = (t,i/), yEH, tE/^GM} 

Ey = E{u\Iy). 

That is, Ey is the p-energy of the 1-variable map u\Iy from ly to X. In case 

Ey < oo we write Ey(f) for the corresponding linear functional on Cc(Iy). For 

a function / E CC(Q) we also write / for its restriction fo Iy. 
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Lemma 1.9.1. For the configuration (1.9i) we have 

E = J Ey dy,   and E(f) = J Ey{f) dy, for any f € Cc(n). 

Conversely, if u 6 Lp{Sl,X) is a map for which f Eydy is finite, then u has 

finite energy "E, and the above identities hold. 

Proof. If the first part of the lemma is true, then the converse statement follows 

easily. Indeed, from Theorem 1.5.1 and (1.4vii) we have the following estimate 

for / > 0,/ G Cc(«): 

EeU) = j Ey
£(f)dy < jEy(f°)dy < (l/U + o{e))JEydy. 

Hence "E < oo, and the first part of the lemma applies. 

We now prove the first part of the Lemma. We use an absolutely continuous 

measure u satisfying (1.2iv) to define our ^-energy densities. (For example, 

the choice dis(\) = (p + 1)XP for 0 < A < 1 would correspond to interval 

averaging.) For any / G Cc(fi) with 0 < / < 1, the fact that E < oo implies 

that given 6 > 0 and C > 0, there exists £i > 0 so that 

(1.9ii) limE£,tfC)< E + 6. 
e' —>0 

Since #£'(/f) = f Ey
f(f^)dy, (1.9ii) and Fatou's Lemma imply 

(1.9iii) /liminf Ey
f(f^) dy < E + 8 

J      £'-+0 1 

Fix 6, Si and set C = 0. Denote the integrand above by h(y, e'). By the abso- 

lute continuity of i/, by Remark 1.4.3 (and the fact that each Iy is Euclidean), 

E^f) < liminf h{y,ef),    for anys < Si. 
e'^0 

Hence (taking the lim sup of the right-hand side and noting that 8 was arbi- 

trary) 

(1.9iv) [limsupEy(f)dy < E. 
J        e->0 
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Pick any sequence {/*} C Cc(f2) which is monotone increasing in i and con- 

verges (uniformly on compact subsets) to 1, as i —> oo. The monotone con- 

vergence theorem and (1.9iv) yield 

o</< 

i.e. 

/ sup  Aim sup Ey
£(f)dy) < E, 

J   0</<l  \     £-*0 / 

(1.9v) I Eydy <E. 

Thus for any / G CC(Q) 

(1.9vi) E(f) = \imJEy(f)dy = |^(/)^ 

by the Lebesgue Dominated Convergence Theorem. Again using the sequence 

{fi} described above, this time in (1.9vi), shows that E = f Ey dy.    □ 

Lemma 1.9.2. For the configuration (1.9i) there is a representative ofu hav- 

ing the property that for almost all ly = (a^, by) with y € 11, 

]imu(t,y) =u(ay,y) 

L9vii v      n   \       (h     \ hm u(t,y) =u(by,y) 
t-^by 

exist In case p > 1 (and for the y above) u\iy is a Holder continuous mapping, 

with exponent a = £—k In case p = 1 the functions u\Iy are maps of bounded 

variation. In all cases we have the estimate 

(1.9viii) / dp(u(ay,y),u(by,y))dy < "E max(62/ - ay)73'1. 
n 

Proof We first deal with the case p > 1 and then indicate how to modify the 

argument in case p — 1. By Lemma 1.9.1 almost all u\Iy 6 VF1'P(72/,X). For 

such y write u\Iy = v, and assume (by rescaling) that ly = I = (0,1). For 

such a v e Whp(I,X) and t G /, define w(s) by 

w(s) =d(v{t + s), v(t))        fors G (-t,l-t). 

It follows from (1.6vii) of Corollary 1.6.3 that w G W^^-t, 1 - t),E), with 

|Vsw\pds < dep as measures. In particular (a representative of) w G Ca((—t, 1— 
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£)) (for a = £—^ so is absolutely continuous. Therefore we have the estimate 

re nt-j-e 

(1.9ix) w(£)-w(0)<       \Vsw\ds< e^dt'. 

We would like to know that w(G) = 0 and w(£) = d(u(i),u(t + s)) in the 

above estimate. This is formally true but actually requires some technical 

justification since a priori v is only defined a.e. So, for any fixed 0 < ^ < ^, 

we pick / E Cc(Ct) with 0 < / < 1 and with / = 1 on the interval (/z, 1 — /J,). 

From (1.4vii) and pf = 1 we have 

j f(t)ve6(t)dt< J e^dt < oo 

for small S > 0. Here we take <i£/(A) = 2A, corresponding to interval averages. 

Thus by Fatou's Lemma, 

l-Ai 

/ 
liminf ues(t)dt < oo, 

5—»o 

so that 

i.    •  r        c [ d(v(t),v(t + s)) ds 
liminf        2 /     y y J\y J- — < oo        a.e.t. 

(5->o J 8 6 
o 

For such a £ we conclude that ^(0) = 0, since the numerator in the expression 

above is 1/7(5) and w is Holder continuous. For such a t the estimate (1.9ix) 

implies 

t+e 
a.e.£. 

re rz-te 

(1.9x)        d(v(t),v(t + e))<       \Vsw\ds< e^dt' 

From the first half of this inequality we see that v is equivalent to a Ca 

mapping, with a — £—^ By raising both sides to the pth power, using Holder, 

and using the fact that w € VF1,?>(n,E)), we have the estimate (at first a.e. 

£, £, but then everywhere by redefinition) 

t+e \ 
P-1 dP{v{t),v{t + e))<    /lv^lP    el 
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This implies that for the y € 11 with u\Iy e W^i^X) the limits (1.9vii) 

exist, and furthermore that the estimate 

(1.9xi) dp(u(ay,y),u(by,y)) < {by - a,)"-1 E» 

holds. Upon integration this yields (l.Qviii). 

In the case p = 1 it is necessary to modify the argument slightly. Now the 

function w(s) is equivalent to a function of bounded variation, so may be taken 

to be continuous from the left, with only a countable number of discontinuities, 

and so that all one-sided limits exist. We replace (1.9ix) with the estimate 

(1.9xii) w(£-) - w{0+) < Var (0, e)w < ci((t, t + e)), 

where the +, — superscripts refer to limits from the right and left respectively. 

For t satisfying the finite liminf condition above, u;(0+) = 0. For such t we 

conclude 

(1.9xm)d(v(t),v(t + e)) = w{e) < Var(0,£)K; < ei((t,t + e))       a.e.e. 

We redefine v to be the limit from the left of v(t'), where t' satisfies (1.9xiii). 

It is straightforward to verify that this leaves v unchanged at such £', and that 

it creates a function which is continuous from the left, and satisfies (1.9xiii) 

everywhere. In particular, this representative for v will have only a countable 

number of discontinuities, exactly at points where the measure ei has point 

masses. We deduce that the map v is a map of bounded variation in the 

classical sense. In particular, all one sided limits exist. Also, returning to the 

intervals ly with Ey < oo we get the estimate 

d(u(ay,y),u(by,y)) <Ey. 

Upon integration this yields (l.Qviii), and the proof of Lemma 1.9.2 is com- 

plete.    □ 

Lemma 1.9.3. Let 1 < p < oo, u E VK1'P(J, X). Then (its Holder continuous 

representative satisfies) 

d(u(t),u(t + e)) 
hm —i—^—i — = eilt)    a.e. 
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Proof. We see immediately from the inequality between the first and last terms 

of (1.9x) (and the Lebesgue Differentiation Theorem applied to the Z^-function 

ei(t)) that 

(1.9xiv) ^^K^ + e))^^    a.e.t. 

Now let 6 > 0. Define 

Ss    =    {t G Is.t. t is a Lebesgue point for ei, and 

hmmf  — < ei(t) - 5}. 

By definition, for any fixed /x > 0 we may cover Ss by intervals (t — e, t + e) 

with e < ii and for which t E Ss, 

d(u(t),u(t + e)) 
 < ei(t) - d, 

1   ft+£ 8 
ei{t) - - /      ei(s)ds <   -. 

By a well-known covering lemma [Rudin, Lemma 8.4] we may pick a finite 

disjoint subset of this cover, with the finite sum of the interval lengths at least 

|    the measure of Ss- Denote the corresponding half-intervals by 

l^iJi=l?       -Li =z [pii ti 4" £{)• 

Complete this finite collection of intervals to a partition of [0,1], by adding 

intervals 

also with maximum length bounded by /x.   We have from (1.9x) and our 

covering hypothesis that 

Y^diuiU), uiU + £*)) + Y,d^iU), u(U + £i')) 
i i' 

(1.9xv) ^ E (Jh *&)* -  l") + E  /^ «!(*)* 
/C 
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If we can show 

(1.9xvi) fe1(t)dt=   lira   £d(ti(ii+i), ufe)) 

for arbitrary partitions P of /, we conclude that the measure of Sg is 0 by 

letting fi —► 0 in (1.9x). Picking a sequence 5^ with Si —> 0 then implies 

Lemma 1.9.3. We verify (1.9xvi) as follows: 

Because dei = e1(t)dt is absolutely continuous it is easy to see that the total 

p = 1 energy E1 for the map u is given by 

I 0 

= lim    f    V2 d(M^ + i£)' "(* + (» + 1)£)) 

lim I   jf  £.(*)*. 

Hence for S > 0, £ > 0 small, there exists t£ G (0,e) with Sc(te) > Ei — S. 

Now let 

P : 0 = to < ti < ... < tfc = 1 

be an arbitrary partition of I, subject to iV||P|| < e for AT large. We pick a 

subpartition P' C P for which t* is within -^ of te + ie, i = 1,... ([^] — 2). 

Note that this implies 

Hence 

^d^fe), w(ti+i)) > J^d^ti), w(tt+i)) 
p p/ 

rt£+i£ 

>E>)-2ElX    ^(tjdti 

>Jiel{t)dt-8-2[^ "   (EP)K 

(where we have used Remark in the last step). As S and N are arbitrary, and 

since a one-sided estimate suffices (see (1.9x)), we conclude (1.9xvi) and the 

proof of Lemma 1.9.3 is complete.    □ 
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Lemma 1.9.4. Let (tt,g), OJ and u be as in (1.9i). Let 1 < p < oo. Then for 

any 1 < p' < p the energy-density function ep>(x) (for the direction UJ) satisfies 

(1.9xvii) epf(x) = (ei(x))p     a.e. 

Furthermore, there exists a representative of u so that 

no    -\ r      dp,(u(t,y),u(t + e,y)) 
(l.Qxvm) lim  ; — = ep>(t,y)    a.e. 

Proof. From Lemma 1.9.1 and Lemma 1.9.3 we know we may pick a represen- 

tative of u so that 

lirc^(f,ri,«(t+£,g))=(ei(iiy)), ae 

so (1.9xviii) will follow from (1.9xvii). The claim (1.9xvii) is true because of 

the following measure theory lemma. 

Lemma. Let 1 < p < oo, {g£} C Lf0C(fi,R), #£ > 0. Suppose that on any 

compact subset of Q the Lp-norms of g£ are uniformly bounded as e —► 0. Let 

ge(x) -^ g(x) a.e. as e —» 0. //, for some 1 < p' < p it is also true that 

gl dfi —^ hdfjb with h G L1(ri, M), ^/ien m /ac^ h = gp a.e. 

Proof. Let / € CC(Q). Write Q^GUS, Gn5 = 0, where ge-> g uniformly 

on G. (So B can be chosen with arbitrarily small positive measure). Then 

lim   [ g'fdn= I f9p'dn, 
£-*0    JG JG 

and 

limsup   f gr'fdf, < l/U C^ MB))*^ , 
e->0        JB 

where C depends on the uniform Lp estimates for the g£ as e —> 0, on the 

compact subset supp(f). For fixed / we may make this last term smaller than 

any given 6 > 0 by picking //(S) small. Combining this observation with 

Fatou's Lemma gives 

J fgv' dfi < j fhdp = lim J fgp' dfx<l fgpf d^ + 6. 
no. Q Q 

This proves the Lemma.   □ 
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By applying this result to the functions 

= d(u(t,y), u(t + e,y)) 
6 

h(x) = ep/(x), 

we immediately conclude (1.9xvii) and Lemma 1.9.4.    □ 

Lemma 1.9.5. Let (Qjg), CJ and u be as in (1.9i). Let 1 < p < oo. Then the 

energy density measure de (for the direction uo) is absolutely continuous with 

respect to Lebesgue measure, de = ep(x)dfi(x), and 

ep(x) = ei(x)p    a.e. 

Furthermore, there is a representative of u so that 

dp(u(t,y)), u{t + e,y) 
hm = ep{t,y)      a.e. 

For any representative ofu, and any choice ofu in (1.2iv) for which \~pdv(\) 

is a bounded multiple of dX, we have 

lim ue£(x) = ep(x)        a.e. 

Proof. As in Lemma 1.9.4 it suffices to show the first claim only. Note that the 

third claim will follow from the second, because if we change representatives 

for n, almost all u\iy will remain the same Lp function, and for such y the 

i/ee(t,y) will be unchanged, because of the restriction on v. We establish the 

first claim by verifying the two measure inequalities 

ef dfj, < de, 

de < ei dfi. 

The first of these follows immediately from Fatou's Lemma: 

Fix / € Cc(ft), then 

/ Md» = J liminf fdP(u(t,y),u(t + e,y)) ^ 

<Jfde. 
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To show the second we again fix / € Cc(0). Then 

jfde = \\m  Jf^dv, 

where we suppress the various arguments x = (t, y), u(t, y), u(t + £, y). 

Hence 
/dp 

n 

where 81 (e) —> 0 as e —> 0. But for e > 0 fixed, 

dp ,        f . d?' j f?-dn = J f-^dn + 82{p') 

where ^(p7) —> 0 as p' —> p. Applying the estimate (1.4vii) to the integral on 

the right side, and also Lemma 1.9.4, yields 

E(f) = jf—dfi + 8l(e) + 62(p') 
Q 

< Jf?(x) aixY dn{x) + Sfc) + W). 

Using the already established inequality (ei)pd/i < de to justify Lebesgue's 

Dominated Convergence Theorem, we let p' —> p and deduce 

lfde<Jf^e1(xrd^ + 61(e). 

Letting e -^ 0 we conclude the desired second inequality de < (ef) c?^. Thus 

Lemma 1.9.5 is shown.    □ 

Theorem 1.9.6. Let (tt,g) be a Riemannian domain (LI). Let 

ueWl'p{Q,,X)    for some 1 < p < oo, 

and let Z 6 r(TT2). T/ien the energy-density measure dze for each 1 < pf < p 

is absolutely continuous with respect to Lebesgue measure. In particular, if 

we denote the p = 1 energy-density function by |i6*(Z)|(:r), then the p'-energy 

measure is given by 

\u+(Z)\*'dii.g{x) 
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for each 1 < p' < p. For any choice of v in (1.2iv) for which X~pdu(X) is a 

bounded multiple of dX we have (for each 1 < p7 < p) 

\imzve£{x)= K(Z)|p,(a:)        a.e. 

Proof. We pick a local coordinate chart and express Z = Z%di in terms of 

the local coordinate direction fields. It suffices to prove our claim in the case 

p' = p. From the triangle inequality (1.8iv) and the homogeneity property 

(1.8v) we may estimate 

Applying Lemma 1.9.5 this yields 

n 

(l.Qxix) d(ze) < |Z|^ np £ \u.(dj\p(x)dn(x). 
i=i 

Since the Euclidean measure dfi(x) and the metric measure d/x^x) are uni- 

formly equivalent, this last inequality proves the absolute continuity of dze. 

To prove the pointwise convergence of the ze£{x) to \u*(Z)\p{x) we note 

first that (1.9xix) implies |u5(c(Z)|p(x) = 0 a.e on {x\ Z{x) = 0}. All approxi- 

mate energies ze£(x) are also zero on this set. Thus we need only verify the 

convergence statement on {x\Z(x) ^ 0}. Here we may do a Clyl change of 

coordinates from an initial local coordinate chart, turning Z into a coordi- 

nate direction. The result then follows from Lemma 1.9.5, and the uniform 

equivalence of the respective volume measures.    □ 

1.10.  Absolute continuity of de for p > 1. 

Theorem 1.10. Let (fJ,g) be a Riemannian domain (l.li), and let 1 < p < 

oo. Let u G iy1,p(ri,X). Then the energy density measure de is absolutely 

continuous with respect to Lebesgue measure, i.e. there exists \Vu\p(x) E 

L^fyR)    s.t. 

de = \Wu\p(x)dfjb(x). 

Proof (We will explain the why we use a subscript rather than a superscript 

for p after the proof.) We reduce to the case where Q has a local orthonormal 
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frame, as in (1.8.1). Thus we have that equality, which we reproduce here: 

(l.lOi) E(f) = f      »E{f)da{uj). 

By Theorem 1.9.6, we may express the corresponding energy-density measures 

by 

d(we) = \u.{u})\p(x)dn(x), 

so (l.lOi) may be rewritten as 

(l.lOii) E{f)=  J J \u*(u>)\p(x)f(x)dn(x)da(uj). 

s*-1 n 

It is easy to check that the non-negative functions \U*(UJ)\
P
(X) are jointly mea- 

surable in (a;,a;). Applying the monotone convergence theorem to an increas- 

ing sequence {fi} C CC(J7) for which fi—>l uniformly on compact subsets of 

fi, we deduce 

(l.lOiii) /   j \u*(uj)\p(x)dii{x)dG(uj)   = E < oo. 

Fubini's theorem then implies 

E(f) = Jm (      / kMI'O*) da(u) j drtx) 
ft \    5"-1 / 

for the L1 function 

(l.lOiv) \Vu\p(x)=  J   \u*(u;)\p(x)da(uj).   D 
5n-l 

The reason why p is placed as a subscript in the notation \Vu\p is to prevent 

confusion about the relation of different p-energies: It is not true (unless X = 

R) that | V^|p is equal (even up to a constant multiple) to |Vn|p, . (Of course if 

both expressions make sense, then they will be uniformly equivalent.) Because 

we will have a special interest in the case p = 2 in the second chapter, we will 

define 

(l.lOv) \Wu\2(x) =—\Vu\2{x) = —   [ \u,{u;)\2{x)da(uj)1 

Sn-i 
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for u G W1'2(fi,X). We will see in Section 2 that this definition is consistent 

with the usual way of defining \du\2 for maps between Riemannian manifolds. 

(See also (1.2viii).) 

1.11. The calculus of energy-density functions. We collect some useful 

Calculus facts about our various energy-density functions. 

Theorem 1.11. Let u e W1*^ X) for some 1< p < oo. If Z,W E T(TTi) 

and if he C0'1^), then 

\u*(Z + W)\<\u,(Z)\ + \u*(W)\ 

(l.lli) '\u.(hZ)\p = \h\*\u*(Z)\p 

\u.{Z)\p<C{n)\Z\p\Vu\p. 

If ^ is a C1,1 diffeomorphism from Qi to f2; and if we write v = u o ip, then 

v G WliP(Cti,X), and the chain rule 

(l.llii) \v.(Z)\* = \um(il>.{Z))\» 

holds. If two metrics are close, then their Sobolev energy-density functions are 

close. In particular, let ft C Mn and let 5, g be the Euclidean and a Riemannian 

metric on ft. Denote the two corresponding energy-density functions of u by 

|Vn|p and \Vu\Pjg, and let dji and dfig be the two induced volume forms. Let 

A2 and A2 be the minimum and maximum eigenvalues of g (relative to 6), 

respectively.  Then we have the estimate 

\2n \2n 

(l.Hiii) ^^|Vu|Pd/i < \Vu\v,gdiig < -^\Vu\pdii. 

Proof. The statements (l.lli) are restatements of corresponding claims from 

Theorem 1.8.1, using the subsequent differentiability results of Theorem 1.9.6 

and Theorem 1.10. Note that we have replaced the supremum norm \Z\oo 

with the pointwise norm \Z\QQ in the third inequality. This is easily justified 

by using (1.8.i) and a partition of unity argument. 

For I/J as above it is clear (say using ball averages) that v = u o AJ) G 

W^fiij-X"). The chain rule (l.llii) follows from the fact that the e energy- 

density functions satisfy 

z
ue£(x) = i*ze£(TP(x)), 
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and that for appropriate v these converge almost everywhere as e —> 0 to the 

corresponding directional-energy functions (Theorem 1.9.6). 

We prove the claim (l.lliii) as follows. Recall from 1.2 that computing an 

6:-energy with radius eR ball averaging corresponds to the choice 

dv{p) = ^P^-'dp       0<p<R. 

Call the measure above VR. Then the s-approximate energy density function 

(with respect to a metric g) is given by 

«<*>=£?? / ^t^w n + p   1       f    dp(u(x),u(y)) 

B(x,£R) 

In our case we have the inequalities 

Xndfj, < dng < kndn 

and the ball containments 

^)(lB(x,E)gcB(x,j) 

Letting r = ^ and R = j we deduce that 

An An 

Upon integration (and applying the volume inequalities again) we see that (for 

any / > 0, / G CC(Q)) 

^From the weak convergence properties of our ^-energy functional, we deduce 

that the limit measures satisfy the same inequalities, i.e. 

\2n A2n 

\Vu\pdfi < \\/u\Pygdfig < ——\Vu\pdfi. 

This is exactly the claim (l.lliii).    □ 
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1.12. Trace theory for Lipschitz domains. In this section we develop the 

L® trace theory for finite-energy maps defined on Lipschitz domains. We show 

that two functions have the same trace if and only if the distance between them 

is a real-valued function of finite energy, having zero trace on the boundary. We 

also prove a replacement theorem: If fi can be partitioned into two Lipschitz 

subdomains, and if there are finite-energy maps for each subdomain whose 

traces agree on the common boundary, then together they define a global map 

of finite energy on all of f2, and the total energy of this map is the sum of the 

energies of its components. 

DEFINITION. If (O, g) is a Riemannian domain then the usual way of saying 

that dVl is Lipschitz near x 6 d£l is to require that there be a neighborhood U 

of x and a local coordinate chart on U so that in these coordinates dQ, fl U is 

the graph of a Lipschitz function above some (n — l)-dimensional hyperplane. 

It is easy to see that this definition is equivalent to the following one, which 

requires the existence of suitable transverse vector fields. We will say that dQ, 

is Lipschitz near x G d£l if there is a neighborhood U of x, a smooth vector 

field Z defined on [/, and positive numbers p, to so that for all x G dSl the flow 

x{x,t) in 1.1 satisfies 

x(x,t) € fi       if 0 < i < to, 

(1.12i) x(x, t) g ft       if - to < t < 0, 

d(x(a;,i),0ft) > p\t\        if |t| < to- 

We will say that a compact subset F of d£l is Lipschitz if d£l is Lipschitz near 

each x G F. It is easy to see that this is equivalent to the existence of a smooth 

vector field Z defined in a neighborhood of F which satisfies (1.12i) for some 

choice of positive numbers p, to- We will say that ft itself is a Lipschitz domain 

if 9ft is Lipschitz. 

Let 1 < p < oo, u e W^faX) if p > 1 (u G BV(n,X) if p = 1). If 

F C 9ft is Lipschitz, and if Z is a transverse vector field satisfying (1.12i) for 

all x G F, then there is a natural way to define a trace map u G Lp(r,X). 

as follows. Recall that we write x(x,t) for the flow induced by Z (1.1). By 

using Lemma 1.9.2 on a finite number of local coordinate charts (for which Z 

corresponds to the direction CJ in the configuration (1.9i), we see that u has 
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a representative so that for almost all x E F the maps u(x(x,t),0 < t,t0 are 

either Holder continuous (p > 1) or of bounded variation (p = 1). Thus the 

map 

u(x) = lim n(x(a;, ^)) 

is defined almost everjrwhere (with respect to (n — l)-dimensional Hausdorff 

measure on F). Furthermore, we deduce from the estimate (1.9viii) and from 

Theorem 1.8.1 that (for a constant C depending on Q) 

f (r ) 
(1.12ii)      / (F(u(x),u(x(x,t)))dE2~~1 <   C de 

r ^100 ) 

{AZU p-i 

(Here we use the notation fif for the complement in Ct of Q£, i.e. those points 

in Q whose distance to 30 is at most e.) Because u G Lp(0,X), for almost 

all t the maps u(x(x, t)) are in Lp(dQ,X). We conclude from (1.12ii) that the 

trace map is the Lp limit of the maps u(x(a:,i)) as t -^ 0, so is itself an Lp 

map. Furthermore, if we use any representative for u it follows that the trace 

map is the Lp limit of almost all of the maps tz(x(x,t), as t —> 0, and so is 

well-defined independently of our representative for u. 

Lemma 1.12.1. The definition of trace given above is independent of choice 

of transverse vector field Z. Also, ifTi'C T, then the trace of u on Tx is the 

restriction to Ti of the trace of u on F. 

Proof The second claim follows from the first one. The first claim is a con- 

sequence of Lemma 1.8.2 and the following argument. Let Z and W be two 

transverse vector fields satisfying (1.12i). Let Xi(x,t) and ^(x, t) be the cor- 

responding flows. We wish to show that the maps u(xi(x, t)) and u(x2(xJt) 

(from 90 to X) converge (a.e.t) to the same trace function. Denote the map 

which sents Xi(x, t) to a^Oc, t) by ip. Note that ^ is a bi-Lipschitz mapping of 
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a neighborhood of F to its image. Thus we may estimate 

(1.12iii)       f   f ^{u{x1{x,t)),u^2{^t)))dllx dt 
ti. avt 

p 

<C J ttx)dr(u(x)MMx)))dtix), 

where / G Cc(Q%2+6) satisfies 0 < / < 1, and / = 1 for x satisfying 

Mi ^ d(x, dfi) < 1^2- 

Write 6 for the supremum oi \ip(x) — x\, over the subset U fl Q^. Then for 

small /i2 we see from continuous dependence on parameters that 

6<Cfi2maxr\Z-W\. 

Pick /JLI to satisfy ^ = 2^ . In case \Z — W\ is sufficiently small we may 

guarantee that 36 < /xi (for all small /i2). In that case we may construct a 

suitable / for (l.lliii) which also satisfies the condition necessary to apply 

Lemma 1.8.2, namely / £ Cc(ilss)' From the Lemma we see 

(1.12iv) / /(x)dp(^(x)^(^(x)))d/i(x) < C8P    f   de. 

From the combination of (1.12iii) and (1.12iv) we see that the average values 

of the integrals oi dp(u(x1(x,t)),u(x2(xJi)))(-with respect to 2.ffi < t < rfr-) 

converge to 0 as /i2 —> 0. Thus Z and W define the same trace function 

on F, if the closeness assumption above is satisfied. Since the set of strictly 

transverse vector fields is a positive cone (i.e. if Z and W are suitable, then 

so are aZ + bW for positive constants a, 6), it is connected. Hence it suffices 

to prove the lemma for sufficiently close vector fields, as we have done.    □ 

Theorem 1.12.2. Let (O,*/) be a Lipschitz Riemannian domain and let 1 < 

p < oo. Any u G T^1,p(ri,X) has a well-defined trace map u (or tr(u)), with 

tr{u) 6 Lp(<9fi,X). If the sequence {ui} C W1*^^) has uniformly bounded 

energies EUi, and if {t^} converges in the Lp distance to a map u, then the 

trace functions of the Ui converge in Lp(dQ^ X) to the trace ofu. Two functions 
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Uj v £ W^1,p(n, X) have the same trace if and only if d{u,v) G VF1,p(ri,R) has 

trace zero. 

Proof That u € W1*^ X) has a well-defined trace tr(u) G Lp(50, X) follows 

from Lemma 1.12.1 and the remarks preceding it. Furthermore, if we fix a 

transverse vector field Z satisfying (1.12i), and with \Z\OQ < 1, then for almost 

all (small) t we have the estimate (from (1.12ii) 

(1.12v) f (Fitriu^x^uix^t))^'1 < C*p"1 / |Vw|pd/x. 
en QC 

Integrating this inequality yields 

(1.12vi)       / f dp(tr(u)(x), u(x(x, tWdE^dt < C^  f |Vw|pd/x. 
0   dQ 

We can use the Lp-triangle inequality and the estimate (1.12vi) for two Sobolev 

functions n, v to bound 

7/,,,,,.,(„«;-.. 
^o an 

After changing variables from dTidt to d/x in the appropriate term, the resulting 

inequality is 

(1.12vii) 

/dp(<r(«),ir(v))dS 

/ 

<Ct 
i-i 

\ 

(J \Vu\pdn)i + (J \Vv\pd^ 

+ ct0 / dp(u,v)dij, 

1   'o / 

This inequality shows that if the sequence {ui} converges to u in Lp(f2,X), 

and if the {ui} have uniformly bounded energies, then the traces converge to 

the trace of u. Specifically, we know from semicontinuity that the energy of u 

is bounded by those of the u^ so the first term on the right-side of (1.12vii) 

can be made arbitrarily small (for the function choices u = u, v = Ui) by 
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choosing to small. Once to is chosen, the second term can be made small by 

choosing i large. Next we prove our characterization of equal-trace functions. 

Using (1.12vi) for the functions u and v, we make another choice in the Lp- 

triangle inequality (and change variables as above) to estimate the left-hand 

side below: 

(1.12viii) 

/ \ 

/  dp(u,v)diJ, 

\p£o 

< Cpto 

( 

+ / \Vu\vdiJL 

*\ 

\P?o 

+ c% dp(tr(u),tr(v))dT: 

If tr(u) = tr(v), then (1.12viii) implies that 

(1.12ix) limrp J dJ>(u(y),v(y))My) = o. 

Write h(y) for the function d(u(y),v(y)). Define the cut-off function r]t(y) to 

be identically one inside fit, to be zero in the complement of Q, L , and to linearly 

interpolate 0 and 1 on the annulus of points which are between distance | and 

t from dfl. It is clear that r]th —> h in Lp(fi,M), as t —> 0. Also, 

(1.12x) 

(/ |V(r?t^) - Vh\pd^ < (J hp\Vrit\
pd^ + (Jfa - l)p\Vh\pdfi)K 

n n n 

From (1.12ix) we see that as t —> 0 the first term on the right-side of (1.12x) 

approaches zero, and it is clear that the second one also does. Thus the 

functions r]th converge to h in the W1,p norm. Since each rith has trace zero, 

we deduce (by the first part of our theorem) that h does too. (In fact, this 

argument shows (in case u is a real-valued function with zero trace and v = 0), 

that for Lipschitz domains the set of functions with zero trace are exactly the 

space W0
1,p(fi,M), i.e. the closure under the Sobolev norm of C^0(Q). This 

fact is well-known of course.) 

We must now show the converse statement, that if the trace of h above is 

zero, then tr(u) = tr(v). We may deduce from (1.12vi) with u = h, that since 
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tr(h) = 0, 

J hp(y)dfi(y) < C- / Wdp. 
ptQ tQ 

Using this estimate in the right-hand side of (1.12vii), and letting to approach 

zero, we conclude that tr('u) = tr(v).    D 

Theorem 1.12.3. Let Q be a Lipschitz Riemannian domain which is itself 

a disjoint union of Lipschitz subdomains Q,i,Q,2 and the Lipschitz boundary 

dVti n cft^. Let 1 < p < oo, and Ui 6 W1,p(fli, X) for i = 1,2. Suppose that 

the trace functions ui — U2 on 3^1 fl 80,2 •  The the map u defined by 

u(x) = Ui(x)        if x G Qi 

is a finite energy map, and 

/ \Vu\pdii =  / |Vui|prf//+ / \Vu2\pdfi. 

Proof We have restricted to the case p > 1 in our theorem only for reasons 

of technical simplicity. In this case, for example, it suffices to show that u is 

a finite-energy map, since then its energy density will agree with u^s energy 

density in f^, and the absolute continuity of the energy density with respect to 

Lebesgue measure immediately implies the additivity of total energy claimed 

in the theorem. Let Z be a transverse vector field defined in a neighborhood 

of dQiDd^i satisfying (1.12i), and pointing into f^. Because of our Lipschitz 

hypothesis, dOidd^ is covered by a finite number of (relatively) open subsets 

F having the property that each F is the bi-Lipschitz image of a map </> from 

a radius r ball in R71-1. We will normalize (by scaling) to the case 

0:]3n-1(O,l)->r. 

Then for to small we use the flow induced by Z to define a bi-Lipschitz map 

if; by 

il>(y,t) = x(<l>(y),t)       (2/,t) e B71-1^!) x (-t0,to). 

Define the map(s) v by v = uoip. Then it follows that v = V2 is a finite energy 

map from B x (0,to) and v = Vi is a finite energy map from B x (—to,0) 

(because finite-energy maps are preserved under bi-Lipschitz composition). 
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Furthermore, using the vector field Z in Q and dt in B x (to, to), we see that 

the two traces of v on Bn~l agree. If we can show that v is a finite-energy 

map on B x (—to, to), then it will follow that u is a finite-energy map in a 

neighborhood of F, and our theorem will follow by the remarks above. 

Pick a (unit-) direction cu which is transverse to dt = <9i, and orient it so 

that u)1 > 0. Pick a representative for v so that v is Holder continuous on 

almost all lines parallel to w. This is possible by Lemma 1.9.2 and the fact 

that the two traces of v agree on B71'1. Parameterize the a;-direction lines by 

y G B71'1 x {0}. We claim that for each y on which the u;-line is continuous, 

it has finite energy, and that this energy is the sum of the directional energies 

corresponding to Vi and t^. To see why this is so, we appeal to Lemma 1.9.2 

in the one-variable case, i.e. H is a point, and we have two finite-energy (hence 

Holder continuous) maps Wi : (—to, 0) —> X and u^ : (—to? 0) -+ X which have 

common (trace) value at t = 0. We let w be the resulting continuous map and 

wish to deduce that it has finite energy. We apply the estimate (1.9viii) and 

the triangle inequality to deduce that for t < 0 < t + s, 

(F(w(t), w(t + e)) < 2p(dp(w(t), w(0)) + dp(w(0),w(t + e)) 
0 t+e 

2pep-1(J {Vw^ds +  f \Vw2\pds). 
(1.12x1) < 

0 

Of course, if t and t + e both lie on one side of 0, then the estimate corre- 

sponding to (1.12xi) also holds, in fact without the factor of 2P. If we integrate 

(1.12xi) (and the corresponding estimate) between ti < 0 < t2, and then use 

Fubini's Theorem we get 

t2 0 t2+e 

Idp{<w(t),w(t + e))dt<2pep([\Vw1\pdt+   f \Vw2\pdt), 

i.e. 
t2 0 t2+e 

Je£{t)dt<2p{f\Ww1\pdt+   f \Vw2\pdt). 
ti ti o 

This last inequality shows that the e-energy contribution near t — 0 is arbi- 

trarily small (depending on ti,^), so we conclude that w is a finite energy 

map, and that its energy is the sum of the energies of Wi and tt^.  Thus we 
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have shown that for almost all y G B71'1 x {0} the direction-u; line has finite 

energy, given by the sum of its two component energies. We immediately con- 

clude (from the converse statement in Lemma 1.9.1) that our map v has finite 

energy in the direction a;, equal to the sum of its two component energies. By 

integrating with respect to all transverse directions (i.e. almost all directions), 

we see that our map v satisfies 

/ 
'Eda^) < oo. 

Using the same reasoning as in the converse statement of 1.9.1, it is an easy 

consequence that v G Whp(Bn-1 x {-t^t^.X). Thus Theorem 1.12.3 is 

proven.   □ 

1.13. Precompactness. The precompactness theorem presented here is not 

needed for the harmonic map theory of §2, but since it is a natural part of 

Sobolev theory and can be proven quickly using the results we have already 

developed, we include it in this chapter. 

Theorem 1.13. Let (fi, #) be a Riemannian domain, (X,d) a locally compact, 

complete metric space, and 1 < p < oo. Let {ui} C W1,P(Q,X) if p > 1 

({tii} cBV(n,X) ifp = 1) satisfy 

I dP^x), Q)dfi(x) + EUi < C. 
n 

(Here Q is a fixed point in X, C is a fixed constant, and EUi is the total energy 

of the map Ui.) Then a subsequence of {ui} converges in Lp(n,X) to a finite 

energy map u. 

Proof. The definition of locally compact which we use is that every closed ball 

of finite radius is compact. For j = 0 we define Qji = Q. For each j G N we 

cover B{Q,j) with a finite number of points 

so that every P G B(Q,j) is within 4 of one of these points. The real-valued 

functions 

d^^.Qjr) 
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have bounded Sobolev (or BV) norm. (The Lp components of the norm are 

bounded depending on j, but the energy components are uniformly bounded, 

by Corollary 1.6.3. Thus by the standard precompactness theorems for BV and 

Sobolev functions, and by Cantor diagonalization, we extract a subsequence 

(which we also denote by {ui}), so that for each fixed (j, r) there is an Lp 

function djr with 

([(ui^^Qjr) —► djr(x) 

in Lp(fi,M). By choice of subsequence we also assume that a.e.x, 

d(ui(x))Qjr) —> djr{x) < oo 

for all (j, r). We claim that for such an x there is a unique point u(x) £ X 

with 

d{u{x))Qjr) = djr(x) 

for all (j, r). To see why this is so, fix an x as above and any j with j > doi(x). 

Then pick io so that i > io implies 

\d(ui(x), Qjr) - djr(x)\ < -        r = 1,... , Nj. 

d(^(x),Q) < j. 

By the method in which the points {Qjr} were constructed, there is an r = 

r(xJj) for which 

d(Uio(X)iQjr(x,j)) < -• 

Prom the triangle inequality 
3 

(1.13i) rf(^i(^),Qjr(x,j)) < T        i > io- 

This estimate implies that the sequence of points {Qjr(x,j)} is Cauchy and that 

u(x) is its limit. 

The function u is clearly measurable (with separable range), and by con- 

struction 

Ui(x) —> u(x)        a.e.x. 

By Fatou's Lemma 

f dp{u{x))Q)dfi(x) < liminf f dp{ui(x)JQ)dfi(x) < C, 
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so u 6 Lp(f), X). By lower semicontinuity (Theorem 1.6.1) u is a finite energy 

map, with Eu < C. By the triangle inequality 

dp(^0r),u(x)) < 2pdlp{ui{x),Q) + 2pdp(u(x),Q). 

By construction the sequence on the right is convergent in I/1(f2,M) to the 

function 2p+ldp(u(x), Q). By a well-known extension of the Lebesgue Domi- 

nated Convergence Theorem it follows that 

/ dp(ui(x),u(x))d/ji —> 0, 
n 

soui-tu in Lp(n,X).   □ 

2. HARMONIC MAPS INTO NON-POSITIVELY CURVED METRIC SPACES 

In §2.1 we recall what it means for a metric space to be non-positively curved 

(NPC). The definition is made using triangle comparisons to Euclidean space, 

and generalizes the Riemannian notion of non-positive sectional curvature (in 

the case of simply-connected manifolds). We recall some useful quadrilateral 

comparison inequalities which appear in a paper of Y.G. Reshetnyak [Re]. 

We combine these consequences of the NPC definition with the W1,2^, X) 

Sobolev-Space theory from Chapter 1 in order to study harmonic map ques- 

tions. In §2.2 we study the Dirichlet problem, i.e. the problem of finding a 

W/1,2(0, X) map with given trace which is stationary (among W1'2(0, X) maps 

having the same trace) for the p = 2 Sobolev energy. We show that there is a 

unique such solution, and its energy is the infimum of all admissible-function 

energies. In fact, the NPC hypothesis implies that the energy functional is 

appropriately convex with respect to natural geodesic homotopies of finite- 

energy maps. This convexity allows one to show that a minimizing sequence 

is Cauchy in L2(0,X), i.e. one uses an exact generalization of Dirichlet's 

Principle for finding harmonic functions. As in the classical case, the con- 

vexity property also implies the uniqueness result. We find the generality, 

elegance, and simplicity of the proofs presented here to be an indication that 

we have found the proper framework for their expression. The combination of 

the correct definition of energy (using distances) with the distance comparison 

results which follow from the NPC hypothesis allows one to replace arguments 
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which are customarily made with first derivative expressions with ones only 

involving (zeroth- order) distance inequalities. The existence theorem in §2.2 

uses the completeness of the target but not any local compactness properties. 

This is important for the applications discussed in subsequent work, where for 

example, we consider targets L2(M, X) where M is a Riemannian manifold 

and X is an NPC space. (Such targets are also NPC.) 

In Chapter 1 we described how a map u G VF1,2(f}, X) induces integrable 

directional-energy functions |u*(Z)|2(:r) for fixed vector fields Z G rT(fJ). 

In §2.3 we show that it is a consequence of the NPC hypothesis that these 

directional-energy functions satisfy a parallelogram law, i.e. 

MZ + W)\2 + \u.(Z - W)\2 = 2\u.(Z)\2 + 2\u.(W)\2. 

Thus there is a non-negative integrable tensor TT, which generalizes the notion 

of the pull-back metric u*h for maps to Riemannian targets (N,h), and so 

that the p — 2 Sobolev energy-density function |Vn|2 is given by 

|Vu|2 = fl«7ry 

in local coordinates. The inner product TT plays an important role in under- 

standing the structure of harmonic maps to NPC spaces, and in applications 

to rigidity theory. 

One can follow the approach of [GS] in order to prove the interior Lipschitz 

continuity of harmonic maps into NPC spaces, generalizing various arguments 

when necessary. In §2.4 we choose instead to deduce this regularity by prov- 

ing a (weak) form of the classical Bochner inequality for A|Vn|2, implying 

that |Vu\2 is essentially subharmonic. In the case of a harmonic function, this 

inequality can be obtained by a finite differencing technique applied to the en- 

ergy integral. (Of course it follows formally just by computing A|Vu|2.) This 

technique involves retracting the solution u towards translates of itself, esti- 

mating the change in energy and noting that it must be non-negative. These 

ideas generalize to the NPC setting, and imply the same Bochner inequality. 

In §2.5 we recall how to construct centers of mass for maps to NPC spaces. 

We use the quadrilateral comparisons of [Re] (discussed in (2.1)) in order to 

derive quantitative estimates for the distance between the centers of mass of 
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different maps (with respect to different weightings). By integrating these es- 

timates one can bound the energy of averages of maps in terms of averages 

of the energies. In §2.6 we study the equivariant harmonic map problem. We 

indicate how to construct initial finite-energy maps for certain configurations, 

and how to combine the solutions to Dirichlet problems with the averaging 

techniques in §2.5, in order to produce minimizing sequences with uniform 

(local) Lipschitz continuity control. This approach is analogous to, but tech- 

nically different from, the Perron method of finding harmonic functions. We 

conclude the paper in §2.7, where we indicate how to solve the homotopy prob- 

lem for harmonic maps to spaces with NPC universal covers; we present the 

natural generalization of the classical results due to Eells and Sampson [ES]. 

2.1. Non-positively curved metric spaces. A complete metric space (X, d) 

is said to be non-positively curved (NPC) if the following two conditions are 

satisfied: 

(i) (X, d) is a length space. That is, for any two points P, Q in X, the dis- 

tance d(P, Q) is realized as the length of a rectifiable curve connecting 

P to Q. (We call such distance-realizing curves geodesies.) 

(ii) For any three points P, Q, R in X and choices of geodesies 7P,Q (of 

length r), 7Q^ (of length p) , and 7^ (of length q) connecting the 

respective points, the following comparison property is to hold: For 

any 0 < A < 1 write Q\ for the point on 7QJJR which a fraction A of the 

distance from Q to R. That is, 

(2.1i) d(QA> Q) = Ap,  d(QA, R) = (1 - X)p. 

On the (possibly degenerate) Euclidean triangle of side lengths p, g, r 

and opposite vertices P, Q, P, there is a corresponding point 

QX=Q + X(R-Q). 

The NPC hypothesis is that the metric distance d(P, Q\) (from Q\ 

to its opposite vertex) is bounded above by the Euclidean distance 

|P — QA|. This inequality can be written precisely as 

(2.1ii) 
d2(P, Qx) < (1 - A)d2(P, Q) + Ad2(P, R) - A(l - X)d2{Q, R). 
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Using successive subdivision one sees that knowing the comparison property 

just in the case A = ^ suffices to prove it for all 0 < A < 1. 

It is any easy consequence of property (ii) above that geodesies in an NPC- 

space are unique. Indeed, if 71 and 72 are two geodesic paths from Q to i?, 

pick P to be a point on 71, say at a fraction /x (0 < // < 1) of the way 

from Q to R. Take A = /x and construct Q^ (on the geodesic 72) as above. 

By construction the comparison Euclidean triangle must degenerate to a line 

segment, so that P = Q^ i.e. d{P, Q ) = 0. The comparison property (ii) 

implies therefore that d(P, QM) = 0 as well. Since /x is arbitrary, we conclude 

that the geodesies 71 and 72 coincide. At least in the case that X is locally 

compact, it is an easy consequence of geodesic uniqueness that an NPC space 

X must be simply connected. Conversely, it is a well-known fact (proved 

with Jacobi Field analysis) that any complete, simply connected Riemannian 

manifold having non-positive sectional curvature is an example of an NPC 

space. (One defines the distance between two points to be the infimum of 

curve lengths for paths connecting the points.) There are many examples 

of non-Riemannian spaces which are NPC, e.g. trees, Euclidean Buildings, 

Hilbert Spaces, and other infinite dimensional symmetric spaces. Also, if X 

is NPC and if (M, g) is a finite-volume Riemannian manifold, then the space 

L2(M,X) is also NPC. 

A useful consequence of the NPC hypothesis is a quadrilateral comparison 

property, which we now describe. These results appear as lemmas in a sub- 

stantially more general theorem due to Reshetnyak [Re], and we include their 

proofs here for completeness. 

Let {P, Q,i?, S} be an ordered sequence of four points in (X,d). We say 

that {P, Q, P, 5} is sub-embeddable into R2 if there exists an ordered sequence 

{P,Q,R,S}C 

so that 

d(P,Q) = \P-Q\, d(Q,R) = \Q-R\, 

(2.1m) d(R, S) = \R- S\,  d(S, P) = \S - P|, 

d(P, R)<\P- R\, d(Q, S)<\Q- S\. 
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In the above construction we call {P, Q, P, 5} a sub-embedding for {P, Q, R, S}. 

(If any collection of points has a corresponding collection in R2 for which all 

pairwise distances between corresponding points are equal, we call the Eu- 

clidean collection an embedding of the metric collection.) If a metric space has 

the property that every ordered sequence of four points can be sub-embedded 

into M2, we say that (X, d) satisfies the sub-embedding property. 

Theorem 2.1.1. [Re] A length space is NPC if and only if it satisfies the sub- 

embedding property above. In fact, if (X, d) is NPC then one may always pick 

a sub-embedding {P,Q,R,S} for {P, Q,P, S} so that the Euclidean sequence 

forms the consecutive vertices of a convex quadrilateral. 

Proof. Assume (X, d) satisfies the sub-embedding property. Let {P, Q, R] C 

X and 0 < A < 1. Construct Q\ as in the discussion (ii) above. Then the 

sequence {P, Q, QA, R} has a sub-embedding {P, Q, Qx, R} C M2. From (2.1i) 

and (2.1iii) we deduce that Qx lies on the line segment connecting Q to P, i.e. 

Qx = Q + ^(R-Q)' 

Thus the sub-embedding hypothesis (2.1iii) that d(P, Q\) < |P— Qx\ is exactly 

the requirement for the triangle comparison property (ii) to hold. Thus (X, d) 

is NPC. 

Conversely, let (X, d) be NPC. Let {P, Q, P, 5} C X be given. Construct 

Euclidean embeddings {P, Q, S} and {Q, P, S} for the points {P, Q, S} and 

{Q, P, 5} respectively. We may construct these embeddings so that the re- 

sulting triangles share the edge QS, and so that P and R lie on opposite sides 

of the edge. 

Case I. The quadrilateral with consecutive vertices {P, <2, P, 5} is convex. In 

this case we claim that <i(P, P) < |P — P| so that we have a suitable sub- 

embedding. To verify this claim consider the diagonal PR C M2. It intersects 

QS at a point 

QX = Q + X(S-Q). 
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Consider the corresponding point Q\ on the geodesic (in X) connecting Q to 

S. Then from the triangle inequality and the NPC hypothesis we have 

d{P,Q)<d{P,Qx) + dtQX)R) 

<\P-QX\ + \QX-R\ 

= \P-R\. 

This proves the claim. 

Case 11. The quadrilateral with consecutive vertices {P, Q, i?, S} is not con- 

vex. Because the interior angles of a Euclidean quadrilateral sum to 27r, exactly 

one of the interior angles ZP, Q, P, ZP, £, P is greater than TT. We assume 

(by relettering) that ZP, (3,P > TT. We orient our points so that P = (0,0), 

P = (0, a), a > 0, and so that Q and S lie to the right of the y—axis, (with S 

farther to the right). 

Casella. d(P, R) < |P—P|. In this case our points are a sub-embedding. If we 

reflect Q across the y—axis we increase the distance \Q — S\ and leave the other 

five pairwise distances unchanged. Thus we create a convex sub-embedding. 

Case lib. d{P, R) > \P — R\. In this case we do not yet have a sub-embedding. 

If we lift P (increase a), keeping P = (0,0) fixed, then Q, S must move uniquely 

if we require 

d(PM    d{Q,R), 

d(P,S),    4S,P) 

to remain fixed. Using elementary geometry one can check that the diagonal 

distance \Q — S\ increases as a increases. (One shows that the interior angles 

ZQ, P, 5, Z5, P, Q are increasing with respect to a, by studying the rates of 

change of the other two interior angles of the quadrilateral determined by the 

sequence {P, Q,P, 5}.) We continue increasing a until d(P, R) = |P — P|. 

This must happen by the time Q hits the y—axis, since 

d(P, P) < d(P, Q) + d(Q, P) = |P - Q| + |Q - P| = |P - R\ 

in this case. Thus one obtains a sub-embedding for some 0 < a < d(P, P), 

and by reflection as in Case Ha one may assume that the points {P, Q, P, S} 

are consecutive vertices of a convex quadrilateral.    □ 
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Theorem 2.1.2. [Re] Let (X,d) be an NPC space. Let {P,Q,R,S} C X 

be an ordered sequence and let {P^Q^R^S} C M2 be a sub-embedding. Let 

0 < A, n < 1 be given. Define P\ to be the point which is the fraction A of 

the way from P to S (on the geodesic JP^S)- Let Q^ be the point which is the 

fraction /x of the way from Q to R (along the opposite geodesic ^Q^R- Construct 

the corresponding Euclidean points 

Then 

d(PA,QM)<|PA-QJ. 

Proof. This estimate follows from repeated use of the triangle comparison 

property. As a preliminary step we claim that 

In fact, we can estimate the relative lengths, using the appropriate Euclidean 

identity and the triangle comparison property (2.1ii): 

|p - ^|2 = (i - rfip - Q\2 + fi\p - W - Mi - ri\Q - W 

> (1 - n)d2(P, Q) + nd2{P, R) - /z(l - /x)d2(Q, R) 

>d\P,Q»). 

Analogously, 

Using the comparison property a final time we estimate 

PA-QJ2 = (1-A)|P-QJ2 + A|5-QJ2-A(1-A)|P-5|2 

> (1 - A)d2(P, QM) + \d2{S, QM) - A(l - A)d2(P, S) 

>d2(PA)QM).   D 

Corollary 2.1.3. Abbreviate the distance function d(T,U) by dTU. For an 

ordered sequence {P, Q, R, S} C X,  define the geodesic interpolation points 
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P\, Qn 0,8 in Theorem 2.1.2. Then for any 0 < a, t < 1 the following estimates 

hold. 

d\PuQt)<{l-t)dlQ+tdls 
(2.1iv) 

- t(l - t)(a(dsp - dQR)2 + (1 - oc){dRs - dPQ)2). 

(2.1v) 
d\Qu P) + d\Q^t, S) < 4Q + d2

RS + t{d2
SP - d2

QR) + 2t2d2
QR 

- t(a{dSp - dQR)2 + (1 - a)(dRS - dpo)2). 

In case t = 1 in (2.1v) we deduce the parallelogram inequality: 

"'PR + "-QS — dpQ + dQR + dRS + dSp 
(2.1vi) 

- a(dsp - dQp)2 - (1 - ot){dRs - dpq) . 

Proof. Given {P,Q,R,S} C X we pick a subembedding {P,Q,S,5} C E2, 

and take A, B, C, D to be the oriented vectors pointing to consecutive vertices 

of the Euclidean quadrilateral, i.e. 

A=Q-P       B=R-Q 

C = S-R       D = P-S. 

We have the Euclidean identity 

(2.1vii)      ^ ~ ^|2 = ^t{B + D) + A|2 + ll{1 ' i)(5 + ^ + ^ 
- i|C|2 + (1 - t)\A\2 - i(l - t)|5 + D\2. 

We have omitted some intermediate computations in the above identity, in 

which one makes repeated use of the fact that A + B + C + D = 0.   Since 

\A+C\ = \B+D\ dominates both ||C|-|A|| and ||D|-|B||, the sub-embedding 

hypothesis, Theorem 2.1.2 and (2.1vii) combine to imply (2.1iv). 

Another Euclidean identity (for A + B + C + D = 0) is 

\tB + A\2 + \tB + Cf = \A\2 + ICf + t2\B\2 

(2.1viii) 
+ t(\D\2-\B\2)-t\B + D\2. 

It yields (2.1v), which then yields (2.1vi) by setting t = 1.    □ 
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2.2. The solution to the Dirichlet Problem. To motivate the general 

existence and uniqueness theorem proved below we first recall Dirichlet's vari- 

ational principle in the classical case where X = R. (The general proof will 

follow the same outline.) Let (£},#) be a Riemannian domain. Given a map 

(f) G Pr1'2(fi,]R) we consider the closed convex subset 

%1|2(f2,M) = {u e Wh2(n,R)\u-(/>e Wo1'2^,R)}. 

(Wo'2(Q,M) is discussed in (1.12.2).) A harmonic function u is one that is 

critical for the Dirichlet integral, with respect to small W0
1,2 perturbations. In 

fact, there is a unique u G Wj'2(f2,R) which is critical, and it is the unique 

energy minimizer in that class, as the following argument shows. Define 

E0=       inf       [\Vv\2- 
vewl'2{Q,R) J 

Recall the parallelogram identity for n, v G W1,2(ft^ R): 

(2.2i) 

/ |V(^)|2^ + / |V(^p)|2^ = I j \Vufd» +y \Vvfdn. 
Q n n n 

Pick a minimizing sequence {ui} C Wj'2(fi,R), i.e. one for which the corre- 

sponding Dirichlet integrals converge to EQ. Pick u = Ui, v = Uj in (2.2i). As 

iJ-*oo the right side of (2.2i) converges to EQ. Since ^ G W^,2(n,R), the 

first term on the left-hand side of (2.2i) is at least EQ. We deduce that for a 

minimizing sequence 

lim   f\V(ui-uj)\2 = 0. 
Q 

But Ui — Uj G W0
1,2(fi, R) and for v G W0

1,2(f2, R) one has the Poincare inequal- 

ity 

(2.2ii) f v2dfi < C(ft) / |Vv\2d^ 

Hence 

Uj)2diJL = 0 lim   / (^ 

as well. Thus {uj is Cauchy in the W1,2 norm, and it converges to u G Wl'2 

with energy J^Q. If v is any other admissable function then vt = (1 — t)^ + tv 
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is an admissable family and (2.2i) implies the Dirichlet integrals are a strictly 

convex function of t (unless u = v). Since this convex function has zero 

derivative at t = 0, its derivative must be non-zero at t = 1, so no other 

v G W^2 can be harmonic. 

We now prove the general result: 

Theorem 2,2. Let (ti,g) be a Lipschitz Riemannian domain and let (X,d) 

be a NPC metric space. Let (j) G W1'2^,-^). Define 

Wfr2 = {ue W1'2^ X) | tr(u) ■= tr(<£)}. 

Then there exists a unique u G W^ which is stationary for the p = 2 Sobolev 

energy. In fact, the energy Eu = f \Vu\2diJ, of u satisfies 

Eu = Eo=   inf   Ev. 

(Note that our definition of E in this chapter is consistent with (l.lOv), so 

differs from the one in the rest of Chapter 1 by a multiplicative constant.) 

Proof. Let u, v G W1,2(r2,X). Then there is a natural analog of the map ^^ 

considered above, namely we define w(x) to be the midpoint of the geodesic 

connecting u(x) to v(x). It is easy to check that w G L2(fi,X). 

If x,y G fi we consider the sequence {u(y),u(x))V(x),v(y)} C X. Setting 

t = \ and a = 1 in (2.1iv) of Corollary 2.1.3 we deduce 

2d2(w(x),w(y)) < d2{u{x))u{y)) + d2(v{x),v{y)) 
(2.2m) 1 

--(d(u(y)My))-d(u(x)Mx)))2- 

Multiplying (2.2iii) by f(x) (where / > 0 and / G CC(Q,)), then integrating 

and averaging on the subset \x — y\ < e of 0 x ft (as in (1.3)) we deduce first of 

all that w G VF1,2(0,X). From Theorem 1.12.2 we conclude that w has trace 

<£, so is an admissable function. We also conclude that 

2 J /|VH2 < / /I Vn|2 + j f\Vv\2 -\j /| Vd(«, </)!>, 
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for any / E Cc(fi),/ > 0. (We have used Theorem 1.6.2.) Hence we have the 

analog of (2.2i): 

(2.2iv) 2EW < Eu + Ev - ^ f |Vd(w^)|2dM. 

Now let {Ui} C W^'2 be a minimizing sequence. From (2.2iv) we see that 

lim   / |Vd(ifci, Wj)|2rf/i = 0. 

n 

Since diu^Uj) G Wo1,2(n,M) (Theorem 1.12.2), the Poincare inequality (2.2ii) 

holds and we deduce that {ui} converges in L2(n, X) to a limit function u. By 

Theorem 1.12.2 we have u G W^'2, so by semicontinuity (1.6.1) we also have 

Eu = EQ. If v is any other admissable function then we may define the one 

parameter family of L2 functions uu by defining ut(x) to be the point which 

is a fraction t of the way from u(x) to v(x), on the connecting geodesic. From 

(2.1iv) with a = 1 we have 

d2(ut(x), ut(y)) < (1 - t)d2(u(x),u(y)) + td2(v{x), v{y)) 
(2.2v) 

- *(! " t){d{u(y), v{y)) - d{u{x)Mx))2- 

It follows as above that each ut G W^'2, and that 

(2.2vi) EUt < (1 - t)£;n + tEv - t(l - t) j \Vd(u, v)\2. 
n 

Therefore, if u ^ v the function EUt is strictly convex. Since it has a minimum 

at t = 0, it is strictly increasing at £ = 1, so no other admissable v can be 

harmonic.    □ 

2.3. The pull-back inner product TT. We prove the parallelogram identity 

discussed in the introduction, and discuss the resulting non-negative L1 tensor 

TT. 

Lemma 2.3.1. Let (f2,g) be a Riemannian domain and let X be an NPC 

metric space. Ifu G W1,2^, X), then for any Z, W G r(TQ) the parallelogram 

identity 

|«.(Z + W)\2 + \u.(Z - W)\2 = 2\U*(Z)\2 + 2\u*(W)\2 
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holds. 

Proof. We integrate the pointwise parallelogram inequality (2.1vi) against a 

non- 

negative / G Cc(f2) as follows. For e > 0 fixed, and for each x (sufficiently in) 

the interior of f2, write 

x^e) = x + sZ{x),        X2{e) = x + e{Z + W)(x), 

xz{e) = x + eW(x). 

Then we have: 

,d2(u(x),u(x2(e)))     d2n(xi(e)),«(x3(£))) 
e2 

d2(u(x), u{xi{e)))     d2(u(x2{e)),u{xi{e)) 
72 72 

_ d2(u(xz(s)),u(x2(e))) _ d2{u(xz(e)),u(x)))        < o 

We claim that as e —> 0 this expression converges to the inequality 

J f (MZ + W)\2 + K(Z - W0|2 - 2|n*(Z)|2 - 2\u«(W)\2) d^ < 0. 
n 

To see why this is true consider the second term, for example. By changing 

coordinates from x to y = Xs(e) = x + eW(x) we see that it may be rewritten 

as 

/(/to) + o(1))^M.^ + ^-"0« + °ffl>>(1 + Ce)My). 

Here the first o(l) term depends on the modulus of continuity function 

w(/,£|z|oo)(y), 

and the second one is the difference between Z — W evaluated at x and y. It 

follows from Theorem 1.8.1 that as e —► 0 this integral converges to 

Jf(x)K(Z-W)\2(x)dn(x). 
a, 

From the argument above we conclude that 

(2.3i) \u*(Z + W)\2 + K(Z - W)\2 < 2\u*{Z)\2 + 2\u*{W)\2 
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Applying (2.3i) to the vector fields Z + W and Z - W yields 

\u*(2Z)\2 + \u*(2W)\2 < 2\u*(Z + W)\2 + 2\u*{Z - W)\2 

which is exactly the reverse inequality. Thus the parallelogram identity holds.   □ 

For Z, W € TT(p.) we define 

(2.3ii) 7r(Z, W) = Jk(Z + W)\2- 1|«,(Z - W)\2. 

Theorem 2.3.2.  The operator TT defined above, 

TT : r(ra) x r(rn) -> L^^R) 

is continuous, symmetric, bilinear, non-negative, and tensorial Specifically, 

7r(Z,Z) = \u*(Z)\2>0 

(2.3m) 7r(Z, W) = 7c(W, Z) 

7r(Z5 hV + W) = lm{Z, V) + 7r(Z, W)        (h € C0'1^)). 

If(Q,g) has local coordinates 

yX  )X , . . . , X   J 

and corresponding tangent basis 

{0i,... ,0n}, 

we write 

Try = 'jr(di,dj). 

Then for Z = Z2^ and W = W^'S^- we have 

(2.3iv) 7r(Z,Wr) = 7ryZWi. 

If i/) : Qi —> Q is a C1,1 map, £/ien writing v = uo ip, and 7rv for the corre- 

sponding operator, we have the formula 

(2.3V) (TT^ij = -Klmti^™- 

Hence in local coordinates 

(2.3vi) |V«|2 = </«7ry 
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where [g^] is (as usual) the inverse matrix to the Riemannian metric matrix 

[913] = VPu d^- 

Proof. It is clear from the definition and Theorem 1.11 that the map TT is 

continuous. Abbreviating 7r(Z, W) by (Z, W), and writing (Z, Z) = |Z|2, we 

see from the scaling property in Theorem 1.11 that 

(2.3vii) \hZ\2 = \h\2\Z\2 

for any h 6 C0,1^). In particular, |Z|2 = | — Z|2. We may write the parallel- 

ogram identity (2.3.1) in the customary way: 

|Z + W\2 + \Z- W\2 = 2|Z|2 + 2|W\2. 

It is well-known that the parallelogram identity is equivalent to an inner prod- 

uct structure, and we recall the reason why. Starting with the expression 

|Z + V + W\2) one uses the parallelogram identity to express it in in terms of 

|Z + V — W\2 (and squares of sums of "length" one or two), then in terms of 

\Z -V - W\2, and finally in terms of | - Z - V - W\2, i.e. |Z + V + W\2. 

Symmetrizing the resulting identity (via the parallelogram law) one deduces 

that 

|Z + V + W\2 = 3(|Z|2 + \V\2 + \W\2) 
(2.3viii) 

- (|Z - V|2 + \Z - W\2 + \V- W\2). 

This reduction formula and definition (2.3ii) imply that 

7r(Z, V + W) = 7r(Z, V) + 7r(Z, W). 

By successive applications of this sum-linearity and by scaling one deduces 

that 

(2.3ix) 7r(Z,hW) = h<K(Z,W) 

for any rational h. By continuity of TT we deduce that (2.3ix) holds for any 

h G R. By using a partition of unity argument in f] (as in the proof of (1.8v)) 

we deduce that (2.3ix) holds for h G C0'1^). Thus we have verified (2.3iii). 
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The claim (2.3iv) follows from repeated applications of sum-linearity. To 

see the chain rule, we note from Theorem 1.11 that 

7rf,(5i,Si) = K(5i)|
2 = M^(5i))|

2 

= 7r(^,^am) 

(Here we have used {di} for the basis vectors in JV) Thus (2.3v) holds when 

i = j and the general result follows from the definition (2.3ii) applied to 

7rv(di^dj) and from linearity. 

It remains to verify (2.3vi). We note that the function |Vw|2 and the func- 

tion g^TTij are both coordinate-invariant, the first by definition, and the second 

because of the tensorial-transformation law (2.3v) for TT and g. Now, if g is the 

Euclidean metric <5^, then we have from Theorem 1.10 and the normalization 

(l.lOv) that 

\Vu\2 = —    /   eu(x)da(uj). 
Sn-1 

Writing cu = uldi and applying (2.3iv) we see that 

IV^I2 = —   /   KiiLJuPdafa). 
Wn    J 

Sn-1 

Since 

—   / Mdaiu) = 6ij 

we see that (2.3vi) holds in the case of a Euclidean metric. The general result 

follows because in small neighborhoods one can always pick almost-Euclidean 

local coordinates. By continuity of |Vu\2 with respect the the metric (Theorem 

1.11), we see that in such a local-coordinate chart, (2.3vi) almost holds. Thus 

the functions \Vu\2 and g^iTij are arbitrarily close, so they are equal.    □ 

2.4. Geodesic homotopies and interior Lipschitz continuity. In this 

section we deduce the interior Lipschitz continuity of Dirichlet Problem solu- 

tions, as a consequence of a weak version of the Bochner inequality for AlV-u]2, 
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which states that | V^|2 is almost subharmonic. Using refinements of the ar- 

guments given here we will derive much more precise estimates in the sequel, 

not only for AlVtzl2, but for A7r(V, V"), where V is any Lipschitz vector field. 

In order to motivate the general theorem we recall how one can use finite- 

difference ideas in the classical case (of harmonic functions on Euclidean do- 

mains) in order to deduce interior gradient bounds. The proof in the general 

case will follow the same idea but will be complicated both by the fact that 

the target is more general, and by the fact that the domain is non-Euclidean. 

Because we do not want to assume any linear structure on the target we will 

phrase our finite-difference argument in terms of energy inequalities between 

our solution and certain compactly-supported distortions of it which also make 

sense in the NPC setting. 

Let fi be a Euclidean domain, and let u be the solution to the Dirichlet 

problem, as in section 2.2. Let rj G C^{Q)^rj > 0. Let w be a constant vector 

of small magnitude, and define 

(2.4i) uw(x) = u(x + w). 

As long as \w\ <dist(supp(r/), dtt), the function (l—r))u+r)uw is an admissable 

comparison function, and we have 

(2.4ii) I |Vu|2d/x < J |V((1 - n)u + rjuw)\2dfi. 
n n 

But since uw is also harmonic we have a symmetric inequality 

(2.4iii) J \Vuw\2dLi < j |V((1 - »7K + T7U)|2. 

Adding these two inequalities, cancelling the zero"1 order terms, and collecting 

terms which are first and second order in 77, we get: 

(2.4iv) 

0 < J -V77. V(« - uw)2 - 2 j 7)\V{u - uw)\2 

+ 2 J |V7?|2(n - uw)2 + 2 j772|V(U - uw)\2 + j V(V
2) . V(ti - uw)2. 
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Noting that the quadratic terms are all well-defined, we deduce (by considering 

variations by trj as t —> 0+) 

(2.4v) 0 < J -Vry • V(u - uw)2 - 2 J rj\V(u - uw) |2. 

But this is just the statment that 

(2.4vi) A{uw - u)2 - 2\\7(uw - u)\2 > 0 

weakly. (Note, that in the present case we actually deduce the equality in 

(2.4vi), since we are able to consider two-sided variations (t positive and neg- 

ative). This will not be possible for a general NPC target.) In particular, 

(u — uw)2 is subharmonic, so its value at the center of a ball of radius R 

is bounded by its average value on the entire ball. By monotonicity of the 

approximate-energy functionals (or by directional derivative theory (1.9), this 

average value is bounded above by a dimensional constant time \w\2E/Rn 

(where E is the total energy of the map u). We deduce that u is Lipschitz 

continuous, with constant depending on the distance to the boundary of ft. 

We remark that by considering displacements tw with t —> 0+, we are able 

to deduce from (2.4vi) that 

A|u*H|2>0 

weakly. By then averaging over all directions in the unit sphere (or ball), we 

conclude that 

A|Vu|2 > 0 

weakly. One could use this last inequality to deduce the Lipschitz estimate, 

and that is the strategy we will follow in case our domain is non-Euclidean. In 

that case our argument will be complicated by the fact that it is not possible 

to pick Killing translation fields (like w above) and so there will be error terms 

in our estimate. 

In order apply the above arguments to maps into NPC spaces, we must 

first prove some lemmas showing that the analogs of the maps (1 — r])u + r]uw 

behave well in the general setting. For UQ^UI G W1,2(fi,)X), 0 < t < 1 and 

x G ft define ut(x) to be the point which is the fraction t of the way along the 

geodesic from UQ(X) to Ui(x). 
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Lemma 2.4.1. Let (fi,g) be a Lipschitz Riemannian domain and let (X,d) 

be an NPC metric space. Let uo,Ui G W1,2(Q,X) and let 77 E C0,1^) be a 

Lipschitz function, 0 < 77 < 1. Define 

uv(x) = (C1 - rfuo +^i)(x) = Urj^x). 

Thenu^eW^iQ.X). 

Proof. This lemma follows immediately from the convexity of distances under 

geodesic homotopy and from the triangle inequality. Indeed, we have the 

estimate 

< 4d2(T/17(a;)(a:),^(a.)(y)) + 4d2(^(x)(y),^(y)(y)) 

< 4[d2(uo(x),uo(y)) + d2(u1(x),u1(y)) + (ri(y) - r]{x))2d2{uQ{y),u1{y)))) 

which implies that u^ is a finite-energy map.    □ 

Lemma 2.4.2. Let uo,Ui,r] be as above, with 0 < r] < \. Use subscripts 

on TT to indicate which map is being used to compute the particular tensor. 

Then, considered as bilinear forms we have the following inequality between 

the various TT 'S: 

TTu,, + TTu^ < 7rU0 + 7rUl - VTJ ® d2{u0, m) + Q{r}, Vrj). 

Here Q{r),Vrj) consists of integrable terms which are quadratic in 77 and V77. 

Proof. Define 

7/_ = min(77(x),77(y))        77+ = max(r/(x),r/(y)). 

If 7j_ = 77 (y) we consider the ordered sequence 

{<V (y), ^_ (x), TXI-„_ (x), ^i-^ (y)}, 

take 
77(x) - 77(y) 
l-Sr/Cy) ' 
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and apply (2.1v). In case 7?_ = r}(x) we interchange the roles of x and y and 

also apply (2.1v). In both cases we deduce 

(2.4vii)   ^(u^.u^x)) + (fiui^iy),^-^)) 

< (Piu^ (y), u^{x)) + (^{ui-^ (y), u^^(x)) 

- (77(2/) -riixWrfWy)^)) -d^uo^^xmi -2r,(y)) 

It follows from the geodesic convexity statement (2.1iv) that 

(2.4viii)    d2^ (y), u^ (x)) + d2^!-,,, (y), ^i-^_ (a;)) 

< d2(u0(y))Uo(x)) + d2(ui{y), u^x)). 

Let Z 6 r(rn) be a Lipschitz vector field. By taking y = £(#,£), integrating 

(2.4vii) against a non-negative / € Cc(fi), noting (2.4viii), averaging with 

respect to e, and letting £ —> 0, we deduce 

(2.4ix)  IKJ.CZJ^ + KU^J.CZ)!
2 

< \{u0uz)\2 + |(«i),(z)|2 - ^(zx^K,^))*^) + Q(^ v»7), 
which is the claim of our Lemma. In this deduction we have used the fact 

that d2{uo,Ui) is a real-valued Sobolev function (Corollary 1.6.3), and that if 

77 and h are two functions in W1'2(fi,M), then the measure r)*{Z)h*(Z)dn is 

the weak limit of the expressions 

{ri{y)-r]{x)){h{y)-h{x)) 
E1 

(where y ~ x^x^e)) as e —► 0. This last fact follows immediately from the 

identities 

I fa + h\{Z)\2 = |77*(Z)|2 + \K(Z)\2 + 27?*(Z)/i*(Z) 

and 

((»7 + ^)(y)-(^ + ^)(^))2 

= fofo) - ?7(z))2 + (^(y) - M*))2 + 2(»?(y) - 77(*))(%) - /i(a;)). 

Thus Lemma 2.4.2 is complete.    □ 
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Remark 2.4.3. In case O is a Euclidean domain we can use Lemma 2.4.2 to 

conclude that a harmonic map is Lipschitz continuous in the interior, in direct 

analogy with the argument given at the beginning of this section. Indeed, we 

take w to be a constant vector and define uw(x) as in (2.4i). Then Lemma 

2.4.1 and the minimizing property of harmonic maps imply that (2.4ii) and 

(2.4iii) both hold. We sum these two inequalities and use Lemma 2.4.2 to 

expand the right-hand side. (Take the trace of the bilinear-form inequality, 

i.e. apply it to the basis vectors di and sum over i.) This yields 

I |Vn|2 + J \Vuw\2 < I IVn,!2 + J \Vu^v\2 

< j \Vu\2 + / |Vuw\2 - J Vd2(u, uw) • V77 + J Q{r), Vr?). 
n QW Q n 

Cancelling the zerot/l-order terms, replacing 77 with try, and letting t —> 0 

as before, we deduce the weak subharmonicity statement which compares to 

(2.4vi): 

Ad2(u,uw) > 0. 

This implies the interior Lipschitz continuity. Note, what we are really showing 

(and using) here is the fact that whenever UQ and Ui are harmonic with respect 

to the same domain metric, then GP^Q^I) is subharmonic. 

Unfortunately, for a non-Euclidean domain we must estimate somewhat 

more carefully. In particular, it is convenient to introduce another inte- 

grable tensor. In the case of real-valued maps Uo,Ui, it corresponds to |(1 — 

r1)(uoUZ)+V(u1UZ)\2. 

Lemma 2.4.4. Given UQ,UI G W1,2(fi,X) and rj G C(0)? with 0 < 77 < 1, 

there exists a symmetric bilinear integrable tensor V(uo,Ui,r)) defined on the 

subset {0 < 77 < 1} C ft, as follows: For any Z G iXTfl), 

2 -d/j, -^ V(uo, ui, 77)(Z, Z)dfi 

on the subset 0 < 77 < 1. 

Proof. The reason that V exists is the convexity property of d2(Pt, Qt) (2.1iv) 

on geodesic paths. Since d2 is always non-negative one immediately deduces 
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that it is Lipschitz continuous away from i = 0,1. In fact, for 0 < s < t < 1 

we have the estimate 

(2.4x)    ^zAd2(P0,Qo) < d\PuQt)-d\Ps,Qs) < IzltPiPuQJ. 
1 — 5 1 — t 

Now, let / > 0 be continuous and have support in {6 < rjix) < 1 — 5}, for some 

8 > 0. Assume first that 77 G C™(tt). Given any At > 0 we may partition a 

subset of the interval (<5,1 — 8) containing the support of /, into a collection 

of intervals {(U^i^U]} so that the U are regular values of 77, and so that the 

norm of the partition (the length of the longest interval) is at most At. 

For Z E T(TQ) and for e and x given, we write y for x(a;,e).  Using this 

convention we make the following definitions: 

n 
fii = {x\ **_!  < 77O)  < U} 

CV) = J f(x)\(utiUZ)\2dn 
Qi 

Mtf) = Jf(xmuoUZ)\2 + |(Ul)*(^)|2)^. 

It is clear that 

nmMe(f) = M(f). 

Because the Qi have smooth boundaries it is easy to show that 

limo4(/) = £'(/). 

From the continuity estimate (2.4x) we deduce 

££(/) - ^M£(f) < C£(f) 
(2.4xi) ' 
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Letting e —► 0 in (2.4xi) yields 

(2.4xii) 

Y^Cif) - ^-M(f) < liminf Ce(f) 

< limsup££(/) < Y,£V) + ^M(f). 

Since At may be chosen arbitrarily small (2.4xii) implies the existence of a 

weak limit to the functional C£. The corresponding measure is absolutely 

continuous with respect to Lebesgue measure (from (2.1iv)), so has an L1 

density function V(uo,Ui,ri)(Z,Z). The bilinearity, symmetry and tensorial 

properties of V also follow from (2.4xii), since the functions \(uti)*(Z)\2 arise 

from tensors irti possessing these properties (Lemma 2.4.1). 

If 7] is only in (7(0), then let /, 6 be as above, and let rj € C(fi), with 

\v — v\oo < 8/2. The inequalities (2.4x) and (1.4vii) imply 

(2.4xiii)    \a£(f) - £J(/)| < fc5!»A4«(/) < ^L^S.M(^). 

With this estimate one can approximate continuous rj with smooth rj to deduce 

the general claim of Lemma 2.4.4.    □ 

From the functions UQ,Ui,r} as above, and the resulting tensor V discussed 

in Lemma 2.4.2, we define another auxiliary tensor C > 0 by 

(2.4xiv)     C(uo,uuri) = 7ruo + 7rui -Viu^u^rj) -V(u0,uul - rj). 

The following lemma contains the estimates which will enable us to extend 

our proof of Lipschitz continuity to the general setting. 

Lemma 2.4.5. Let uo,Ui G W^foX), rj G C£(n) with 0 < rj < \. Us- 

ing Q(ri, Vry) to represent integrable quadratic error terms as in our previous 

Lemma 2.4-2, we have the following estimates on {rj > 0}: 

Kur, + Km-r, ^uo + fl"ui ~ C(UQ, Uur]) 

- Vr? (8) W2(*zo, ux) + Q(r/, Vr/) 

(2.4xvi)      0 <  r/7rU0 + (1 - 77)7^ - V(u0,uu !-??)< C(uo,uur)) 

(2.4xv) 

(2.4xvii)    (TT^^ - V(u0,uu 1 - 7?)| 

< C|Vr/|d(wo, wi)(|Vuo|i + |Vui|i) + Qfa, Vr?). 
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Proof. The inequality (2.4xv) follows from Lemma 2.4.4 (also using (2.4xiii)) 

and the inequality (2.4vii). Notice that (2.4xv) is an improvement on Lemma 

2.4.2. The second inequality (2.4xvi) follows from properties of convex func- 

tions. To see why, let c(t) be a convex function defined on the interval [0,1], 

and define 

C(t) = c(0) + c(l) - c(t) - c(l - t). 

Then the inequalities 

(2.4xviii) 0 < tc(0) + (1 - t)c(l) - c(l - t) < C(t) 

hold, since the first one follows immediately from convexity and the second 

one reduces to the other convexity statement 

c(t) <(l-t)c(0) + fc(l). 

Taking t = rj(x)^ y = x(x,£) c(t) = dp(ut(x), ut(y), integrating and averaging 

against suitable /, and applying (2.4xviii) gives the conclusion (2.4xvi). 

We are left to show the final estimate (2.4xvii). From the triangle inequality 

we have 

(2.4xix)    d^i-.^a.)^),^-^)^) - \q(y) - r](x)\d(uo(y),u1(y)) 

< d(u1_7l(x)(x),u1_r]iy)(y)) 

< dfa-ntoWiU^rn^y)) + \v(y) - vWMuoiy)^^)). 

The inequality (2.4xvii) follows from (2.4xix) upon squaring, integrating and 

averaging, and letting e —> 0. Letting the reader check the details, we note 

that the argument uses the estimates 

d{ut{x),ut(y)) < d(uo{x)JUo(y)) + d(u1(x),u1(y)), 

\v(y)-v(x)\<s\zu\wv(x)\ + o£(i)), 

and the fact that the p = 1 approximate energy functions of a p = 2 Sobolev 

mapping, when integrated against an L2 function /i, converge to the integral 

of the limit p = 1 energy density times h. This completes the estimates of 

Lemma 2.4.5.   □ 



SOBOLEV SPACES AND HARMONIC MAPS 637 

Theorem 2.4.6. Let (f^g) be a Lipschitz Riemannian domain, and let u 

solve the Dirichlet problem, as in Theorem 2.2. Then u is a locally Lipschitz 

continuous function in the interior of Q,, where the local Lipschitz constant is 

bounded above by 

c(       
E       y 

\mm{l,dist{x,d£l)n))   ' 

where C is a constant which depends only on dimension n and on the regularity 

of the metric g, and where E is the total energy of the map u. 

Proof. Let it; be a unit vector field defined on a local coordinate chart of Ct. 

Write usw(x) — u(x(x,s)). The function usw is harmonic with respect to the 

pull-back metric gsw = x*(g). Let 77 E CQ(Q)J with 0 < 77 < |. Assume (for 

technical reasons) that d{r) > 0} is a set of zero Lebesgue measure. Take 

UQ = u, Ui = usw and define i^ as above. Assuming that s is sufficiently small 

we may write the analog of the sum of (2.4ii) and (2.4iii) as 

J {^uo)i39iJd^ + / {nmhtf'drisv, < J {nujijg^dn + j {7rUl_T1)ij{gijdfi)sw. 

We may regroup the terms as follows: 

(2.4xx)      / (7rno + TTuJyfl^d/x <  / {7rUr) + 7rUl_J^g^d/i 

+ / {nu^r, - ^u1)ij({glJdfi)sw - glJdn) 

n 

If we define the functions V and C to be zero on {77 = 0}, then because of 

our assumption that d{ri > 0} has measure zero, we may deduce from Lemma 

2.4.5 that 

(2.4xxi)      / (7rUr) + TTU^ )ijg
iidiJJ 

n 

<    / (^no + Ttu^ijO13dp -   / VT? • \/d2(u, Usw)dfJL 

- I Ciuo^uu^ijg^dfi+Qiri, Vry). 
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To estimate the other terms in (2.4xx) we write 

(2.4xxii) 
TTu!-^ - 7ru = TTu^ - V(U0, UU 1 - T]) 

+ V(uo, UU I-V)- V^uo - (1 - V^ut + V^m - TTuo)- 

The last term of (2.4xxii) contributes a term in (2.4xx) which may be rewritten 

by changing variables in part of the expression, from x to x(x, s): 

(2.4xxiii)      / ri(7rUaw - ^u)%j{{9%3dii)8W - gtJdfi) 

n 

= JvMij(2gijdfi- {gijdii)sw - (gijdii)^sw) 

+ / Mijiv-sw - v)(gi3dfi - (gijd^)-sw). 

Combining (2.4xx)-(2.4xxiii) with the estimates of Lemma 2.4.5 we see 

0 < / d2(u,usw)Arjdfi- / C(uo,usw,r])ijg
lJdfjJ 

Q n 

(2.4xxiv) +Cs     \Vri\d(u, wat£,)(|Vu|i + |Vuau,|i)d/x 

+ Cs J \C(u0,usw,r))\dn + Cs2 j(r) + |Vr/|)|Vu\2d^ 

Dividing the inequality (2.4xxiv) by 52, averaging over a frame of unit vectors 

w, and letting s —> 0 we deduce 

(2.4xxv) / |Vw|2(A?7 + C\Vr)\ + C^dfi > 0. 

(Note that we may remove the technical condition that d{r] > 0} have zero 

Lebesgue measure by an approximation argument, once (2.4xxv) is established 

for functions satisfying this requirement.) This last inequality says that | Vn|2 

is essentially subharmonic. It is well known (see e.g. [Mo]) that this kind of 

differential inequality implies that the essential supremum of \Vu\2 in a ball 

of radius ^ is bounded by a constant times its average value on the concentric 

radius R ball, as long as R < 1. (One can also show this by using radially- 

symmetric test functions in (2.4xxv) to deduce a differential inequality for the 
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integral averages of |Vn|2 over radius r spherical shells centered at points in 

the T- ball.) Hence the directional derivative energies |n*(Z)|2 are similarly 

bounded (for bounded vector fields Z.) Working with the local-coordinate field 

di we construct a representative of u which is locally Lipschitz continuous in 

the di direction, using the techniques and results of Lemma 1.9.1. Working 

inductively in successive directions 82,... , <9n, we construct a representative of 

u which is Lipschitz continuous in the y ball, with Lipschitz constant bounded 

by a multiple of the bound for \Vu\. For a given x € Ct we may choose R to 

be the minimum of d(x,dQ) and 1. The resulting estimate for the Lipschitz 

constant is exactly the claim of our Theorem.    □ 

Remark 2.4.7. Wherever the boundary of Q is smooth and the boundary data 

are Ca (0 < a < 1), T. Serbinowski has shown that the solution u extends to 

be Ca up to the boundary, with the Ca norm depending on the boundary and 

on the total energy of the map [Se]. 

2.5. Center of mass constructions. We recall that averaging works well 

for maps to NPC spaces (X, d), and that distances between centers of mass can 

be estimated from above in terms of the average distances between the maps. 

These distance estimates follow from the quadrilateral comparison lemmas of 

[Re] which we discussed in §2.1. In the next section we will convert the distance 

estimates into Lipschitz and energy bounds for various auxiliary Sobolev maps 

related to the study of equivariant harmonic maps. 

Note that the definition of L2 maps given in (1.1) really only requires the 

domain to be a measure space, as long as one restricts to separable maps 

for which inverse images of open sets are measurable. In this generality we 

consider a domain measure space M, and a probability measure u defined on 

M (i.e. u is non-negative with total mass 1). 

Lemma 2.5.1. Let (M^v) be a probability measure space, let (X, d) be an 

NPC space, and let f G L2(M, X). Then there exists a unique center of mass 

f — f v for f' 1 defined as the point in X which minimizes the integral 

IfAQ) = I d2(f(m),Q)du(m). 
M 



640 N. J. KOREVAAR AND R. M. SCHOEN 

Proof. We claim that the integral above is uniformly convex in Q, so that any 

minimizing sequence converges to a (unique) limit. Indeed, if PQ^PI are two 

points in X, with midpoint Pi, then triangle comparison (2.1ii) yields 

rf2(/(m),P§) < ^2(/(m),Po) + ^(/(mJ.PO - ^2(Po,Pi). 

Integrating over M we obtain 

\d2(Po,P1)<l{I(P0) + I(P1)}-I(P,). 

Thus any minimizing sequence {Pi} is Cauchy, so the integral attains its min- 

imum for a unique point in X.   □ 

Proposition 2.5.2. Let M be a measure space, and let v, v' be two probability 

measures on A4. Suppose f,h are in L2(A4,X) for both measure choices. 

Write f for fv and h for h^.  Then for any 0 < a < 1 we have the estimate 

d2(7,h)    <   Jd2(f,h)dv-aJ[d(f,h)-d(7,h)}2dv-(l-a)J{d(fJ) 
MM M 

-d(h, h)}2du + 2d(7, h) I d(h, h)\du - dv'\. 
M 

Proof. Consider the geodesic from Q = f to R — h, and write Qt for the point 

which is a fraction t of the distance between Q and R. Since 

//,„(/) < IfAQt),        hyih) < hAQi-t) 

we have 

(2.5i)    Jd2(fJ) + d2(h,h) dv < Jd2(f,Qt) + d2(h,Q1-t)dv 

+ f[d2{h, h) - d2(h, Qi-tWv - dv'). 

Estimate the integrand which appears in the first term of the right side by 

using Euclidean distance comparison: For each m € M we construct the 

quadrilateral with consecutive vertices f(m),f,h,h(m) and apply (2.1v): 

(2.5ii) 
d2(f,Qt) + d2(h,Q1-t) < d2(fj) + d2(h,h) 

+ t[d2(f, h) - d2(fM - t(a{d(f, h) - d(7,h)}2 

+ (1 - aMfJ) - d(hM2) + ^2d2(7,h). 
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Integrating (2.5ii) with respect to 1/ yields a bound for the first term on the 

right of (2.5i). We may bound the second term by writing 

as a difference of squares, using the fact that 

d(h,Q1-t) = td(f,'R), 

and applying the triangle inequality in the difference term. The resulting 

upper bound is 

td{7,h) J[d(h,h) + d(h,Qi-tWv - du'\. 

Use these estimates in (2.5i) and note that the terms which are order zero in 

t cancel. Divide the resulting inequality by t. Proposition 2.5.2 is the limit 

inequality as t —> 0.    □ 

Remark 2.5.3. Note that Proposition 2.5.2 is the natural generalization of the 

distance convexity statement (2.2iii) which lies at the heart of the solution to 

Dirichlet's problem. Indeed, (2.2iii) is the case of Proposition 2.5.2 in which 

the measure space consists of two points a, 6, each of mass | (v = v') and 

a = 0. The maps /,/i are given by 

/(a) - u{x)J(b) = v(x)J = w(x) 

h(a) =v(y),h(b) = v(y)Ji = w(y). 

More generally, if u G L2(M x M^X) is any parameterized family of maps, 

then one can construct the average map analogously. In this case we take any 

probability measure u = z/ defined on Ai, take /(A) = u(x,X) and h(X) = 

u(y,\). Applying Proposition 2.5.2 with a = 0 we deduce (after integrating 

over the set ja: — y\ = 6, averaging, and letting e —> 0) the generalization of 

(2.2vi): 

(2.5iii)       E* <  f Euxdv(\) - f I \Vd{ux{x),u{x))\2d^{x)dv{X). 
M MM 

(We have written u\(x) for ix(x, A).) 

Finally, we recall the distance decreasing property of projection onto convex 

subsets of NPC spaces X.   This fact is well-known, at least in the case of 
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Riemannian NPC X. In metric space generality it is easiest to prove with 

quadrilateral comparisons. 

Proposition 2.5.4. Let K be a closed, geodesically convex subset of the NPC 

space X. Then there is a well-defined nearest-point projection map TT : X —» K 

so that 

d(ir(Po)MPi))<d(Po,Pi) 

for all PQ, PI G X. In particular, if M, v, f are as in Lemma 2.5.1, and if the 

range of f lies in K, then so does the center of mass f. 

Proof. The last claim, that the center of mass / lies in K whenever of the 

range of / does, follows from the existence of TT: Because TT fixes the range of 

/, its distance decreasing property immediately implies 

ifA<Q)) < ifAQ) 

for all Q G X. The uniqueness of / then proves this claim. 

The existence of the projection map is the fact that every Q G X has 

a unique nearest point in K: If PQJPI are in K then so is Pi, and so the 

reader may verify (as in Lemma 2.5.1) that triangle comparison (2.1ii) forces 

a (distance to Q) minimizing sequence {Pi} C K to be Cauchy. 

We now show the distance-decreasing property of TT. Consider the quadri- 

lateral with consecutive verticies Po,7r(P{)),7r(P1)JP1. Let Qt be the point a 

fraction t of the way along the geodesic from 7r(Po) to 7r(Pi). Applying (2.1v) 

(as in Proposition 2.5.2) yields 

<P(Po,Qt) + <P(Pi,Qi-t)   <   d2(P0,7r(Po)) + d2(P1,ir(P1)) 

+*[d2(Po)Pi)-d2(7r(Po),7r(P1)] 

+2i2d2(7r(Po),7r(P1)). 

Combine this with the competing statement 

d2(P0,7r(Po)) + d2(PuTrtPx)) < d2(Po,Qt) + d'iPuQ^t). 

Note that the terms which are order zero in t cancel, divide the resulting 

inequality by £, and let t —» 0 (just as in the proof of Proposition 2.5.2) to 

deduce Proposition 2.5.4.   □ 
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2.6. Equivariant mapping problems. Let (M, g) be a metrically complete 

Riemannian manifold, possibly with smooth compact boundary dM. Denote 

the fundamental group TT^M) by F and the universal cover of M by M. Let 

X be a metric space, and p : T —» isom(X) a homomorphism. Such p are 

also called representations of F. We will write p^x for p(j)(x). A particular 

case of this configuration is the (identity) representation of F to isom(M), in 

which F acts via deck transformations. 

A map u : M —» X is said to be F—equivariant if 

^(7^) = p{^)u{x) 

for all x e M and 7 G F. 

For a F—equivariant map u the real-valued functions d(u(x), u(y)) are in- 

variant with respect to the domain action. If the map u is locally a Sobolev 

map, then it follows that the directional and Sobolev energy densities consid- 

ered in Chapter 1 are F—invariant, so we may think of them as being defined 

on the quotient M. 

An equivariant map u is said to be harmonic if it is (locally) a p = 2 

Sobolev map, and if it is stationary for the p = 2 total energy, defined for 

locally Sobolev, equivariant v : M —» X by 

(2.6i) Ev =  f \Vv\2dfi. 
M 

This integral is well-defined as long as M has finite volume. In our case of 

NPC target X it is clear that the energy convexity statement (2.2vi) holds: 

(2.6ii) Eut <{l-t)Eu+tEv-t{l-t) j\Vd{u,v)\2. 
M 

(In fact, the more general statement (2.5iii) holds.) Thus stationary is equiva- 

lent to minimizing. (Note, the Dirichlet problem considered in §2.2 is a special 

case of equivariant theory, if one takes the homomorphism p to be trivial.) 

A strategy in studying group representations which has proven useful is 

to Construct harmonic F—equivariant maps, since in many cases the result- 

ing Euler equations (or Bochner formulas) for the maps allow one to deduce 

information about the representation.   (For example, in many cases one can 
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prove that the map must be constant and therefore the map's equivariance 

implies that p(r) has a fixed point.) One consequence of Proposition 2.6.1 

below is that in case of compact M the class of finite-energy equivariant maps 

is non-empty, so the direct method of energy minimization hats a chance of 

producing a harmonic equivariant map. 

Assume that F is finitely generated, say by 7i,... ,7p.   (If M is compact 

this is always the case.) For P G X define 

(2.6iii) S(P) =   max d(p(7i)P,P). 
2=1,... ,p 

(It is clear that 6 is a positive function on X if and only if the representation 

p of F has no fixed points.) 

Proposition 2.6.1. Let M, F, p be as above with dM = 0 and suppose that X 

is NPC. Then there exists a p—equivariant locally Lipschitz map u : M —> X. 

Let P G X satisfy 6(P) = 8'. If M is compact then u can be constructed to be 

globally Lipschitz, and there is a constant C = C(M) so that the global bound 

on the Lipschitz constant L of u is of the form 

L < C6'. 

If M is complete (but not compact) the local Lipschitz constant L(x) ofu(x) 

is bounded by 

L{x) < C(x)6' 

for a locally bounded function C{x), which depends (only) on the domain man- 

ifold M. 

Proof Before constructing the map u note that the equality 6(P) = 6' implies 

that we may estimate d(p(~{)P, P) for any 7 G F, in terms of the word length 

of 7 with respect to the generating set 71,... ,7p: For example, write pi for 

p(7i) and bound 

d(pipjp,p) = d(pjp,P-iP) 

<d(pjp,p) + d(p,p-iP) 

= d(pjp,p) + d(pip,p) 

<2S'. 
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It follows inductively that if 7 has word length I7I < fc with respect to the 

generating set, then 

(2.6iv) d{p{1)P,P)<k8'. 

We construct an initial equivariant map v which is piecewise constant on 

M, and we first consider the case of compact M: Pick a compact fundamental 

domain MQ for M, in M, so that its boundary has zero measure. Then the 

action of 7 G Y on M moves MQ to a different fundamental domain 7M0, and 

these images define a partitioning of M except on the zero-dimensional set 

formed by their boundaries. Define the piecewise constant function v by the 

equivariant extension of V(MQ) = P: 

v^Mo) = p{rr)P. 

We define the (mollified) map u(x) to be the average of v, taken over B(xyl). 

In the formalism of Proposition 2.5.2 take the measure space M to be the 

natural numbers N. Let 71,72,... be a denumeration of Y which extends 

71,... , 7p. Define the mapping / from N to X by 

/(0 = p(7i)P. 

For x G MQ define the probability measure is = vx on N by 

M(£(x,l)n7i(Mo)) 

"'W-        /i(B(x,l)).      • 

(Here /x is the Riemannian volume measure on M obtained by lifting the 

corresponding measure from M.) Define 

u(x) =JUx. 

The map u is Y—equivariant because the measures ux are Y—invariant, and 

because / is equivariant with respect to the natural action of Y on N. 

Because MQ is compact there is a finite bound k so that whenever the 

"translation" 7M0 has points within distance one of MQ, then the word length 

I7I < k. It follows that (2.6iv) holds with this choice fc, for any such 7. Hence 

(2.6v) d(u(x)J(i)) <2k6' 
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whenever 7 = 7^ is as above. This is because all such f(i) are within kS' of P 

so the center of mass u(x) (which depends only on these values f(i)) is also 

within the k6f ball about P (e.g. Proposition 2.5.4). 

If x, y e M it is clear that we also have the estimate 

(2.6vi) EM0-^(0l<Ci|a;-j/| 
i 

for some constant Ci depending only on M. 

We now apply Proposition 2.5.2 in the case f = h, v = vy and z/ = i/x. The 

first term in the resulting estimate is zero, we ignore the second one since it 

is non-positive, and we estimate the final one using (2.6v,2.6vi) above. The 

result is the inequality 

(2.6vii) d2(u(x), u(y)) < 2d{u{x), u{y))2k8fC^x - y|, 

which implies the desired uniform Lipschitz constant for u. (Since the Lipschitz 

constant of u is F—invariant it suffices to estimate it on MQ.) 

For non-compact M the proof is essentially the same, except now the fun- 

damental domain MQ is only locally compact. We replace the global constant 

k in (2.6vii) with a number k{x) which measures the maximum word length 

I7I over 7 satisfying 

£(a;,l)n7Mo^0. 

The constant Ci must now be chosen to depend on a; as well, so that (2.6vi) 

holds for all y 6 5(x, 1). The inequality then holds for all y if Ci is taken to 

be > 2. (If M had sectional curvature bounded from below then Ci could still 

be chosen globally.) The result of these modifications is the inequality 

(2.6viii) d2{u{x), u(y)) < 2d(u(x), ^(2/))2A;(x)(5,C1(a;)|x - y\ 

for all #, y G M. This proves Proposition 2.6.1.    □ 

Remark 2.6.2. Assume the configuration of Proposition 2.6.1. If we select a 

"small" closed set C£ in M, by which we mean one that lifts to a compactly 

contained subset of the interior of MQ, then we can find an equivariant map u 

which is piecewise constant on each lift of Ce, and which has the same Lipschitz 

constant control as that given in Theorem 2.6.1. The way to construct this 

function in terms of our previous calculations is to first scale the domain metric 
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so that the lift of C£ is distance at least 1 away from <9Mo. In this case the 

function u constructed in the proposition will have the desired properties. 

For general complete M it is not clear whether the maps u constructed in 

Proposition 2.6.1 will have finite energy; the calculation for a particular M 

depends on an interplay between the deterioration of the Lipschitz constant 

and the decay of the volume, as one approaches oo on M. 

Even when the set of candidate maps for the equivariant problem (without 

boundary) can be shown to be non-empty, there is no Poincare inequality so 

the question of convergence is much more delicate than it was for the Dirichlet 

problem. For example, it is possible for a minimizing sequence to approach 

oo in X. In the case of non-locally compact target it may even happen that 

a sequence which is uniformly bounded has no convergent subsequence. It is 

true and somewhat surprising, however, that the sequence of tensors TT for any 

minimizing sequence does converge, to a unique limit tensor: 

Proposition 2.6.3. Let M be a metrically complete Riemannian manifold, 

possibly with compact Lipschitz boundary dM, and with fundamental group 

TT^M) = P. let X be an NPC space, and let p : P —»isom(X) be a homomor- 

phism. If the corresponding set S of of equivariant (p = 2) Sobolev maps is 

non-empty, then for any energy minimizing sequence {vi} C S we have 

.lim   f   f  \\(vt).{tj)\-\{vJUU)\\2da(U)d^x) = 0. 
^,3-*oo J       J 

In particular, there is a unique integrable tensor TT SO that 

lim  /    /   |7r(u;,u;) — TTy^uj,u)\dcr(uj)dfi(x) = 0. 

Proof. For two maps u,v and their midpoint map w, we apply quadrilateral 

comparison (2.1iv) with t = | and (for the first time in this paper) a = 0: 

d2{w(x),w(y))    <    -d2(u(x),u(y)) + -d2(v(x),v(y)) 

-±[d(u(xU(y))-d(v(x)My))}2. 
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Multiplying this inequality by a non-negative / having support in the interior 

of M, ball-averaging as in (L2vii), and letting e —* 0, yields 

(2.6ix) 

n + 2    f f        N (d(u{x),u{y))     d(v{x),v(y))\2 dfi(x)dii(y) 
lim sup r // «" o     4a;n 

a:-2/|<e 

(We have normalized the functionals #"(•) to be consistent with our total 

energy definition (l.lOv).) Using the techniques of Chapter 1 it is possible to 

show that the expression on the left of (2.6ix) approaches ~- times 

J f f{x)\ |«.H| - KMI \2dv.{x)M») 
Sn-1   M 

as e —> 0. We leave the details to the reader, but sketch the idea: Use a 

partition of unity to approximate the integral in (2.6ix) with a sum of ones 

involving e directional energies, so that the new limits are Q x 5n~1. Then use 

the fact that for directional energies, the p = 1 approximate energy density 

functions of p = 2 Sobolev maps converge in Lfoc to the p = 1 energy functions. 

The claimed limit will then follow from the Lebesgue dominated convergence 

theorem. 

Pick an increasing sequence {/&} with compact support in the interior of M, 

so that the fk converge to the constant 1. The right side of (2.6ix) converges 

to the number 

!#« + -Ev - Ew. 
Zi Zi 

We may therefore deduce the first limit claim of Proposition 2.6.3 by choosing 

u — Vi, v — Vj in (2.6ix), for the functions {fk}- The second claim follows from 

the fact that 

\7ru(uj,uj) - 7rv(u,v)\ < \ \U*(UJ\ - \v*(u)\ • | | \U*(LJ)\ + |v*(a;)| | 

and the Cauchy-Schwartz inequality.    □ 

In case one is attempting to understand the behavior of a minimizing se- 

quence, it is helpful to know that the modulus of continuity is under control. 

The next theorem allows one to construct Lipschitz minimizing sequences. 
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The idea is to modify a given minimizing sequence as follows: Use its val- 

ues as boundary data for a family of Dirichlet problems, and then use the 

averaging techniques of §2.5 to piece these Dirichlet problem solutions into a 

Lipschitz sequence which is still minimizing. In spirit this is like the Perron 

method for constructing harmonic functions, but the technical ideas here are 

quite different since they are not based on the maximum principle. 

Theorem 2.6.4. Let M be a complete Riemannian manifold with finite vol- 

ume (and without boundary), and let X be an NPC metric space. Let p : F —> 

isom(X) be a representation of TT^M) = P. If M is compact there is an en- 

ergy minimizing p— equivariant sequence {ui} with the property that all the Ui 

are (uniformly) Lipschitz continuous. In fact, there exists a C depending only 

on M so that the Lipschitz constants of each Ui can be bounded by 

CS(P), 

where 8 is the displacement function (2.6iii) and P is any point in X. 

If M is complete (but not compact), suppose the set of finite-energy p— 

equivariant maps from M —> X is non-empty, and that there exists one of 

energy E < oo. Then there is an equivariant minimizing sequence {ui} : 

M —> X, so that for any compact subset K C M and i sufficiently large 

(depending on K), the Ui are Lipschitz continuous on (the lift to M of) K, 

with pointwise Lipschitz constants bounded by C(x)E^. Here C(x) is a locally 

bounded function depending only on M. 

Proof. First treat the case of compact M. Start by picking a finite covering of 

it with (say) balls, {I?-7}^!,...,™. Pick the balls small enough so that for any 

x e M the set 

(2.6x) U   B* 
j\x€BJ 

is simply connected. Pick a subordinate partition of unity, {rf}, and compact 

subsets Zj C Bj so that the support of each rjj is contained in the interior 

of Zj. Lift the functions r]j, and the sets Bj,Zj to invariant functions fjj and 

invariant sets Bj,Zj on M. 
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By Proposition 2.6.1 the set of admissible maps is non-empty, and the infi- 

mum of their energies E0 is bounded by 

(2.6xi) E0 < C8(P)2 

where C depends only on M. Now, let a minimizing sequence {vi} be given, 

with energies EVi —> E0. In each Bj use the (equivariant) traces of Vi as 

Dirichlet data, and apply Theorem 2.2 to construct equivariant harmonic maps 

u^. Extend uj outside JB-
7
, by defining ul — Vi there. By Theorem 1.12.3 it 

follows that 

(2.6xii) E< <EV\ 

Now define the equivariant sequence {ui} on M by 

m 

In the formalism of Proposition 2.5.2, this means that for the measure space 

M = {1,... , m} and for x G M we assign a measure ux with values 

the map /:{!,... , m} :—■> X given by 

and define Ui(x) to be the center of mass f„x. 

Proposition 2.5.2 allows us to compare Ui(x) to Ui{y) for y near x. Defining 

Uy in terms of the values fjj(y) and h in terms of the values ul{y), we deduce 

(2.6xiii) 
m 

d^u^Mv)) < Y.vj{x)d2{v?i{x)A{y)) 
3 = 1 

m 

+ 2d(ui(x),ui(y))J^d(ui(y),u(y))\fjj(y)-f]j(x)l 
3 = 1 

The following limit statement, which we digress to prove, quantifies the sense 

in which the second term in the right side of (2.6xiii) becomes negligible as 
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oo: 

(2.6xiv) lim      sup    rf(^(2/),iti(y)) ='0. 
2->00     j€{l,...,m} 

yezd 

Since Ui(y) is an average of the uKy) for which y G Zj, (2.6xiv) follows from 

Proposition 2.5.4 and the equation 

(2.6xv) lim       sup     d(ui(y), u[(y)) = 0. 
z-»oo     j>le{l,...,m} 

We show (2.6xv): There is a <?>o > 0 depending on the sets Z-7 so that when- 

ever y G Zj, the ball B(y,26o) C Bj. From the interior Lipschitz continuity 

(Theorem 2.4.6) and from (2.6xi) we see that for \z — y\ < So the Lipschitz 

constant of L^z) of u^z) is uniformly bounded (independently of y,Zj and 

large i), 

(2.6xvi) Li(z) < L6(P)2 = V 

(for some constant L depending on M and E®). Thus for y G Z3]C\ Zl and 

|^ — y\ < 6 the triangle inequality yields 

diui^Miz)) > d(uj(y),u[(y))-2L'8. 

Integrate over jB(y, 6) to get 

(2.6xvii)      J   d2(ui(z)M(z))driz) > CrWuitoMiv)) - 2^]2. 
B(y,S) 

The function d(i^,i4) defined on M equals zero outside B-7 U JB
Z
, SO we can 

bound the left side of the above inequality via the Poincare inequality 

(2.6xviii) /   dPiulvfidiM^C    I   |W(uJ,i4)|2d/i. 
BouB1 BJUB1 

By the energy convexity statement (2.6ii) and by (2.6xii) we have the bound 

(2.6xix) /   \Vd(ulvb\2dii < 4z{EVi - E0) 
BJUB1 

for the right side of (2.6xviii). The limit claim (2.6xv) follows by combining 

(2.6xvii), (2.6xviii), and (2.6xix) for arbitrarily small 6. 
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We now return to the estimate (2.6xiii) to show the uniform Lipschitz conti- 

nuity of the functions t^, for i large. By (2.6xiv) and the geometric-arithmetic 

mean inequality we may pick i large enough so that the second term on the 

right of (2.6xiii) is bounded above by 

1 
^(uiW^Uiiy)) 

independently of x,y. Thus 

d2(^0r),^(y)) < 2j2vj(x)d2(ui(x),ul(y)). 
i=i 

Applying the interior Lipschitz continuity estimate (2.6xvi) for the harmonic 

map ul then gives 

for some universal constant C depending only on M. By removing a finite 

number of the {ui} from our sequence, we deduce the Lipschitz control claimed 

in Theorem 2.6.4. 

To show that {ui} is minimizing we also use (2.6xiii).   Applying Young's 

inequality to the second term on its right side gives 

m 

+1 (E^y),^)) ] (^\vj(y)-^(x) 

Averaging with respect to \y — x\ < e, integrating over M, letting e —> 0, and 

recalling that Eu(f) refers to the value of the linear functional £,u(#) applied 

to /, the above inequality implies 

(2.6xx) (1 - 6)EUi < YlEuhrf) + yO<(l). 
3 

(The Oi{l) terms approaches zero as i —-> oo, by (2.6xiv).) Because the {rf} 

form a partition of unity, and because Eu^) is linear, 

(1 - 6)Er < EVi + J2(Eui(rf) - EVi(r]j))        + f 0,(1). 
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Appealing to Proposition 2.6.3 we deduce that the sum term in the above 

inequality approaches zero as i —> oo, so 

(2.6xxi) limsup(l - 6)EUi < E0. 

Hence {ui} is minimizing, since 6 is arbitrary. Thus the proof of Proposition 

2.6.4 is complete in case M is compact. 

The case of non-compact M is a modification of the above argument. For 

a base-point XQ G M write 

Km = {x 6 M : \x — Xo\ < m}. 

Pick a countable covering of M by balls {B-7}^ so that for an increasing 

sequence {jm}meN the finite collections, 

cover Km, and so that j > jm implies Bj fl Km_i = 0. Pick a subordinate 

partition of unity {rf} and sets Zj C Bj as in the compact case, and denote 

their lifts to M as before. For fixed m E N we consider the finite partition of 

unity 

W}i=i,..^u{i-x;^}. 

Given a minimizing sequence {vi} as before, we again do ball replacement 

in {Bj}j==ii...jm. Define the average map Ui as before: one is now averaging 

over a set of jm + 1 points, the last of which is Vi(x) itself. Because of the way 

they were constructed, {r/-3}^!^. jm/ is a partition of unity for i;Cm/_1, for each 

m' < m. It follows that the limit statement (2.6xiv) still holds (uniformly) for 

y G Km'-i. Therefore one is able to deduce a uniform Lipschitz bound L for 

the functions Ui restricted to ^m'_i, when i is large. It is of the form 

L<Cm,El, 

which is the claimed dependence. The proof that {ui} is minimizing proceeds 

as before, except now one replaces the pointwise estimate for d(^(i/),Ui(y)) 

(2.6xiv) with the weaker claim 

lim     d2(u3
i(y),ui(y)) = 0,        j = l,...,jm. 

1-+00 J 
M 
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This follows from the triangle inequality and 

lim [d2(ui(y),vi(y)) = 0.       j = 
2->00 J 

M 

Since d(uJ
i(y)JVi(y)) — 0 outside of a compact subset of M this last equality 

follows from the Poincare inequality and energy convexity, i.e. the analogies 

of (2.6xvii) and (2.6xix). Thus, by a diagonalization with respect to the Km 

and the Vi we are able to construct a suitable sequence {ui}. The proof of 

Theorem 2.6.4 is complete.    □ 

Using minimizing sequences which have local modulus of continuity control 

enables one to reduce the question of global convergence to that of convergence 

at a point: 

Proposition 2.6.5. Let M be a complete Riemannian manifold, possibly with 

compact Lipschitz boundary dM. Let T = 7ri(M), and p : F —» isom(X) be 

a homomorphism. Let {ui} be an equivariant minimizing sequence which has 

local modulus of continuity control That is, for each x G M we assume there 

is an (equivariant) function UJ(X, r) (0 < r < rx) which is monotone increasing 

in r, which satisfies UJ(X, 0) = 0 and so that 

sup    sup   d(ui(x),Ui(z)) < uj(x,r). 
i      \x—z\<r 

Then the sequence {ui} converges (locally uniformly and hence in Lfoc) to an 

equivariant harmonic map u if and only if there exists an x G M at which the 

sequence of points {ui(x)} is convergent 

Proof The reason this proposition is true is the energy convexity statement 

(2.6ii) which implies 

(2.6xxii) / |Vd(ui,^)|2d/J -» 0. 

M 

Let x G M be a point of convergence, {ui(x)} —> P. By the modulus of 

continuity estimate and the triangle inequality it follows that 

limsup   sup   d(Ui(z),Uj(z)) <2uj(r) 
ij—too    \z — x\<r 
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(where we have written uj(r) {oruj(x,r). Thus for i,j sufficiently large, the 

function 

d(ui(z),uj(z))-3uj(r) 

is negative on the set \z — x\ = r: For such i,j we may apply the Poincare 

inequality for compact exterior regions to B(x,r): 

(2.6xxiii) 

B(x,R) B{x,R) 

By (2.6xxii) the integral on the right converges to zero as i,j —> oo, so we 

deduce from (2.6xxiii) and the modulus of continuity control that 

limsvLpd(ui(z)^Uj(z)) < 3u)(r) 
ij—too 

for all z G -B(x, R). Since R and r are arbitrary, it follows that the sequence 

{ui} converges everywhere. Because of the modulus of continuity control this 

convergence is uniform on lifts of compact subsets of M. In particular, the u^ 

converge locally in L2 to an equivariant map u, so semicontinuity (Theorem 

1.6.1) applies and the map u is harmonic.    □ 

Remark 2.6.6. Compare the results of the last three propositions. If the class 

of equivariant Sobolev maps is nonempty, and if X is locally compact, then 

the minimizing sequences of 2.6.4 either converge to the ideal boundary (at oo) 

of X, or a subsequence converges to a harmonic map. It follows from energy 

convexity (2.6ii)(2.5iii) that all harmonic maps are contained in a (possibly) 

multi-parameter family of "parallel" harmonic maps. (And from 2.6.3 they all 

induce the same tensor TT.) A very interesting and important (unanswered) 

problem is to understand when harmonic maps are actually unique (up to 

domain or range isometrics). 

Even if the minimizing sequence from 2.6.4 does not have a convergent sub- 

sequence in X, it is still true that the real-valued functions d(ui(x), Ui(y)) have 

subsequences which converge to F—invariant distance functions d(x, y) defined 

on M x M. In our sequels to this paper we will show that the infinitesimal 

metric induced by any such limit d is the unique tensor TT of 2.6.3. In fact, 

d actually arises as an induced distance for a map to a (limit) NPC space 
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constructed from convex subsets of X. We call these limit cfs "harmonic", 

and their structure is the focus of much of our later work. 

One way to guarantee existence of a limit is to impose Dirichlet conditions. 

We will make use of the following result in our sequels: 

Proposition 2.6.6. Consider the configuration of Proposition 2.6.1 and a 

small set C£ in M, as defined in Remark 2.6.2. Let there be a p— equivariant 

Sobolev map rj; from M to X. Then there exists a unique locally Lipschitz 

p—equivariant harmonic map u : M — C£ :—► X with trace ip on dC£. If the 

boundary is smooth and if ^ extends to be Ca (0 < a < 1) up to the boundary, 

then so does u. 

Proof By energy convexity (2.6ii) and Poincare inequalities for exterior re- 

gions (to dC£) a minimizing sequence converges in Lz
2
oc, to an equivariant 

harmonic map. The interior regularity follows from Theorem 2.4.6 and the 

boundary regularity follows from [Se] (See Remark 2.4.7.)    □ 

2.7. Homotopy problems. As a final application of the techniques in this 

paper we generalize the classical Eells-Sampson harmonic map theory to the 

case of metric space targets. For technical simplicity we assume our domain 

manifold M is compact. Let iV be a metric space with universal cover X 

which is NPC. We will say that a continuous map u : M —> N is harmonic if 

it is locally energy minimizing. Precisely, each x G M is to have a neighbor- 

hood so that all continuous comparison maps which agree with u outside this 

neighborhood have no less energy. We prove: 

Theorem 2.7.1. Let M be as above, with DM = 0. Let N be compact, and 

let f : M —+ N be a continuous map. Then there exists a Lipschitz harmonic 

map u : M —* N which is homotopic to f. 

Proof For fixed x € M the / induces the homomorphism /* : 7ri(M)x —► 

7r1(N)f(x). We may lift / to a map / : M —> X, so / is /* equivariant. 

Use Proposition 2.6.1 to construct a finite energy /*— equivariant map, and 

Theorem 2.6.4 to construct a uniformly Lipschitz minimizing sequence {^}. 

Because X is NPC one may use geodesic homotopies to deduce that all contin- 

uous /*— equivariant maps are homotopic. (The continuity of the homotopies 



SOBOLEV SPACES AND HARMONIC MAPS 657 

follows from the quadrilateral comparisons of [Re], i.e. Theorem 2.1.2.) Hence 

the maps Ui are equivalently homotopic to /, and we deduce that the projec- 

tions Ui are homotopic to /. Since the Ui are uniformly Lipschitz continuous, 

a subsequence converges uniformly to a limit map w, which is therefore also 

homotopic to /. 

It remains to show that the map u is harmonic. Let x £ M and let O be a 

simply connected neighborhood of x with Lipschitz boundary. We claim that 

u is minimizing with respect to continuous comparison functions which agree 

with u outside O. Since O is simply connected the map u\o lifts to a map 

u from O to X, and we are reduced to showing that this map u solves the 

Dirichlet problem of §2.2. 

For any e > 0 and i sufficiently large, we may choose the lifting u so that 

swpd(ui(z),u(z)) < e 
zeo 

(2.7i) V J i   ^tjr.     ,r.w.. <£< / d2(ui,u)dfjL 
o 

Let Vi be the solution to the Dirichlet problem on (9, with boundary data Ui. 

Let v be the solution with data u. Since d2^,^) is subharmonic (Remark 

2.4.3), d({;i, v) attains its maximum on 9(9, so is bounded by the maximum of 

d(ui,u) there. In particular we see that for sufficiently large i 

(2.7ii) f d2(vi,v)dn 
o 

Finally, from energy convexity (2.6ii) and the Poincare inequality for (9, we 

have 

(2.7iii) J d^u^v^dfi <£ 

O 

for i large. Combining the three estimates and using the L2 triangle inequality, 

we deduce 

/■ 
d (u,v)dfjL < 9£. 

o 

Hence u = v and so u is harmonic.    □ 
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If one is considering the Dirichlet homotopy problem, then one need not 

assume local compactness on the target space: 

Theorem 2.7.2. Let M be a compact manifold with smooth boundary, and let 

N be a complete metric space with NPC universal cover X. Let f : M —> N 

be a continuous p = 2 Sobolev map, with the property that its trace on dM 

is Ca for some 0 < a < 1. Then there exists a unique globally minimizing 

harmonic map u : M —> TV homotopic to f and with the same boundary values. 

u is Lipschitz continuous in the interior of M and extends to be Ca up to the 

boundary. 

Proof We may lift / to an /* equivariant map / as in the previous theorem. 

Construct the homomorphism /* from 7ri(M)x to 7ri(N)f^x) for a base point 

x G dM. By hypothesis the lifing is a finite energy map (in the sense of 

§2.6). It follows from energy convexity (2.6ii) and the (M, dM) Poincare 

inequality that a minimizing sequence of /*—equi variant maps having the same 

boundary data as / converges in L2 (in the sense of §2.6), to a unique harmonic 

equi variant map. This map is locally Lipschitz and extends to be Ca up to the 

boundary (by Theorem 2.4.6 and the results of [Se]). It follows (via geodesic 

homotopy, as in the previous theorem) that its projection u is homotopic to 

/. By our choice of basepoint we see that a continuous map v : M —> iV which 

is homotopic to / relative to dM lifts to an /* — equivariant map, so it follows 

that u is minimizing relative to all such maps.    □ 
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