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For compact surfaces E embedded in R", the Willmore functional is defined 

by 

^) = i/jHr 
where the integration is with respect to ordinary 2-dimensional area measure, 

and H is the mean curvature vector of S (in case n = 3 we have |H| = Ifti + A^l? 

where «i, K2 are the principal curvatures of E). In particular ^"(S2) = 47r. 

For surfaces E without boundary we have the important fact that ^"(E) is 

invariant under conformal transformations of Mn; thus if E C Mn is the image 

of E under an isometry or a scaling (x i-> Ax, A > 0) or an inversion in a sphere 

with centre not in E (e.g. x >—> x/|a:|2 if 0 ^ E) then 

(0.1) ^(E)=^(S). 

(See [WJ], [LY], [W] for general discussion.) 

For each genus g = 0,1,2,... and each n > 3 we let 

^ = inf^(E), 

where the inf is taken over all compact genus g surfaces without boundary em- 

bedded in Rn. We note some inequalities concerning the numbers /?™. Firstly 

we claim 

(0.2) 47r < /?" < STT 

Research partly supported by NSF grant DMS-9012718 at Stanford University. 



282 LEON SIMON 

with equality on the left if and only if g = 0 (indeed ^"(S) > 47r, with equality 

if and only if S is a round sphere—see the simple argument of [W]). The right- 

hand-side inequality in (0.2) was pointed out to the author by Pinkall [P] and 

(independently) by Kusner [K], who both noted that, by an area comparison 

argument, the genus g minimal surfaces E^ C S3 constructed by Lawson [L] 

have area < 47r. It then follows (using the conformal invariance of the Willmore 

functional between general Riemannian 3-manifolds as discussed in [WJ]) that 

FCEg) < STT, where E5 is the stereographic image of E^ in M3. Another 

inequality concerning the numbers /3^ is as follows: if eg = /?" — 47r(= (3™ — (3$) 

then 

(0-3) ^<X>; 

for any integers q > 2 and £i,... , £q > 1 with Y^=i ^j = 9- To see this we take 

a genus ij surface E^ with ^"(S^) < /?£ + 1/k which is C2 close to §2 except 

near some preassigned spherical cap of S2 (we get sum of a sequence by first 

taking any sequence {E*. } satisfying the given inequality, and then for each 

k taking an inversion in a suitable sphere with center yk very close to E^ ); 

near this spherical cap EJ^ looks like a spherical cap with £j handles. Then 

by cutting out these spherical caps with handles and sewing them back into a 

copy of §2 with q spherical caps removed, we get a genus g surface Efc with 

~ q 

^(Sfc) < 47r + ^2eg. +ek,    ek | 0    as    k -> oo. 

It is of course tempting to conjecture that the stereographic image of E^ C S3 

(as above) actually minimizes J7 (so that we would have ^"(S^) = /53). There 

is some evidence to support this in case g = 1 (see [LY], [WJ]). 

One of the main results of this paper is that for each n > 3 there exists a 

compact embedded real analytic torus T in Mn with TiT) = (3™. For arbitrary 

genus g > 2 the result is almost as clear-cut; we prove that there is a genus g 

embedded real analytic surface E in MJ1 with ^"(E) = (3™ unless equality holds 

in (0.3) for some choice ofq>2,£i,...,£q, Y^j=i £j — 9? ^n which case we can 

construct, by the cut-and-paste procedure used to establish (0.3), a minimizing 

sequence explicitly in terms of lower genus minimizers for J7. It is not clear at 
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the moment whether or not equality can hold in (0.3); certainly since /?" < STT 

by (0.2), it is clear that equality cannot hold if /?" > QTV Vi = 1,... , g — 1. 

(At the moment it is not known whether or not /?" > 67r, although this seems 

extremely likely.) 

The proof of the above existence results are given in §§1-4 below. 

The present paper gives a detailed exposition (in arbitrary codimension) of 

arguments which were only briefly sketched for the codimension 1 case in the 

conference proceedings paper [SL1]. 

1. LEMMAS VALID FOR ARBITRARY COMPACT E C Mn 

In each of the 3 lemmas below, E denotes a smooth surface in Rn and 

<9E = E\E, where E denotes the closure of E (as a subset of IRn). C will 

denote a constant depending only on n (and not on E). The first two lemmas 

give bounds on diamE, where diamE denotes diameter of E as a subset of 

Mn; that is, diamE =     sup     \x — y\. 

Lemma 1.1. //9E = 0 and i/E is compact and connected, then 

Y/|E|/.F(E) < diamE < C^/\^T(S). 

Here |E| denotes the area o/E. 

Lemma 1.2. In the general case when 3E j^ 0 is allowed, and when S is 

connected and E is compact, we have 

diamE <c( f |A| + ^diamT^ J, 

where \A\ is the length of the second fundamental form of E and Fj are the 

connected components o/<9E. 

Remark 1.1. Notice that 9E need not be smooth or even rectifiable here. 

Lemma 1.2 has the following useful corollary, where the notation and hy- 

potheses on E are as in the lemma, and where we use the notation 

Bp(y) = {x: \x-y\<p},        Bp = Bp(0). 



284 LEON SIMON 

Corollary 1.3. IfO E (0,1), there is ao = ao(n, 9) > 0 5?ic/i ^ftai if JEnB |A| < 

ao/o, i/ ^jdiamrj < ao/0; ^/ an^ ^ D dBp ^ 0 and E fl 95^^ 7^ 0; then 

\ZnBp\>Cp2, where C = C(9). 

Proof. By applying Lemma 1.2 to S fl i?^ for cr E (^p, p), we conclude that 

length(S D 95^(0)) > Cp for a fixed constant C, and the corollary follows by 

virtue of the coarea formula.    □ 

In the third lemma we give a result which can be viewed as a variant of a 

lemma of Li and Yau (see [LY, Theorem 6]). 

Lemma 1.4. Suppose S is a compact surface without boundary, dBp inter- 

sects E transversely, and E fl Bp contains disjoint subsets Ei, E2 with E^ fl 

Bep + 0, dE; C dBp, and {dEjl < Pp, j = 1, 2, where 9 G (0, |) and /? > 0. 

TTien 

^(E) > STT - CpO, 

(where C does not depend on E, /?, 0^. 

In the proofs of Lemmas 1.1, 1.4 we use the first variation identity 

(1.1) / divs$ = - /$-H, 

for any C1 vector field $ = ($1,... ,$n) defined in a neighbourhood of E. 

Here we use the notation 
n 

where Vj/ = e^ • Vs/, VE denoting the gradient operator on E. In particular 

if E is the restriction to E of a C1 function / defined in a neighborhood of 

E, then Vjf(x) = ]Cr=iSlJ'(x)^/(x)> x ^ ^' where g^ is the matrix of the 

orthogonal projection Px of Mn onto the tangent space T^E. Also notice that 

the identity (1.1) is valid if X is merely a Lipschitz vector field on E. Using 

these facts, we easily check, for any fixed y G Mn and 0 < a < p, that we can 

substitute $(x) = (\X\~2-p~2)+X, where X = x-y and \X\a- = max(|X|,cr). 

Since divX = 2, direct computation in(l.l) then shows that 

2cr-2|E<T| + 2 /     i^f = 2p-2|Sp| - / (|X|;2 - p-*)X • H, 
JSv.o      \X\ J^o 
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where E, = E n Ba(y), Za,p -EH 5p(y)\Sa(y), and X± = X - PXX.  By 

using the identity \x\  + \T$T2 -11=  4H + r^    — ^|H|2 we then conclude |X|4     '    2\X\2 4xx-r |X|2 16| 

(1.2) <7-2|Eff|+/     (lH(x) + ^)2 

= p-2|Sp| + ^(S,) + i/  p-'X-H-U   a-2X-U. 

Of course since <7~2|Ea| —> TT as a [ 0 and IX-1! < y9|X|2 (with ^ depending on 

E), we can let cr [ 0 in (1.2), thus giving 

(1.2')   TT + /   (iH(:r) + ^)2 = p-2|£„| + ^(E,) + h [  P-2X ■ H. 

Also by dropping the square terms on the left of (1.2) and using the Cauchy 

inequality on the right, we have 

(1.3) a-^E.I < C(p-2|EP| + ^(Ep)),    0 < a < p < 00, 

where C depends only on n and not on E or a or p, and in particular, by 

letting cr I 0, 

(1.4) 7r<C(p-2|Ep|+^(Ep)) 

Notice that minor modifications of the discussion leading to (1.2) can be ap- 

plied in the case when S is compact with smooth boundary 9E 7^ 0, yielding 

an identity like (1.2') with p | 00, but with an extra boundary term on the 

right; more precisely, we have the identity 

(1.5) , + jf (iH(x) + ^ = I /^ r, ■ j- + ^(E), 

where 77 is the outward pointing unit conormal for <9E. This is proved in 

exactly the same way as (1.2'), starting with 

(LI') /divE$= /   77.$- /$-H 

in place of (1.1), and then letting p j 00. 

Proof of Lemma 1.1. To prove the inequality on the left in Lemma 1.1, we 

simply choose $(x) = x — y in (1.1), where y is a fixed element of E, and note 

again that div^ x = 2 on E; then the required inequality follows by using the 

Holder inequality on the right side. 
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The proof of the inequality on the right side of Lemma 1.1 involves the 

identity (1.2'). Take y G E and d = max^s \x — y|, let p G (0, |] and let N = 

integer part of p~1d, and for each j = 1,... , iV — 1 take J/J G dB^^i^p(y). 

(Notice that here we use the connectivity of E.) Then with yo — y, the balls 

BPi2{yj), j = 0,... , N — 1 are pairwise disjoint. Thus by using (1.4) with y^ 

in place of y and summing over j, we deduce that 

(1.6) iV7r<c(^(S) + ^). 

Now select p = \y/l^l/F^E). By the first inequality of the lemma (which we 

already proved above), we deduce d > 2p, so that the condition p G (0, d/2] is 

satisfied. Since N > \p~ld, (1.6) above gives 

d < C(^(E) + p-'lEI) < 5C^/|E|^(E).    D 

Proof of Lemma 1.2. First note that it is enough to prove 

(1.7) diamE<c/|A|, 

subject to the assumption that 

(1.8) ^Tdiamr, < 9 diamE, 
3 

provided 9 G (0, |) is a fixed constant depending only on n, because otherwise 

the required inequality is trivially true with C — 9~1. 

So let 9 G (0, |) be for the moment arbitrary (we will select 9 independent 

of E below), and let yi, y2 G E be such that |yi — y2| = diam E; for convenience 

of notation write d = |yi — y2| and let yt = y1 + t{yi — y2), 0 < t < 1. Choose 

e G Sn_1 such that |e — d~1(yi — y2)| < |, such that there is an open set 

/ C [0, d] with 

(1.9) |/| > 6d, 

and such that the hyperplane normal to e passing through yt meets E trans- 

versely in a family rt = [jfli r^    0f smooth Jordan curves 1^   , and 

(1.10) sup \e-T\>0. 



SURFACES MINIMIZING THE WILLMORE FUNCTIONAL 287 

Subject to the assumption (1.8), and with the help of Sard's theorem, it is an 

easy matter to check that this can be arranged by taking 6 small enough (but 

not depending on E). 

Now for t G / fixed, let 7(5) be the arc-length parametrization for F^ with 

x = 7(0) such that the sup in (1.10) is attained. Since /r(i) 7'(0) • jf(s)ds = 

0 (so that 7/(0) • 7/(s) changes sign on (0, lengthTl ^)), we can select si G 

(0, lengthTi ') such that 7/(0) -^(si) = 0. Using the notation so = 0, we then 

have by (1.10) that iivj = e^/l6^!? where e^ is the orthogonal projection of 

e onto T7(S.)E, then Vj A 7/(5j) = T^^J)), j = 0, 1, where T(X) denotes the 

orienting unit 2-vector for T^E. Then, since e, 7/(so),7,(si) are orthonormal, 

(1.11)    |T(7(SI)) - r(7(5o))| = \vi A V^i) - ^0 A >y'(so)\ 

> Kv, • e)e A 7,(s1) - (VQ • e)e AV^o)! = ij(e • VQ)
2
 + (e • vj* > 6, 

and hence 

\[1 j-T{1{s))ds\>e. 

Therefore, since |^T(7(S))| < 2|A(7(s))|, we deduce that 

e<2f |A|, 
JTt 

and integrating over t G / and using (1.9) and the coarea formula we conclude 

the required inequality (1.7).    □ 

Proof of Lemma 1.4. Here we are going to use the identity (1.5). We actually 

apply this identity separately to the two components Ei, E2 obtained as the 

image of Ei, E2 (as in the statement of Lemma 1.4) under an inversion in the 

sphere -Bp(O). (By a slight perturbation we may assume that 0 ^ E.) Take 

points 2/1, 2/2 in Ei, E2 respectively with 1^1 > d^p. (Such y^ exist because 

S^-n 5^(0)^0, j = l, 2.) Since 

^(S1) + ^(E2)<^(E)=^(E), 

we thus conclude from (1.5) with £., in place of S and with y^ in place of y 

that 
1 2    r 

27r < -.F(E) + E / ~ l^ - %r2^ • (^ - %)'    J = !' 2' 
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where rjj is the unit conormal of 9Sj, j = 1, 2.  Since \yj\ > 9~1p and since 

I^S,-1- IdEjl </?pwehave 

2        , 

,■=1 ^s, 
<M0, 

provided 6 E (0, |). This gives the required inequality.    □ 

2. APPROXIMATE GRAPHICAL DECOMPOSITION AND BIHARMONIC 

COMPARISON 

Here, as in the previous section, we continue to work with arbitrary smooth 

compact surfaces E in Rn. The following lemma asserts that, in balls where 

the integral of the square length of the second fundamental form (i.e. /|A|2) 

is small, we can decompose such a surface into a union of discs, each of which 

is well approximated by a graph of small Lipschitz norm. In this lemma Bp 

continues to denote the open ball of radius p > 0 (p given) in Rn with centre 

0. Also, we adopt the convention that if L is a plane in Mn then we write 

u = (ui,... , un) G C2(f2; L1), where Q C L, if u(x) G L1 Vx G fi. In this case 

we write 

(2.1) graphs = {x + u(x): x G £)}. 

We need to include here the possibility that u is fe-valued for some integer 

k > 2; in this case we write u G C2(fi; L-1) if for each XQ G O there is a > 0 

such that u(x) = {ui(x),... ,izfc(a:)} for each x G Ba(x0) D fi, where the fz, 

are C2 functions on Ba(xo) flO with values in L-1. Then we again write (2.1), 

keeping in mind that now (2.1) says that graphs is locally expressed as the 

disjoint union of k single-valued graphs. 

Lemma 2.1. For any f3 > 0, there is eo = eo(n, /?) > 0 (independent o/E, p) 

such that if e G (0,eo], ifdZnBp ■= 0, i/0 G E, t/ |E n Sp| < /?p2, and if 

/EDB  l^-l — eP> ^en the following holds: 

There are pairwise disjoint closed sets Pi,... , PN C E with 

N 

YjdmmPjKCe^p 
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and 

S n Bp/2\(U PJ) = (0 graphix^ H Bp/2, 

where each Ui G C00^;!^-) is a ki-valued function for some fc* > 1 ^ = IVi 

if n = 3), with L^ a plane in Mn
7 17^ a smooth bounded connected domain in 

Li of the form Qi = n?\(|Jfcdiifc), where Q® is simply connected and d^ are 

pairwise disjoint closed discs in Li which do not intersect dtt®, with graphic 

connected, and with 

M 

Yki< Cfi,    supp-1)^! + sup|Dizi| < Ce1/2(2n-3). 
i=1 ^ Qi 

If we also have fB |A|2 < e2, then ki = IVi and, in addition to the above 

conclusions, for any a G (p/4,p/2) such that dB^ intersects S transversely 

and dB(7 D (IJj fj) = 0; we /mve 

M 

2=1 

where each Da^i is topologically a disc with graph Ui D Ba c -D^^ and 

jDa,i\ graphs 

is a union of a subcollection of the Pj, and each Pj is topologically a disc. 

(Note in particular this means that if Ctj C fij is the projection of graph Uj D 

Ba onto Lj and if Tj is the outermost component of dttj, then dDajj = 

graphs IF,-) ci:ndBa.) 
Roughly speaking the lemma says that E fl B^ is a union of discs with 

smooth boundary contained in dBa, and each of the discs can be expressed 

as a graph with small gradient, together with some "pimples" P,, the sum of 

diameters of which are small. 

Proof. For any a > 0, let Ea = S Pi Ba. Let 77 £ (0, ^) be for the moment 

arbitrary (we choose rj to be a power of e below), let CTQ G (|p, p) be chosen 

such that E intersects 5BCTo transversely, and let 

5 = {ri A r2: n, r2 G S71"1, In) - |r2| = 1, n • T2 = 0}, 
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so that in particular T(X) G S for each x G E, and assume S is equipped with 

its usual metric. Then S is a compact manifold of dimension 2n — 4 and for 

any TQ G S we define 

/(x) = |ir(x) -To|,     x G Sp. 

Notice that / is then a smooth function on the region of Sp where it is non- 

zero, and |V/| < |A(x)|. Thus by Sard's theorem and the coarea formula we 

have t G (rj/2, rf) such that the set Yt = {x G Sao: f(x) — t} is contained in 

the union of finitely many pairwise disjoint Jordan curves and Jordan arcs, 

the endpoints of the arcs being in SE^, and 

(2.2)        H\Tt n ECT0) <-f |A| < - /   |A| < -ep. 

Now cover all of S by balls Bv/2 (TJ), J = 1,... , M, with 

C(n) 
M< 

rp2n—4 ' 

Then corresponding to each j = 1,... ,M, by applying the above argument 

with Tj in place of TQ, there is tj G (77/2,77) such that 

(2.3) rW = {xeEao:\T(x)-Tj\ = tj} 

is contained in a finite union of Jordan curves, and 

wi(r«))<- / |A|,   J = I,...,M. 

Actually we note that by selecting the tj successively, applying Sard's theorem 

at each stage, we can also arrange that each of the curves 1^ is either disjoint 

from the remaining Tj or intersects them transversely in a finite set of points. 
Hence in particular, selecting 77 = e

1/2(2n-3)^ we j^ye 

M 

(2.4) J]H1^) < Cel/2p,     C = C(n). 
j=i 

Now let {Qi}i=i,... ,N be the (finitely many) components of E<To\ (Jj r^'^; notice 

that, since the Br7/2(T7) cover all of 5, we have (in view of the above choice of 

v) 

(2.5) sup \T(X) - T(y)\ < Cel'2^-"\    x, y E Q, 
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for each i. Notice also that then each Qi is an open subset of £<,.„ and 

(2.6) dQiHB^ c yJr^udB^. 

For each i pick a plane Li containing a point y* G Qi fl 5^ with orienting 

2-vector T(yi), and select discs {diik}k=ii...,Ri ^ ^ such ^hat 

(2.7) ^(ur^cUrfi,*, 
J AC 

where H^ is the orthogonal projection of Rn onto L^ and such that 

Ri 

(2.8) ^diam(diik)<Ce1/2p. 
k=i 

Now without loss of generality these discs can be selected to be pairwise dis- 

joint; here we use the easily checked general fact that if di,... , dN are closed 

disks in the plane M2 then there is a pairwise-disjoint collection du ... , <iM with 

M < N, [j^idj D Uf^idj and with ^^diamdi < ^f^diamdj. (This is 

checked by induction on N, starting with N = 2.) We therefore assume in 

the following discussion that the discs d^, k = 1,... , Ri are pairwise disjoint 

for each given i = 1,... , iV. Also, by (2.5), we know that if there is a point 

in x G Li\(\Jkditk) such that n~1(a:) fl Bsp/4 fl Qi has k distinct points, then 

Qinn~1(y) has > k distinct points for each y G Bp/32(x)\(Uk di,k)', then since 

the area of Ep is bounded by /3p2, we must have that (i) there is a bound 

(2.9) 

number of points in D"1^) fl Qi fl Bsp/4 < C(n, /?),     x G -^ACU^^)' 
k 

and (ii) there is an upper bound 

(2.10) M< 0(71,0) 

on the number M of distinct Qi such that Q^ fl S3p/4\n^1(|Jfc d^fc) ^ 0. 

Now pick ai G (|p, |p) such that E intersects d-B^ transversely, and such 

that dBcri fl L^ intersects none of the discs d^, A; = l,...,jRj,2 = l,...,iV. 

Suppose that the labelling is such that {z: Q^ fl 5aiP\n~1(Uf:i1 di)fe) / 0} = 
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{1,... ,M}, and for each i = 1,... ,M let {Qi}q=i1...iKi denote the compo- 

nents of Qi\Tli1(\Jk=i di,k)' In view of (2.9) and (2.5) we know that 

(2.11) Ql n B01 = IJ graph «;•' nBffl, 

where each u8^ is a ^)S)g-valued function over Qj C Li for some A;^5^ > 1, and 

(by (2.5)) 

(2.12) sup |V<'*| +   sup   \u^(x) - u^(y)\ < Ce^^^p. 

Also from (2.9) 

(2.13) ^ kaM < CP. 
{(i,s,9): graph ux

s'9nS(Tl^0} 

Notice also that each dd^ which is one of the boundary components of fif 

lifts via u3^ to a curve ji^k.s = graphu^ldd^k on T,3p/4. By (2.5) and (2.8), 

for each i we have 

(2.14) J2 diam7i,g,fe,s < Ce1/2P,    C = C(n, /?). 
q,k,s 

Notice also that by construction the entire collection {7^,^,5} over all possible 

i,q with Q*- n Bai ^ 0 and all possible k,s is a pairwise disjoint collection. 

Notice further that if J^- denotes the components of Qi^Bai\(\Js graph^'9), 

then each J^j is a smooth surface in Bai  with boundary components in 

(UT^uaB^uOJ.r,)- 
Next we claim that for each i = 1,... , M we have 

(2.15) 'Z\JijnB9p/16\<Ce1'Y. 
3 

To see this, note first that Ylj \Ji,j\ < I^PI ^ /^P2? hence we can pick (72 6 

(ygP, 0"i) such that Uj ^j intersects ^-B^ transversely and length((Uj «/»,j) H 

5^) ^ C/^p. In view of (2.14) we can also select (J2 to ensure that 

(2.16) U^Mn<9£.2=0. 
fc,g,s 

Then apply (1.1') with Ji?j fl Sff2 in place of E and with $(x) = Tli(x) — 

Et^^j), where z^j is any fixed point of Ji}J-. By connectedness of J^j we have 
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Ili(Jij) C dij for some £ (so that \$(x)\ < diamd^^ on Jij) and by (2.5) 

divsH^x) > 2 — Cea on J^j, hence (l.l') gives 

(2.17) Y, \J^ n^1l < ^P diamdif/. 

After summing on £ this gives (2.13) as required by virtue of (2.8). Notice 

that by the corollary to Lemma 1.2 and by (2.13) we have the implication 

(2.18) Jitj H B9p/l6 ^ 0 =* Jid n 95^ = 0. 

Now let Pj be the components of E fl Bai\(\Jisqgraphu*^), and note that 

by (2.18) we have 

(2.19) Pj n dB9p/16 ^(/)=>p3n dBai = 0. 

Thus for any j such that PjnB9p/i6 ^ 0, we have that Pj is a compact manifold 

with boundary equal to a finite subcollection of the curves 7i,q,k,s, and hence 

by (2.14) and Lemma 1.2 (with Pj in place of E, and keeping in mind that 

at most 2 of the Pj can have a given "y^q^.s as a boundary component), we 

deduce 

(2.20) ]r dmmPj<Cel/2p. 
{j: PjnB9p/16^} 

After some relabelling (and possibly a translation of the planes Li), (2.19) 

and (2.20) imply that there exist planes Li,... ,LM (where the Lj are not 

necessarily distinct) and A:rvalued functions Ui G C2^;!^-), where each f^ 

is a smooth connected domain of the form ^VUfc^,*;) with fl? a simply 

connected domain and d^ are pairwise disjoint closed discs in Li such that 

di,k H <9A? = 0 Vfe, and where Ui satisfies 

M 

(2.21) Vfci < C,    supp-'KI +sup|V^| < Ce1/2(2n-3), 

and 

(2.22) (E\ Q graph u^ H S9p/16 = (\J P3) n 59p/16, 
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where Pi,... , PR are pairwise disjoint compact surfaces with boundary and 

R 

(2.23) ^diamP, <Ce1/2p. 
3 = 1 

In view of (2.21), (2.22), and (2.23) the proof of the first part of the lemma 

is complete; in fact there is evidently a set S of measure > ^ in (^, ||) such 

that 

(2.24) (\JPj\ ndBa = (/),    VaeS, 

r f2 

(2.25) / |A|2<C-,    VcreS. 
JT.ndBa p 

3 

such that E intersects dBa transversely, and such that 

P 

Since by (2.21) we have M < C{n,(3) it of course follows that 3 S C S with 

measure > -^ such that Mi — 1,... , M either 

(2.26) ^02^ = 0   VaG5, 

or 

(2.27) diam(Li n Bc) > Clp,    Va G 5, 

with C = C(n,/?). Now we relabel Zq,... , LM so that (2.27) holds for i = 

1,... , Mo and (2.26) holds for i = MQ + 1,... , M. Select po € 5, take j G 

{1,... , Mo}, and let Zj be the center of the disc Lj fl BPQ. Without loss of 

generality we assume Lj = Zj + R2 x {0}. Let ctjPo be the radius of Lj fl Bpo. 

Then notice that any point in graph Uj fl dBPo can be uniquely written as 

(2.28) 
Zj + (1 - aj(6))ajPoeid + UJ(ZJ + (1 - aj(9))ajPoei9),    0<9 < 2kj7r, 

where <7j(0) G (—|, |) is to be determined implicitly by the relation 

|(1 - a.^HpoeT + Wjizj + (1 - ajmajpoe^l2 = a^l; 

that is, by the relation 

(2.29) CTJ G 1 - ^1 - ajVo 2K-(Si + (1 - ^O^Poe^)!2, 
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keeping in mind that the right side is kj-valued for any given CFJ € (—f ? §)• 

Notice that the smooth solution of (2.29) (which is unique modulo choosing 

an initial value for (jj from the kj possible choices) satisfies 

(2.30) 1^(9)1 KClVujl 

and 

(2-31) KWI^CdVttjI + plV'ujI), 

where all functions on the right side are evaluated at the point Pj(0) = Zj + 

(1 — (jjiO^OLjPoe16. Now by definition of second fundamental form we have 

|V2^(x)| <C|A(x + ^(x))|, 

and hence (2.25) implies 

(2.32) /     \v\{p3{e))\><ce-. 
Jo P 

Combining (2.21), (2.30), (2.31) and (2.32) we conclude that 

(2.33) /       (|a;.|2 + K'|2)<Ce1/2n-3. 
Jo 

It now follows directly from (2.21), (2.28) and (2.33) that if K,J denotes the 

curvature vector of the curve ^(9) = Pj{0) + Uj(pj(9)) (as a space curve in Mn), 

then 

Kj = (ajro^rij + Ej, 

where rjj is the inward pointing (tangent to Eao) unit normal of <9Ep0 and 

where /^^ \Ej\ < C'e
1/2(2n-3) Thus if K, denotes the geodesic curvature of 

<9£p0 (so that K = r]j • Kj on the boundary component graph Uj D dBPo of 

5EP0), then 
Mo 

K-27rJ2kj\<Ce1^2n-3\ 
3 = 1 

Then by virtue of the Gauss-Bonnet formula /E K = 27r(2M1 — 2g — M0) — 

JdTi K, with Mi equal to the number of components of Sp0, with Mo(> Mi) 

equal to the number of components of <9£p0, and with g the total genus of EPo, 

Jdi 
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and keeping in mind that JE \K\ < e2 by hypothesis, we conclude that (for e 

small enough) 
Mo 

2M1-2g-M0-^2kj=0, 
j=i 

and hence that g = 0, kj = 1 for each j and Mi = MQ.   This evidently 

completes the proof.    □ 

Next we derive an important inequality involving biharmonic functions. 

Lemma 2.2. Let E C Mn be smooth embedded, £ G Mn, L a pZane containing 

£) u e C00([/) /or some open (L-)neighborhood U of LD dBp{i), and 

graphs C E, |D^| < 1. 

ilbo, Zet ti; G C00(Ln Sp(0) ^afe/y 

fA2^ = 0 onLnJ5p(0 
\w = u,  Dw = Du    on Lr\dBp(£). 

Then 

[ \D2w\2<Cp [ |A|W, 

where F = graph(n|L n9Sp(£)), A is the second fundamental form o/E, and 

W1 is 1-dimensional Hausdorff measure (i.e. arc-length measure) on T; C is a 

fixed constant independent o/E,p. 

Remark 2.1. Of course there exists a w as above, because ii is C00, so we can 

use the existence and regularity theory for the Dirichlet problem; the solution 

w is also clearly unique. 

Proof of Lemma 2.2. Let fi = LnBp(£). Recall that the function w minimizes 

fQ | Aw|2 subject to the given boundary conditions, and hence by the identity 

/ £((£>««;)» - (ZV)2) = / ((A™)2 - (A*,)2), 
Jn ^ Jn 

valid for any v,w e C2(f2) with Dv = Dw on dft, we see that w also minimizes 

the integral fQ J2i,j{Dijv)2 over ^ v ^ ^(fi) with Dv = .Dtt; on <9£1 
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Then, after rescaling so that p = 1, by the appropriate Sobolev-space trace 

lemma—see e.g. [TF, 26.5, 26.9 with m = 2]—we have, with Qll = L D Bi(£) 

and7 = £n<9Bi(0, 

/   \D2w\2 < C (\u\2H3/2h) + \Du\2H1/2h)) . 

Applying the same to w — £ (£ any linear function + constant) we get 

/  \D2
W\2 <C f ((« - £)2 + (D« - Di)2 + |D2«|2). 

By selecting £ suitably we can then establish that the first two terms on the 

right are dominated by a fixed multiple of the third. Thus (in the original 

scale) 

/ \D2w\2 < C f \D2u\2. 

Since \Du\2 < 1 on 7 we also have \D2u\2(x) < C |A|2(X), where X is the point 

(x, u(x)) of graphs corresponding to x G 7, hence Lemma 2.2 follows.    □ 

3. REGULARITY OF MEASURE-THEORETIC LIMITS OF MINIMIZING 

SEQUENCES 

A sequence of compact embedded surfaces T,k C Mn with dT,k = 0 is called 

a genus g minimizing sequence for J7 if genus Efc = g Vfc and if 

By translation and scaling we can (and we shall) assume 

OEEfc,    |£fc| = l. 

Notice that then by Lemma 1.1 we have a fixed constant C > 0 such that 

(*) C"1 <diamEfc<C. 

Our main result here is the following: 

Theorem 3.1. Given any genus g minimizing sequence E^ as above, there is 

a subsequence E^/, and a compact embedded real analytic surface E such that 

Efc/ —> E both in the Hausdorff distance sense and in the measure-theoretic 

sense that 
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for each fixed continuous f on Mn. This S has genus go < g, and E minimizes 

T relative to all compact smooth embedded genus g0 surfaces S C Mn. 

Remark 3.1. It can of course happen that go = 0 (and E is a round sphere) 

even if g > 1. This is a problem in proving existence of the required genus 1 

(or higher genus) minima which we show how to overcome in the next section. 

Proof We first prove that u is a C1,oc fl W2'2 surface. First note that since 

|Efc| = 1 we may choose a subsequence E^/ such that the corresponding se- 

quence of measures /i^/, given by Hk'iA) = \A fl T,^\ for Borel sets A C Mn, 

converges to a Borel measure /x of compact support. Thus 

/   /- [  fdfi 
JT,k, JRn 

for each fixed continuous function / in IRn, and by (*)' the support of /x is 

compact. 

In spt /i (the support of /i) we say £ is a bad point relative to a preassigned 

number e > 0 if 

|A,fl>e2, 
'nBp(0 / 

where Ak is the second fundamental form of Efc. Evidently, since, by the 

Gauss-Bonnet theorem, 

i/sJAfc|
2 = ^(Sfe)-7r(2-25) 

we have that /s \Ak\2 is bounded, and hence there are only finitely many 

bad points for each e > 0. Indeed if £1,... ,£N are distinct bad points, let p = 

min^j I&—£j|, and note that for k' sufficiently large we have /E /nB ^ |Afc'|2 > 

e2, so by summing over j and using the fact that Bp(^i) fl Bp(€j) = 0 for each 

i z£ j, we obtain 

Ne2<[    \Akf\
2 = AT(Ekf)-47T(2-2g), 

so we have an upper bound on iV in terms of e. Denoting the subsequence 

simply by Efc, we can actually assume 

lim   liminf / |Afc|
2    > ^ 

pio y k^co   JvknBp(Z) ) 

for the finitely many bad points £ = £1,... , £p   [P — P(c)). 
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On the other hand for any f E spt//\{fi,... ,^P} we can select p(f, e) > 0 

such that for p < p(£, e) we have /SfcnB /^ |Afc|
2 < e2 for infinitely many fc, and 

hence the last part of Lemma 2.1 is applicable to E^ in Bp(£) for infinitely many 

k. At the same time we have, since (3g < STT, that we can apply Lemma 1.4 to 

deduce that for large enough k and for small enough 9 (6 fixed, independent 

of fc, e, £), only one of the disks Dj \ say JDJ 
}, given by applying Lemma 2.1 

can intersect the ball B0P(£). Thus, in accordance with Lemma 2.1, for e small 

enough (which we subsequently assume), for infinitely many k there is a plane 

L/c containing f and a C00^) function Uki ttk -> L^ {L^ the subspace of 

vectors orthogonal to L^) with 

p-l\uk\ + \Duk\<Cel^-*\ 

(3.!) (graphs U,- Pfcfi) n 5,(0 = D^ n 5^(0, 

5^diamPfe>J- <Cell2p, 
3 

where each Pfe,j is diffeomorphically a closed disk disjoint from graph^l^fc), 

and where a G {Op/2, Op) does not depend on k. 

With Ca(£) = {x + y: x G 5^(^)0^, 2/ ^ ^fc }> ^he selection principle 

of Appendix B guarantees that we can then choose a set T C {Op/2, Op) of 

measure > #p/8 such that for each a G T we have dC^) fl P^j = 0 for 

infinitely many fe, and hence for any such a for infinitely many k we can apply 

Lemma 5 to obtain a biharmonic function Wk on B^) fl Lk such that 

/ \D2wk\2 < C f   \Ak\2. 

Letting A^ be the second fundamental form of graph u^, we then in particular 

have 

Afc'
2 / |Afc|

2 < C [  |Afc 
-'graph Wk JTk 

On the other hand Yik is a minimizing sequence for the functional | /s |A 

and hence the C1,1 composite surface Efc = (Yi^D^ ') U graph wk satisfies 

•F(Efc) > ^(Sjb) - 6,,   e* 10, 

so that 

/ |Afc|
2> [     \Ak\*-ek. 

./graph Wk J D\ 

2 
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Thus we conclude that for infinitely many k 

[ \Ak\2<C [ (k\Ak\2 + 6k, 

where 8k [ 0.   Since a was selected arbitrarily from the set T of Lebesgue 

measure > 6 p/8 in the interval (#p/2, Op) we can arrange that 

/       |Afc|
2<4/ |Afc|

2, 
SknB$p(0\B$p/2(S,) 

for infinitely many k, so that in fact we get, for p < 6p{e) arbitrary, and for 

infinitely many k (depending on p), 

/ \Ak\2<C [ \Ak\2 + 6k, 
JxknBp/2(ti) JxknBp(Z)\Bpk(Z) 

where 6k | 0. Notice that by adding C times the left side to both sides of this 

inequality (i.e., by "hole filling") we deduce that 

/ \Ak\2<1f \Ak\2 + 8k 
JxknBp/2(0 JEfcnBp(0 

for infinitely many £;, where 7 = C/(l + C) is a fixed constant in the interval 

(0,1). 

We also need to make the remark that /?(£, e) above merely had to be chosen 

so that   / |Ajt|2 < e2 for infinitely many fc.   In particular this means 
JYlkC\Bp{Z) 

that if £0 £ spt//\{£i,... ,£P}, then we may take p(£, e) = p(£o, e)/2 for any 

£ G spt 11 fl B/9(^0)e)/2(^o)- Thus we see that the following is established: 

If we let 

^(f, p) = liminf / |Afc|
2, 

k-00  JzknBp(ti) 

then we have for all £0 G spt/i\{£i,... ,£p} and all p < 8p(£o)/2, and all 

^ G spt fjb fl Bp^^o) that 

for some fixed 7 G (0,1) independent of p, £.  Thus 

(3.2) V(P, £) < C(p/p0r^po,0 < C(p/po)aV'(p^o), Co) 

for some a G (0, 1) and for all such p, £, where po = 8p(£)o)/2. 
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Henceforth £o € spt /A{£i, • • • > &} ^s fixed and we take £ G spt /in5p(^0)/2(£o) 

and /? G (0,p(£o)/2), and let 

®k = OLk{p, 0 = / lAfc|2 (< 62 for infinitely many k ), 
7EfcnBp(0 

and let Lfe, fife, izfe, pfc, dj. be as in (3.1). Also let [/* = PA;(graplinA; fl Ba{^)) 

{a as in (1)), and let iZfc denote an extension of Uk\Uk to all of Lk such that 

(3.3) p-1 SUp |fifc| + \Duk\ < Ce
1/2(2n-3). 

(It is easy to see that such an extension exists—first extend u^ddi^ to d^k 

appropriately to give Uk on Uk U (Ui^,A;)-) Since ^^diamd^ < Cy/akp (by 

Lemma 2.1), the variant of Poincare's inequality in the Appendix A below 

gives 

inf /  |/ - A|2 < Cp2 /  p/|2 + C^T, sup |/| v, 

with C independent of fe. Applying this with / = DjUk, we have a constant 

vector rjk so that 

/   \Duk - r^l2 < Cp2 [   \D2uk\2 + C^p2 < Cp2^rk. 

Then since, by Lemma 2.1, X^ Mil ^ C^Joc^p1^ we have 

/ 
lLknBPk(0 

so finally, by (3.2), for suitable 7 > 0 

(3.4) / \Duk-rik\2<Cf?*. 

Take a subsequence so that the Lk converge to L, % —> 77, and so that (by the 

Arzela-Ascoli theorem) graph uk converges in the HausdoriBF distance sense to 

graph-u, with u G LipL, p'1 sup \u\ + sup \Du\ < <7e1/2(2n~3) and 

(3.5) / \Du-ri\2<Cp2-*. 

In measure theoretic terms (provided we take e small enough to begin with) 

this means we have established that for all £ G spt fi fl BQP^0)/2(CO) and for all 

p<6p(So)/4: 

n2 L (Efc n BP(0) = n2 L (graphtzfc n BP(Z)) + efc, 
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where 6k is a signed measure with total mass < Cp2"1"7 and (taking limits in 

the measure-theoretic sense) 

(3.6) fj, L £,(0 = H2 L (graphs fl Bp^)) + 9, 

where total mass of 6 < Cp2+7 and where u satisfies (3.5) (with 77 = r](p, £)). 

Of course all the constants C here are independent of p, £, provided we con- 

tinue to assume that f E spt ^ fl ^(^0)72(^0) and p e (0, P(£Q)/2). 

In view of the arbitrariness of p, ^ it then follows from (3.5) and (3.6) that 

if e is small enough, firstly 

(3.7) 

the measure p has a unique multiplicity 1 tangent plane at each point 

£ E spt/xfl £0p(£o)/4(£o) ™^ normal-space N(£) such that 

^ IMh) - N(z2)\\ < Cfa - 6I7,    fi, 6 E sptpn ^Ptt0)/4(&), 

and also that then for any preassigned 6 > 0 there is a neighbourhood U of XQ 

such that 

(3.8) /xLt/ = 7Y2L(EnC/), 

where E is an embedded C1,7/2 surface expressible as graphs for some w E 

Cfl'7/2(f7 PI LQ) with supc/nLo |Dtt;| < 5, where LQ is the tangent plane of p at 

On the other hand, since  / H2 < Cp7 (by (3.2)), where Hfc denotes 
./EnBp(0 

the mean-curvature vector of Sfc, and since S (with multiplicity 1) is the 

varifold limit of Sfc in B^p(^0)/8(^o), we deduce that E has generalized mean 

curvature H satisfying 

/ H2 < Cp7, 
■/£nBp(0 

for £ = x + w;(a;) E graphs such that dist(x, dU) > 2p, and that w is a C1 

weak solution of the mean curvature system 

YtDi(y/ggiSDjw) = y/gH, 

(where {gij) = (ftj)-1, ^ = det(^), ^ = det(<^ + DiW • DJW)). It then 

follows from a standard difference quotient argument (e.g.   by the obvious 
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modifications of the argument used in [GT, Theorem 8.8 ]) that w G W^(U) 

and that each W£ = D^w satisfies a system of the form 

2 2 

£ Di(gitDjwt) = ft + <rDjff, 

with {ft] < C(l + 6\D2w\) and |/?| < C|H| in a neighbourhood of XQ, where 

C does not depend on 6. By using' the weak form of the equation for we — a^ 

where a^ is the mean of wi over i5a(^), one then very easily checks that, for 

suitable p > 0, w satisfies an inequality of the form 

/ \D2w\2<c[ \D2w\2 + Ca\ 
JL0r\Ba/M) J 3^(^3^2(0 

for each ^ G LQ D Bp(xo) and each a G (0, p), where C depends on p but not 

on a. By hole-filling (that is, by adding C JB ^x I^D2^!2 to each side of the 

inequality and iterating the consequent inequality), we then have for suitable 

a>0 

(3.9) / \D2w\2<Ca2a,    0<a<p 
JLoCiBod) 

for each £ G LQ fl Bp(xo), where C does not depend on cr, thus by virtue of 

Morrey's lemma completing the proof that S is a C1,a D W2'2 surface away 

from the bad points £i,... , £p.    D 

We now show that w is actually C2'a for some a > 0. (Higher regularity, 

and real-analyticity, of w is standard—see e.g. [MCB]—once we get as far as 

C2,a.) To establish C2,a regularity of u we need the following lemma: 

Lemma 3.2. Let /?, 7, L > 0, D = {x G M2: |x| < 1}, and let 

u = (u\ ... , um) G W2'2(D; Em) H C1'7^; Rm) 

satisfy \u\ + \Du\ < 1 in D and 

(i) / |zAf</V7 

/or each £ G D and p < 1. Suppose further that u is a weak solution of the 

Ath-order quasilinear system 

DjDs ^^(x.u.D^DiDrU^+DjBiix.u.Du.D^+B^x.u.Du^D2^ = 0, 
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where A1^ = Az^s(x, z,p) and B3
a — BJ

a(x,z,p,q) satisfy the following for 

\z\ + |p| < 1 

(iii) \AT0
s(x,z,p)\ < L,    \D{x,z,p)A%s(x,z,p)\ < L, 

\Bi(x,z,p,q)\ + \Dix>ZtP)Bi(x,z,p,q)\ < L(l + \q\2), 

\DqBi(x,z,p,q)\<L(l + \q\), 

where we use the notation that DpF means the tensor of all first order partial 

derivatives with respect to the variables P. Then u G Wf^{p) nC2,a for some 

a > 0; in fact there are C > 0, a G (0,1), depending only on (3,7, n, L such 

that 

\D*u\2 < Cp2a 
/ 
l{x: |a;-£|<p} 

for each £ G D with dist(f, dB) > 2p. 

Proof The weak form of the equation is 

(3.10)    jA%a(x, u, Du)Diru^DjsC - B^x, u, Du, D^DjC 

+ B0
a(x,u,Du,D2u)C = 0, 

valid for any (a G W0
2'2(D), where, here and subsequently, repeated Latin 

indices are summed from 1 to 2 and repeated Greek indices are summed from 

1 to m. 

We are going to use the difference quotient operators 

(3.11) 
Shf(x) = h-1(f(x + he)-f(x)),    8hf(x) = h-1(f(x)-f(x-he)),    h^0, 

on D|h| = {x e D: dist(x,5D) > \h\}, where e = (1,0) or (0,1). Concerning 

these, recall the formulae 

6h(fg)(x) = (8hf(x))g(x + he) + f{x)Shg{x) 
(3.12) 

/ gShf = -    fSng, 
JB JB 

the first being valid on D|^| and the second requiring that the product fg 

vanishes outside a compact subset of D|h|. 
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Now take a disk Bp(g) with |f | < 1 - 2p, take 0 < \h\ < p/4, and replace Ca 

in (3.10) by ~8h{(6hu
a - £g)C), where C G ^(E2) is arbitrary with support in 

Bzp/±{£)i and where 1% = a^ + b^ ♦ (a; — ^), with a^ the mean value of 8^ in 

the annulus A = Bp(€)\Bp/2(€) and 6^ the mean value of D^ on this annulus. 

Notice that then we have 

(3.13) 

/ |< - £a
h\
2 < Cp2 f \Du°h\

2 and also  / |< - ^|2 < Cp4 f \D2ua
h\
2 

JA JA JA JA 

by the Poincare inequality, where we use the abbreviation 

K = 6hua. 

Also, in view of the given L2 bounds on D2u and the fact that Uh(x) = 

J0 Diu(x + shejds, one readily checks the following inequalities for \h\ < 

1, 0<cr<p<l and \y\ < 1: 

(3.14) 

/ \D£h\2 < Ca2sup \D£h\2' < Ca2p^-2 = C(a/p)2-^c72^ < Ca2^ 

/ \Duh\2<[   [ \D2u\2 dxds < Ca2\ 
JB[h\nBa(y) JO    JBnBa(y+she) 

where D^i = {x: \x\ < 1 — \h\}. Now using (3.12) and the above choice of £a 

in (3.10) we obtain 

/      (a%sDirU
0

h + SniA^'ix,«, £>«))D^)Djs((ua
h - ea

h)0 

-6h{Bi{x,u, Du, 2}2u))A(«-«)+M£°(x,u, Du, D2u)^ «-« - 0, 

where a^s(a;) = Aijrs(x + he, u(x + he), Du(x + he)). Using the given condi- 

tions (iii), (iv) we can then check that this is an identity of the form 

(3.15)     /      {aiirsDiru
0

hDjsu
a

h + Ea ■ D2< + Fa)( 

+ f     (Ei- D2ul + F^DjC + (Eik ■ D2ua
h + Ff )DjkC = 0, 



306 LEON SIMON 

where 

\Ea\ < C(l + \Duh + \D{uh - 4)| + \uh - 4|)(1 + \D2u\) 

\Fa\ < C(l + \Duh\* + \D{uh - 4)|2 + K - 4|2)(1 + P2«|2) 

|^| < C(|DK - 4)| + (1 + |£>2«|)|nfc - 4|) 

(3.16)     \Fi\ < C((l + \Duh\2 + \D(Uh - 4)|2)|I>2«| 

+ (l + \D2
U\2)\uh- 4|(1 + \Duh\)) 

\Eik\<C\uh-£h\ 

\Fik\<C\uh-eh\(l + \Duh\), 

where C depends only on L, n. 

After replacing £ by £4, using the ellipticity condition (ii), the Cauchy- 
Schwarz inequality, and the inequalities (3.16), and keeping in mind that 
sup 1^1, sup \£h\ < C (the latter being true by (3.14)), we obtain 

(3.17) 

/      \DW\2C 

< C [      C4(l + \Duh\2 + \D(uh- 4)|2)(1 + \D2u\2) 

+ C [     |^CI2ICI2(1 + \Duh\2 + \D(uh - 4)|2 + I^DK - 4|2 

+ c[    (C2|i?2CI2 + I^CI4)K-4| 

Now we use a result of Morrey [MCB, Lemma 5.4.2], which says that if q > 0 

on Bi(0) C M2 and if there are constants /?, 7 > 0 with SBf^nBlf0\ Q < fie1 

for all ^ e 5i(0) and a G (0,1), then 

/       q\v\2<e[       \Dv\2 + cf       \v\2 

JBiiO) ^Bi(O) ^^(O) 

for each v G WQ
1,2
^!^)) and for each e > 0, where C depends only on the 

constants /?, 7, e. By the scaling x —> z = p~1x we see that this implies that 

if q > 0 on a ball Bp(0 in R2 and if JBAy)nBp{0 q < (3((T/PV for all y G Bp(0 
and a < p, then 

/      <zM2<e/      \Dv\2 + Cp-2 [      H2, 
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for any v G W0
1,2(i?p(£)) and any e > 0, where C depends only on /?, 7, e. That 

is, stated in another way, if q > 0 on Bp(^) and JB f^nBtT/y\ q < Per7 for all 

a G (0, p] and all y G Bp(^)) then for each 6 > 0 

(3.18) 

/      q\v\2 < ep- [      \Dvf + Cp^2 [      M2,    v e WoW(Bp(0), 

where C depends only on /?, 7, e. (Because the previous version can be applied 

with p~/yq in place of q.) 

So let Bp(£) continue to be such that |£| < 1 — p and take 0 < \h\ < p/A, 

p < 1/4 in the above. We use (3.18) to estimate some of the terms on the right 

in (3.17); in fact, according to (i) we can use (3.18) with q = (1 + ID2^2), so 

in particular, assuming £ G C^0(BP(^))^ 

f      C4(l + \Duh\2 + \D(uh - 4)|2)(1 + \D2u\2) 

< tf f      (\D(C(l + |D^|2)1/2)|2 + |£>(C2(1 + \D(uh - 4)|2)1/2)P 

+ Cy-2 f      C4(l + \Duh\2 + \D(uh - 4)|2), 
JBM) 

which evidently gives 

(3.19)     f      C4(l + \Duh\2 + \D(uh - 4)|2)(1 + \D2u\2) 

< 16epi f      C4\D2uh\2 + 

C/ /     (p-2C4 + (2\D(\2)(l + \DUh\2 + \D(uh - 4)|2). 
JBJf) P(«) 

Also, using (3.18) with the same choice of q, we have 

/    e\DC\2(i + \D2u\2)\uh-eh\2) 
JBP(0 

< epi I      |D(CI>C ® K - 4))|2 + Cpi-2 [      (2\D(\2\uh - 4|2, 

which evidently gives 

(3.20)    /     c2PCI2(i + P2«|2)K-4|2) 
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166^ /       C2|£C|2|^|2 + 
JBp{e,) 

cp^ [  mi4+e\D2c\2+p-2(;2m2)\uh - 41 

Notice that by virtue of (3.14), assuming (as we subsequently do) that support 

of £ is contained in Bsp/^) and that \h\ < p/4, we can also use the choice 

q = 1 + \Duh\2 + \D(uh - 4)|2 (rather than q = 1 + \D2u\2) in the above, 

giving in place of (3.20) the inequality 

/    C2|£CI2(i + \Duh\2 + \D(uh - 4)|2)K - 4|2 

(3.20') < 16e^ /      C2\DC\2\Duh\2 

+ Cy /     (PCI4 + C2\D2(\2 + p-2(2\D(\2)\uh - 4|2. 
JBP(Z) 

Using (3.19), (3.20) and (3.20') in (3.17) we then conclude that 

f      PWC4 < 326 /      ?\D2uh\2 

JBpii) JBP((,) 

+ C I     (PCI4 + C2P2CI2 + p-2C2PCI2)l^ - 4I2 

JBp(i) 

+ Cp-< f    ((C2PCI2 + P-2C4)(I + P^I2 + PK-4)|2). 

Now, with C = 1 on Bp/2(g), PCI < Cp'1, and p2C| < Cp-2 (together with 

the previous restriction that C — 0 outside B3p/4(£)), we conclude 

(3.21)     f      \D2uh\2C4<Cp-4 I K-412 

+ Cp^2 /     (1 + |I}2u|2 + |D^|2 + \D{uh - 4)|2), 
7sp(o 

where A = Bp(£)\Bp/2(€). Using the Poincare inequality (3.13) and also (3.14) 

we thus have in particular that 

/ \D2uh\2<cf     (l + \D2u\2), 

with C depending only on 7, n, and /? (and not depending on p). Since this 

holds for 0 < \h\ < p/4, we can let \h\ { 0 to deduce that u £ W^2{Bp/2{^)) 
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and that 

(3.22) / \D3u\2 < Cp-2 [      (1 + \D2u\2). 
JBP/2(Z) JBP(O 

Also, (3.21), (3.13) and (3.14) give (after letting \h\ | 0) 

(3.23) /      \D3u\2C4 <C [ \D3u\2 + Cp^-2 [     (1 + \D2u\2), 
JBP{0 JA JBP(Z) 

with C independent of p. Since we have shown that u G W^'^D), the Sobolev 

embedding theorem then implies D2u G Lfoc for each p > 1, and hence in 

particular 

/      (1 + \D2u\2) < Csp2-8 

JBP(Z) 

for each 8 > 0, and hence (3.23) implies 

(3.24) / \Dsu\2 <C [ \D3u\2 + Cp^2, 
JBP/2(0 JA 

with C independent of p, for |£| < 1 — p and p < 1/4. Adding C JB ,^ ID3^!2 

to each side of the inequality (i.e., hole filling again), we thus get 

(3.25) / \D3u\2 < 6 [       \D3u\2 + Cp^2, 
JBP/2(Z) JBP(0 

for a fixed constant 9 E (0,1) independent of p, and this is valid for any 

|£| < 1 — p and p < 1/4. By iteration we thus have a > 0 such that 

/ 
\D3u\2<Cp2«,     |£|<l-p, P<l/4, 

Bp/2(0 

so by Morrey's lemma u is C2,a locally on D. This completes the proof of 

Lemma 3.2.    □ 

We can now show that w (as in the discussion preceeding Lemma 3.2) is 

actually C2,<* for some a > 0. Recall that we already proved that w is of class 

Chcx fl W2'2 on the disc L0 n Sp(0 and that 

(3.26) / \D2w\2 < Ca^ 
JLonBviy) 

for some fixed 7 > 0 and for every y G L0 fl Bp(^) and a < p (assuming p 

is small enough), so in view of Lemma 3.2 we will be done if we can show 

that (modulo a rescaling and rigid motion taking the disc LQ fl Bp(^) to D), 
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w is a weak solution of an equation of the form considered in Lemma 3.2. By 

construction w is a weak (W2,2) solution of the Euler-Lagrange system for the 

functional 

where (^) = (g^-1, gi5 = % + A^ • D^w, gaf3 = Zlq=iDpWDqw^gp^ 

(Notice that //(w) is just Jgraphw \AW\2, where Aw is the second fundamental 

form of graphs, and by virtue of the Gauss-Bonnet theorem we therefore 

have that \Af(w) differs from the Willmore functional of graph w by only a 

boundary integral; this explains why w must be a stationary point for N{w) 

(relative to variations of w which vanish in a neighbourhood of LQ H dBp{£)).) 

Now one checks by direct computation that the Euler-Lagrange system for 

the functional J\f(w) has (after a re-scaling and rigid motion taking the disc 

L0 n Bp(£) to the unit disc D) exactly the form of the system considered in 

Lemma 3.2. In fact w satisfies a system as in Lemma 3.2, with m = n — 2, 

A^p3 = y/g(Sai3 — ga^)girgjs and with B^x^z^p^q) equal to homogeneous 

quadratic polynomials in q (with coefficients smooth functions of x, z,p). Since 

w has small C1 norm, the hypotheses (ii)-(iv) of Lemma 3.2 are easily checked, 

and the hypothesis (i) is satisfied by virtue of (3.26)above. We thus deduce 

that w G C2,a as required. 

Completion of the proof of Theorem 3.1. Thus we have established the real 

analyticity of E = spt fi away from the finitely many bad points £i,... ,£p. 

Next we establish the Hausdorff distance sense convergence claimed in the 

statement of Theorem 3.1. Indeed suppose first that there is a sequence yj 

of points with y^ G E^ for each j, with yj —> y and with dist(y, S) = rj > 0. 

Since S^ is connected, there is jo such that E^ fl dB(7(y) ^ 0 for all j > j0 and 

all a G (77/4,77/2). Thus for each N > 1 and each j > j0 we can find points 

Zj^ G Ej D dB^i+k/N)rl/4. Applying (1.2) with E^ in place of E, with Zj,k in 

place of 0, and witlTp = 1/N we obtain 

TT < Cip-2^ n Bp(zjik)\ + rpj n Bp(zjtk))), 

so summing over k and using the disjointness of the Bp(zj^k) we obtain, by 
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virtue of the fact that |Sj fl B^Zj^l —> 0 for each k = 1,... , N, 

N ^ClimsupJ^Ej). 
i 

Since TV is arbitrary this says limsup^^ ^(Ej) = oo, contrary to the bound- 

edness of T^Ej). Thus we have shown that the set of all possible limit points 

of all possible sequences {%•} with y^ G Ej is contained in E. Since the re- 

verse inclusion is trivially satisfied, this completes the proof of the Hausdorff 

distance sense convergence. 

Next we want to discuss C1,Q! fl W2,2 regularity of E near the bad points. 

First note that (by the measure theoretic convergence of Ej to E and because 

/s. IHJI is bounded) a subsequence Ej/ of the Ej converges to E in the varifold 

sense (this is a special case of Allard's compactness theorem—see [SL2]), and 

hence we have the convergence of first variation. Thus, for any fixed smooth 

<J>: IRn —> Rn with compact support, we have 

(3.27) lim /   * • H^ = / $ • H. 

Now extend H (which is smooth on £\{fi,... , £p}) to all of Mn\{^i,... ,£p} 

smoothly, and apply (3.27) with $ = (H, where £ is C00 with compact support 

in Rn\{£i,... ,£P}. After an application of the Schwarz inequality and the 

measure theoretic convergence of Ej to E, this gives 

(3.28) / |H|2<liminf/ IH/ 

for each open U C Mn and each p < \ min^j |^ — ^|. In particular 

(3.29) /      |H|2 < limliminf / IH,!2    V p > 0. 
Jxnu                Pto      3      Js.nt/xdJ'^B^e,)) 

By almost the same argument, except that the weak definition of second fun- 

damental form and the corresponding compactness theorem ([HJ]) is used in 

place of the first variation identity and the Allard compactness theorem, it is 

easily checked that 

(3.30) /      |A|2 < limliminf / jA^2    V p > 0, 

where A, Aj denote the second fundamental form of E and Ej respectively. 
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The inequality (3.29) guarantees in particular that /E |H|2 < oo and the 

same application of the Allard compactness theorem guarantees that the first 

variation identity 1.1 holds for S. (We emphasize that 1.1 holds exactly as 

stated; it is not necessary that $ vanish near the bad points.) Then we get in 

particular that (1.2)-(1.5) hold for all y G S\{fi,... ,£p}; in fact if we pick 

&,*; ~^ & and apply this with ^ in place of y we obtain (1.2)-(1.5) for all 

7/GS. 

In particular Lemma 1.4 applies (without change in the proof) to E. As 

a matter of fact one easily checks that Lemma 1.4 applies to E even if the 

subsets Ej satisfy dHj C dBp{Q) U{£i,... , fp} rather then dHj C dBp(0). We 

shall make use of this shortly. 

Now let £a € E with fi|fc -> & and fi|ib ^ ^ for each fc. By applying (1.4) 

to E, we get 

TT < C(p-2|E n Bp(^|jfe)| + ^"(S n Bp(&,*)))- 

Hence 

(3.31) TT < c(p-2|s n 5P(^)| + ^-(E n sp(0)). 

Also, according to (1.2) we have 

Jsr 
< OO, 

so that in particular (since jEnB^^i)! > Ca2 for sufficiently small a by (3.31)) 

we have that for each e > 0 there is do = 0"o(e) > 0 such that for all a G (0, CTQ) 

(3.32) ^f-^ ^ e on ^te)\^/2te) 

except for a set of measure < Cea2. 

From now on we assume that a G (0, (Jo(e)) and that cr is also small enough 

to ensure that 

(3.32') / |A|2<e2/4,    i = l,...,P, 

and we also assume that e G (0, C-1), where C is as in (1.4) (the same as C 

in (3.31) above). Next take y, G dB3a/4^i)nTl. (Notice that dBs^/^^nT, ^ 0 

for <J sufficiently small, because otherwise we could apply (3.31) with p j oo to 
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the component £* of E which contains ^, thus giving ^(S*) > C-1, contrary 

to (3.31).) By (3.32) we can apply the approximate graphical decomposition 

lemma (Lemma 2.1) to give that there is a plane Li containing y* and a C1 

function Ui: fli C Li —> Lj-, with 

(3.33) (j^l^l + lD^I^Ce1/2^-3) 

where ^ D 5<7/4(yi)\UA;(^,A:)j where each d^k is a closed disc in Li and 

^ diam rf^fc < Ce^V, and where 

(3.34) ^(y,) H E = (B^foO n graphs) U (UP^)' 

where the P^k are pairwise disjoint and each is diffeomorphic to the unit disc 

in R2, and 

(3.35) ^diamPa < Ce1/2. 
k 

Notice that by (3.32) we have that the radial vector \yi — ^i\~1{yi — ^i) is almost 

tangent to Li in the sense that 

(Recall that yi € Li by definition.) By virtue of (3.33), (3.34), (3.35) we can 

find points yM, 1/2,1 € E with dist^,^) < Ce1/2(2n"3)cr, where Pi,i,P2,i 

denote the two points of dB3a/4(£i) ndBeailJi) ^Li, and we can make a similar 

application of Lemma 2.1 starting with y^ in place of y^, for j = 1,2. The 

corresponding planes Lj^ must in this case be close to Li in the sense that 

\\Li — Lj^W < C€1^2<<2n~3K We now repeat this procedure with y^-, L^ in place 

of y^, Li\ after a fixed number of steps, depending only on n, we then have that 

there is an annular region Ai = {x G Li: (| — |)cr < |a; — ^| < (| + f )cr} C L* 

and a C1 function Uii Ai\([jkei^) -^ Lj- with 

a-^Uil + lDuil^Ce1'212"-® 

r3^Q\ EH A = f graph ^U \[JPi,k)) HA 

^diamPa<C61/2(2n-3)a,    PLX^k) = e^ 
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where PLi is the orthogonal projection onto Z^, and where 

Ai = {x + z\ x e Ai,z G IH,\Z\ < 8cr 12}. 

Notice that the latter part of the above argument can be applied to Ej for j 

sufficiently large, assuming that J^.nBfT^.)\B ^A \AJ\
2
 < £2 for all sufficiently 

large j; notice that in this case we cannot use (3.32)because (3.32) relied on 

the fact that ^(E fl 5cr(^)) is small, which may not be true for Sj. However, 

in place of (3.32) we can use the Hausdorff distance sense convergence of Z^ 

to S, which guarantees that Sj is in the Ej neighbourhood of S, with Ej | 0; 

this means that for Ej we can take the reference plane and annular regions to 

be the same (i.e. L* and Ai respectively) that we used for E. Thus, assuming 

S^nB^Ui^B^Ui)^2 < e2' we have Cl functions ui,3: AA(^keidtk) -> Lj- 
with 

a->^| + |D7iM|<Ce1/2(^-3) 

,3 37x Ej fl Ai = (graph uid U ( [j Pidik j J fl A 

where A is as in (3.36). 

Now we claim that in fact, in place of the identity in the second line of (3.37), 

we have the stronger identity 

(3.38) 
s,- n P(3+!)^)\P(3_!)a(&) = E,- n At n P(!+!)c7(6)\P(3_f )(7fe). 

Indeed otherwise, since the discussion above (and in particular (3.36)) applies 

equally well with any a < cr, we would have that there are two components 

E^1), E^2) of EDB3(T/4(6)\{6.} both containing ^ in their closures. This would 

contradict the modified version of Lemma 1.4 which applies to E as discussed 

above. 

Now since £i,... , £p are the only bad points of E, we know that for any 

fixed a > 0 there is 6 G (0, a/2) such that 

(3.39) liminf / lA/ < e2 
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for each y G £\(Uili ^(6))- We assume subsequently that 8 is also chosen 

small enough so that 

(3.40) Vv\x-y\^0onBa{y)\{y}) sup     dist(x - y,ryE) < e 

for all y G £\(U!Li ^o-O^))- Now by (3.39) we can apply Lemma 2.1 to give a 

plane Lj {y) containing y and a smooth function u^y such that 

(3.41) suptT1!^! + sup \Dujyy\ < Ce^^) 

(3.42) ((U^fo)) U SraPh^) n Be6(y) = ^j n Beeiv), 

where Pj(y) are disjoint, each diffeomorphic to the closed disk in R2, and 

(3.43) ^diamP^y) <Ce1/28. 
3 

Now, from (3.40) and the fact that Ej converges in the Hausdorff distance 

sense, we have 

||(Lj(y)-y)-T3/S||<C'e
1/2(2"-3> 

for j sufficiently large, and hence we can arrange that 

graph UJM = graph Ujt. y 

where Uj^y is defined over the closure of some domain f2j)2/ C L(y) = y + 

TyT, with smooth boundary (the inner boundary components being close to 

circular), and where in place of (3.41) and (3.42) we still have 

(3.44) supS-^ujJ + sup \Dujty\ < Ce1^271^ 

(3.45) 

(([jPjiy)) Ugraphu^y) nBe6(y) = E,- nB0s(y),    ^diamP^ ^ Cel/26 

j k 

where the Pjyy are pairwise disjoint, each diffeomorphic to the closed unit disk 

in M2, and dPj^ is a smooth Jordan curve equal to graph^^fc), where 7^ is 

one of the inner boundary components of f^. 

Notice that, by virtue of the lower semi-continuity (3.30), (3.39) implies 

that 

/ |A|2<62 
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for each y E S\(Ui J5(T/2(^)), and then the regularity theory established above 

in the first part of the proof of Theorem 3.1 establishes (assuming, as we do 

subsequently, that e > 0 is small enough, depending only on n) that for all 

such y 

Bes{y) H E = graph u n Bds{y) 

where u is C2 on Bes{y) n (y + X^E) and 

(3.46) r>| + \Du\ + 6\D2u\ < Ce1/2(2n-3), 

with C depending only on n. Here 6 G (0, |) is a constant depending only on 

n. 

Now, with the notation 

Sp(y) = {x + z:x£Xn Bp{y), z G (T.E)1, |^| < 0p/2}, j/ G E, 

according to (3.44), (3.45), (3.46). we have, for y G E\(U,ili #<r(&))> 

(3.47) 5p(y) H Ej- C graphu^y 

for a set I^y) of p G (0(5/2,0(5) with 

measure Ij (y) > 66/4. 

Also, for each i = 1,... , P, by (3.37) we can find a set /jO^) such that 

measure/j^) > 0cr/2 

and such that 

(3.48) Spi&nVjC graphic 

for all p G ij(&). 

Now select a cover of E\(Uz
iLi ^3^/4(6)) by balls B9s/2(yk), k = 1,... , M 

and define yM+i = & for i = 1,... , P. By successively applying the selection 

principle of Appendix 2 we have a subsequence {f} C {j} and r^ G Hj/ Ij'iUk) 

for fc = 1,... , M + P such that for each k^£ dBTk (yk) n E, aPr£ (yi) D E are 

either disjoint or intersect transversely, and such that 

dBTk {yk) fl dBTl {ye) n aPrm (ym) H E = 0 

for all distinct fc, £, m = 1,... , M + P. 
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Then the smooth Jordan curves 

yt),     e=l,...,M + P 
I M+P \ 

r, = (E\       IJ    BTk(yk)\ndBTe(ye 
\k=M+l / 

divide all of ^\{IJ1
4
J~M+I)BTk(yk)) into polygonal regions i?i,... , .RQ. For £ = 

1,... ,(5, let 

ne = {x + z:x€Re,ze (T.S)-1, \z\ < 98/4}. 

Then for j sufficiently large, by (3.37) and (3.44)-(3.48) we have, writing Hj 

for Ej/, that E^/ fl TZi is diffeomophic to i?^, and hence 

M+P 

Si\( u ^M 

is diffeomorphic to E\ (U/C=M+I BTk(yk)) for all sufficiently large j. 

We can now construct comparison surfaces E^ with 

_ M+P M+P M+P 

SA( U  ^(yfe)),   SA( U  ^(i/*)),   s\( U  BrM), 
fc=M+l fc=M+l /c=M+l 

all diffeomorphic for each j, with 

(3:49) s, nvk = s, n vk 

for some neighbourhood 14 of dBTk(yk), 

/ M+p \ / M+p \ 
(3.50) EA      (J    B2Tk(yk))=E\(   \J   B2Tk(yk)), 

and 

(3.51) / lA.f^Ce2. 
J^3^B2Tk(yk)\BTk(yk) 

Notice that then by (3.49) and the minimizing property of E^ we have 

/ lH/< / iH.f + e, 

where e^ J. 0. However by (3.50) and (3.51) this gives 

(3.52) / \Uj\
2<  [ |H|2 + ej + Ce2. 
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Also, since 

(3.53) / IH/- / |H 

= [ lAI2-/ 

by (3.49) and the Gauss-Bonnet formula, we then have also that 

(3.54) / |A,|2< / lAf + e. + Ce2. 

Since we can do this for each e > 0 we thus have in particular that 

limlimsup f |H,|2 < / |H|2 

limlimsup /" lA,!2 < f |A|2 

Combining this with the lower semi-continuity (3.29), (3.30), it is then routine 

to establish the measure-theoretic convergence 

|H7|
2W2LE7- -> |H|2W2LE 

(3.55) 

in the region Mn\{£i,... , ^P}. 

Next we can check that E has a minimizing property as follows: According 

to the above discussion for each e, 6 > 0 sufficiently small there is a a € (5/2,6) 

and a 0 E (0, T) (depending only on n) with 

(3.56) limsup / jA^2 < <f, 
./EJ-n(|J.z?2<y(&)\JM&)) 

(3.57) EA^U^te)) ^ diffeomorphic to E\AjBff(&)) 

(3.58) |^(E,\(U^te))-^(S)|<52 

and such that there are C00 functions u^ over domains fiij in planes Lj^ with 

(3.59) Ejn5(1+(?)a(&)\£(i-M&) 

= (graphUj-.i U (U^J-fc)) nBd+flateASd-fl^te) 
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(3.60) P^k H ([J graphujfi\dL^ n Ba(zS) = 0, 

where ^^ diam Pijik < C81/2 and f is a subsequence of j, and 

/« ^N /^">i,il + \Duid\ < Ce^v 
[     j 1 r ID

2
7/ .,i2 <rfi2 

Thus choosing sequences e^, 5^ | 0 sufficiently slowly, we have a sequence 

<jj G (6j/2,6j) such that (3.55)-(3.61) hold with ej,6j,aj in place of e, 5, cr 

respectively. In particular by (3.58) 

(3.62) lim^(sA(U ^fe))) = HZ). 

Now recall that for a sufficiently small we know that £ D dB^i) is a single 

smooth Jordan curve close in the C^-sense to some plane Z/ij0. and in fact E fl 

•S2a(6)\^/2te) is close to the annulus L^ fl B2(T{£i)\Ba(f;i) in the Crl-sense. 

So we can take a smooth compact surface S such that, for suitable points 

2/i, • * * , VP £ S and all sufficiently small a, E\ (Ui=i Bvdji)) 'ls diffeomorphic 

to E\ (UiLi ^cr(£z))- Thus with cr = aj I 0 sufficiently slowly (as above), 

for large j it is possible to replace E fl B^^yi) by a slight deformation of 

Ej n Bfj {^i) followed by a rigid motion to give (Ej fl JB^.(&))*, such that the 

composite surface 

ti = (E\(U^(W))) U (U(si n^(6)) ) 

is smooth and 

?{{?,, n Ba](6))*) < ^(s,- n Ba.m + e,-,   €,-1 o. 

Then note that 

^(s,n (U^(6))) +^(SA(U^(6))) =^(sj) 

^^O + e, <.F(£\(U^W)) +^(^n (U^,.(6))) +€,•, 

where e,- J. 0. Thus in view of (3.62) we have 

(3.63) .F(E) < ^(S). 
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Because of this minimizing property, we can repeat the biharmonic comparison 

argument for E (exactly as in the proof of Lemma 2.2) with balls centered at 

the bad points ^. Thus we conclude that 

i |A|2 < Cp2^ 
sn£p(£i) 

for all sufficiently small p, with C independent of p. Then combining this with 

the previous estimates we now have a fixed constant C such that 

L |A|2 < Cp2^ 
T.nBp(y) 

for all y G E and all sufficiently small p. Then we deduce that E is a C1,anW2'2 

surface (even in a neighbourhood of the bad points) by the same argument that 

we used before in the discussion of the good points. In view of the minimizing 

property (3.63) we can now also apply Lemma 3.2 as before to deduce that E 

is C2>a (and hence real analytic) near the bad points. 

Finally, a simple modification of the argument leading to (3.63) shows that 

E minimizes relative to all surfaces with the same genus as E, as claimed. This 

completes the proof of Theorem 3.1.    □ 

4. PROOF OF THE MAIN FIXED GENUS RESULT IN Rn 

Suppose first that g = 1 and let E^ be a sequence of embedded tori with 

^(Efc) —» Pi. Assume we normalize (as in §3) so that 0 6 E^ and |Efc| = 1. 

Then by Theorem 3.1 we have a subsequence (still denoted Efc) and a real 

analytic compact embedded surface E of genus < 1 which minimizes J7 relative 

to all surfaces E of the same genus as E. If E is a sphere (genus 0) then it 

must be a round sphere (because only round spheres minimize J7). We are 

thus left with the alternatives 

J either E is genus 1 with ^(E) = /?i as required 

| or E is a round sphere. 

Naturally the second alternative can occur; what we want to show is that we 

can make an appropriate inversion and rescaling to give a new minimizing 

sequence E^ of tori for which the limit surface E definitely satisfies the first 

alternative in (4.1). 
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As a matter of fact we shall show quite generally the following, which guar- 

antees that, for arbitrary g > 1, we get a new minimizing sequence converging 

to a minimizer which is not the round sphere. (Since only round spheres 

minimize in the genus zero case, this will complete the existence proof.) 

Lemma 4.1. //Sfc is any genus g minimizing sequence in the sense o/§3 with 

g > 1, then there is a new genus g minimizing sequence E^ C i?i(0) converging 

in the sense of Theorem 3.1 to a minimizing surface of genus > 1. 

Proof. For the moment consider an arbitrary embedded compact genus g sur- 

face E C Mn, and for y € Rn\E let 

dE(y) = dist(y,E) 

and 

Se(y) = {qeV:\y-q\<{l + €i)ds(y)}. 

Now there is €o € (0, \) (independent of S) such that if e € (0, eo) and dj;(y) < 

| diam(E) then diam(5€(y)) > edz(y) implies that the inversion x i—► d-£(y)}x— 

y\-2(x - y) takes E to E C £i(0) with 

f \ < diam(E) 
(4-2) { „       4 - K   ' 

I Hausdorff distance(E, 5) > ~ for any round sphere S C 5i(0). 

(Because the points p, q G 5e(y) with |p — g| > eds(y) map to points p, q G E 

with |p — (jl > e/2 and with 1 > |p|, |g| > (1 + e3)-1; also since d^iy) < 

| diam(E) there is a point r € E with |r| < ^, and one can easily check that— 

for e sufficiently small—any round sphere in S1(0) must be at least distance 

~ from one of the 3 points p, g, f, thus giving (4.2) as required. 

From now on assume e € (0, |) is small enough to ensure that (4.2) holds 

under the stated conditions. Thus we have either there is an inversion E C 

Bi(0) of E such that (4.2) holds, or else 

(4.3)      dmm(S€(y)) < ed^y)    V y € Mn\E with d^y) < - diam(E). 

So consider the alternative that (4.3) holds. Since genus of E > 1, there is a 

smooth map FQ of Sn~2 into Mn\S which links E in the sense that FQ is not 
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homotopic, in Rn\S, to a constant map. Let [FQ] denote the class of smooth 

maps from Sn_2 into Rn\S which are homotopic to TQ in Mn\£, and let 

(4.4) 60= sup   min dist(r(a;),S). 
re[ro]^s»-2 

Assume 6Q < ~ diam(E), and take any 61 G ((1 — e3/100)(5o, (5o). We can then 

by definition select T € [FQ] with minxes--2 dist(r(a;),E) = 6 > 61. Now for 

each y, z G lRn\E it follows from the triangle inequality that 

Se/2(z) C S€(y) whenever \y - z\ < |e3ds(y). 

In particular, by (4.3), if d^(y) < |diam(E), 

(4.5) \(z-q)-(y-p)\<2ed1:(y) 

whenever \y - z\ < ^d^y) and q G S€/2(z), p G Se/2(y). Now let {CJ}J=I,...,N 

with support Q C B^d^y.yA{yj)^ j = 1,... , iV, be a partition of unity for the 

compact set r(Sn~2) subordinate to a covering of r(§n~2) by a sub-collection 

{BeH^yjy^Vj) • 3 = 1, • • • , N} of the collection {Be3d^{y)/4(y): y G r(Sri-2)} 

of balls, the subcollection being chosen so that 

(4.6) 

any given point of T(Sn 2) is in at most C(n) of the balls B^^^/^yj). 

(Such a collection is guaranteed by the Besicovich covering lemma.) For each 

j select a point qj 6 S€/2(yj), let 

(4.7) Vj = yj - Qj 

and define rt (for t € [0,1]) by 

(4.8) rtM = r(u;) + t£o(rM)eS 
J'=l 

= r(a;) + ^(TM - gM) + ^ SGOVJXt;, - (r(a;) - (/(w))), 
j = l 

where, for each uu G Sn~2, q(uj) is any point of Se/2(T(uj)). Notice that by (4.5) 

and (4.6) for each UJ G Sn~2 we can write 

rt(u>) = T(u) + *^g(r(a;) - q(u)) + E, \E\ < C(n)teAd^T(u)) 
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at all points where d^(T(uj)) < |diamS. So assume d^(T(uj)) < |diamS. 

By (4-3) \y - q(u))\ < edx(r(uj))/2 for all y G 5c/2(r(a;)), and it is an easy 
3 

geometric argument to show that T^UJ) + £yg(r(u;) — q(ou)) then has distance 

at least te3d^(T(uj))/32 from any point of S€/2(T(LJ)). On the other hand it 

trivially has distance > e3dj;(r(<jj))/2 from any point of S\S'e/2(r(a;)). Thus 

r(a;) + t^(T(uj) - q(u)) has distance from E of at least > te3dE(r(a;))/32 for 

any u such that d^(T(uj)) < |diamE. Finally, using the above observation 

that the error term \E\ has magnitude < C(n)t64dx(r(cj)), we thus have (for 

small enough e depending only on n), that Tt(uj) has distance at least > 

te3dz(r(u)))/64 for any u such that d^(r(uj)) < |diamS. If on the other 

hand ds(r(a;)) > | diamE, we trivially have that Tt(u) has distance at least 

|diamE - £e3dE(r(u;))/8 from E. Thus if e3sup^(r(a;)) < diamE and if 

also 6Q < JQ diam E, then we have shown that Tt is a homotopy of T in ]Rn\E, 

and 

dsCriH) > min{(l + g)^, ^ diamS} > So, 

thus contradicting the definition of 6Q. NOW (by composing F with a suitable 

smooth retraction), it is easily seen that we could have arranged our original 

choice of F to have the additional property that 

supds(r(^)) ^ 2diamE, 

and hence the above argument shows that for any E of genus > 1 with SQ < 

YQ diam(E), there is always an inversion E C B1(0) of E as in (4.2) above. 

We can now prove the claim of the lemma. We are assuming that the 

sequence E^ converges in the sense of Theorem 1 to a round sphere, otherwise 

there is nothing to prove. Clearly then, if we apply the above discussion with 

E*. (with diameter bounded between fixed positive constants independent of k) 

in place of E, then (assuming k sufficiently large) we must have that 6Q —> 0 as 

k —► oo, where 6Q corresponds to <!>o when we use Efc in place of E in the above 

discussion. Thus by the above discussion there is an inversion Efc C i?i(0) of 

E/c such that (4.2) holds with Efc in place of E. This completes the proof.    □ 

APPENDIX A. 

Here we prove the following variant of the L2 Poincare inequality: 
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Lemma A.l. Suppose 6 G (0, |) is given, and let Q C D = {x G M2: \x\ < 1} 

be a domain of the form ft = ID)\i£, where E is measurable and has projection 

E2 onto the y-axis of Lebesgue measure < 6 and projection Ei onto the x-axis 

of measure < |.  Then for any f G Wl>2(Q) 

inf /|/-A|2<c/|D/|2 + C£sup|/|2, 

where C is an absolute constant. 

Proof. Pick A such that {x: f{x) > A} and {x\ f(x) < A} both have measure 

> ||n|. First, since the projection Ei has measure < |, we can select a set 

S C (—|, |) of positive measure such that, for all XQ G 5, 

(A.l) /      \Df(x0,y)\2dy<4[\Dff l-^j K*o>yj\ uy 2Z1* I  \-LSJ 
|2 

and £0 H E = 0, where £0 = {(^o^y) • y G M}. But by 1-dimensional calculus 

we have 

Sup|/-/(xo,0)|2<4/      \Df\2,    XoES, 

and hence, with A = /(:ro,0) we have by (A.l) that 

(A.2) sup|/-A|2<c/|D/|2,    x0€S. 
ionn Jn 

On the other hand by using the calculus inequality 

/V < (6 - a)2 / V)2, 
Ja J a 

valid for h G C1(a, 6) with h = 0 at some point of (a, 6), we have, for each 
ye(-i,i)\£2, 

/      \f(x,y)-f(x0,y)\2<4f      p/|2, 

where Z^ = {(x, y): x G R}. Then by (A.2) we have 

f       \f(x,y)-\f<8[       \Dff + c[\Df\\ 
JLynQ JLyDQ JQ 

and by integration over y G (—1,1)\-B2 we conclude 

/ ;   I/-AI2<C/P/I2, 
JQ\P-

1
{E2) JQ 
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where P2 is the projection onto the y-axis. Now by adding this to the obvious 

inequality 

/ |/-A|2<4sup|/|2<5 
JQnp~l(E2) 

we then have the required inequality.    □ 

APPENDIX B. 

Here we establish the following simple selection principle, which is used in 

several places of the present paper. 

Lemma B.l. If 8 > 0, if I is a bounded interval of R, and if Aj C I is 

measurable with measure > 8 for each j = 1,2,..., then there is a set S C I 

of measure > 8 such that each x G S lies in Aj for infinitely many j. 

Proof. If C = Lebesgue measure, 

C{x\ x G Aj for any infinitely many j} = Ci pj [J AjA = lim £{ [J Aj j > 6, 

so that C{x: x G Aj for any infinitely many j} > 6, as required.    □ 
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