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EVOLUTION OF HARMONIC MAPS WITH 
DIRICHLET BOUNDARY CONDITIONS 

YUNMEI CHEN* AND FANG HUA LIN** 

INTRODUCTION 

In this paper we shall study a left over problem concerning the heat flow of 

harmonic maps on manifolds with boundary. Let (M, g) be a compact smooth 

m-dimensional Reimannian manifold with nonempty smooth boundary <9M, 

and let (iV, h) be a compact smooth n-dimensional Reimannian manifold with- 

out boundary. We denote M U dM by M. Since (AT, h) can be isometrically 

embedded into an Euclidean space Mfc, for some k > n, we may view TV as a 

submanifold of Rfe. 

In local coordinates on M, the energy of a map u : M —> N ^-> R^ is given 

by 

M 

here and here after (ga(3) — (^a/?)-1,^ = det(5a/g),l <(*.,&< m and a sum- 

mation convention is employed. 

The Euler-Lagrange equation associated with the functional (0.1) is 

(0.2) Au = A(u)(du, du) , 

where A denotes the Laplace-Beltram operator on M and A{u) is the second 

fundamental form of A^ in R^ at u. 

*The research is partially supported by NSF grant DMS#9123532. 
**The research is partially supported by NSF grant DMS# 9149555. 
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We shall concern with the following evolution problem for a map u : M x 

(0.3) — = Au - A(u)(du> du),    for (a?,t) E M x R+ , 

(0.4)      i4(a;,0) = tzoOc),    for x € M,    and    i4(-,i)       ^-UQCO 

For simplicity, we assume also that UQ is smooth on M. It will be clear later 

on in the paper that the C2,Q smoothness of M, 9M, ^o and N are sufficient 

for all purposes. 

It is well known that (0.3)-(0.4) admits a unique smooth solution locally. 

The global existence of a smooth solution to (0.3)-(0.4) can be shown in the 

case that the Reimannian curvature of N is nonpositive. (see, e.g., [H] and 

references therein). Without such curvature hypothesis on JV, one can, in 

general, construct examples of finite-time blow-up solutions of (0.3)-(0.4) even 

in the case that m = 2; see [CDY]. 

On the other hand, Chen and Struwe [CS] established the global existence 

and partial regularity of weak solutions of (0.3) and (0.4), under an addi- 

tional hypothesis that dM = (p (cf. also [S]). Here we have the following 

generalization of their result to the case that dM is nonempty. 

Theorem. There is a global weak solution u : MxR+ —> N to (0.3)-(0.4) with 

dtu G L2(M x M+) and Vu G L00(M+,L2(M)) which is smooth off a singular 

set E. Set E is closed in M x R+ and has a locally finite m-dimensional 

Hausdorff measure with respect to the parabolic metric {8((x,t), (y^s)) = \x — 

y\ + v/Fr^f)- 
Moreoverj as t —> +oo suitably, u^-^t) converges weakly in Hl(M,N) to a 

harmonic map UOQ : M —> N with ^ooldM = ^olaM? which is smooth off a set 

EQO C M whose (m — 2)-dimensional Hausdorff measure can be bounded in 

terms of c2-norm of UQ and E(UQ). 

As in [Ch], one can show that Et = {(#, t) G E} has finite (m — 2)- 

dimensional Hausdorff measure for each t G M+. 

The proof of the above theorem follows from the same line of argument as 

that in [S] and [CS]. There are two principal difficulties. The first one is to 

establish the monotonicity inequality near the boundary dM x M+. Here we 
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use, besides the integration by parts trick from [C], some careful estimates 

on approximate solutions. The second difficulty is to prove the small energy 

regularity theorem; see [S]. In order to use the Bochner-type inequality for 

the energy density of the map and mean-value inequality for subsolutions of 

the heat equations to derive L^-estimates on the gradient of maps at those 

points near the boundary dM x M+, we go back to the original equations 

for approximate solutions and obtain first the gradient estimates at boundary 

dM x R+. 

To simplify the presentation, we consider first the case TV is a standard 

sphere in an Euclidean space. The monotonicity inequality and the small 

energy regularity theorem are proven in Section 2 and Section 3, respectively. 

The general iV can be handled after some necessary modifications, and this is 

done in the final section. 

1. MONOTONICITY INEQUALITY 

When TV is the unit sphere S72 in Mn+1, we consider, as in [CS], the following 

approximate solutions: u = iAfc,fc = l,2,..., 

!ut-Au + k(\u\2 -l)u = 0    (x, t) e M x M+ 

u(-,*)l0M = UQ\dM t e M+ 

u(x,0) = uo(x) x eld 

For any fixed k = 1,2,... , problem (1.1) has a unique smooth solutions 

u = uk with dtu
k,\72uk e Lp((0,oo) x M) for all 1 < p < oo. Note that 

since |^o|(^) = 1? then |^fc|(a:,t) < 1 by the maximum principle for parabolic 

equations; see[LSU]. But we do not need such precise estimates. In general, 

any uniform L^-bound on uk is sufficient for our purpose. 

For fixed fc, u = uk satisfies also the following energy estimate: 

Lemma 1.1. Let u0 G ^(M.N). Then 

t 
k 

(1.2)     [\Vu\2dM+ ( |(M2 - I)2 dM + f [\ut\
2dMdt 

0   M 

= f \Vuo\2dM ,    foralltX) 

M M 0   M 
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Let po be a suitably small positive constant such that for any po G <9M, one 

can choose a coordinate system {xa} in such a way that the set B^(p0) = 

{p € M : distM(p,Po) < Po} corresponds to the half ball B+o = {x G Mm, \x\ < 

Po, Xm ^ 0}. For a regular solution u = uk of (1.1), we define 

e*(ti) = ^uXauXp + -(H2 - I)2 ; 
1 k 
-ga0uXQuXp + -( 

GX0(x,i) = {47r'(to " *)>"m/aexp{-^rf } 

where t < to, ZQ = (XQ, <o) G M x (0, oo); 

G(-xJt) = Go(a;,t)-; 

r+ = {(x,t) : x G M!^,-4i?2 <t < -B2} ; 

*+(JR) =   f ek(u)G(/>2(x)yf^{x)dxdt , 

here ^ G CQ°(BPO),0 < 0 < 1, 0(x) = 1 for |x| < po/2. Thus (f) may be chosen 

so that ||0||Ca <C(M). 

Theorem 1.2 (Monotonicity Inequality). Suppose that 

u = uk : B+o(0) x [-T, 0] -> Mn+1 

zs a regular solution of (1.1) ^e may assume also that T < pi). Then, for 

any 0 < R < RQ < y/T/2, we have 

(1.3)    ^(R)<exp[c,(R1
0-

£-R1-£)]^+{Ro) 

+ c*(i^-£ - tf-'KEo + 1) ,    for any e G A), ^\ . 

tf;/iere JBQ = E(UQ), and c* is a constant depending only on M, N and c2-norm 

of'u0 on dM. Here c* may depend also on C^-norm of <j> which, after suitable 

choices of (f), is a constant depending only on M. 

Proof. For simplicity we present the proof for the case that M = R™ = {x G 

M™ : xm > 0}. In this case, we may choose (j) to be identically equal to 1. As 

in [CS], the general case follows easily. 
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Let UR(x,t) = u(Rx,R2t) and hR(x) = h^x1) = u0(Rx'), where x' — 
f \  r.      4.   T/        

d (x ■ VuR + 2tdtuR) 
{Xi,... ,xm-i). Denote VR = -JB^H 

= D • Then> 

*+(i?) = 11 {|VU|2 + l(|n|2 " 1)2} Gdxdt 

l
-J {|Vu*|2 + ^(lu^l2 - I)2} Gdxdt 

2 

(0 = 1 in this case). Thus 

JE^+{R) = [ VVRVuRGdxdt+ f kR2(\uR\'2 -l)uRVRGdxdt 

= 1 + 11 + 111. 

It is obvious that III > 0. For the first term, we have 

(1.5) 

1=1 VuRV (VR - ^(V,/^ Gdxdt + /" Vtifl • V (j£J*hR\ Gdxdt 
T+ T+ 

f VuR ■ V (^x'hRj Gdxdt - J AuR (vR- ^x'hjtj Gdxdt 
T+ T+ 

x 
Here we have used the fact that VG = ^rG. Hence by equation (1.1), one has 

i + n = - J (dtuR + x'^t
UR) (VR- |vx^R) Gdxdt 

It 

+ [ VuR ■ V (^x'huj Gdxdt 

+ J kR2 (\uR\2 - 1) uR (^ • V^/ifl) Gdxdt 
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(1.6) 

We have A 

= ~I Ytv«Gdxdt+1 ^tVR (S ' Vx'hR) Gdxdt 

+ J kR2{\uR\2 - \)uR (^ ■ V^hn) Gdxdt 

n 
+ J VuR ■ V (^ ■ VX.IIR) Gdxdt 

=A + B + C + D . 

= - [^V*Gdxdt>0, 
JT+ M 

jYM^-^n) Gdxdt B 

dt 

A     A 
= -4-Cl' 

and    D > - j \VuR\2Gdxdt - j V ( ^ • Vx,hR J Gdxdt 

>-y+(R)-c2. 

where Ci < c(m)i?||Vuo||L~(M) ^ c(m)ll^uo||L«=(Af) (we shall assume also that 
R < 1), and 

C2 < c(m) (||Vno||ioo(M) + fl2||V2
UO||L=O(W)) • 

To prove Theorem 1.2, it suffices to show 

(1.7) C > -i - -|(vI>+GR) + 1 + Eo),    for e € (o, i)  , 

and for some constant C3 depending on M, AT, and ^Q. In fact, (1.7) and above 

calculations imply that 

(1.8) ±*+{R)>-^+{R) + 1 + E0),    faree^i) 



EVOLUTION OF HARMONIC MAPS 333 

and with C4 = max{ci + C3, C3 + 1}. The conclusion of Theorem 1.2 follows 
form (1.8) by a simple integration.    □ 

The remainder of this section is devoted to showing (1.7) or equivalently 
the following estimate: 

(1.9) 

J kR2 (M2 - 1) uR (^ • VX^R) Gdxdt 
A. C3_ 

4      R* 

Lemma 1.3. There is a constant c*, depending only on M, N and u0 such 

that, for any A € (0,1), 

(1.10) [ kR2 | \uR\2 - 1| \uR\2Gdxdt <^A + j(y+(R) + 1) . 

Proof. Multiplying the equation(l.l) by uR(p(\uR\2 - 1)G, where <f> e C00^), 

^(0) = 0 and 

we obtain that 

f dtuR ■ uR(t>(\uR\2 - l)Gdxdt+ j VuRV(uR(j){\uR\2 - l)G)dxdt 
rp-\- rp-\- 

+ J kR2{\uR\2 - l)\uR\2<t>{\uR\2 - l)Gdxdt = 0 . 

(Note that <fr(\uR\2 — 1) = 0 on the boundary xm = 0). 

Also we have 

I VunViun^dunl2 - l)G)dxdt 

= J iVufllVGufl - VGdxdt + 2 j \uRS7uR\24>'(\uR\2 - l)Gdxdt 

x ■ Vu 
+ J X '^ ■ uR<t>{\uR\2 - \)Gdxdt 
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Thus 

f kR2\\uR\2-l\ \uR\2Gdxdt= f + f 

Tt r+n{||t.B|»-i|<t}-    T+n{||ufiP-i|>£} 

< j \uR\2R2Gdxdt + I kR2(\uR\2 - l)(f)(\uR\2 - l)\uR\2G . 

Since \uR\ < 1 (bounded by a constant will be sufficient), the first term on the 
right-hand side is bounded by c(m)R2 < c(m). 

The second term is, by above calculations, given by 

2t dtUR + x ■ VuR -J2td*UR+
2*-VURuMuR\2-l)Gdxdt 

- j |V«R|20(M2 - \)Gdxdt - 2 j \uR ■ V^lVdn^l2 - l)Gdxdt 

<- J JVR- UR^UR? - l)Gdxdt - I \VuR\2(f>(\uR\2 - l)Gdxdt , 

and hence, it is bounded by, for any A G (0,1), 

*+(R)+^J ^2G + \J ^t\uR\2Gdxdt = ±A + *+(R) + \c(m)R. 

This proves (1.10).   D 

Lemma 1.4.  There is a constant c6 depending only on M, N and UQ such that 

(i.n) 
/\A 

kR2 | M2 - 1| Gdxdt <^r + QsA-^l + <b+(R)),    for any A G (0,1) . 

Proof. Since(K|2 - I)2 = (\uR\2 - l)\uR\2 - (\uR\2 - 1), thus 

IM2 -1| < (M2 -1)2 + |M2 -1| M2. 

Therefore (1.11) follows from (1.10) and the definition of ^+{R).   D 
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Lemma 1.5. For any e € (0,5), there is a constant c? depending on M,N 

and UQ such that 

(1.12)     f kR2\uR\2\ \UR\
2
- 1| \x\2Gdxdt 

<?f + j(l + EQ + y+(R))/R*,    for X G (0,1). 

Proof, We follow the same line of proof as that for Lemma 1.3. Multiplying 

(1.1) by uR(l)(\uR\2 - l)!^!2^, to obtain 

JkR2\\uR\2-l\ \uR\2\x\2G= I + I 

< I R2\uR\2\x\2Gdxdt+ f kR2(\uR\2 -l)(l)(\uR\2 -l)\x\2Gdxdt . 

The first term is again bounded by c(m)R2 < c{m), and the second term is 
now given by 

"/ JtVR ' UR<t>{-\URf - ^-MGdxdt-J \VuR\2<l>(\uR\2 - l)\x\2Gdxdt 

-2/" luRynfilVd^fll2 - IJIar^Gdardt -2 fx- VuR ■ UR<?KM
2
 - l)Gdxdt 

T+ T+ 

< f 2\VuR\2\x\2Gdxdt+ [ \uR\2Gdxdt 

T+ Tt 

+\ j -^tV
2Gdxdt+± I -^-t\uR\2\x\4Gdxdt 

< ^A + ^ + 2 f\VuR\2\x\2Gdxdt. 

Finally we estimate the last term /T+ \x\2\VuR\2Gdxdt as follows: 

-i 

f \x\2\VuR\2Gdxdt= f (        \x\2\VuR\2Gdxdt 
T+ -4   |x|<^y,xm>0 
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-i 

+ / / \x\2\VuR\2Gdxdt . 

-4   |x|>i?-£/2,a:m>0 

The first term is clearly bounded by R~£ty+(R) (see the definition of ^+(R)). 

The second term is bounded by 

-1 -R2 

c(m)R-£e-^ I   f |V^|2dxdt<c(m)ire-me-^    f  \Vu\2dxdt 

< cWR-e-^e-^Eiuo) . 

Since 0 < R < 1, the right-hand side of the above inequality is bounded by 
c(m,e)E(uo). The conclusion (1.12) follows.    □ 

Proof of (1.9). 

I kR2(\uR\2 - l)uR (ji • V^hn) Gdxdt 

< (||Vno||Loo(M) + 1) / fci?2!^! H^l2 - 1| \x\Gdxdt 

< (||VUO||LOO(M) +1) y fci?21M2 - 1| [1 + M2M2] Gdxdt . 

Applying Lemma 1.4 and Lemma 1.5, one has the right-hand side of the above 

inequality is bounded by 

(||VUO||L«>(M) + 1) *A+2fL + ^{1 + Eo + ^m/Re , for all A e (0,1), 

<    ~ + cs(l + E0 + ^+(R))/R£ 

The latter inequality follows by letting A = 1(1 + HV^OIIL^CM))"
1

? and c8 = 

c8(M, N, UQ). This completes the proof of (1.9) and hence the proof of Theo- 

rem 1.2. We note that one may take e = 1 in Theorem 1.2.    □ 

2. SMALL ENERGY REGULARITY THEOREM 

Having established the monotonicity inequality for all points on M (for 

points inside M we refer to [S] and [CS]), we now want to prove the small 
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energy regularity theorem for solutions of (1.1) on M. We shall consider only 

those points at the boundary dM x R+. If a point po is at the interior of M 

and the ball B^(po) = {p e M : distM(p,Po) < Po} is cut by dM, the result 

can be proved in the same way as that for the boundary points. We shall also 

refer to [S] and [CS] for the case that the ball B™(po) is contained entirely in 

Denote P^^o) = {(x,t) : \x - x0\ < R, \t - to] < R2},PR(0), and P£ = 

PR n {xm > o}. 
As in the previous section, various constants should depend only on M, 

9M, N and possibly Z?o and t^olaM- We have the following 

Theorem 2.1. Let u = uk : J5+ x [-T,T} -^ N be a regular solution of (1.1) 

and assume that T < pi < 1. There exist constants So,8 G (0, \) and c such 

that if for some 0 < R < min(£o, VT/ty, the inequality 

(2.1) y+(R) < £o 

is satisfied, then there hold 

(2.2) supe(t^) < c [(6R)~2 + ||^o||c2(aM)]  . 
p+ 

Proof. We prove (2.2) by a contradiction argument. Suppose Theorem 2.1 is 

not true, after various normalizations as those in [CS] and[C], one is lead to 

the existence of a sequence of solutions Ui of (1.1) in P* with the following 

properties: 

(i) — Ui - Aui + kiduil2 - 1)^ = 0 in Pf, 

(ii) efc(Ui) = HA^I2 + ^(lu,!2 - I)2 < 4 in P+, 
(iii) ek(ui)(xi, 0) = 1, with Xi —» 0     as i —> oo, 

(iv) ^|xm=0  =  hiix') with |V2^|  <  £?||V2^o||Loo(aM)   -^ 0 , |V^|   < 
£i\\^uo\\L^{dM), 

(v)   fp+ ek(ui) dx dt < Si —* 0+ as i —> oo, 

(vi)   |/i-| = 1 (cf. [CS] and [C]). 

Moreover, via the calculation of [CS], we have the following Bochner-type 

inequality for ek{ui) : 

(2.3) dte^Ui) - Aefc^) < coeklui) G P+ . 
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We now would like to obtain a contradiction from (i)-(vi) and (2.3). 

To do so we may also assume that ki > 400 in (ii). For, otherwise we would 

obtain from (i) and (iv) VF2'p-estimates for u^ that is, 

(2.4) l|V2^||LP(F+2) + ||V^||LP(Pi+/2) < c(p) , 

for 1 < p < oo (see [LSU]). 

Moreover, by (v) and standard estimates for semilinear heat equations (cf. 

[LSU]), one has 

(2.5) supefc^i) < c [Si + WVhiWli     ) < CEI . 
r»4- ^ (QM)/ P+ 

The latter inequality contradicts to (iii). 

Now since ki > 400, (ii) implies in particular that 

kl! ^s' 
We introduce a decomposition (polar decomposition) for Ui = RiWi^Ri = 

|^t|j Wi = i^T both are now well-defined. Moreover 

(2.6)       |V^|2 = ^|VW;|2 + |Vi?i|
2<4€P1

+    and     i^ G 

From (i) we also derive the following equations 

(2.7) 

and 

!■> 

^ _ AW, - |VWilaWi - 2^ • VWt = 0 , 

(2.8) 
dRj 
dt 

ARi + kiiRf- 1)^ + {VWifRi = 0 . 

Since |VWi| < 7, \^\ < 5 by (2.6), we obtain from (2.7) that (cf.[LSU]]) 

(2.9) 

sup iVWil2 < cp 

2/3 

/ iv^i2 + HVWill^^) + iv/^i^ 
p+1 

, for p = 2m 

< ce™ —> 0    as i —> oo . 

In particular, we have HVWiH^oo^jvfx[-§,o]) < cs™ —> 0. 
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Next we look at the equation for p^ = 1 — i?j : 

(2.10) ^-Api = Ri\VWi\
2-kipiRi(l + Ri). 

Since 0 < Pi < 1 in P* and pi — 0 on {xm = 0}, we have 

(2.11) j^-Ap^cepeP^ 
= 0 

xm=0 

Hence, for x € P^2, 

Pi{x) < c( J pi + e?)xm ,    (cf. [LSU]) 

2/3 

<cxmer ,     by (v). 

Therefore, we also have 

(2.12) ||Vpi||Loo(aAfx[-^,0]) — ||Vi?j||i,oo(0Adrx[-f,O]) < CEi1   . 

Let e = max{05ek{ui) — 2CE™}, then (2.3) implies that 

dte — Ae < CQC ,    in P^ . 

Moreover, above arguments show e\Xrn=Q — 0. Thus the Moser's estimate for 

the linear heat equations implies that 

(2.13) supe<c      e<c      ek(ui) < csi , 
Pl/4 p+ p+ 

^1/2 M/2 

which goes to zero as i —> oo. 

(2.13) is an obvious contradiction to (iii), and thus we complete the proof 

of Theorem 2.1.    □ 

Remark 2.1. The proof of the main theorem (stated in the introduction) is 

now identical to that in [S], [C], and [CS], and therefore we omit the details 

here. 
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3. GENERAL TARGET MANIFOLDS 

Here we shall consider the target manifold iV being a compact smooth 

Reimannian submanifold of Rn+e without boundary. Instead of (1.1), we con- 

sider approximate solutions, u = uk, k — 1,2,... , to following equations: (cf. 

[C] or[CS]) 

(3.1) dtu- Au + fcx'(dist2KiV))jL /dist2(^iV)\     ^ 

for (x,t) G M x M+, and 

,     for t € 
dM 

(3.2) u(x, 0) = u0(x) ,    u{ •, t)       = Uo( •) 
dM 

where x ^s smooth monotone function on M+ with x{x) = 5 for 0 < s < 

6%, x(x) — 2^, for s > 26%> Here 8^ G (0,1/2) is a positive constant so that 

the nearest neighbor projection TT/V : Mn+£ —>• A^ is well-defined and smooth in 

a 2<5iv-neighborhood of N. Moreover, we may also assume that \\D7rN(u) — 

PN(U)\\ < 1/4, for u e Rn+/,dist(ix,iV) < 2^. Here PN(u) is orthonormal 

projection of Mn+^ onto T^^iV, the tangent space of N at 7rN(u). 

For each fixed k = 1,2,... , it is again standard to show (cf. [LSU]) 

that there is a unique smooth solution of (3.1)-(3.2). Moreover, it satis- 

fies the energy identity (1.2) (with the term | JM(\u\2 — I)2 dM replacing by 

l!Mx(dise(u,N))dM). 
As in [C] and [CS], we define 

1 A; ek(u) = 29a0uxQ ■ uX0 + -x(dist2(u, N)) 

and ^r+(i?) as before, etc... We claim ^+{R) satisfies the monotonicity in- 

equality (1.3). 

To see this, we follow the proof of Theorem 1.2. As in (1.4), we have (for 

M = Rf case) 

(3.3) ^*+ (R) > J VVR • VuRG dx dt 

+ j ^i?2x'(dist2K,iV)) (^-dist2(uH,iV)) VRGdxdt . 
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Applying integration by parts as in (1.5) and (1.6), we then obtain 

(3.4) 

where 

—y+(R)>A + B + C + D, 
dH 

A = - f ^V£Gdxdt>0 , 

D > -y+(R) - c2 . 

Here A,B,D are as in (1.6) before, and the absolute value of C is given by 

the left-hand side of (3.6) below. 

Hence the issue is to verify 

(3.5) 
-     4     R 

(V+(R) + Eo + l),   ee(o,^j 

(3.6) 

where ci, C2 and C3 are constants as before. 

(3.5) is equivalent to 

JkR2x'(diSt
2{uR,N)) (J-dist2(uR,N)\ jVx,hRGdxdt 

<||Vwo||L<»(aM) / kR2x'{-)dist{uR,N)\x\Gdxdt 
Ti 

For dist^AT) < 28N, we let — dist2^,^) = 2v{uR)<Mst{uR, N). Then 

V(UR) is a well-defined unit vector as long as dAst(uR,N) > 0. Moreover, 

u(uR)dist(uR) N) is a smooth function of uR, for uR in 2<!>jv-neighborhood of 

AT. 

We let </>(s) be a monotone increasing, smooth function on i?+ with 0(s) = 0 

for s < ^ and (f)(s) = 1 for 5 > p-. As in Section 2, we would like to mul- 

tiply equation (3.1) by <j)(dist2(uR, N))i>(uR)xf(dist2(uRl N))G. Since this is a 

smooth function of uR and since it is supported on {uR € R71"^ : dist^^, N) G 
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[^,\/2^Ar]} we should find an equation for dist(uR,N) in 0 = {(x,t) CZi+ : 

0<dist(uR,N) < V26N}. 
Let uR = VR + (UR-VR),VR = 7rN(uR). Then (uR-vR) = i/(uR)dist(uR,N), 

for (x, t) G 0. Denote d = dist(njR, iV), then rf satisfies 

(3.7) 
dt-Ad- d(Au{uR), v{uR)) + R2kx'{d2)d - {A(nN(uR)), u{uR)) = 0 in fi. 

(Note that (3.7) is simply the component of (3.1) in ^(w/j) direction.) 

We note that —(AU(UR),U(UR)) — |VI/(UH)|
2
 and that 

Hence |V(ufl - vR)\ < C\VuR\, d,-R&\{A-KN(uR),v{uR))\ < C^unl2. The last 

inequality follows from a direct computation, see e.g., (3.15) below. 

We therefore have 

(3.8) dt - Ad + (\AV{UR)\
2
 + x'(d2)kR2) d < C\VuR\2 ,    for (a;, t) e SI . 

Now let us estimate first the quantity 

f kR2dist(uR, N)x' (dist2(uH, N)^Gdx dt 

< f R2\\x'\\L°°Gdxdt 

T+n{dist(ui,.,N)<j:} 

+ f kR2dist(uR, Nudist2 (uR,N))\x'(dist2(uR,N))\2Gdxdt 

T+n{j:<dist{uR,N)<SN} 

( kR2x(dist2(uR, N))Gdx dt ■ "^^ + 

<    ^-y+{R) + Co+ [ kR2diSt(uR,N)<t>(dist2(uR,N))\x'{dist2(uR,N)) 

Therefore, via x' ^ 0? 

/ kR2dist(uR, N)Gdx<I + 2co (l + ^-r^-)  • 

2 
Gdxdt 
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To estimate I, we multiply equation (3.8) by (/>(d2)x'(d2)G to obtain 

(3.9)     f(dt-Ad)4>(-)x'{-)Gdxdt+ f <j>(-)(x'(-))2kR2dGdxdt 
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T+ T+ 

< f c\Vu\2<f>(-)x'(-)Gdxdt<cy+(R) 

But 

/ 
-M(t>{')^{')Gdxdt 

= j |W|2(2x"( • )0 + 2^( • )*') dGdxdt + || • V#( • )x,( • )G . 
77 ^1 

Since |Vd|2 < |V(u - 7r^u)|2 < c|V^|2 we obtain, from (3.9), that 

I<c^{R)- j (Kdt + ^d)<i>{.W{-)G 
(3.10) Ti 

4 A 
Here we have used the fact that 

uR = d(uR)v(uR)+7rN(uR)    and dt + -Vdj 

VA€ (0,1) . 

R 
<^n\x-VuR + 2tdtuRf/R2. 

Similarly, if we multiply the equation (3.1) and (3.8) by \x\2G<fr(d2)x'(d2), 

then we obtain, as in Section 1, that 

(3.11) 

JkRMist(uR,N)\x\2Gdx<^A+^ + -^ (tf+(it) + 1 + Eo) . 

This completes the proof of the monotonicity inequality. 

Finally, to the end of the paper, we outline the modification for the proof 

of Theorem 2.1 for general N. As in the proof of Theorem 2.1, it reduces to 

show the following is impossible (cf. also [C] and [CS]): there is a sequence of 

u1 solutions of (3.1) such that 

/.\    du*      A   .•     ,    ,/,.   2/  •  »rx d /dist2(n\iV)x     ^.    _, 
(i)   — - Au* + ^(dist2^, N) — { j^-1) = 0 in P+, 

(ii)   CfcCti*) = ilVti*!2 + ^xldist2^^^)) < 4, in P+, 

(hi)   efc(nz)(xi,0) = 1, with (x^O) E P^ and Xi —> 0, as i —>• oo, 
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(iv)   ^1^=0 = hiix') , IIV/^HLOO^M) + ||V2/ii||Loo(aAf) < ** -> 0 , 

(v)   fp+ ek(u
l) dx dt = Si —> 0 as i —► +oo 

(vi)   hi{x')eN. 

Moreover, 

(3.i2) at6*^)" Aefc^) - CbC*(t|i)G pi+ • 

Also fc^ —> +oo as i —> oo. 

As (2.7) and (2.8), we consider the equations satisfied by TT^^XX, t) E N 

and v? — TTN^) ± TVN(ui)N. To do so we choose a point (ajo,to) ^ -P/ and 

coordinate systems of Mn+£ so that near -KN^XQ^Q) = 06 Mn+£, A^ can be 

represented by a graph G : BJ^O) —»• M£ where 8 € (0,6^/4) is a constant 

depending only on AT. Moreover, G satisfies 

TVn (£^(0) x [-4(5,4(5]) = graph(G) . 

C7(Q) = |VG(Q)| = 0, 

and 

|V2G| + |V3G| < c^ ,    on B^O) ,    with cNA8 < ^ . 

Since (ii), we may assume that u(P^) C B^O) x [—35,35]. 

We also choose a smooth orthonormal from {ei,... ,en+^} along graph G 

so that ei(0) = (0,... , 1^,... , 0), and that {ei,... , en(p)} span Tp iV. 

Let us define a diffeomorphism F : u G Mn+£ -► F G Rn+£ near 0 G Mn+€ as 

follows: 

(3 13) l^' = ei^ ' *N^ ' for j = 1,... , n ,    and 
[Vjf = ej(irNu) • (tt — TTiv^) ,    for j = n + 1,... , n + £ . 

(Note that Tr^ti) = (Vu ..., K, G(VU ..., K)). ) 

Equivalently, one has 

(3.14) «=(V1,...)Fn,G(y1,...,Kl))+  £ ^(F), 

here e^F) = e^Vi,... , K, G(Vi, • • • , K)). 
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Now we calculate the equation for vf — irNU1 and -K^U
1
 at the point (XQ, to) G 

P/. We may also assume 

?/(:EO,to) = (0>--- jOjdiMi = I^C^o,*o) -^Nu\x0,t{))\ > 0 

for simplicity. At (xo,to), (i) reduces to 

dVT 

(3.15)    (In + dlM1)-^--(In + diM2)AVT 

= M3 (wT, vy-1-) + ^M4 (VFT, VVT) 

and 

(3.16) 

-^- - AV- = M5(vyT, vyT) + d^ (vyT, vyT) - kM) ^en+,(o) 

where yT = (Vu ... , K), ^ = (K+^ • • • , Vn+t), diMudiM2) diM*, ^M6 are 

smooth matrix-valued functions of V and is bounded by cdi at (xo,£o), (^ ~ 

|7rivixz — it1)), M3 and M5 are also smooth matrix-valued functions of V. Note 

that all Mj's depend only on JV, hence the function G definition TV, and 

bounded by ||V2G||Loo + ||V3G||Loo, and also that [V^l < c|V^|. 

From (3.15) one thus concludes that 7rNul satisfies an inequality of the form 

(3.17) 
A     dt      - BA(7rNul) < CNIWTTNU

1
] ,     (a;,t) E P/    with 

A - /nilL«> + ||JB - /n||x,oo < dN\ux - TTjvn'l -^0    as i -> oo . 

Moreover, 7r^wl|:Cm=o = hi(xf). Hence the W2'p estimate for linear parabolic 

equations and (3.17) imply that 

WVM^WU^ < <*(/ |Vnf + IIV/1,11^) < csie, + 6,) -» 0 as z —> oo 

On the other hand, if we take the component of equation (3.16) in en+t(0) 

direction, we obtain 

(3.18) ^-Ad< -kx'id^d + c\Wu\2 

at 
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whenever d(x,t) > 0, (cf.  also (2.10)) and (a;,t) G P/ since d\Xm=o = 0, we 

obtain from (3.18) that 

<i(a;, t) < d(x, t)    in P£    where 

(3.19) ^-J-AJ=c|Vti|2    inP4
+    and 

Ob 

d = d on dpPf - {t = 0} . 

It is easy to see, from (ii) and (v) that 

(3.20) d < cefxm —> 0 ,    in P^2 ,    as i -> oo , 

and therefore 

efcfu') -» 0 ,    for - - < * < 0 . 
Xm=0 Z 

The desired contradiction follows as before. 
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