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QUASI-CONVERGENCE OF RICCI FLOW 
FOR A CLASS OF METRICS 

RICHARD HAMILTON AND JAMES ISENBERG 

ABSTRACT. We show that for a certain family of Riemannian met- 
rics on a twisted three-torus, the Ricci flow always asymptotically 
approaches that of a sub-family of locally homogeneous metrics. 

INTRODUCTION 

Converging Ricci flows have been found to be very useful for studying the 

relationship between manifold topologies and the metrics which they admit. 

For two-dimensional manifolds, one finds [1] [2] that all normalized Ricci flows 

converge; this provides a new (deformation-type) proof of the well-known 

two-dimensional uniformization theorem relating compact surfaces and con- 

stant curvature metrics. For three and four dimensional manifolds, normalized 

Ricci flows of positive curvature metrics converge to sphere metrics [3] [4]; one 

thereby determines that such metrics occur only on §3/r and §4/r (where F 

denotes some finite group). 

Ricci flows on manifolds of three or more dimensions do not generally con- 

verge, however, so to learn more about the relationship between topologies 

and metrics, it should be useful to study how non-converging Ricci flows be- 

have. While the general non-converging Ricci flow is liable to involve various 

types of pinching singularities with unbounded curvature, that of many of the 

locally homogeneous metrics behave in a much quieter, though singular way 

[5]. The Ricci flow of a three-dimensional metric with the Heisenberg group 

for its isometry group, for example, slowly approaches the metric of a flat 
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two-dimensional torus, with its curvature approaching zero at the rate 1/t as 

two of its directions expand while the other shrinks. The Ricci flows of many 

other locally homogeneous metrics behave similarly. (The 1/t decay of the 

curvature is characteristic.) 

While it may be that this quieter type of non-converging Ricci flow is pe- 

culiar to locally homogeneous geometries, it is also very possible that this 

sort of behavior occurs much more generally. In this paper, we provide some 

evidence for this. Specifically, we investigate the Ricci flow of a family of 

non-homogeneous metrics and show that for all of them, we have this sort of 

quiet, singular Ricci flow. In fact, we find that the Ricci flow for all metrics 

in this family asymptotically approaches the flow of a sub-family of locally 

homogeneous metrics which behaves much like the Heisenberg example noted 

above. We call this phenomenon "quasi-convergence" of the Ricci flow. 

Most of this paper is devoted to proving this result. Before doing that, 

however, we define in §1 the family of metrics—the "solv-Gowdy metrics"— 

which we wish to study, and we set up the Ricci flow equations for these 

metrics in §2. We solve these equations in §3 for those solv-Gowdy metrics 

which are locally homogeneous, thus obtaining in explicit form the Ricci flow 

for this sub-family, towards which the Ricci flow of all solv-Gowdy metrics will 

asymptotically approach. Finally in §4 we state the main theorem and carry 

out its proof. We make a few concluding remarks in §5. 

1. THE SOLV-GOWDY METRICS 

In previous work [6], one of us has studied the Ricci flow of a certain family 

of curvature-indefinite metrics on the three-torus. These metrics, which arise 

naturally in the study of cosmological solutions of Einstein's equations with 

T2 symmetry (the so-called "Gowdy spacetimes" [7]) take the form 

(1.1) g = eAd62 + ef [ewdx2 + e-wdy2} 

where A and W are periodic functions of the coordinate #, and / is a constant. 

One finds that this metric form is preserved under Ricci flow (with A, W and 

/ as functions of t) and further one finds that for any initial choice of A, W 
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and /, the flow converges exponentially to some flat metric (i.e., one with W 

independent of 6 [6]). 

Here we wish to consider geometries whose metrics take essentially the same 

form (1.1), but live on a solv-twisted torus rather then on T3. A solv-twisted 

torus T* is a T2 bundle over the circle, with the transition function taking 

values in SL(2,Z). A single SL(2, Z) matrix A specifies a given solv-twisted 

torus, and if A is chosen to be symmetric (and hence diagonalizable), then a 

diagonal metric of the form (1.1)—but with A and W non-periodic in 6—is 

compatible with 7^. 

For our work here, it is useful to make a particular choice of the matrix 

A, and thereby fix the manifold TJf. We shall choose A = {\ \). One readily 

verifies that a metric of the form (1.1) is compatible with Th i x as long as we 
\i 2) 

require 

(1.2a) A{0 + 27r) = A{6) 

and 

(1.2b) W[e + 27r) = W{6) + 2 In A 

where A = —-— is the (larger) eigenvalue of A. 

Note that these geometries (Th i \, g)—which we shall call the "solv-Gowdy" 
U 2) 

family—do not have any isometries. However, they all possess a local T2 isom- 

etry; i.e. if g is pulled back to the R3 cover of Th i N , the resulting geometry 
U 2) 

is T2 symmetric. 

Note also that the solv-Gowdy geometries do not include any Einstein 

metrics1. Hence, Ricci flow confined to this family of geometries cannot con- 

verge. 

1To see that there are no Einstein metrics among the solv-Gowdy geometries, we 
may write out the Einstein metric condition—Ricfg] = {ig—in terms of the functions 
A and W from eq. (1.1), and see that this condition holds iff /i = 0. But Ric[p] = 0 
iff W is constant, and this is incompatible with condition (1.2b). 
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2. RICCI FLOW EQUATIONS 

Working with the arc-length coordinate 

(2.1) s(0):=.[ eA{u)du, 
Jo 

we calculate the non zero components for the metric (1.1) to be the following: 

(2.2a) ^,_^(|W 

(2.2b) Rxx = -^^W 

(2.2c) Ryy = \ef-W-^W 

Substituting these expressions into the (un-normalized) Ricci flow equation 

(2-3) J^y = -2i^ 

one readily verifies that the metric form (1.1)—and hence, the solv-Gowdy 

family—is preserved by the flow. We may now express the Ricci flow for this 

family of geometries in terms of evolution equations for the functions W(9, t), 

A(0,t), and/(i): 

(2.4a) 

(2.4b) 

(2.4c) 

The analysis of this system of partial differential equations is somewhat 

hampered by the fact that W is not a continuous (periodic) function on the 

circle. Note, however, that W itself does not appear on the right hand side of 
d d2 

equations (2.4a)-(2.4c); we have only -^-W and TT-TTW^ SO it seems reasonable 

to do our analytical work directly with Z := — W instead of W, and obtain 

W by integration at the end of the analysis. The variable Z is continuous on 

S1; we may account for the condition (1.2b) by requiring that 

f3 + y/E\ 

I- ,d,w 

1- : 1 (^W 2\ds    . 

!'- 
0 

(2.5) / 
Js 

Zds = 2ln 
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To get the Ricci flow equation of evolution for Z, we need the commutator 

d   d 
(2.6) 

We then find 

---Z2— 
di'dsj-    2     ds' 

d „      d2 „     1 (2-7) iiz=W'z-¥'- 
This equation, together with the commutator (2.6) and the integral condition 

(2.5) comprise a self-contained system, which is the focus of our analysis. Once 

the behavior of Z has been determined, that of W and A may be obtained by 

integrating —W = Z and —A = -Z2. The variable / does not change under 

Ricci flow. 

It will be useful for later purposes to know the Ricci flow equation for a 

few quantities related to Z. These are easily calculated; we display them for 

convenience: 

<2-te>    |(z2)=£(z2»-2(lz)2-z4 

<->   JKIzMHH-2(S)-^(f)2 
We also find that if we define L to be the length of the x — 0, y — 0 circle in 

a given solv-Gowdy metrix— L := /   ds = /     eA^ d6 —then the evolution 
Js1 Jo 

equation of L under Ricci flow is given by 

(2.9) z'-y**- 
The differential operator —-- = e~A—:e~A—r appears in many of these equa- 

os2 ov       od 
tions. Note that, so long as A(Q,t) is bounded for finite t, this operator serves 

as the Laplacian in our analysis. 

3. RICCI FLOW OF THE 

LOCALLY HOMOGENEOUS SOLV-GOWDY GEOMETRIES 

A metric of the form (1.1) with constant W is flat, and not compatible with 

the solv-twisted manifold Th i x we are considering here.   However, we may 
VI 2) 
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choose Z = constant; we obtain a sub-family of locally homogeneous solv-type 

geometries, with the group 12(1,1) acting transitively on the covering space 

geometries. We call this sub-family the "locally homogeneous solv-Gowdy" 

geometries. 

Let Z(t) := Z(6, t) for Z constant in 0; the Ricci flow equation for these 

geometries in terms of Z(t) is 

If we let '£ denote the value of Z at t = 0, then we find that 

(3.2) Z(t) =       1 

describes the evolution of Z for all t > 0. Based on this result, along with the 

condition 

(3.3) Z(t)L(t) = 2ln(^^] 

[which follows from condition (2.5)], we easily determine for these geometries 

(3.4) L(t) = 21n[-3^-)i/i+^ 
i+^)H 

and 

(3.6) W(e,t)=e-ln(^S)J+Cl 

where Q is the value of W at 6 = 0 and t = 0. The metric (1.1) now takes the 

form 

(3.7)   g=       y   H^^J^ 

+ e^ 
2 

where F is the (constant) value of /. 
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Note, from (3.7), that the locally homogeneous solv-Gowdy geometries make 

up a three-parameter— (5, F, ft) —family. For any choice of these parameters, 

the Ricci flow of g grows as ^/t along the ^-direction, and remains unchanged 

along the others2. If we calculate the curvature, we find that 

(3-8) —-   O_"M     o     'vT+^F 

with all the other components vanishing. Hence, as the geometry expands, in 

the 8 direction, the curvature gets flatter: We have 

(3.9) R«eRaf3~± 

4. MAIN THEOREM AND PROOF 

Our claim is that Ricci flow of any solv-Gowdy metric asymptotically ap- 

proaches the Ricci flow of a locally homogeneous solv-Gowdy metric. Techni- 

cally, we shall show this by proving that as the Ricci flow of any solv-Gowdy 

metric proceeds towards t —> oo, the quantity — Z rapidly approaches zero, 
as 

and the quantity Z(9Jt) behaves more and more like Z(t) for some locally 

homogeneous metric. 

Theorem. Let g be any C2 solv-Gowdy metric on T,32 i\, and let g(t) be its 
vi 2) 

Ricci flow. There exists a positive constant T such that, for t>T, the quantity 

Z(0, t) corresponding to g{t) satisfies the condition 

K 
(4.1) iz<*'(> < 

{t - T)2 

where K is a positive constant. As well, for t > T, Z also satisfies the condi- 

tion 

(4.2) < Z(9, t) <   ' 

where m and M are a pair of positive constants. 

2In volume-normalized Ricci flow, these geometries would of course shrink along 
the x and y directions while it grows along the ^-direction. 
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Proof. Throughout this proof, we often wish to derive estimates for solutions 

of nonlinear parabolic equations—like (2.7)—based on the nonlinear terms in 

the equations. To do this, the following Lemma (which has been proved in 

[4]) can be very useful. 

Lemma. Let D be a compact set, and let the function if; : D x R —> R be a 

smooth solution of a partial differential equation of the form 

where F is a functional of ip, of x G D and ofteR. Let M(t) be a solution 

of the ordinary differential equation 

where E is a function of M and oftGR which satisfies the condition 

E[M, t] >   Sup   (F[^, x, *]) for M > Max[^]; 
Max£)[V>] D 

and let m(t) be a solution of the ordinary differential equation 

—777, = G[m, t] 
at 

where G is a function of m and t € R which satisfies the condition 

G[m, t] >    Inf   (F[^, x, t]) for m < Mmhph 
MinD [t/>] D 

(Here,  "  Sup   (F^^x^t])" means that we are to find the least upper bound 
Max^) [-0] 

of F evaluated at all x and ipfa) for which ip(x) = Max^]; similarly for 

"   Inf'   (Fty^t])*.) 
MinD[iJ>] 

Then if M(0) > Max[^(a;,0)] and ifm(0) < Min[^(x,0)]; we have 
D 

and 

for all t. 

M>Max[^(a;,t)] 

m < Min[^(x,i)] 
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The proof of the theorem proceeds via four main steps.   In Step 1, we 

establish certain preliminary time-dependent bounds for the quantities |Z|, 

—Z , and L.   In Step 2, we use the bounds to show that there exists a 
as 

T > 0 such that for t>T, Z(0,t) is everywhere positive. In Step 3, we use 

the Lemma and the positivity of Z(0,t) to establish the inequality (4.2), and 

finally in Step 4, we use inequality (4.2) and the Lemma to show that (4.1) 

holds true. 

l' Step 1.  (Estimates for |Z|, L, and 

\z\. 
Letting F[Z, x,t] = — ^Z3 we may apply the Lemma to eq.  (2.7); we conse- 

quently find that for t > 0, 

\z(e,t)\<^l= 
(4.3) yt+^ 

where i/ := Maxsi |Z(^,0)|. This tells us that whatever Z(9,0) is—and it can 

Z ds = 2 In j —-— ) —by t = 1 we must 

have |Z(M)I < 1- 
L. 

Based on eqs. (2.9) and (4.3), we find that 

JtL-J  2 Max Z2 ds 

(4.4) < lz*L 

< 

2 
1 

2(< + £)   ' 

This inequality implies (recall that t > 0 and L > 0) that 

(4-5) -    -===    <0 
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from which we obtain an upper (t-dependent) bound on L: 

(4.6) Hi) < yjt+^Xu 

where A := L(0). 

To get a lower (i-dependent) bound on L, recall from eq. (2.5) that /   Z ds = 
Js1 

s + VE' 
2 In Using eq. (4.3), we find that 

(4.7) 

\f Zds\ < I \Z\ds 
\Js1        I     7s1 

\A+^ 
■L. 

Combining (2.5) and (4.7), we find 

(4.8) mtyft + ^lhy^ 3 + ^' 

which is the desired lower bound. 

Since we are mainly interested in large t behavior, we may rewrite these 

upper and lower bounds for t > 1 in the form 

(4.9) 

where A := L{\). 
d_ 

Our first estimate for 

-m^^ 

y can be obtained by using an argument of the type 

developed by Shi [8]; it goes as follows: Combining eqs. (2.8a) and (2.8c), we 

obtain the following evolution equation 

(4.10) 
d_ 
dt 

2t(^-sZ)2 + Z* 

ds2 2ti^sZ]\z2 ^{(^)2-^(^2' 
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which implies the inequality 

d2 

553 

(4.11) 
dt 

2t[^-sz)2 + Z2 

- ds2 2t[^sz)2 + Z2 

d2 d        d 
As noted earlier, 7—- = e~A-prTe~A-^-r. So, recalling the Ricci flow equation 

as2 ou       06 

(2.4b) for A— —A = -Z2 —we see from the estimate (4.3) on \Z\ that A is 

d2 

finite for finite t, and hence -r-r is a non degenerate elliptic operator for finite 
as1 

t. Thus we may apply the Maximum Principle to eq. (4.11) and infer from it 

that 

(4.12) 
Max 2t[^-§z)\z2 

< Max 
t>o 

2t[^-sz)\z
2 

t=0 

= v\ 

A bit of algebra then produces the estimate 

(4.13) < 
y/Ti 

While inequality (4.13) is encouraging, it only guarantees that 

at the same rate as \Z\. We need to show that the decay of 

i* decays 

ds 
is much 

faster. We get a somewhat faster decaying using the following argument: 

"  at some fixed positive value of t which we shall We wish to estimate 
^ 

call r. So, let us consider the quantity 

its ^-derivative; we get 

d 

2e-HH+z5 and calculate 

(4.14) 
dt 

2<(-i>Glzl ^ ds2 

2 

-«'-H(M+2Z*&)l-z' 
Now for t > I, eq. (4.14) implies the inequality 

<4-i5> I 2e-i>Glzl +z2 < 
ds2 2((-5>(lzl +z2 
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It then follows from the Maximum Principle that 

(4.16) 

Max 2(t- H^ + z2 
< Max 

t>i 

a 
^-Kfsz + z2 

= MaxZ2(0,-). 

Prom (4.3), we know that 

(4.17) 

so if we combine inequalities (4.16) and (4.17), we have 

x/2 

*(^)<§ 

(4.18) 
d_ 

ds 
z{e,T) < 

This argument works for any choice of t = r > 0, so we have 

V2 
(4.19) §-sz(e,t) < 

t 

While this | decay rate for 
d_ 

ds 
Z(6,t) is faster than that which we have 

obtained for \Z(0, i)|, it could be argued, using scaling arguments, that is does 

not necessarily indicate asymptotic approach to a locally homogeneous Ricci 
d 

flow. So we will prove in Step 4 that 
ds 

Z{0,t) has a faster rate of decay. 

Step 2.  (Positive Definiteness of Z) 

One may choose g at t = 0 so that Z{6,0) is any C1 function from the circle 
r (*} A-  f^i\ 

to the reals, as long as the condition  /   Z ds = 2 In I —-— 1 is satisfied. In 

particular, Z(6,0) may have zeroes, and it may be negative for some 6, 

If, however, as the Ricci flow progresses, g(t) is supposed to asymptotically 

approach a locally homogeneous Ricci flow with Z(9, t) constant in 0, then one 

expects that there exists some T > 0 such that for t > T, Z(6, t) is positive 

definite. We show this here, via a pair of claims. 

Claim A. // Z(0, T) > 0, then Z{e, t) > 0 for all t > T. 
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Proof of Claim A. Since the domain of Z(6,T) is compact, and since Z{6,T) 

is C1, there exists a positive number /x such that Z(6,T) > //. It now follows 

from the Lemma that 

(4.20) z(e,t)> 

for t > T. Thus, for t > T, Z(0, t) is positive.    D 

Claim B.  There exists T > 0 such that Z{6,T) > 0. 

Proof of Claim B. Say Z(0,1) is zero for one or more values of 6. [ If Z(0> 1) 

has no zeroes, then it follows from the continuity of Z(9J 1) and from the 

condition   f Z ds = 2 In ( —~— J that Z(l9,1) > 0.]  We shall show that if 

Z(6,t) continues to have zeroes for all t G [l,r], then r must be finite. 

Let t G [l,/r] and consider the quantity 

(4.21) $(0 := /  (1 - tZ2{e,t)) ds. 
Js1 

Since we know from Step 1 that |Z(0,£)| < —p, we see that the integrand 

1 — tZ2 of $(t) is everywhere positive or zero.  Further, since we also know 

from Step 1 that   —Z(QA)  < —, it follows from the Mean Value Theorem 
ds t 

that for all 9 within arc length a of some zero of Z(0, £), we have 

(4.22) \Z(0,t)\<^<T. 

Now let S be an interval subset of S^n which tZ2 < |. From (4.22), we see 

that as long as L(t) > ■—, we may always choose S so that its length is at least 

&. Since we have already determined in Step 1 that L(t) > 2 In (^^H \/t > 
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•^, such a choice of S may always be made. We may thus calculate 

$(*) = f (1 - tZ2) ds 

> f (1 - tZ2) ds        since 1 - tZ2 > 0 on S1 

(4.23) >-f - 2Js 
ds 

= - length of S 

4 

since tZ  < - on S 

from above argument 

By assumption, this inequality (4.23) holds for all t E [l,r]. 

If we divide inequality (4.23) by t and rearrange its terms, we find that 

(4.24) ^^ds<Ii(()_l_L. 

Combining this result with the Ricci flow eq. (2.9) for L(t), we have 

/- ^^ d r      1 r     1 1 
(4.25) — L<— L--—P K       ' dt    - 2t       8^i 

which implies (after multiplying through by -^) 

d 
(4.26) 

dt \Vi) ~    8t' 
We now integrate both sides of inequality (4.26) over t, from t = 1 to t = r; 

we obtain 

(4.27) 

or 

(4.28) 

Since L(r) > 2 In 

(4.29) 

^-m<-lHr) 

ln(r) < 8 L(l) 
L(r) 

V^\ 

—-— I Vr) inequality (4.28) tells us that 

ln(T) < 8 L(l)-21n 's + VE^ 

The right hand side of inequality (4.29) is constant. Hence, it follows that 

ln(r)—and therefore r itself—is bounded from above.   We thus see that for 
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some value of T (no bigger than ,   ^^e81^1)), Z(8,t) must be nonzero—and 

thus positive—for all £ > T.    □ 

Step 3. (Verification of Inequality (4.2)) 

Once we know that for some T > 0 we have Z(0, T) positive definite and 

hence bounded between a minimum m and a maximum M, inequality (4.2) is 

a direct corollary of the Lemma. 

Step 4. (Verification of Inequality (4.1)) 

In §2, we noted that the Ricci flow equation for A := ( — Z )   is 

(2.8c') |A-£A-,(£,V-«*A 
We wish to obtain a t-dependent upper bound on A by applying the Lemma 

to eq. (2.8^). So we need to examine 

(4.30) Sup 
(Maxsl[A]) 

£2A-2(^Z)  -iZ'A 

d2    \ d2 

Since —2 ( TT^Z ]   < 0 and since TT-^A < 0 for maximum values of A, we 

have 

(4.31) Sup 
(Maxsl[A]) 

|LA-2(|Lzy_4Z*A <    Sup    [-4Z2A] 
(MaxgilA]) 

Using the lower bound for Z(6, t) which we derived in Step 3, we have 

-4 
(4.32) Sup    [-4Z2A] < 

(MaxgilAir ' V(*-r) + ^5/ 
X   ^[A]. 

Hence we are led to study the ordinary differential equation 

(4.33) 'e.(7^4\e. 

This equation has the unique solution 

(4.34) m = W) 
[l + m2(i-T)]4 
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d 
It thus follows from the Lemma that if r? denotes the value of Max 

si 
t = T, then for t > T, 

o,z at 

(4.35) 
!*<»,«) < 

[l + m^t-T)}2 

<       C 

(t - Tf 

where C is the constant —-.  We thus verify inequality (4.1), and complete 
m2 

should decay as -, 

the proof of the theorem.    □ 

Why do we believe that the decay estimate (4.35) indicates asymptotic 

approach of the Ricci flow of the solv-Gowdy metrics to that of the locally 

homogeneous solv-Gowdy metrics, while the —p and - decay estimate ob- 
yt t 

tained earlier are insufficient? We have seen (Step 3 of the proof) that Z(9, t) 

decays towards zero at the rate —p and no faster.   Standard scaling type 
V* 

arguments can then be used to argue that   —Z(Q,t) 
OS 

whether there is asymptotic approach or not. The rate of decay contained in 
C 1 

(4.35)—7 --rr—is faster than - for large t, so we claim it verifies asymptotic 
(t - T)2 t 

approach. 

5. CONCLUSION 

Our result is, we believe, the first demonstration that the Ricci flow of a non- 

trivial family of metrics which cannot converge, nevertheless asymptotically 

approaches the Ricci flow of a family of locally homogeneous metrics. Clearly 

it would be useful to study whether this behavior occurs in more general fam- 

ilies of metrics. Some studies of this nature are underway (e.g. with families 

of metrics constructed as warped products of a circle over general compact 

surfaces), and the indications are that this quasi-convergent-type behavior is 

present. 

These studies are, however, very far from comprehensive. In all cases thus 

far examined, topological and symmetry restrictions have been built in to 

preclude (or at least discourage) the development of curvature singularities. 

Eventually, one must deal with the occurrence of such singularities. For now, 
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we are making slow but finite progress toward understanding the behavior of 

nonsingular Ricci flow of three dimensional metrics. 

REFERENCES 

1. Hamilton, R., The Ricci flow on surfaces, in Mathematics and General Relativity, 
J. Isenberg ed., Contemp. Math. 71, Amer. Math. Soc. 1988. 

2. Chow, B., The Ricci-Hamilton flow on the 2-sphere, J. Diff. Geom. (1990). 
3. Hamilton, R., Three-manifolds with positive Ricci curvatures, J. Diff. Geom. 17 

(1982), 255-306. 
4. Hamilton, R., Four-manifolds with positive curvature operator, J. Diff. Geom. 27 

(1986), 153-179. 
5. Isenberg, J. and Jackson, M., Ricci flow of locally homogeneous geometries on 

closed manifolds, J. Diff. Geom. 35 (1992), 723-741. 
6. Carfora, M., Isenberg, J. and Jackson, M., Convergence of the Ricci flow for 

metrics with infinite Ricci curvature, J. Diff. Geom. 31 (1990), 249-263. 
7. Gowdy, R., Vacuum spacetimes with two-parameter spacelike isometry groups and 

compact invariant hyper surf aces: topology and boundary conditions, Ann. Phys. 
(USA) 83 (1974), 203-241. 

8. Shi, W.-X., Deforming the metric on complete Riemannian manifolds, J. Diff. 
Geom. 30 (1989), 223-301. 

UNIVERSITY OF CALIFORNIA, SAN DIEGO, U. S. A. 
UNIVERSITY OF OREGON, U. S. A. 

RECEIVED MAY 13, 1993. 


