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AN EXTREMAL PAIR OF PLANAR CURVES 
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INTRODUCTION 

In 1956 Shiffman [14] proved that every minimally immersed annulus in 

M3 bounded by convex curves in parallel planes is embedded. He proved this 

theorem by showing that the minimal annulus was foliated by convex curves 

in parallel planes. We are able to prove a related embeddedness theorem for 

extremal convex planar curves. Recall that a subset of R3 is extremal if it is 

contained on the boundary of its convex hull. We will call a pair of convex 

curves extremal if their union is extremal. 

Theorem 0.1. Suppose T is an extremal pair of disjoint smooth convex planar 

curves in R3. If f: A —> R3 is a branched minimally immersed annulus with 

boundary T, then f is an embedding. 

We shall call a compact minimal surface M stable if, with respect to any 

nontrivial normal variation fixing the boundary, the second derivative of area 

is positive. If the second derivative of area is negative for some variation, 

then M is called unstable. If M is neither stable nor unstable, we will call it 

almost-stable. 

The main theorem of Meeks-White in [10] gives a precise description of the 

collection of minimal annuli bounded by a pair of convex curves in parallel 
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planes, in terms of the index of the Jacobi operator (stability operator) of the 

minimal annulus. The next theorem gives a complete generalization of this 

theorem to the case of an extremal pair of convex planar curves. 

Theorem 0.2. // F is an extremal pair of smooth disjoint convex curves in 

distinct planes, then exactly one of the following holds: 

(1) F is not the boundary of any connected compact minimal surface, with 

or without branch points. 

(2) F is the boundary of exactly one minimal annulus and this annulus 

is almost-stable. In this case, T bounds no other connected branched 

minimal surfaces. 

(3) F is the boundary of exactly two minimal annuli, one stable and one 

unstable. 

In Statement (3) of Theorem 0.2, we do not know (even for boundary curves 

in parallel planes) whether it is possible for T to bound other minimal surfaces 

of higher genus; we believe that such higher genus examples do not exist. The 

extremal hypothesis in the above theorem is necessary, since we will construct 

an example of two unlinked convex planar curves that are the boundary of at 

least two stable minimal annuli (see Section 3). 

The next theorem demonstrates the existence of an immersed minimal an- 

nulus A with extremal disjoint planar boundary curves and such that A is not 

embedded. This example is constructed in Section 4. 

Theorem 0.3. For every e > 0 there exists a smooth stable minimally im- 

mersed annulus f£: A —> M3 such that: 

(1) fe\dA is one-to-one and the image boundary curves are a pair of Jordan 

curves in parallel planes; 

(2) fe is not one-to-one; 

(3) the total curvature of each component of f£(dA) is less than ATT + e; 

(4) /e(A) is invariant under reflection in the middle plane that separates 

the components of fe{dA) and in a plane orthogonal to the middle 

plane. 

In light of Theorems 0.1 and 0.3 it is natural to ask: 
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QUESTION 0.1. Suppose T is a pair of simple closed curves on parallel planes, 

each component of which has total curvature less than 47r. Is every minimally 

immersed annulus with boundary F embedded? 

It follows easily from Theorem 0.3 and the maximum principle that the 

space S of smooth immersed minimal annuli with embedded pair wise disjoint 

extremal planar boundary curves is not a path connected space. However, in 

Section 5 we are able to prove: 

Theorem 0.4. If S C S is the subspace of embedded minimal annuli, then S 

is path connected. 

The above theorem is a simple consequence of the more general result, 

Theorem 5.1, that the space M of embedded minimal annuli whose boundary 

curves are contained in distinct horizontal planes is a contractible space. 

The results in this paper were announced in [9]. 

1. THE PROOF OF THEOREM 0.1 

We begin by fixing some notation. In this section we will consider branched 

minimal immersions f: A —» R3 of an annulus A such that f(dA) = F = 

{71,72} is an extremal pair of disjoint convex curves in distinct non-parallel 

planes. Without loss of generality we may assume that 71 C H = {(xu £2,0) | 

Xi > 0} and 72 C H(9) where H(Q) is obtained by rotating H around the 

X2-axis by an angle #, 0 < 6 < TT, and H(6) is a nonnegative graph over its 

projection on the (xi, X2)-plane. Let W(6) be the convex wedge with boundary 

H U H(0) and we will consider /: A —» E3 to have W(6) as its range; i.e., 

f:A^W(6). 

DEFINITION 1.1. A branched minimal immersion f:A—> W(Q) is called ex- 

tremal if f(dA) = F = {71,72} consists of two smooth disjoint simple closed 

curves with /(71) C H and /(72) C H{9). 

Our first result is 

Lemma 1.1. If f: A —> W(9) is an extremal branched minimal immersion, 

then f is an immersion. Furthermore f(A) intersects II{r]) transversally in a 

single immersed closed curve for 0 < rj < 9. 
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Proof. Since dW{6) is convex, f\dA is an immersion and hence / is an im- 

mersion near dA (see Theorem 2 in [12]). Since /(Int(A)) c Int(l/F(0)) by 

the convex hull property, we may assume, after possibly replacing A by its 

image in a slightly smaller subwedge of W(0), that A is disjoint from the line 

H n H{6). If p G A is a branch point, then p G ff (r) for some r G (0,0). In 

this case A = /~1(iJ(r)) is a compact singular one-dimensional analytic sub- 

set of Int(A). But such a subset separates A into at least three components, 

one whose boundary is disjoint from dA. Since the boundary of this compo- 

nent under composition with / is contained in the plane H(T), the maximum 

principle implies the component is contained in H(T), a contradiction. This 

contradiction proves the first statement in the lemma. The second statement 

in the lemma follows from a similar argument.   □ 

Lemma 1.2. Suppose f: A —> W(9) is an extremal minimal immersion of A. 

If the components of f(dA) are strictly convex, then the Gauss map g: A —* S2 

is one-to-one. If f(dA) is convex, theng: Int(A) —► §2 is one-to-one. 

Proof We will identify S2 with C U {oo} under stereographic projection. Let 

5 be a slab in R3 with boundary planes parallel to the (a:i,a;2)-plane. In the 

case h: E —> S is a minimal immersion of an annulus E and h(dE) are convex 

curves in the boundary planes 95, it was proved in [10] that the Gauss map 

g: Int(E) —> C U {oo} is one-to-one and g: E —► S2 is one-to-one when h(dE) 

is strictly convex. We wish to generalize this result to the following. 

Assertion 1.1. Suppose E in S is an immersed annulus of nonpositive Gaus- 

sian curvature with smooth embedded boundary curves in dS and such that the 

Gauss map g: E —> C U {oo} is a branched covering map. If dE is a pair of 

strictly convex curves, then g is one-to-one. If dE is a pair of convex curves, 

then g\ Int(E) is one-to-one. 

Proof The Annulus Lemma in [8] shows that every plane P between the 

boundary planes of 5 intersects E transversely in a single immersed curve. 

In particular g: E —> C U {oo} avoids the values 0, oo. First consider the case 

when dE = di U 82 is a pair of strictly convex curves. In this case c?i, as 

well as #2, can be naturally parametrized by 9 G S1 by considering Sj to be 
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parametrized by its outward pointing unit normal vector in OS. With this 

orientation of E, g has the property that aig(g(di(0))) = 0 and so g restricted 

to each boundary component of dE yields an embedded curve in C — {0} that 

has nonzero winding number. Since g\Int(E) is an open mapping, elemen- 

tary convering space theory implies g is one-to-one. If dE is a pair of convex 

curves, then a simple perturbation argument of the strictly convex case proves 

g\Int(E) is one-to-one.    □ 

Suppose for the moment that /: A —> W(6) does not intersect the line 

HnH(6) and that the curves in f(dA) are uniformly convex. Let P^ 0 < t < 

1, be a continuous path of projective transformation taking W(6) to convex 

wedges in R3 and such that the Pt converge to a projective transformation 

Pi that takes W(0) - (H n H(0)) to a slab S. Here PQ is the identity map. 

Since Pi o f: A —> S satisfies the hypotheses of the annulus in the previous 

paragraph, the Gauss map gi of Pi o / is one-to-one on Int(A) and one-to-one 

on A. Let gt be the Gauss map of Pt o /. Since gt\ Int(A) is an open mapping 

and gi\dA is a one-to-one immersion, it is clear that there cannot be a largest 

t such that gt is not one-to-one. Thus go is one-to-one. 

If f(dA) n H fl H(8) y£ 0 or the curves in f(dA) are not uniformly con- 

vex, a perturbation argument shows the similar statements hold for /. This 

completes the proof of the lemma.    □ 

Corollary 1.3. An extremal minimal immersion f:A—> W(0) with convex 

boundary curves has index 0 or 1. Furthermore, if the annulus has index 1, 

then it does not have a Jacobi vectorfield. 

Proof. By Lemma 1.2 the Gauss map g: Int(A) —» S2 is one-to-one. A well- 

known theorem of Schwarz states that an eigenfunction (with zero boundary 

values) of the stability (or Jacobi) operator J of a compact orientable minimal 

surface M can be identified with an eigenfunction of A + 2 on §2 for ^(Int M), 

when g is one-to-one on Int(M) (see [2] for a generalized version of Schwarz's 

theorem). Since the number of linearly independent eigenfunctions of A + 2 

with eigenvalue less than or equal to zero is at most 1 on a proper subdomain 

of S2, J can have at most one eigenfunction with eigenvalue less than or equal 

to zero.    □ 
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Remark 1.1. Actually Corollary 1.3 holds for minimal annuli bounded by con- 

vex planar curves not necessarily extremal. See Remark 2.2 in [10]. 

Proposition 1.4. Letrt be a one-parameter family of convex curves in H U 

H(6) such that 

(1) FQ bounds an almost-stable extremal minimal annulus A; 

(2) The initial velocity vectorfield of Tt at t = 0 is a outward pointing 

normal vectorfield that is not identically zero. 

Then there is an s > 0 such that fort G (—£, 0), rt bounds no minimal annulus 

near A and for t G (0,6), rt bounds exactly two annuli, one stable and one 

unstable, near A. Furthermorej given an almost-stable extremal annulus A 

with convex boundary, then there exists such a one-parameter family rt. 

Proof Let v be the unit normal vectorfield on A that is outward pointing 

along dA. By Corollary 1.3, A has nullity 1 and index 0, so it has a Jacobi 

field u(x)u(x) with u\dA = 0 and u > 0 on Int(j4). For x G dA, let 

v(x) = (VT(x)u(x))i/(x), 

where T(x) is a unit vector perpendicular to dA pointing into A. By the 

boundary maximum principle, v(x) is a strictly positive multiple of u(x) for 

all x G dA. 

Now let w be the initial velocity vectorfield for I\ at t = 0.   Note that 

w(x) - v(x) > 0 everywhere and is not identically 0. Thus 

/ w(x) - v{x) > 0. 
JdA 

This is precisely the transversality condition in [16] that guarantees that 

U = { minimal A \ dA = Tt for some t near 0 } 

is a smooth curve. 

(In more detail, transversality means ([16, Theorem 3.3 (2,3)]) that w does 

not extend to a Jacobi field on A. But if we extend w to be a vectorfield on 

A, then by Green's formula ([16, 1.4(2)]), 

/   JW ' U=        W ' JU+ ( W • -r ^— * U ) =   /     W • V > 0 , 
JA JA JdA \      on      dn      J      JdA 
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where J is the Jacobi operator. Thus Jw ^ 0.) 

Let {fs: A —► W(9) \ —8 < s < 6} be a smooth parametrization of U 

with fo(A) = A.   Now — \s=:0fs = Z(x) is a Jacobi vectorfield on A.   Let 
C/S 

z(x) = Z(x) • z/(x). Since fs is a smooth parametrization of U, z(x) is not 

identically zero. Note that since the {Ft} are nested, z\dA does not change 

sign. Since no proper subdomain of A has zero as a smallest eigenvalue of 

J, z does not change sign. The same eigenvalue argument shows that for all 

£, tz(x) + u(x) does not change sign in A, which implies 

z(x) = cu(x). 

Without loss of generality we may assume that c = 1. 

Let 

(Pa(x) = X + sZ(x) . 

Let G[fs] and G[<ps] denote the Gauss maps of fs and (ps, respectively. Note 

that for a fixed x 6 dA, ^rGUpa](x) is a tangent vector to §2 at G[fo(x)] that 
as 

points into G[fo(A)]. Then the same is true of ~rG[fs(x)]^ since — 15=0/5 = 
cio as 

-r\s=o Vs- Thus for small positive 5, 
as 

G[fs){A)^G[f0}{A)^G[f^]{A). 

In particular, the first eigenvalue of A + 2 for the domain G[fs]{A) is positive 

and the first eigenvalue of G[f-S}(A) is negative.   Since by Lemma 1.2 and 

Schwarz's theorem we can identify the stability operator of /5(A) with A + 2 

on G[f8](A) C §2,fs(A) is stable and f-s{A) is unstable. 

Note that since the {rt} are nested, 

(i.i) (!>')• ew 
does not change sign on dA. Hence for s > 0, the stability of F8(A) implies that 

(1.1) does not change sign. The maximum principle then implies that (1.1) 

is strictly positive on the interior of A, Thus, the surfaces {fs(A) | s > 0} 

locally foliate a one-sided neighborhood of A 

Since Jj |5=0/s * v — u > 0, these surface lie on the outside of A, Since the 

index of fs(A) changes by 1 at s = 0, the projection of the curve {/s(^4) | 
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—8 < s < 8} to {Ft | — e < t < e} folds at s = 0 according to section 5.3 of 

[16]. Hence the fs{dA) and /_s(cM.) lie on the same side of CML, namely the 

outside. This proves the first statement of the proposition. 

(If it is not clear that the arguments in the preceding two paragraphs hold 

for immersions, one can reduce to the case of embedded annuli as follows. 

Since /Q: A —> W(9) is an immersion, choose a 6 > 0 and a submersion 

H: A x [-6,8} -> W(0) so that U(dA x [-<5,8}) C dW{0) and /o = H o i where 

i(a) = (a, 0). Consider A x [—5,5] to be a flat three-manifold in the metric 

pulled back by E. Note that for small 8, fs lifts to an isometric minimal 

embedding fs: A —> A x [—5,5]. By applying this lifting technique, we may 

reduce the proof to the case where /o is an embedding.) 

We now justify the last assertion in the statement of the proposition. De- 

form dA along an outward pointing vectorfield that vanishes except on a uni- 

formly convex arc of dA that is disjoint from the line H fl H(9). Such a 

deformation rt works.    □ 

Proof of Theorem 0.1. Let M denote the space of minimally immersed annuli 

whose boundary curves are contained in planes and let p: M. —> C be the nat- 

ural projection where C is the associated space of boundary curves. Note that 

an extremal /: A —> W{9) with convex boundary curves can be thought of 

as having its image in M.. Since such an annulus is unbranched (Lemma 1.1) 

and has total curvature less than 47r in absolute value, the compactness theo- 

rems of Anderson [1] or White [15] imply that if I is a compact collection of 

pairs of convex curves in C that are the boundary curves of extremal minimal 

immersions, then p_1(I) is compact. 

Suppose that there exists an /: A —> W{9) that is an extremal minimal 

immersion with convex boundary curves and / is not one-to-one. We assert: 

we can choose f so that f(dA) fl H fl H(9) = 0, f(dA) are strictly convex 

curves, and f(dA) = {71,72} is a regular value of p: M —> C. 

By Proposition 2.1 we can perturb / to a nonembedded example fi'.A—* 

W{9) where Fi(dA) is a regular value of p: M —> C. Since /1 is a regular 

point of p, it can be moved slightly to another nonembedded minimal annulus, 

/2: A -> W(9), such that f2(dA) DHD H{9) = 0, f2{dA) are strictly convex 
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curves and fiidA) is a regular value of p. Replacing /with /Q, we have proved 

our assertion. Assume now that / satisfies the assertion. 

Let a: [0,1] —> C be a path that is in general position with respect to p and 

such that 

(1) a(0) = f(dA); 

(2) {a(t)nH} is a foliation of an annulus E on H by strictly convex curves 

and with inner curve a(0) fl if; 

(3) {a(t) H H(0)} is a foliation of an annulus E(0) on H(0) by strictly 

convex curves and with inner curve a(0) fl H(0); 

(4) a(t) = (dE U dE{9)) — a(0) is a pair of round circles that is invariant 

under reflection in the halfplane H{6/2). 

The existence of an a satisfying properties (l)-(4) is clear. Theorem 2 in 

[13] implies that any compact minimal surface with boundary a(l) must be 

embedded, and invariant under reflection in H(0/2). So we must also have: 

(5) Every minimal annulus in p~1(a(l)) is embedded. 

Since a is in general position with respect to p, W = p~1(a[0,1]) is a smooth 

compact one-dimensional submanifold of Ad. The maximum principle implies 

that every component of T consists entirely of embedded or of nonembedded 

examples. Consider the component T(f) of T that contains / in its boundary. 

Since the other boundary point / of T(f) corresponds to a nonembedded 

minimal annulus, the boundary of / is also a(0). Thus by viewing T(f) as 

a multivalued function over a[0,1], we see that T(f) has an odd number of 

folds. 

In the interval T(f) consider the closest point /' to / where T(f) folds a 

first time. Suppose p(ff) = Oi(t0). Since a(t) is an outward variation of a (to) 

near to, Proposition 2.1 implies that T(f) cannot fold over at a(to). This 

contradiction proves that / must be embedded.    □ 

2. THE PROOF OF THEOREM 0.2 

Lemma 2.1. Suppose A = {a, /?} is a pair of smooth pairwise-disjoint simple 

closed curves with a C H and (3 C H{6). LetDa and Dp be the compact planar 

disks with dDa = a and dDp = (3.   Suppose that there exists a connected 
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branched minimal surface E whose boundary is contained in V = Da U Dp. 

Under these hypotheses there exists a unique embedded minimal annulus A 

with dA — A and such that the following statements hold: 

(1) Let B be the compact region o/R3 with boundary AUV.  Then every 

compact branched minimal surface M with dM CV is contained in B. 

(2) If M is a compact branched minimal surface with dM C T> and Int(M) 

H&B / 0, then M = A. 

(3) A is stable or almost-stable. 

Proof. A slight variation of this lemma appears as Lemma 2.1 in [10] so we 

will only briefly sketch its proof here and refer the reader to our other paper 

for farther details. 

First note that a and /? are homotopic in the complement of S in W(9). By 

the Geometric Dehn Lemma [11] [12], a and (3 bound a least-area embedded 

annulus in the closure of the unbounded component of W(0) — E. Since the 

set of embedded minimal annuli with boundary a U /? is compact, there exists 

a minimal annulus A such that the volume of the ball B with boundary AUV 

is largest. If there exists a compact minimal surface M with dM C V and M 

is not contained in £?, then using M U A as a barrier one obtains a least-area 

embedded minimal annulus A with dA = A and A lies outside M U A. In this 

case the ball bounded by A U V has volume greater than i?, a contradiction. 

Part (2) follows from the maximum principle. Part (3) follows since A 

must have least-area outside itself, otherwise using A as a barrier one could 

construct a smaller area surface in W(9) — B. This completes the proof of 

the lemma up to proving uniqueness of A. Uniqueness of A follows from 

statements 1 and 2 in the lemma.    □ 

Proof of Theorem 0.2. Suppose /: A —> W(6) is an extremal minimal immer- 

sion with convex boundary. By Theorem 0.1 / is one-to-one and we will 

identify A with its image in W(9). 

Assertion 2.1. Suppose A is the unique minimal annulus with boundary dA. 

Then A is almost-stable and A is the unique compact branched minimal surface 

with boundary dA. 
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Proof of Assertion 2.1. If dA is a regular value of p: Ai —> C, then dA bounds 

an even number of minimal annuli; in fact, the number of odd index minimal 

annuli with boundary dA equals the number of minimal annuli of even index 

(see Theorem 2.1 in [17]). Hence A must have a nonzero Jacobi vectorfield. 

But, by Lemma 2.1, A = A and so A is almost-stable. 

Suppose dA is the boundary of some other compact connected branched 

minimal surface M. By Lemma 2.1 M is contained in the ball B with boundary 

AUV. For small e > 0 let A(e) denote the subannulus of A obtained by 

intersecting A with the wedge with boundary halfplanes H(e) and H(8 — e). 

Note that -A(e) is stable. The proof of Theorem 1.2 in [5] generalizes to our 

situation to show that for £ > 0, dA(£) is also the boundary of an unstable 

or almost-stable minimal annulus -A(e) such that A(e) fl M ^ 0. However, 

by uniqueness of A, the A(e) converge smoothly to A as e —> 0. Since M is 

inside A and M is never tangent to A along dA (by the boundary maximum 

principle), the smooth convergence of A(e) to A implies that there is a small 

compact neighborhood N(dM) C M of dM such that for e close to zero, 

A(€) fl N(dM) = 0. It follows that there exists a sequence e(i) —> 0 and a 

sequence of points p* G -A(e(i)) fl (M - N(dM)) such that p* —» p G A D 

(M - N(dM). Since A n M = aA, p must be contained in H or H(0). But 

p G M — N(dM), which is disjoint from H U H(9). This contradiction proves 

the assertion.    □ 

Suppose dA is not a regular value of p: M -^ C and A is not the unique 

minimal annulus with boundary dA. Note that A = A, defined in Lemma 2.1, 

or else A ^ A and in either case it follows that there is a minimal annulus 

A with A fl A — dA. Without loss of generality we may assume that A is 

almost-stable. We now show that A is a regular value for p, which just means 

by Corollary 1.3 that A is not almost-stable. Let B be the piecewise-smooth 

ball in M3 bounded by A together with the two planar disks bounded by dA\ 

similarily define the ball B for A. Assume that A and A are oriented by 

the outward pointing normal to B and JB, respectively. Let gA, g~ denote 

the corresponding Gauss maps. First consider the case when B C B. Since 

gA\Int(A) and <7~|Int(A) are diffeomorphisms with their respective images in 
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S2 (Lemma 1.2) and A lies outside of A along dA = dA, a simple pointwise ge- 

ometric comparison oi gA\dA and g^\dA yields g^(JxLt(A))^gA(hiX,(A)). Since 

the first eigenvalue of the Jacobi operator of A is zero, Schwarz's theorem (see 

the proof of Corollary 1.3) implies that the first eigenvalue of the Jacobi op- 

erator of A is positive. Under the hypothesis B C B, the previous argument 

shows gA(Int(A))^5^(Int(A)) and so, in this case, the first eigenvalue of the 

Jacobi operator of A is negative. Thus whether B C B or B c B, A is not 

almost-stable; hence A is a regular point of p. 

By Proposition 2.1 we can move dA outward to a regular value F of p so 

that A splits into a pair of close minimal annuli J4I, A2. Since A is a regular 

point of p, we can also assume that A moves to a close annulus A3. Hence, if 

Theorem 0.2 were to fail for F not a regular value of p, then it fails for some 

F a regular value of p. 

Assertion 2.1 and the discussion in the previous two paragraphs show that 

we need only prove the theorem in the special case where dA is a regular value 

of p. In this case dA is the boundary of an even number of minimal annuli, 

half of which are stable and half of which are unstable. It remains to prove 

that dA is the boundary of exactly two minimal annuli, or equivalently stated, 

dA is the boundary of exactly one stable minimal annulus. Suppose dA is the 

boundary of at least two stable minimal annuli Ai, A2. By Lemma 2.1, we 

may choose Ai to be A and so we may assume that Int(Ai) nlnt(A.2) = 0 and 

A2 lies inside Ai. 

Since Ai and A^ are minimal, the compact region R with boundary Ai U A2 

is a solid torus. Note that R fl H{6/2) is the unique minimal annulus in R 

with the given boundary. It follows from this observation that the parity of the 

number of odd index minimal annuli in R with boundary dAi is different from 

the parity of the number of even index minimal annuli in R with boundary 

dAi (for a proof see Lemma 3 in [4]). In particular dAi is the boundary of 

an unstable minimal annulus A3 in R, However, since A3 lies outside A2, the 

Gaussian image ^(Int(A3)) ^ g(Int(A2)). This proper inclusion contradicts the 

fact that the first eigenvalue of A + 2 of g(Int(A3)) is smaller than the first 

eigenvalue of A + 2 for g(Int(A2)). This contradiction completes the proof of 

Theorem 0.2.    □ 
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The following theorem is a simple consequence of Theorem 0.2. 

Theorem 2.2. Suppose Y is an extremal pair of smooth disjoint convex planar 

curves. Suppose A is a minimal annulus in M3 with dA = T. Then every 

symmetry ofY extends to a symmetry of A. 

Proof. Let 5: M3 —> M3 be a symmetry of F. Then S{A) is another minimal 

annulus with boundary F and S(A) has the same index as A. Theorem 0.2 

implies there is at most one minimal annulus with boundary F of a fixed index 

and so S{A) = A    □ 

3. MINIMAL ANNULI BOUNDED BY 

A NONEXTREMAL PAIR OF CONVEX PLANAR CURVES 

In this section we will demonstrate by the construction of examples that 

Theorem 0.2 can not be generalized to the case of convex planar curves whose 

union is not extremal, even in the case of circles. 

Consider the circle a in the (x\, X2)-plane of radius two and centered at the 

origin. For 9 between 0 and TT let (3(f)) be the circle of radius one centered at the 

origin in the (#1, X2)-plane that has been rotated clockwise around the positive 

X2-axis by the angle 9. Let a+ denote the portion of a with nonnegative Xi- 

coordinate and let a_ = a — a+. Let /?+(#) be the portion of (3(0) with postive 

rrs-coordinate and /3_(0) be (3(0) - /3+(0). Let 6 = {(0,i,0) | 1 < |t| < 2}, 

7i(0) = 6 U a+ U p+(0) and 72(0) = 6 U a_ U /?+(0). 

Since 7i(0) and 72(0) are each extremal, they bound, by the Geometric 

Dehn Lemma [11], least-area disks D^O), 1)2(0)? respectively. Let Di(0)) I?2(#) 

denote the disks obtained by rotating Di(9),D2(9) by TT radians around the 

X2-axis. Then A^d) = 0^9) U 5^9) and A2(9) = D2(9) U 1)2(0) are distinct 

minimal annuli with boundary a U (3(9). Note that i41(7r/2) can be obtained 

from A2(7r/2) by reflection in the (xi,£2)-plane. Hence AI(TT/2) and ^2(^/2) 

have the same index, which shows that Theorem 0.2 can not hold for a\jp(ir/2). 

Actually AI(
/
K/2) and A2(7r/2) are stable and we believe Ai(9) and A2(9) are 

stable for each 9, 0 < 9 < TT. 

One can, in a similar manner, construct two stable embedded minimal an- 

nuli with boundary two linked circles in orthogonal planes since orthogonal 
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kX2 

^        X! 

FIGURE 1. An e-bone-shaped curve. 

reflection in these planes fails to leave any minimal annulus bounding the 

circles invariant. 

4. NONEMBEDDED MINIMAL ANNULI BOUNDED BY 

JORDAN CURVES IN PARALLEL PLANES 

A frequently asked question in the classical theory of minimal surfaces is: 

7s every minimal annulus with boundary consisting of a pair of Jordan curves 

in parallel planes embedded? We will show that the answer to this question is 

no by constructing a family of counter-examples. This constriction will also 

prove Theorem 0.3. The discussion of our new examples will be facilitated by 

the following definition. 

DEFINITION 4.1. For a fixed e > 0, a smooth simple closed curve in the 

(xi,X2)-plane is called an e-bone-shaped curve if it satisfies the following: 

(1) 7 is invariant under reflection in the Xi-axis and the X2-axis; 

(2) 7 — (xi-axis) consists of two components 7+,7~, each of which is a 

graph over their projection onto the ^i-axis and these graphs each 

have two inflexion points; 

(3) The maximum curvature of 7 is less than e\ 

(4) The total curvature of 7 is less than 2TT + e\ 

(5) The graph 7+ is the graph of the constant function e for \xi\ < 1/e 

and obtains a height of at least 10 somewhere outside this interval. 
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Proof of Theorem 0.4. For any e > 0, the existence of an s-bone-shaped curve 

is clear. Choose an e < -^ and let 7 be an e/2-bone-shaped curve. Let 

a = 7+ (0,0,1) and (3 = 7— (0,0,1) be vertical translates of 7 to the horizontal 

planes P(l) and P(—1) of heights ±1, respectively. Let Da, Dp denote the 

corresponding planar disks with boundary curves a, /?. Since a U /? bounds 

some minimal annulus for e/2 < ^Q, it is the boundary of an ''outermost" 

minimal annulus A such that the compact ball B with boundary A U Da U 

Dp contains all compact minimal surfaces in M3 whose boundary curve are 

contained in D^ U Dp. (See Lemma 2.1 for the existence of A.) 

By using catenoid barriers it is easy to check that the part of A that lies 

outside the infinite vertical cylinder over 7 must stay a distance less than 

YQ from this cylinder. It follows that the compact stable catenoid with axis 

parallel to the avaxis and with circle boundaries of radius one and with X2- 

coordinates ±| must intersect B in an annular component T. 

Since £ < ^Q, there exists compact stable catenoids Ci, C2 and C3 satisfying 

(1) dCi are circles of radius two and dCi C Int(Z?Q; U Dp); 

(2) Ci has Xi-coordinate less than — 1/e and is symmetric about the (xi, £3)- 

plane; 

(3) C2 has Xi-coordinate greater than 1/e and has positive ^-coordinate; 

(4) C3 is the image under reflection in the (xi,x3)-p\&ne of C2. 

Note that since A is outermost, d C B and Ci fl dB = dCi. 

We are now ready to describe the new example. First we define its boundary 

curves. Consider a curve as in Figure 2 having total curvature at most Air + 

e. Note that this curve partially coincides with the e:/2-bone-shaped curve 

7 and is invariant under reflection in the Xi-axis. Let 6 and a denote the 

vertical translates of this curve to Da and Dp and let F = {6, a}. We wish to 

construct a stable non-embedded minimal annulus A with dA = F such that 

A is invariant under reflection in the (£i,£2) and (xi,X3)-planes. 



430 WILLIAM H. MEEKS, III AND BRIAN WHITE 

kX2 

e 
o dC2 

-an dd o ec* 

Figure 2: The projection of 6 U cr, 9Ci, 9C2, dCs on the (xi, a;2)-plane 

Let W denote the closure of the component of B — (C2 U C3) that contains 

A. The fundamental group 7r1(VF) is generated by one each of the boundary- 

curves of C2 and C3. Consider the representation 7ri(W) —» Z2 obtained by 

sending each of these generators to the generator of Z2. Let p: W —> W 

denote the 2-sheeted cover of W corresponding to this representation. Let Y 

denote the subdomain of W with negative xi-coordinates. Since Y is a ball 

topologically, p~1(Y) consists of two ball components Yi, Y^- Let 6 denote the 

lift of 6 to W such that the arc p(SnYi) lies outside the arc p(5nY2) in Y (i.e. 

the minimum value of the Xi-coordinate of p(SnYi) is less than the minimum 

value on p(6 H I2)). Similarily choose the lift a of a. 

Let f denote the lift of T to W such that fnYx ^ 0 and let Ci denote the lift 

of Ci to W and such that Ci C 1^. Let W denote the closure of the component 

of W—(TuCi) that contains SUa. Since dW is a good barrier for solving least- 

area problems (i.e. dW has nonnegative mean curvature and interior angles 

less than TT) and since 6 is homotopic to a in W but not homotopically trivial, 

the Geometric Dehn Lemma [11] [12] states that 6 U a is the boundary of an 

embedded least-area incompressible annulus A in W. 

Since A is incompressible and Yi is simply connected, AnY^ consists of two 

disks whose projections into W are disjoint from T. Similarly AnYi consists 

of a strip with part of its boundary in 6 and part in 5. It follows from this 

description of A that the projection A = p(A) is not embedded. 
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It remains only to prove that A is invariant under reflection Ri in the 

(xi,X2)-plane and reflection R2 in the (xi,X3)-plane. Note that Ri and R2 

lift to reflectional symmetries RiyRi of W, whose fixed point sets intersect A 

in nonempty subsets. Since A is incompressible, the version of the Geometric 

Dehn's Lemma for planar domains in [11] shows that the least-area annulus 

Ri{A) must equal the least-area annulus A. This invariance property of A 

implies A is invariant under Ri and R2.    □ 

5. THE TOPOLOGY OF THE SPACE OF EMBEDDED MINIMAL ANNULI 

The main theorem of this section is the following: 

Theorem 5.1. The space M of compact embedded minimal annuli whose 

boundary curves are contained in distinct horizontal planes is contractible. 

In particular, M is a path connected space. 

The idea of the proof is the following. In general, stable minimal surfaces 

depend smoothly on their boundaries, so that arbitrary small deformations of 

the boundary of a stable minimal surface extend to deformations of the surface 

(preserving minimality). Indeed, a one-parameter family of deformations of 

the boundary extends to a family of deformations of the surface until the 

surface ceases to be stable. In our case, we first intersect an initial annulus 

by thinner and thinner slabs until we get a ribbon-like minimal surface. This 

ribbon-like surface is so stable that we can deform its boundary curves to 

circles with the same axis without it becoming unstable. But then we must 

have deformed the surface itself to a catenoid. This shows that any annulus 

is M can be deformed into a catenoid. Likewise any compact family of annuli 

in M can be deformed until they are all the same catenoid. Thus M is 

contractible. To make the argument precise we use the following lemma: 

Lemma 5.2. Let Pt be the plane {(x,y,z) G M3 | z — t\. Let C be a compact 

set of C2,a embedded curves in PQ (with uniformly bounded C2,a norms), and 
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let A > 0. There is an e > 0 such that if 

he (0,e) 

VcPh,        ||7'll2,a<A, ||y-7llo<A^, 

then no unstable or almost-stable minimal annulus with boundary 7 U 7' lies 

in an e-neighborhood 0/7. 

Proof. Let [^(7) denote the r-neighborhood of (the image of) 7. Choose r > 0 

such that for each 7 G C and h G (0, r), £^(7) is a regular tubular neighborhood 

with mean convex boundary (i.e., the mean curvature of dUhi'y) is everywhere 

nonzero and points into [4(7)). 

Suppose the lemma is false. Then there are sequences hi —► 0,7i, and 7- as 

in the statement of the lemma and non-stable minimal annuli Ai C Ur{^i) with 

dAi = 7i U7^. Let pi be the smallest positive number such that Ai C UpXli)- 

By the mean convexity and the maximum principle, dUp^i) touches Ai only 

at boundary points of A^ In particular, it touches 7^. Thus pi < hi^/1 + A2, 

so 

(5.1) Ai c UhiVT+As(7i) 

Also note by the Gauss-Bonnet theorem that the total curvatures of the Ai 

are uniformly bounded. 

Let Pi G Ai be the point where the Gaussian curvature Ki(pi) = KA.(pi) is 

greatest in absolute value. We claim that iK^Pi)^/2 = o(l/hi). For if not, we 

would have (after passing to a subsequence) 

|tfi(Pi)|1/2/ii > 6 

for some 8 > 0. Now translate Ai by — Pi and dilate by \Ki(pi)\^2 to get a 

new A}. Note that the distance between boundary components of A^ is > 8. 

Also the absolute value of the curvature of A^ is everywhere < 1 and is equal 

to 1 at the origin. Thus a subsequence of the A^ will converge to an embedded 

minimal surface M of finite total curvature and with curvature —1 at the 

origin. (See Section 2 of [15] for details of this kind of argument.) The surface 
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is simply connected (because the intersection of Ai with any ball of radius less 

than r/2 is simply connected). Furthermore, the boundary is either 

(1) empty, 

(2) a straight line L, or 

(3) two straight lines Li and L2. 

The first case does not occur because the only complete embedded simply 

connected minimal surface of finite total curvature is the plane. In case (2), 

M lies in a halfspace (by (5.1)). By construction it actually lies to one side 

of a plane containing L. But now reflecting M in L gives a complete simply 

connected embedded surface of finite total curvature, which was already ruled 

out in case 1. In case (3), M lies in a cylinder around Li by (5.1) and so Li 

and L2 are parallel. Using either catenoidal barriers or the halfspace theorem 

[6] one easily shows that M is in fact the strip between Li and L2. But this 

contradicts the fact that M has curvature — 1 at the origin. This proves that 

(5.2) |iir«(pO|1/2 = o(l/^). 

Now let (pi be the first eigenfunction of the Jacobi operator on A^ normalized 

to have a maximum value of 1. Let qi E Ai be the point where the maximum 

occurs. Of course fa is positive except at the boundary. Now translate Ai by 

—qi and dilate by /i"1 to get a new annulus A^. By (5.2), a subsequence of the 

A't converges to the strip between two parallel lines. By the Harnack inequality, 

a subsequence of the eigenfunctions converge to a nonnegative function </> on 

the strip that is 0 on the boundary and that attains a maximum value of 1 

(at the origin). But 0 is a nonnegative eigenfunction with eigenvalue < 0, or, 

in other words, a subharmonic function, and therefore cannot have an interior 

maximum.    □ 

Proof of Theorem 5.1. Let M denote the space of compact embedded minimal 

annuli with boundary curves in horizontal planes. Given A G M, let z* (A) and 

z*(A) denote the infimum and supremum, respectively, of the Xa-coordinate 

on A (so that A has boundary in PZ^A) U PZ*(A))« 

Let X be a compact set of annuli in M.   We will show that X can be 
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deformed in M to a single annulus. First if, 

ft(A) = An{x\zm(A) + t(z*(A) - z.(A)) <x3< z*(A) - t(z*(A) - z*(A))}, 

then ft(0 <t < 1/3) deforms X to a family X' of annuli with smooth boundary 

curves. 

Now for A E X', let gt{A) be obtained from A by translating by — tz*(A)ez 

and then dilating (about the origin) by (! — £)+ t/(z*(A) — z*(A)). Then 

5t(0 < t < 1) deforms X' to a family X" of annuli with smooth boundary 

curves contained in the planes £3 = 0 and £3 = 1. 

For A G Xf\ let 7^ be the component of dA in PQ. Since the space of 

embedded planar curves is contractible, we can deform the family {^Q \ A £ 

X"} to the unit circle. That is, we can find 7^(0 < t < 1) so that rf depends 

smoothly on t and 7^ and so that 7J4 is the unit circle for each A. It is 

convenient to define 7/1 to be 7^ for t < 0. 

Now deform X" to a new family Y by the homotopy [t, A] >—> A n {£3 € 

[0,1 -£]} for 0 < t < 1 - h (where /i G (0,1) will be determined shortly). Then 

Y has boundary curves in P0 U P^. Of course the homotopy does not affect 

the boundary curves in PQ- 

Let 7A'/l be the parametrization of AnPh of the form jA,h(s) = 7^(5)4-/163 + 

i/Aih(s) where 63 = (0,0,1) and uA'h(s) is a horizontal vector perpendicular to 

Now consider the following family of pairs of curves: 

rA_S rfu(j£ + te3 + (l-t)vA>h)     0<i<l 
lt ~\ 7(1-!) U (7(1!)+ ^3) l<i<2   • 

By the Lemma 5.2, there is an e > 0 such that C4(7(t_i)) is mean convex and 

so that for 0 < h < £, F^ bounds no almost-stable minimal annuli embedded 

in Ue. Fix an h € (0, e) small enough so that A'0 = AQ D {Z < h} lies in Ue(jo)' 

By the implicit function theorem (or, more specifically, the smooth depen- 

dence theorem (3.1) of [16]), for each A G Y we can lift the path F^ to a path 

0(t, A), 0 < t < bA, in M with 0(0, A) = A and 90(4, A) = TA, and such that 

either 

(1) 0(t, A) is stable for t < 6^ and almost-stable for t = bA, or 

(2) 6 = 2 and 0(t, A) is stable for every t G [0, 2]. 
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Now for 0 < t < bA, </>(£, ^4) is contained in C/£(7(t-i)). (This is because it is true 

for t = 0 and therefore by the maximum principle true for every t G [0,6^].) 

Thus (by the lemma) case (1) does not occur. 

Now r2 consists of two circles, so by [10], [14] or [13], it bounds at most one 

stable minimal annulus, namely a stable catenoid C. Thus </> is a homotopy 

from the inclusion Y —» M to the constant map Y —> C. 

This proves that M. is contractible.    □ 

Remark 5.1. We now make some remarks related to Theorem 6.1. Let Ms be 

the subset of M consisting of stable annuli, and Mo,i be the set of annuli in 

A4 with boundary curves in PQ UPI. The argument above also shows that M.s 

is contractible. Moreover, MQ^ and .M5n.A/fo,i are deformation retracts of M 

and JM
5

, respectively, so they are also contractible. (As above, gt(0 < t < 1) 

gives a deformation retraction of M to A^o,i and of M.s to Ms fl M.oyi-) 

Remark 5.2. The space of all smooth immersed minimal annuli with boundary 

in fixed distinct parallel planes breaks up into contractible components where 

two minimal annuli lie in the same component if and only if the winding 

number of their boundary curves are the same. This last statement follows 

directly from a straightforward adaptation of the proof of Theorem 6.1. 

Remark 5.3. Consider the space A of embedded minimal annuli A in R3 with 

a preferred boundary curve. A can be deformed inside itself to a smooth 

very stable thin minimal ribbon and two such ribbon like minimal surfaces 

can be deformed to each other if and only if they are ambiently isotopic. A 

modification of the proof of Theorem 6.1 shows that each path component of A 

has the homotopy type of the space F of isotopy classes of the knot represented 

by the preferred boundary curve of an A G A. The homotopy type of F can 

be analyzed by applying the Smale Conjecture [3], which shows that the path 

components of A are homotopy equivalent to 50(3). The path components 

themselves can be characterized in terms of framed knots. 

Proof of Theorem 0.4. Recall the statement of Theorem 0.4 in the Introduc- 

tion. Since every A G S can be deformed inside itself in S to an example in 

M., Theorem 5.1 shows 5 is path connected, which proves Theorem 0.4.    □ 



436 WILLIAM H. MEEKS, III AND BRIAN WHITE 

There are several possible other generalizations of Theorem 5.1. The most 

obvious one is to show that the corresponding space Mg of genus-g examples 

is path connected (or contractible). This problem is a special case of the 

following conjecture. 

CONJECTURE 5.1. Suppose EQ and Ei are compact diffeomorphic embedded 

minimal surfaces with boundary in two parallel planes Pi, ^2- Further suppose 

that <9Eo is isotopic to 9Ei in Pi U P2- If EQ has exactly one boundary curve 

in Pi, then EQ is isotopic to Ei through embedded minimal surfaces Et with 

dEtcPiUP2. 

Remark 5.4. The above conjecture is motivated by Corollary 1 in [7]. This 

corollary states that if EQ and Ei satisfy the hypotheses of Conjecture 6.1, 

then they can be joined by a smooth isotopy Et, 0 < t < 1, of embedded 

surfaces with <9Et C Po U Pi where the Et are contained in the slab between Pi 

and P2. Conjecture 6.1 fails when EQ is allowed to have two boundary curves 

on PQ and two boundary curves on Pi. See [7] for this example. 
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