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In [6], Tian and I generalized the work of [1] by Cheng and myself. We 

proved the following: 

Theorem 0.1. Let M be an n-dimensional projective manifold and D C M 

be a divisor with normal crossings. Let K be the canonical divisor of M. 

Suppose that K + D is numerically effective, big and ample modulo D. 

Then: 

cr(£Miog£>)) < 2(n
n

l'1)cr2(OM(iog£>))c2(oM(iogr>)) 

and equality holds iff M \ D is an unramified quotient of the ball. 

In this note, we shall derive more corollaries from the construction of canon- 

ical Einstein metric ds2 on M \ D. They have been known to the author since 

1985. All these theorems are easier to prove when D and C are empty, and in 

this case, they were known to the author much earlier. A new result on the 

canonical Einstein metric is that it is complete. 

1. DESCRIPTION OF THE ALMOST COMPLETE KAHLER EINSTEIN METRICS 

Recall that Tian-Yau [6] proved the existence of a unique almost complete 

Kahler Einstein metric on M \ D if KM + D is numerical effective, big and 

ample modulo D. In this section, we demonstrate that the metric is in fact 

complete. In fact, we shall have a description of the asymptotic behaviour of 

the metric. 
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We assume that D is a divisor with normal crossing. Let D = Di -\ + 

Dm where each Di is the zero section of some holomorphic section Si of a 

holomorphic line bundle L*. Then we can form a (1.1) form 

hiDiSi A DiSi 
u = £• |^|2(log|5i|

2)2 

where hi is a Hermitian metric of Li and Di is the associated covariant differ- 

entiation. 

The form u can be degenerate in some direction. However, it makes sense 

to discuss its holomorphic sectional curvature. It is easy to prove that in a 

neighborhood N of D, u; has strongly negative holomorphic sectional curva- 

ture. Hence by applying the Schwarz lemma (see [9]) in iV we can prove that 

ds2 dominates u; up to a constant. For any point in M\D, it takes infinite 

distance (measured with respect to ui) to D. Hence ds2 is complete. 

For 0 < Hi < 1 so that KM + D Mf A is represented by a positive (1,1) form 

u;M, we can form a metric u^ + u = ujg. Then it was proved in [6] that ds2 is 

representable by ujg + dd(p where 

(ujg + ddu)n = ef+uuj^ 

It was proved in [6] that f + tp has an upper bound and tp has a lower bound 

on M\D. Furthermore, 

Wg + ddip < Cie^ujg 

where C2 can be chosen to be independent of /^. 

The function / has the form £^(1 — ^i) In |^|2. Hence the Kahler Einstein 

metric is dominated by (1115*!2^*-1*)**^ from above and by rKKI^1"^)^ 
from below. 

Theorem 1.1. Let M be a Kahler manifold with a divisor D = Di -\ h Dm 

with normal crossing. Assume that KM + D is numerically effective, big and 

ample modulo D. Then M\D admits a complete Kahler Einstein metric ds2. 

Furthermore in a neighborhood of D, ds2 dominates Poincare metric in the 

normal direction. For any e > 0, it is bounded asymptotically from above by 

[1 |5i|~2e^ and below by Yl \si\2€L(Jg 0f D depending on the constants Q > 0. 
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2. THEOREM FOR KAHLER MANIFOLDS 

Theorem 2.1. Let M and D be as in Theorem 0.1. Suppose the bundle 

fiM(logD) admits an endomorphism which has nontrivial kernel somewhere 

in M\D. Then M\D is covered by the product of two manifolds Mi and M2 

so that M\D is biholomorphic to the quotient of Mi x M2 by a discrete group 

of automorphisms which preserve the product structure of Mi x M2. Note 

that, in general, Mi and M2 are noncompact even when D is empty. This 

happens for example when M is a Hilbert modular surface. 

In order to state the next theorem, let us introduce some notation. Let 

GL(n,C) acts on V = Cn in a standard manner. Then GL(n,C) acts on 

the vector space which is the tensor product of several copies of V and V* 

together. The action splits into many irreducible components. Associated 

to each of these splittings and a holomorphic vector bundle, we can define 

a new holomorphic vector bundle. Let us call bundles obtained in this way 

irreducible bundles associated to the given bundle. 

Theorem 2.2. Let M and D be as in Theorem 0.1. Suppose that Q(logD) 

can be splitted holomorphically as direct sum of irreducible holomorphic vector 

bundles Vi © V2 © ... © Vk such that for each i, either 

(1) there is a non-trivial irreducible bundle associated to Vi which admits 

non-zero holomorphic section 

or 

(2) 2(mi+i)cri-2(vi)crmimiogD))c2(vi)=miCrmcr^mogD)). 
Then M \ D is a quotient of a bounded symmetric domain by a discrete 

group with finite volume. 

Note that this theorem gives a complete algebraic geometric characteri- 

zation of non-singular quotients of Hermitian symmetric domain with finite 

volume. It is possible to give similar characterization when the quotient has 

orbit fold singularities. 

For any discrete group action on a Hermitian symmetric domain, the quo- 

tient space can be written as finite quotient of a non-singular manifold M' 

by a group G. The orbit M'./G acquires several kind of singularities. Let Fi 
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be the set of points x in M' so that for some g G G, the fixed point set of 

g contains x and the codimension of this set is i. The images of Fi in M' jG 

for % > 1 form singular sets of M'/G. (Note that the Fi are not necessarily 

disjoint from each other.) The image of Fi \ (Uz>i Fi) is nonsingular. 

Conversely, we assume that M is a projective variety whose singular set 

consists of quotient singularities only. Let Fi + D be a divisor with normal 

crossing. Let Ci be the irreducible components of Fi, then we define a sheaf 
r s  ^ Yfi. — ^ 
®T(g)fi[logI), 22—" ^] on M in the following way. For any open set with 

i i 

empty intersection with F1 + D, the sheaf is defined in the ordinary way as 
r s 

holomorphic sections of ®T ® <g)fi. If the coordinate chart is chosen in such a 

way that Fi = < TT^ = 0 > and D = <   TT^^OV, then we use 
li=l J [i=p+l J 

(^j    -i ctei, (^2)    m2 a^,... , (Zp)    mp rf2;p, , • • • , , dzq+u • • • , dzk 
zp+l zq 

to form a basis for Q in the complement of Fi U D.  It also provides a dual 
r s 

basis for fi*.  Their tensor product defines a basis for ®T (g> (2)0.   The basis 
r 

is defined only up to products of mrth roots of unity. An element in ®T ® 

<i)n(logD, J^^pC'i) is a holomorphic section of (g>T ® ®fi over M \ D \ Fi 
r 

such that when it is written in terms of the above basis, the coefficient is 

bounded. 

Theorem 2.3. Let M be a projective variety whose singularities are locally 

defined by the quotient of the ball by a finite group. Let D + F be normal 

crossing divisors such that K + D + ^^-^Ci is numerically effective, big 
i 

and ample modulo D. (Here Ci are irreducible components of F). Suppose 

T(g>fi(logZ), y^;m^Ci) has holomorphic sections Pi so that EP^ is the identity 
r 

and PiPj = 0 for i ^ j at a point in M\D. Then M\D is the orbit space 

of some product manifolds Mi x • • • x Mk where F = EC^ is the part of the 

branched locus of the group action where the fixed point set has codimension 

one with branching order rrii at each Ci. Furthermore if none of the projections 

Pi can be written as non-trivial sums of projections again and for each bundle 

defined by Pi, there is an irreducible holomorphic bundle associated to this 
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bundle which admits non-trivial holomorphic endomorphism. Then M \D is 

the orbit space of a Hermitian symmetric domain with rank > 1. 

The algebraic geometric characterization of quotients of the ball by a dis- 

crete group where the fixed point set consists of divisors only was carried 

out by Tian and the author in [6]. The quotients with arbitrary singularities 

whose fixed point set consists of subvarieties with codimension > 2 could also 

be done as in Tian-Yau [6]. One has to define the second Chern class in the 

right way so that it corresponds to the second Chern form that comes from the 

connections of the orbitfold metric. For algebraic surfaces, this was computed 

in detail by Cheng-Yau [2]. 

For completeness we state here the theorem of Tian-Yau. 

Theorem 2.4. Let M be an n-dimensional projective manifold. Let D and 

C be divisors so that D + C have normal crossings. Suppose that KM + D + 

y^J
m^Ci is numerically effective, big and ample modulo D.   Here Ci are 

i 
irreducible components of C.  Then 

[CMJMlogCD + C))) - £ ^<?i(Q]n 

< ^^-[c^MiiogiD + a))) - £ ^c^aw-'iCiinMiiogiD + cm 
i i 

-CMfMiogP + o)) • £ ;J-Ci(C<) + E ^Ciid) 

and the equality holds iff X \ D is a branched quotient of the unit ball with . 

branches along C. 

Let us now give the demonstration of these theorems. The proof of Theorem 

0.1 is contained in [6] and we shall omit it here. 

The proof of Theorem 1.1 can be seen as follows. A holomorphic splitting 

of J7(logZ)) gives rise to a non-trivial endomorphism s of Q.ilogD). When 

D is empty, we compute the Laplacian of the norm of s with respect to the 

Kahler-Einstein metric of M. The Bochner formula shows that the curvature 

part of the formula vanishes when the metric is Kahler-Einstein. Hence by 

integration, we obtain the fact that s is covariant constant with respect to the 
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Kahler-Einstein metric. The standard de Rham theorem then implies that the 

universal cover of M must split metrically and holomorphically according to 

the rank of s. This proves Theorem 1.1 when D is empty. 

When D is non-empty, we have to use the existence theorem of Tian-Yau [6]. 

The unique almost Kahler-Einstein metric constructed in [6] can be approx- 

imated by a sequence of Kahler-Einstein metric ds^ compatible with certain 

cover which is branched along D in a neighborhood of D. The metric ds^ has 

the property that if locally JJz^ = 0 defines D, we can choose local branched 
i=l 

cover along D so that if ^ = w]71, the metric ds^ written in terms of Wi is a 

smooth metric. Note that — becomes ra— and Wi —► Zi is a branched cover 

of order m. 

Hence if s is the holomorphic endomorphism of fi(logZ}), 5 is smooth with 

respect to the local holomorphic frame defining ^(logD). Let Am be the 

Laplacian of ds^ and [s^ be the norm of s with respect to the metric ds^. 

Then if the zero set of s has codimension > 2, the integral of Am(log|s|^) 

over M \ D is non-positive. If the zero set of s has codimension 1, then using 

the description of the metric in section 1 and the fact that Wi H-> Zi has degree 

m, we conclude that the integral of Am(log |s|^) is not greater than ^ where 

c is a constant independent of ra. 

Since 

H^Miogi^) = id^t - \{s,dmS)\*\s\^ > o 

we conclude that 

\im(\dms\i-\(s,dms)\2\Stf) = 0 
m—>oo 

must hold and there is a one form u; so that 

ds = cus. 

Considering s an endomorphism of fi(log D), the kernel of s can then be shown 

to be invariant under parallel transport. (Let e be any vector by ker(s)). Then 

the above equation shows that de is still a vector in ker(s). 

Locally each point in M has a (holomorphic and metric) product neighbor- 

hood Di x D2 so that Di is part of the leaves of ker(s) and D2 is part of the 
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leaves defined by the orthogonal complement of ker(s). Since the metric ds2 

is complete, we know that the foliations defined on the complement of D give 

rise to a product structure on the universal cover of M \ D. The fundamental 

group of M \ D acts by isometries on this product Mi x M2. This gives the 

proof of Theorem 1.1. 

Let us now prove Theorem 2.1. Under the assumption of Theorem 2.1, 

each holomorphic vector subbundle Vi which arises from some holomorphic 

foliations of M \ D and M \ D is covered by product manifolds Mi x • • • x Mk 

with respect to the canonical Kahler-Einstein metric of Tian-Yau. 

Under the hypothesis (1), the non-zero holomorphic automorphism of Vi 

would be parallel with respect to the Kahler-Einstein metrics as in the proof 

of Theorem 1.1. It cannot split Vi further and it has to reduce the group of 

holonomy of Mi which implies that Mi is locally Hermitian metric. The same 

argument as in [6] shows that the induced metric on Mi is complete and Mi 

is globally Hermitian symmetric. 

Case (2) was treated in [6]. 

Note. Theorem 2.1 gives an algebraic characterization of locally Hermitian 

symmetric space. Hence it provides an alternate proof of Kazhdan's theorem 

about Galois conjugation of these manifolds. 

Note that in Theorem 2.1, we can replace the assumption (1) by the exis- 

tence of a non-trivial holomorphic section of S2kVi ® (det V^)~fc over M. The 

proof is the same. One observes that the Bochner method also shows that 

the holomorphic section is parallel with respect to the Kahler-Einstein metric. 

(The study of these bundles goes back to Bogomolov. The Bochner argument 

was used independently by Kobayashi and Ochiai.) 

Let us illustrate the theorem for the simplest case when M is a compact 

algebraic surface of general type. (This was a work that I did with J. Li.) 

Theorem 2.5. Let M be a compact algebraic surface of general type. //TM is 

the sum of two line bundles or, more generally, S2kT®Kk admits a non-trivial 

holomorphic section, then M is either a finite quotient of the product of two 

compact curves. 
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Proof. Let us assume that M is minimal. If M has no rational curves with 

self-intersection number -2, then M has positive canonical line bundle and a 

Kahler-Einstein metric. The previous argument then applies. If M has —2 

rational curves, then M still admits a Kahler-Einstein metric on the comple- 

ment of these rational curves whose metric behavior near the curves can be 

described as "orbitfold" singularity. (See Cheng-Yau [2].) It is easy to see that 

the Bochner argument still works for this kind of metric and the holomorphic 

seciton s cannot vanish anywhere. 

However, we claim that if —2 curve exists, s must vanish somewhere. To 

see this, we choose a standard model —2 curve in the following way. 

Let V be the surface xy — z2 = 0 inside the unit ball I?3. Let U be the 

proper transform of V in B3 which is the blowing-up of B3 at the origin. Let C 

be the exceptional curve and / : B2 —* V be the map (si, S2) —» (sf, 5^, 5152). 

Then the Kahler-Einstein metric on V can be lifted to be a non-singular metric 

under /. Hence we shall lift s to B2 by /. 

First of all, U C C3 x P2 in the coordinate (x,y,z) x [u^v^w] defined by 

xv — yu = 0, xw — zu = 0, yw — zv = 0, x2 + y2 — w2 = 0. 

If we use a coordinate (x, v) on U by taking u = 1, then 

y = xv, z = xw, v = w2. 

Any holomorphic section s of S2kT ® Kk can be written as 

If we write 

S(S1,S2) = I]Pi(5l,52)( —^C —f^^! Ads2) 

where ^ are holomorphic in B2, then it is clear that gi(0,0) = 0 for i > k. 

For i < k, we could argue using the other coordinate chart with v = 1 for 
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the blowing up. (So far we use u = 1.) 

gk(0,0) = lim lim.gk(s1,S2) 

= lim./»*(«?, 0)«J 
Si—^0 

= 0. 

Hence s is zero at the origin of B2 and s is identically zero. 

Hence under the assumption that M is a minimal surface of general type, 

the canonical line bundle is ample and M is covered by the product of two 

unit disks. 

If M is not minimal, we can blow down -1 rational curves over M to obtain 

a minimal surface M'. The section 5 over M can be pushed down to M' 

by Hartog's theorem. Same argument as above shows that the pushed down 

section has to vanish somewhere. This finishes the proof of the theorem.    □ 

Note. It is not clear that algebraic manifolds M of general type with dimen- 

sion > 3 is covered by the polydisk if the tangent bundle of M is the direct 

sum of line bundles. This is of course true if the canonical line bundle is ample 

by the previous arguments. 

3. SOME SPLITTING THEOREMS FOR NON-KAHLER MANIFOLDS 

In this section, we consider complex manifolds which are not Kahler. As 

was discussed in J. Li and myself in [10] (see also Buchdahl [11] when dim 

M = 2), we can replace Kahler metrics by Hermitian Yang-Mills connections. 

Let ou be the Kahler form of a Hermitian metric defined on Mn which 

satisfies the equation 

ddicj71-1) = 0. 

The degree of a coherent sheaf is well deifned and is given by 

d^Uu/1-1. / 
JM IM 

This number depends only on the "cohomology group".   Hn~l'n~l(M) = 

{Q\Q is an (n — 1, n — 1) form such that ddQ = 0}/Imd + Imd. 

A holomorphic bundle V is called stable iff for all coherent subsheaves J7 of 

V 
deg(^)(dim(jr))-1 < (degV){dimV)-1. 
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In [10], we proved that stable bundles V admit a Hermitian Yang-Mills 

connection. 

Let r be the rank of V. Then the standard argument of using Chern form 

computation shows that 

[2r • c2(V) - (r - !)<%(¥)] U u/1"2 > 0. 

(For the case of Kahler metrics, see [3]. For the case of vector bundles, see 

Liibke [4] and S. Kobayashi [5]). The equality holds only if the curvature form 

of V is diagonal. 

There are several remarks about these theorems. One may wonder how 

to check the condition of stability for a bundle V. When M is rather "non- 

algebraic" , there are less coherent sheaves and the stability condition can be 

checked easily. This was shown in my paper with J. Li and F.Y. Zheng [10] 

when M is a two-dimensional surface of class VIIo. 

There is another condition which makes the proof of stability easier. Sup- 

pose that there is a group G which acts holomorphically on M, a regular cover 

of M and on V", the lift of V to M. Suppose F C G and G preserve & and a 

Hermitian metric on V", then the proof of the existence theorem in [10] shows 

that the coherent subsheaf J7 produced there can be lifted to M to be a sheaf 

which is invariant under the action of G. This fact can be explained as follows: 

In the proof of the existence theorem, we have to solve several equations on 

M. For example, we have to solve 

A« = / 

where / is given and is G-invariant if we lift it to M. 

In order to prove that the solution u is also G-invariant when lifted to M, 

we look at the equation 

Au = €11 + f 

with e > 0. 

The lifted equation would satisfy the uniqueness property because if u and 

vf are two different liftings, u — u' = v would satisfy 

Av = ev. 
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The maximal principle developed by Cheng and the author will then show 

v = 0. Hence u is G-invariant. In this way, we can demonstrate the G- 

invariance of the solutions of all equations in the proof of the main theorem 

in [10]. As F is constructed from the solutions of these equations, it has to be 

G-invariant also. 

In conclusion, we have proved the following theorem. 

Theorem 3.1. Let G be a group which acts on a complex manifold M and 

a holomorphic vector bundle V over M so that both actions are compatible. 

Let F C G be a subgroup such that M/T is compact and V descends to be a 

vector bundle V over M. Let u be a G-invariant Hermitian form such that 

ddtd71'1 = 0. Suppose that for all G-invariant coherent subsheaf T of V', 

deg(Jr)rank(jF)-1 < deg(V)rank(Vr)~1, where T is the sheaf on M obtained 

from T. Then if V admits a G-equivariant Hermitian connection, it also 

admits a G-equivariant Yang-Mills connection. 

Note. If G has a biinvariant measure, we do not have to make the assumption 

that G preserves a Hermitian metric on V. In fact, let h be any Hermitian 

metric on V. Then it can be lifted to a Hermitian metric h on V which is F 

invariant. Since T\G has finite measure and h is G-invariant, we can average 

the metric h over the space F \ G. In this way, we obtain a metric which 

is invariant under G (and F). (Note that we can find a Hermitian form u 

equivariant under G in a similar manner.) 

Corollary 3.2. Suppose for some point x E M, the isotropic group of G at x 

acts irreducible on the fiber ofV atx. Then V admits a G-invariant Hermitian 

Yang-Mills connection. 

Once we know how to produce a Hermitian Yang-Mills connection on V, 

most of the arguments in section one can be applied. Either a holomorphic 

endomorphism of V or a holomorphic section of S2k(y) (g> (det V)~k will be a 

non-where zero section which is parallel with respect to the Hermitian Yang- 

Mills connection. It will reduce the holonomy group of V to a proper subgroup. 

Unfortunately, we do not have a theorem similar to Berger's theorem in the 

Riemannian category to conclude that M is special if V = TM. 
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There is an argument of H.C. Wang which enables one to conclude that if 

TM admits a flat connection, then M is the quotient of a complex Lie group 

G by some discrete group which acts on G by afline transformations. We can 

find characterizations of M such that TM admits a Hermitian flat connection. 

For example, we have the following 

Theorem 3.3. Let M be a compact complex manifold such that Ci(M) is dd- 

exact. Suppose that T(M) can be splitted as a direct sum of line bundles Li. 

If the automorphism group of M acts irreducibly on TX(M) for some x G M, 

then M is covered by a complex Lie group. 

Proof. The assumption makes sure for every Hermitian form UJ over M, T(M) 

admits a Hermitian Yang-Mills connection. Hence 

n f c^Li) Au"-1 < [ c1(M)Aujn-1. 
JM JM 

As Ci(M) = Y2ici(Li) = 0, we conclude easily that Ci(L^) A u)n~1 = 0 for all 

Hermitian form u with ddu)n~l = 0. One easily derives that Ci(Li) = 0 and 

TM admits a Hermitian flat metric. This finishes the proof.   □ 

It is tempted to use the Chern class inequality between C2 and cf. However, 

unless dd{ujn~2) = 0, it is not easy to give a more topological meaning of the 

inequality. We shall come back to this at a later occasion. 

4. BUNDLES WITH SINGULARITIES 

Previously, we have only considered the holomorphic vector bundle over 

closed manifold. But in general, holomorphic vector bundles over an open 

manifold or a singular holomorphic vector bundle over a closed manifold are 

interesting. (We will specify it later.) In the following, we will encounter this 

situation and try to demonstrate that in some restricted case, one still can find 

a nice canonical connection over it which is the generalization of Hermitian- 

Yang-Mills connection. 

Let us consider the following situation, a smooth complex manifold X and 

a normal crossing divisor D. We denote by X0 the open manifold X \D. 

In general, a holomorphic vector bundle V over X0 can never be extended 
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holomorphically (even smoothly) over X. What we are going to consider are 

those which can be extended in some broader sense. 

We call a bundle over X \D extendable over D by orbifold if there is an 

open covering of a neighborhood of D in X, say {{/*}, and ramified covering 

TT; : Ui —► Ui such that the pull-back bundle TT*V over Ui \ Di {Di = 7r~1(C^ fl 

D)) is extendable as a holomorphic vector bundle and two nearby extensions 

can be pieced together nicely. In other words, if we denote by Gi the finite 

holomorphic transformation group acting on Ui\Di and Ui\Di/Gi = Ui\D^ 

then over Ui fl Uj ^ (/), TT"
1
^ fl Uj) = 7r~1(C/i fl Uj) biholomorphically and the 

corresponding group action Gi coincide. 

In the following, we only consider those bundles which are extendable by 

orbifold. 

In fact, there are quite a few of them. For example, any representation 

of 7r1(X \ D) into GL{n, C) gives a flat bundle over X\D. In some special 

case, the induced representation 7ri(U\D) —* 7ri(X\D) —► GL(n, C) for some 

neighborhood U of D is torsion. After taking a branched covering, the pull- 

back bundle is easily shown to be extendable over the branched cover. So the 

flat bundle over X \ D constructed by this representation is exactly the bundle 

we call extendable by orbifold. 

Now we are in the position to demonstrate that we still can solve the 

Hermitian-Yang-Mills connection on those specific bundles if they are stable 

in the sense we will make clear now. 

For any bundle V over X \ D which is extendable over D by orbifold, we 

choose once and for all the corresponding resolution, -K^JJ^U^Gi^ etc. We 

call an object defined over X \ D admissible if it can be extended smoothly 

with the corresponding properties after being lifted to the covering Ui\Di. 

DEFINITION 4.1. A holomorphic vector bundle over X\D which is extendable 

over D by orbitfold is said to be stable with respect to an admissible Hermitian 

form UJ (with dduj71"1 = 0) if for any admissible coherent sheaf F C V, 

(The meaning of c^J7) and Ci(V) are represented by Chern forms which 
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are calculated based on admissible connection.) 

As before, we can show 

Theorem 4.1. Let V be a stable vector bundle over X\D which is extendable 

by orbifold with respect to hermitian form u with ddcu71'1 = 0. Then there 

exists an admissible Hermitian-Yang-Mills connection on V. 

By establishing a suitable norm on the function space and establish some 

key inequalities, the proof of the theorem is quite straightforward. 
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