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THE RICCI FLOW ON COMPLETE 

LANG-FANG WU 

ABSTRACT. Given R2, with a "good" complete metric, we show that 
the unique solution of the Ricci flow approaches a soliton at time 
infinity. Solitons are solutions of the Ricci flow which move only by 
diffeomor phism. 

INTRODUCTION 

In this paper we will study the Ricci flow on E2 with a complete metric. 

It is interesting to note that the Ricci flow on E2 is the limiting case of the 

porous medium equation as m —» 0, which will be further discussed in the 

appendix by Sigurd Angenent and a short announcement [W-2]. 

The Ricci flow on a surface is to evolve the metric under 

—ds2 = -Rds2, 
at 

where R is the scalar curvature. For more detail see [H-l]. 

We say that ds2(t) is a Ricci gradient soliton solution if there exists a func- 

tion / such that 

wds2(t) = -Rds2{t) = Lvfds2(t). 

There are two types of gradient solitons on E2. Namely, the flat soliton and 

the cigar soliton. The flat soliton is the standard flat metric on E2. The cigar 
dx2 + dy2 

1 + x2 + y2' 

dx -i- dv 
soliton is a metric which can be expressed as ds2 = -, where {x,y} 

are rectangular coordinates on P2 
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On a complete (R2,ds2), the circumference at infinity is defined as 

(0.1) 
Cooids2) = sup mi{L(dD2)\\f compact set K C M2, V open set D2 D K}; 

K     D2 

and the aperture is defined as 

(0.2) A(ds2) = i- lim ^J, 

where Br is a geodesic ball at any given point on M2 with radius r, and L[dD2] 

is the length of dD2 with respect to ds2. On a flat soliton, we have 0^ = oo 

and A(ds2) = 1; while on a cigar soliton C^ is finite and A(ds2) = 0. 

We say that the Ricci flow on M has modified subsequence convergence at 

time infinity if there exists a 1-parameter family of diffeomorphisms {<?^}te[o,oo) 

on M such that for any sequence of times going to infinity there is a sub- 

sequence of times {tj}^L0 and the modified metrics ds2{(j)tj{')^tj) converges 

uniformly on every compact set as j —> oo. 

On M2, let ds2 = eu<"x>y\dx2 + dy2) be a complete metric, where {x,y} are 

rectangular coordinates. The main result in this paper is: 

Main Theorem. Given a complete (M2,ds2(0)) with \R\ < C and \Du\ < C 

at t = 0, then the Ricci flow has modified subsequence convergence at time 

infinity to a limiting metric. Furthermore, in the case when the curvature is 

positive at time zero, the limiting metric is a cigar soliton i/Cr
oo(d52(0)) < oo; 

or a flat metric if A(ds2(0)) > 0. 

Note that: There is still a big class of Riemannian structures with C^ = oo 

and A = 0 which our method fails to classify the limit. 

Sketch of the Proof The evolution equation of h = R + \Du\2 provides the 

infinite time existence and uniform bounds for \Du\, \Dku\, R and |Z)fci?| for 

all k > 1 after a short time. Finite total curvature and Coo > 0 imply that 

the curvature decays to zero at distance infinity. This yields that Coo, A(ds2), 

and / Rdfi are preserved under the flow. Furthermore, the solution of the flow 

is unique and the positivity of the curvature is preserved. 

The positivity of the curvature of an initial metric provides pointwise con- 

vergence of the function eu at time infinity. All the uniform bounds of |Dm^| 
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yield that lim eu is a smooth function and is either identically zero or posi- 
t—+OQ 

tive everywhere. In the case, when lim eu > 0, the limiting solution is a flat 
t—►oo 

metric. 

Nevertheless, there is a 1-parameter family of diffeomorphisms <$>t : R2 —> M2 

such that for any sequence of times going to infinity, there is a subsequence 

{i/}!*L0 and lim ds2((j)t.(-)^tj) converges to a metric uniformly on every com- 

pact set. If R > 0 and C^ < oo at t = 0, then some integral bounds clas- 

sify lim ds2{(j)t.{')^tj) as a cigar soliton with circumference no bigger than 

Coo(0) < oo. If R > 0 and A(ds2) > 0 at t = 0, then the Harnack's inequality 

classifies lim <is2(<^.(*)> A?) ^ a flat metric. 
j->oo 3 

Acknowledgement. The author would like to thank Richard Hamilton and 
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stant encouragement. She gratefully acknowleges the invaluable input from 

P. Chrusciel and G. Huisken in the final form of this work. She is indebted 

to Sigurd Angenent for pointing out that the Ricci flow on R2 is the porous 

medium flow for m = 0, reflected in the appendix. 

1. THE MAXIMUM PRINCIPLE 

In this section we will give an elementary proof of the maximum princi- 

ple for a class of parabolic equations on R2 with changing metric ds2(t) = 

eu(xyy,t)^x2 _|_ dy2). For more details, we refer the reader to [Ar] and [P-We]. 

Theorem 1.1 (Maximum Principle). Given (R2,ds2(t)) for all t e [0,T], 

and a function f : R2 x [0,r] -> R1 satisfying -J- < A/. Then if f < C at 

t = 0 and f is bounded Vt € [0, T\, we have f < C, Vt G [0, T]. 

The idea of proving the maximum principle on R2 with an evolving metric 

is similar to the proof of the case when the metric is fixed. For clarity, we will 

first prove the maximum principle with a fixed metric. 

Lemma 1.2. Given (R2,ds2), let f : R2 x [0, T] —> R1 be a function which 

satisfies — < A/.   // / < C at t = 0 and f is bounded Vt G [0,T], then 

/<c,vtl[o,r]. 
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Proof. Let r G [0, T] be the largest time such that / < 2C on 0 < t < r. 

Define 

f6 = f-6(x2 + y2)-46t,V6>0, 

where x, y are the standard rectangular coordinates. Then we have 

^/«<A/«,Vte[0,T], 

and fs < C at t = 0. Since / < 2C,Vt G [0,T] and sup /^ can only occur in 
xeR2 

the interior, we have Tr/slmax < 0. So /^ < C, V0 < t < r, V5. That is, 

f-6(x2 + y2)-m<C,\/6. 

As 5 —> 0, we get / < C on 0 < t < r. If r < T, there exists an e > 0 such that 

/ < 2C, Vt G [0,r + 6] C [0, T\. This contradicts the choice of r, so r = T.    □ 

Lemma 1.3. On (M2,<is2(£)) TO^/I t G [0,T], there exists a time-independent 

function h(r) = h{r,t) on M2 x [0,T], such that Ah < 1 on R2 x [0,r], and 

h(r) = h{r,t) -+ +oo,  as r -» oo, Vt G [0,r]. 

Proof. Define a time-independent function h{r) = h(r^t) on M x [0, T]: 

rb=r f^ae^da 
Kr) = /      ^^-r db, 

Jb=o o 

where v(r) =   min  ^(r, 0, t). Obviously we have /i(0) = 0, and 
O<0<27r 

h=r   na=b no=r 

h(r) < / 
Jb=0 

i^ae —db,     \/e,t. 
b 

Note that typically we expect u to approach infinity at distance infinity. Since 

rcti(r,*,i) > o, there exists an ei > 0, such that J^1 aeu^e^da = C > 0. This 

yields 

rb=r   [a=r aeV^)da 
h{r) >  /       Ja=o ae     ^db> 

6 

ae 
T 

/■6=r /ro1 oe^a>da JL > /       Ja^   , db 

>Cr(liir-lnci), Vr>0. 
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Prr aev(a)da 
In particular, we have h = h{r) —> +00, as r —+ 00. Since hr = ^^ , 

r 
we have 

Aft = e-«(MM)=e-.(r£^)<1. n 
r r 

We will apply the same argument in Lemma 1.2 to prove Theorem 1.1. 

Proof of Theorem 1.1. Take the function h obtained in Lemma 1.3, and let 

fs = f - 6h - St. Then —fs < Af6 + 6(Ah - 1) < Afs. Prom the same 

argument in Lemma 1.2, we have / < C, W G [0,T].    □ 

2. LONG TIME EXISTENCE 

In this paper (]R2,d52) will be a complete, noncompact conformally flat 

surface. The evolving metric ds2(t) = eu^^t)(dx2+dy2) = eu^9^(dr2+r2de2) 

is the solution of the Ricci flow, where {#, y} and {r, 9} are rectangular and 

polar coordinates. 

Proposition 2.1.  On (M2,ds2), £/ie evolution equation of the Ricci flow 

(2.1) ^rds2 = -Rds2. 
at 

is equivalent to: 

(2.2) — u = Aw = -jR. 
at 

From straightforward computations, one may obtain the following related 

evolution equations: 

(2.3) —R = AR + R2 

(2.4) J^pul2 = A|£>u|2 " 2|AI>j«|2. 

2.1. Short Time Existence. The short time existence for the Ricci flow 

can be obtained by bounds on the curvature at t = 0. ([Shi-2]) The bounds 

for |-Dfci?| over a small time interval may be obtained by looking at some 

dilationally invariant terms. 
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Theorem 2.2 ([Shi-2, Theorem 1.1]). On a complete, noncompact 2-manifold, 

if \R\ < ko at t = 0, then the Ricci Flow has short time existence.   We can 

bound the derivatives of the curvature by |jDmi?| < —^-^—, Vra > 0 on a 

short time interval [0, Tko], where Tk0 and K^ko) only depend on the bound 

ko for the curvature. 

Now we will use the same method as in [Shi-2] to prove the dilationally 

invariant bounds for higher derivatives of u. 

Theorem 2.3. On (R2,ds2) with \R\ < k0 and \Du\2 < D0 at t = 0, there 

exist positive constants Tk0 and Cm(fco5 A)) depending only on ko and Do, such 

that under the Ricci Flow we have 

\Dmu\i<Cm{^0\       VtG[0,Tj,        Vm>l. 

Proof. From Theorem 2.5 in [Shi-2], there exist positive constants K^ko) and 

Tko such that 

\DmR\ < ^p^,       Vt G [0,rfeo],Vi > 0. 

In particular, we have \R\ < K0(ko) Vt G [0, Tko}. 

The evolution equation of the conformal factor under the Ricci flow (2.2) 

implies 

then 

— \Du\2 = ^DiuDiR + RlDu]2, 

^{Dul2 < 2\Du\\DR\ + R\Du\2 < 2Kl^ \DU\ + K^Duf. 
ot \jt 

This implies 

|JDti|2 < C(ko,Do)ec^D^ < dfaDo),        Vt G [0,Tfco], 

where C(k0,D0) and Ci(fco, A)) are constants depending only on ko and DQ. 

Furthermore, we have 

^-t\Du\2 = A\Du\2 -2\DiDju\2, 

d_ 
dt 

< A|A^n|2 - 2|A^i?fc«|2 - C0
k0\D

2
u\2 

IDiDju]2 = A|AA«|2 - 2|AAA^l2 - R(\DtDjul2 - (Au)2) 
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That is 

%-\D2u\2 < A\D2u\2 - 2\D3u\2 - C0
ko\D

2u\2. 

Then the same methods as in Lemma 7.1 in [Shi-2] can be applied directly to 

get the bounds for all the higher order derivatives.    □ 

2.2. Long time existence. We will use the same method as in [H-l] to show 

the infinite time existence for solutions of the Ricci flow. We define a function 

h = —Au + |JDU|
2
 = R + \Du\2 then the evolution equation of h under the 

Ricci flow is 

(2.5) ^ = Ah-2\Mij\
2<Ah. 

Theorem 2.4. On (R2,ds2) with \R\ < k0 and \Du\2 < D0 at t = 0, under 

the Ricci flow we have 

(1) The solution of the Ricci flow exists Vt £ [0, oo). 

(2) |jR| < fco + A) and \Du\2 < D0 for all time. 

Proof From (2.3) and the maximum principle, we know that the curvature is 

bounded below by — ko for all time. Prom Theorems 1.1 and 2.4, if |i?| < ko 

and \Du\ < DQ at t = 0, there exists a constant T^ such that R and \Du\ are 

bounded on the time interval [0,rfco].   Then the maximum principle implies 

h(x,t) < sup /i(x,0),Vt G [0,Tfco]. That is, 
xeR2 

h{x,t) < sup/i(x,o) <fcb + i>o,vte[o,rfco]. 

Thus R < ko + D0 and \Du\2 < 2k0 + D0) Vt G [0, Tko}. In particular, combining 

with (2.3), (2.4) and the maximum principle we have |i?| < ko + D0 and 

\Du\2 < D0,Vt G [0,Tko]. Implement the same argument at time t = Tko, we 

have \R\ <ko + D0 and \Du\2 < D0 on R2 x [Tko,Tko+Do]. Hence, by repeating 

the above process n times, we have 

\R\ <ko + Do, and \Du\2 < Do on M2 x [0, Tko + nTfco+Do], 

where Tko+Do > 0 is a constant depending only on fco and ^o- 

Let n approach infinity, then we have |i?| < ko + DQ, and \Du\2 < DQ for 

all t G [0, oo), and the long time existence follows.    □ 
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Corollary 2.5. Given a complete (R2,Gte2) with. \R\ < ko and \Du\2 < DQ at 

t = 0, under the Ricci flow, Vr > 0 we have 

(2.6) \Dku\2<C*,        Vi>T>0,        Vfc>2. 

In particular, we have uniform bounds for all the higher derivatives of the 

curvature after a short time. 

3. MODIFIED SUBSEQUENCE CONVERGENCE 

The following theorem tells us that even if the limit of the solution u exists 

it might not yield a metric at time infinity. Let | • | (resp. | • |) denote the 

norm with respect to ds2(t) (resp. ds2). 

Theorem 3.1. On a complete (M2,<is2) with 0 < R < ko and \Du\2 < D0 

at t = 0,  then lim eu^,2/'^  converges uniformly on every compact set and 
t—*oo 

lim eu(x,2/,t) is a nonnegative constant If lim eu(a;'y't) > 0, then lim eu^y,t)(dx2 

t—>oo t—»oo t—KX> 

+dy2) induces a metric on M2 with curvature identically zero. 

Proof. Positive curvature implies that —u = —R < 0 and —eu = —Reu < 0. J dt dt 
For each £ £ M2, e^'^ is a decreasing function in t and eu^^ > 0, thus 

lim eu^'^ converges pointwisely. 

Since \Deu(^t)\2 = e3u\Du(-,t)\2 is bounded, combining with the pointwise 

convergence, lim eu^^ converges uniformly on every compact set. All higher 
t—>oo 

derivative bounds of eu imply that lim eu^^ is a smooth function. 

If there exists a point p G M2, such that lim eu(p,t) = ea > 0, then lim u(p, t) 
t—*oo t—*oo 

= a > — oo. On any compact set near p there is a bound for lim \Du(-, t)\ thus 
t—KX> 

on every compact set, lim u(^t) is away from negative infinity, i.e. 
t—too 

limeu(-,t) >0. 

Furthermore, | f™0 —R(^ t)dt\ = \u(£, oo) — u(£, 0)| < oo. From the positivity 

of i?, and the uniform bounds of R and |Di2|, we have lim i?(-,£) = 0, in 
t—►oo 

particular, lim eu^ is a positive constant.    D 
t—*oo 

To avoid the problem of the limiting solution failing to yield a metric we will 

modify the solutions by a family of diffeomorphisms.  To see why modifying 
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the solution by diffeomorphism is needed to prove convergence for the Ricci 

flow, we will illustrate the following example. 

EXAMPLE 3.1. Given the soliton metric ds2(0) = 0      . on R2, then it 
1 + x2 + y2 

is easy to compute that the solution of the Ricci flow with initial data ds2(0) 
dgp  _|_ ^2 -^ 

is ds2{t) = -— -. Then eu^XitV^ = —r——« o goes to zero as time w       e4t + x2 + y2 e4t + x2 + y2 & 

approaches infinity.   Therefore, we can not claim that  lim eu^Xiy^ yields a 
t—►oo 

metric on E2. 

Nevertheless, if we let diffeomorphism (f)t{A,B) = (e2tA,e2tB) = (x,y), 

then 
,9/ x       , 9/ , , A   „N   N       dA2 + dB2 

ds2(x,y,t)=ds2(MAB),t) = 1 + A2 + jB2. 

Denote ds2^,^,*)  =■ ds2(0t(A,B),t) and e" = — —. Then e" is 
1 + A.   -j- JD 

stationary in time. 

As in Example 3.1, we will modify the solution of the Ricci flow by a 1- 

parameter family of diffeomorphisms. Choose a diffeomorphism </>t : R2 —► R2 

such that 
■o.(0,0, t) u(0,0,t) 

MAB) = (e *-A,e ^ B) = (x,y). 

Then define the metric ds2 as 

d?(A, B, t) = ds2{x1 y, t) = ds2((j)t(A, B), t) = eu^^B^'u^0^(dA2 + dB2) 

function 2(i4, B, t) = w(^(il, J5), t) - u(0,0, t), and hence e^0'0'^ = 1. 

Let | • \i and 5^ be the norm and the area form with respect to ds2(t), then 

\Du\\(A, B, t) = \Du\\{A, B, t) = \Du\2(x, y, t) < D0 

and 2(0,0, t) = 0. By Azela-Ascoli theorem, for any sequence of times going 

to infinity there exists a subsequence {ti} such that lim ds2(ti) converges uni- 

formly to a metric ds2(oo) on every compact set. Furthermore, if R > 0, then 

any open set D we have L^dc/)^1 (D)] = Lt[d(D)] is a decreasing function in 

time. And ^(^(oo)) < ^(O). 

Theorem 3.2. Given a complete (R2,ds2) with \R\ < ko and \Du\2 < D0 at 

t = 0, then the Ricci flow has the modified subsequence convergence at time 

infinity to a limiting metric. If R > 0 att = 0 then C00(ds2(oo)) < Coo^O). 
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We will devote the rest of the paper to classifyingthe limiting metric. 

4. GEOMETRIC PRELIMINARIES 

In order the classify the limit metric at time infinity, we need to inves- 

tigate how some geometric quantities evolve under the Ricci flow. In this 

section, we will briefly review some of the geometric properties of complete, 

noncompact surfaces, which are mainly quoted from [L-T]. As described by K. 

Shiohama, the total curvature of a complete, non-compact surface (i.e. / Rd/j,) 

is not a topological invariant but it depends upon the choice of Riemannian 

structures. A well studied class of Riemannian structures is the one with fi- 

nite total absolute curvature. We say that a metric has finite total absolute 

curvature if / \R\dfjL is bounded. In fact, finite total absolute curvature on 

complete, noncompact surface is equivalent to finite total negative curvature 

(i.e. / R-d/jb < oo, where R- = max{—i?,0}.) 

Theorem 4.1 ([Hu]). If M is a complete, noncompact surface with finite total 

negative curvature, then M is conformally equivalent to a compact Riemann 

surfaces with finitely many points deleted. Moreover, 

Rdfi < 47rx(M), / 
JM IM 

where x(M) is the Euler characteristic of M. In particular, fM \R\dn < oo. 

The following proposition reveals the relation between the total curvature 

and the aperture. Let p € M be a fixed point. Let us denote the geodesic ball 

of radius r at center p by BT{p), and its boundary by dBr(p). 

Proposition 4.2 ([Sh]). Let (M, ds2) be a complete surface with finite total 

curvature. If R is the scalar curvature of M, then Vp G M we have 

4„X(M) - / M, = 2 Urn H25M . 4 ,im *"(fM), 
JM r->oo r r—00 r2. 

In particular, 

47rx(M)- / Rd^ = A^A{ds2). 
JM 

Note 4.1. The above proposition also implies that the aperture A{ds2) is in- 

dependent of the choice of the base point p on a complete surface with finite 

total curvature. 
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Next we will show that a complete (K2, ds2) with bounded positive curvature 

has nonzero circumference at infinity. 

Lemma 4.3. Any complete (R2, ds2) with bounded positive curvature has non- 

zero circumference at infinity. 

Proof. Express the metric as ds2 = eu(dr2 + r2d62), where {r, 9} are polar 

coordinates. Choose open sets Oi and O2 such that the origin (0,0) G Oi C O2 

and dist(50i, 9O2) ^ 1- Let KQ be a compact set such that KQ D O2. 

If CQQ = 0, we have   inf L[dD] = 0 for all open sets D.   Hence for all 
DDKQ 

n > 0 there exists an open set D(n) D Ko such that L[dD(n)] < ^.   Let 

rn =   max   dist(0,0, x). 
n     xedD(n)       v '   '   ; 

y/R^i 
For all n >  , dD(n) can not be a closed geodesic loop, since any 

geodesic loop has length greater than ^ . Let {p, q} be two points on dD(n) 

which divide dD(n) into two equal length segments 71,72. Perturb 71 and 72 

with fixed end points {p, q} to minimize the length. Then for each z, 7^ either 

reaches a minimizing geodesic segment with fixed end points in Z)rn+1(0,0)—Oi 

or intersects dOi U &DrTi+i(0,0) and Lfy] > min{2, 7^} > 0. 

Hence, C^ > 2 min{2, -^—} > 0.   D 

5. THE GEOMETRIC PROPERTIES UNDER THE RICCI FLOW 

For the rest of the paper, we will use the following abbreviation for the 

initial hypotheses. 

(*1) 0 < R < ko        and \Du\2 < Do, at t = 0; 

(*2) \R\ < ko        and \Du\2 < Do, at t = 0; 

(*3) 

|i?| < ko, \Du\2 < Do, / R-dfjt < +00, and C^ > 0 at t = 0; 

By lemma 4.3 and proposition 4.2, (*1) implies (*3). 

In this section we will show that under the Ricci flow, the curvature decays 

to zero at distance infinity after a short time. As a consequence, Coo, A(ds2), 

and /M2 Rdfi are preserved, and the uniqueness of the solution is also provided. 

Here we will first show that the completeness of the metrics with bounded 
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curvature is preserved under the Ricci flow. Denote C^t) = C00fd52(t)j and 

A(t) = A(ds2(t)). Let Lt[r] be the length of curve F with respect to the metric 

ds2(t). 

Lemma 5.1. On Mt = (M2,d52(t)), with \R\ < C for all t G [0,1], if MQ is 

complete then Mt remains so for all t G [0,T]. 

Proof Let F be any curve on M2 with a time-independent parameter u. Then 

d C 
The bound for curvature gives us |—Lt]V]\ < -—LJF], and 

dt 2 

(5.2) e-^LoF] < Lt{T} < e^Lo^]. 

The left inequality e~'5'£L0[r] < Lt\r] implies that any curve with infinite 

length with respect to ds2(0) has infinite length with respect to ds2(t) for 

t > 0. This implies that completeness is preserved.    □ 

5.1. Injectivity Radius. 

Lemma 5.2. For any fixed time t > 0, on Mt — nR2,<is2(£)j with\R(',t)\ < C 

1 TT 
and C00(t) > 0; the injectivity radius i(Mt) > min-lCoo^), L[rt],   / =} > 

0 where rt is (one of) the shortest closed geodesic loop(s) in Mt with respect 

to ds2(t). 

Proof. From the same arguments as in [C-E], if 

i(Mt) < mm -{Cooft),   / J       }, 

then i(Mt) can be realized by (one of) the shortest geodesic loop(s) Tt away 

from infinity. That is, rt is a closed geodesic loop contained in a compact 

subset of M. In particular, this implies L[rt] > 0.    □ 

The same arguments as in [C] and [C-W] can be used to derive a positive 

lower bound for the injectivity radius under the flow. 
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Lemma 5.3. On Mt = (R2,ds2(i)) with CooCO) > 0 and \R\ < C \/t € [O.T], 

we have 

(5.3) ec</2Coo(0) > CM > e-WCniO). 

Hence 

(5.4) i(Mt) > i mm^C^e-^Loiro],-^} > 0, 

where TQ is (one of ) the shortest geodesic loop(s) on MQ. 

Proof. (5.3) follows from (5.2). For any curve F we have Lt(r) > e~^Lo(r), 

thus 

t(Mt) = imin{C00(«),Lt(r*),^} 

(5.5) > ^minfe-^CooW^-^Lo^],^^ 

>-min{e-^C00(0),e-^Lo[ro],^}>0.    D 

5.2. Total Absolute Curvature is Nonincreasing. 

Proposition 5.4.  On a complete (R2,ds2) with (*3), under the Ricci flow as 

long as the solution exists, we have 

d 

/R
2 

This implies that fR2 \R\dijL is nonincreasing in time. 

|/|^<0. 

Proof. From theorem 4.1, finite total negative curvature at t = 0 implies 

fR2 \R\dfj, < oo at t = 0. Let B+(t) be the region in R2 where R(x^ t) > 0, B_(t) 

be the region in R2 where i?(x, t) < 0, and the exterior unit normal vector i/+ 

(resp. z/_) of dB+(t) (resp. 3B-(t)) has Du+R < 0 (resp. JD^iJ > 0.) Thus 

we have 

(5.6) — /      Rdfji = /      ARd/j, = f       D^Rds < 0, 
dt JB+ (t) JB+ (t) JdB+(t) 

and 

(5.7) — /      Rdfx= [        D„_Rds>0. 
"WB_(t) JdB-{t) 
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Combining (5.6) and (5.7), we obtain 

/   R+dfj, = /       Rd/Ji — /       Rd/ji 

= /        D„Rds - [        DuRds < 0.   □ 
JdB+{t) JdB-(t) 

5.3.  Curvature at Distance Infinity. 

Proposition 5.5. On (R2,ds2(t)) with (*3), wnder t/ie Ricci flow, the curva- 

ture R decays to zero at distance infinity after a short time. 

Proof. Prom corollary 2.5, for all r > 0, there is a constant C(T) such that 

\DR\ < C(T), for all t > r. Using the uniform bounds on i?, /M2 \R\d^^ and 

i(Mt) after any short time r, we claim that the curvature R falls off to zero at 

distance infinity after the short time r. Otherwise, there exists a time tT > r, 

and a sequence of points {xn}^L1 with lim \xn\ = oo such that 
n—»oo 

(5.8) lim \R(xn,tT)\ = a^0. 
n—+oQ 

We may extract a subsequence {a^.}^ such that 

a 
\xnj+1 - xnj\ > TTTT-T, and \R(xnj+1,tr)\ > a/2. 

Let r = min{-—7-7, min i(Mt)}: from Lemma 4.3, we have r > 0.   Let 
4C(T) t€[o,to] v     yj 

B*T (a;nj.) denote the geodesic ball centered at xn:j with radius r with respect to 

the metric at time r. Hence Vy G JB*T(a;nj.), we have |i?(y,tr) — R(xnj,tT)\ < 

a/4 and ^(y,^)] > a/4. 

Prom the choice of r, the exponential map at xnj in i?*x(0) is injective, 

which implies fBtT,     , dfi > C, where C is a positive constant depending only 

on the bounds for the curvature and r. Furthermore, if a ^ 0, we have 

« 00    « 00 

C> /   |.R(x,iT)|dfi>y/ |i?(-,tT)|d)Li>y"Ca = +oo. 

This is a contradiction, so a = 0.    □ 
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5.4. The Circumference at Infinity is Preserved. The idea of the fol- 

lowing proof was suggested by Richard Hamilton. 

Theorem 5.6. On (R2,^(t)) with (*3), then under the Ricci flow, C^t) = 

Coofflforallt. 

Proof. For any fixed time T, for any given r G (0, T], since the curvature 

decays to zero at distance infinity, there exists a sequence of compact sets 

{Kn}™=1, such that 

(5.9) (1) KnCKn+u       Vn>l, 

(5.10) (2) U~ !#,> = #, 

(5.11) (3) \/xeR2-Kn,        \R(x,t)\<-,        VtG[r,r]. 

It is easy to see that Co^t) > sup  inf  Lt[dD]. 
n    D^Kn 

For any compact sets Ci C C2,   inf L[dD] <   inf L[dD]. Also for any com- 
D(ECi DEC2 

pact set K there exists a Kn such that Kn D X,. thus CQO (t) < sup  inf  Lt [dD], 
n    DDKn 

hence 

(5.12) 
C00(t)=8up    inf LjaD] = sup  inf  Lt[9I>] = lim   inf Lt[dD}. 

Prom (5.1) and (5.11), VD D K,,, we have 

[T,T]. This yields 
l^^l < ^Lt[dD},        \ft G 

e-*(i-r)  inf Lr[aD] <   inf Lt[a£>] < e*(t-r)  inf LT[a£>]. 
DEXn D£Xn D(E.Xn 

Therefore as n —► oo, r -^ 0 and T —> oo, C0o(t) = ^(0) for all t > 0. 

This illustrates that any finite circumference at infinity is preserved under 

the Ricci flow for any finite time interval. Hence any infinite circumference is 

also preserved, otherwise there is an obvious contradiction.    □ 

Corollary 5.7. On (R2,ds2(t)) with (*3), under the Ricci flow, the injectivity 

radius has a positive lower bound. 
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5.5.  The Aperture and the Total Curvature are Preserved. 

Theorem 5.8.  On (R2,ds2)  with (*3),  under the Ricci flow JM Rdfj, and 

A(ds2) are constants in time. 

Proof. Prom Proposition 4.2, we only need to show that the aperture is pre- 

served.  If Coo < oo, there exists a point po such that lim L(Br(po)) = Coo- 
1—>-oo 

Hence 

A(ds2) = Urn ^ = 0 and   / Rdii = 47rx(M). 

Since Coo is preserved, from Theorem 5.6, we have A(gij) = 0 is preserved. 

If C^ = oo, let T be any fixed positive time and let Exp^ be the expo- 

nential map at a fixed point p with respect to the metric ds2(t) and B*(p) = 

Explv(Br(0)). Then Ve > 0 there is a sequence {rn}?°=1 with lim rn = oo 

such that 

\R(x,t)\ <-,        VxGM-S*n(p),VtG [e,r]. 

Hence 
d(Li[asy) 
dt       rn n       rn 

Thus 

lim ^MJ . lim tmi,   v(e[£,T]. 
n->-oo rn n-»-oo rn 

Let 6 —► 0 and T —> oo, we have lim = lim , for all £ > 0.    D 
r—*oo       f i—>-oo       y* 

5.6.  Uniqueness of the Solution. Now we will use Proposition 5.5 to show 

the uniqueness of the solution. 

Corollary 5.9.  On (R2, ds2) with (*3), the solution to the Ricci flow is unique. 

Proof. Let 'Ui(x, t) and 162(#, t) be two different solutions of the Ricci flow with 

the same initial data /a1(a:,0) = ^2(^,0). Let Ri denote the curvature for the 
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metric generated by Ui, and \Ri\ < fco, Vz = 1,2, Vt € [0,1]. Then — ui = — Ri, 

—^2 = —#25 and TT-(^i — U2) = —Ri + R2- Furthermore, we have 
(sis C/Ti 

-(«! - n2) = (e-^Auj - e-^Sua) 

= e""1 Afai - ua) + (e-Ul - e-"2)An2 

= e-"1 A(ul - M2) + (e"2-1 - l)i?2 

hence ^-(^1 — U2){x,t) = e"UlA(^i — U2)(a;,i) + [en(^2 — ^i)^2](^^) where 

u(x,t) is some value between 0 and {112 — Ui)(Xjt) obtained from the mean 

value theorem. 

The bounds on the curvatures yield 75-(^i — ^2) < 2A;o. For small e > 0, 

there exists a time r(e) = —- £ (0,1], such that Ui — U2 < -, Vt G [0,r(c)]. 
4/co 2 

From Theorem ??, there exists a compact set Kt C M2 such that 

\Ri{x,t)\<^        VxeR2-Kt,        Vt€[r(e),l] 

for i = 1,2. This implies that Vx G R2 - Ke, and Vt € [r(e), 1], 
Q 

tixCa:, t) - U2(x, t) < | + 2^ x (1 - rfc)) < ^. 

For all t G [T(e), 1], if max^i — U2) = (^1 — ^2)(^ t) > 0 and x G ife, then 

A(^i -^2)|max < 0, and 

— {Ux - W2)|max <  \[^ {^2 " ^1)^2] (^, *) |, 

where ^2 (of, i) — Wi(x, t) < ^(x, t) < 0. Thus 

— (Ux - U2)|max < Cfai - ^Imax- 

Combining all the above arguments, we have 

maxfai -U2){x, t) < max{J, ^} • max{l,efco(t-r(e))} < ^efco,    Vt G [r(e), 1]. 

That is, 

uiCs.t) - u2(a;,t) < ee*50,        Vt G [0,1]. 

Let e ->■ 0, we have (ui - uj){x, t) < 0, Vt G [0,1]. 
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Repeating the same process for U2 — Ui and on any finite time interval, we 

have Ui = U2 on R2 x [0,00).    □ 

5.7.  The Positivity of the Curvature is Preserved. 

Lemma 5.10. On a complete (M2,<is2(£)) with (*1), the positivity of the cur- 

vature is preserved. In particular, the metric can not become flat at any finite 

time. 

Proof. By the maximum principle and Proposition 5.5, if R > 0 at time zero, 

at any finite time either R > 0 or R is identically zero. On the other hand, the- 

orem 5.8 implies that / Rd/i is preserved, hence the positivity of the curvature 

is preserved.    □ 

6. GRADIENT SOLITONS AND EXPANDING GRADIENT SOLITONS 

A soliton is a solution of the Ricci flow which moves only by diffeomorphism, 

i.e. there exists a vector field V such that -^-Qij = LvQij- Any compact 2- 

soliton is a gradient soliton; that is, the vector field V must be the gradient 

of some function [H-l]. 

If we let ds2 = gijdxidxj and M^- = DiDjU + -Rgij, then 

(6.1) J^'l2 = A|M^2 - 2I^M^2 - 2R\Mij\2- 

It is easy to see that ds2 is a gradient soliton if M^- = 0. 

In this section we will show that there are only two types of gradient solitons 

on R2 with r = 0. Namely, the standard flat metric, which is stationary, and 

the cigar soliton.   Let {^, v} be the standard flat coordinates on M2, then 
dvu  ~f" dv 

the cigar soliton is a metric expressed as ds2 = -, and has scalar 
1 + uz + vz 

4 
curvature R = -. As the distance goes to infinity from any fixed 

1 + u2 + v2 

point po> the cigar soliton approaches a flat cylinder with the same 0^. Note 

that on a flat soliton, we have C^ = 00, while on a cigar soliton, Coo < 00. 

Furthermore, in the case discussed in this paper, any 2-soliton is a gradient 

soliton. 
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Theorem 6.1. There are only two types of complete gradient solitons on R2 

with r = 0. They are the cigar solitons and the flat solitons. 

See also [H-l] and [W-l]. 

Proof. Here we are going to use the notation introduced in [H-l] and [W-l]. 

Let (u, v) be the standard rectangular coordinates on i?2, and (x,y) be the 

coordinates on the cylinder with — oo < x < oo, and 0 < y < 27r, such that 

u = ex cos y 

v = ex siny. 

Any soliton metric ds2 = g(u,v)(du2 + dv2) on R2 induces a soliton metric 

ds2 = g(x,y)(dx2 + dy2) on the cylinder where g(u,v) = g(x)y)e~2x. From 

[H-l], a gradient soliton yields g(x,y) — g(x). Thus, g(x)e~2x is a smooth 

function of u2 + v2 = e2x as x' —> — oo. The scalar curvature is given by 

i? = —(—)x. Since r = 0, the metric g(x, t) = g(x + Ct) is a soliton on the 
9   9 

cylinder if and only if Cgx = (—)x. There are two cases for the constant C: 
9 

1. If C = 0, then R = 0. This soliton is the flat metric. 

2. If C ^ 0, then — = Cg + Co, and    ^   9 „ , = dx. That is, 
9 gyCg + Co) 

(c^Ta " \)dg = ~C^ 
and 

\n\Cg + Co\-\n\g\ = -CoX + C1. 

This implies  — = C2e~c'oX, C2 > 0. Furthermore, we have 
9 

C^x 

*     C2±Cec°*' 

Rescaling the parameters (i.e., let C2 = 1, C = 1, and Co = B) and rescaling 

the metric yield 
eBx 

*      l±eBx' 
Since ge~2x is a smooth function of e2x as x —> —00, and ^ > 0 as x —> +00; 

6 (iix2 4" dv2 

we have ^(x) = — and ds2 = -. Therefore the metric is a cigar 
1 + e2x 1 + u2 + v2 

soliton.    □ 
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Lemma 6.2. For any complete soliton on M2, if the curvature R is decaying 

to zero at distance infinity, then the soliton has either positive curvature or 

constant zero curvature. 

Proof. On a complete soliton with curvature R decaying to zero at distance 

infinity, -^Rmf = 0 and itW < 0. If jRinf = 0, by the strong maximum principle 

in the interior, we have either R = 0 or R > 0. If Rmf < 0, then J?inf occurs 

in the interior and Ai?inf > 0. This contradicts with 

(6.2) 0 - —RM = ARmi + i?2
nf > 0. 

Hence Rinf = 0 and R > 0.    □ 

Lemma 6.3. On a complete soliton on (R2,ds2 = gijdxldxj) with positive 

curvature, if M^- = DiDjU— -Rgij decays off to zero at distance infinity, then 

ds2 is a gradient soliton. 

Proof. Let ds2{t) be the solution of the Ricci flow with ds2{Q) = ds2. Then, 

for any time t, there exists a diffeomorphism 0t : M2 —> R2, such that 

lA^fC&Cx),*) = iMyffoO),        Vx G M2. 

In particular, if at time t = 0, max\Mij\2(x,0) — |M^|2(x,0), then for all t, 

maxlAf*,-!2^,*) = l^f^tCx),*) 

R{<pt(x),t) = R(x,0) >0. 

The evolution equation of IM^-12 is ^-|M^|2 = A|My|2-|DfcAfii|
2-2i2|A/ii|

2. 

The maximum principle implies lim max|M^|2(x, t) = 0. On the other hand, 

d d 
— max|My|2(a;,t) = 0 on a soliton, hence |M^|2 = 0. That is , -zrgij = 

—Rgij = 2DiDjU = L^ugij. Therefore ds2 is also a gradient soliton.    □ 

6.1. The Expanding Ricci gradient Soli-tons. The expanding gradient 

Ricci solitons are solutions which satisfies 

(6.3) (^ + R)ds2 = -Lv/ds2 
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for some function / for all time t > 0. For the purpose of this paper, we will 

only consider the following a-shrinking Ricci flow 

(6.4) — ds2 = -(a + R)ds2, 

where a is a positive constant. We will show the existence of the a-expanding 

solitons, that is, there exists a function / such that 

(6.5) — ds2 = -(a + R)ds2 = Lvfds2. 

By the arguments in [H-l], the induced metric of gradient solitons on a 

cylinder may be written as ds2 = g{x){dx2 + dy2) with coordinates — oo < 

x < oo, and 0 < y < 27r. In particular, there exists a constant C such that 

g(x}t) = g{x — Ct) and ds2 = g{x,t){dx2 + dy2) is the a-expanding solitons 
1   g' 

on a cylinder. Since the scalar curvature R = —(—)', the a-shrinking Ricci 

flow may be rewritten as 

(6.6) Cgr^{a + R)g=(a--{^y)g. 
v        9   9   J 

Let E01 be an a-expanding gradient solition on the plane, then the aperture 

can be expressed in terms of the function g and 

A(Y,°) = lim ^Ei2 where r = f" M(£)<Ui 
(6.7) ™       ' J° 

= - lim —. 
2 x—>oo g 

Geometrically the expanding gradient soliton E0* asymptotically approaches a 

rotational symmetric cone with aperture j4(£a). That is, there exist coordi- 

nates {£, y} with £ = £(x) on the cylinder such that 

(6.8) lim g{x)(dx2 + dy2) = d£2 + A2£2dy2. 
x—++oo 

When x approaches oo, let £ = eAx, then g(x) = A2e2Ax and   lim   — = 2A. 
x —>-+oo  g 

On E** with positive curvature, theorem 4.1 and the rotational symmetry 

implies that   lim R = 0.   Therefore, a = C  lim   — = 2,4C and (6.6) is 
x—>oo #—♦-foo  (7 
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equivalent to 

(6.9) S7 = 0 + R 

To recover a smooth metric on R2 from g(x), we need g(x)e~2x to be a smooth 

function in e2x as x —> —oo; i.e., g(x) = ae2x + be4x + ... as x —> —oo. Hence 

lim   — = 2. The positivity of the curvature implies ( — )   = — gR < 0, and 
x->-oo  gf \ g / x 

therefore the maximum of the curvature occurs as x —> — oo and 

(610) 
Ji- = (-a+^7) (x^"00) 

We have showed the following theorem which was conjectured by Richard 

Hamilton. 

Theorem 6.4. For any given positive constants a and A G (0,1), there exists 

a unique rotationally symmetric, a-expanding gradient solitons S01 on R2 with 

positive curvature and aperture A. Furthermore, if we define function tp as 

^p{A) = ^jRmax(SQ:); then tp is a decreasing function in A. 

7. INTEGRAL ESTIMATES FOR R2 WITH FINITE CIRCUMFERENCE 

In this section , we will derive some time-independent integral estimates. 

Lemma 7.1. On (R2,ds2(£)) with (*1) and C^ < oo, if My = 0^0^ + 

—Rgij, then under the Ricci Flow Vr  >  0,  we have a uniform bound of 

fwlMitfdfrVtefaoo). 

Proof. At any given time t G [r, oo), let {Dn} be a sequence of open sets 
oo 

such that I j Dn = R2,Dn C .Dn+1, and lim L(9Dn) = Coo.  Then we may 
n=l 

compute 
R2 

and 

/   IMi^dfi^ [   iDiDjufdfi- [   —dii, 
JDn JDn JVn      * 

/    \DiDju\2diJL = - I   DiDiDjuDjudfji+ /     D^DjV^Djuds. 
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Since 

DiDiDjU = DjDiDiU + RijuDtu = -DjR + -Dju, 

and 

/   DjRDjudfi = - /    RAudfjL+ [    RDv{u)ds = /    i?2d/x+ /     RDv{u)ds, 

one obtains 

/   \Mij\'dn= f   ^-dv-f   %\Du\*dvL 

+ /     RDl/(u)ds+ /     DviDji^Djuds. 
JdDn JdDn 

By corollary 2.5 and theorem 5.8, there exist constants C(T) and Co = Co(ds2(0)) 

such that |i?| < C{T),\Dku\ < C{T),\DkR\ < C(r), and J^Rd^ = Co, V 

1 < k < 2, Vt e [r, oo). Then we have 

Since C^ < oo, then 

2 

<C(T)a, 

/     RDvuds 
\Jd1Dn 

< C(r)2L(aDn) -^ C(r)2C00, as n ~> oo. 

I /    DvD, 
\JdDn 

uDjuds < C(r)2L(9Dn) -* C(r)2C00, as n ^ oo. 

Hence after a short time, fR2 \Mij\2dfi has a uniform bound for all time.   □ 

dt 
The following theorem is obtained from looking at — /M2 |M^|2d/x, in the 

case when C^ < oo. 

Lemma 7.2. On M = (R2,^) with (*1) and Ceo < 0 at t = 0, under the 

Ricci Flow after a short time r > 0, we have 

/     /   2|DfcMij|
2dM+ /     /   3fl|AJy|2d/i < C(r). 
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Proof. Let Dn be chosen as before, then we may compute 

4/   \Mij\
2dn= [  (k\Mij\

2-2\DkMij\
2)dii- I   ZRlM^dfi. 

I   A\Mij\
2dli= [    2MijDu(Mij)ds. 

JDn JdDn 

Hence we only need to show lim   /     DJM^M^ds = 0. 
r1-*00 JdDn 

After any short time r > 0, f\Mij\2dA and \DkMij\2 are bounded, and 

i(MT) > 0, using the same arguments as in Proposition 5.5, we have |M^|2 

going to zero as the distance approaches the infinity. This yields 

lim 
r—*oo JdBn 

ds < lim sup|Mii|sup|I>I/(Afij-)|i[9Dn] = 0. 

Consequently, 

/  \Mij\
2dn = -2 [  iDkMijfdn- [ SRlM^dfi 

d_ 
dt 

the theorem follows.    □ 

Lemma 7.3. On M = (M2,d52) with (*1) and C^ < oo, a soliton is also a 

gradient soliton. 

Proof. Lemma 7.1, bounds for |DfcM^|2 and i(M) > 0 imply that |M^|2 decays 

to zero as the distance goes to infinity. Combining with Proposition 5.5 and 

lemmas 6.2-6.3, any soliton is a gradient soliton.    □ 

Now we will use the above lemmas to classify the limit of the metric at 

time infinity as obtained in Theorem 3.2. Since ds2 and ds2 are the same 

metrics which only differ by a diffeomorphism, they induce the same covariant 

derivatives. If we define M^(A, JB, t) = DiDjU + ^RgTj, then it is easy to see 

that 

M^j(A,B,t) = Mij(x1y,t), 

and 

/ (2|^M,j|
2+3i?|M,j|

2)(x,2/,t)c/M= / (2pfcMij|
2+3i?|M,J|

2)(^(A,S),t)^. 
7M

2 JR
2 
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If Coc^O) < oo, by lemma 7.2, the uniform bounds of \Dku\ for all k > 1 

and the positive curvature imply 

lim iDkM^Si^B,^) = lim I^M^f^^AS),^) = 0 
I—>oo * I—*oo 

and 

]unR\M^\l(A,B,ti)= lim RlM^^t^B),^ =0. 
I—>oo ' I—♦oo 

In particular, lim \DkMij\j (A, jB,t/) = 0 implies lim (M^lf (A, -B,tz) is a con- 
f—»oo ^ I—♦oo 

stant. That is, either R = 0 or lim |Mij|| = 0. Combining this with theorem 

3.2, d52(oo) is a cigar soliton and Coo(ds2(oo)) < Coo(d52(0)). 

Theorem 7.4. On (R2,ds2) m^/i (*1) and Coo < °°> ^ K™i o/i/ie modified 

subsequence convergence at time infinity is a cigar soliton with circumference 

at infinity no bigger than that at time zero. 

8. THE HARNACK INEQUALITY FOR M2 WITH POSITIVE APERTURE 

In this section, we will further discuss the behavior of the limiting solution 

at time infinity in the case when A > 0 by using the Harnack inequality and 

by comparing the limiting solutions to the expanding solitons. The results 

and the proofs in this section are mainly due to Richard Hamilton. Recently 

Richard Hamilton proved a matrix form of the Harnack inequality for complete 

manifolds with nonnegative curvature operator under the Ricci Flow ([H-2]). 

In dimension 2 we may state the inequality as the following: 

Theorem 8.1 (Hamilton). On a complete surface with nonnegative curva- 

ture, under the Ricci Flow, as long as the solution exists, we have 

(8.1) Qij = DiDjR + -Rigij + ViDjR + VjDiR + KftVj + —Rgij > 0 

for any vector field V. 

Corollary 8.2. On a complete surface with positive curvature, under the Ricci 

flow 

(8.2) Qy = DtDjR + -R^ij + -Rg^ -       R
3    > 0. 

Furthermore, the equality holds if and only if the metric is an expanding gra- 

dient soliton. 
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Proof. When the minimum of Qij occurs, we have DviQij = DjR + RVj = 0, 

hence Q^ > 0. If R > 0 and Q^ = 0, then 

,.., DiDiR     DiRDjR     1 „ 1 
(8-3) -^ -^ + -Rgij + -gij = o. 

Let / = log i?, then(8.3) can be expressed as 

(8-4) A^/ + ^- + ^« = 0. 

Furthermore, we have 

(8.5) - (R + ±)cto = 2 A A/ = ^v/ <fe. 

This implies that p^ is an expanding soliton. 

Conversely, if g^ is an expanding gradient soliton, there exists a function / 

(from [H-2]), such that 

(8.6) - (R + -)5ij = Lv/5ij = 2A^/, 

Differentiating (8.6) in the j-th component and contracting (8.6) by g^ yield 

- DiR = 2DiDjDjf + RDJ = 2DAf + RDJ; 

and 

-(i?+i) = A/. 

Therefore DiR = RDJ, that is,V/ = Vlogi?. Hence Q^ = 0.    □ 

Corollary 8.3. On a complete surface with positive curvature, under the Ricci 

Flow, as long as the solution exists, we have 

|(«fl)>o. 

On an expanding gradient soliton, t • Rmdi^(t) is a constant under the Ricci 

Flow. 

1 \DR\2 

Proof Let Q = g^Qij = AR + R2 + -R- ]-—±- > 0, from (8.2).   Then 
t R 

^-R+-R= (AR + R2) + -R> !^P- > 0; which implies %-(tR) > 0. 
at        t t R ot 
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1 \DR\2 

On an expanding gradient soliton, Q = 0 and AR + R2 -\—R = -——^-. 
t R 

i /^ 

This implies Ai?max + i?^ax + -i?max = 0, thus -^-(tRmax) = 0. Consequently, 

ti?max(t) is a constant in time.    □ 

Now we will use the existence of the expanding gradient soliton on E2 and 

Qij > 0, to prove the following result. 

Theorem 8.4 (Hamilton). On a complete (R2, <7ij(£)) with (*1) and A(ds2(0)) 

> 0, then under the Ricci Flow we have 

for all time t > 0, where C only depends on A(gij). 

Corollary 8.5. On a complete (M2,^^)) with (*1) and A(ds2(0)) > 0, the 

limit of the modified subsequence convergence at time infinity is the flat metric. 

Lemma 8.6. For any given time T > 1, let gijiT) be the solution of a com- 

plete metric on (M2,^) under the Ricci Flow at time T. Let q be a point on 

R2 and R(q, T) = Rm^(T). IfR>0att = T, then 

jp (^)2 + R + ^ log R < RmUT) + ^ log i?max(T)       t = T 

where s is the arc length along the minimizing geodesic connects any point p 

and the point q. 

dY d2^1 

Proof. Along any geodesic 7 out of q, let —— = V\   Then —— = 0, and 
ds ds2 

\v\2 = 1. 
dF d2F 

For any given function F, — = V^iF and -—- = V'VtDiDsF. Multiply 
as ds 

Qij by W, then 

That is 
d R     1   2 -^     (dR.2 
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Let 

XT 
d 1 ,dR.o     „     1 ,     ■ 
dsll&^ds' T 

_  2_dRr^R _ i_dR2     1   2     J_   • 
- R2 ds L ds2      i?( d^  + 2 2r 

For any given point p on the geodesic 7, we can always assume that — < 0, 
as 

by comparing R(p, T) to some local maximum of the curvature R^lx(T) along 

7 at time T. Then XT < 0, which implies 

<i?max(r) + -lni?max(T).    □ 

Proof of Theorem 8.4. From the above lemma and the positivity of the cur- 

vature, we have 

dR 
ds 

< R\jiWT) + ^ ^ i?max(T) - R - i In R. 

Using the assumption that —— < 0, we have 
ds 

0 < ~ < R^RmUT) + ^InRmUT) -R-^lnR. 

On the other hand, Theorem 6.4 and (6.10) provide a rotationally symmetric 

—expanding Ricci gradient solition solution £^ with 

ii 
Let it^Jx a^ ^ime ^ occurs at point TT G £T.  Since E7^ is rotationally sym- 

metric, we may define 

E^ , 

where s is the arc length of the geodesic £ starting from TT.   In particular, 

0(0) = i2E*(7(0),r) = iWT), and 

0 < -^ = <Ay(^max(T) + i lni?max(r) - «/, - Iln</,) = G(0). 

Prom straightforward computation, we have 

i?(7(s),r)><Ks) = #E*(£(s),r). 
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Combining this with the Ranch comparison theorem, we have 

LMT(dBr) < L^(dBr)       Vr>0 

so 

A(9ij(T)) = lira ^^ < lim ^^ = A(E+) = ^(T • ^.(T)). 
r—+00 f i—►00 f 

Since A(gij) is preserved under the Ricci Flow and ip is a decreasing function, 

then for any given time T 

T-Rmax{T)<w{A{ds2)) = C 

where C is a constant depends only on A{ds2).    □ 

Theorem 8.7. On (]R2,<is2) with (*1) and A > 0, tfie Krmt 0/ £/ie modified 

subsequence convergence at time infinity is the flat metric. 

APPENDIX A. RICCI FLOW ON HYPERBOLIC SURFACES 

Sigurd B. Angenent 

Let H C M2 be an open subset, and consider a family of Riemannian metrics 

5* on fl given by 

(A.1) g* = (ds)2 = e2u^ {{dxf + {dyf) 

i.e. by ^ = e2u8ij. The Ricci-curvature of g1 is given by 

(A.2) Ric^O, 2/5 *) = -Au(x, y, t)^- = - {uxx + uyy) 8^ 

where A stands for the ordinary Euclidean Laplace operator. The family of 

metrics g1 therefore evolves by the Ricci Flow if and only if (e2tx)t = A-u. If we 

define v = e2u,w = e~2u, then the Ricci Flow for the metrics g1 is equivalent 

with either of the following two PDEs: 

(A.3) § = A(logV) 

(A.4) -^- = wAw - (Vw)2. 
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This first of these equations is note worthy since it can be interpreted as the 

formal limit case of the "Porous Medium Equation," 

(PME) ^- = AC7m, 

as the constant m > 0 tends to 0. Indeed, after rescaling the time by t = r/m, 

the PME is equivalent with 

(PME') ^- = A f 

dr \     m 

if one lets m j 0, then one obtains equation (A.3). 

There is a vast literature on the PME, and we refer the reader to Aronson's 

survey paper [Ar] for more background. 

The PME has a well-known similarity solution, the Barenblatt solution, 

which for 0 < m < 1, and in two space dimensions is given by 

/4m mt yA1-") 
U(x,y,t)- [1_m' A^mty/m + r2) 

where r = yjx1 + y2, and A > 0 is any constant. If one chooses A = 

R2 (R2/4m) , then upon talking the limit m j 0 the Barenblatt solution 

shifted in time converges to the "soliton solution" which Lang Fang Wu has 

considered in the main body of this paper: 

-i 

(A.5) V(x,y,t) = \imu(x,y, 
miO       \ 

* + ^_U* + (if 
4m    J      I \RJ 

(with i? > 0 any constant.) 

Some of Lang Fang Wu's results may therefore be interpreted as sufficient 

conditions on the initial data v(x1 y, 0) which guarantee that the corresponding 

solution v of (A.3) on the entire plane asymptotically behaves like the "soliton- 

solution" (A.5). 

If one looks for other radially symmetric similarity solutions of the Ricci 

Flow equations (A.3) or (A.4)), then one soon finds that, in addition to (A.5), 

there is indeed another one, namely 

(A.6) W(x,y,t) = ±-t(l-r2)\ 
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This solution, when restricted to the unit disk fi = {(x,y) 6 M2 : x2 + y2 < 

1}, defines a well-known one parameter family of metrics on the unit disk: 

gf* = ((dx)2 + (dy)2) /W(xJy^t) is precisely the familiar constant (negative) 

curvature metric on fi, with scalar curvature R = gljRiCij = —l/2t. 

As we shall show below, one can easily prove some general statements about 

the asymptotic behaviour of a large class of solutions of (A.4), just by using 

the maximum principle and the special solution (A.6). 

Prom here on we consider a classical solution w(x^y^t) of (A.4), i.e. we 

assume that w is a smooth solution of (A.4) on the region O x (0, oo) which 

extends to a continuous function on Cl x [0, oo). We shall also assume that 

; f>0    ifr < M>0, 
V  '*' J\=0    ifr = l andt>0. 

Then we shall prove that the special solution W is the largest possible solution, 

i.e. that 

(A.7) ii7(s,y,*)< ^(i-r2)2 

for all (x, y) G fi, t > 0. We shall also prove that 

(A.8) lim 8tw(x, y, t) = (1 - r2)2, 
t—►OO 

uniformly in (x, y) G n. Thus all classical solutions behave asymptotically like 

the special solution W. 

If we also assume that w(x, y, 0) > 6{l — r2)2 for some 6 > 0, then we can 

improve the statement (A.8) about asymptotic behaviour to the effect that 

(A.9) ti;(x>y>t) = ^(l-ra)a(l + 0(r1)). 

To prove the upper bound (A.7) we observe that 

is also a solution of (A.4), and that this solution is strictly positive on fix [0, oo) 

if one chooses A > 1, s > 0. It follows that z = w — w* satisfies 

dz 
— = wAz -V(w + w*)-Vz + (Aty,) z, 
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while z(x, y,t) < 0 if r is sufficiently close to 1. If one also chooses e > 0 small 

enough, then one has z < 0 whenever t > 0 is sufficiently small. The maximum 

principle for parabolic equations then implies that z < 0 everywhere, and (A.7) 

follows by letting e | 0, A j 1. 

To prove convergence, we observe that for any 0 < R < 1 and T > 0 

"*«*•»•*)-m+vi*-^' 
is a solution of (A.4) which is strictly positive on QR X [0,OO), where CLR = 

{{x,y)eR2:x2 + y2<R2}. 

Since the given classical solution w is strictly positive on f2, there is a 

TR < oo for each R < 1 such that w(x, y, 0) > R2/8TR for (x, y) E fi#. Hence 

ty(a;,y,0) > W^TRix^y^O) on Jl^; furthermore, VFR,TR vanishes on Sfi^ x 

[0, oo), while w is positive there, so we may apply the maximum principle, and 

conclude that w > WRITR on ClR x [0,oo). 

Consider z(x, y, t) = (1 — r2) — 8ttt;(x, y, t); it follows from (A.7) that z > 0, 

and we must prove that sup^^^ ^(a:,y,i) —> 0 as t —> oo. 

If r < i?, then we have just shown that 

If J? < r < 1 then positivity of w implies that z < (1 - r2)2 < (1 - R2)2 < 

1 - R2 so that we have z < 1 - R2 + TRR
4/(TR +1) on Q. By choosing t large 

enough, and i? close enough to 1, we can make s\ipQ z(-, t) as small as we like, 

and this shows that (A.8) holds uniformly on ft. 

The proof of the asymptotic result (A.9) runs along the same lines, but is 

shorter; we note that 
6 

w = (l-r2)' i + m 
is again a solution of (A.4). The same kind of argument involving the maxi- 

mum principle shows that w > w, so that 

0<1_8fa>(xty0 1      ^ 
(1 _ r2)2   - l + 86t 

which clearly implies (A.9). 
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Geometrically, the condition w(x, y, 0) > 6 (1 — r2)   is quite natural since it 

is invariant under the group of conformal automorphisms 

f(z) = eiez +-1 + az,        0e R, |a| < 1, 

of the unit disk. The condition is certainly satisfied by any metric which one 

obtains by lifting the metric of a compact surface of genus g > 2 to its universal 

cover, the unit disk Q. 

On the other hand, a quick computation shows that if k > 2 is any constant, 

then 

W+(x,y,t) = \(l-r2)k,        W-(x,y,t) = ±{l-r2)k 

are super- and sub-solutions of (A.4), respectively (A > 0 is a constant.) Using 

the maximum principle one can show that if w is a classical solution as above 

for which 

holds for some 6 > 0 and k > 2, then w(x1 y, i)/ (1 — r2) will be bounded both 

from above and away from zero for any t > 0. In this case the asymptotic 

result (A.8) still holds, but the sharper estimate (A.9) is definitely untrue. 
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