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EVOLUTION OF HARMONIC MAPS WITH
DIRICHLET BOUNDARY CONDITIONS

YUNMEI CHEN* AND FANG HUA LIN**

INTRODUCTION

In this paper we shall study a left over problem concerning the heat flow of
harmonic maps on manifolds with boundary. Let (M, g) be a compact smooth
m-dimensional Reimannian manifold with nonempty smooth boundary oM,
and let (IV, h) be a compact smooth n-dimensional Reimannian manifold with-
out boundary. We denote M UM by M. Since (N, k) can be isometrically
embedded into an Euclidean space R¥, for some k > n, we may view N as a
submanifold of R.

In local coordinates on M, the energy of a map u: M — N — R* is given
by

1 ou' ou’
E(u) = = op

here and here after (§°°) = (gop3)',9 = det (gap),1 < @, 8 < m and a sum-

mation convention is employed.

The Euler-Lagrange equation associated with the functional (0.1) is
(0.2) Au = A(u)(du, du) ,

where A denotes the Laplace-Beltram operator on M and A(u) is the second

fundamental form of N in R* at .
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We shall concern with the following evolution problem for a map u : M x
R+ — N .
0
(0.3) 8—1: = Au — A(u)(du, du), for (z,t) € M xR, ,

(0.4) u(z,0) =wup(z), forzxe M, and u(-,t){aM = uo(-)iaM .

For simplicity, we assume also that u, is smooth on M. It will be clear later
on in the paper that the C** smoothness of M,OM,uy and N are sufficient
for all purposes.

It is well known that (0.3)-(0.4) admits a unique smooth solution locally.
The global existence of a smooth solution to (0.3)-(0.4) can be shown in the
case that the Reimannian curvature of NV is nonpositive. (see, e.g., [H] and
references therein). Without such curvature hypothesis on N, one can, in
general, construct examples of finite-time blow-up solutions of (0.3)-(0.4) even
in the case that m = 2; see [CDY].

On the other hand, Chen and Struwe [CS] established the global existence
and partial regularity of weak solutions of (0.3) and (0.4), under an addi-
tional hypothesis that OM = ¢ (cf. also [S]). Here we have the following

generalization of their result to the case that M is nonempty.

Theorem. There is a global weak solutionu : M xR, — N to (0.3)-(0.4) with
Oyu € L2(M x R,) and Vu € L®(Ry, L*(M)) which is smooth off a singular
set ©. Set ¥ is closed in M x R, and has a locally finite m-dimensional
Hausdorff measure with respect to the parabolic metric (§((z,t), (y,s)) = |z —
yl+ V[t = s).

Moreover, as t — +o0o suitably, u(-,t) converges weakly in H'(M, N) to a
harmonic map vy : M — N with Ux|om = uolam, which is smooth off a set
Yo C M whose (m — 2)-dimensional Hausdorff measure can be bounded in

terms of c*-norm of uy and E(ug).

As in [Ch], one can show that X; = {(z,t) € X} has finite (m — 2)-
dimensional Hausdorff measure for each t € R,.

The proof of the above theorem follows from the same line of argument as
that in [S] and [CS]. There are two principal difficulties. The first one is to
establish the monotonicity inequality near the boundary M x R,. Here we
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use, besides the integration by parts trick from [C], some careful estimates
on approximate solutions. The second difficulty is to prove the small energy
regularity theorem; see [S]. In order to use the Bochner-type inequality for
the energy density of the map and mean-value inequality for subsolutions of
the heat equations to derive L*°-estimates on the gradient of maps at those
points near the boundary M x R,, we go back to the original equations
for approximate solutions and obtain first the gradient estimates at boundary
OM x R,.

To simplify the presentation, we consider first the case N is a standard
sphere in an Euclidean space. The monotonicity inequality and the small
energy regularity theorem are proven in Section 2 and Section 3, respectively.
The general N can be handled after some necessary modifications, and this is

done in the final section.

1. MONOTONICITY INEQUALITY

When N is the unit sphere S™ in R™*!, we consider, as in [CS], the following

approximate solutions: u =u*, k=1,2,...,

u—Au+k(u? —1)u=0 (z,t)e M xRy

(11) u( . ,t)laM = ’LL0|3M te R,
u(z,0) = up(x) reM
For any fixed £k = 1,2,..., problem (1.1) has a unique smooth solutions

u = uF with duk, V2u* € LP((0,00) x M) for all 1 < p < oo. Note that
since |uo|(z) = 1, then |u*|(z,t) < 1 by the maximum principle for parabolic
equations; see[LSU]. But we do not need such precise estimates. In general,
any uniform L*-bound on u* is sufficient for our purpose.

For fixed k, u = u* satisfies also the following energy estimate:

Lemma 1.1. Let ug € H(M,N). Then

t
(12) [Ivupan+ [ (12 an + [ [l ansat
M M 0 M

=/|Vu0[2dM, forallt>0 .
M
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Let po be a suitably small positive constant such that for any p, € M, one
can choose a coordinate system {z,} in such a way that the set B} (po) =
{p € M : distp(p, po) < po} corresponds to the half ball Bf ={z e R™,|z| <

Po, Tm > 0}. For a regular solution u = u* of (1.1), we define
1 k
er(u) = igo‘ﬁuzauxﬁ + Z(lu]2 -1)%;

Guola,) = {dm(to — 1)} "2exp { "47—-—!)} ,

where t < to, 2y = (%0,%) € M x (0,00);
G(z,t) = Go(z,1) ;
TE ={(z,t): c € R}, —4R* <t < —R%} ;
TH(R) = f ex(w)GH2(2)\/g(2) dzdt ,

T}
here ¢ € C§°(B,,),0 < ¢ < 1, ¢(z) =1 for |z| < po/2. Thus ¢ may be chosen
so that ||¢]|cz < C(M).

Theorem 1.2 (Monotonicity Inequality). Suppose that
u=u*: B} (0) x [-T,0] —» R™*!

is a regular solution of (1.1) (we may assume also that T < pz). Then, for
anyO<R<R0§\/T/2, we have

(1.3) T*(R) < exple. (R~ — R'™°)| T (Ry)
1
+c Ry —R'")(Ey+1), foranyee€ (O, 5) .
where Ey = E(uy), and c, is a constant depending only on M, N and c?-norm

of ug on OM. Here c, may depend also on Cl-norm of ¢ which, after suitable

choices of ¢, is a constant depending only on M.

Proof. For simplicity we present the proof for the case that M = R} = {z €
R™ : z,, > 0}. In this case, we may choose ¢ to be identically equal to 1. As
in [CS], the general case follows easily.
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Let ug(z,t) = u(Rz, R%) and hgr(z) = hg(z’) = wy(Rz'), where z’ =

. 2
T1,...,Tm_1). Denote Vg = —ug = (z - Vup + tatuR). Then,
dR R

vH(R) = 5 / {|W|2 o (ful’ - 1)2}G’dwdt
T+

2 -,
= % / {[VuR|2 + k—?——(luR[2 - 1)2} Gdzdt
T

(¢ =1 in this case). Thus

d

UH(R) = / VVaVurG dz dt + / kR2(Jug|? — 1)upVaGdz dt

T T
(1.4) + / %ﬁquﬂ? —1)%Gdzdt
Ty
A
=T+ IT+1I11.
It is obvious that II11 > 0. For the first term, we have
(1.5)
I= /V'LLRV (VR - —(mehR)) dedt'l‘ /VUR V( Vz/hR> Gdzxdt

—/VuR~ ( v, hR)Gdazdt—/AuR (VR—RV hR> G dzdt

z - Vug
—/ - (VR——RVm/hR>Gd:ﬂdt.

-+
Tl

Here we have used the fact that VG = %G’. Hence by equation (1.1), one has

. !
I+1II=— / (&uR +Z Z’“R) (VR — %Vx,hR) Gdz dt

+
Tl

!
+ /VuR v (%Vz,hR) G dx dt
+

'
+ /k?RZ (I’U,R|2 - ].) UR (E

T

. VxlhR> Gdzdt
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_ R_, R x'
T} T

+/VuR- ( A hR>Gda:dt

2A+B+C+D.

We have A = —/ Byt >0,
T1+ 2t

!
B= / %VR (3 : V,,,hR) G dz dt
T+

R
A
T+
A A
=7 €1,

2

Gdzdt

'
and D > —/|VuR|2dedt—/‘V (% . V,/hR)
+ +

Z —\If+(R) —Cy .

where ¢; < ¢(m)R||Vuol|2(ary < e(m)|[Vg||7 (ary (We shall assume also that
R <1), and

¢ < e(m) (IVuollim oy + B2 1V2u0ll3mar)) -

To prove Theorem 1.2, it suffices to show

(1.7) C> —izi—%(w+(R)+1+Eo), for e € <0, %) ,

and for some constant cs depending on M, N, and ug. In fact, (1.7) and above

calculations imply that

; ' z ' ( 1)
. > - — -
(1.8) i (R) > =4 (WH(R) + 1+ Eo), fore€ (0,5



EVOLUTION OF HARMONIC MAPS 333

and with ¢; = max{c¢; + ¢3, c3 + 1}. The conclusion of Theorem 1.2 follows
form (1.8) by a simple integration. O

The remainder of this section is devoted to showing (1.7) or equivalently

the following estimate:
(1.9)
2 2 z’ A csoos
/kR (junl* = V) un (5 - Vo) Gdodt | < 5+ 22 (UH(R) +1+ Fy)
T

Lemma 1.3. There is a constant cs depending only on M, N and ug such
that, for any X € (0,1),

A
(1.10) /kR2 [lunl® = 1] [usl*G dzdt < T4+ (@ (R)+1)
7y

Proof. Multiplying the equation(1.1) by ur¢(|ur|®* — 1)G, where ¢ € C=(R),
#(0) = 0 and

we obtain that

/ Byun - urd(|unl’ — 1)G dedt + / VunV(urd(|unl® — 1)G) dz dt
T+ TF

+ /1c1~22(|uﬂ|2 — Djunl2é(|url? — 1)Gdzdt =0 .

T

(Note that ¢(|ug|?> — 1) = 0 on the boundary z,, = 0).
Also we have

[ VurV(urd(|url’ — 1)G) dz dt
7

— / Vurlé(jud — 1)G da dt + 2 / lunVunl?d (Junl? — 1)G da dt

(Y T

" / - .23% - upd(|url’ —1)Gdzdt .

-+
Tl
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Thus
/kRZ | lurl* — 1| lurl*G dz dt = / + /
" T 0{llerP-11<4}  TFO{llurl?~1]>%}
< / IUR|2R2dedt-|— /kR2(luR|2 _ 1)¢(|UR|2 _ 1)|URI2G )
T T}

Since |ug| < 1 (bounded by a constant will be sufficient), the first term on the
right-hand side is bounded by ¢(m)R? < ¢(m).

The second term is, by above calculations, given by

B / 2t up + = - vuRuRdJ(luRIZ— )G du dt

2t
T
- / |Vug|?¢(Jug|® — 1)G dx dt — 2/ lug - Vug|*¢'(lugl]® — 1)G dz dt
TF TF
5—/§VR - urd(funl* = DG dwdt — [ [VurPg(unl® - )G dzdt
T T+

and hence, it is bounded by, for any X € (0, 1),

A [ RVg?

1 [ R A 1
+ —_ - _— 2 = — + —_
VR + 7 | = G+)\/_2t|uR| Gdzdt = JA+UH(R) + se(m)R.

T T
This proves (1.10). O

Lemma 1.4. There is a constant cg depending only on M, N and ug such that

(1.11)
/kR2 |lug|* — 1] Gdz dt < %4 +ceA"H 1+ UT(R)), for any X € (0,1) .

oy
Proof. Since(|ug|? — 1)? = (|Jug|® — 1)|ur|* = (Jur|* — 1), thus
| Jugl® = 1] < (Jurl® = 1)* +[|url® = 1| Jug|® .

Therefore (1.11) follows from (1.10) and the definition of U*(R). O
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Lemma 1.5. For any € € (0, %), there is a constant c; depending on M, N
and uy such that

(1.12) / kR?|ugl? | [url? - 1| |2°G dz dt
T}
< %4 + L1+ B+ VHR)/RE, for A€ (0,1).

Proof. We follow the same line of proof as that for Lemma 1.3. Multiplying
(1.1) by urd(|ur|? — 1)|z|2G, to obtain

/ kB[ Jurl® — 1 [ugl?le/?G = / +
T THn{llurl?-1<E} TP n{llurl?~11>$}
< / R2|url)?G de dt + / kR (Jurf? — Do(|jurf? — 1)|zPGdzdt .

-+
Y T

The first term is again bounded by c¢(m)R? < ¢(m), and the second term is

now given by

—/ %VR -upd(lugl® — 1)|z|*G dz dt —/ [Vug|*¢(|ug|? — 1)|z|?G dz dt
TF T+

—2/ lurVur|?¢' (|url® — 1)|z|*G dz dt — 2/:1; -Vug - upg(|lug|* — 1)G dz dt
T TF
< / O\ Vur *|z|?G da dt + / lur|?C dz dt

T+

T

2|,.14
3 —2t|uR| |z|*G dz dt

‘A [ R _, 1 [ R
T Ty

< -Z-A+ c(’;) +2 / \Vur|?|z|?G dz dt .

Tt
Finally we estimate the last term [+ |z|?|Vur|*G dz dt as follows:

-1
/|x|2|VuR|2dedt=/ / |z|?|Vug|*G dz dt

T+

A 4 |z|<

R:/2 T >0
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-1
+/ / (22| Vur|2G dz dt .
-4 |z|>R-¢/2,2,,>0
The first term is clearly bounded by R~*U*(R) (see the definition of U*(R)).
The second term is bounded by

-1 —R?
c(m)R‘Ee‘Tlﬂf/ /|VuR|2da:dtSc(m)R‘e‘me'”: / |Vu|? dz dt

-4 RY . —4R?

< ¢(m)R™"™ 2™ E(uq) .

Since 0 < R < 1, the right-hand side of the above inequality is bounded by
c(m, e)E(up). The conclusion (1.12) follows. O

Proof of (1.9).

xl

| /kR?(|uR|2 ~ 1ux (E . Vx,hR> G dz dt |
7y

< (IVuolli=y + 1) [ kRYus [lunl® = 1] folG do dt
T}
S (”VUOHLN(M) + 1) / kR2 | |'U,R|2 - 1! [1 + |uR|2|x|2] Gdzxdt .
Ty
Applying Lemma 1.4 and Lemma 1.5, one has the right-hand side of the above
inequality is bounded by

CG+C7

A
A
< i cs(1+ Eo + UF(R))/R° .

A
1V uollzman + 1) |34+ 2501+ By + WH(R)/R], for all A€ 0,1),

The latter inequality follows by letting A = (1 + || V|| (a)) !, and ¢s =
cs(M, N, up). This completes the proof of (1.9) and hence the proof of Theo-
rem 1.2. We note that one may take ¢ = ;11 in Theorem 1.2. O

2. SMALL ENERGY REGULARITY THEOREM

Having established the monotonicity inequality for all points on M (for

points inside M we refer to [S] and [CS]), we now want to prove the small
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energy regularity theorem for solutions of (1.1) on M. We shall consider only
those points at the boundary OM x R,. If a point p, is at the interior of M
and the ball B (p,) = {p € M : distp(p,po) < po} is cut by M, the result
can be proved in the same way as that for the boundary points. We shall also
refer to [S] and [CS] for the case that the ball B! (po) is contained entirely in
M.

Denote Pgr(z¢) = {(z,t) : |z — zo| < R, |t — to| < R?}, Pr(0), and P =
Prn{z, > 0}.

As in the previous section, various constants should depend only on M,
OM, N and possibly FEy and ug|ap. We have the following

Theorem 2.1. Let u = uf : B} x [-T,T] — N be a regular solution of (1.1)
and assume that T < pf < 1. There exist constants €o,6 € (0,3) and c such
that if for some 0 < R < min(eo, VT/2), the inequality

(2.1) UH(R) < &
is satisfied, then there hold

(2.2) sup e(ur) < c[(6R) ™2 + ||uollez(ann)] -

Pﬁll
Proof. We prove (2.2) by a contradiction argument. Suppose Theorem 2.1 is
not true, after various normalizations as those in [CS] and[C], one is lead to
the existence of a sequence of solutions u; of (1.1) in P;" with the following
properties:
(i) -g—tui — Au; + ki(Jui|* = 1)u; =0 in Py,
(i) ex(us) = 3lAuwl* + & (lwil* —1)* < 4in P,
(iii) ex(u;)(z:,0) =1, withz;, >0 asi— oo,
(V) wil,pmee = hi(z) with |V?hi| < €}l|V?uo|lroe(ory — 0 ,|Vhy| <
&il| Vuol| Lo om),
(v) Jpr ex(wi) dzdt < e; — 0% as i — oo,
(vi) |hi| =1 (cf. [CS] and [C]).
Moreover, via the calculation of [CS], we have the following Bochner-type

inequality for ey (u;) :

(2.3) Orex(u;) — Aex(u;) < coer(u;) € P .
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We now would like to obtain a contradiction from (i)—(vi) and (2.3).
To do so we may also assume that k; > 400 in (ii). For, otherwise we would

obtain from (i) and (iv) W??-estimates for u;, that is,

(2.9) » ||v2ui||LP(P1+/2) + |Ivui||LP(Pl+/2) <clp),

for 1 < p < oo (see [LSU]).
Moreover, by (v) and standard estimates for semilinear heat equations (cf.
[LSUJ), one has

2
(2.5) Slip ex(u;)) <c (5,- + HVh"”C%aM)) <cg; .

P1/2

The latter inequality contradicts to (iii).
Now since k; > 400, (ii) implies in particular that
1
2
U;|" — 11 < =
1] < &

We introduce a decomposition (polar decomposition) for u; = R;W;, R; =
|u;|, W; = I—Z-Ll both are now well-defined. Moreover

(26)  |[VuifP= RIVWi+|VR[?<4€ P+ and R;c E 1] .

From (i) we also derive the following equations

OW; ) VR, 3
(2.7) o~ AW = [VWi*W; - 2 7o VW=,
and

Since |VW;| < 7, |%31| < 5 by (2.6), we obtain from (2.7) that (cf.[LSU]])
(2.9)

sup [VWi|* < ¢,

+
Pz/a

/ VWi + ||VWi||ip(pl+) +|Vhilziorn | 5 for p=2m
P+1

L .
<ce* —0 asi—o00.

1
In particular, we have ||VW;|| Lo (onrx(-2,0)) < € — 0.
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Next we look at the equation for p; =1 — R, :

Op;

(2.10) =

— Ap; = Ri| VWi — kipiRi(1+ R;) .

Since 0 < p; < 1in P; and p; = 0 on {x,, = 0}, we have

at

j—
(2.11) { P

Hence, for z € Py},

pi(x) §c( / pi+€?>xm, (cf. [LSU])

+
Pz/s

1

< cTme™ by (v).
Therefore, we also have

(2.12) IVoill oo onexi-2,0p = IV Rill oo omrx-1,0p < &7 -
Let € = max{0, e (u;) — 205173“'}, then (2.3) implies that
06 — Ae < e, in be .

Moreover, above arguments show €|, _o = 0. Thus the Moser’s estimate for

the linear heat equations implies that

(2.13) supé <c / e<c [ ex(w;) <Lecei,
Pl-‘}‘i P+ +

1/2 P1/2

which goes to zero as i — oo.

(2.13) is an obvious contradiction to (iii), and thus we complete the proof
of Theorem 2.1. O

Remark 2.1. The proof of the main theorem (stated in the introduction) is
now identical to that in [S], [C], and [CS], and therefore we omit the details
here. ’
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3. GENERAL TARGET MANIFOLDS

Here we shall consider the target manifold N being a compact smooth
Reimannian submanifold of R™*¢ without boundary. Instead of (1.1), we con-

sider approximate solutions, u = u*, k = 1,2,... , to following equations: (cf.

[C] or[CS])

c 12
(3.1) Bu — Au + k' (dist?(u, N))% (M) ~0,

for (z,t) € M x Ry, and

(3.2) u(z,0) = uo(z) , u( -,t). = uo(- )’BM , forteRy

oM
where x is smooth monotone function on R, with x(z) = s for 0 < s <
8%, x(z) = 26%, for s > 26%. Here 6y € (0,1/2) is a positive constant so that
the nearest neighbor projection 7y : R*+¢ — N is well-defined and smooth in
a 26y-neighborhood of N. Moreover, we may also assume that |Dmy(u) —
Py(u)|| < 1/4, for u € R**¢ dist(u,N) < 26y. Here Py(u) is orthonormal
projection of R™ onto T,y N, the tangent space of N at 7y (u).

For each fixed k = 1,2,..., it is again standard to show (cf. [LSU])
that there is a unique smooth solution of (3.1)—(3.2). Moreover, it satis-
fies the energy identity (1.2) (with the term % [, (lu|* — 1)®dM replacing by
k[0 x(dist?(u, N)) dM).

As in [C] and [CS], we define

1 k. ..
ek(u) = §gaﬂuza *Uzg + ZX(dlStz(ua N))

and U*(R) as before, etc... We claim W*(R) satisfies the monotonicity in-
equality (1.3).
To see this, we follow the proof of Theorem 1.2. As in (1.4), we have (for

M = RY case)
(3.3) EC%\II*(R) > / Vi - VunG da dt

+
Tl

+ / %kszf(disﬁ(uR,N)) (Edﬂdistz(uR,N)> VoG daz dt

T
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Applying integration by parts as in (1.5) and (1.6), we then obtain

(3.4) 2%@wm2A+B+O+D,
where
R,
—/ﬂVRGda;dtzo,
T
A
B_>_Z_01a

D Z —-‘I’+(R) —C2 .

Here A, B, D are as in (1.6) before, and the absolute value of C is given by
the left-hand side of (3.6) below.
Hence the issue is to verify

A 1
(3.5) Cz2-7- 'R—(‘I’J'(R) +E+1), €€ (0, 5)

where ¢;, c; and c3 are constants as before.

(3.5) is equivalent to

/kszl(dISt (uR,N))( —dist (uR,N)) =V hgGdzdt

B0 | Vuollzeon, / kR (- )dist(up, N)|z|G dz dt

s% + %(qﬁ(R) +Ey+1).

For dist(ug, N) < 26n, we let diudist")(uR,N) = 2v(ug)dist(ug, N). Then
v(ug) is a well-defined unit vector as long as dist(ug, N) > 0. Moreover,
v(ug)dist(ug, N) is a smooth function of ug, for up in 2§y-neighborhood of
N.

We let ¢(s) be a monotone increasing, smooth function on R, with ¢(s) =
for s < ﬁ and ¢(s) = 1 for s > ;. As in Section 2, we would like to mul-
tiply equation (3.1) by ¢(dist? (uR, ))V(uR)x (dist?(ug, N))G. Since this is a
smooth function of ug and since it is supported on {up € R™** : dist(ug, N) €
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[, V26n]} we should find an equation for dist(ugr, N) in Q = {(z,t) € T} :
0 < dist(ug, N) < V265}.

Let ur = vp+ (ur —vr),vr = "y (ug). Then (ugr —vg) = v(ug)dist(ug, N),
for (z,t) € Q. Denote d = dist(ug, V), then d satisfies

(3.7)

dy — Ad — d{Av(ug),v(ur)) + R*kX'(d*)d — (A(nn(ug)), v(ug)) = 0 in €.

(Note that (3.7) is simply the component of (3.1) in v(ug) direction.)
We note that —(Av(ug),v(ur)) = |[Vv(ug)|? and that

|Vug| < || Dy || Lo [Vur| < C|Vugl.

Hence |V(ugr — vr)| < C|Vug|, and [(Ary(ur), v(ur))| < C|Vug|?. The last

inequality follows from a direct computation, see e.g., (3.15) below.

We therefore have

(3.8) d; — Ad + (|Av(ug)|® + X'(d®)kR?) d < C|Vug|*, for (z,t) € Q.

Now let us estimate first the quantity

IA

IA

>

/ k R2dist (ug, N)X’ (dist2(uR, N)) G dz dt
T}
R?*||X ||~ G dz dt
T n{dist(ur,N)<1)
+ / kR2dist(ug, N)¢(dist®(ur, N)) |x' (dist*(ug, N))|*G dz dt
Tn{i<dist(up,N)<bn}

[ Il ==
6N

+ / kR?x(dist*(ug, N))G dz dt -
7
2
LY (R) + o + / kR dist(ur, N)p(dist(ur, N)) [ (dist*(ur, N))|* G dzdt
N

+
Tl

ra(i+ ).

Therefore, via x’ > 0,

+
/ kR2dist(un, N)G dz < I + 2¢ (1 LY 5(R)) .
N

+
Tl



EVOLUTION OF HARMONIC MAPS 343
To estimate I, we multiply equation (3.8) by ¢(d*)x'(d*)G to obtain

(39)  [(d - Ad)d(- X ()G dzdt+ [ 9(-)((+)*kRMG dadt

< / o/ Vul$(-)x'(-)G dz dt < cT*(R)

Tt
But
[ ~Ado(-)x()Gdadt
T
= [ Ivarex'()6+26( ) dGdndi+ [ 2 Vdg(x()G
T T,

Since |Vd|? < |V(u — myu)|? < ¢[Vu|? we obtain, from (3.9), that

I < cU*(R) — / (dt + %Vd) (- )x'(-)G
(3.10) 7

< cUH(R) + %A + C(:’) , VAE(0,1).
Here we have used the fact that
2
R
up = d(ur)v(ur)+7n(ur) and |d;+ %Vd < o |z - Vug + 2t dur|® /R2.

Similarly, if we multiply the equation (3.1) and (3.8) by |z|*G¢(d?)x'(d?),
then we obtain, as in Section 1, that

(3.11)
/kR2dist(uR,N)|m|2G dz < %A + c(;n)

This completes the proof of the monotonicity inequality.

+—1%(\1/+(R)+1+E0) .

Finally, to the end of the paper, we outline the modification for the proof
of Theorem 2.1 for general N. As in the proof of Theorem 2.1, it reduces to
show the following is impossible (cf. also [C] and [CS]): there is a sequence of
u® solutions of (3.1) such that

i s .2/
() 6811 — Ayl +k,~x’(dist2(ui,N)di(gli(;—,]\—]‘)') =0in p1+,
U

(i) ex(u?) = 1|Vu!|? + Eix(dist*(u?, N)) < 4, in PJ,
(iii) ex(u')(zs,0) = 1, with (z;,0) € Pt and x; — 0, as i — oo,
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(iv) ©sn=o0 = hi(z") , |VRi|lLeo(orr) + | V2Rl Leoorry < 6, = 0,
(v) Jprex(u')dzdt =e; —0asi— +oo
(i) hi(z) €N .

Moreover,
o i i i +
(3.12) Eek(u ) — Aer(u') < coe(u’) € P

Also k; — +00 as i — o0.

As (2.7) and (2.8), we consider the equations satisfied by 7y (u’)(z,t) € N
and u* — 7wy (u*) L Try(ui)N. To do so we choose a point (zo,%p) € P; and
coordinate systems of R"** so that near wyu(zo,t) = 0 € R**¢, N can be
represented by a graph G : Bg(0) — R where 6§ € (0,6n/4) is a constant
depending only on N. Moreover, G satisfies

N 1 (B(0) x [~46,46]) = graph(G) .
G(0) =|VG(Q)| =0,
and
V2G| + |V*G| < e, on BE(0), with cyds < % .

Since (ii), we may assume that u(P;") C B;(0) x [—38,34].

We also choose a smooth orthonormal from {ey,...,e,4,} along graph G
so that e;(0) = (0,...,1;,...,0), and that {e,...,e,(p)} span T, N.

Let us define a diffeomorphism F : u € R*** — V € R*** near 0 € R**¢ as
follows:

V; =€;(0) - mn(u) , forj=1,...,n, and
Vi =ej(myu) - (u—myu), forj=n+1,...,n+2.

(3.13) {

(Note that 7y (u) = (Vi,...,V,, G(V4, ..., V,)).)
Equivalently, one has

n+t
(3.14) u=Viy.or Vo, G(Va, o, Vo)) + Y Viei(V),

Jj=n+1

here e;(V) =e;(Vi,..., Vo, GV4, ..., Vo).
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Now we calculate the equation for u*—myu® and myu® at the point (o, %) €

P;". We may also assume
u'(2o,t0) = (0,...,0,d;),d; = [u'(2o,t0) — Tau*(0,t0)| >0

for simplicity. At (zo,t), (i) reduces to

ovT
ot

(3.15) (I, + diMy)—— — (I, + d; Mp)AVT

=M (VVT,VVY) +d;M, (VVT,VVT) |

and

(3.16)
ov+

ot
where VT = (‘/“ cee ,Vn), V'L = (Vn+e, oo ,Vn+e), diMh diMz, diM4, diMﬁ are
smooth matrix-valued functions of V' and is bounded by cd; at (zo, to), (d; =

— AV = My(VVT YV T) + d;Ms (VVT,VVT) — kx'(d?) dienye(0)

|Tnut — u?]), M3 and Ms are also smooth matrix-valued functions of V. Note
that all M;’s depend only on N, hence the function G definition N, and
bounded by ||V2G| 1~ + ||[V3G||L=, and also that |[VV| < ¢|Vui|.

From (3.15) one thus concludes that 7yu® satisfies an inequality of the form

’Ad(wNui)
(3.17) dt
A= L~ + ||B = L]z~ < dylu* —tyu’| =0 asi— oo .

— BA(myut)| < en|Vanu'l, (z,t) € P with

Moreover, myu'|;, =0 = hi(z’). Hence the W?P estimate for linear parabolic

equations and (3.17) imply that

HVWN(ui)MQLw(P;;Z) S 05(/ |V'U,Z|2 + ”Vh,”il) S 65(€i +5z) —0 asi—00.
P

On the other hand, if we take the component of equation (3.16) in e,4,(0)

direction, we obtain

(3.18) %‘; — Ad < —ky'(d)d + | Vul?
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whenever d(z,t) > 0, (cf. also (2.10)) and (z,t) € P; since d|,,.—o = 0, we
obtain from (3.18) that

(3.19)

d(z,t) < d(z,t) in Py where

2d~— Ad = c|Vu)®* in P} and

at
d=d on 8,P; — {t =0} .

It is easy to see, from (ii) and (v) that

(3.20)

rl L . .
d<cel'Tm —0, inP,, asi—oo,

and therefore

er(u') -0, for—gStSO.

Tm=

The desired contradiction follows as before.
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