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PERTURBATION OF DOMAINS 
IN THE POMPEIU PROBLEM 

TOSHIYUKI KOBAYASHI 

ABSTRACT. An old problem in integral geometry called the Pompeiu 
problem is closely related to the existence of a solution of the over- 
determined Neumann problem: 

(Au + \u = 0 in ft, 
(N)x < a 

I f^ = 0'u — constant on 90. 

It is easy to see (iV)^ holds if Q, is a ball. In this paper we shall 
give a quantitative estimate of the following statement in terms of 
one parameter family of domains and some special values of Bessel 
functions: If O is sufficiently 'close to' a ball and if (iV)^ holds for a 
bounded A, then O must be a ball. 

1. INTRODUCTION AND STATEMENTS 

The study of the relations between the geometry of a given domain and the 

spectrum of the Laplace operator is very old and has been an area of active 

research. One of these problems is a free boundary problem called Schiffer's 

conjecture ([20], Problem 80), related to the Pompeiu problem which has 

originated in harmonic analysis ([15], [16]). 

Suppose fi is a bounded domain in Rn whose boundary dfl is C1 diffeomor- 

phic to Srn"1. We associate the following three objects to Q: 

i) The null variety N(fi) := {C € Cn : •Fxn(C) = 0}. Here ^(C) = 
Jn eVcrT(a;iCi+."+^nCn)^1111 dx^ js the Fourier transform of the charac- 

teristic function xnj which is a holomorphic function of the variables 

C=(Cl,...,Cn)€C". 
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ii) An integral transform Tn : C(Rn) —► C(M(n)) defined by (TQf)(g) = 

In f(9x)dX' Here M(n) = O(n) K Mn is the Euclidean motion group, 

iii) An overdetermined problem: 

. n JA-u + Au^O in fi, 

||^ = 0,u = constant       on dfl. 

Here -i- stands for the outward normal vector field on <9Q. 
Olf 

Then it is a well known result using an argument of spectral synthesis that 

these three objects are related with one another: 

Fact 1.1. ([7], [18]) In the above setting, the following three conditions on Q 

are equivalent: 

(1) There exists r > 0 such that N(f2) D Sc(0 : r). 

(2) KerrQ/{0}. 

(3) There exists A > 0 and a nontrivial solution u of (N)\. 

Here, Sc(a : r) := {C € Cn :  E (Q - a,)2 = r2} for a = (au... , an) G Mn 

and r G R. (1) and (3) are related by A = r2. 

A ball in Mn satisfies the above three conditions.  In fact, if ft is the unit 

ball, then 

(1.2)    ^Xn(C) = /f (\/Ci2 + --- + Cn2),        (C=(Ci,-..,Cn)€C"), 

where ^(^i) := (^TT)^^^- is a holomorphic function of z € C (Lemma 2.2 

(1)). Hence, 

(1.3.1) N(fi) D Sc(0 : r), 

(1.3.2) Ker Tn 3 f^-i (ry/xf + ... + xj) , 

(1-3.3) 
/iL_i(r\/^i2 + ... + xn

2) is a solution to (iV)r2, 

whenever r is a positive zero of the Bessel function J^ (z) (there exist countably 

many). 

Conversely, it has been a long standing conjecture (the Pompeiu problem, 

Schiffer's conjecture) that a ball would be the only domain satisfying one of 
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(any of) (1)—(3) in Fact 1.1. Berenstein [3], Aviles [2] (see also [4] Proposition 

1), and Brown and Kahane [6] have made progress regarding (N)x which might 

be summarized as follows: For simplicity, suppose Q is convex in M2 (this 

assumption can be weakened in (1.4.1) and (1.4.2)). 

(1.4.1) If (N)x holds for infinitely many A^, then Q, is a ball. 

(1.4.2) If (N)x holds and A < i>7, the seventh Neumann eigenvalue, then 

also Q is a ball. 

(1.4.3) If (iV)A holds and n = 2, then 2min#Q((9) > maxifn(<9), where 

the breadth function HQ(6) := sup(x, 0) — inf (x, 6). 

For further progress and some survey related to this conjecture, see [5], [9], 

and [14] and the references therein. 

Loosely speaking, the result (1.4.3) of Brown and Kahane asserts that a 

long thin convex domain in M2 ('far from' being a ball) never satisfies the 

conditions (1) - (3) in Fact 1.1. In contrast to this, our concern in this paper 

will be with the case where O is sufficiently 'close to' a ball. In order to define 

the 'closeness' and to give a quantitative estimate on how perturbations of a 

ball affect the properties in Fact 1.1, we need to take parallel translations and 

similarity transforms into account because they do not affect the properties in 

Fact 1.1. So, we first define unessential perturbations as follows. 

Given a continuous function g : S71"1 —► M+ = {x G M : x > 0}, we define 

a star-shaped region tt(g) with respect to the origin by 

(1.5) n(g) -Ip-veR^.ije sn-\ 0<p< g(V)}. 

Suppose g : [0, T] x S^1 —► R+ is a C^-map such that p(0, r/) = 1 (r/ € S'71"1). 

Then ftt := ^(^(t, •)) forms a family of domains parametrized by t G [0, T] with 

fto = B(0 : 1), the unit ball. 

We call {Qt} unessential if there exist a G M and b G Mn such that <7t(0,77) = 

a + (6,77) (gt := ||) (i.e. gt G EQ + Ex with the notation of Lemma 2.5 on 

spherical harmonics). This means that {Ctt} is degenerate at t = 0 up to 

similarity transformations and parallel translations (see §5). 

Fix 0 < T,0 < a < 1 and 0 < R. For a C1'" function g : [0,T] x S71"1 —> 
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R+ we shall define (see (2.6.4), (3.3.3)): 

[9iRta '= -jT-ij (> 0), 
||ff||l+a 

by using spherical harmonics and Bessel functions with the following property 

(see (2.6.5)): 

[fflfl.a = 0     <=>     {n(g(ti -))} is unessential. 

We put B(a : r) = {x e Mn :  ^(XJ - a,)2 < r2},5(a : r) = {x G Rn : 
i=i 

£ (xj - a^)2 = r2} for a = (ai,... , an) G Mn, r > 0. N(n)R = N(n) n Mn. 

Now we are ready to state our main result: 

Theorem. Let R ^> 0. There exists a constant C(n, R) > 0 wz£/i the following 

property: Suppose 0<r,0<a<l and tfiai fit = n(p(t, •)) (0 < t < T) is a 

family of domains in En given by a C1,a map g : [0, T] x S71'1 —► M+ satisfying 

g(0r) = 1 and |^(0,77)| < 1 (r/ G S71'1). //^ere exz^ to € R,x e lRn and 

r > 0 swc/i t/iat 

0 < to < min (T, (C(n, i?)b]^Q)«), 

N(Oto)RnS(0:i?)D5(x:r)5 

tfeen to = 0 and so Qto is a ball. 

Remark. Actually it suffices to assume R > j(f, 1) the first positive zero of 

JIL(Z)I when the constant C(n,R) is given in (4.5.2). In Proposition 4.4 we 

drop the technical assumption \gt(0,77)| < 1 (77 G S71-1). A small price to pay 

is the condition (4.4.1b) on to is somewhat complicated (see also Lemma 4.5). 

Corollary 1. Let R ^> 0 and retain the setting as in the theorem above. 

Assume that there exist AQ, to £ K and u G C2(ftto) fl C
1^^) STZC/I t/iat 

0 < Ao < it!2, 

0 < to < min (T, (C^i?)^^)*), 

u ^ 0 is a solution of (iV)Ao. 

T/ien to = 0 and f2to is tfee i^nit ball. 
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In a slightly different formulation we may define a perturbation of domains 

{Clt} by giving the boundaries by means of a continuous map G : [0, T] x 

Sn-i —, Mn with ^(o^) = n (77 € Sn-1) such that 

dnt = G(t, Sn-1) :=  Image (G(t, •) : S^1 —► M71). 

If G is in the Cl class, then we find a uniquely defined function gG : [0, Tf] x 

5n-i —, ^(Q < T' < T) such that £lt = ft(gG(t,')) (see Lemma 5.4). In 

§5 we discuss a geometric aspect of unessential perturbations. In particular, 

{f2t} is unessential if and only if there exist 0 < T" < T and G1-maps 

fa: [OjT^-^R, a(0) = 1, 

b:[^T"}^W*, 6(0) = ^,...,0), 

ip : [0,T"] x Sn-1 -+ Sn-\        <p(Q,u) = w, 
<p(t, •)   is  a  G1-difFeomorphism  of 

such that G{t,u) ':= a(t)G{t, (p(t,uj)) + b(t) is degenerate at t — 0 in the sense 

that J^|t=0G(£,tj) = 0 (Proposition 5.7). Because of the ambiguity of the 

map G up to Map([0,T],Homeo(S,n_1)), we present only a weaker version of 

Corollary 1 by means of a sequence tj in this formulation, instead of giving an 

explicit estimate of a single to as in Corollary 1. 

Corollary 2. Let 0 < T and 0 < a < 1. Suppose {ftt} (0 < t < T) is not an 

unessential family of domains in W1 given by a C1,a map G : [0, T] x S71-1 —> 

Mn with G(0,77) = 77 (77 G S71'1). Assume that there exists a sequence tj G 

[0, T], Xj G M    (3 e N) and Uj G C2(ntj) n G1^) such that 

lim^oo tj = 0, 

supi€N|Aj| <oo, 

Uj is a solution of (N)xj in Qtj. 

Then there exists no G N such that Qtj is a ball for any j > no. 

We finally mention that the results here were announced in [11] Theorem 3 

in 1986 (see also [12] Chapter 3 and [14] Theorem 5.12) with the G2 assumption 

on the parameter. Recently C. Berenstein brought to our attention a preprint 

of Agranovsky [1]. There Agranovsky gives a similar result to Corollary 2 

assuming that the dimension n = 2 and assuming the existence of a solution 
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to (N)xt for all t with the condition that both the boundary 90* and the 

eigenvalues Xt depend analytically on the parameter £, though his result covers 

unessential perturbations (cf. Remark (5.10)). His approach using Riemann's 

mapping theorem for C ~ M2 is quite different from ours. 

2. PRELIMINARY RESULTS ON 

BESSEL FUNCTIONS AND SPHERICAL HARMONICS 

In this section we give a short survey on Bessel functions and spherical 

harmonics on S71'1 that will be used in later sections. 

For v G C and z G C \ (—oo, 0], the i/-th Bessel function is defined by 

J'W=-(§)£ 
fVy-        (-l)"(|)2n 
2)   ^ nW{v + n + l) 

(2.1) 

If we put 8 = J2;~, then both J^z) and J-v(z) are the solutions of the ordinary 

differential equation (02 + (^2 — v2))f(z) = 0. 

Here is a collection of some basic properties of the Bessel function: 

Lemma 2.2. 

1) ^tr- is an entire function of z G C with :^r-\z=o — 2^rL-\-i)' 

2) (see [8], (7.5.38), (7.15.42)) Let z G C.  W^/iwe 

(X) 

(2.2.2a) £  J„(*)2 = l. 
n=—00 

00 

(2.2.2b) ^(2n + l)J„+i(2)2 = -. 
n=0 7r 

3) For real v > —1, J^z) has only real zeros (Lommel, see [17], pp.482-483). 

Let denote by j(y, 1) the first positive zero of Jv(z)(v > 0). Then j{y, 1) > v 

([17], p.485). 

4) (Siegel, see [17], p.484) Jv{z) and Ju+m(z)(m G N+) have no common 

zeros other than zero (BourgeVs conjecture). 
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The first and the last statements in Lemma 2.2 imply the following lemma, 

in which the constants e(n, R) and £(n, R) will be used in a quantitative esti- 

mate of our Theorem. 

Lemma 2.3. Let j(f ,fc)    {k E N+) be the k-th positive zero of the Bessel 

function J^(x).  We fix R > j(|, 1) and define kR 6 N+ by 

0 = J^,0)<j(^l)<...<j(^kR)<R<j^,kR + l). 

We define an entire function of z EC by 

(2.3.1) /(*):= (2*)T-^J. 

Put 

W(R) :={zeC:0<Rez< R,\lmz\ < 1}. 

Then there exist e = e(n, R) > 0 and 6 = 6(n, R) > 0 such that the following 

three conditions hold. 

(2.3.2) 6(n, R)<± min1<fc<n (i(f, k) - j(f, k-1)). 

(2.3.3) C € W(R) n B(j(z,k) : 6) for some k G {1,... ,kR}, then 

\f(z)\>e(n,R) *-J(^>fc) 

(2.3.4) 7/z € W(i2) \ U B(j{%,k) : <5), i/ien 
/c=l 

|/(z)|>e(h,iJ)«(n,iJ). 

Remark 2.4. We might take 5(n, -R) = 1, however, we do not pursue this kind 

of numerical estimates of the Bessel function in this paper. On the other hand, 

we can and do assume 

(2.4.1) e{n,R)<6{n,R) < 1, 

(2.4.2) s(n,i?)<a;n_1. 

Here we define 

(2-4.3) wn-x := VoKS"-1) = |g 

Next, we review spherical harmonics. We induce a Riemannian metric g on 

gn-i from foe standard metric on Mn. Denote by A^n-i the Laplace-Beltrami 
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operator on S71-1 with respect to g. Then the Laplace operator A = ARn on 

Rn is represented as A = J^- + ^^^ + ^-A^n-i in the spherical coordinate 

x = ruj (r > 0,cu E S'n"1). We write L2{Sn~l) for the Hilbert space of square 

integrable functions with respect to the measure given by the metric g. For 

each non-negative integer k G N we define an eigenspace 

Ek := {/ G C00(5n-1) : A^-i/ = -k{k + n- 2)/} C L2^"1). 

The orthogonal group 0(n) naturally acts on the unit sphere S'n_1. This 

action is transitive and we have 0(n)/0{n — 1) ^ S'n_1. Since this action is 

isometric, Asn-i belongs to the algebra of 0(n)-invariant differential operators 

and so E^ is an 0(n)-submodule of L2(S'ri~1), on which O(n) acts unitarily by 

/(*) ^ f{g~lx) for / G L2^"1)^ G Sn-1 and g G O(n). 
In fact, it turns out that each Ek is an irreducible O(n)-module and the 

eigenvalue of A^n-i is given as an evaluation of the Casimir operator. Here 

are classical results on spherical harmonics: 

Lemma 2.5. (see [10], Introduction, Theorem 3.1 and Lemma 3.6) 
oo 

1) L2(Sn~l) = ^2 ®Ek, {orthogonal Hilbert space decomposition). 
k=0 

2) Ek is irreducible as an 0(ri)-module. 

3) Ek is the C-span of 

(a1x1 + - • • + anxn)k : dj G C, ^ a/ = 0, (xu ..., xn) G 5n"1 > . 

In particular, 

(2.5.1) Eo = C-l, 

(2.5.2) E1 = Cx1®...® Cxn. 

4) (see also [8], p. 247, (11.4.22)) For h G L2^"1), r G C and v G S""1 ^e 

(2.5.3) ^(r,a;):= /      e^^^h^dr). 

If he Ek{k G N), </ien tye ^a^e /or a; G S,n~1 and r G C 

(2.5.4) h{r,u) = (27r)^V^kh(uj)Jk+ll1}r\ 
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We introduce a family of seminorms | • \'r on L2(Sn~1) parametrized by 

r > 0 by 

(2.6.1) \h\'r := {EllMl^-^+t-^)2}2 

OO CO oo 

for h = E hk e L2(Sn-1) = £ ®Ek. If h G E ®Ek (i.e.  /io = 0), then it 
fc=0 k=0 k=l 

follows from (2.5.4) that 

(2.6.2) llfefaoOll^sn-x) = (27r)tr1-?|/l|; 

OO 

Since E ^/c+^-i(02 < niax(l,r) (see Lemma 2.2 (2)) if N 3 n > 2, we have 
k=o       2 

(2.6.3) |ft|; < ||/I||L»(5»-I) max(l, r*). 

Let 7(^5 ^)(fc G N+) be the positive zeros of ^(z) arranged in ascending order. 

For R > j(f > 1) let kR G N+ be the integer such that 

0<i(ll)<i(l>)<...<i(ik.)<R<i(l^l). 
For /i € L2^"-1), we define 

It follows from Lemma 2.2 (4) that 

(2.6.5) \h\R = 0    4*     heEo + Ex. 

3. SOME ESTIMATES OF ERROR TERMS. 

In this section we give the first and second terms of the expansion of Fxnt (C* 

a;), the Fourier transform of a family of domains {Qt} in Rn, and also give an 

estimate of the error term. 

We define a function F : C x C -> C by 

By a simple calculation we have 

(3.1.2) ^(s?n) = sn-ie^rs«) 
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and thus 

(3.1.3) [* e^^p^dp^ F(s,u). 
Jo 

By means of this function F we have a formula of ^rXn(^)(C): 

Lemma 3.2. Suppose g : 5n~1 —► M+ is a continuous function and that £l(g) 

is a star-shaped region with respect to the origin as in (1.5). Then we have a 

formula 

^Xn(9)(C) = /      F(9(TI), (ri, Q)dv,    C € C». 

Proof From definition we have 

JrXnto)(C)=/     c^^dx 

= /        /       e"/z:ir^)rn-ldrdr] 
Jsn-1 Jo 

= f      F(g(V),(V,0)dv.    n 

We fix 0 < T and 0 < a < 1. For a C0'a-map / : [0, T] -► E, we put 

co^do.T]) :=  sup |/(t)| +    sup    '-M     ^)l   « oo). 
0<i<T 0<5<t<T        \t — 51" 

Next, suppose g : [0,T] x S71'1 -> K is a C^-map. We put 

(3.3.1) Nice : :=   sup   \g(t,T})\, 
0<t<T 
nes"-1 

(3.3.2) Mo+a ■■ ■=   sup   ||5(-,??)llco.«([o,r]), 

(3.3.3) Ml+a ■ : = IMIoo+||fl't||o+a» 

where 5ft(i,r?) := = &7M)- 

Lemma 3.4. Let 0 < T and 0 < a < 1. Suppose g : [0, T] x S71-1 -> M+ is a 

C1,a map such that 

(3.4.1) g(OlV) = l    forrjGS' n-l 
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We write Qt = Cl(g(t, •)) (see (1.5)). In particular, JIQ is the unit ball.  We put 

(3.4.2) 

Y(g : r,T,a) := -1-   sup   \\g(t,77)»-
1e^Tr*(t''')('"w)pi(t>^Hco.. 

1 + a (lO.TI). 

If ( € C, r > 0 and u £ Sn 1, i/ien twe /love (see (2.4.3)/or ifee definition of 

w„-i) 

(3.4.3)      I^Xn.tC-wJ-^Xno^-^l^tiy^llftlUc^-ic'1-^"- 

(3.4.4) •^XntCr • w) - ^"xno^ • w) - * 5t FXntir-w) 
t=o 

<t1+aa;B_ir((7:r,r,a). 

Proof. Let £ € C and to € Sn 1. By Lemma 3.2 we have 

FXnl((-")= [      F(g(t,V),((r,,u))dV. 
Js™-1 

Then, from (3.1.2) we have 

(3.4.5)        J^WC'^) = J      g&vr-igtfari) 

Thus, 

5\/
3T^(^r7)C(r7,a;) dry. 

I^Xnt(C • ^) - ^"XQOCC • a;)| < i sup 
0<s<t ds FXQsiC'U) 

n-1\\n  II      JlmCllMI ^^n-llbllST'llPtllooC1 

which shows the first inequality (3.4.4). 

It follows from the definition of Y(g : r, T, a) and (3.4.5) that 

-TXnt(r.uj)-- ^Xnt(r-w) 
t=o 

^(l + ^Yig-.r^a^^e, 

for 0 < t < T, co € 5"-1 and r > 0. Therefore, we have 

FXnt(.r • a,) - FXnoir 'UJ)~tg^ FXns(r-uj) 

d_ 

ds s=0 

<   t1+aY{g:rJT,a)LJn.l.    D 

We shall need the following estimate of Y in §4. 

s=0 
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Lemma 3.5. Retain the setting of Lemma 3.4.  We define g : [0,T] x 5n_1 x 

M->R by 

(3.5.1) g(t,V,a):=(l + at)g(t,T1). 

Assume 

(3.5.2) 0 < T < 1   and \a\T < 1. 

Then 

(3.5.3) y(S(., -,a) : r, T, a) < 2"+1(n + ^^^-^^^^[^^^(l + |a|)2. 

Proof. First we treat the case a = 0.  Fix r > 0 and r),oj € 5n-1.  We put 
fe(x) := ajn-ieV^srO,,^ Then 

ll%(-»»/))llc7O.-([0,Tl) 

< SUP   |%(t,7/))H-   SUP   |M^^))I      SUP      l^'^-^'^l 

< iipiisr1 + {(n - i)lMlsr2+ikiisrMlbllo+a 

< (n + rM^Mo+a. 

Here we have used \\g\\oo ^ 1 in the last inequality. Hence 

Y(g : r,r,a) = ——    sup    ||%(-,r/))^(-,^)||co.«([ofn) 

(3-5-4) < Ibtllo+a      SUp      ||%(-,T?))||co.-([Ofri) 

^(n + OII^IISr'll^llo+all^llo+a 

Next, let us estimate Y" for g(t,r],a) — (l + at)g(t,r]) in terms of g. We assume 

T < 1 and |a|T < 1. Since 

fft(*,»?, a) = a9{t, 'n) + {\ + at)gt(t, 77), 

||1 + a*||o+a < 111 + a*||o+i < 2 + |a|, 
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we have 

IISlloo < 2|b||oo, 

||3(-,-,o)||o+a <  ||l-|-at||o+a||0l|o+a 

<(2 + |a|)||5||o+Q, 

||^t(-,-,a)||o+tt < |«|lbl|o+a + ||l + at||o+a||5t||o+a 

<2(l + |a|)|y1+Q. 

Applying (3.5.4) to 5, we have 

y(^(v,o) :r,T,a) < (n + r)2"-1||5||^1(2 + |a|)||5||0+a2(l + |a|)||5||1+a 

< 2"+1(n + r)(l + mgmWo+aMi+a.   D 

4. PROOF OF THEOREM 

Now we are ready to prove our main Theorem. We start with the following: 

Lemma 4.1. In the setting of Lemma 3.4, let p be a positive zero of J%(x). 

Assume 

(2*)9\gt{0,-)\'p        V 
(4.1.1) 0 < t < min   T, 

vpf  1a;n_12r(5:p,r,a)/ 

(see (2.6.1) and (3.4.2) for notation).   Then N(fit) D S(0 : p) if and only if 

t = 0. .Here we write Q,t = ti.(g(t, •)). 

Proof. If t = 0, then J^xno {r ■ w) = (2^)^  t     and so we have Fxcio (P'u) ~ 0 

for any UJES"-
1
, that is, N(fto) 3 5(0 : p). 

Conversely, if t > 0 satisfies N(f2t) D ^(O : p). Then we have FxntiP'a;) = 

FXQoiP • ^) = 0 for a; G Sn~1. Using the inequality (3.4.4), we have 

d 
dt FXnt(p-u) 

t=o 
Kt^u^Yig-.p^a). 

Taking the L2-norm on S71 1, we have from (2.6.2) the following inequality: 

t^Sr\9t{0,% < t1+aujn^Y(9 : p,T,a). 
P2      X F 

This implies t = 0 or 

proof.    □ 

(27r)T|5t(0,.)i: 
9^   1a;Tl_i2 yferp.T.a) 

< ta.  Thus we have completed the 
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Lemma 4.2. Let 0 < T, 0 < a < 1 and g : [0, T] x S"-1 -> M+ 6e a C71>a map 

SMC/I i/iai ^(0, r/) = 1 /or 77 € 5n_1.  PFe pwi 

(4.2.1) B = B(g):=\\gr^\\g\\0+1un^. 

We recall notations of Lemma 2.3 such as e(n, R),6(n, R), kn and j^, k). Let 

R > j(f ,1). Assume 

(4.2.2a) 

(4.2.2b) 

(4.2.2c) 

(4.2.2d) 

0 < ro < R, 

,   fe(n,R)6(n,R) m. 0 < to < min [ Zy      ,T) , 

0J0 e Sn-\ 

Fxnt0 (ro • wb) = 0. 

Then there exist k € {1,2,... , kn} and a € R swc/i iftai 

(4.2.3a) 

5(5) 

,n 
To = (l + ato^'Cg'^)' 

(4.2.3b) 

(4.2.3c) 

H< e(n, i?)' 
,n 

h -i^^)! <5(n,^). 

Proof. If to = 0 then we can take a = 0. Hence we assume to > 0. It follows 

from Lemma 3.4 that 

Since ^"xnto^o'^o) = 0 and ^Xno^o'^o) = /(ro) (see (2.3.1) for the definition 

of /), we have 

(4.2.4) |/(ro)| < B(g)t0 < e{n, R)S(n, R). 

Therefore, from Lemma 2.3, we find k € {1,... , kp} such that 

,n 
ro-j(^,k) (4.2.5) e(n, R) 

Now, we put a := r°~j(a fe) • Then we have 

< l/(ro)|. 

H<ir-iiM)i< B^) 
to £(n,R)' 
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Here, the second inequality follows from (4.2.4) and (4.2.5), which proves 

(4.2.3b). The inequality (4.2.3c) is direct from (4.2.4) and (4.2.5).   □ 

Lemma 4.3. Retain the setting of Lemma 4.2. Assume 

(4.3.1a) 
0 < ro < R,    1<R, 

(4.3.1b) 

n^   ,,(<n,R)6(n,R)  ( (2^e(n,Rng}R>a 0<io<m1n^        B{g)        ,[2n+imJn_iiR*Bigr)    ,T,1 

(4.3.1c) 
K(0(o)D5(0:ro). 

Then to = 0. 

Proof. It follows from Lemma 4.2 that we find a € K and k G {1,... , kR} such 

that 

(4.3.2a) r0 = (l + ato)j{^,k), 

(4.3.2b) |o|<   B^ 
e(n, R)' 

We put g(t,r},a) := (1 + ato)g(t,ri). Then we have 

77 

(4.3.3) Xm(to,;*)))DS(0:j(-,k)), 

because 

Fxn((i+ato)9(to,))U( g' k) •(*>) = (! + ^o)n^XQ(^o,.))((1 + ato)J(^ k) • (j) 

= (1 + ato)n^XQ(p(to,-))(ro • w). 

We want to apply Lemma 4.1 to g(-, •, a) in order to show (4.3.3) implies to = 0. 

To do this, it suffices to show (4.3.1b) implies (4.1.1) with g replaced by g, 

that is, 

r434l (27r)T£(n,i?)2[ffka   „        (27r)*|&(0,-,a)|;, 
2«+4nu;n_1iJRtJB(5)3 " p^oj^Yig : /J.r.a)' 
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where p = j(f, *)(< R). Since |a| < ^, U < 1 and U < MM < sM 

(see (2.4.1)), we can apply Lemma 3.5 and thus we have for 0 < p < i?, 

Y(g(.,.,a) : p,T,a) < 2"+1(n + RiM^Mo+aMi+a (1 + -^j 
2 

2 
<2n+2ni?^M||5||1+a22^M 

a;n_i s{n,R)2 

= 2^n^(g)3llgll1+Q 

a;n_i£:(n,i?)2 

Here we have used R > 1 and e(n, i?) < (Jn-i ^ ^(5) (see (2.4.2)). Therefore, 

(27r)?e(n,#)2[<7ka   < (27r)f |fft(0, OU 

(27r)f|gt(0,-,a)|fl 

Hence we have shown (4.3.4) and thus Lemma 4.3.    □ 

Proposition 4.4. Let 0 < a < 1,0 < T and 0 < R. Suppose g : [0,T] x 

5"_1 —► R+ is a C1'" map such that g(0, •) = 1. Retain the notation as in 

Lemma 4.3. Assume 

(4.4.1a) 
0<r,a;€Rn

) 

(4.4.1b) 

(e(n,R)6(n,R)   ( {2^e{n,RY[g]Rya \°        \ 
0<to<m1n^   B(5)e|M|oo    ' ^na^JJliwJ    ^^J' 

(4.4.1c) 
N(J7(0)K n 5(0 : i?) D 5(x : r). 

Then x = 0 and io = 0. 

Proof. It suffices to show x = 0 by virtue of Lemma 4.3. Because io satisfies 

(4.4.1b), the inequality (3.4.3) gives 

(4.4.2) 

I^Xnt0 (C •") - ^WC • a;)| < io5(5)el Im«l^ll- < e(n, ^^n, i?), 
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for C € C with | ImC| < 1 and a; 6 5'n~1. On the other hand, if ( e C satisfies 

IC "" jXf»fc)l = ^(n' ^) ^or some A; € {1,... , ^H}, then 

|^Xno(C-w)l>e(n,il)«(n,fl) 

from Lemma 2.3.   Therefore by using Rouche's theorem J^Xn^ (C * u;) has a 

unique zero in {C G C : |C - j(f > fc)l < 'H71* ^)} for each ^ ^ 5n-1. 

Next, the condition (4.4.1c) means «Fxfito(x + r * ^) = 0 for any a; E S71-1. 

Applying Lemma 4.2 with ro = ||x + r -wlK^ R) (with the notation there), we 

find k G {1,... , kR} for each u; G S'n"1 such that 

,n 
\x + r-uj\\-j(-,k) <6(n,R). 

By (2.3.2) and because Sn 1 is connected, the above integer k does not depend 

on uj G S'n~1. This means that there exists k G {1,... , fc^} such that 

(4.4.4) 
,71 

k + r.a;||-j(-,A:) < <5(n, i?) 

for any a; € S"1"1. 

Now, let us show x = 0. Suppose x 7^ 0. We put 

*+:=! + x,     ^_ := 1- x. 

Then, from (4.4.4) we have 

(4.4.5) 
,n 

kfcll-rt^fc) <6(n,R). 

On the other hand, since ^Xn^iC'^) = ^Xn^C-C ' a;) for C G R,3sr(fito) D 

5(a; : r) if and only if ^(^o) D S(-x : r). Therefore .Fxn*0(±a ± r • w) = 0 

for any u; G S71-1. In particular, we have 

(4.4.6) ^Xnlo(«±) = 0. 

Because ^^(C * |jfj|) has a unique zero in {C G C : |C - j(f, fc)| < <5(n, i?)}, 

we conclude ||z+|| = \\z-.\\. This implies r = 0, which contradicts to (4.4.1a). 

Therefore x must be the origin. Now Lemma 4.4 is reduced to Lemma 4.3.    □ 

In the normalized case where ||3t(0r)l|Loo(5Ti-1)  ^ 1? we can replace the 

assumption (4.4.1b) by a simpler one: 
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Lemma 4.5.  We put 

rAKi\ n 1 ■   tt 1 (27r)f       ^ 

For (1 <)i(f, 1) < R, we put 

(4.5.2) cCn.ii)^^^, 

where e(n,R) is the constant in Lemma (2.3).   Let 0 < T and 0 < a < 1. 

Suppose g : [0,T] x 5n~1 —► R+ is a C1'" map such that 

(4.5.3a) 5(0, */) = 1, /or any T? € 5n-1, 

(4.5.3b) sup   ^(O,!?)!^!. 

//i satisfies 

(4.5.4) 0 < t < min(T, (C(n, i?)Mfl,a)°), 

i/ien t satisfies (4.4.1b). 

Proof. If r > 1, then it follows from (2.6.3) that 

|St(0,-)i: < \\gt(0,-)\\ms^)ri < ||ft(0,0||Lco(Sn-i)WB_1ir*. 

Therefore, from the definition (2.6.4), we have 

(4.5.5) [g\R>a = -jj-jj < -jj-jj . 
ll5l|l+« Il5l|l+a 

Suppose t satisfies (4.5.4). Then 

m        l9\R,a <        m hh+a    < Mi+a < 2. 

Therefore we have 

1 

\9t(t,V)\ < 1^(0^)1 + ta\\g\\1+a < 1 + i • 2 = 2, 

\9(t,v)\< W,^+ 4^00     < 1 + ^-2 = 2, 

B(g) = \\g\\1£1\\g\\o+iu>n-i   < 2n+1un-x, 

B(g)eM°° < 2n+1wn_1 • e2 < 2n+4u;n-i. 
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Thus from (4.5.2), (4.5.5) and (2.4.1) we have 

t<ta<Cn
e-^^{g]R,a 

it2 

1        e(n, R)6(n, R) ojn^i^Ri 

< 

< 

2-+3a;n_1f m \\g\\1+0 

s(n,R)6(n,R) 

e(n,R)6(n,R) 
B(g)e\\s\\oo    ' 

On the other hand, since Cn < —QiuJL—   < {ZEI     we have 

< 

77 

2n+4nujn_1$B(g)3R%' 

Hence t satisfies (4.4.1b).   □ 

Now, Theorem follows from Proposition 4.4 and Lemma 4.5. Corollary 1 is 

an immediate consequence of Theorem (with x = 0) and Fact 1.1. Corollary 

2 is a direct consequence of Corollary 1. 

5. APPENDIX (GEOMETRIC ASPECT OF UNESSENTIAL PERTURBATION) 

In Definition (1.5), we have defined a star-shaped region (with respect to the 

origin) by using the polar coordinate, that is, tt(g) C Rn for g 6 C^71-1,!^). 

In this section, we also consider a star-shaped region f2 by defining the bound- 

ary G : Sfn~1 —> <9fi, and discuss a geometric aspect of "unessential perturba- 

tion" that we have treated. This is done in Proposition 5.7. Throughout this 

section we use the notation Ck where k stands for / (I G N = {0,1,... }), (Z, a) 

(I € N, 0 < a < 1), oo or u> (real analytic). The condition k > 1 means that we 

exclude the cases k = 0 and k = (0, a) from the above possibilities. We define 

a standard norm in En by ||x|| := (Z)£=i ^j2) 2 for x = t{x1,..., xn) G Mn. 
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DEFINITION 5.1. A Cfc-map G : S71'1 -+ W1 is called to bound a Ckstar-shaped 

region (with respect to the origin) if the following two conditions are satisfied: 

(5.1.1) 
Image(G) ^ 0 

(5.1.2) 

G    . cn-l     .  cn-1   , . .   .     "!(a;)      j„c „ r^k Aia u; c an-l 
: S

71-1 -► Sn-\ u >-> „-;  :„ defines a C^-diffeomorphism of S" 
\\G\\ ' ||G(a;)|| 

Then Image(Gf) is the boundary of a star-shaped region (see Lemma 5.2 (1)). 

We write C^(S,n-1
7M

n) for the totality of such maps. 

Clearly, if h G Cfc-Diffeo(5ri-1) and G G Ck(Sn-\Rn), then both G and 

G o h define the same boundary Image(G) = Image(G o h). The following 

lemma relates Definition (1.5) with Definition 5.1. 

Lemma 5.2.  We have a bijection: 

(5.2.1) 
C*(S,,-1,Rn) ^ C,:(5n-1,M+) x Cfc-Diffeo(5n-1),    G ^ (gG, hG), 

characterized by the following property: 

(5.2.2) G o hG(r,) = gG(r,)r,        (r, G S^1). 

In particular, 

1) Image(G) = d^gc), the boundary of the star-shaped region ^(go) (see 

(i.5);. 

2) If GUG2 G C^(5n-1,Rn) define the same boundary Image(Gf
1) = 

Image(G2), then there exists an h G CALDiffeo(S'n~1) such that Gioh — 

G2. 

Proof. Given G € <7*(1S
n-1

)R
n)) we put /iG := (yfji)"1 € Cfe-Diffeo(5n-1) 

and gaiv) '■= \\G o /IG(^)|| (^ € 5n_1). It follows from definition of ho 

that IIG^^JH = V and so GohG(rj) = gG{ri)r). Conversely, given (5,^1) € 

Ck{Sn-\R+) x C^Diffeo^"1), we define G{UJ) := gih-1^))^1^). Then 

it follows from definition that G <E Cj^"1,^) and that {gG,hG) = (g,h). 

This establishes the bijection (5.2.1). The remaining part (1) is followed from 

(5.2.2), and (2) holds if we put hG :— hGl o hGl.   D 
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Next, we consider a deformation of domains by Map([0,r],C* (S'n-1,Rn)). 

We prepare the following lemma asserting that it is an open condition for a 

domain to be star-shaped under a C1-deformation of domains. 

Lemma 5.3. Let k > 1. Suppose G : [0,T] x S71'1 -» Mn is a Ck-map such 

that G(0, •) € Ck(S'n~1,Mn) (see Definition 5.1/ Then there exists a positive 

number 0 < V < T such that G(t,-) G Ck(Sn-\Rn) for any t G [0,T']. 

Moreover, if we define gcit^r]) — gG(t,-)(v) and hcfarj) = /iG(t,)(^) with the 

notation in Lemma 5.2, then go : [0, V] x S71'1 -> R+ and hG : [0, V] x S71'1 -> 

iS71-1 are Ck-maps satisfying 

(5.3.1) hG(t, •) is a Ck-diffeomorphism of 5n"1 for t e [0, T']. 

(5.3.2) G(t} hafa r,)) = gG(t, i/Jt/ for t e [0, T'], 77 e S^1. 

Proof We fix T'7 > 0 such that G([0, T"] x S71"1) C Mn \ {0}. We define a Ck- 

map if : [0, T"] x S""1 - 5-1 by ff(t, 0}/= ^g^ for (t, a;) € [0, T"] x fi^"1. 

Let us show that the map H(t, •) : Sn~l —► S'n~1 is a C^-diffeomorphism for 

any small t. 

Since (7(0, •) bounds a star-shaped region, we find C^-maps h : S71-1 —> S'71-1 

and 5 : 5n-1 -> M+ such that G(0, %)) = 5(77)7/ by Lemma 5.2. Then 

the Jacobian JiJ(0, •) of the map #((),•) = h'1 : S71-1 -*• S71-1 is nowhere 

vanishing. Because H(t,u) is in the Cfe class and because Sn~l is com- 

pact, there exists (T" >) T' > 0 such that the Jacobian JH(t, •) of the map 

H(t, •) : S,n~1 -> S'71-1 is nowhere vanishing for all t 6 [0, T']. This means that 

the map i7(t, •) : S71-1 —> S'71-1 is locally Cfc-diffeomorphic. Because a local 

homeomorphism from a compact manifold to a connected one is automatically 

a covering map, the map iJ(t, •) : S71'1 —► 5n_1 is a covering map. On the 

other hand, consider the following commutative diagram of homology groups: 

H(t,-). : #n_1((S'»-1,Z)  .     H^i^-^Z) 

GCt,-)..:^-!^"1^)   ► Fn_1(M"\{0},Z). 

Since G(<,«;) is continuous, the mapping degree of i?(t, •) equals to that of 

H(0,-), that is, ±1. Therefore H(t,-) is a C^-diffeomorphism from Sn~1 to 

S"-1 for any t € [0,1*].   Hence G(t,-) € C^^""1^") for any i € [O.T'] 
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by definition. Now the last statement is proved in the same way as Lemma 

5.2.    □ 

A deformation of domains starting from a unit ball is a special case of the 

previous lemma and so we have: 

Lemma 5.4. Let k > 1. Suppose G : [0,T] x S71'1 —> Mn is a Ck-map such 

that G(0,UJ) = u {uj E 5n"1). Then there exist a positive number 0 < T" < T, 

andCk-mapsgG : [0,r/]xS,n-1 -+ R+ andhG : [0,r/]xS'n-1 -► S'71"1 satisfying 

(5.3.1), (5.3.2) and 

(5.4.1) ^(0, i?) = 1, MO, rft^ri     f^r,e Sn-\ 

Thus the map G defines a family of star-shaped regions 

(5.4.2) a:=«(0G(V)) (see(l.h)) 

parametrized byte. [0,T"] with SIQ = B(0 : 1), the unit ball 

Let TM71 -> Rn be the tangent bundle, and rR71^-! -► S71'1 its restriction 

to 5n~1. We write r;c(rRn|5rl-i) for the space of sections in the Ck class. 

DEFINITION 5.2. Suppose G : [0,T] x S71'1 -> Rn is a C^map such that 

G(0,a;) = UJ(U) G S71"1). We define the velocity XG G r^TR"^--!) of a 

deformation fit = fi(5G(£> •)) (see (5.4.2)) by 

*,(«) := | G(t,a;). 

The map G{t,uj) is called degenerate att = Q\iXG{UJ) = 0 (a; £ 5n~1). 

The groups Crfc-Diffeo(5n-1) and ,4F(Rn) := GL(n,R) x Rn act naturally 

on Cfc(5n"1,Rn) by G^iroGotp, where (p G Cfc-Diffeo(5n-1), TT G AF(Rn) 

and G G Ck(Sn-\Rn). In particular, if we define 7r(a,6) G AF(Rn) (a > 

0, b G Rn) by 7r(a, 6)x := ax + b (x G Rn) describing a parallel translation and 

similarity transform, then (7r(a,b) oGocp) (a;) = aG((p(u)) + b. 

As we are interested in the perturbation of domains up to parallel transla- 

tions and similarity transforms, we consider: 
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DEFINITION 5.3. Suppose-G* : [0,TJ x S71'1 -► Rn is a Cfc-map such that 

G(0,a;) = cu (i = 1,2). We call Gi is Ck- equivalent to G?2 if there exist 

0 < T" < T and C^-maps 

'a: [CT'T-^R, a(0) = 1, 

feitCr^R-, 6(o)=<(o,...,o), 
^ ^ : [CT77] x S71-1 -> 5n-1,        ^(0,0;) = w, 

y?(t, •)   is   a  C^-diffeomorphism  of 

such that G2(t, •) = 7r(a(t), 6(t)) o Gi(t, •) o y>(£, •), that is, 

G2(t,a;) = a(t)Gi(t,^(t,a;)) + 6(t) 

for t G [0, T'], CJ G 5,n~1. We write [G]fc for the G^-equivalence class containing 

G. 

Proposition 5.7. Let k > 1. Suppose G : [0,T] x S71'1 -> Rn w a Ck-map 

such that G(0,u;) = a;. Le^ pG : [OjT'] x S"2-1 —> R+ be the corresponding 

function in Lemma 5.3. Then the following conditions on the map G are 

equivalent: 

(1) fi(gG(V)) is an unessential family of perturbations (see $1). 

(2) Among the Ck-equivalence class [G}k (Definition 5.6^, there exists G 

which is degenerate at t = 0 (see Definition 5.5/ 

The rest of this section is devoted to the proof of Proposition 5.7. 

Let Tsn-iRn —» iS72-1 be the normal bundle associated to the embedding 

of Riemannian manifolds Sn~l C Rn. According to a Whitney sum of vector 

bundles over 5n~1 

rRn|5n-i = rs"-1 © rs»-iRn, 

we have a direct sum of vector spaces: 

P^TRV-O = xfc(5n-1) © ck{sn-1), 

where we denote by X/c(5n_1) the space of vector fields over 5,n~1 in the Ck 

class, and identify Ck(Sn~1) with rfc(T5n-iRn) by the outer normal vector field. 

We recall EQ, EI are the subspace of GtJ(5'n~1) which are the eigenspaces of 

the Laplace-Beltrami operator A^n-i with eigenvalues 0, 1 — n, respectively 
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(see Lemma 2.5). Thus we regard X^S"-1) © EQ 0 Ex C ^(TW1^-*). We 

write a quotient map as 

P : rfc(rRn|s-0 -+rfe(rRV-i)/ (x^s71-1) ®Eo@ EJ 

(5'8) aC^-^nff^QEA. 

Formula 5.9. Suppose T > 0 and we are given ^-maps 

G :[0,r] x 5n-1 -»• Mn,   0(0,0;) = u (w € 5n-1), 

a : [0, T] -» R, a(0) = 1, 

b:[0,T\^Rn, 6(0) = t(0,...,0), 

^:[0,r]x5n-1^5n-1,    <p{0,u) = u. 

IfweputG(t,u}) := a(t)G(t, (p(t,u>))+b(t), then with the notation in Definition 

5.5 

(5.9.1) Xd(u>) = XG(UJ) + Xv(u) + a'(0)u + b'{0). 

oo 

In particular; P(XQ) G Ck(Sn~1)n J2 ©^fc is determined only by the equivalent 
k=2 

class [G]k. 

Proof. The formula (5.9.1) follows by a direct calculation.    □ 

Proof of Proposition 5.7. In the setting of Proposition 5.7, we consider an- 

other condition on the map G: 

(5.7.3) p(XG) = 0, that is, XG e X^S71'1) ®E0® E^ 

i) (5.7.1) & (5.7.3): 

Because G(i, hc(t, rj)) = gcit, ri)rl'> we have 

d_ 
dt C7(t,M*^))=^ gG{t,rj)>q, 

that is, ^(ry) + Xhq(rj) — gciv)1! since G(0,r)) = hG(0,T]) = 77. Because 

XfcG G X*^-1) and because (ry H-> ^(77)7?) G rfc(T5n-iMn) is identified with 

go G Ck(Sn~1) via the outer normal vector field, we have 

p(XG) = gG    mod E0 © ^. 
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Therefore P(XG) = 0 if and only if gG € EQ® Ei, that is, (5.7.3) is equivalent 

to (5.7.1). 

ii) (5.7.2)^ (5.7.3): 

Assume there exists G G [G]k such that Xg = 0. It follows from Formula 

(5.9) thatp(XG) =p(Xd) = 0. Therefore, (5.7.2) implies (5.7.3). Conversely, 

assume p(XG) = 0, that is, XG e X
k(Sn-1) ®Eo® E^ In view of (2.5.1) and 

(2.5.2) we find Y G Xk(Sn-1) and a G R, b G Mn such that 

XG(UJ) = Y(UJ) + (a + (6,UJ))UJ    (LO G S71-1). 

Because 5'n~1 is compact, there exist 0 < T" < Tf and a one parameter family 

of diffeomorphisms (p : [0,T"] x 5n-1 -> S71'1 such that 

— I 
dt\ 

from fundamental existence and uniqueness theorems of a system of first order 

differential equations.   We put a(t) := 1 — at, b(t) := —bt and G(t,uj) := 

a(t)G(t,(p{t,uo)) + b(t). Then, from Formula (5.9.1), we have 

X5(u) = XG(UJ) + (-Y(u>) + b - (6, cj)a;) - acu - b = 0. 

Hence we have proved (5.7.3) implies (5.7.2)    □ 

Although the assumption in Corollary 2 about "not unessential" restricts the 

perturbation to "generic" cases, we can also treat "degenerate cases" (Defini- 

tion 5.5, Proposition 5.7) by a change of variables if the degree of degeneracy 

is finite in the sense of (5.10.1). To be more precise, we mention: 

Remark 5.10. Let k — oo or a; (real analytic). Given a C^-map G : [0,T] x 

5n~1 —> Mn such that 0(0,7]) = 77. If n(gG(t, •)) is not unessential, we can 

apply Corollary 2. Otherwise, from the equivalent condition (5.7.2) we can find 

G G [G]k such that G(t, 77) —rj = 0 mod t, so that Gi(t, r]) := G(\/t, 7/) is in the 

C1^ class. In the same way, either we can apply Corollary 2 to Gi or we can 

find G G [G]k such that G(t, r?) - 7/ = 0 mod t2, so that G2(t, 77) := G(Vt, ry) 

is in the C1^ class. By an iteration of this argument, we can show either 

(5.10.1) there exist I G N and G G [G]fc suc/i that G(t,rj) - rj = 0  mod tz 

and t/iat <?(<*, 77) G ^'^([O^T'] x S71"1^71) dearies a family of 

domains which is not unessential, 
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or 

(5.10.2) for any I G N there exists Gi G [G)k such that Gifarj) — r) = 0 

mod tl. 

In the real analytic case k = a;, it is likely that (5.10.2) can be replaced by 

(5.10.2)7 there exists G G [G\u such that G(t,r)) = rj. 

This would enable us to drop the assumption "not unessential" in Corollary 

2 in the case where G is real analytic, because the case (5.10.2)' means that 

rL(gG(t, •)) is a ball for all t and because we can apply the original form of 

Corollary 2 in the case (5.10.1) to the map G. 
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