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PERTURBATION OF DOMAINS
IN THE POMPEIU PROBLEM

TOSHIYUKI KOBAYASHI

ABSTRACT. An old problem in integral geometry called the Pompeiu
problem is closely related to the existence of a solution of the over-
determined Neumann problem:

(N) Au+Adu=0 in Q,
A % =0,u = constant on 0S).

It is easy to see (IN)) holds if Q is a ball. In this paper we shall
give a quantitative estimate of the following statement in terms of
one parameter family of domains and some special values of Bessel
functions: If Q is sufficiently ‘close to’ a ball and if (IV)) holds for a
bounded )\, then © must be a ball.

1. INTRODUCTION AND STATEMENTS

The study of the relations between the geometry of a given domain and the
spectrum of the Laplace operator is very old and has been an area of active
research. One of these problems is a free boundary problem called Schiffer’s
conjecture ([20], Problem 80), related to the Pompeiu problem which has
originated in harmonic analysis ([15], [16]).

Suppose 2 is a bounded domain in R™ whose boundary 92 is C* diffeomor-
phic to S"~1. We associate the following three objects to €:

i) The null variety N(Q2) := {¢ € C* : Fxa(¢) = 0}. Here Fxa(() =
Jo e/ @Gt tona)dy, . dz, is the Fourier transform of the charac-

teristic function yq, which is a holomorphic function of the variables

C=(C17"' 7C‘fl)€(cn‘
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ii) An integral transform T : C(R™) — C(M(n)) defined by (Tof)(g) =
Jo f(gz)dz. Here M(n) = O(n) x R™ is the Euclidean motion group.

iii) An overdetermined problem:

Au+du=0 in £,
(N)/\ ou __ 0 _
% = 0,u = constant on OQ.

Here 5‘% stands for the outward normal vector field on 0f).

Then it is a well known result using an argument of spectral synthesis that

these three objects are related with one another:

Fact 1.1. ([7], [18]) In the above setting, the following three conditions on
are equivalent:
(1) There ezists T > 0 such that N(2) D Sc(0: 7).
(2) KerTq # {0}.
(3) There ezists A > 0 and a nontrivial solution u of (N),.
Here, Sc(a:1):={C€C": jé(g —a;)? =r?} for a = (ay,...,a,) € R"
and T € R. (1) and (3) are related by A = r.

A ball in R™ satisfies the above three conditions. In fact, if € is the unit
ball, then

(12) Fxal0) = fs (\/¢I2+...+cn2), (C=(C... ) €C),

where f,(2) = (271')%J"Tf,zl is a holomorphic function of z € C (Lemma 2.2
(1)). Hence,

(1.3.1) N(Q) D Sc(0:7),
(1.3.2) Ker To 3 fa_: (7‘\/:1:12 +...+ xn2) ,

(1.3.3)

a1 (V@2 + ... 4 2,2) is a solution to (N),2,

whenever 7 is a positive zero of the Bessel function Jz (2) (there exist countably
many).
Conversely, it has been a long standing conjecture (the Pompeiu problem,

Schiffer’s conjecture) that a ball would be the only domain satisfying one of
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(any of) (1)—(3) in Fact 1.1. Berenstein [3], Aviles [2] (see also [4] Proposition
1), and Brown and Kahane [6] have made progress regarding (/V), which might
be summarized as follows: For simplicity, suppose 2 is convex in R? (this
assumption can be weakened in (1.4.1) and (1.4.2)).

(1.4.1) If (V) holds for infinitely many \;, then Q is a ball.

(1.4.2) If (V) holds and A < vy, the seventh Neumann eigenvalue, then
also 2 is a ball. 4

(1.4.3)  If (N)x holds and n = 2, then ZgEliSI} Hqa(6) > Igé%)l(HQ(e), where
the breadth function Hq() := ilég(:z:, 0) — :}:lélffl (z,0).

For further progress and some survey related to this conjecture, see [5], [9],
and [14] and the references therein.

Loosely speaking, the result (1.4.3) of Brown and Kahane asserts that a
long thin convex domain in R? (‘far from’ being a ball) never satisfies the
conditions (1) - (3) in Fact 1.1. In contrast to this, our concern in this paper
will be with the case where (2 is sufficiently ‘close to’ a ball. In order to define
the ‘closeness’ and to give a quantitative estimate on how perturbations of a
ball affect the properties in Fact 1.1, we need to take parallel translations and
similarity transforms into account because they do not affect the properties in
Fact 1.1. So, we first define unessential perturbations as follows.

Given a continuous function g : "' — R, = {z € R : z > 0}, we define

a star-shaped region Q(g) with respect to the origin by

(1.5) Qg):={p-n€ER":ne 8" ,0<p<g(n)}

Suppose g : [0,T] x S*~! — R, is a C'-map such that g(0,7) =1 (n € S™1).
Then Q; := Q(g(%, -)) forms a family of domains parametrized by ¢ € [0, T] with
Qo = B(0: 1), the unit ball.

We call {Q;} unessential if there exist a € R and b € R™ such that g,(0,7) =
a+ (b,n) (g; == %%) (i.e. g+ € Ep+ E; with the notation of Lemma 2.5 on
spherical harmonics). This means that {Q2;} is degenerate at ¢ = 0 up to
similarity transformations and parallel translations (see §5).

Fix 0<T,0< a<1and0< R. For a C"* function g : [0,T] x S"~! —
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R, we shall define (see (2.6.4), (3.3.3)):

100, s
lolra = gl E O

by using spherical harmonics and Bessel functions with the following property

(see (2.6.5)):
[9lra=0 < {Q(g(t,-))} is unessential.

We put B(a : 1) = {z € R* : Xn:(:v] —a;)? <r*},S@:r1) = {z € R*:

j=1

S (z; — a;)? = 2} for a = (as,...,a,) € R% 7 > 0. N(), = N(Q) NR".

Jj=1
Now we are ready to state our main result:

Theorem. Let R > 0. There exists a constant C(n, R) > 0 with the following
property: Suppose 0 < T,0 < a <1 and that 2, =Q(g(t,")) (0<t<T)isa
family of domains in R™ given by a C** map g : [0,T]xS""! — R, satisfying
9(0,-) =1 and |g:(0,n)] < 1 (n € S™1). If there exzist ty € R,z € R™ and
r> 0 such that
0 < to < min (T, (C(n, R)[g]r.a)7),
N )rNBO:R)D S(z: 1),

then to = 0 and so (1, is a ball.

Remark. Actually it suffices to assume R > j(3,1) the first positive zero of
Ja(2), when the constant C(n, R) is given in (4.5.2). In Proposition 4.4 we
drop the technical assumption |g;(0,7)] <1 (n € S™!). A small price to pay
is the condition (4.4.1b) on ¢, is somewhat complicated (see also Lemma 4.5).

Corollary 1. Let R > 0 and retain the setting as in the theorem above.
Assume that there exist M\o,tp € R and u € C?(Qy,) N C1(Qy,) such that

0< X < R?,
0 < to < min (T, (C(n, R)[g]r.a)*);
u # 0 is a solution of (N)y,.

Then to = 0 and ), is the unit ball.
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In a slightly different formulation we may define a perturbation of domains
{Q.} by giving the boundaries by means of a continuous map G : [0,T] x
St — R™ with G(0,n7) =7 (n € S™ ') such that

o, = G(t, 8™ ') := Image (G(t,-) : S"' — R™).

If G is in the C! class, then we find a uniquely defined function g¢ : [0,7"] x
Sn1 — R4(0 < T" < T) such that Q;, = Q(ge(t,-)) (see Lemma 5.4). In
§5 we discuss a geometric aspect of unessential perturbations. In particular,
{€;} is unessential if and only if there exist 0 < 7" < T and C*-maps

a:[0,T"] - R, a(0) =1,

b:[0,T"] — R™, b(0) = 10, ..., 0),

0:[0,T"] x S™ 1 - 85"  p0,w)=w, ,
o(t,-) is a Cl-diffeomorphism of

Sn—l
such that G(t,w) := a(t)G(t, p(t,w)) + b(t) is degenerate at t = 0 in the sense
that Z| =0 G(t,w) = 0 (Proposition 5.7). Because of the ambiguity of the

map G up to Map([0, T], Homeo(S™!)), we present only a weaker version of
Corollary 1 by means of a sequence ¢; in this formulation, instead of giving an

explicit estimate of a single ¢, as in Corollary 1.

Corollary 2. Let 0 < T and 0 < a < 1. Suppose {Q;} (0 <t <T) is not an
unessential family of domains in R™ given by a C** map G : [0,T] x S*~! —
R™ with G(0,n) =n (n € S™'). Assume that there ezists a sequence t; €
[0,7],A\; € R (j €N) and u; € C*(,) NCY(Qy;) such that

limj_,oo tj = 0,
SUpPjen |A;] < oo,
u; is a solution of (N)y, in ;.

Then there exists ng € N such that Qy; is a ball for any j > n,.

We finally mention that the results here were announced in [11] Theorem 3
in 1986 (see also [12] Chapter 3 and [14] Theorem 5.12) with the C? assumption
on the parameter. Recently C. Berenstein brought to our attention a preprint
of Agranovsky [1]. There Agranovsky gives a similar result to Corollary 2
assuming that the dimension n = 2 and assuming the existence of a solution
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to (), for all ¢ with the condition that both the boundary dQ, and the
eigenvalues A; depend analytically on the parameter ¢, though his result covers
unessential perturbations (cf. Remark (5.10)). His approach using Riemann’s

mapping theorem for C ~ R? is quite different from ours.

2. PRELIMINARY RESULTS ON
BESSEL FUNCTIONS AND SPHERICAL HARMONICS

In this section we give a short survey on Bessel functions and spherical
harmonics on S™~! that will be used in later sections.
For v € C and z € C\ (—00,0], the v-th Bessel function is defined by
_ () v~ e
Ju(z) = (2) Z nlT(v+n+1)

n=0

(g)u /1 V=1zt 2\v—3
T e —— z 1 _— t v idt.
VAT +1)J.° 1=

(2.1)

If we put § = 2%, then both J,(2) and J_,(2) are the solutions of the ordinary
differential equation (62 + (2% — v2))f(z) = 0.

Here is a collection of some basic properties of the Bessel function:

Lemma 2.2.

1) 22 45 an entire function of z € C with J"—“‘)Iz:o = m

zv zv

2) (see [8], (7.5.38), (7.15.42)) Let z € C. We have

(2.2.2a) S Ja(z)? =1
o0 2z
2 _
(2.2.2b) nE=0(2n + 1)Jn+%(z) =

3) For real v > —1,J,(2) has only real zeros (Lommel, see [17), pp.482-483).
Let denote by j(v,1) the first positive zero of J,(z)(v > 0). Then j(v,1) > v
([17), p.485).

4) (Siegel, see [17], p.484) J,(2) and J,4m(2)(m € N;) have no common
zeros other than zero (Bourget’s conjecture).
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The first and the last statements in Lemma 2.2 imply the following lemma,
in which the constants €(n, R) and §(n, R) will be used in a quantitative esti-
mate of our Theorem.

Lemma 2.3. Let j(%,k) (k € Ny) be the k-th positive zero of the Bessel
function Ja(x). We fix R > j(3,1) and define kr € Ny by

0:](5,0) <](§,1) <... <](§,kR) SR<](§,kR+1)-

We define an entire function of z € C by

(2.3.1) f(2) = (2m)3 222

2%

Put
W(R):={2€C:0<Rez<R,|Imz| <1}
Then there exist € = £(n, R) > 0 and § = §(n, R) > 0 such that the following

three conditions hold.

(232) 8(n, B) < dminycen ((3,K) - 5(3,k — 1).
(2.33) (e W(R)NB(j(%,k) : 6) for some k € {1,... ,kg}, then

|7 (2)] = &(n, R)

Z = ](g> k)‘ .
(2.3.4) If z € W(R) \klng(j(-g,k) . §), then

|7 (2)| = &(n, R)6(n, R).

Remark 2.4. We might take 6(n, R) = 1, however, we do not pursue this kind
of numerical estimates of the Bessel function in this paper. On the other hand,
we can and do assume

(2.4.1) e(n,R) <6(n,R) <1,
(2.4.2) e(n, R) < wy_1.
Here we define

or%
2.4.3 wn_1 = Vol(§" 1) = —
( ) 1 ( ) 1—\(5)

Next, we review spherical harmonics. We induce a Riemannian metric g on

S™~1 from the standard metric on R™. Denote by Ag--1 the Laplace-Beltrami
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operator on S"~! with respect to g. Then the Laplace operator A = Ag~ on

n—1
T

z=rw (r>0,w € S™ ). We write L2(S™1!) for the Hilbert space of square
integrable functions with respect to the measure given by the metric g. For

R" is represented as A = % + % + T%A sn—1 in the spherical coordinate

each non-negative integer £ € N we define an eigenspace
Ey:={f€C®(S™ ") : Agn-1f = —k(k+n—2)f} C L*(S"7Y).

The orthogonal group O(n) naturally acts on the unit sphere S"~!. This
action is transitive and we have O(n)/O(n — 1) ~ S™~!. Since this action is
isometric, Agn—1 belongs to the algebra of O(n)-invariant differential operators
and so Ej, is an O(n)-submodule of L2(8™!), on which O(n) acts unitarily by
f(z) — f(g7'z) for f € L2(S™ 1),z € S"! and g € O(n).

In fact, it turns out that each Fj is an irreducible O(n)-module and the
eigenvalue of Agn-1 is given as an evaluation of the Casimir operator. Here

are classical results on spherical harmonics:

Lemma 2.5. (see [10], Introduction, Theorem 3.1 and Lemma 3.6)
1) L*(S~ 1) = io: @®F, (orthogonal Hilbert space decomposition).
2) Ey is irredugi:bole as an O(n)-module.

3) Ey is the C-span of

j=1

Ty + -+ anzn)* 1a; €C Y a2 =0, (21,0, 30) €SV
J J

In particular,

(2.5.1) E,=C-1,

4) (see also [8], p. 247, (11.4.22)) For h € L?*(S" 1), r € C and w € S we
put

(2.5.3) h(r,w) == - eV~ p(n)dn.

If h € Ex(k € N), then we have for w € S* ! andr € C

(2.5.4) hryw) = (2m)F VT h(w) i),

r3-1
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We introduce a family of seminorms | - |/ on L?(S™"!) parametrized by
r >0 by
(26.1) Al = {32 sl o327}
k=1

for h = Z hy € L%(S™ 1) = E@Ek Ifh e ZjeaEk (i.e. ho = 0), then it
follows from (2.5.4) that

(2.6.2) IA(r, w)llz2(sn-1) = (2m) Fri=F |,
Since %o: Jetz-1(r)* <max(1,7) (see Lemma 2.2 (2)) if N3 n > 2, we have
k=0

(2.6.3) |Al;, < [|Al| 2(sn-1) max(1,7%).

Let j(v,k)(k € N4) be the positive zeros of J,(z) arranged in ascending order.
For R > j(%,1) let kg € N, be the integer such that

n n n n
i = | = <Gl = < | = .
0<J(2,1><j<2,2)< <]<2,kR>_R<J(2,kR+1)

For h € L*(S™'), we define

(2.6.4) |hlr == min |A[ja k)

1<k<kr

It follows from Lemma 2.2 (4) that

3. SOME ESTIMATES OF ERROR TERMS.

In this section we give the first and second terms of the expansion of Fxq, (¢
w), the Fourier transform of a family of domains {£2;} in R™, and also give an
estimate of the error term.

We define a function F': C x C — C by

_ 1) —1)! o S (-V=Tsu)

By a simple calculation we have

oOF _ on—1_+=1Isu
(3.1.2) s (s,u) =s"""e ,
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and thus
(3.1.3) /Os eV~ 1dp = F(s,u).
By means of this function F' we have a formula of Fxq)(¢):

Lemma 3.2. Suppose g : S*~' — R, is a continuous function and that Q(g)
is a star-shaped region with respect to the origin as in (1.5). Then we have a
formula

Fxaw(©) = [ Fla), (0, 0)dn, ¢eC

Proof. From definition we have

Fxaw() = [ ez
Q(9)

:/ g(n) e\/—_lr(n,g)rn_ldrdn
Sn-1Jo
= /S F(g(n),(n,Q))dn. O

We fix 0 < T and 0 < a < 1. For a C®*-map f : [0,7] — R, we put

£ llco.e o,y :=021:£)T|f(t)|+ sup 1f(t) = f(s)l

< 00).
o<s<t<T |t —s|® ( )

Next, suppose g : [0,7] x S™~! — R is a C"*-map. We put

(3.3.1) lgllo : = sup |g(t,m)l,
0<t<T
nesn—l

(3.3.2) lgllo+e : = sup |lg(;m)llco(o,rp,
neSn—1

(3.3.3) lglli+a : = llglleo + llgello+es

where g:(t,7) = 59(t,n)-

Lemma 3.4. Let 0 < T and 0 < o < 1. Suppose g : [0,T] x S" ! - R, is a
CY* map such that

(3.4.1) g9(0,n) =1 forne S" L.



PERTURBATION OF DOMAINS IN THE POMPEIU PROBLEM 525

We write Q; = Q(g(t,-)) (see (1.5)). In particular, Qq is the unit ball. We put
(3.4.2)
Y(g:r,T,a):=

sup |lg(t, )" eV g, (8, )| o to,11)-
nesn—l
wes™!
If( € C,r >0 and w € S™1, then we have (see (2.4.3)for the definition of

u-)11—1)

(343)  1Fxa (@) = Fxao(¢ @)l < Hgllz I gelloownrel el

1
1+«

(3.4.4) |Fxa,(r w)— Fxa,(r -w)— t%

Fxa(r- w)]

S t1+awn—1Y(g iT Ta a)'

t=0

Proof. Let ¢ € C and w € S"~1. By Lemma 3.2 we have
Fxa,((-w) = /Sn_l F(g(t,m), ¢(n,w))dn.

Then, from (3.1.2) we have

0
(345)  ZFxa(C-w) = /S gt m)" (B m)ey THEmE I gy,

Thus,

0

X0+ ) = Fxanl -] £ ¢ sup |2 Fxa (¢ -w)
0<s<t | OS

< ten- 1l lgeloel M=,

which shows the first inequality (3.4.4).

It follows from the definition of Y (g : 7, T, ) and (3.4.5) that
0 0
'-a—t']:XQt(’l' -w) - 5{;

for 0 <t < T,we S* ! and r > 0. Therefore, we have

< (1 + a)Y(g B T7 a)wn—ltaa

]:Xm (T : LU)
t=0

0
e w) = Fxanlrw)—t 5

Fxa.(r- w)]

s=0

- | [t - 2| Falw
= 1/ 5 Xa, (7w 35|, Xxa, (- w)}ds

< Y (9T, Q)wny. O

We shall need the following estimate of Y in §4.
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Lemma 3.5. Retain the setting of Lemma 3.4. We define g : [0,T] x St x
R—R by

(3.5.1) g(t,n,a) == (1 + at)g(t,n).
Assume

(3.5.2) 0<T<1 and |a|]T < 1.
Then

(3.5.3)Y(g(a) : 7, Ty0) <27 (n+1)llglles gllosallgliva(l + lal)®.

Proof. First we treat the case a = 0. Fix r > 0 and n,w € S™1. We put
h(z) := z""leV~127) Then

1A (g(-sm)llcoe (o)
|g(t7 77) - g(s, 77)'

< sup |h(g(t,m)|+ sup |hi(g(t,n))| sup ”
0<t<T 0<t<T 0<s<i<T [t — s|
< gl + {(n = Dllgllz + lgllz 7 }Higllote

< (n+1)lglls lgllora-

Here we have used ||g|lco > 1 in the last inequality. Hence

Y(g:rT,a)= 7 sup [|A(g(:,7))g:(-, )l co.e(po,11)
& 5 wesn—1
(3'5‘4) < ||9t||0+a sup_l ”h(g(',n))”CW"([O,T])

n,weS™

< (n+1)lgllss gllo+allgellosa

Next, let us estimate Y for g(¢,7m,a) = (1+at)g(¢,n) in terms of g. We assume
T <1 and |a|T < 1. Since

gt(t> m, 0,) = ag(t, 77) + (1 + at)gt(tv 77))
1+ atllore < 11+ atllors < 2+ |al,
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we have

90 < 2llglloo,
1G(, 5 a)llo+e < 11+ atllo+allgllo+a
< 2+ laDllgllo+es
19:(; - a)llo+a < lalllgllo+a + 11+ atllo+allgellota
<2(1+|al)llglli+a-

Applying (3.5.4) to g, we have
Y(§(-a) : 1, T,0) < (n4 )27 g2 @ + [aDllglora2(L + [a])lgla
<2 (n+r)(1+a)?llglles gllorallglhisa. O
4. PROOF OF THEOREM
Now we are ready to prove our main Theorem. We start with the following:

Lemma 4.1. In the setting of Lemma 3.4, let p be a positive zero of Ja (x).
Assume

(4.1.1) 0<t < min (T, ( (2m)* 19:(0, 1 )>E> ,

pEtw, 15Y (g p, T,

(see (2.6.1) and (3.4.2) for notation). Then N(Q:) D S(0 : p) if and only if
t =0. Here we write Q; = Q(g(¢,-)).

Proof. If t = 0, then Fyq,(r -w) = (2%)%%2 and so we have Fyq,(p-w) =0
for any w € S™1, that is, N(£) D S(0: p).

Conversely, if ¢t > 0 satisfies N(€2;) D S(0 : p). Then we have Fxq,(p-w) =
Fxao(p-w) =0 for w € S*~1. Using the inequality (3.4.4), we have

t

ot
Taking the L?-norm on S™~!, we have from (2.6.2) the following inequality:

2m)% , 3
120 10,091, < 40w 3Y (g p, T, ).

pE

Fxa,(p-w)| <t w1V (g: p, T, ).

t=0

@n219:0, < 4 Thus we have completed the

This implies ¢ = 0 or = W S

proof. 0[O
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Lemma 4.2. Let0<T,0<a<1andg:[0,T] x S* ! — R, be a C"* map
such that g(0,n) =1 forn € S™~!. We put

(4.2.1) B = B(g) = llglis " llgllo+1wn-1-

We recall notations of Lemma 2.3 such as e(n, R),6(n, R), kg and j(%,k). Let
R> j(%,1). Assume

(4.2.2a) 0<r <R,

. (€(n, R)8(n, R) )
4.2.2b 0 <ty < min (—,T ,
(4220) : B(y)
(4.2.2¢) wy € ™71,
(4.2.2d) Fxa,,(ro - wo) = 0.

Then there ezist k € {1,2,... ,kr} and a € R such that

(4.2.3a) ro=(1+ ato)j(g, k),
(4.2.3b) la] < ei (’"}O,
(4.2.3¢) Iro — j(g-, k)| < 8(n, R).

Proof. If ty = 0 then we can take a = 0. Hence we assume ¢, > 0. It follows
from Lemma 3.4 that

[F X, (To - wo) — Fxao(ro - wo)| < B(g)to-

Since Fxaq,, (ro-wo) = 0 and Fxaq,(ro-wo) = f(ro) (see (2.3.1) for the definition
of f), we have

(4.2.4) [£(ro)| < B(9)to < e(n, R)é(n, R).

Therefore, from Lemma 2.3, we find k € {1, ..., kg} such that

n
(425) o(n, ) |ra — i(5, B)| < £l
Now, we put a := TO;JJ((;L,};) Then we have
o< niER B

tO - &:(n, R)
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Here, the second inequality follows from (4.2.4) and (4.2.5), which proves
(4.2.3b). The inequality (4.2.3c) is direct from (4.2.4) and (4.2.5). O

Lemma 4.3. Retain the setting of Lemma 4.2. Assume

(4.3.1a)
0 S To S Ra 1 S Ra
(4.3.1b)
. [e(m,R)5(n,R) [ (2m)3e(n, R)*[glra |~
0<t < , Tor o 1,1,
= (o min ( B(g) 2n+4nwn_15R7B(g)3
(4.3.1c)

N(Q,) D S(0: 7).
Then ty = 0.

Proof. 1t follows from Lemma 4.2 that we finda € Rand k € {1,... ,kg} such
that

(4323) To = (]- + atO)j(%) k))
B(g)
(4.3.2b) la| < )

We put §(t,n,a) := (1 + ato)g(t,n). Then we have

- .
(4.3.3) N(€©(9(to, -, a))) > 5(0: (5, )),
because

M n M
FXa(@+at)g(to (F(5, k) - w) = (1+ato)"Fxag(o, (1 +at)j(5, k) - w)
= (1 + ato)”}'xg(g(to,.))(ro . w).
We want to apply Lemma 4.1 to §(-, -, a) in order to show (4.3.3) implies ¢, = 0.

To do this, it suffices to show (4.3.1b) implies (4.1.1) with g replaced by g,
that is,

(QW)%Igt(O) ')a)|,,o
p%_lwn—I%Y(g o T, a),

(2m)%e(n, RB)*[g]r.a

4.3-4 1 n
( ) 2ntinw, 12 R% B(g)3

<
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— a(n 3 B() (TL,R)&( 1R) (TL,R)
where p = j(%, k)(< R). Since |a| < €(n,gR),to <landty; <& B(g)" < ":B(g)

(see (2.4.1)), we can apply Lemma 3.5 and thus we have for 0 < p < R,

~ n n— B 2
Y(C1n0) pTe) <200 Rl lalosallalion (1+ 27 )

B(g) B(g)*
< 2n+2 —\JJ 022
—= ann—l “g”1+ E(n, R)2

_ 2**nRB(9)*|lgll1+a
Wn— 18(’”;, R)2

Here we have used R > 1 and €(n, R) < w,_1 < B(g) (see (2.4.2)). Therefore,

(27()%8("’ R)2[g]R,a < (QW)%|gt(07 )|R
2n+tinw, 12R3B(g9)3 ~ R¥ w,_12Y(§(-,-a): p,T,q)
_ ena0-a)lk
R%_lwn—lgy(g('» K a') e Ta OL) .

Hence we have shown (4.3.4) and thus Lemma 4.3. O

Proposition 4.4. Let 0 < o < 1,0 < T and 0 < R. Suppose g : [0,T] x
Sl — Ry is a CY® map such that g(0,-) = 1. Retain the notation as in
Lemma 4.3. Assume
(4.4.1a)

0<r,zeR"
(4.4.1b)

0 <t < min (s(n, R)é(n, R), ( (2m)2e(n, R)?[g]Rr,a )é T 1)

B(g)ellall= " \ 2n+4nu,_1? R% B(g)
(4.4.1c)
N(Q)r N B(0: R) D S(z : 7).
Then x =0 and ty = 0.

Proof. 1t suffices to show x = 0 by virtue of Lemma 4.3. Because t, satisfies
(4.4.1b), the inequality (3.4.3) gives

(4.4.2)
|Fxa, (€ w) = Fxa,(¢ - w)| < toB(g)e!™ Wl < ¢(n, R)§(n, R),
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for ¢ € C with |Im¢{| < 1 and w € S™"!. On the other hand, if ( € C satisfies
|¢ — (5, k)| = 6(n, R) for some k € {1,... ,kg}, then

I'FXQO(C ' “‘))l > E(TL, R)‘S(n’ R)

from Lemma 2.3. Therefore by using Rouche’s theorem Fxq, (¢ -w) has a
unique zero in {{ € C: |¢ — j(%,k)| < 6(n, R)} for each w € S"~1.

Next, the condition (4.4.1c) means Fxq,, (z +7-w) = 0 for any w € §*~*.
Applying Lemma 4.2 with 7o = ||z + 7 w||(< R) (with the notation there), we
find k € {1,...,kg} for each w € S"~! such that

o+ 7wl - i, )| < 8(n, B).

By (2.3.2) and because S™! is connected, the above integer k does not depend
on w € S"1. This means that there exists k € {1,... ,kr} such that

(4.4.4)

o+ 7wl - (5, B)| < 8(n, R)

for any w € 7L
Now, let us show z = 0. Suppose z # 0. We put

T T
= 1+——):1:, z_:=‘1——
¥ ( llll [l
Then, from (4.4.4) we have

x.

(4.4.5)

l2all = 3(3.)| < o, B).

On the other hand, since Fxaq, (¢ w) = Fxq, (—(¢-w) for ( € R,N(Q,) D
S(x : r) if and only if N(Q,) D S(—z : r). Therefore Fxq, (fz+7 -w) =0

for any w € S"1. In particular, we have
(4.4.6) Fxa,, (z+) = 0.

Because Fxaq,, (¢ - 727) has a unique zero in {CeC:|¢—34(5,k) <b(n, R},
we conclude ||z+]| = ||z=]. This implies r = 0, which contradicts to (4.4.1a).

Therefore x must be the origin. Now Lemma 4.4 is reduced to Lemma 4.3. O

In the normalized case where ||g¢(0,-)||L(sn-1) < 1, we can replace the
assumption (4.4.1b) by a simpler one:
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Lemma 4.5. We put

1 . 1 (2m)%

4.5. = .
(4.5.1) Cn w13 min(1, 3,y 2AntTpg 3
For (1<)j(%,1) < R, we put

ne(n, R)*
(4.5.2) C(n, R) := 085%#

where €(n, R) is the constant in Lemma (2.3). Let 0 < T and 0 < a < 1.
Suppose g : [0,T] x S — R, is a CY® map such that

(4.5.3a) 9(0,n) =1, for any n € S™71,
(4.5.3b) nés;lgl lg:(0,m)| = 1.
Ift satisfies
(4.5.4) 0 <t < min(T, (C(n, R)[g]r.a)?),
then t satisfies (4.4.1b).
Proof. If r > 1, then it follows from (2.6.3) that
19:(0, )7 < 11ge(0, Mza(sn-1yr? < l|ge(0, -)l|oo(sn-1ywn-1?72.
Therefore, from the definition (2.6.4), we have

(4.5.5) (glra = 19:(0, )| _ wn1RE
lglls+e gll1+

Suppose t satisfies (4.5.4). Then

Cnhe(n, R)? 1"¥ lw,_3R? 1 1
< n‘g(n2 ) [g]R,aS Wn 12 n—1 < <=
R? R? lglli+e ~ llglh+e = 2
Therefore we have
1
<3,

1
l9:(&: )| < 190(0, )| + ¥l ll11e S 1+ 5 -2=2,

1
lgt, M| < g0, M|+ tlgello <1+ 52=2,
B(g) = l1glIZ Ngllosiwn-1 < 2" wy,_y,

B(g)eldll < 2nly, ;. e? < 2.
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Thus from (4.5.2), (4.5.5) and (2.4.1) we have

2
t<tr < C'ng(n’ f) [9),a
Rz
1 e(n, R)6(n, R) w,_1% R?
= 2By, R Nglli+a
g(n, R)6(n, R)
2ty 4
< e(n, R)6(n, R) .
B(g)dldl=
On the other hand, since C,, < ik - < (2m) -, we have
2Nt Tpy 1% B(g)32"Hnw,_1 7

e(n, R)’[g]r.a
ta . i)
<C 7
(2m)%e(n, R)*[g]R.q
~ 2ntinw, 13 B(g)3R%

»f3

Hence t satisfies (4.4.1b). O

Now, Theorem follows from Proposition 4.4 and Lemma 4.5. Corollary 1 is
an immediate consequence of Theorem (with z = 0) and Fact 1.1. Corollary

2 is a direct consequence of Corollary 1.

5. APPENDIX (GEOMETRIC ASPECT OF UNESSENTIAL PERTURBATION)

In Definition (1.5), we have defined a star-shaped region (with respect to the
origin) by using the polar coordinate, that is, Q(g) C R for g € C(S"" 1, R,).
In this section, we also consider a star-shaped region 2 by defining the bound-
ary G : S"~1 — 99, and discuss a geometric aspect of “unessential perturba-
tion” that we have treated. This is done in Proposition 5.7. Throughout this
section we use the notation C* where k stands for [ (I € N={0,1,...}), ({,@)
(leN,;0 < a<1), 00 or w (real analytic). The condition k > 1 means that we
exclude the cases k = 0 and k = (0, ) from t}ie above possibilities. We define

a standard norm in R™ by ||z|| := (Z;;l xf)i for £ = x4,...,z,) € R™
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DEFINITION 5.1. A C*-map G : S"~! — R™ is called to bound a C*star-shaped

region (with respect to the origin) if the following two conditions are satisfied:

(5.1.1)
Image(G) # 0
(5.1.2)
G _ _ G(w) . . _
—— 8" 5"l s ——_ defines a C*-diffeomorphism of S™!.
1G]l |Gw)I|

Then Image(G) is the boundary of a star-shaped region (see Lemma 5.2 (1)).
We write C*(S™~!,R™) for the totality of such maps.

Clearly, if h € C%Diffeo(S™"!) and G € C¥(S"!,R"), then both G and
G o h define the same boundary Image(G) = Image(G o h). The following
lemma relates Definition (1.5) with Definition 5.1.

Lemma 5.2. We have a bijection:
(5.2.1)

Ci(S™1,R™) = C*(8""!,Ry) x CkDiffeo(S"!), G+~ (gc,he),
characterized by the following property:

(5.2.2) Gohg(n) =gelmn  (meS™).

In particular,

1) Image(G) = 00(gc), the boundary of the star-shaped region 2(gg) (see
(1.5)).

2) If G1,Gy € C¥(S™1,R") define the same boundary Image(G;) =
Image(Gs), then there exists an h € CEDiffeo(S™~!) such that G;oh =

Go.
-1
Proof. Given G € CF(S™1,R"), we put hg = (”—g") € CkDiffeo(S™ 1)
and ge(n) := ||G o ha(n)|| (n € S™'). It follows from definition of hg
that % = n and so G o hg(n) = ge(n)n. Conversely, given (g,h) €

Ck(S™ 1, R, ) x CEDiffeo(S"~1), we define G(w) := g(h™!(w)) h~!(w). Then
it follows from definition that G € C¥(S™~1,R"™) and that (gg, hc) = (g, k).
This establishes the bijection (5.2.1). The remaining part (1) is followed from
(5.2.2), and (2) holds if we put hg := hg, o hgl. O
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Next, we consider a deformation of domains by Map([0,T],C¥(S™1,R")).
We prepare the following lemma asserting that it is an open condition for a

domain to be star-shaped under a C*-deformation of domains.

Lemma 5.3. Let k > 1. Suppose G : [0,T] x S*~! — R™ is a C*-map such
that G(0,-) € C¥(S™*,R"™) (see Definition 5.1). Then there ezists a positive
number 0 < T" < T such that G(t,-) € C*(S™1,R") for any t € [0,T"].
Moreover, if we define go(t,n) = gew,)(n) and ha(t,n) = hge,)(n) with the
notation in Lemma 5.2, then gg : [0,T"]xS™ ! — Ry and hg : [0,T']xS™ ! —

8§71 are C*-maps satisfying

(5.3.1) he(t, ) is a C*-diffeomorphism of S™~* for t € [0, T"].
(5.3.2) G(t, ha(t,m)) = go(t,m)n fort € [0,T),n € S™7".

Proof. We fix T"” > 0 such that G([0,T"] x $7~!) C R\ {0}. We define a C*-
map H : [0,7"]xS"~1 — §"~1 by H(t,a.g:/zs Ing::;II for (t,w) € [0,T"]x S™~1.
Let us show that the map H(t,-) : S*~! — S"~! is a C*-diffeomorphism for
any small ¢.

Since G(0, -) bounds a star-shaped region, we find C¥-maps h : S*~ — §n-1
and g : S"! — R, such that G(0,h(n)) = g(n)n by Lemma 5.2. Then
the Jacobian JH(0,-) of the map H(0,-) = h=! : S»~1 — 877! is nowhere
vanishing. Because H(t,w) is in the C* class and because S"~! is com-
pact, there exists (T >)T" > 0 such that the Jacobian JH (t,-) of the map
H(t,-) : S ! — S™! is nowhere vanishing for all ¢ € [0,7”]. This means that
the map H(t,-) : S*! — 8§71 is locally C*-diffeomorphic. Because a local
homeomorphism from a compact manifold to a connected one is automatically
a covering map, the map H(t,-) : S~ — S™! is a covering map. On the
other hand, consider the following commutative diagram of homology groups:

Ht,).:H, 1 (S, 2Z) —— n—1(S"1,Z)

G(t, ')* : Hn—l(sn_laz) - n—l(Rn \ {O}7Z)'
Since G(t,w) is continuous, the mapping degree of H(t,-) equals to that of
H(0,-), that is, +1. Therefore H(t,-) is a C*-diffeomorphism from S™~! to

S"~1 for any t € [0,7]. Hence G(t,-) € C*¥(S"~!,R") for any t € [0,T"]
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by definition. Now the last statement is proved in the same way as Lemma
52. O

A deformation of domains starting from a unit ball is a special case of the

previous lemma and so we have:

Lemma 5.4. Let k > 1. Suppose G : [0,T] x S~ — R" is a C*-map such
that G(0,w) = w (w € S™1). Then there ezist a positive number 0 < T' < T,
and C*-maps gg : [0, T"]xS™ ! — Ry and hg : [0, T'|xS*! — S*~! satisfying
(5.8.1), (5.8.2) and

(5.4.1) gc(0,n) =1, hg(0,n) =n forne S™ L

Thus the map G defines a family of star-shaped regions
(5.4.2) Q; .= Q(gc(t, ) (see (1.5))
parametrized by t € [0,T’] with Qo = B(0: 1), the unit ball.

Let TR™ — R" be the tangent bundle, and TR™g»-1 — S™! its restriction
to S"~1. We write ['*(TR"™s~-1) for the space of sections in the C* class.

DEFINITION 5.2. Suppose G : [0,7] x S™ ! — R" is a C'-map such that
G0,w) = w(w € S™!). We define the velocity Xg € I''(TR"|gn-1) of a
deformation Q; = Q(ge(t,-)) (see (5.4.2)) by
o}
X = —

The map G(t,w) is called degenerate att =0 if Xg(w) =0 (w € S™1).

G(t,w).

The groups CkDiffeo(S"~!) and AF(R") := GL(n,R) x R™ act naturally
on C*¥(8"~1,R") by G — 7o G o ¢, where ¢ € CkDiffeo(S" 1), 7 € AF(R")
and G € C*(S" 1 R"). In particular, if we define 7(a,b) € AF(R") (a >
0, b € R*) by 7(a,b)z := az + b (z € R™) describing a parallel translation and
similarity transform, then (7(a,b) o G 0 ) (w) = aG(p(w)) + b.

As we are interested in the perturbation of domains up to parallel transla-

tions and similarity transforms, we consider:
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DEFINITION 5.3. Suppose G; : [0,T;] x S*! — R™ is a C*-map such that
GO,w) = w (i = 1,2). We call G, is C*-equivalent to G, if there exist
0 <T"” <T and C*-maps

a:[0,T7"] - R, a(0) =1,

b:[0,T"] — R, b(0) = 40,. .., 0),

@ :[0,T"] x S*~1 — Sl 0(0,w) = w, ,
o(t,-) is a C*-diffeomorphism of
Sn—l

such that Go(t,-) = m(a(t),b(t)) o Gi(t,-) o ¢(t,-), that is,
G2(t’ w) = a’(t)Gl (t» gO(t,U))) + b(t)

fort € [0,T"], w € S"~1. We write [G]* for the C*-equivalence class containing

G.

Proposition 5.7. Let k > 1. Suppose G : [0,T] x S™! — R™ is a C*-map
such that G(0,w) = w. Let gg : [0,T"] x 8™ ' — R, be the corresponding
function in Lemma 5.3. Then the following conditions on the map G are

equivalent:
(1) Q(gg(t,-)) is an unessential family of perturbations (see §1).
(2) Among the C*-equivalence class [G]* (Definition 5.6), there ezists G
which is degenerate at t = 0 (see Definition 5.5).

The rest of this section is devoted to the proof of Proposition 5.7.
Let Tsn-1R® — S™~! be the normal bundle associated to the embedding
of Riemannian manifolds S"~! C R®. According to a Whitney sum of vector

bundles over S*!
TR gn-1 = TS" ' @ Tsn-1R",

we have a direct sum of vector spaces:
l-wk(TRnISn_l) — xk(Sn—l) oy Ck(Sn_l),

where we denote by X*(S™!) the space of vector fields over S*! in the C*
class, and identify C*¥(S™!) with ['*(Ts»-1R™) by the outer normal vector field.
We recall Ey, E; are the subspace of C¥(S™~!) which are the eigenspaces of
the Laplace-Beltrami operator Agn—1 with eigenvalues 0, 1 — n, respectively



538 TOSHIYUKI KOBAYASHI

(see Lemma 2.5). Thus we regard X*(S"~!) @ Ey @ E; C T¥(TR"gn-1). We

write a quotient map as

p i TE(TR5n1) STH(TR" 5n0) / (X5(S™") @ Eo © En)
~ C*(S"1) (Z EBEk>

Formula 5.9. Suppose T > 0 and we are given C'-maps

(5.8)

G:0,T) x S* ! - R*, G(O,w)=w (we S™),
a:[0,T] - R, a(0) =1,
b:[0,T] - R", b(0) = ¥0,...,0),
@:[0,T] x S 1 - S* 1 »(0,w) =w.

If we put G(t,w) := a(t)G(t, p(t,w))+b(t), then with the notation in Definition
5.5

(5.9.1) Xz(w) = Xg(w) + Xp(w) + a'(0)w + 0'(0).

In particular, p(X¢g) € C*(S™ )N f ®FE}, is determined only by the equivalent

k=2
class [G]F.
Proof. The formula (5.9.1) follows by a direct calculation. [J

Proof of Proposition 5.7. In the setting of Proposition 5.7, we consider an-

other condition on the map G:
(5.7.3) p(Xg) =0, that is, Xg € X*(S™!) @ E, @ E;.
i) (5.7.1) & (5.7.3):

Because G(t, ha(t, 1)) = gc(t, n)n, we have

9

Atlio Btlig
that is, Xg(n) + Xne(m) = gc(n)n since G(0,nm) = hg(0,m) = 1. Because
Xh, € X*¥(S™1) and because (n — gg(n)n) € T¥(Ts--1R") is identified with

ge € C*(S™ 1) via the outer normal vector field, we have

G(t, ha(t, ) = ga(t,mn,

p(XG) = gc mod Eo () El'
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Therefore p(Xg) = 0 if and only if g¢ € Eo @ Ey, that is, (5.7.3) is equivalent
to (5.7.1).
i) (5.7.2) & (5.7.3):

Assume there exists G € [G]* such that Xz = 0. It follows from Formula
(5.9) that p(X¢g) = p(Xgz) = 0. Therefore, (5.7.2) implies (5.7.3). Conversely,
assume p(Xg) = 0, that is, Xg € X*(S™!) @ Ey @ E;. In view of (2.5.1) and
(2.5.2) we find Y € X¥(S™!) and a € R, b € R™ such that

Xow)=Yw)+(a+ (bw)w (eSS ).

Because S™! is compact, there exist 0 < T < T” and a one parameter family
of diffeomorphisms ¢ : [0,T"] x S»~! — S™~! such that

2 eltw) =Y (@) + (b~ (),

Otli=o
from fundamental existence and uniqueness theorems of a system of first order
differential equations. We put a(t) := 1 — at, b(t) := —bt and G(t,w) :=
a(t)G (¢, ¢(t,w)) + b(t). Then, from Formula (5.9.1), we have

Xzw) = Xeg(w) + (=Y (w) +b— (bw)w) —aw —b=0.
Hence we have proved (5.7.3) implies (5.7.2) O

Although the assumption in Corollary 2 about “not unessential” restricts the
perturbation to “generic” cases, we can also treat “degenerate cases” (Defini-
tion 5.5, Proposition 5.7) by a change of variables if the degree of degeneracy
is finite in the sense of (5.10.1). To be more precise, we mention:

Remark 5.10. Let k = 0o or w (real analytic). Given a C*-map G : [0,T] x
S™=! — R™ such that G(0,n7) = n. If Q(g¢(t,-)) is not unessential, we can
apply Corollary 2. Otherwise, from the equivalent condition (5.7.2) we can find
G € [G]* such that G(t,n)—n =0 mod t, so that Gy(t,n) := G(v/£,n) is in the
Cchi class. In the same way, either we can apply Corollary 2 to G or we can
find G € [G]* such that G(t,7) —n = 0 mod 2, so that Ga(t, 1) := G}/, n)
is in the C3 class. By an iteration of this argument, we can show either
(5.10.1) there ezist | € N and G € [G]* such that G(t,n) —n =0 mod ¢
and that G(tT7,n) € CYH1([0,T'] x $*~1,R") defines a family of
domains which is not unessential,
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or

(5.10.2) for any | € N there ezists G; € [G]F such that Gi(t,n) —n = 0
mod #'.

In the real analytic case k = w, it is likely that (5.10.2) can be replaced by
(5.10.2) there exists G € [G]* such that G(t,n) = 7.

This would enable us to drop the assumption “not unessential” in Corollary
2 in the case where G is real analytic, because the case (5.10.2)" means that
Q(gg(t,-)) is a ball for all ¢ and because we can apply the original form of
Corollary 2 in the case (5.10.1) to the map G.

ACKNOWLEDGEMENT

The author would like to thank Professors C. Berenstein, B. Orsted and T.
Oshima for their comments and interest in this work. He is also grateful to
Ms. Carol Warfield for her typing of the manuscript during his stay at the
School of Mathematics of the Institute for Advanced Study at Princeton.

REFERENCES

1. Agranovsky, M. L., On the stability of the spectrum in the Pompeiu problem,
Preprint.

2. Aviles, P., Symmetry theorems related to Pompeiu’s problem, Amer. J. Math.,
108-5 (1986), 1023-1036.

3. Berenstein, C. A., On the converse to Pompeiu problems, Notas e Communicacoes
de Matematica (Univ. Fed. de Bernambuco), 73 (1976).

4, , An inverse spectral theorem and its relation to the Pompeiu problem, J.
Analyse Math., 37 (1980), 128-144.
5. , An inverse Neumann problem, J. reine angew. Math., 382 (1987), 1-21.

6. Brown, L. and Kahane, J. P., A note on the Pompeiu problem for convex domains,
Math. Ann., 259-1 (1982), 107- 110.

7. Brown, L., Schreiber, B. M. and Taylor, B. A., Spectral synthesis and the Pompeiu
problem, Ann. Inst. Fourier (Grenoble), 23 ( 1973), 125-154.

8. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., Higher Tran-
scendental Functions, (Bateman Manuscript Projec), 2, McGraw-Hill, New York
1953.

9. Garofalo, N., and Segala, F., New results on the Pompeiu problem, Trans. Amer.
Math. Soc., 325-1 (1991), 273-286.

10. Helgason, S., Groups and Geometric Analysis, Pure and Appl. Math., vol. 113
Academic Press, New York and London 1984.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

PERTURBATION OF DOMAINS IN THE POMPEIU PROBLEM 541

Kobayashi, T., Null varieties for convexr domains, Reports on unitary represen-
tation seminar, 6 (1986), 1-18, Proceedings of the conference on “Unitary repre-
sentation theory” held at Toba (in Japanese).

, On characteristic functions of domains and the zeros of their Fourier-
Laplace transforms, Master’s dissertation II, University of Tokyo, 1987 (in
Japanese).

, Asymptotic behaviours of the null variety for a convex domain in a non-
positively curved space form, Jour. Fac. Sci. Univ. Tokyo, 36-3 (1989), 389-478.
, Convex domains and Fourier transform on spaces of constant curvature,
to appear in Lecture notes of the Centre International de Mathematiques Pures
et Appliquees held at WuHan University in P.R. China in 1991 (112 pages).
Pompeiu, D., Sur certains systéms d’équations linéaires et sur une propriété
intégrale des fonktions de plusieurs variables, C. R. Acad. Sci. Paris, 188 (1929),
1138-1139.

, Sur une propriété intégrales des fonctions de deux variables réelles, Bull.
Sci. Acad. Royale Belgique, 15 (1929), 265-269.

Watson, G. N., A Treatise on the Theory of Bessel Functions, Second edition
Cambridge at the university press, 1962.

Williams, S. A., A partial solution of the Pompeiu problem, Math. Ann., 223-2
(1976), 183-190.

, Analyticity of the boundary for Lipschitz domains without the Pompeiu
property, Indiana Univ. Math. J., 30-3 (1981), 357-369.

Yau, S. T., Problem Section, in Seminar on Differential Geometry, edited S.T.Yau,
Annals of Math. Studies, Princeton, N. J. 1982.

UNIVERSITY OF TOKYO, TOKYO, JAPAN.
E-mail address: toshi@tansei.cc.u-tokyo.ac.jp

RECEIVED DECEMBER 10, 1992  REVISED MAY 6, 1993.



