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FOR A CONFORMALLY INVARIANT SCALAR EQUATION 

DANIEL POLLACK 

INTRODUCTION 

The Yamabe problem asserts that given any compact Riemannian manifold 

(M,<7), without boundary and of dimension greater than or equal to three, 

there exists a conformally related metric 3, with constant scalar curvature. 

A glimpse into the colorful history of this problem is given by [20, 19, 1, 14]. 

Following Schoen's resolution of the Yamabe problem [14], there has been great 

effort and success in better understanding the quantity and behavior of metrics 

which can occur as solutions. In this paper we prove the existence of arbitrarily 

many distinct solutions to the Yamabe problem with constant positive scalar 

curvature, all lying within a fixed conformal class which is arbitrarily close, in 

the C0 topology, to the conformal class of any given metric of positive scalar 

curvature. Before stating the result precisely we recall some of what is know 

about the existence of metrics of constant scalar curvature. For a complete 

and accessible discussion of the Yamabe problem we refer the reader to the 

excellent survey article by J. Lee and T. Parker [9]. 

Constant scalar curvature metrics arise as the critical points of the total 

scalar curvature functional 

(0.1) n(g)   =    I R(g)dvg 
JM 

restricted to those g G [p]i, the space of metrics which are conformally equiva- 

lent to g and have unit volume. If we write g = u^ig, for some u 6 C00(M), 

u > 0, then the scalar curvature R(g) is given by 

R(g) =-■c{n)~lu~nr-2IsgU, 
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where c(n) = Jt^u > and Lj is the linear operator given by 

(0.2) L1 = AI-c(n)R(g). 

Lj is called the conformal Laplacian of (M,p), it is a conformally invariant 
4 

operator in the sense that if g = un-2g, then for any function 0 G C00(M) we 
71+2 

have Lg(u(f)) = u^^LgCJ). The Euler-Lagrange equation of (0.1) is R{g) = K, 

for some constant K, or equivalently 

(0.3) L^ + c(n)iriA5*i    =   0. 

This is known as Yamabe's equation and will be the focus of our study. 

The approach used in solving the Yamabe problem was to seek a metric g 

which minimizes (0.1). The Yamabe Invariant is defined by 

(0.4) I{g)    =    inf{ft(0):0€|£]i}. 

Thus the solution of the Yamabe problem produces a metric g € \g]i with 

constant scalar curvature R(g) = TZ(g) = 1(g). Clearly by the definition, 1(g) 

is a conformal invariant. We thus refer to the sign of a conformal class, \g] as 

being the sign of 1(g). The sign of 1(g) dictates, to a large degree, the behavior 

of (0.3) and the types of solutions which can arise. 1(g) > 0, (respectively = 0, 

< 0) is equivalent to the existence of a metric g £ \g] with scalar curvature 

R(g) > 0, (respectively = 0, < 0). 

For nonpositive conformal classes, the Yamabe problem has a unique solu- 

tion among unit volume metrics. We deal exclusively with positive conformal 

classes. Among positive conformal classes, uniqueness does hold under very 

special circumstances. Recall that an Einstein metric g is a metric whose Ricci 

curvature satisfies Ric(g) — ^^-g = 0. Einstein metrics arise as critical points 

of the total scalar curvature functional (0.1) taken over the space of all unit 

volume metrics on M. A theorem of M. Obata [11], asserts that in the confor- 

mal class of an Einstein metric, there exists a unique metric of constant scalar 

curvature and unit volume, namely the Einstein metric suitably normalized. 

This holds provided that the conformal class of the Einstein metric is not the 

conformal class of the round metric go? on Sn. The proviso that one avoid the 

conformal class of go, is necessary since there exists an n+1 dimensional family 

of metrics in [<7o]i with constant scalar curvature. These metrics arise as the 
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pullback of go by the nonisometric, conformal difFeomorphisms of Sn, the space 

of which may be identified with the interior of the unit ball Bn+1 C Mn+1. This 

exceptional property of (Sn, go) is heavily exploited in this paper, to show that 

the uniqueness property exhibited by Einstein metrics which are conformally 

distinct from go? is not a general phenomenon. 

Recently R. Schoen has completed a thorough analysis of solutions to (0.3) 

which shows that if (M,^) is not conformally equivalent to (Sn
)go)) then the 

set of solutions form a compact family, the size of which is determined solely 

by the conformal class, [p]. In [16, 17, 18] Schoen considers the family of 

equations, indexed by the exponent p G [1, ^z§], given by 

(0.5) LgU + E(u)up   =   0 

where E(u) is a positive constant which depends on the solution. When p < 

^|, these equations are referred to as the subcritical regularization of (0.3). 

This approach to the study of (0.3) was originally introduced by Yamabe. 

For exponents p < s±| the Sobolev embedding ip : Hl(M) <-> LP+1(M), 

is actually compact by the Rellich-Kondrakov theorem. This accounts for 

the fact that the subcritical equations, (0.5) with p < ^|, are more easily 

analyzed then (0.3) which has the critical exponent p = ^| for which the 

embedding is still continuous but fails to be compact. This loss of compactness 

is the source of much of the difficulty of the Yamabe Problem. By a careful 

analysis of the possible types of blow up which could occur as p —+ n^, 

Schoen has derived uniform estimates on (0.5) provided that (M,g) is not 

conformally equivalent to (S'n,go)- These estimates imply that there exists 

a constant A = A(g), which depends only on the conformal class of #, such 

that every solution of (0.5) for any p £ [1, ^rf], lies in the set fiA defined by 

fU = {^ € C2,a(M) : |M|-2,a < A}. This shows that no blow up can occur, and 

all solutions of (0.5) converge as p —► ^|, to a solution of Yamabe's equation 

(0.3). In the case when all the solutions to (0.3) in \g]i are nondegenerate, as 

will be true for a generic conformal class, the existence theory which follows 

from this estimate implies that there are at most a finite number of solutions 

within [g]. 

These results provide some motivation for why we need to to perturb the 
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given conformal class in order to find arbitrarily many solutions with arbitrar- 

ily high energy.  In particular, they explain why these solutions do not exist 

without a perturbation of the conformal class. 

The energy of a solution is given by 

E(u) = [ (\Vu\2 + c{n)R{g)u2) dvg. 
JM 

In the geometric case of the critical exponent p = ^|, for g = u^^g we have 

71(g) = c(n)'~1E(u). If we normalize our solutions so that R(g) = n(n—1), thus 

leaving the volume uncontrolled, the energy of our solutions is then dependent 

on the volume of (M, #) 

E(u) = lfc^Vol9(M). 

The solution to Yamabe's problem produced a global minimum for the varia- 

tional problem (0.1). This minimum always has energy less than or equal to 

that of the unit sphere Sn C Rn+1 with the induced metric go, and equality 

occurs if and only if (M,g) is conformally equivalent to (Sn,go)- Thus, if we 

let ujn denote the volume of the unit sphere, then for a minimizing solution 
4 

Smin = u^g we have 

„,       N      n(n — 2) 
£(*Wi) < -^ ^n- 

We note that the Morse index of the solution g = u^^g is equal to the 

number of eigenvalues of A^ in (0, n). Thus if we assume that g is a minimal 

solution then we know that Ai, the first nonzero eigenvalue for Ag on M, 

satisfies Ai > n. The futher assumption that the solution is nondegenerate 

insures that the strict inequality Ai > n holds. 

We are now in a position to give a precise statement of our result. 

Theorem 0.1. Let (M,g) be a compact Riemannian manifold without bound- 

ary and of dimension n > 3, with positive scalar curvature, R(g) > 0. Given 

any integer N > 1 and any number e > 0, there exists a conformal class [gi] 

which satisfies 

IW -Qi'Wco <c, 
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for some metric g' G [g] and gi  G [pi], and which contains metrics gi,... ,gN 

such that for each k — 1,... , iV 

4 

9k = ur29i     and    R(gk) = n(n - 1). 

Moreover the energy E(uk), of each of these solutions can be estimated by 

\E(uk) - (Volg(M) + (k + 1K)| < c(€^ + e^), 

for any q > | and a constant c = c{n,g). 

Thus there exists a sequence of metrics gj, each with at least N distinct 

solutions in their conformal classes, which converge to g in the C0 topology, as 

e —► 0. This is valid even though g may only have one solution in its conformal 

class, e.g. if g is Einstein, or if all solutions in g are minimizing, as is the case 

for g = go on Sn. Note that the energy estimate in Theorem 0.1 implies that 

each of the solutions gk are nonminimizing. If we let 

MN = { [g] : 3 > N solutions of Yamabe's equation in.[p] } 

then we have the following Corollary. 

Corollary 0.2. For any integer N > 1 the set MN is dense in the C0 norm 

on the space of positive conformal classes. 

One should note that Schoen's estimates, referred to above, will be stable in 

a sufficiently strong topology. In other words, the same set Q^ should contain 

all the solutions to (0.5) with respect to any metric p, which is e close to g 

in the Ck norm, for k sufficiently large. Thus one can view the two results as 

being in opposition to each other. 

In section 2 we construct approximate solutions to (0.3), which take the form 

of M joined with a string of k + 1 spheres, for k = 1,... , A/", each attached to 

the next by thin necks. The resulting metrics gik are approximate solutions in 

the sense that their scalar curvature is bounded and the set where the scalar 

curvature is not constant, has small volume with respect to the metric gik. It 

is possible to construct N distinct approximate solutions g^,... , glN within a 

fixed conformal class, each of the form of M joined to a string of 2,... , iV + 1 

spheres respectively. 
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If we treat gik as our new background metric and seek g = u^^g^ with 

R(g) = n{n — 1) then, (0.3) becomes 

(0.6) A5lfc«-C(n)i?(5lJn+-^^n^    =   0. 

The statement that gifc is an approximate solution, means that u = 1 is an 

approximate solution to (0.6). Since we wish to find a solution to (0.6) which 

is close to our approximate solution u = 1, we write g = (1 + r^^^g^ where 

r) is small. By linearizing (0.6) about u = 1, our equation takes the final form 

(0.7) A^ r?+ 7177   =   c(n)(R(glk)-n{n-l))(l + rj) + Q{V), 

where for 77 small, Q(r]) is quadratically small. For simplicity, we write (0.7) 

as 

£ri = F(x,ri). 

The initial analytic difficulty in solving (0.7) is the possible presence of a kernel 

for the linear operator £. Such a kernel could arise from the linear functions on 

Sn C Rn+1. In section 3 we show that these functions actually do give rise to 

a small eigenspace K which necessarily contains any functions 77 in the kernel 

of C on M. This is done by identifying an explicit approximate kernel K0, 

and showing that there is a small eigenspace K C L2(M), very close to K0. 

This explicit control on K allows us to identify and quantify the component 

of F(X) 77) lying in K. This is one of the central features which allow us to 

solve (0.7) exactly. 

We then show that we can invert the operator £ on if-1, and obtain precise 

estimates on the solution 77 G K1- of 

for / G K1-. In section 4 these estimates and the structure of the approximate 

solution, 5ifc, are used to solve (0.7) by a contraction mapping argument, 

provided that F(xyri) G K±. 

The high degree of flexibility in our construction insures that the approx- 

imate solution may be deformed in such a way as to guarantee that the cor- 

responding F(x,r]) is orthogonal to the small eigenspace K of £. It has been 
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well known for some time that one can construct approximate solution met- 

rics. In particular, O. Kobayashi [8] has constructed approximate solutions 

with arbitrarily high energy within any positive conformal class. However 

these are constructed by an ODE method and do not have enough parameters 

to be deformed into exact solutions. The fact that our approximate solution 

construction has a large space of parameters which determine the correspond- 

ing metric g^, is the source of the flexibility which is necessary to solve the 

nonlinear equation exactly. A primary component of the deformations we use, 

is the recognition that an integral identity having its origins in works of S. 

Pohozaev [12], and J. Kazdan and F. Warner [7], provides us with a precise 

measurement of the component of F(x, rj) lying in K. (The referee and Jose 

F. Escobar have pointed out that his identity is related to the Rellich identity 

[13], which characterizes the eigenvalues for the Dirichlet problem in terms 

of a boundary integral involing the normal derivative.) Moreover we show 

that it is possible to adjust each approximate solution, according to the re- 

quired deformation, so that the deformations preserve the conformal class of 

the approximate solution. By doing this for each of the 1,... , iV approximate 

solutions we find iV distinct exact solutions to (0.7). The energy estimate is 

then a consequence of our construction of the approximate solutions. 

The analytical methods used in this paper originate in the work of R. 

Schoen. In [15], Schoen proves the existence of weak solutions of (0.3) on 

Sn which have prescribed singular behavior. In particular, he constructs met- 

rics g, conformally equivalent to go, which have constant scalar curvature, 

n(n — 1) and are complete on Sn \ {gi,... , qk}, where {^}i=i 'ls any prescribed 

set of k points, for k > 2. In the interest of avoiding undue repetition, we will 

we often refer to [15]. 

We avoid some of the analytic difficulties of [15] by the fact that our ap- 

proximate solutions are compact, whereas in [15] they are noncompact and, in 

certain cases can have exponential volume growth. In the noncompact case, 

the small eigenspace K of £, is infinite dimensional and the solutions of the 

linearized operator do not, in general, lie in L2(M). On the other hand, in 

our case we must keep track of the conformal class of the approximate solu- 

tions and the conformal class of their deformations to insure that we can find 
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our iV distinct solutions all within one fixed conformal class. We also need 

to guarantee that neither the original manifold (M,g) nor the final sphere 

which we attach to our string, give any contribution to the kernel of C. This 

is accomplished by a generic perturbation of the metrics and, in the locally 

conformally flat case, accounts for our C0 perturbation of the conformal class. 

In the case that (M,g) is nowhere conformally flat, we require an additional 

perturbation to make it conformally flat in the neighborhood of a point. N. 

Kapouleas has used similar techniques in constructing a multitude of constant 

mean curvature surfaces in R3 (see [6, 5]). His approximate solutions are con- 

structed from Delaunay surfaces, a classical one parameter family of constant 

mean curvature surfaces. These surfaces serve the same role in his construc- 

tion, as the n + 1 parameter family of constant scalar curvature metrics on Sn 

serve in ours. 
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for his support during that time can not be overstated. We would also like to 
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1. APPROXIMATE SOLUTIONS 

1.1. The Initial Background Metric. If we assume that R(g) = n(n — 1), 

the scalar curvature of the unit sphere Sn C Mn+1 and seek metrics g G [#] 

satisfying R(g) = n(n — 1), then writing g = u^^g for some u > 0, u (E 

C^M), u must satisfy 

(1.1) L^u+^lu^    =   o, 

where Lg is the conformal Laplacian with respect to the backround metric #, 

/ xr^/-x        A         n(n — 2) LgU = AgU — c[n)R{g)u = AgU n, 

here c(n) = ^j2^. We will require that g lie in a nondegenerate conformal 

class. This is equivalent to the invertibility of the operator £, obtained by 

linearizing (1.1) about any solution u. Among positive conformal classes of 

metrics, this condition is generically satisfied, i.e.   it is satisfied by an open 
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and dense set of conformal classes. We will employ this condition in a very 

explicit manner. Since u = 1 is a solution to (1.1), and the linearization about 

about this solution is 

(1.2) C   =   A^ + n, 

the nondegeneracy of the conformal class [#] implies that n is not an eigenvalue 

of — Ag. This fact will be of central importance in our construction of solutions 

to (1.1).  Recall that on (Snjgo)) n is an eigenvalue of — APo, with an n + 1 

dimensional eigenspace consisting of the restrictions of the linear functions 

in R71"1"1 to Sn.   Thus [go] is a degenerate conformal class.   Since the kernel 

of C on Sn can be explicitly identified, it will be possible for us to use Sn 

in our construction of approximate solutions.  We will also need to consider 

nondegenerate conformal classes of metrics on Sn. Since the nondegeneracy of 

[g], for metrics g on Sn, is a generic condition, we may consider nondegenerate 

metrics which are arbitrarily close to <7o- We will let g0 denote a metric whose 

conformal class is positive and nondegenerate, and which satisfies for e > 0 

and for some integer k > 0, \g0 — go\k ^ e> where | • |k denotes the Ck norm on 

tensors, taken with respect to the fixed metric go- 

The first task will be to construct N approximate solutions gi1,... , gi^ to 

(1.1) all lying within a fixed conformal class. Toward this end it is necessary 

to deform g to make it conformally flat in the neighborhood of some point 

XQ G M. We deform g as follows. Let ||W|| denote the norm of the Weyl tensor 

W = Wijkh taken with respect to g; this is a continuous function on M, so let 

XQ be a point at which || W|| attains its minimum value. Let (r, 9) denote polar 

normal coordinates centered around XQ = 0. In these coordinates, g takes the 

form g = dr2 + r2hr where hr = hij(r,0)d6%d6* is a metric on S'n~1, and /IQ 

denotes the standard metric on Sn~l.  Let \I/(r) be a smooth nondecreasing 

cut-off function which satisfies \I/(r) = 0 for r < 1, $(r) = 1 for r > 2 and 

|\I>'(r)| + |\I/"(r)| < c for some constant c. We then define *p(r) = ^{p~lr), 

so that p|^(r)| + p2\$"p{r)\ < c. For any p > 0 such that 2p < i(M,g) = the 

injectivity radius of (M, #), we deform our metric g to a new metric gp defined 

by 
f dr2 + r2((l - yp(r))h0 + ^p(r)hr)   on B2p(x0) 

gp     \g onM\B2p(x0) 
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Note that gp is Euclidean in B^XQ), and hence conformally flat in a neigh- 

borhood of XQ. R. Schoen has observed [14] that for p sufficiently small, the 

conformal class of gp, [gp] is positive. For such p, we find, by appealing to 

the resolution of the Yamabe problem, a new metric, again denoted by #, in 

[gp] with constant scalar curvature n(n — 1), and which is a minimal solution 

for the variational problem. This metric is conformally flat in a neighborhood 

of XQ, and will serve as our new background metric. Since we can also apply 

such a deformation to the metric ^0 on S"2, we shall assume that g0 is non- 

degenerate, conformally flat in a neighborhood of a point XQ E S71, satisfies 

i?(^0) = n(n — 1), and is a minimal solution for the variational problem. Be- 

fore proceeding with the construction of our approximate solutions, we need 

to develop some facts concerning conformally flat metrics and the standard 

sphere {Sn,g0). 

1.2.  Stereographic Coordinates and Conformally Flat Metrics. We 

will always regard Sn as the unit sphere in Mn+1. If q is any point in 5n, let 

P(g) C En+1 denote the hyperplane passing through the origin and orthogonal 

to g, and let x — (x1,... ,xn) denote Euclidean coordinates in P(g). Mn = 

P(g) can be identified with 5n \ {q} by stereographic projection from q. For 

p G Rn+1, let £(p) = p • q, we may then view (a;,£) = (x1,... ,'2;n,f) as 

Euclidean coordinates for Rn+1. Stereographic projection TT : Rn —> Sn is then 

given by 

The standard metric go on Sn C Rn+1, is then 

when expressed in these coordinates. Let Br{q) denote the geodesic ball on 

Sn of radius r < TT centered at q. A little elementary trigonometry then shows 

that 

TT ({x : \x\ = (tan ^r)"1}) = aSr(g) 

and 

Ir-1 — (tan-r)-1) < cr. 
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The fact that (M,g) is conformally flat in a neighborhood, BrQ(x0) of XQ € 

M, is equivalent to the existence of a conformal diffeomorphism, $ between 

Bro (XQ) and a domain in (S"2, po)? provided r0 is sufficiently small. If <&(xo) = q, 

for some q G S71, we may write g = 4>~2go in fi = $(jBro(a:o)) C 5n, for some 

^ 6 C00(f]), 0 > 0. Let A > 0 satisfy 0 > A"1 on fi, and ||0||2 < A, where 

|| • ||2 denotes the C2 norm taken with respect to the standard metric 50 on 

Sn. In stereographic coordinates on Sn \ {5}, g takes the form, 

5 = 4(</>(7r0r)) + 0(7r(x))|x|2)-2 ^(dx*)2. 

This expression holds in Rn \ 5^(0), for some i2o » 1. If we let v^I^{x) — 

(</>(7r(x)) + 0(7r(x))|a;|2)~2, then we have, 

We now show that by making a fixed linear change of coordinates in Rn, we 

can rewrite this as, 

(1.3) v{x)    =    \x\2-n(ao + h{x))2-^, 

where ao = 4>(q) > 0 and h(x) = 0(|x|"2). This type of adjustment was used 

by Gidas, Ni, and Nirenberg [3] in showing that all global solutions on Rn to 

(1.1) are spherically symmetric. 

Lemma 1.1. Given any conformally flat metric g on Bro(xo) C M, there 

exists an RQ » 1, and coordinates on Bro(xo) \ {XQ} such that 

9 = 4v^(x)Y:(dxi)2, 

for \x\ > iZo; and v(x) takes the form 

v(x) = |x|2-n(ao + /i(x))^IL, 

where a0 > 0 and h(x) = 0(|x|~2), as \x\ —> 00. 

Proof We first extend (f) from O C *Sn to a small neighborhood of ft in Mn 

so that §^(g) = 0,Vfc > 1.  Writing the Taylor expansion for 0(x,£) about 
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q = (0,... , 0,1) G 5n, as a function on Rn+1, we have 

n -i      n 

<t>(x,0 = ao + £-MtfK + g E ^(9)^^ + 0(\x\3), 

where (pi = ^, ^ = ^^. In stereographic coordinates this expression is 

transformed into an Laurent expansion about infinity, if we only keep track of 

those terms up to order l^l"1, we then have, 

(p(7r(x)) = ao + 2±^- + 0(\xn. 
i=i ix\  "^ l 

Thus, 

a2o\x\4 \      ao ^ kl2 + 1 7 

If we were to replace x with a; — XQ, for some XQ = (xl,... , XQ) G Mn, then 

since 

1   =i^fi+iii:^+o(w-a)V 
this would have the net effect of introducing a new term of order l^l-1 into 

our expansion. Explicitly for £Xo(x) = x' — x — XQ we have, 

a%\x\4 \      a0fr[     |a;-a;o|2 + l ') 

Therefore, choosing x^ — 4^, we have 

or simply 

al\x\* 

v(x)n-2 = \x\ 4(a0 + /i(x))    , 

where h(x) = 0(|a;|~2) as claimed. The same arguments easily show that 

|V/i(a:)| = 0(|a:|~3) and Ah(x) = 0(|:E|~
4
) as well. Note that this expression 

is valid on En\BR(0), for any .R > i?o + C'> i?o + |a;0|, where C = C(n,A).    □ 
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1.3. Conformal Transformations of (5n, go)- The group of conformal trans- 

formations of Sn is isomorphic to the group 0(n + 1,1) of linear isometries 

of Minkowski (n + 2) space. If G : Sn —* Sn is a nonisometric conformal 

transformation with precisely two fixed points on 5n, then we refer to G as a 

dilation. If the fixed points are antipodal points, say ±g, and the differential 

dGp : TpS
n —> TG(p)Sn is a multiple of the identity at dig, then we refer to G 

as a centered dilation. Suppose that G is a centered dilation. We then let (G7) 

denote the function whose value at p G Sn is the linear stretch factor of G 

at p, that is |dG(i;)| = IG'^)] for any unit vector v G TpS
n, and assume that 

IG^g)! > \Gf(—q)\ We shall refer to q as the source of G and — q as the sink 

of G. In stereographic coordinates we have 7r~1(—q) — 0 G Mn, and G has the 

form 

G(x) = iix 

where p = \G'(fS)\. It is easy to see that JG'^)! = /x_1. This shows that 

IG'^HG^—q)\ = 1, moreover ^ = 1 if and only if jG7) = 1, in which case G is 

an isometry of Sn. 

Let A > 0, be defined by A = |G'(g)|, and thus A"1 = n = IG^-g)] < 1. We 

will think of A as a large number (i.e. we will only work with strong dilations), 

and define a related small quantity e by e = 2A~1/2. 

The hypersurface in Sn upon which IG^p)] = 1, corresponds under stereo- 

graphic projection to the set Si of x G Mn, satisfying 

Ml + |x|2) = l + //2|x|2. 

It then follows easily that 

Ei = {x : -|x| = A1/2}. 

A general dilation G has a unique decomposition G = RD, where R is a 

rotation and D is a centered dilation. Note that G*go = D*R*gQ = D*gQ, so 

that IG'I = l-D'l. We let q and — q denote the source and sink of D, respectively, 

and A and e are given by A = |I?'((z)|, and e = 2A~1/2. 

1.4. The Bubble Construction. Given a metric g on M such that R(g) = 

n(n — 1) and g is locally conformally flat in a neighborhood of a point XQ, we 

now construct a metric gi conformal to g which agrees with G*(go) near XQ. 
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and with g away from XQ. This new metric will have scalar curvature which 

is bounded and differs from n(n — 1) on a set whose volume with respect to 

gi is small. This is a generalization of [15, Prop. 1.1], which established this 

result in the case that (M,g) = (Sn
Jgo). 

Proposition 1.2. Let (M,g) be given such that R(g) = n(n — 1) and g is 

conformally flat in a neighborhood of XQ E M, with $ and A as defined above. 

Suppose G is a dilation with source q = <&(xo) and G = RD. Let X and e be 

as above, and let a — 2e~1. There exists a metric gi = u^^g on M with the 

following properties: 

(i) Let 6i = e1+^ and €2 = e1". The metric gi is equal to G*(go) in 

^cei(^o)? and is equal to g on M\Bce2(xo), for some constant c = c(A). 

(ii) Let Ri denote the scalar curvature function of gi. There exists a con- 

stant C depending only on n and A, such that the following inequalities 

hold: 

max{|i2i(p)| :p<EM} < C, 

Volgi{p : R^p) ? n(n - 1)} < Ce""2, 

where Vo^^) denotes the volume taken with respect to gi. 

(iii)  The metric gi  can be described as follows near dBe(q)  C Sn.   Let 

x = (x% - - • , xn) be stereographic coordinates on Sn \ {q}. For \x\ near 
4 

(j7 gi is given by gi = A.v^~2 Yl^iidx1)2, where 

vl{x) = a2-n + \x\2-n. 

In particular, Ri = 0 near dB€(q). 

(iv)  The metric gi varies continuously under deformations of G. 

Proof Since (M,g) is locally conformally flat in a neighborhood of XQ, there 

exists an r > 0 such that 5r(xo), the geodesic ball of radius r with respect to 

5, is locally conformally flat, i.e. there exists a conformal embedding 

$:(5r(xo),5)—HSn,go) 

with ®(xo) = q E Sn. 

As was shown above, there exists translated stereographic coordinates 

ir-e-X0:R
n->Sn\{q} 
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so that g has an expression of the form 

n 

for some v(x) as in (1.3). There exists an R » 1 such that this expression 

for g is valid in Mn \ BR(0) C ^"^(^(xo))). 

Our new metric will be of the form g1 = Avf^ Eii^*)2 on Rn \ BR^)^ 

for some Vi G C00(Rn \ ^(0)), Vi > 0 which we shall now construct explicitly. 

The function Vi shall satisfy 

v(x) for R < \x\ < (72 

Vl(x) = I   (J2-n + (aj/2|x|)2-n      for 4c72 < |x| < G1 

< (A(l + X-2^2))^1    for 4a! < |x| 

where ai and o2 are to be chosen so that (72 << cr << (Ji. 

We shall require that 

(1.4)       (tan -e2)-
1 < CJ2,        G1 < I (tan ^i)"1,        R < (tan -€2)-

1. 

The third inequality will be satisfied provided A is sufficiently large, i.e. pro- 

vided that G is a sufficiently strong dilation. These three inequalities guar- 

antee that gi = G*(go) on Bei(q) and gi = g on ft\ B€2(q). Moreover we 

may choose a constant c = c(n, A) > 0 such that Bcei(xo) C $~1(Bei(q)) and 

<l>~1(fi \ B€2(q)) C M \ Bce2(xo). Thus for this constant c, these inequalities 

will guarantee that property (i) holds. 

For a > 0 we define a patching function ^a(x) on Mn by setting \I/a(£) = 

^(a"1!^!), where *a(x) satisfies 

UX) = {   J ^ (x) = J   "   for W < a 
W''l3;,     <   *    for Ixl > 2a 

and a|V*a| + a2|VV*a| < C. 

We now define Vi(x) explicitly for o'2 < |x| < 4CT2 and calculate the scalar 

curvature of the corresponding metric, #1 = ^(a;)™^ Z^r=i(^a;i)2- Define 

|a;|2-"(ao + (1 - ^(x))^))*    for a2 < \x\ < 2a2 

^a,{x)a2-n + {al/2\x\)2-n for 2a2 < |x| < 4a2. 
Vl(x) = }    lT,        ,^,2-n .L ^1/2,    |N2-n 
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4 

The scalar curvature of gi = Av^'2 Sf=1(rfx2)2 is given by 

77  —  1      _IL±2 

*! = --—rtir —At*. n — l 

To show that Rx is bounded for a^ < \x\ < 2(72, we write 

v1(x) = \x\2-nf(x)^, 

where 

f(x) = a0 + (l-y(72(x))h(x). 

A straightfoward calculation yields the formula 

Ri(x) = -^mx\ (n|V/(x)|2 - 2/(x)A/(x)) 

+ 4(n-2)/(x)(V/(x).V|x|)]. 

Using the bounds noted above on ^(a;), h(x) and their derivatives, it follows 

immediately that Ri(x) is bounded for <J2 < \x\ < 2cr2, for any 02 > -R > 1. On 

2(J2 < |a;| < 4(72, Avi(x) = a2-nA^2a2, so we have |A#2<7| < co-n-2(2o-2)"2. A 

lower bound for v^x) here, implies Vi(x)~^ < (al' |x|)n+2 < ccr^4"2, where 

c = c(n,ao). These bounds yield |i?i(x)| < C(j2~ncr2, which is bounded pro- 

vided (72 < C(jl~". Since €2 = e1-- and ^(tan^e)-1! < ce, we can choose a 

constant c > 0 so that this holds without violating (1.4). 

For cri < \x\ < 2(Ji we define Vi(x) by 

t;1(a:) = c72-" + (l-*,1)(aJ/2|a;|)
2-". 

We then get the estimate |-Ri(a;)| < ccrn+2crfn, which is bounded provided that 

Gi > ca1+n. As above, since 61 = e1+" we may choose a constant c > 0 so 

that this holds without violating (1.4). 

Since a = A1/2, we may rewrite the definition of vi(x) for |a;| < 4cri, as 

^(^^^-^l + A"2^!2)^. 

If we expand this out we may then write 

vi(x) = cr2"n + a(x), 

and for 2ai < \x\ < Aai one can easily check that the following bounds on 

a{x) hold 

|a(a?)| + ai|Va(x)| + a2|VVa(x)| < ca'^V2, 
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where c=c(n). With this in mind we define Vi(x) for 2ai < \x\ < Aai by 

Vl(x) = Gn-2 + ^2(Tl(x)a(x). 

An easy calculation using the bounds above then shows that \Ri (x) | is bounded 

for 2<Ji < |x| < 4cri. 

This completes the definition of gi on Mn \ BR(Q). Clearly by the con- 

struction of vi, gi extends to a metric on all of M which agrees with g in 

M \ Bce2(xo) and with G*(go) in Bcei(xo) and satisfies |i?i(x)| < C on all of 

M. Moreover properties (iii) and (iv) can be verified immediately from the 

construction of gi. It remains to verify the second inequality of property (ii), 

which is equivalent to the inequality 

/ v^x^dx^Ce71-2. 
J {x: cr2<\x\<4ai} 

For 0-2 < |a;| < a, v^x) < a|x|2-n, so that ^(x)^ < C|a:|-2n. Hence 

/ v1(x)^dx<C I \x\-2ndx<Ca^n<Cen-2. 
J {x: cr-2<.\x\<cr} J{x: cr2<|a:|<cr} 

For a < \x\ < 4(7i, Vi(x) < c<j2~n, so that 

/ v^x^dx < C f a-2ndx < C<7-2n< 

Since ai < ^(tan ^i)-1 and |e} — (tan ^ei)-1! < cei, we can choose a constant 

c> 0 such that a'271^ < ce71"2. Thus Volgi{x : R^x) ^ n(n - 1)} < ce71'2. 

This completes the proof of Proposition 1.2.    □ 

1.5. Conformal Structures and Approximate Solutions. Our N ap- 

proximate solutions Sij,... , <7iN can be distinguished from each other by the 

number of spherical regions (defined below) that each one possesses, for exam- 

ple, gik will have k spherical regions. We will first show how to construct an 

approximate solution with k spherical regions, for any k > 1. Once this is done 

it will be easy to construct a conformal class with N approximate solutions. 

The conformal data which we will use to construct our approximate solution 

consists of a chain 7^, of k vertices (1,... , k), each of which is labeled with a 

conformal transformation of Srn, Fi for 1 < i < k. We will denote our maps 

either with subscripts i, corresponding to the vertex i, or with subscripts ±z, 
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+i denoting the edge between i and i + 1 and —i denoting the edge between 

i and i — 1. We require that the transformations satisfy, for 2 < i < k — 1, 

G±i = Fi±i • i^    = R±iD±i 

and for i = 1 and i = k 

G+i = F2 • Fr1 = ii+i/J+i and G_fc = F^ - F^1 = R-kD_k 

are strong dilations whose sources are sufficiently separated for each i, 2 < 

i < fc — 1 (this will be made precise momentarily). We also associate to each 

terminal vertex another such dilation which we denote 

G-i = R-iD-x and G+k = R+kD+k. 

Thus for 1 < i < k, we have associated to each edge dbz, corresponding dilations 

G±i. We let q±i denote the source of G±ii and \±i = (G^^ii)! = \Df
±i(q±i)\ 

_i 

denote its strength. As before we also define e±i = 2A± ?. This conformal data 

will be admissible provided that there are constants /? > 0 and e > 0 such 

that, for every i, 

(1-5) |<Z+«-?-i|     >     P-1 

(1.6) p-'e^   €±i    <(3e. 

Following [15], such a labeling of the chain Tk+i will be called an admissible 

conformal structure, and is denoted by a. 

We will now define using the conformal data above, a domain Q C Sn which 

will be composed of k almost spherical regions, fix,... , Qk. For each i G [1, fc], 

let B±i be the small ball such that 

dB±i = S±i = {p : \G±i(p)\ = 1}. 

Since we are assuming that q+i and q-i are sufficiently separated and that G+i 

and G-i are strong dilations, it follows that B+i and JEL; are disjoint. Thus 

we may let Oi = Sn\ {B+i U J3_ J and define 

a = Fr1(Oi). 
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By their definitions G-^+i = £?+*, thus, since IG-1 (G(p))\ = ((^'(p)!-1 we 

have 

|G'_i+1(G+i(p))| = IG^CP)!-
1
. 

Now if we observe that Sn \ S_i+1 = {p : \G'_i+l(p)\ < 1} and B+i = {p : 

IG'-HWI — 1}' t'len since 

|G'+i(G_i+1(5» \ B_i+1))| = \G'_i+1(S
n \ B.i+1)\-\ 

we have 

G-i+i(Sn \ B-z+i) = B+i. 

Therefore Fi(fii+i) C £+* which implies that Fi(ili+1) D C?i = 0.   Applying 

F"1 then shows that 

ni+i n a = 0. 

Combining this with the above equality gives us 

n4 nni+1 = Fr\S+i) = F^S-M), 

and moreover, we clearly have f^ fl Q,j = 0 for any i,,?' such that |i — jj > 2. 

Thus we may define the open set fi C Sn by 

fc 
n = U fii. 

2=1 

We now construct a metric gi on Q in such a way that each (Q;, gi) will be 

an almost spherical region, or asr for short. This will mean that outside of 

a small neighborhood of its two boundary components Qi will be isometric to 

Sn with two small disjoint disks removed. We first define a metric gi on Oi 

which will be used to define gi on f^. Let g+i (respectively g-i) denote the 

metric associated to the dilation G+i (respectively G-i) by Proposition 1.2, 

applied to the manifold (M,g) = (Sn,go)i with $ = the identity map on Sn. 

Since g+i and g-i both agree outside of two small disjoint balls, we can define 

a new metric g^ on 5n by 

g+i   in Bs(q+i) 
9i = {  g-i   in Bs(g-i) 

g0     mSn\{Bs(q+i)UB6(q_i)} 
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where 8 is a small radius, larger than e+7 and e_/n. We then define gi in 

a by 

'gi = F:(9i) on   ni = Fr1(Oi). 

We must show that this definition fits together to give us a smooth metric on 

all of f2. This is expressed in the compatibility conditions 

Fi(9i) = ^iViGfc+i)     near Fr^S+i) = F^\(S-i+1) 
F?(Si) = FUQi-i)     near F^S-i) = ^(S+i-i) 

or equivalently, 
9i = G+^ft+i) near S'+i 
ft = Gtiigi-x) near 5-^. 

To see that g^ extends smoothly across df^fldQi+1 = F~l(S+i) = F^1
1(5

,_i+i), 

recall that near S+i in O^, we have 

in stereographic coordinates on 5n \ #+*, where v+i(a;) = cr+7n + |^|2~n- Since 

S+i = Gf+J(jS,_i+i), the metric G^^+i) near S+i in ^n is the same as gi+1 

near 5_i+i in O^+i. Near 5_i+i in C^+i, we have 

4 " 

in stereographic coordinates on Sn \ q-i+u where u_i+1(y) = cr^'+i + l2/|2~n- 

Finally, since (7+i = G!_i+i, — q+i = Q-i+i and a+l = cr_i+i, we see that we 

have two different coordinate descriptions for the same metric. The argument 

above clearly applies near S-i as well, so we have shown that gi extends to a 

smooth metric on all of fi, and, by construction, each Qi is an asr, the isometry 

being given by i<V 

To complete our construction of an approximate solution, we must attach 

(M,g) to one end of f2, and (Sn,g0) to the other. Recall both g and g0 are 

metrics whose conformal classes are nondegenerate and which are conformally 

flat in the neighborhood of some point. Since (M,g) is conformally flat in a 

neighborhood of XQ, we have a conformal map 

*:(Sr(so),0)-> (^,00) 



A CONFORMALLY INVARIANT SCALAR EQUATION 367 

for some r > 0. By applying Proposition 1.2 to (M,p) with the dilation 

G = Gz\ whose source is —q-i = $(a;o) we have a metric g on M which 

satisfies each of the properties {i) — {iv). Let BQ = G_i(5n \ i?_i) be the small 

ball such that dBQ = G_1(5_1) = 5+o = {p : IGl^p)! = 1}. We define MQ by 

We attach (Mo, ff) to (fl, ^i) as follows. Define a new conformal transformation 

of 5n, FQ by FQ = G_i • Fi. We extend the definition of <?i as follows. Let 

9i = ^0(5) on Fo"1 ((5n \ Bo) n *(Br(a:o))) and let 

n+ = n u FQ-1 ((s* \ Bo) n *(Br(xo))). 

Prom the construction of g on (5n \ BQ) O $(Br(a:o)), of ^1 on fi, we see as 

above, that gi thus defined extends smoothly across 90 D Fo1(5-i) into 0. 

Moreover, the map FQ"
1
 • $ is an isometry from a neighborhood of <9Mo C 

(MQ, g) onto a neighborhood of 90 nFo~1(5_i) C (0,31). Thus we have a 

manifold diffeomorphic to M \ Bro(xo)1 having k asr's and which we write as 

Mo UFo 0. 

To form the closed manifold (M, gi) we attach (SQ^Q) to the end of O repre- 

sented by the terminal vertex k. This is done as above by applying Proposition 

1.2 to (5n,3o) with the dilation G = G^ whose source is — q+k = $(a:o), for 

#0 € S71. This gives us a closed manifold M, and a smooth metric gi on M 

which has fc asr's and a nondegenerate spherical cap. We can represent this 

decomposition of (M, #1) by writing 

(1.7) M   =   MoUFofiUn+1^. 

We end this section with an observation concerning the volumes of our 

approximate solutions which follows immediately from the construction. This 

will allow us to give precise estimates for the energies of the solutions we 

construct. Let V1 = Vol^(M), V2 = Vo%0(5
n) and un = Vo\go(S

n), then for 

some c = c(n,g,g0) 

(1.8) Volgi(M)-(y1 + V2 + ku>n) <   ce .71-2 
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1.6. A Conformal Class With N Approximate Solutions. The con- 

struction of TV distinct approximate solutions (gi11... ,-#1^), having 1,... , N 

asr's respectively, is based upon the fact that an annular region 

A = {x : 1 < \x\ < R} 

can be decomposed into k subannuli, for each k = 1,... , iV, so that each sub- 

annulus has conformal modulus R1^. The conformal modulus, cm(A), of an 

annulus is defined to be the ratio of the outer radius to the inner radius. Two 

annuli are conformally equivalent if and only if they have the same conformal 

modulus. The construction of the N approximate solutions will be done using 

appropriate powers of a fixed centered dilation G. The powers will be chosen 

so that each of the subdomains, Q^ corresponding to the decomposition of a 

fixed domain ft C Sn into k subdomains, as done above, will have conformal 

modulus (in stereographic coordinates) 

cm(7r-1(^)) = R^k 

where R = cm(/K~1(Q)). Note that the metrics gik constructed from these 

conformal structures will be spherically symmetric on TT"
1
^). 

We fix R » 1 and let G be a centered dilation with source q G Sn and 

strength A = IG'^)! = R. For any fc, 1 < k < TV, we let for each i, 1 < i < fc, 

d = G1/k 

G+i = G-1^. 

If fc is even, we set F* = G ~^+1 for 1 < i < k/2, and i^ = F^i+1 for 

1 + fe/2 < i < k. If k is odd we set Fi = G2^^1 for 1 < i < ^, Fi = F{^i+1 

for ^^ < i < k and Fk+i = the identity. It is easily checked that this then 

defines a conformal structure which satisfies 

cm(7r-1(fij)) = i21/fc 

for each i, 1 < i < k. 

Let gik denote the metric constructed canonically from the conformal struc- 

ture above. Each (Cl^gik) is conformally equivalent to a Euclidean annulus. 

We define cra(f^, <7lfc) to be the conformal modulus of this Euclidean annulus. 
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It is immediate from the construction of gik that for 1 < i, j < k 

(^,5lJ-(^,5lJ, 

where = denotes conformal equivalence. Finally the fact that for each A;, 

k k 

cmiTT1^)) = Hcmiir-1^) = l[R1/k - R, 
i=l i=l 

allows us to conclude that 

k 

2 = 1 

and that the right hand side is independent of k. Thus each (Q,glk) has 

the same conformal modulus, independent of the metric gik. Extending these 

metrics to approximate solutions on all of M as in (1.7) we easily see that 

g^,... , gik all lie in the same conformal class. Any collection of admissible 

conformal structures cri,... , cr/v on chains %.,... ,TN for which the metrics 

pll,... , gik all lie within the same conformal class, will be called an admissible 

N structure and will be denoted by o'(N). Note that each glfc is uniquely 

determined from {Tk,crk) by the construction given above. 

We close this section with a summary of our construction. 

Theorem 1.3. Given an integer N > 1 and metrics g on M, and g0 on Sn, 

such that R{g) = ROjo) — n(n — 1); there exists a constant c depending only 

on n, /?, 5, g0 and a admissible N structure cr(N) with metrics g^,... , giN such 

that, for each k 

max{x e M : \R(glk)\(x)}   <   c 

Vol{x e M : R(gih)(x) ^ n(n - 1)}   <   ce71'2 

\Volgik(M)-(V1 + V2 + ku;n)\    <   C6n-2. 

Moreover, (M,glk) has a decomposition 

M = Mo UFo n
k UFt+1 50" 

where gik has the explicit description in Ctk given above. 
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2. THE LINEAR ANALYSIS 

2.1. The Linearized Equation. Associated to each admissible conformal 

structure a on 7^, there is a uniquely determined approximate solution, #ifc, 

constructed in section 2. We refer to (Tk,(T), or just a as an approximate 

solution. We define [a] to be the conformal class of any metric glk constructed 

from an admissible TV-structure, cr(N). We work with an approximate solution 

with k asr's, for any k G [1, N], Since k will be fixed for much of our study, 

we write gi for glk, omitting the subscript wherever convenient. 

We want to find g G [cr] which satisfy R(g) = n{n — 1) and are close to gi. 

With this in mind we write 

g = (l + 7?)^pi, 

regarding 7/ as a small perturbation of the approximate solution 1. Equation 

(1.1) can be written as 

(2.1) £77=   ^-{Rx-n(n-\))(l + ri) + Q{rj)   = F(x,r,), 

where Ri = R(gi), C = APl + n is the linear operator appearing in (1.2), and 

/^ ^N ^/ x      n(n — 2) /       n + 2        /H       v»+2\ 
(2.2) Qfa) =    V 4    

; (^1 + —t/ - (1 + r?)^ J . 

Since we are interested in small 77, Q(7/) is quadratically small. 

In this section we show that we can find a k(n+l) dimensional small eigen- 

space if, consisting of all the L2(M) eigenfunctions of C with appropriately 

small eigenvalues. K will be very close, in L2(M), to an approximate kernel 

KQ, which we explicitly construct. We then find a bounded inverse of C off of 

K and show that we can uniquely solve the linear equation Crj = /, provided 

that / and 77 are orthogonal to K, and obtain precise e-independent estimates 

on the solutions. The closeness of K to the explicit space K0 is part of what 

will allow us to identify the component of F(x, 77) lying in K. Inverting £ off 

of some abstract subspace without having such explicit control would not help 

us to solve the nonlinear problem. 

The idea behind the identification of the small eigenspace is that for e suf- 

ficiently small, the annular region flfc, composed of k asr's, behaves spectrally 

like the disjoint union of k standard spheres.   As has been pointed out, the 
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kernel of C, can be identified explicitly on Sn as the span of the linear coordi- 

nate functions. It is from these functions that we construct our approximate 

kernel by carefully cutting off the coordinate functions on each Oi and using 

Fi to pull these functions back to £V The assumption that the metrics g and 

<70 on the ends, Mo and S^ of O, are nondegenerate insures that these ends do 

not support an approximate kernel for £, in L2(M). 

2.2. The Approximate Kernel. We shall construct our approximate kernel 

by cutting off the coordinate functions in the k + 1 neck regions, which join 

the asr's fif to each other, and to the ends MQ and S§. To do this we use 

a smoothed out harmonic cutoff function, which we find by first solving a 

Dirichlet problem on each neck region. 

For each vertex i € [2, k — 1] there are two neck regions between f^ and 

its two adjacent asr's. Fix 6 to be a small radius which is substantially larger 

than e, and define 

Ng    =   F-\Bs(q+i))nF-+\(Bs(qi+1)) 

N^   =   Fr^Bsiq-MnFdmq+a)). 

Note that N$ = ivi*)
+i, and N{_^ = N^. For the terminal vertices 1 and 

k, N+i and N_l are defined as above, and the terminal neck regions N_i and 

N+l are defined by 

N(t)    =   F^Bsiq^nF^iBsi-q,)) 
Nis)

k    =   Ffc-
1(B,(g+fe))nFfe-+

1
1(^(-9+fe))) 

The fact which distinguishes these terminal neck regions from the other k — 1 

neck regions, is that near the boundary component not contained in fi, the 

metric gi is not the standard spherical metric go as it is near both boundary 

components of the other neck regions. Here gi is isometric to one of the 

conformally flat metrics g and gQ, respectively. We also note that for each 

ie [l,fc] 

with the metric gi, is isometric to the standard sphere with two balls removed 

O^   =   (Sn\{Bs(q-i)UBs(q + i)},go), 
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i-i 
provided that 6 > e±i". Similarly, 

MtS) = Mo \ N{Ji   and   S^s) = S^\N[sl 

with the metric </i, are isometric to 

(M\$-1(^(-g_1)),5)    and    (S^^iBsi-q^)),^), 

respectively. 

Fix a vertex i, 1 < i < k and a neck region, say N\.- .   Let h+i be the 

solution of the following Dirichlet problem on N+l. 

(2.3) 
Agih+i = 0   on   iV;c (5) 

/i+i = l   on   F-\dBe{q+i)) 
/i+i = 0   on   ^(aB^g-i+i)). 

We choose an orthonormal basis for Mn+1, u;i,... , c^n+i, and let g01 denote the 

a. coordinate function on 5n with respect to this basis. Thus for any point 

q G 5n, we write q = X)aii9aa;a- For each i G [l,fe], and a G [l,n + 1] we 

define functions qf on 5n by, 

(2.#r(g) 
ga + Vs{p(q, q+i))^ - qa) + *«(p(g, ^-i))^, - 9°) 

for   q^Sn\{Bs{q+i)iJBs{q_i)} 
q^-h+i-Ff1    for   ? € Bs(q+i) 
qZi-h-i-F-1    for   qeBsiq-i) 

Here />(•, •) is the distance function on (Sn,go), and /i+i is the function /i+i, 

smoothed out to be globally defined as follows 

1 on A+i = Fr1(Bs{q+i)\B^q+i)) 
(h+i-lXV+i-Fj + l on J5+i = f;-|(B¥_(g+i)\Bf(g+i)) 

/i+i = {  h+i on C+j 
/i+i(*_i+i • Fi+i) on 5_ 
0 on A- 

= Fr\Bl(q+i))nF-+{(Bi(q_i+1)) 

+i - F-+\(BM(q_i+1) \ Bjfe-i+i)) 
+i = -Fi+U-B^-i+i) \ %(«-i+i)) 

Here *+, = V(4p(;q+i) - 5) and *_,+! = *(4p(-,g_i+i) - 5). The function 

/i_i is defined similarly about the neck region iVl/. The approximate kernel 

Ko is formed from the functions qf by defining for 1 < i < k and 1 < a < n+1 

■na = a? ■ F 'li Hi     rt 

and then letting 

Ko = the linear span of the rjf in L2(M). 
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Note that for each i, r/f G C00(M) and has support in fi-+<5). 

In establishing pointwise and L2 bounds for Crj!* we need to have strong 

estimates on h+i and h-i and their derivatives near the boundaries of N+- 

and N_i respectively. This is expressed by the following Lemma. 

Lemma 2.1.  The functions h+i (and similarly h-i) satisfy the bounds 

suV{{l-hUx)) + 8\Vh+i{x)\:xeF-\B6{q+i)\B^       <   cie/Sy-2 

sMKiW + fi|VMx)| ' x ^ Fr+\(B6(q.i+1) \ B^q.^))}   <   c{el8)n-2. 

We refer to [15, Lemma 3.1] for the proof, these bounds are established there 

when N+i is a neck region separating two asr's. In the case of the extreme 

neck regions, e.g. N+l = F^1 (Bs(q+k) 0 G+l (J3^(—9+^))), we have an explicit 

description of gi in stereographic coordinates x = (x1,... , xn) on Sn \ —q+k- 
4 

In these coordinates gi = 4v1
n~2 l^Li(d#1)2, and the region above is contained 

in{x:i?<|x|<cr2}, where a = A^2 and 02 is defined as in Proposition 1.2. 

Thus, the conformal factor takes the form of (1.3). A partial description of 

Vi (x) on a larger set is then given by, 

(\-j   \x\2'n(ao + h(x))^r    for   R < \x\ < a2 
Vl[X) ~ { a2-" + (a;/2|a:|)2-n      for   4a2 < \x\ < a. 

where h(x) = 0(\x\ 2). Consider the Kelvin transform y = K(x) = T^", if we 

now write gx = 4wi(y) Zl^=i(rfy2)2? then Wi(y) is partially given by 

w, (V) = I <r2-n\y\2-n + ^   for   ar1 < \y\ < K* 
\ (ao + k(y))^ for   a;1 < \y\ < R'K 

where k(y) = 0(\y\2). It then follows that Wi(y) satisfies 

(2"5) D^^l^cdyl + ^lyl1-), 

for y such that e < \y\ < i?-1, where e = 2\+£. The proof of Lemma 2.1 

then follows precisely as in [15, Lemma 3.1]. Lemma 2.1 allows us to prove 

the relevant pointwise and L2 estimates on KQ, in exactly the same manner 

as [15, Lemma 3.2]. We refer there for the proof of 



374 DANIEL POLLACK 

Proposition 2.2. The functions rjf satisfy the bound 

snp(6\CVt\ + e\VV?\)<c, 
M 

and any 77 E KQ satisfies 

||>C7?||L2(M) ^cS^WriWmM)- 

2.3. Conformally Invariant Sobolev Inequality. It is necessary for us to 

consider approximate solutions constructed from arbitrarily strong dilations, 

or equivalently, we must allow e to be arbitrarily small. This fact makes 

the analysis of (2.1) difficult because the geometry of the manifold (M, pij 

degenerates as e —> 0. In particular, the injectivity radius of the neck region 

N+t tends to zero as the strength of the dilation, G+i, tends to infinity. This 

difficulty is overcome by exploiting the fact that 

ft(+*> = N^i U ft U N§ 

is conformally equivalent to a subdomain of 5n, and has scalar curvature which 

is bounded independent of e. It is this property of our approximate solutions 

which allows us to use the following Sobolev inequality. 

Lemma 2.3. If (M,h) has bounded scalar curvature, \R(h)\ < Ci, and is 

conformally equivalent to a subdomain of a compact manifold (N^g), with 

positive scalar curvature, then for any (j) € C^0(M), the inequality 
n-2 

(I t&dvi)       <cf  (|V^|2 + ^)dt;h 

holds for c = c(ci,I{g))j where 1(g) > 0 is the Yamabe invariant of (N^g). 

Proof Recall that the definition of the Yamabe invariant given in (0.4) is 

equivalent to 

—  / (f)Lg(j)dVg 
(2.6) 1(g)   =       inf 

where Lg is the conformal Laplacian taken with respect to g and the integrals 

are taken over all of N. Let 
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be the conformal diffeomorphism of a subdomain U of N onto M, so that 

for some u E C00(C/). By the conformal invarianee of Z^, we have 

Lgty) = u~"-*Lg(ilm), 

for any ^ G C~(C/). Thus given any 0 G C~(M),- ip = $ - $ E C™{U) so we 

have 
-J(^u)Lg(^u)dvg _  - Jrl)Lg{rl))dVj 

1 \9)   -1 n-2     — n-2   ) 

where the integrals are taken over U. After a change of variables this implies 

that 
n-2 

[JM ^dv^j       < jiy J^ (|V^|2 + c(n)R(h)ct>2) dvh. 

Choosing c = max(l, c(n)ci) then completes the proof of Lemma 2.3.    □ 

2.4. L2(M) Estimates for KQ. To prove the existence of a small eigenspace 

K close to JFQ), 
we need prove estimates for functions rj G KQ-, which indicate 

that C is bounded below in KQ C L2(M), in the operator norm on L2(M). 

Here KQ denotes the orthogonal complement of KQ in L2(M). We define the 

orthogonal projection operators po and QQ by 

p0   :L
2(M)-   K0 

q0    :L\M)^   Kfr. 

In addition, for 1 < i < k, we define i^o to be the linear span of r/f for 

■a = l,...,n + l, and let pj and ^o denote the orthogonal projections of 

L2(M) onto K^ and K^, respectively. For 2 < i < fc - 1, we define 

n^fti-iUftiUfti+i. 

For the terminal vertices, and the ends MQ and SQ , defined in the decomposi- 

tion (1.7) we define 

Oi = MoUQiUft2,       ^fc = fifc_iUOfcU5J, 
Mo = MoUfii, 5y = 50

nUfifc. 

The following lemma then holds. 
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/•\_L 

Lemma 2.4. Suppose rj G KQ     fl C00(M)J then the estimate 

holds. Moreover, for r) € C'X'(M) we have the following estimates on the ends, 

MQ and Sft of M, 

MILHMO)    <    ll^llL2(Mo) + c(log(l/e))_:^||77||L2(-o) 

Mlmss)    <    llWlv^ + c^dV^^M^ss) 
Proof. This is virtually identical to [15, Lemma 3.4], the distinction being that 

to derive the estimates on the ends we must obtain the inequality 

(2.7)      / (VMorfdVi    <   C(TI1)
2
+ f  (iV^Mo^r-n^Mo??)2)^, 

JM JM 

where 77 € C00(M), and ^Mo ^ a cut 0^ function whose support is contained 

in MQ , and 7^ denotes the average of ^MoV over {M,g). On the asr's this 

is identical to [15, (3.6)]. 

From inequality (2.7) the derivation of the estimates in Lemma 2.4 is iden- 

tical to the argument given in [15, 356- 359]. The inequality for the function 

^£"77 is derived in exactly the same manner. Since ^MoV 'ls supported in 

MQ , where gi is isometric to the nondegenerate metric #, we may use spec- 

tral information on (M,g) instead of (S^,go)- 

We obtain the estimate (2.7) as follows. Since 

rj, = VolgiM)-1 [ ^MoVdvu 
JM 

the variational characterization of Ai allows us to conclude that 

Ax   /   (tfMo7?-7?l)2^<   /    W*MoV)\2dvg. 
JM JM 

Since g is a minimal, nondegenerate solution we have Ai > n, this then gives 

us 

/ (*Mor?-rJ1)
2^<(A1-n)-1 /  (|V(*Mor/)r-n(*Mo^-^i)2)^ 

JM J M 

Prom this inequality we immediately derive (2.7) for the function ^MQV- The 

proof then proceeds as in [15, 356-359]. We refer to there for the remainder of 

the proof.    □ 
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Lemma 2.4 easily gives the following Corollary which is fundamental to the 

linear analysis of (2.1). 

Corollary 2.5. Suppose rj e KQ n C00(M).  We then have the bound 

MLHM) < c\\Cri\\L2lM) 

provided e is small enough. 

Proof. By applying Lemma 2.4 over each component of the decomposition 

M = Mo u fi u sj,     n = ut A, 

we have 

/   n2dvi    =    /    r]2dvi + y2      rfdvi + /   rfdvi 

<   c     (Crjydvx + clog^/e)21^1   /   T?
2
^. 

JM JM 

Choosing e sufficiently small then completes the proof.    □ 

2.5. The Small Eigenspace K. If 0 is an eigenfunction of C with eigenvalue 

A, then (/> is also an eigenfunction for Ag1 with eigenvalue A + n. In particular, 

there is a one-to-one correspondence between the spectum of Agi on M, that 

is, the set of eigenvalues for Ag1, and the spectrum of £ on M, which we 

denote by cr(C). A consequence of the basic spectral theory for the self adjoint 

operator A^ on L2(M) (see [2]), is that '&(£) = {K}^ ^ a discrete set 

tending to +oo, 

AQ = -n < Ai < A2 < • • • , 

and the corresponding eigenfunctions fa C L2(M) fl C00(M) (normalized so 

that ||^||L
2
 = 1)> form an orthonormal basis for L2(M). It follows that for 

any 7? G L2(M) we can write 77 = Y^o^i and £v = —Y^LoQiKfa- When 

rj € KQ, the inequality ||£r?||L2(M) < Cx05
IL2-||77||L2(M) of Proposition 2.2 is then 

equivalent to 

00 

i=0 
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The corresponding inequality HT/HL^M) ^ CR^-W^vW^iM) of Corollary 2.5 for 

77 G KQ is equivalent to 

E^a-^A?) < 0. 
i=0 

We define the subspace K C L2(M) of small eigenfunctions by 

(2.8) K   =   spani^: WIKCK^}. 

If there were an eigenvalue A^ such that A^ > CKQS
11
^ which also satisfied 

Xj < l/cK± then the corresponding eigenfunction, <f)j would belong to neither 

KQ nor JKQ-, since each of the necessary inequalities would be violated. Since 

L2(M) = KQ © KQ  no such eigenvalue can exist. 

The above consequences of Proposition 2.2 and Corollary 2.5, indicate that 

the closed subspace K C L2(M) D Cco(M) is invariant with respect to the 

operator £, i.e. £ : K —> K, and has the properties 

(OQ\ ||^||L2(M)    <   C^^H^IIL^M)    for   ri eK, 
{     } Mvm      <   CWCTIWVM        for   r, € K-1 n C«>(M). 

Let 

p:L2(M)    ->    if 

q:L2(M)    -^   K1 

be the orthogonal projection operators. The following Lemma is analogous 

to [15, Lemma 3.6], and reflects the extent to which we can use the explicit 

nature of KQ to control the behavior of K. 

Lemma 2.6. For any 77 G L2{M), 

llpfa) - PO(7?)||L2(M) = Hqfa) - qo(r?)||L2(M) < c^MlviM)- 



A CONFORMALLY INVARIANT SCALAR EQUATION 379 

There is a basis </>?, i = 1,... , k, a = 1,... , n + 1, for K satisfying for i / j 

Ut-^WLHU)      <     CS*? 

II^IIL2(M(+*)) 

lldli,2(n(+6>) 

\\<Pi\\Li(SS<.+6)) 

< c6— 

< c6— 

<   cS1^ 

<   c6^ 

Remark 2.1. In [15, Lemma 3.6], Schoen establishes this result by proving 

exponential decay in D(i, j), the graph distance between the vertices i and j, 

for the latter two quantities. This more difficult result is necessary, in part, 

due to the exponential volume growth that Schoen's approximate solutions 

may exhibit. Since our approximate solutions are compact and have volumes 

which may be estimated as in Theorem 1.3, the estimates which we prove here 

are sufficient. We refer to [15] for the proof of the L2(M) estimates on the 

difference of the projection operators, and here establish the estimates on the 

basis {</>f} for K. 

Proof. We first define the basis element (pf to be the component of the orthog- 

onal projection of rjf into K which arises solely from rjf. Explicitly, for each 

i = 1,... , k let Ki denote the linear span of p(r?"), j ^ i, a = 1,... , n + 1. 

We define </>f by 

# p«)-p(i)«), 

where pW : L2(M) —>• Ki is the orthogonal projection operator. If (f> = 

E^i,/?afpfyf) e Ki with UWLHM) = 1, then <f> = pfo), whererj = E^i,?ajVj 

6 KQ. We then have 

U - VWLHM) < cS~   ||f7||L*(Jif), 

and hence 

IMIL*(M) < c 

Since 77 = PO(T?) we may write 
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|(7??,<£)L2(M)|      < 
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n+l 

(3=1 

+ c8T- 

By the definition of the functions rjf we immediately have 

n+l I n+l 

/3=1 /?=1 /?=1 

n+l 

0=1 

On the other hand, since 

E Ki(K7-ii + K7
+il) < cE«)2+E(K7-i)2 + («J+i)2) 

0,3 

we can estimate 

> cEK)2-^- E K"l(K7-il + K+il) 

> cEK)2- 
Thus using this estimate above and the L2(M) bound on 77, we have 

If we let 

then it follows that 

Thus, 

±a _ ^a 

4>  = p(i)faa) 

\\mtf)\\»M 

iiP^nibtM) < <**?. 

-rttWL^M)    <    ||p(r?f)-Po«)||L2(M) + ||p(i)«)IU=(M) 
^ n —z 
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This establishes the first property of the functions 0f. The other properties 

follow easily from this. The L2(M) estimates for </>? on each asr and on the 

ends MQ and SQ are a direct consequence, as follows 

<   cd1^ + c8n 

_Tt-2 

The corresponding estimates on the ends MQ and SQ follow in exactly the 

same way. The final estimate is then derived from this. First note that since 

P^KVj) is orthogonal to $*, we have 

Thus since rf has its support contained within Cij     , we have 

k0 (<l>i,<l>j)L'(M)\     =       {<!>?, VjJLHM) 

^     ll,/fllLa(n<+«>)ll^?llLa(n(+«>) 
„n-2 

<   c6—. 

This completes the proof of Lemma (2.6).    □ 

2.6.  Pointwise Estimates for the Solution of the Linear Problem. To 

study the solution of the linear equation, Crj = /, on the orthogonal comple- 

ment of the small eigenspace K, we first derive pointwise estimates for C The 

main task is to derive an e- independent C0 estimate. Recall that the condi- 

tion for our conformal structure to be admissible ensures that the parameters 
i 

e±i = 2A±i are comparable to e as in (1.6). As e tends to zero the geometry of 

our solutions degenerate. In light of this, we make a choice of the Cr,a norm 

on M which will encode the e dependence of our estimates. As in [15] we 

first make a choice of the Cr,a norm on (Sn,go). For a domain O C 5n, and 

77 G Cr'a(0), we let 

A,o = Ee5suPl5(s)7?l + er+Qll9(r)^l!(«)^5 
s=o      0 
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where \d^r]\ is the length with respect to go of covariant derivatives of 77 of 

order s. The quantity ||d(r)77||(a),o is the Holder exponent of r-th derivatives 

of 77, which we define by using a fixed coordinate covering of 5n. Similarly we 

make a choice of Cr,a norm on domains in (M,g) and (S71,^), defined with 

respect to the fixed background metrics g and g. For any 77 G Cr,a(M) we 

define 

IMka      =      raax{||77 • i^lka.©*, Nlr.a.Mo, Nlr.a.Sff }, 

where Oi = Fi(£li) and MQ and Sfi are the ends of our approximate solution 

given by the decomposition (1.7). The following Theorem is analogous to [15, 

Theorem 3.9] and establishes the basic pointwise estimate for rj G K. 

Theorem 2.7. For any non-negative integer r and any a G (0,1) 

IMka    <   c||r/||L2(M) 

for every 77 G K, where c = c(r, a) is independent of e. Thus the inclusion 

K C Cr,a(M) has bounded norm. 

Proof. Due to its central role we sketch the proof of Theorem 2.7 here, referring 

to [15, Theorem 3.9] for more details. 

Note that K c C00 n L2(M), follows immediately from elliptic regularity 

since K is constructed from eigenfunctions of A5l on M. We first derive the 

supremum estimate for 77 G K. For any point p G M, Bs/2{p) is contained in 

either MQ , Sfi ^ or Q\6' for some i, where 6 > ce1--. Since 6 —> 0 as e —> 0, 

this does not allow us to apply the Sobolev inequality, Lemma 0.4, in balls 

whose radius is uniformly bounded below independent of e. We avoid this 

difficulty by noting that both (M,g) and (5n,p0) are locally conformally flat 

in a ball of radius r = min(r(g),r(g0)) about the point at which Q = UjL^i is 

attached. Thus we may choose some p < r/2 independent of e, so that Bp(p) 

is contained in either Q^, MQ or Sfi T . These domains are conformally 

equivalent to a domain in (Sn,go), (M,g) or (Sn,g0), respectively. Thus we 

may apply the Sobolev inequality in Bp(p), for any p G M. This allows us 

to use the De Giorgi-Nash-Moser theory (see [4, Theorem 8.17]) to locally 
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estimate the supremum norm of rj 

(2.10) sup   |r?|    <   c\\ri\\L2(Bp(p)) + c\\£ri\\Lq{BPto)h 
Bp/2(p) 

where q > T-, and c depends on g, p and the Sobolev constant. Since we 

may choose p to be bounded from below, say p > r/4 and we may bound 

the Sobolev constant in terms of the maximum of the Yamabe constants of 

(5n, <7o)> (M, g) and (Sn, g0), we regard c as depending on q alone. To estimate 

the Lq(M) norms of £77, we again make repeated use of the Sobolev inequality. 

Let £ G C00 have support contained in either MQ , SQ 
T
 or i^r) and let /? > 2 

and any 770 G C00(M) be given. After integrating by parts, we have 

- f evt'Crjodv,   =     f C ((P - ^vt^Vo? - nV
0

o) dv, 
JM JM     

X ' 

+2/ (C^'VC-V^dfi. 

The supremum estimate is then established by applying the Sobolev inequality 

to 0 = Clf/ol^2 with % = £>?} and iterating a finite number of times to obtain 

(2.11) \\Cr)\\L^{Bp{p))    <   c||r7||L2(M). 

where c depends on 5, /?s = 2^s, and K = ^j. Combining this with the De 

Giorgi-Nash-Moser estimate (2.10) (with q = /35) and summing over a fixed 

covering of M by balls of radius p we get the supremum estimate 

(2.12) supM<c|M|L2(M). 
M 

We now use the interior Schauder estimates (see [4]) to derive the higher 

derivative estimates for 77. About each point p G M the metric gi is uniformly 

equivalent to one of the background metrics go and g0 on 5n, or g on M, in a 

ball of radius proportional to e, the proportionality constant being Ci = (3 from 

(1.6). This follows immediately from the bubble construction §2.4 and the fact 

that gi is constructed from an admissible conformal structure. If p G fi* then 

we may compare the metric gi = (F"1)**?! to the spherical metric #0 in a ball 

centered at q = Fi(p). If x1,... , a;n denote normal coordinates for 90 centered 



384 DANIEL POLLACK 

at q, then for |x| < e = cj"1, §1 = Y1 hap dxa dx?, where 

er|d(r)M < c, 

\d^h<xp\ denoting the absolute value of partial derivatives of order r. A similar 

estimate holds for p in either MQ or SJ. For example, if p e Mo C M^~8) UN^} 

then we distinguish between which region p lies in as follows. If p G MQ then 

we use the identity map and note that gi is isometric to g in a ball of radius e 

about p. If p G N_i then the metric gi = (F0
_1-$)*5i is uniformly equivalent to 

the background metric g on M in a ball of radius e about q = $~1 • FQ (p), and 

if we let z1,... , xn denote normal coordinates for g then the above inequalities 

are also valid in this ball. 

If p E O, say p 6 ^ then the Schauder estimate implies that 

Wri-F^hcD,,,    <   cMl^-^llo^.+suplT?-^-1^, 

where Dz = {x : |x| < e} with respect to normal coordinates and the norms are 

the e weighted norms defined above. A similar estimate holds for p G MQ and 

p G SQ . Because of the e weighting of the norms and the uniform equivalence 

of the metric gi to one of the three fixed metrics go, g or g0 in balls of radius 

proportional to e, we have 

WV'F^Wr^Oi    <   c sup \\r] - F-1^^^, 
qoed 

where c depends on ci. Note that this estimate also holds on MQ and SQ . The 

C2,a estimate now follows by applying the fundamental theorem of calculus 

and standard estimates for the Poisson equation. We refer to [15, Theorem 

3.9] for the remainder of the proof of Theorem 2.7.    □ 

We now prove the main theorem concerning solvability of the linear equation 

Theorem 2.8. (i) Suppose 77 G Cr+2,Q:(M) HK^-, where r is a non- negative 

integer and a G (0,1).  We then have Crj G Cr>a(M) fl K^, and 

r4-2,a <      C||£7?||r,a, 
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where c = c(r, a). 

(ii) Given f 6 Cr>a(M) n K1-, there is a unique 77 6 Cr+2'a(M) n ^ 

satisfying Crj = /. 

Proof. To prove part (i), let r) G Cr+2'a(M) Pi K2-. By applying the Schauder 

estimate as in the previous proof we get 

IM|r+2,a      <     C{e2\\£v\\r,a + IH|co(M)) , 

where c depends on ci. The De Giorgi-Nash-Moser estimate gives us 

||^||co(M)      <     c\\r]\\L2{M) + c||£77||co(M). 

Since rj E K1- and the volume of (M, gi) can be estimated by a fixed constant, 

independent of e, we get 

WVWLHM)    < c\\Cr)\\L2(M)    < c||£r;||co(M). 

Therefore 

IM|r+2fa      <     C (€||£r/||r|a + c||£7/||co(Af)) 

<     C||£7/||r,a 

as claimed. 

To establish the second claim we note that since / G K^-, there exists a 

unique 77 G K± with JCTJ = /, namely the function 7/ = C~1f. By part (i) of 

our theorem, since / G Cr,a(M) we have 

IM|r+2,a      <      q|/||r|0. 

Thus 77 G Cr+2'a(M) This completes the proof of Theorem 2.8.    □ 

3. THE PROJECTED PROBLEM 

We define the projected problem as 

(3.1) Cr, = q(F(x,V)), 

where q : L2(M) —► K1- is the orthogonal projection operator discussed in 

Lemma 2.6. The linear estimates of section 3 combined with a contraction 

mapping argument allows us to prove that (3.1) has a unique small solution 
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77 E K1-. The Theorem is nearly identical to [15, Proposition 4.1], and we refer 

there for its proof. 

Theorem 3.1.  There exists a 6 > 0 depending only on n, (3 such that (3.1) 

has a unique solution 77 G C2'a(M) fl K1- satisfying \\TI\\C
O
(M) <8- 

We need more precise C0(M) estimates on both the solution 77 to the pro- 

jected problem (3.1) and on the scalar curvature i?, of the resulting metric 

g = (1 + rD^^gi. These can be easily derived from the proof of Theorem 3.1. 

In [15] it is shown that 

(3.2) IM|C°(M)      <     0(6^+6^) 

for any q > |, and c = c(q). 

The scalar curvature R of the metric g = (1 + 77) "^51 is given by 

R   =   -1^(1+'')-SI(A».(1+'"4^1)fl-(1+'")' 

Therefore by using the definitions of F(x,r)) and Qirj) in (2.2), we see that 

R -n(n-l)   =   -li^OL + r/r^^-FM], 
n — 2 

and hence since £77 = q(F(x,77)), this implies that 

R-n(n-l)   =   ^Lzi)(i + r7r^p(F(X)?7)). 

Thus by either (3.2) or simply ||77||CO(M) < 1, and Theorem 2.7 we have 

\\R - n(n - l)||co(M)    <   c||p(F(x, r;))||c°(A0 

< c||F(x,77)||L2(M) 

< c||i?i -n(n- 1)||L2(M). 

Hence we conclude that 

(3.3) ||i?-n(n-l)||Co(M)    <   ce^. 

The solution g = (1 + 77)^2 #1, to the projected problem (3.1) satisfies the 

energy estimate of Theorem (0.1). This follows immediately from the volume 
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estimate (1.8) on the approximate solution and the C0(M) estimate (3.2) on 

77. Since 

Volfl(M)   =    /(I +v)^dvgi, 
JM IM 

we have, for any q > §, 

|Vol,(M)-VoUM)|   <   c||7?||co(M)Vol,1(M) 

<   cie^+e^Volg^M). 

Therefore by the triangle inequality and (1.8) we obtain 

(3.4) |Vol,(M)-(Vol,1(M) + (fc + l)a;n)|    <   c^+e1^). 

4. THE GENERALIZED POHOZAEV IDENTITY 

4.1. The Identity. The solution g = (1 + 77) ^2 #1 to the projected prob- 

lem (3.1), will be an exact solution provided that the function F{x,rj) lies 

orthogonal to the small eigenspace if, i.e. 

(4.1) <l{F{x,rj))   =   F(x,V). 

This will not be true in general. It will be necessary to perturb each of 

the admissible conformal structures <Ji,... , <7/v individually, to produce a new 

admissible N structure cr'(N) so that (4.1) holds for each of the new admissible 

conformal structures cr^,... , cr^. Fortunately we can exhibit an identity which 

will both provide necessary and sufficient conditions for (4.1) to be satisfied by 

a given admissible conformal structure and will provide the means to insure 

that we can find deformations of certain cr(iV), to a new conformal N structure 

^'(N) which will satisfy these conditions. 

The generalized Pohozaev identity is given by the following proposition. 

Proposition 4.1. Let (TV, g) be a compact Riemannian manifold of dimension 

n with smooth boundary ON. Let R denote the scalar curvature of N, and 

suppose that X is a conformal Killing vector field on N. We than have the 

identity 

(4.2) f (jCxR)dv   =   -^- [   (Ricg-n-lRg){X,v)da. 
JN n — 2 JdN 
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where RiCg{',') is the Ricci tensor for (N,g), Cx denotes the Lie derivative, 

v denotes the outward unit normal vector to dN, and dv,dcr are volume and 

surface measure {with respect to g), respectively. 

!We refer to [15] for the proof of (4.1). This identity provides an obvious 

necessary condition for the metric g to have constant scalar curvature i?, 

namely the vanishing of the boundary integrals 

(4.3) /    {Ricg-n~1Rg)(XJiy)da1 
JdQi 

for all conformal Killing fields X on fi;. There is a natural class of Conformal 

killing fields on f^ for which we can test this necessary condition. Any vector 

w G Mn+1 gives a conformal Killing vector field W on 5n by 

W(q) = w — (w • q)q. 

W is the tangential projection of w onto Sn. These vector fields are gradient 

vector fields on Sn, i.e. they arise as the gradient of a globally defined function 

on Sn, 

W = grad^o(/w),    Zw(g) = w • q. 

We get a conformal Killing field X on f^ by defining 

X = dFr\W). 

Since Fi is a conformal diffeomorphism from (fif, 51) to (O^ go), X is conformal 

Killing for g = (1 + rf^go- For a = 1,... , n + 1 we let Xa denote the vector 

field arising from wa, where Wi,... , wn+1 is an orthonormal basis for Mn+1. 

4.2. Balanced Admissible Conformal Structures. In [15], Schoen com- 

putes the boundary integrals (4.3) for the approximate solutions gi constructed 

in section 2. Recall that gi is scalar flat in a small neighborhood of d£V The 

results of this computation are given by the following Proposition (see [15, 

Prop. 1.5]). 

Proposition 4.2. Let X be the conformal Killing field on 0,^, arising from a 

vector w E Rn+1.  We have the formula 

L RiCg, (X, i/)dai    =   -2(n - l)(n - 2)u;n_iw • d, 
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where u;n_i is the volume of Sn~l, and Ci G Mn+1 is given by 

O; — €-i q-i + e+i g+i. 

/fX = dF~1(Xo) for a rotation vector field XQ on (Sn^go), then the boundary 

integral on each component of dtti vanishes. 

The vector d is regarded as a "center of mass" attached to each vertex 

i. d vanishes if and only if the two dilations O-i and G+i have the same 

strength and have sources q^ and q+i which are antipodal points on S'n. An 

admissible conformal structure whose approximate solution satisfies Ci = 0 

for each i, will be called a balanced admissible conformal structure. We note 

that the admissible N structure, cr(N) constructed in §2.6 consists of balanced 

admissible conformal structures. 

We use the Generalized Pohozaev identity (4.1) in two ways. We first show 

that it provides a sufficient criteria for determining when the solution to the 

projected problem is actually an exact solution. 

4.3. A Sufficient Criterion for Solutions. If we assume that our approx- 

imate solution gi arises from a balanced admissible conformal structure then 

the vanishing of the boundary integrals (4.3) for those vector fields X arising 

from a vector w € Mn+1 is actually sufficient to guarantee that p(F(x, 77)) = 0. 

This result is identical to [15, Prop. 4.4], which we state here for reference. 

Proposition 4.3. Suppose g = (l + ^^^gi is the metric constructed in The- 

orem 3.1. Suppose that, for every vertex i, 

(RiCg — n~1Rg)(X)i/)dag    =   0 
Jar 

for any conformal vector field X associated with a vector w G Rn+1. Then rj 

is a solution of (2.1); that is, g has scalar curvature identically n{n — 1). 

Remark 4.1. The idea of the proof is to use the Generalized Pohozaev identity 

(4.1) to rewrite the vanishing of the boundary integrals above as the vanishing 

of the integral of a Lie derivative of the scalar curvature, jR(ff), over each f^. 

One then uses the equation for R and the estimates on 77 found in section 

4 to show that this implies that p(F(a;,r/)) = 0, i.e. F(x,ri) G K±. The 

Generalized Pohozaev identity thus measures the extent to which F(x,r)) lies 
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orthogonal to K. In the last step of the proof Schoen employs the exponential 

decay estimates for the basis {</>f} of K, since our solutions are compact and 

have controlled volume, the estimates we've established in Lemma 2.6 are 

sufficient here. Thus, if the metric g = (1 H-T?)'^*?! satisfies the hypothesis of 

Proposition 4.3, then r] is actually a solution to (2.1). We refer to [15] for the 

details of the proof of Proposition 4.3. 

In the next section we use the Generalized Pohozaev identity to assign 

values to deformation parameters which are used to perturb an initial balanced 

admissible conformal structure to a nearby conformal structure for which the 

hypothesis of Proposition 4.3 are satisfied. 

5. DEFORMATIONS OF APPROXIMATE SOLUTIONS 

5.1. Admissible Conformal Structures Revisited. Recall that our ad- 

missible conformal N structures, cr(iV), consist of an assignment of conformal 

maps to the vertices of each of the N chains, 71,... ,7^, so that the corre- 

sponding approximate solutions g^,... ,giN all lie within a fixed conformal 

class. In §2.6 we constructed a conformal N structure, cr(iV), which had the 

additional property that each of the admissible conformal structures, cr^, was 

balanced, in the sense of §4.2. We need to consider deformations of cr(iV), 

which will consist of deforming each approximate conformal structure, cr^, 

separately and then showing that the necessary deformations may be done 

without changing the conformal class of the corresponding approximate solu- 

tion metric. The deformations which we consider in this section are exactly 

the same as those used in [15], however all the approximate solutions consid- 

ered there were in the conformal class [go], of the round metric go on S"2, hence 

the adjustments which we make to the approximate solutions of the new con- 

formal structures to insure that they remain in a fixed conformal class, were 

unnecessary there. Much of the material in this section can be found in [15], 

we include it nonetheless, for the sake of completeness. We deform the ap- 

proximate conformal structures by considering deformations of the conformal 

maps Fi, which make up (7^. Our aim in considering deformations of cr^ is to 

show that we can find a nearby admissible conformal structure for which the 
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hypothesis of Proposition 4.3 are satisfied. Thus by 4.3 such an admissible 

conformal structure will produce an exact solution to the main equation (2.1). 

Before deforming the <Jk we need to introduce a topology on the space 

of admissible conformal structures. For Gi = RiDi and G2 = #2-^2, two 

dilations uniquely decomposed into rotational and centered dilation factors, 

we define the distance between Gi and G2 to be 

d(GuG2) = maxfllflx - i?2||, foi - <z2|, | log ^|}, 

where ^ is the source and A^ is the strength of G^ for i = 1,2 respectively. 

The quantity ||jRi — it^H denotes the operator norm of Ri — R2 thought of as 

a linear transformation of Mn+1. If ak and a^ are two admissible conformal 

structures on 7^ then we define the distance between a^ and a^ to be 

(5.1) d{(jk,Gk) = max(max{(i(G_i,G_i),d(G+i,G4.i)}) , 

where the dilations {G±i}, (respectively {G±i}) are those which correspond 

to <7fc, (respectively a^). Note that (Tk is defined either by specifying the 

dilations G±i for i = 1,... , k directly, or by specifying the conformal maps 

Fi for i = 1,... , k whose compositions generate most of the dilations and in 

addition specifying the dilations G_i and G+fc independently. Thus one can 

easily see that d(ak, ~(jk) = 0 if and only if ak = o:
k) in the sense that G±i — G±i 

for alH = 1,... , k. It is then clear that rf(-, •) defines a distance function on 

the space of all conformal structures on Tk. 

Let Sk denote the space of admissible conformal structures on 7^, with the 

topology that Sk inherits from the distance function dl(-, •) defined above. If 

we fix k and suppress the index, then for any ai G S and any 6 > 0, we define 

the set Ss(cri) C S by 

SsicTi) = {cr G S : d(<7, ai) < 6}. 

In §3.5 we constructed a specific metric gi(<Jk) corresponding to a given <jk G 

<Sfc, which has served as our approximate solution. Given an admissible con- 

formal structure ak G Tk we will call a metric g on M compatible with ak if 

it is conformally equivalent to the metric gi(crk) constructed in §3.5. For each 
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cr G Sk let M.a denote the space of compatible metrics. We then define M by 

M     =       IJ   M,,. 

Thus for any metric g G M there exists an admissible conformal structure a = 

a(g) and a metric gi(cr) which is conformally equivalent to 5, such that gi((j) is 

an approximate solution. Given any g G M we use the generalized Pohozaev 

identity to associate to g a set of parameters which measure the extent to 

which g fails to satisfy the hypothesis of Theorem 4.3. These parameters will 

then be used to specify deformations of given admissible conformal structures. 

Before defining our parameter space we need to review some facts about the 

conformal group of 5n. The following section is essentially from [15], for 

completeness and in order to establish our notation we include it here. 

5.2. The Conformal Group of Sn. Recall that Minkowski (n+2)-space, 

Mn+2, is (Rn+2, ((•, •))), where ((•, •)) is the Lorentz inner product 

n+l 

((Vi Z))      =      £ V&i - yn+2Zn+2. 
2=1 

We view Sn as the set of points y in Mn+2 satisfying Yn^i Vi — yn+2 = 1- The 

Lie group 0(n + l, 1) C GL(n+2,R) is the linear isometry group oiboldM71^2, 

i.e. it is the set of invertible (n + 2) x (n + 2) matrices which preserve the 

Lorentz inner product 

0(n + l,l)    =   {A&GL(n + 2,R):((Ay,Az)) = ((y,z))}. 

The group 0(n + 1,1) acts on the sphere Sn by 

A(y)   =   (Ay)-l2Ay. 

Under this action 0(n + 1,1) represents the conformal group of Sn. The Lie 

algebra o(n + 1,1) of 0(n + 1,1), consists of (n + 2) x (n + 2) matrices X of 

the form 

X0   w* 
X    =    « n w      0 

where XQ G o(n + 1), the Lie algebra of the orthogonal group 0(n + 1), 

w = (wi,... , wn+i) G Rn+1 is an vector, and w* is its transpose. Thus X0 

is a skew symmetric matrix which we refer to as the rotational part of X and 
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the vector w E Rn+1 is referred to as the pure dilational part of X. By an 

abuse of notation we write X = XQ + w. 

The Killing form B : o(n + 1,1) x o(n + 1,1) —► M is the nondegenerate 

symmetric quadratic form given by 

n+l 
B{X, X)     =     — 2_^        Zij^ij + /^ %in+2 #m+2 

l<i<j<n+l 2=1 

=    -TV(XoXo) + w • w, 

where we have written X and X in terms of their rotational and pure dilational 

components, and w • w denotes the Euclidean inner product in IRn+1. If we 

decompose o(n + 1,1) = o(n + 1) © Rn+1, as above, then we see that i?(-, •) 

is positive definite on Mn+1 and negative definite on o(n + 1). Since B is 

nondegenerate, it provides an identification of o(n + 1,1) with its dual space. 

If X is an element of o(n + 1,1), we let X* denote the linear functional given 

by 

X*(Y)   =   B(X,Y). 

It is through this identification that we shall use the boundary integrals (4.3) to 

attach to a each oriented edge of Tk an element of the dual of o(n+1,1). These 

elements will in turn give rise to a collection of parameters corresponding to 

a particular compatible metric for some admissible conformal structure. 

5.3. The Parameter Space and Evaluation Map. We define the param- 

eter space X as follows. First fix a background balanced admissible conformal 

structure, CTQ on 7^. We may, for example let CTQ be the conformal structure 

constructed in §2.6. Let E denote the set of oriented edges of %. E has 

cardinality 2k and is given explicitly by 

E   -   {±l,...,±fc}. 

For each vertex i = 1,... , k we define a hyperplane Wi C IRn+1 by 

^ = {pGRn+1:p.^-0}, 

where q+i is the source of the dilation G+i in the balanced admissible conformal 

structure CTQ.  Note that the balancing condition implies that q^i + q+i = 0, 
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thus Wi could be defined with respect to q^i as well. We define two spaces Xi 

and X2 by 

k 

i=l eEE 

The parameter space X is then defined by 

X    =    Xi x X2* 

A point (6, fx) e X has components bi G Wi C Rn+1 for z = 1,... fc, and ^e G M 

for e G E. Given a pair 5 = (61, $2) G M'f x M4" we define Xs(b, //) by 

^(6,/i)    -    {(c,i/)GAr:|6i-ci|<«i,V2 = l,...,fc, |i/e-//e|<«2,VeGi5}. 

Given any admissible conformal structure a G £&, and any compatible met- 

ric 5 G A4a we define a linear functional X*(a)g)e, on o{n + 1,1), for each 

e G £ by 

(5.2) X>,0)+i(X) = -fc(n)-1 / (Ric.-n-1^)^-1^)^)^, 

for any X G o(n + 1,1), where k{n) = 2(n — l)(n — 2), z/ denotes the outward 

unit normal vector, with respect to 5, from f^, and we've chosen e = +i. 

X*(cr, 3)_i(X) is defined similarly. This defines for each edge e G E an element 

of the dual of o(n + 1,1). We let X(cr,g)e denote the element of o(n -f 1,1) 

which is associated to X*(<7, g)e under the identification given by £(♦, •). Thus 

X(cr,g)e is defined by the property that for all X G o(n + 1,1) 

X*(a,g)e(X) = B(X(*,g)e,X). 

Proposition 4.2 shows that X(a,gi)+i = e+72<?+n where 51 is the compatible 

metric constructed in §2.5. Thus X(<j,gi)+i has no rotational component, and 

its pure dilational component is e™"2^. For any compatible metric g the 

elements X(cr,g)+i and X(cr,g)-i are determined by boundary integrals over 

the same hypersurface. The following Lemma shows that they are related to 

one another by the adjoint representation. We refer to [15, Lemma 2.2] for 

the proof. 
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Lemma 5.1. For any a G <S, and any compatible metric g we have 

X{cj,g)+i    =    -AdiG-JiXfagU). 

In particular, B(X{G,g)+i,X{a,g)+i) = B{X{a,g).hX{a,g)^i). 

For each vertex i = 1,... , k we define X(<J, g)i G o(n + 1,1) by 

X(cr, g)i   =   X(cr, g)-i + X(G, g)+i. 

Note that if CTQ is the balanced admissible conformal structure constructed 

in §2.6 and gi the compatible metric constructed in §2.5 with respect to CTQ, 

then X(cro,gi)i = 0 for each i = 1,... , k. We express X{a^g)i in terms of its 

rotational and pure dilational components by writing 

Xfrg^   =   XOfagh + Cfag)^ 

where X0(a,g)i G o(n + 1) and C(a,g)i G Rn+1. 

We define the evaluation map 

by setting Il((T,g) = (6,//), where b and /x are described as follows. The 

components 6* G Wi of 6 G A'I are defined by 

where P* : Rn+1 —> W^ is the orthogonal projection operator. To define the 

components /ie of /x G A^, we first attach a weight Ae(cr, p) to each edge e £ E 

by setting 

Ae(<T,<7) - [£(X(a,2)e,X(a,5)e)]^, 

provided the term in brackets is positive, and zero otherwise. In all the situa- 

tions we encounter, B(X(a,g)e, X(a, g)e) will be positive, this is because will 

consider only conformal maps with strong dilational components and weak 

rotational components. Observe that Lemma 5.1 implies that X-^o^g) = 

A+i(cr, g). Proposition 4.2 implies that for e = +i Ae(cro, 9i) = A+i, the strength 

of G+i. The element /x € A^ is then defined by setting 

K&g) 
He = log 

Ac(<7o,Si) 
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for each e € E, where (ao, gi) is the fixed balanced admissible conformal struc- 

ture and compatible metric constructed in §2.5-2.6. Notice that n(cro,5i) = 

(0,0). 

5.4. Deformations of Conformal Structures. The deformation map will 

assign to any element in the parameter space, (&, n), which is close to (0,0), 

the parameters which come from (cro,3i) G M, a new admissible conformal 

structure V{b^ii) which is close to CTQ. Thus if 8^62 and 63 are small and 

8 = (81,82)1 then V will satisfy 

V:Xs(0,0)   ->   SSs(ao). 

The map V will have the additional property that if 2?(6, /x) = a and gi denotes 

the metric canonically constructed from a as in §2.6 then n(P(6,/i),5i) = 

n(cr,3i) is very close to (6,/x). This says that when we evaluate the parame- 

ters arising from the deformed conformal structure, with the canonical metric 

associated to it, we get parameters which are close to the parameters we used 

to specify the deformation. Before defining the deformation map itself we first 

discuss how to deform the centers of mass and the edge weights independently. 

5.4.1. Deformations of Centers of Mass. Given a set of points qi,... , qi in Sn 

and weights ai,... , ai in ]R+, the weighted center of mass is the sum 

1 
c   =   J2aM' 

The balancing condition is that the weighted center of mass vanishes, here g_; 

and q+i are the sources of the dilations G-i and G+i, and the weights are e7^2 

and elj;"2. So the balancing condition becomes 

£7V< + €+7V«  =  0, 

so that €_; = e+i and #_; = —q+i- Therefore to specify a balanced admissible 

conformal structure we need only specify at each vertex i a point q^ € Sn and 

a weight a^ G i?+ satisfying /3f1 < a^ < /3i for a constant fc. 

Fix q1 G S,n, and ai such that Z?"1 < a1 < /?, and let W = {p G Mn+1 : 

p-q1 = 0}. For any p G JBn+1 let Fp : Bn+1 -^ Bn+1 be the unique centered 
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dilation with Fp(0) = p. We define a map C : 5n+1 HW ^Wby 

C(p) = aiFpfai) + oiFp(-gi). 

The following lemma will allow us to use this map to produce deformations 

of the centers of mass which are approximately prescribed by the parameters 

bi G Xi. We refer to [15, Lemma 2.3] for the proof. 

Lemma 5.2. The map C : Bn+1 0 W —> W is smooth and defines a diffeo- 

morphism from a neighborhood B™*1 fl W = {p G W : |p| < <Ji} o/O onto a 

neighborhood ofO containing B™*1 fl VF; t^/iere (7i,o"2 depend only on n, /?. 

5.4.2. Deformations of Edge Weights. Given any assignment of weights to 

the edges of T, we achieve this exact assignment by a deformation of CTQ. Let 

A = {Ae} G X2 be an assignment of edge weights with /?2Ae < Ae < fyXe for a 

constant /?2 and for all edges e G E. Here Ae = Ae(<Jo,5i) is weight assigned to 

the edge e by the balanced conformal structure (JQ. We define cr(A) by defining 

the dilations Ge(X) by defining for G_i(A) by 

G_,(A)   =   R-iD-iQ), 

where G-i = R-iD_i is the corresponding dilation for CTQ, and .EL; (A) is the 

centered dilation with the same fixed points as D-i but with strength A-*. 

The dilations G+i(A) are defined in the same way. Thus if A = A = {\±i} are 

the weights of OQ, we have i?±i(A±i) = D±i, and (7(A) = CTQ. 

5.4.3. T/ie Deformation Map. We are now in a position to define the defor- 

mation map V. We shall initially deform the background balanced admissible 

conformal structure CTQ on 7^, as dictated by a given set of parameters. Given 

(6, JJ) G Ai(0,0), we define a = X>(b, /x) as follows. From each of the parameters 

bi £ b we specify a centered dilation in the following way. Let ai = en~2e7l~2 

(thus by the balancing condition a^ = en~2€+~2 as well). By applying Lemma 

5.2 to the vectors q-i and q+i with the weight a* we find that there is a unique 

point pi G B^*1 fl Wi such that C(pi) = 6*. Thus we get a unique (small) 

centered dilation Di = Fp., such that 

bi    =   ai[Di(q_i) + A(?+t)] 

=     en-26_;[A(^) + A(-^)]. 
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The parameters {/ie} = fi are used to produce a change in the dilation 

strength along each edge, which when coupled with the change in the center 

of mass at each vertex i prescribed by {^} = b as above will define the defor- 

mation V. The admissible conformal structure a will be specified by defining 

the dilations G±l by 

(5.3) (£) = Di-1-G
(Sp)-Dr1     and    G$ = Di+1 ■ G$f» • Dr\ 

where G±i      = G±i(X) as above, and A is an assignment of edge weights 

chosen so that 

(5.4) fi-i = log .    7  ;     and     fi+i = \og-  +ty ) 

A-i(cro) % A+i(cro) 

Here \±i{(T) are the strengths of the dilations G±l from our new conformal 

structure cr, and A±^((Jo) are the strengths of the dilations G^0 from our 

background balanced conformal structure CTQ. In [15, 345-346] it is shown that 

there is a unique choice of A_; and A+; which are close in ratio to A^CTQ) 

and A+i((Jo) respectively, such that (5.4) holds. Note that the deformation 

<7o —> o"(A) only produces a change in the dilation strength along each edge. 

Our choice for the dilations G±l insures that the conformal transformations 

F^     attached by a to each vertex i of Tk satisfy 

Ei(a)    —    n    T?(°W) 

This completes the definition of the deformation map P. It is immediate from 

the construction that T) is continuous with respect to the product topology on 

X and the topology induced on S by the distance function d defined above. 

The degree to which n(D(6, /x),#1) is close to (6, /i) for any (6, ^) G ^(0,0) is 

expressed by the following Proposition. 

Proposition 5.3. Let 6 = (61,62), where 61, 62 are small positive numbers. 

We then have P(Ai(0,0)) C Ss3(ao), where 63 = cmax{<5i 2,<52}, c depending 

only on n and /3. If (&, /JL) G A^(0,0), and we denote U(b, fi) = a, then we have 

n(cr,<7i) = (b(a),fjL(a)), where 11(a) = JJ,, and b(a) satisfies 

IbiW-bil   <   c(e261
1
/2 + 62) 

for a constant c depending only on n and (3. 
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This is identical (verbatim) to [15, Proposition 2.4], and hence we refer there 

for the proof. 

5.5. Deforming Within a Fixed Conformal Class. For each approxi- 

mate solution <7ifc, we have constructed a solution of the projected problem 

(3.1). The N distinct approximate solution metrics g^,... ,#iN, derived from 

the background balanced conformal N structure, cro(N), all lie within a fixed 

conformal class. Thus the N distinct solutions to each of the projected prob- 

lems arising from the metrics g^,... , #1^ also lie within this fixed conformal 

class. In the next section we show that for each of these projected problems 

we may find an appropriate deformation of the background balanced admis- 

sible conformal structure <Jofc so that the hypothesis of Proposition 4.3 are 

satisfied, and hence the solution of the projected problem with respect to this 

new admissible conformal structure is actually an exact solution to the main 

equation (2.1). In order for this procedure to produce N solutions to (2.1) 

in a fixed conformal class, as we require, it will be necessary to show that 

the required deformations actually preserve the conformal class. This is done 

by associating to each deformation aok —» dk a conformal transformation of 

the nondegenerate end sphere (5n,7/0) and then by adjusting the decompo- 

sition (1.7) accordingly, we show that the two approximate solution metrics 

glk = gi(<j0k) and gi(crk) are conformally equivalent. 

To emphasize the dependence of the decomposition (1.7) on the conformal 

structure we fix fc, 1 < k < N and write 

(5.5) M   =   Mo UF(CTo) Ox, UF(.o) 5? 

for the decomposition of M with respect to the conformal structure CTQ on 7^, 

and 

(5.6) M   =   Mo U^ ft, UF(„) SZ 

for the decomposition of M with respect to the conformal structure a on Tk. 

The subdomains M0 and SJ appearing in the decompositions (5.5) and (5.6) 

also depend on the conformal structure. We obtain MQ by removing from M 

the inverse image of a small ball B0 in S
n under the conformal map $M from 
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a domain in (M, g) to a domain in (Sn,go), 

Mo   =   M^rfiBo). 

The ball BQ is determined directly by the dilation G_i, namely 

dB0   =   {p:\Gz{'(P)\ = l}. 

Thus the subdomain M0 in (5.5) is determined by G_i\ while the correspond- 

ing subdomain in (5.6) is determined by G_i. In view of the definition of our 

deformation map D, we need only consider conformal structures a which are 

close to (JQ, in particular we assume that d(<7, CTQ) < 6$ = cmaxj^i 2,62}. This 

implies that the balls .Bo(0*0) and Bo(a) are close to each other, since their 

centers —g_i(cro) and — Q-iicr) satisfy 

IHMKO-HZ-IW)!  <  63, 

and the strength of the dilations G_i   and G_i which determine them satisfy 

log^f/A^)!    <   63. 

The subdomain SQ is obtained in the same manner as above, with the corre- 

sponding small balls Bk+iicro) and Bjt+i(cr) being determined by the dilations 

0+%} and G+l respectively. We now use the closeness of these balls to rewrite 

the decompositions (5.5) and (5.6) in such a way that the ends are independent 

of the conformal structure, and thus isometric to one another when endowed 

with the approximate solution metrics gi(cro) and <7i(0"). 

Recall that for some r > 0, (M, g) and (S'n, <7o) are locally conformally flat 

in a ball of radius r about some point XQ G M, and yo G Sn. It is about these 

distinguished points that we've attached the string of k asr's, O. We shall 

assume that ^3 is arbitrarily small relative to r, this will hold provided the 

same is true of 61 and <!>2, i.e. if we restrict our deformations to a neighborhood 

of (0,0) G Af, which is small relative to r. Thus there exists a small constant 

Ci such that 

Sj^OBo) C BCl(x0) C Br(xo) C M and ^(Bk+i) C BCl(yo) C Br(y0) C 5n, 

where in M these are geodesic balls with respect to g, and in Sn with respect to 

g0, and BQ and Bk+i are the balls described above for any admissible conformal 
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structure G € S^{CJ^). We define the subdomains Mj" and (SQ)
-
 by 

M0- = M\ BC1 (x0)     and     (SJ)" = Sn \ BCl(y0). 

If we use these subdomains in place of MQ and Sfi, the decompositions (5.5) 

and (5.6) become 

(5.7) M   =   M0-un+U(S£)-, 

for the decomposition with respect to CTQ and 

(5.8) M   =   Mo-Ufi+U(S£)-, 

for the decomposition with respect to cr. The domains f2+o and fij which 

contain the k asr's are given by 

fi+0    =    {Afo(<7o)\M0-}Ui!.,-„,fi<70Uii,(-o,{Sy(ao)\(5y)-} 
u ^0 ^fc + l 

fi+   =    {Mo((7)\M0-}UF(-,n<,UF,„ {S0"(<7)\(S0")-} 
0 fc+l 

In the decompositions (5.7) and (5.8) the subdomains MQ and (SQ)~ do not 

depend on the admissible conformal structure. Moreover, since Ci is arbitrarily 

large relative to 6s we see that when endowed with the approximate solution 

metrics, (M0~,^(oo)) and (M0~, <7i(<7)) are isometric as are ({SQ)~, <7i(cro)) and 

((ASO)
-
, <7i(<7)). We have omitted the conformal maps FQ and F^+i from the 

decompositions (5.7) and (5.8) because their role is in defining Q+o and fi+, 

while the ends MQ   and (SQ)~ are attached by the identity map. 

The issue then becomes whether fi+o and OJ are conformally equivalent. In 

general, they are not conformally equivalent, however we now show that by 

making a conformal deformation of (Sn
1g0) we can exhibit a final decomposi- 

tion of M with respect to a as 

(5.9) M   =   M0-Ufi+U(50T, 

such that 

(Mo-.^fo))    =    (M0-,5l(a)) 

(tt+0,<7iM)    ^    (fi+,5i(^)) 

((S?)-,</i(<7o))    =   ((S?)-,<7iW), 
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where = denotes an isometry and = denotes a conformal equivalence. Note 

that the isometry is immediate since we do not change the role of MQ in the 

decomposition. The conformal equivalences are possible because (njo,^1(cr0)) 

and (fij,#i(cr)) are each conformally equivalent to Euclidean annuli, AR = 

{x : 1 < \x\ < R}, and any two annuli are conformally equivalent if and only 

if they have the same conformal modulus. Let RQ and R(o-) be the two radii 

such that 

(*C0iM)   -   ARo 

($£,0l(<7))    3    ARM. 

Since <i(cr,(JQ) < ^3, we have \R(cr) — Ro\ < C63, where c = c{k). Any defor- 

mation CTQ —»• cr, where a G ^(CTQ) consists of deforming each dilation, say 

G** to one whose source is close to.g_i(oo) and whose strength is close to 

A_i(cro). Thus the net affect of these deformations is at most a small increase 

or decrease (according to whether the strengths of the dilations increase or 

decrease on average) in the conformal modulus, cm (fi^"). 

On (Sn,g0) there exists a one parameter family of metrics gT G [<70] which 

are each isometric to ~g0 outside of a neighborhood of yo G 5n. These are con- 

structed by using weak centered dilations on (5n, go)- Consider the conformal 

map 

*s» : (Br(yo),9o) "> OS",So). 

Let q = Q>sn{yo), and let DT denote the centered dilation with source q and 

strength |.D!j.(g)| = r. We will use the maps DT when cm(Q+o) > cm(fij) 

and when cm(fiJo) < cm(n^) we use the maps D_r = D'1. Assume that 

our deformation is such that cm(Q+o) > cra(f2+), i.e. i?o > -R(cr), the other 

case will be dealt with in a similar manner. The dilations DT give rise to a 

conformal map *T of (-8201(2/0)r<7o) into (Br(yo),9o) defined by 

*T = $^1 • DT - $5-    :   B2ci (yo) -► Br(y0). 

Define the metric gT by 

9r = K(9o)     in     52ci(i/o). 
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We require that r be sufficiently small so that ^r
T(J52Cl(yo)) C Br(yo). Since 

\I/r is conformal gT = iprdoi for some tpT G C00(B2c1(yo))i Vv > 0-. Let ^ be a 

smooth nonincreasing radial function about yo on S,n, i.e. £(y) = ^(^0(y,2/o)) 

which satisfies 

m = {I for yeBM 
0    for    yeB2Cl{yo), 

Here %0(-, yo) denotes the distance function from y0 taken with respect to g0, 

we assume that 2ci < i(Sn
}g0)^ the injectivity radius, so that £ is well defined 

in Z?2ci(yo) and hence on all of Sn. Define Vv by 

^T = ^x + a-o, 
then Vv € C°0(5n) and ^T > 0. Therefore the metric 

is conformally equivalent to g0 on 5™ and satisfies 

'--{£ 
^r     on    SCl(yo) 
^0     on     SPXE^ivo). 

Therefore we have 

(BCl(yQ),gT)    =    (*r(SCl(y0)),50). 

Thus since gT and ^Q 
are pointwise conformal on 5n, we let 

(5?)"    =   5"\*T(SCl(yo)) 

and obtain 

Thus 

((SJ)-,^)   =   ((50")-,5o)- 

((50")-,5l(c7))   -   ((S?)-,3fo) 

=   ((^)-,5l(ao)) 

as required. Let A(T) = ^fT(BCl(y0)) \ BCl(yo) and define 0+ by 

nt   =   {Mo^JXMiDu^^U^, {50"(a)\(5"\^r(SCl(yo)))} 
0 fc-f 1 
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For an appropriate choice of r this will give the decomposition (5.9). When 

endowed with the approximate solution metric gi(cr), ^ is the union 

(n+,<7i(<7))    =    (0+,5l(a))U(A(r))5o). 

Since (i4(r),50) is conformally equivalent to a Euclidean annulus we have 

cmfa+Mv))   =   R((r) + R(T), 

where R(T) = cm(A(r)^gQ). Finally since RQ — R{cr) < 083 and Ci while large 

relative to ^3 may be chosen arbitrarily small relative to r, we see that r 

may be chosen in a sufficiently large continuum about zero to guarantee the 

existence of a r such that 

^(r) = RQ-R(a). 

With this choice of r we thus have 

cm(fi+,5i((7))    =   i2o, 

and therefore 

(fl+,0i(<7))   -   (nt0,gi(ao)) 

as required. 

The following Theorem summarizes what we have shown. 

Theorem 5.4. Given any admissible conformal structure a G Ss3((To)j there 

exist decompositions of M, 

M   =   M0-Ufi+oU(S0T 

M   =   M0-UO+U(50
n)- 

such that 

(Mo,9i(cro))   =   (Mo,gi(<T)) 

(fi+0^i((7o))   =   (nt,9i(<7)) 

((^)-,5iM)   =   ((s?)-,siW) 

provided that 63 < c where c = c(N,r) is a small constant.   In particular 

gi{cr) G [0i(<To)], and th'us ^e required deformations preserve the conformal 

class. 
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6. DEFORMATION TO EXACT SOLUTIONS 

6.1. Controlled Deformations. In this section we solve the main equation 

(2.1) by finding a unique small deformation of the background balanced ad- 

missible conformal structure <To on 7^ to a new admissible conformal structure 

a G c)^(<7o), such that the solution to the projected problem (3.1) correspond- 

ing to a is actually an exact solution of (2.1). This is done by choosing the 

deformation so that the solution gk, of (3.1) corresponding to cr satisfies the 

hypothesis of Proposition 4.3 and is therefore an exact solution of (2.1). Since 

it was shown in §5.5 that the deformations preserve the conformal class, by 

finding such a deformation for each k = 1,... , N we produce N distinct so- 

lutions in a fixed conformal class. It remains to show that these solutions lie 

in a conformal class which is an arbitrarily small perturbation in C0 of our 

initial background conformal class g on M. This is shown in the final section 

of this section, and thus completes the proof of our Main Theorem (0.1). 

Before showing that such deformations to exact solutions exist we need 

to recall some results from [15] which indicate the extent to which the de- 

formations we employ are "controlled". We fix a fe, 1 < k < iV, and let 

gk = (1 + rf^igi denote the solution of the projected problem (3.1). We 

suppress the dependence on A: in gi and rj but maintain it in the metric gk 

to avoid confusion with the background metric g on M. To indicate the de- 

pendence of gk on the conformal structure a G Ss3(cro) (which determines 

the approximate splution gi = gik(cr)) we write (cr,gffc) G M. We need to 

show that there exists an admissible conformal structure a whose parameters 

n(cr,(7fc) = {b((J,gk),lA{<J,gk)) obtained from a with the solution to the cor- 

responding projected problem gk, are the null parameters (0,0) G X. This 

is equivalent to the requirement that gk satisfy the hypothesis of Proposition 

4.3. Proposition 5.3 shows that the parameters n(cr, gi) = (&(<7,5i),/i(<7,5i)) 

obtained from the deformed conformal structure with its approximate solution 

metric are close to the parameters which prescribe the deformation. We need 

to relate these parameters (6(cr, <7i),/x(<7, <7i)) with the parameters obtained 

from a endowed with the projected solution metric gk, (b(a^gk)^n(a^gk)). 

This is done in [15, Proposition 4.2].   Since the parameters are obtained 
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by evaluating certain integrals over the boundaries of each asr, comparing the 

parameters of a fixed conformal structure (which determines the asr's) with 

two different compatible metrics is purely a local problem in each of the neck 

regions N^. Schoen does this by carefully examining the structure of the 

metric gk on the neck regions and using the estimates he obtains to compare 

the Lie algebra elements Xe(c7, gi) and Xe(a1 gk), where e = ±i is any edge. We 

write Xe = X® + Ce for the decomposition into rotational and pure dilational 

parts. Schoen's result is the following 

Proposition 6.1. There is a constant T4 > 0 such that at each vertex i, 1 < 

i < k, and each edge e = +i, —i, the following inequalities hold: 

\\X0
e(a,gk)\\    <   e""2^, 

\Ce(a,gk)-Ce(c7,g1)\   <   e""2^. 

Remark 6.1. Although it might appear unnecessary, we have retained Schoen's 

notation for consistancy with [15] and in order that the constant T4 is not 

confused with the parameter r used in §5.5. We refer to [15, pages 381-385] 

for the proof of Proposition 6.1. 

The other result we need in order to prove our main Theorem is [15, Propo- 

sition 4.5], which asserts that the rotational parts of the Lie algebra elements 

Xi(o;gk) derived from (cr,^)> are controlled in terms of their pure dilational 

parts. Let X, X0, C denote the fc-tuples of the Lie algebra elements Xi, the 

rotational parts X?, and the pure dilation parts C; respectively. We define 

norms for the latter two quantities by 

||X0||=maxM|-   and     ||C|| = max|C,|, 
i i 

where \\X^\\2 = ~|Tr((X?)2). The following Proposition is then equivalent to 

[15, Proposition 4.5]. 

Proposition 6.2. Suppose that gk is the metric constructed in Theorem 3.1 

with respect to the admissible conformal structure a. There is a small constant 

eio such that 

||XV,S*)II    <   e10\\C(a,gk)\\. 
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We refer to [15, pages 388-390] for the proof of Proposition 6.2. 

These two Propositions now enable us to prove the existence of the required 

deformations. 

6.2. Achieving an Exact Solution. 

Theorem 6.3. Given a balanced admissible confomnal structure CTQ on T^, 

there exists an a £ ©(^(O^O)) C Ss3((Jo), where 6 = (61,62) and 61, 62, 63 are 

small positive numbers^ such that for the metric Qk constructed in Theorem 

3.1 with respect to a, R(gk) = n(n — 1). 

Remark 6.2. Theorem 6.3 is almost identical to [15, Theorem 4.6]. Since it is 

central to our construction we include its proof here. 

Proof. We define a map of the parameter space into itself by evaluating the de- 

formed conformal structure with the metric Qk found by solving the associated 

projected problem. Explicitly, define 

T:^(0,0)    -+X 

by 

T(M   =  n(p(M,^)- 

We write a = V(b, //), so that 

T(6,/x) = Ufag) = (bfag^nfagk)) e X. 

We want to show that these parameters are close to the parameters, (b,fi) 

which specify the deformation. We first estimate the difference \bi(a, g^) — bi\ 

for each vertex i Since Proposition 5.3 shows that (fr((7, (71), /i(cr,#1)) are close 

to (6,/x), we have 

\bi{<r,gk) -h\    <    \bi(o;gk) -bi(<T,g1)\ + IbifagJ -^| 

<    M<T,gk)-bi(*,g1)\ + c(e26l/2 + 62). 
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We use Proposition 6.1 to estimate the first term, as follows 

|&«(<r,0fe)-&i(<7,<7i)l   =   f-^PiiCfrgJi-CfagJM 

< €n-2 {\C(<T,gkU - CfrgiU] + \C(a,gk)+iC(a,g1)+i\) 

< 2eT4. 

Therefore we have 

(6.1) M^g^-bil   <   c(e28{/2 + 62 + eT<). 

We use Proposition 6.1 again to estimate the difference |/xe(<7, <7fc)—^e|, for each 

edge e = —i,+i. Notice that from the definition of the parameters fie(a,gk) 

and i^e, we have 

\ne(atgk)-IMe\   =   Uog(  ' ^\)|. 
Ae{<r,gi) 

K(<y,9k)   =   [-\\X0(a,gk)e\\2 + \C(a,gk)e\^, 

Kfagi)  =  \C{(Ttgi)e\&, 

-\\X0(a,gk)er + \C(a,gk)e\2^: 

Thus since 

and 

we find that 

|Me(0",5fc) "Mel      = 

< 

log 

2 
n-2 

lC(a?fffc)el      \\X°(*,gk)e\\ 
gl  C^^Oe  *   \C(v,gi)e\ 

By applying Proposition 6.1 we can estimate 

C(<T,gk)e <   1 + 
£n-2+T4 

and 

which gives us 

cn-2+r 
< 

\^e{^9k) "Mel      < n-2 log(l + 
2e 7l2-fT4 

|C((7,(/l)e| 
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Proposition 4.2 explicitly calculates \C{a,gk)e\ = ^e"2? thus since a is an 

admissible conformal structure we have 

It is clear from the definitions of V and 11 that T is continuous with respect 

to the product topology ^(0,0). Moreover if we choose 82 > ce7*4 and 81 > 

c(e28i +82 + €T4), then the estimates (6.1) and (6.2) imply that the map I — T 

takes the compact, contractible set Xs into itself. Therefore we may apply the 

Schauder fixed point theorem (see [10]) to find parameters (&, /J) G ^(0,0) 

such that 

(M-T(M = (M, 

and hence 

T(6,/i) = (0l0). 

If we again let a denote £>(&, /i) and let gk denote the solution of the projected 

problem with respect to a, then we have 

nfopjfe) = (b((T,gk)^{(7,gk)) = (0,0). 

We now show that this implies that R(gk) = n(n — 1). Since /i(cr,^) = 0, 

for each edge e, we have 

Kfagk)    =   Ac(cro,</i), 

thus since CTQ is balanced we conclude that for each i, 1 < i < k, 

\-i(a,gk)   =   \+i(a,gk). 

Therefore by the definitions of the parameters Ae(cr, gk) in terms of the Killing 

form J5(-, •), we have 

This can be rewritten as, 

|(C_i + C+iHC_i-C+i)|   =   BiX^ + X^X^XlJ, 
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where each of the elements of o(n + 1,1) corresponds to the pair (cr, gk) G M. 

We write 

C(a,gk)-i - C(<7, gk)+i   =   C(a, gi)-i - C(cr, g^+i 

+{C(G,gk)-i - C(<7,0i)_i) + (C((7,^)+zC(^5fi)+i)5 

and use Propositions 4.2 and 6.1 to derive 

C(<T,(fc)-<-C7(<r,<fc)+i   =   e^TV-i^^TV+i + OCe"-^*), 

which implies that 

KC^ + c^-c^-^)]  =  ii^ + ^ini^-^ii + ce-^ic^ + c^i. 
Therefore, since cr is an admissible conformal structure, for each vertex i we 

have 

|C(a,ft)* •(?.-,-&+,)!    <   a»-a||A?|| H^-A^H+ 06^1^1. 

Thus, by again applying Proposition 6.1 we obtain 

|C(<7,^)i •(<?.-*-<Wi)l    <   ce^dl^^^H + IC^,^),!). 

Since a G ^(CTQ) we know that for each edge e, \qae — qe\ < 83, therefore 

We now use the fact that bi(a,gk) = e2~n'Pi(C(a,gk)i) = 0, or equivalently 

\C((T,gk)i\ = \C(<T,gk)i'q+i\. 

Thus we have the estimate 

|C(<7,5fc)i|    <   ce^WXtfagJiW + M^gJiD + SslCfagJil 

and by choosing e sufficiently small we conclude that 

ICKflOil    <   ce^WXO^g^W. 

Therefore by taking the maximum over all vertices i, 1 < i < k we have 

||C||    <   ceT4||X0||. 

By Proposition 6.2 this implies that 

C = 0    and    X0 = 0, 
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which implies that for each vertex i, 

X(<r,9k)i-  =   0. 

Thus (cr, g*.) satisfy the hypothesis of Proposition 4.3, which we apply to con- 

clude that 

R(9k)    =   n(n-l). 

This completes the proof of Theorem 6.3.   □ 

6.3. The Degree of the Metric Perturbation. To complete our proof of 

Theorem 0.1 it remains to show that the initial metric g on M with positive 

scalar curvature R(g) > 0, belongs to a conformal class which is arbitrarily 

close in C0 to the conformal class of any of our iV solutions, gk> The initial 

perturbation of g which we performed in §1.1, was to find a new metric 5, 

which agrees with g outside of a small neighborhood of some point XQ and 

which is locally conformally flat in a slightly smaller neighborhood. This 

perturbation produces such metrics which are arbitrarily close in C1 to g, and 

converge to g in C1 as the size of the neighborhood decreases. The more 

delicate perturbation is that, of the metric on the spherical end Sft. While we 

may find nondegenerate (in the sense of §1.1) metrics p0, on Sn, which are 

arbitrarily close to go in as strong a topology as we would like, e.g. C*^, the 

effect of such a perturbation will not generally result in the conformal class 

of the corresponding approximate solution [gx] being arbitrarily close to [g] in 

Ck,a. This is because the nondegenerate metric g0, on Sn
1 occurs in (M, gi) 

as the pullback G*x(g0), of g0 under an arbitrarily strong dilation G\. Since 

g0 is not in the conformal class of go, G*x(go) will not, in general, be in the 

conformal class of g0. 

We now show that the metric gi may be constructed so that it is arbitrarily 

close in C0 to a metric gf 6 [g]. Here g is our nondegenerate minimal solution 

metric on M, R(g) = n(n — 1) and we let g\ denote the approximate solution 

metric which is constructed as in §1.5 from the balanced conformal structure 

Go on TJv by using a particular perturbation g0, of the round metric go on Sn. 

Note that by §1.6 and §5.5 each of our N solutions gk where k = 1,... , iV, 

are in the conformal class of gi. 
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Proposition 6.4. Given any e > 0, let g0 be a metric on Sn which is locally 

conformally flat in the neighborhood of a point, which belongs to a nondegen- 

erate conformal class, and which satisfies 

R(9o)   =   n(n-l) 

\\9o-9o\\co    <   c, 

and letgi be the metric constructed from do, the balanced admissible conformal 

structure on TN, using the metric g0 as in §i.5. Then there exists a metric 

g' G [g] which satisfies 

Il^i-S'llco    <   c. 

Proof. We take g1 to be the metric constructed in the identical manner as #i 

via CTQ, except that we use the standard round metric go on Sn rather than 

the metric g0 on the spherical end SQ . The fact that g1 G [g] is immediate 

from the construction of the approximate solutions, g' differs from g only in a 

small neighborhood J5r(xo) C M, where g is conformally flat. The metrics gi 

and gf are isometric in M\SQ. The result does not follow immediately from 

the assumption on the metrics g^ and g^ since SQ and MQ are separated by 

an annulus of large conformal modulus. Thus the effect of the construction of 

gi and g' on these metrics is conformally equivalent to taking the pullback of 

the metrics g^ and g0 under a strong centered dilation GA- The strength A of 

this dilation depends on AT, the number of solutions we construct and on the 

number e used in the definition of an admissible conformal structure (1.6). In 

particular A tends to infinity as either iV tends to infinity or as e tends to zero. 

Consider the metrics g\ and 5A on 5n defined by 

gx = Gl(9o)     and    gx = G*x(g0), 

and let h and h\ be the symmetric (0,2) tensors on Sn defined by 

h = go-9o    and    hx = g\- gx- 

Notice that Gx is a conformal diffeomorphism of {Sn^go)J 

9x   =   \G'X\
290, 
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where \G'X\ is the linear stretch factor of the dilation G\. This will not be the 

case for gx = G*x(g0). We may compute the C0 norms of h and h\ with respect 

to a fixed metric, for example go, by writing these tensors in stereographic 

coordinates on Sn \ {#}, where q is the source of G\. This computation easily 

shows that 

\\hx(x)\\   =    \\h(\x)l 

therefore 

(6.3) HMco    =    IHIco. 

Thus since h = go — goi we have ||/i||c0 < ^5 the desired estimate follows from 

(6.3). This completes the proof of Proposition 6.4.   □ 
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