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ABSTRACT. This paper is concerned with the global smooth isomet- 
ric immersion in M3 of complete simply connected negative curved 
surfaces. A sufficient condition involving the rate of decay of the 
curvature at infinity is imposed. 

INTRODUCTION 

Since Weyl [W] and Lewy [L] proved that a two dimensional sphere with an 

arbitrary analytic positive curvature metric has an isometric analytic embed- 

ding in R3, there have been many papers to devoted to this field. Most of them 

involved positive curvature metrics. For example, Nirenberg [N] and Pogorelov 

[P] generalized the Weyl's result to the C00 case; Heinz [He], Delanoe [D], and 

Hong [H] successively discussed the isometric embedding in M3 of a positive or 

nonnegative curvature metric given in someMomains in M2 respectively. Also, 

a few papers are concerned with negative curvature metrics. Hilbert pointed 

out that any complete 2-dimensional surface with negative constant curvature 

has no C2 isometric immersion in M3, and, later, Efimov [E] generalized the 

Hilbert Theorem and proved that any complete 2-dimensional surface with 

curvature bounded above by a negative constant has no C2 isometric immer- 

sion in M3. As for the positive answer, except for the result due to Poznyak 

[Po], which states that any geodesic disk with smooth negative curvature has 

a smooth isometric immersion in R3, no more is known. So S.T.Yau [Y] raised 

the following question: Find a sufficient condition for a complete negative 

curved surface to be isometrically embedded in M3. He also pointed out that 

a reasonable sufficient condition might be the rate of decay of the curvature 
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at infinity. In the present paper, a realization in R3 of such a surface is found, 

and in order to insure such a possibility of realization the rate of decay of 

curvature at infinity should be faster than the geodesic distance to the power 

-2. 

Let (M, g) be a complete simply connected 2-dimensional surface with neg- 

ative curvature —k for some positive smooth function k. The Hadamard theo- 

rem tells us that the exponential map expp is a global smooth diffeomorphism 

from TP(M) onto M. Denote by (p, 6) the corresponding geodesic polar coor- 

dinates. Then the main result in the present paper is as follows. 

Theorem A. Let (M,g) be a smooth complete simply connected 2-dimensional 

surface with negative curvature —k. Assume that k satisfies 

dp ln(kp2+6) < 0 as p > R, 

for some positive constants 6 and R, and 

(0.1) dlInk (i = 1,2),    pdedphik bounded . 

Then (M,g) has a smooth isometric immersion in R3. 

First of all, we establish a global geodesic coordinate system on M. Let 

(ei, 62) be the orthonormal basis on TP(M) and define 

(0.2) X = {qG M I q = exppxe1,x G R1}. 

Then any point on X is identified by the coordinates (x, 0). Now we introduce 

local geodesic coordinates (x, i) with the base curve X, where t is the oriented 

distance from the point (a;, 0) and t > 0 in the image {expp(xei + 2/62)\y > 0} 

and t < 0 otherwise. 

Theorem B. The geodesic coordinates with the base curve X mentioned above 

covers the whole manifold M. 

It seems that the conclusion in Theorem B should be well known. But I 

have not found the place including the verification. For the convenience of the 

reader in Section 2 the proof is given. Under these geodesic coordinates 

(0.3) g = dt2 + B2(x,t)dx2 
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with 

(0.4) B(x, 0) = 1 and Bt(z, 0) = 0,    x € M1 

Assume that the curvature of g equals — k for some smooth positive function 

k. Suppose that (Hi) k > 0 and tdt \n(k\t\2+s) < 0 as |t| > T for some positive 

constants 8 and T; (H2) k, dl
x \nk{i = 1,2), tdxdt\nk are bounded and dtlnk 

is locally bounded in t, namely, bounded for finite t; (H3) inf L00 fc(x, t)dt and 

inf /.^ k(x, t)dt positive. 

Theorem C. Let (M,g) be a complete simply connected smooth surface with 

negative curvature —k. Suppose that the hypotheses (Hi)- (H3) are fulfilled. 

Then (M, #) has a smooth isometric immersion in M3. 

Obviously, (Hi) implies that the rate of decay at infinity of k is faster than 

\t\~2 and Ink has some monotonity in t at infinity. Using the method in this 

paper, without difficulty, one can conclude that if (M,p) is C4,1, then it can 

be realized by some C3,1 surface in R3. 

One wonders if the restriction on the rate of the decay of the curvature as 

fast as the geodesic distance from the base curve of — (2 + 6) order at infinity, 

can be relaxed. It is still open. 

Usually, there are two ways to realize in R3 a Riemannian manifolds. One 

way is to solve the Darboux equation involving its curvature as done in [N], 

and the other way is to solve, the Gauss- Codazzi system as done in [P]. It 

seems that the first way is more suitable for the positive curvature case and 

the second way for the negative curvature case. The scheme of the present 

paper is as follows. In Section 1, the proof of Theorem B is presented and some 

lemmas about the properties of the function B in (0.3), which are useful for the 

estimation of solutions to the Gauss-Codazzi system, are given. In Section 2 

under the hypotheses (Hi)-(H3) some asymptotic behavior of solutions to the 

Gauss-Codazzi system is studied and the proof of the Theorem C is covered. 

Section 3 completes the proof of Theorem A. 
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1. GLOBAL GEODESIC COORDINATES 

This section is concerned with the verification of Theorem B and some 

properties about the function B are given also. 

The proof of Theorem B. We first prove that the following transformation: 
M2 3 (x, t) f-> q £ M such that q is a point on the geodesic 71 

T: passing through (x, 0) and perpendicular to X with the oriented 
geodesic distance t from q to X = {expp(:rei) | x G M1}, 

is surjective. In fact, for each q E M we can find a shortest geodesic 7 from 

the point q to X since the geodesic distance t* from q to X is less than or 

equal to the distance between q and the polar p. Obviously, 7 is perpendicular 

to X. So T{x*,t*) or r(x*, -r) = q where T(:r*,0) is the intersection of 7 

and X. This proves the surjectivity of T. 

To prove the injectivity, we first point out that T is locally diffeomorphic. 

With Tx = dT{d/dx) and Tt = dT{d/dt), by the definition of the transfor- 

mation T, we have {Tt,Tt) = 1. By Gauss's theorem we know (Tx,Tt) = 0, 

namely, Tx and Tt form an orthogonal frame on the tangent space. Twice 

differentiating {TX,TX) with respect to t gives 

d2/dt2{Tx,Tx) = \S7TTt\
2 - {R(Tt,Tx)Tx,Tt) 

The assumption on the negativity of the curvature guarantees that d/dt(Tx, Tx) 

is monotonely-increasing and 

td/dt(Tx,Tx) > d/dt(TXiTx)\t=o = -2(rt, VTTx)\t=o = 0,   if t? 0 

It turns out 

(1.1) (TX,TX)  >  <rx,rx)|t=o = lforalU 

Summing up we have the map dT being nonsingular everywhere and hence T 

is locally diffeomorphic. 

To prove the global diffeomorphism of T, in view of the Hadamard lemma, 

we only need to illustrate T being proper since T is surjective and M is simply 

connected. Let C be any compact set in M. Then we have 

sup{|t| I there exists x € E1 such thatr(x, t) £ C} 

<    sup{p = Iexp-1(r(a:, t))\ where T(x, t) G C} < +00 
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and 

sup{|x| | there exists t € M1 such thatT(^,i) € C} 

<    2sup{p = \exp-1(T(x,t))\ where T(x,t) E C} < +00 

since expp is diffeomorphic from TP(M) onto M. This completes the proof of 

Theorem B.    □ 

So far we have established global geodesic coordinates (x, t) with the base 

curve X for any complete simply connected Riemannian manifold with non- 

positive curvature. Under this coordinate system the metric g is of the form 

as mentioned in (0.3) with (0.4) since B2 =< TX,TX > > < TX,TX > \t=0 = 1 

and BtfaO) = - < TUWTTX > \t=0 = 0. 

In the sequel we often use the geodesic coordinates (x, t) as mentioned above 

and the geodesic polar coordinates (0,p). Suppose that under the geodesic 

polar coordinates, the metric is of the form. 

g = dp2 + G2d62. 

Then from the Gauss equation we have 

Gpp = kG with G = 0 and Gp = 1 at p = 0 

(1.2) and Btt = kB with (0.4) 

For the needs of the later discussion we investigate some properties about 

the functions B and G. 

Lemma 1.1. Let (Hi)-(Hs) be fulfilled.  Then 

(i-3) § = 7(1 + 0(1/1*1')) 

uniformly in x for sufficiently large \t\ and 

(1.4) dt In J3, Bdtdx In B are bounded. 

Proof. Integrating the second equation in (1.2) gives 

(1.5) Bt = &(,(*)+ / Bs(s)N(tJs)ds 
Jo 
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bQ(t) = f kds and N(t,s) = f kd^. 

This is an integral equation of Voterra type. By iteration we find a solution 

of explicit form in terms of Neumann series 

(1.6) 

where 

Let us prove 

(1.7„) 

71=0 

r0&o = bo and T'bo = [ (Tn-1bo)(s)N(t, s)ds. 
Jo 

\Tnbo\ < b0(t) f Jo 
skds 

1_ 
n! 

by induction on n. Obviously the assertion (1.7o) is true. Suppose (1.7m) is 

valid for all m <n. From (1.6) and integration by parts we can derive 

0 < Tn+1bo(t) < [ bo(s)    fS rkdr 
Jo Uo 

^-bMf4s{KTkdT. 
»(*) [ ek   f 

Jo       Uo 

n   j 
-;N(t, s)ds 
n! 

N(t,s)}ds 

<6, 

= bo(t) j Jo 

rkdr 

t        T^+I 

skds 
(n+1)! 

The induction is completed. Thus we have proved 

pt pt r  pt ' 

(1.8) /   kds < Bt <  /   kdsexp    /   skds 
Jo Jo Uo 

Prom the hypothesis (Hi) (H2) it follows that 

(Hi) 0 < k < C/(l + |t|)2^ 

for some positive constant C and hence 

(1.9) 1 + / ds [ kdr < B < 1 + Cj 
Jo       Jo 

for some positive constant C\. By means of the Gauss equation we can derive 

{Bt/B)t = k- (Bt/B)2 
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It turns out 

\(Bt/B)\<\ fk{x,s)ds 
Jo 

and hence, (Bt/B) = dt In B is bounded since (H^) insures the right hand side 

of the last inequality bounded. A differentiation of the equation for dt In B 

with respect to x provides the equation for dxdtlnB. Integration of it using 

the hypotheses (H2) gives at once 

\Bdxdt\nB\<B-1 [ \kx\B2{x,s)ds < C f kB(x,s)ds 
Jo Jo 

for some positive constant C. Since B monotonely increases in t > 0 and the 

inequality: \kx\ < C|fc|, follows immediately from (H2). (1.9) ensures the last 

integral bounded above by a constant under control and hence (1.4) has been 

proved. 

So far we have only used the hypotheses (Hi) (H2). Combining (1.8) with 

(H3) one soon obtains the estimation of the lower bound for B 

poo 

(1.10) Bt{x,oo)>inf       kds 
Jo 

and B > C2\t\ if |t| > T for some positive constants C2 and T. 

In what follows we shall study the asymptotic behavior of B at infinity. 

Prom 
/oo 

Bkds 

and 
rOO ft 

B = l + B, 

we have 

/oo pz 

kBds — /   Bksds 

B1 = (l-{Bt(xioo))-1fi0Bkd8  
B      t[l + (tBt(x, oo))"1^ - t f™ Bkds - f* Bksds)] 

Prom this expression, (1.3) follows immediately since 

/OO pt 
Bkds     and     t'1 /   Bksds 

are controlled by Ct 6 for some constant C independent of x.  The proof of 

Lemma 1.1 is completed.    □ 
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Remark 1.1. If (Hx) is fulfilled and k is bounded, then the following inequality, 

,Bt      Is 5 C'F^) M "'"W £ c« 
where Ci(i = 3,4) are some positive constants and fi(x) is an even function 

on M1 defined as follows: 

IA(X) =  the minimum of   /    k(^t)dt and   /     k(^t)dt over all |^| < x, 
Jo J-oo 

is valid. This is the direct consequence of the argument in proving (1.3). 

Define a function h which satisfies 

(1.11) htt = k*h with h(0) = 1 and ht(0) - 0 

where 

(1.12) k* = C(l + \t\)-2-6/2>k>0 

where the constant C is the same as mentioned in (H^). In a similar argument, 

since 
/oo poo pQ 

\s\k*ds < oo and   /    k*ds • /     k*ds > 0, 
-co ^0 J—oo 

we can obtain 

(i-i3) X = 7 + 0(^)and 

Ci|t|</i<(i + C2|t|)if |t|>r 

for some constants Ci, C2 and T. Now we have 

Lemma 1.2. // (Hij-fH^) are fulfilled, then 

(1.14) Bt/B < ht/h and B < h,    ift>0 

Proof. By (1.11) we have 

(1.15) (ht/h)t = k*- {ht/hf 

Subtracting the second equation of (1.2) from (1.15) provides, with w = 

{htlh) - (Bt/B), 

wt = k'-k- w[(ht/h) + (Bt/B)] 
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with ^(0) = 0. Integration of the last equation, noting (fc* — k) > 0 if t ^ 0, 

gives tw > 0 and hence the first part of (1.14) is proved. Integrating the first 

part of (1.14) again soon completes the proof of another part of (1.14).    □ 

Now we proceed to deal with the geodesic polar coordinates. 

Lemma 1.3. Let (0.1) be fulfilled. Then we have 

poo 

(1.16) 1 < Gp < expsup /    pkdt = [i, p < G < p,p, 
e   Jo 

I G     p\ 
uniformly bounded at infinity and 

(1.17) dp In G, pdpde In G are bounded 

Moreover ifk* = C/(l + p)2+<5/2 > k, and hpp = k*h with h = 0 and hp = 1 at 

p = 0, then 

(1.18) P?f>l,     ^f<^    andG<hifp>0 
G G        h 

In proving (1.16) (1.17) there is no difficulty, so no detail need be repeated. 

[GW] also got the similar estimate (1.16) by another approach. The first 

part of (1.18) comes from an ordinary equation for G/Gp. Subtracting this 

equation from that for h/hp and using the comparison principle we can obtain 

the remaindering part of (1.18). 

Next we shall study some behavior of the transformation from the geodesic 

coordinates (x, t) to the geodesic polar coordinates (0, p). Since (M,g) has 

negative curvature, from the triangular inequality and the definition of both 

coordinate systems we have 

(1.19) t and -\x\ < p{x,t) <t+\x\ 

By (1.2) and (0.3) we have 

(1.20) ^ + G9fl? = l,^ + Ga^ = B2 

Ptpx + G2etex = o 
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On the other hand, by the geodesic equations of the t-curve we have ptt = 

GGpOl. Solving 6t from the first equation of (1.20) we can get 

(1.21) pt = tgh$ where $ = / ^-dr 
Jo   G 

Therefore from (1.21) it is easy to get 

where m = 1 or —1. Prom (1.19) and (1.18) we can see, if t > 0, 

t+\x\ 
(1.23) $= /   ^fdT> /  -dT> I  —Vrdr>ln- v       y io   G      * Jo p     - Jo T + \x\      - x 

Hence 

(1.24)        0<l-A<^<rf%-^>0 

2. THE PROOF OF THEOREM C 

From Theorem B it suffices to prove Theorem C for the surface (R2, g) where 

the curvature — k of g satisfies (Hi)- (H3). Later we often identify "0" and "1" 

with ux" and "£" respectively. Denote by T* the position vector of the surface 

in M3 we require. As is well known, the coefficients of its second fundamental 

form, L = (~r>ii,"n'), M = (~r*i2,~n) and N = ("r^j"^) where "rt denotes 

the unit normal vector to T*, satisfy the Gauss-Codazzi system 

(2.1) L2-M1 = Lr\2 + M(r2
12 - rlj - NT^ 

and 

(2.2) M2-N1 = LTl, + M(T2
22 - T^) - NT^ 

with 

(2.3) LN — M2 = —kg where g is the determinant of the metric tensor. 

Indeed, if k > 0 the Gauss-Codazzi system can be reduced to a hyperbolic 

system. Introducing Riemann invariants 

(2.4) r = (-M - y/kg)/L   s = (-M + y/kg)/L 
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through a computation we find 

(2.5)r2 + sri = -(r - s)(Q2 + rQi) + A + Br + Cs + Drs + Er2 + Fr2s 

and 

(2.6) s'a + rsi = -(s - r)(Q2 + sQi) + A + £s + Cr + Drs + Es2 + Fs2r 

where 

(2.7) Q = In v^ 

and A, i?, C, D, E and F are only involved in christofFel symbols of the metric. 

It is not difficult to see that the system (2.5) (2.6) is equivalent to (2.1) (2.2) 

with (2.3) if s > r. This is a linearly degenerate hyperbolic system. There 

have been many papers to devoted to global smooth solutions with small initial 

data of Cauchy problems for linearly degenerate, strictly hyperbolic system. 

But these methods are not applicable to the present case since the system 

(2.5) (2.6) is not strictly hyperbolic in any neighbourhood of r = 0 and s = 0 

although it is linearly degenerate. This is the main difficulty we ran across. 

To look clearly at the affects of g and fe, following [PO] we reintroduce new 

unknown variables 

r i—► Br and s \—> Bs 

still denote them by r and s and rewrite (2.5) (2.6) in the form 

(2.8) 

£i(r,s) = rt + -|rx + s(l + r2)dt(lnB) - ^(0t + ^dx)(lnk) 

= n + -|rx - / = 0 

(2.9) 

L2(r,s) = st + -sx + r(l + s2)dt(lnB) - — ($ + -g&Xlnfc) 

r 
= St + —sx - q = 0 

We shall solve a Cauchy problem of (2.8) (2.9) with initial data r(x, 0) and 

s(x10) only in the upper plane t > 0 since a similar argument will give the 

solution in the lower plane. 
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Let (u(x, t), v(x11)) e C^E1 x [0, T]) be the solution to the following system. 

(2.10) — + Ai— - anu + a12v + ^ 

/o i -i \ dv     .   dv _ 
(2.11) TT: + A2^- = a2iu + a22V + R2 

ot ox 

with 

(2.12) u(x, 0) = </>i(x) and 17(3;, 0) = ^(x) 

(2.13) Ai < A2 

Here A^ a^- and Ri(i,j = 1,2) are C1 functions of a;,t. With each Xi(x,t) we 

can associate a characteristic curve X = F^r; t, x), i.e., 

/7 IT 
(2.14) — = A^r, X), r < t, with X(t) = x 

dr 
where X = F^rjt, x). Obviously, we have 

r2(r;t,x) <ri(r;^x),    0<r <t<T 

For each j4(a;*,i*), t* G [0, T] we can assign A to a characteristic triangle A^ 

(2.15) AA = {(x,t)|r2(t;t*,a;*) < a; < ri(t;t*,a;*),0 < t < **} 

Let us denote by /(s) = [T2(s;t*,x*),T1(s;t*^x*)] and by 

if = the maximum(|a^|, l^a^|, I^A^I) over AA and i = 1, 2. 

In the sequel, without otherwise stated, by "max" or umin" we always mean 

that the maximum or the minimum is taken over all i = 1,2. 

Lemma 2.1. Let(u,v) be theC1 solution in AA(x*,t*) of (2.10) (2.11) where 

Ri vanish, with (2.12).  Then for (x^t) G A^ 

(2.16) MJMJIUSIJKI < maxd^il + \dx<l>i\) exp5Ht 

Proof Differentiation of (2.10) and (2.11) coupling with the original system 

gives the system satisfied by u,v,ux and vx. Integrating along the character- 

istic curves and setting m(s) = max(|u(a;, s)|, |^(a;,5)|, (^^(x, 5)), \dxv(x,s)\) 

where x runs over the interval /(s), we have, 

m(t) < max(|^| + |9^|) + 5H /  m(s)ds. 
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An application of the Gronwall inequality yields (2.16) soon.   □ 

Lemma 2.2. Let (u,v) be a Cl solution to the system (2.10) (2.11). If given 

A(x*,t*) with t* € [0,T], we have 

(2.17) ^(x, £) and a2i(x, t) > 0 on AA 

and 

0i(0^2(0 > 0(< 0) for alii e ^(O;**^*),^^;**^*)] 

(2.18) and R^x, t) > 0(< 0) on AA 

then u(x,t), v(x,t) > 0(< 0) for all (x,t) G AA fl {t > 0}. 

Proof It suffices to study the positive case of Ri since a transformation u i—> 

—u, v »-» — v, reduces the negative case to the positive case. First of all we 

claim that there is a positive ti such that ^(x,t), v(x,t) > 0 in A^ fl {0 < 

t < ti}. Evidently it suffices to locally prove this assertion for each point 

(a:,0). By continuity it needs only to investigate the case: u(xo,0) = 0 or 

v(xo,0) = 0. Without loss of generality, we assume u(xo,0) = 0. Let us look 

at the derivative du/dt + Xidu/dx which is strictly positive at this point since 

a^v is nonnegative and Ri is strictly positive there. Now by continuity we 

can derive the local assertion. 

Next we shall complete the proof by contradiction. If the assertion in 

the present lemma was false, one can find to € [0,**] such that u(xo,to) or 

v(xo,io) ~ 0 for some XQ E [T2(to'-)t*,x:¥)JTi(to;t*,x*)] and u(xJt)Jv(x^t) > 0 

in the region: A^i*,^*) H {t < to}. Without loss of generality we may assume 

^(^OJM = 0- Integrating the first equation (2.10) and noting (2.18) we have 

u(xo,to)exp \- /    andT 

rto r       pr i pto r       pr 

>     /    (ai2t;)exp   — /   andr  dr + /    ii^exp   — /   andr  dr > 0 
^o l   Jo 1 Jo l   Jo . 

where the variable x in the above integrends is replaced by r1(r;to,Xo) since 

Ri > 0, ai2 > 0 and v > 0 in the region considered.   This contradicts the 

definition of to and hence, completes the proof of the present lemma.    □ 

Similarly we have the following remark. 
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Remark 2.1. Instead of A^, we restrict ourself to a curved triangle A^ which 

is enclosed by two characteristics emitting from (a;*, £*) and a space-like initial 

curve with respect to t. Let (u, v) be a C1 solution in A^ to the system (2.10) 

(2.11) and let (2.17) and (2.18) be fulfilled. Then the conclusion in the present 

lemma is continuous to be true. 

As we know, the local smooth solution to (2.8) (2.9) exists if the initial data 

are smooth and bounded. Now we proceed to extend this local solution to the 

whole upper plane. 

The C0 estimation. As an initial step we first find a supersolution to 

(2.8) (2.9). It is evident that for any positive (or negative) constant ipo(ipo, ipo) 

is a supersolution (or subsolution) to (2.8) (2.9). Indeed, 

(2.19) L2(V>o,V>o) = £iW>o,V>o) = 

JD 

M1 + </>o)lT > 0(or  < 0) if t > 0 and Vo > 0(or  < 0). 
B 

Another sub-supersolution to (2.8) (2.9) is also needed for the later estimates. 

Consider an initial value problem for an ordinary equation 

(2.20) (f)t = 0(1 + (l)2)dtlnh+^dtlnk\t>T with </>(T) = Vo 

where h and k* are defined in (1.12) and (1.11). It is easy to find its solution 

(2-21) <P = ^^    with  62 = L0/Jf°2 ^ 

(1.13) tells us <f> smooth in [T, oo) if ipo is small enough, namely, one can find 

a small ip* and a big T such that 

(t>(t) € C^dT, oo)) if 0 < ipo < tp* and moreover, 

(2.22) <j)(t) is monotonely decreasing 

since (1 + ^dt lnh + 2-1dt Ink* = -(8 - 4</>2)/4t + 0(l/i1+*/2). 

Now we illustrate that (r, s) = (—(/>, (p) is the sub-supersolution to (2.8) 

(2.9), i.e., 

(2.23) I>i(-<£, <£) < 0 and L2(-<f>, <f>)>0i{t>T 
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Indeed, 

Z JD 

=   <f>(l + <t>2){dtlnB-dtInh) + £(dtlnk- dtInk* - ^dxInk) 
Z ID 

Prom Lemma 1.2 it follows that the first term of the right-hand side of the 

last expression is negative. And the second term 

t 
2 

a(ln(fci2+5)-^ + 0(i)-|^lnfc 

and the hypotheses (Hi) implies its first term nonpositive and the second part 

of (1.9) and the boundness of dx In k guarantee the remaindering part negative 

if ^* is small enough. Hence we complete the first part of (2.23). Similarly, 

we can show the another part. 

In the sequel, unless otherwise stated, we always assume that T and '0* are 

respectively so big and so small that (2.22) (2.23) hold for all 0 < ipo < ^y 

and moreover, 

-(T; + Z2)dt InB - ^(dt Ink + ^dx In Jfe) > 0,   if t > T for all |£| < ip* 1  , ^ai_„     l,ai_,. ,   e 

Lemma 2.3. Suppose that a C1 solution (r, 5) to the system (2.8) (2.9) in 

AA = {(t,x)\r2(t]t%x*) <a;<ri(t;t*,x*),r<t<t*}, satisfies 

(2.24) -V^o < r(x, T) < s(x, T) < ^0 if ipo < ip* 

and x in [^(T^r^T)] where T^t) = ^(t; **,£*), i = 1,2, are the character- 

istic curves corresponding to r/B and s/B respectively, and passing through 

the point ^4(t*,x*).  Then in the region A^, we have, 

(2.25) -^0 < r{x,t) < s(x,t) < ^0, ift>T 

if s > r in AA. 

Proof Let r and s be two C1 functions in the region considered. The difference 

(r — f, s — s) satisfies the following system, with da = dt + (r/B)dx and 
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de = dt + {s/B)dx, 

(2.26) 
s — s 

d0(r -r) + ——rx = b(r - r) + /s(r, x, t)(s - 2) + +L1(r, s) - L^r, s) 

(2.27) 

aa(5 - S) + —g-Ss = gr(s, x, t)(r -r) + bf(s -s) + Z^(r, 5) - ^(r, 5) 

where 

2 Bt     1,„      u 
fs{u,x,t) = qr(u,x,t) = -(1 + u2)— - -(dt + —dx)lnk 

Here b and bf are continuous functions in A^. First of all we show that there 

is a constant Ti > T such that 

(2.28) -V>o < r(x, t) < s(x, t) < ^o on AA    {T < t < TJ 

If x in [r2(r),ri(r)] and |r(a;,i)|, |s(a;,t)| < ^o then there is a neighbourhood 

of (x, T) where (2.28) is valid. Hence one needs only to discuss the following 

case: r(x,T) = —^o or s(XjT) = I/JQ. If at this point s(xJT) = ipo and 

Qr^o^x^T) > 0, then we replace (r, s) in (2.26) (2.27) by (^QJ^O)- Observe 

that Li(r, s)—Li(^oj ^o) = -^(^o, ^o) < 0 as t > T and that -^o < ^(^ T) < 

s(€, T) < tpo for all £ under consideration. Prom (2.27) we derive da(s—ipo) < 0 

at the point in question and hence there is a neighbourhood of (x, T) where 

s(y1t) < ipo as £ > T. If at the point in question, qr(ipoiX,T) < 0, replacing 

(r, 2) by (—0,0) and from (2.27) we can also derive da(s — </)) strictly negative 

there and hence, the remainder proof is the same. 

Next we shall complete the proof of (2.25) by contradiction. Suppose that 

there is a point (xi, ti) such that r(xi, ti) = —ipo or s(a;i, ti) = tpo, (2.28) valid 

on AA n {T < t < ti} and in any neighbourhood of (#1, ti) there exists a point 

(x,t) where max(|r(x, t)|, \s(x,t)\) > ipo- Now repeated the same argument at 

t = ti as done at t = T will soon lead the conclusion: ^o > s(x^ t) > r(x, t) > 

—ijjQ near t — ti and t > ti. This is the contradiction and hence, ends the 

proof of Lemma 2.3.   □ 

The estimates of the lower bound for s — r and the above bounds for 

|3ar||c?as|, |a| = 1. This is the crucial point to the proof of the existence 

about global smooth solutions.  If we can show s — r strictly positive or the 
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boundness of all first derivatives of r and s in any given set fi,t = R1 x [0, £], 

then its solution can be infinitely extended to fioo. Subtracting (2.8) from 

(2.9) gives 

(2.29) d0(s - r) = ^sx + Q(s - r) 

and 

(2.30) da(s_r) = £-^:r:c + Q(s_r) 

where 

Bt      1 
(2.31) Q = {q- f)/(s - r) = (1 - rs)-^ + -(da Ink + dp Ink) 

Differentiating the system (2.8) (2.9) with respect to x and solving sx and rx 

from (2.29) (2.30), after combining them we have, with s = (s — r)sx/B and 

r = (s-r)rx/BJ 

(2.32) L1(rJ ^ = dpr-(Q + fr- ^)r - fss- ^Sxf = 0 

and 

(2.33) L2(r,s) = das - qrr - (Q + gr - -^)s -^-6xq = 0 

where 6X denotes the differentiation only with respect to x. 

Lemma 2.4. Let the assumption in Lemma 2.3 be fulfilled. Then there exist 

three constants fi*, smaller tp* and bigger T, and two positive monotonely- 

increasing functions 9i{t) defined in [T, t*)i = 1, 2 such that in the region A^ 

BAtMs -r)> inf        (six, T) - r(x, T)) 
~ a:€[r2(T),r1(T)]V   V J V " 

and 

(2.34) \sx\,\rxl\stl\rt\<e2(t)    in AA 

if for all x in [r2(r),ri(r)], -M* < rx(x,T), sx(x,T), and -^o < r(x,T) < 

s(rr, T) < ipo ^ ip*. Here 0i{t) depends on the minimum over [^(T),!^!1)] of 

s — r as well as the C1 bounds of r and s over [r2(T),ri(r)]. 
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Proof. With Wi = (s — r)(rx + |5t)^ and W2 = (s — r)(sx + ^Bt)-^ combining 

(2.32) (2.33) with (2.29) (2.30) we have 

(2.35) dpwr = {Q + fr- l^i + {fs + ^)W2 + Ri 

(2.36) d0w2 = (qr + ^Wi + (Q + qs- -j)w2 + R2 

where 

Ri=S^{l[^(l + 2rs + r2) + Bk + sdtdx\nB+S-^^dxlnk} + 8xf} 

and 

Now using Lemma 2.3, (H2) and (1.3) we can find another smaller 7/;* and a 

bigger T such that if |r(x, T)| and |s(x, r)| are less than or equal to ^0 ^ '0* we 

have ili > 0(i = 1, 2) and in view of (H'/), (/s + Bt/2B) > 0, (gr + Bt/2B) > 0 

also in the region considered. Set /i* = the minimum of Bt(x, T)/2 over all x 

in R1. The argument in Lemma 1.1 tells us /i* positive for sufficiency large T. 

Then if sx{x,T), rx(x,T) > -^ it follows that w^x.T) > 0, t£;2(x,r) > 0. 

An application of Lemma 2.2 to (2.35) (2.36) provides Wi > 0 i — 1,2, namely, 

(s-r)(rx + Bt/2)/B > 0 and {s-r)(sx+Bt/2)/B > 0 in the region considered. 

Since s — r > 0, this means 

(2.37) rx,sx>-Btl2,    on AA 

Instead of (r, 5) directly dealing with (—r, — s), in a similar way we can get 

another sided estimation provided that for all |t| > T, dt ln(kt4+6) < 0. In 

order to weaken this restriction we turn to estimate the lower bound of s — r 

in AA and then, in view of the fact that the system (2.8) (2.9) is linearly 

degenerate, the C1 bound for (r, s) can be controlled by the lower bound on 

A^ of 5 — r, the C0 bounds on A^ of r, s and the C1 bounds of 5 and r on 

[r2(T),ri(T)]. More precisely, solving s-r from (2.29) or (2.30) and using 

(2.37) we have 

s - r > (the minimum of s - r over [r2(T), T^T)]) exp[-(t - r)Ci(t)] 

= (the minimum of s - r over [r2(T), ri(T)])/0i(t) 
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for some positive monotonely-increasing function Ci(t) defined on [T,**) and 

under control. 

Now we are in a position to get the C1 bounds. From (2.8) (2.9) it follows 

that 

d/3dar = dadpr + [fy, da]r 

(2.38) = 6af + frdar + fsq - (Q + dtlnB)(s - r)rx/B 

= [fr + {Q + dt\nB))daT+[{6af + fsq-{Q + dt\nB)f] 

In getting the last equality we have used (2.8) (2.9). The second term in the 

right hand side of the last equation is controlled. So integration of it yields 

\daA < ^{t) on A^ for some positive monotonely-increasing function O^t) in 

[T, **) under control. From rx = (dpr — dar)B/{s - r) = (/ — dar)B/(s — r), 

and rt = f — srxIB, it is easy to find a positive monotonely increasing function 

02(*) under control such that (2.34) holds. This completes the proof of lemma 

2.4.    □ 

The end of the proof of Theorem C. First of all, choose a sufficient 

large T such that Lemma 2.3 and 2.4 hold. Let us consider the Cauchy problem 

for (2.8) (2.9) with the initial data r(x,0) = — e and s(x,0) = e. Set 

iJ = l+sup{|a;atlnjB|5|a^lnfc|and|^axlnfc|,i = 0,l} 
\t\<T 

Choose e so small that 

eexpTHT < min^*,^*) 

Lemma 2.1 guarantees \dar(x,t)\ and \das(x,t)\ < min(^*,/z*) for all x in R1, 

0 < t < T and |a| < 1. And directly integrating (2.29) gives s(x, T)-r(x, T) > 

2e/C(T) for a positive constant C(T).  Solve again the Cauchy problem for 

(2.8) (2.9) with the initial data r(x, T) and s(x, T) in the region t>T. Lemma 

2.3 and 2.4 tells us that |r(x,t)|, |s(x,t)| < V*j kx(^,<)|5 (^(x,*)!, |rt(a;,i)| and 

kt(^j*)l — ^(i) and s — r > 2e/0i(t)C(t) in the region where r and s belong 

to C1. So we can infinitely extend the solution (r, 5) to the whole upper plane. 

And the existence of global smooth solution to the Cauchy problem of (2.8) 

(2.9) with the initial data r(x, 0) = —£, s(x, 0) = e has been proved. Moreover, 

s — r > 0 everywhere. Solving (2.3) (2.4) we can find the smooth coefficients 
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L, M and N of the second fundamental form of the required surface. The 

fundamental theorem on Differential Geometry enables us to find this surface 

with the prescribed metric (0.3). This completes the proof of Theorem C. 

3. THE PROOF OF THEOREM A 

To find a smooth isometric immersion in M3 of the manifold mentioned in 

Theorem A, we have to prove the existence of the global smooth solutions to 

system (2.8) (2.9) under the hypothesis (0.1). In doing so we ran across two 

difficulties. First, if we directly solve the Gauss-Codazzi system under the 

geodesic polar coordinates, then its Riemann invariants are singular at the 

center of the exponential map expp. Second, if we apply the result obtained 

in Theorem C to the present case, one can see that the hypotheses (Hi)-(H3) 

cease to be fulfilled. In order to bypass these two difficulties, a natural way 

is to split R+ into two parts and discuss each separately. One contains a 

neighbourhood of the centre and denoted by fii, another is its complement 

in R+ and denoted by f^- We shall solve the Gauss- Codazzi system in Qi 

and $72, respectively by using the geodesic coordinates and the geodesic polar 

coordinates. 

First of all we consider the system for Riemann invariants of the Gauss- 

Codazzi equation under the geodesic polar coordinates and in the region p > R 

for some sufficiently large R 

(3.1) 

(3.2) 

Li(u,v) = up + —U0 + v(l + u2)dp(\nG) 
Gr 

- ^(^+£300**) = «,+£«,-/ = <> 
L2(u,v) = vp + —ve + u(l + v2)dp(\nG) 

v — U V u 
 -^(9p + -de)(lnk) = vp + -ve-q = 0 

Evidently, (u,v) = (^oj^o) is the supersolution (or subsolution) of (3.1) (3.2) 

if t/'o > 0 (or < 0). In analogy with the argument in Section 2 we can find its 

sub-supersolution. Indeed, by Lemma 1.3 we can assume that there exist two 
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constants R and tp* such that 

(H'/) 

-(I + Z2)dplnG - hdplnk + ^delnk) > 0,   if p > R for all |f| < V* 
2 4 0 

Moreover the following Cauchy problem 

(3.3) 0P = 0(1 + (i)2)dplnh + ^dp\nk*,p> R with </>(R) = ^o 

where /i and fc* are defined as in Lemma 1.3, has a global smooth solution 

*= ^L with62= ^ 
(1 - 2b2 !P

R hhpk*dty/2 h2(R)k*(R) 

which is monotonely decreasing in [i?, oo) if |^o| ^ V;* an(i (u)v) = (—05 0) is 

the sub-supersolution of (3.1) (3.2), that is, 

.L1(-0,0)<O,L2(-0,0)>O,p>i? 

In view of the Remark of Lemma 2.2, from line to line translating the 

argument as in proving Lemma 2.3, 2.4 and Theorem C, without difficulty, 

we have the existence of global smooth solutions to any generalized Cauchy 

problem in the region contained in {p > R} for (3.1) (3.2). Precisely speaking, 

suppose that O is a unbounded domain with a smooth boundary curve S 

denoted by 

(3.4) 3:6 = 0(0 and p = p(0 > R 

for some smooth function #(£) and p(£) with 62 + p2 ^ 0. And Q is always 

located the left hand-side of its boundary when £ runs along the increasing 

direction. Given the initial data 

(3.5) u = uo(£) and v = vo(0> on & 

such that 

(3.6) -P&MO + 0(Z)G > 0 and p&MO + 6(Z)G > 0, on S 

This means S space-like with respect to p. Now we have 
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Lemma 3.1. There are two constants R and I/J* such that the problem (3.1) 

(3.2) with (3.5) admits a global smooth solution (w, v) in the closure ofVL where 

v — u > 0 provided that 

(3.7) 

and 

(3.8) 

-r < «o(o < MO <r ons 

>(fl-rtO/     and .■   W-KM       > _IinfGp ^ _^ 

"L    M" 
= 

"^     Px L    M 
M   N 

-9X e; 
.Px      Pt. 

(3.8) looks somewhat complicated. Indeed they are equal to deu and dev 

on S. As our experience in Section 2, we can find smooth solution on Qi of 

(2.8) (2.9) as small as possible, as long as the initial data are sufficiently small. 

To connect this solution with Lemma 3.1 we have to evaluate the bounds on 

S = dF(fl2) of (u, v) and (dou, dev) under the transformation F from (#, t) to 

(<9,p). From (1.20) we have 

(3.9) 

and 

(3.10) 

Here 

Therefore if 

(3.11) 

(A + -^PX)-Q = (pt + -ex), 

(pt + ^Px)^ = (et + ^ox) 

det Ox      0t 
Px     Pt. 

B 

G 

r s 
(pt + —px) > 0 and (pt + —px) > 0 

then the transformation in (3.10) make sense. 

Next we illustrate the structure of the domains fii and 02- Assume that 

fii = {{x,t) e Rl\0 < t < to(x) = RVl + x2/iil/6{x)} 

where R is a constant to be determined and /i*(x) is smooth, in E1 and 

monotonely-decreasing in R\. Moreover, 

(3.12) 0 < p*(x) < min(l,^(a;)) 
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with IJL(X) defined in Remark of Lemma 1.1.   Such a function fJL*(x) can be 

constructed by mollifier without difficulty. 

Let us now fix the constant R. In the sequel, we always assume R so big 

that Lemma 3.1 is valid. Besides, by (1.22) (1.24) we may suppose 

r ,   , ,..     Tnr 4       1 
* + i^ = (tgh*-^)>i-->- 

and 
s 1 

(pt + —Px) > - if (z, t) in ft2 and |r|, \s\ < 1 

Thus under the present circumstance, (3.11) is valid and the transformation 

(3.10) makes sense. 

A vector field V in T^f^) '1S said to be normalized vector if V is of the form 

V = £(x,t)dx + df The differential mapping F* transforms V —> i?*(Vr) = 

(Qt + £,9x)de + (pt + ^Px)dp. If pt + ipx / 0 in the region considered, it follows 

that F^V) = {pt + ipx){lde + dp) = (pt + Zpx)V with $ = (^+^)/(A+^) 

and V is also normalized. Later we denote by -F*(V) = V or JP*(£) = ^ if 

it makes sense. Now we can rewrite (3.10) in the form F*{r/B) = u/G and 

F*(s/B) = v/G. Furthermore, we have 

(3-13) v-u=- —— ——- 

Generally speaking, for given vector fields Vi = ^idx + df> i = 1,2 

1       ^ ^     ^      G(pt+^px)(pt + ^px) 

(3.13) (3.14) implies the transformation F* keeping the order of the normalized 

vector fields. 

Now we are in a position to fix the constant R. Denote by O2 = -^(fig)- 

In order to insure (u, v) and (dgu, dgv) small enough after the transformation 

GF*(r/B) and GF*(s/B), we evaluate GF»(0) and d$GF,(0). By (1.22) we 

find, 

(3.15) G\F.(0)\ = G'-i 
Pt 

14      1 
< T; ^ oV'* on ^2 sh$- iJ - 2 

provided that R is chosen big enough. Differentiation of GF* (0) yields 

(3.16) deGF*(0) = -^^ 
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Prom the formula pt — tgh$ and (1.20), it turns out that 

de§ = {pttte + PtxXe)c\<L2§ 

= GGpe2
ttgc\i2§ + {GGpexdt - BtGet)xech2$ 

Prom (1.22) it turns out that the first term = mG^/cM? = 0(1/R) on dQ.2- 

In view of the Remark of Lemma 1.1 and Lemma 1.3, the second term 

G Bt = m   -f tgh$ - -^   Gsh$ 
G B 

(3.17) m ^-(i-t^t + o^ + io^ Gsh$ 

0<5> + 0<]?> 
sh$, on 9^2 

since p < t+ |x|, p < 2^, (p — t)/t< 1/R and particularly, tsn(x) > R8 on cttV 

Summing up we have 0*$ = 0(l/iJ6)sh$ and doGF*(0) = 0(1/R6). Thus we 

have proved that if R is chosen sufficiently large 

(3.18) |0*GF»(O)|<M./2,     on<9ft2 

From now on we fix the constant R such that Lemma 3.1, (3.15) (3.18) are all 

valid. 

The end of the proof of Theorem A. The first step is to find the initial data 

(3.19) r(x,0) = — es(x) and s(x,0) = es(x) 

such that the problem (2.8) (2.9) in fii has a global smooth solution and 

moreover, after transformation F*, (u^v) and (deu^dev) on 9^2 satisfy the 

assumption in Lemma 3.1. More precisely, construct by mollifier two smooth 

even functions in M1 

(3.20)tfi(£)>l+   sup  {\didtInfcUaiQ,Infc| and |0*0tlnB|,i = 0,1} 

and 

(3.21) H2{g)>\+   sup   { 
(x,t)€fii 

X A*(^) 
l + x2     6[ji*(x) 
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Define 

1      poo 1 

(3.22)        s(x) = -l   exp[-7g,(30<,(30-ato(3?)g;(3e).g 

if \x\ > 2 and smooth if \x\ < 2. 

Now we claim that the system (2.8) (2.9) with (3.19) in Qi has a global 

smooth solution (r, s) for each e in (0, SQ] for some EQ < 1. Indeed for each 

|#o| ^ 2, for all t in [0, ^o(^o)] the following assertions: (Ai) for each t in 

(0, £o(^o)]> A = (XQI t) is in the region where a C1 solution (r, s) to the problem 

(2.8) (2.9) exists. (A2) the dependent interval of A is contained in [XQ/2, 3XO/2]. 

(A3) in the characteristic A^ 

< kljkM^I and \dxs\ < Ato(xo)H2{x0) - ' "i in x , ,      , _ 4^^)^^) 

are valid. If it was false, then there exists a t* < to(xo) such that for all t < t* 

the above assertions are true but some of them cease to be true if t > t*. The 

local existence of solutions for the Cauchy problem of quasilinear hyperbolic 

system tells us t* > 0 and (A3) guarantees |r|, |s|, |<9xr| and dxs\ < 1/4. 

Therefore an application of Lemma 2.1 to the characteristic triangle A^, A = 

(XQ, t), t < £*, yields at once 

\r(x,t)\,\s(x,t)\,\dxr{x,t)\ and \dxs(x,t)\ 

<^(y) + l*(y)|]exp[7ff1(^)t-] 

(3-23) < ,exp[-7(to(xo) - r)} l 

4tQ(x0)H2{x0) 
1 

= eq 
4to(xo)H2(x0) 

for some constant q strictly less than 1 and for all A(xo1 £), t < t*. Meanwhile, 

if e in (0,£o] the dependent interval of (xo,t) as t in [0, t*), is contained in 

[XQ — qt/4:to(xo),Xo + qt/Atofao)] C (XQ/2)3XQ/2) if XQ > 2. This implies that 

this solution can be extended to a larger characteristic triangle than A^^*) 

and (A1)-(A3) are continuous to be true. For the remaindering region: (x,t) 

in fii r\{\x\ < 2}, since this is a bounded one, it is easy to prove the existence 

of smooth solution if £Q is chosen small enough. 
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Finally the conclusion: s—r > 0 everywhere on Qi follows from the equation 

(2.29) or (2.30) and the fact that r,s in C1^). 

Let us turn to study the behavior of the image dF^z) = dQ,? of the bound- 

ary dQ.2 under the transformation F. It can be expressed in terms of parame- 

ter x : 6 = 6(x,to(x)), p = p(x,t0(x)) A direct computation convinces us that 

62 + p2 7^ 0 for all x. In the meantime, 

-p{x)F.(r/B) + 9(x) 

= -(px + pMx))F*(r/B) + {ex + eMx)) 
B(l - jjiojx)) 

G(pt + iPx) 

>     -777 ? x   if x in Rl and 1^1 > 2 

In getting the last inequality we have used (3.23), i.e., 

\io(x)r\ < e\io(x)\/4to(x)H2(x) < 1/4, 

for all e in (0,SQ]. Similarly 

-p(x)F*(s/B) + 0(x) > 0,      if x in M1 and |x| > 2 

For the rest part: \x\ < 2, choose a smaller £o provides at once the desired 

result. So far we have verified (3.6) valid, and, hence, (3.13) and the fact that 

s — r > 0 on 80,2 insure v — u > 0 on 9^2- 

It remains only to evaluate the bounds on 80,2 of (u,v) and (dgii, dgv). By 

(1.20) and (3.10) we have 

u = GFJ0) +    , ^   , J ——- 
tgh$(tgh$ - mr/ch$) 

and 
  g 

v = GF,(0) + tgh$(tgh$ _ ms/ch$) 

The following inequalities 

M = \rtte + rxxe\ 

^ eTrT4rrT(1 + Vchs) 4:t0{x)H2{x)y 

< Ce   on 30.2 
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and 

|^| < Ce   on d£l2 

for some constant C independent of e, are valid since G < fip on d&2 from 

(1.16). With the aid of (3.15) (3.18) and the above inequalities,, it is not 

difficult to find another smaller £o > 0 such that for e in (0,£o] (3.7) (3.8) 

hold. 

Thus we have proved that the problem (3.1) (3.2) admits a global smooth 

solution (u,v) with the prescribed initial data GF*(r/B) and GF*(s/B) on 

80,2 and moreover, v > u everywhere. Finally pulling (0, p) and (w, v) back to 

(rr, i) and (r, 5), matching the solution in Cti we can obtain the global smooth 

solution in R\ of (2.8) (2.9) with r(x,0) = -£5(x), s(:r,0) = es{x). (3.13) 

tells us s — r > 0 everywhere. This completes the proof of Theorem A.    □ 
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