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THE WILLMORE FUNCTIONAL
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For compact surfaces ¥ embedded in R™, the Willmore functional is defined

by
Fz) =7 [ P
4 Js

where the integration is with respect to ordinary 2-dimensional area measure,
and H is the mean curvature vector of ¥ (in case n = 3 we have [H| = |k;1+£2|,
where k1, k2 are the principal curvatures of X). In particular F(S?) = 4.

For surfaces ¥ without boundary we have the important fact that F(X) is
invariant under conformal transformations of R™; thus if & C R™ is the image

of ¥ under an isomefry or a scaling (z — Az, A > 0) or an inversion in a sphere
with centre not in ¥ (e.g. =+ z/|z|? if 0 ¢ ) then

(0.1) F(T) = F(3).

(See [WJ], [LY], [W] for general discussion.)

For each genus ¢ =0,1,2,... and each n > 3 we let
By = inf (%),

where the inf is taken over all compact genus g surfaces without boundary em-
bedded in R™. We note some inequalities concerning the numbers §7. Firstly

we claim

(0.2) dm < B < 87
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with equality on the left if and only if g = 0 (indeed F(X) > 47, with equality
if and only if ¥ is a round sphere—see the simple argument of [W]). The right-
hand-side inequality in (0.2) was pointed out to the author by Pinkall [P] and
(independently) by Kusner [K], who both noted that, by an area comparison
argument, the genus g minimal surfaces ¥, C S® constructed by Lawson [L]
have area < 4. It then follows (using the conformal invariance of the Willmore
functional between general Riemannian 3-manifolds as discussed in [WJ]) that
F(,) < 8m, where %, is the stereographic image of ¥, in R3. Another
inequality concerning the numbers ,8; is as follows: if e, = ﬁ;’ —A4rn(= By — Bg)
then

q
(03) €g < Z €e;
j=1

for any integers ¢ > 2 and 4y, ... , 4, > 1 with >i-1¢; = g. To see this we take
a genus /; surface BV with F(£) < B¢ +1/k which is C? close to S* except
near some preassigned spherical cap of S? (we get sum of a sequence by first
taking any sequence {Eff )} satisfying the given inequality, and then for each
k taking an inversion in a suitable sphere with center y; very close to Efcj ));
near this spherical cap E,(cj ) looks like a spherical cap with ¢; handles. Then
by cutting out these spherical caps with handles and sewing them back into a

copy of S? with ¢ spherical caps removed, we get a genus g surface 3, with

q
.F(Z)k)§47r+Zeej+ek, €10 as k— oo

Jj=1

It is of course tempting to conjecture that the stereographic image of flg cSs?
(as above) actually minimizes F (so that we would have F (ig) = f33). There
is some evidence to support this in case g =1 (see [LY], [WJ]).

One of the main results of this paper is that for each n > 3 there exists a
compact embedded real analytic torus 7" in R™ with F(T") = 7. For arbitrary
genus g > 2 the result is almost as clear-cut; we prove that there is a genus g
embedded real analytic surface & in R™ with F(X) = By unless equality holds
in (0.3) for some choice of ¢ > 2,41,... ,4q, 231_,¢; = g, in which case we can
construct, by the cut-and-paste procedure used to establish (0.3), a minimizing

sequence explicitly in terms of lower genus minimizers for F. It is not clear at
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the moment whether or not equality can hold in (0.3); certainly since 87 < 8
by (0.2), it is clear that equality cannot hold if ff > 67V =1,...,9— 1.
(At the moment it is not known whether or not g7 > 6, although this seems
extremely likely.)

The proof of the above existence results are given in §§1-4 below.

The present paper gives a detailed exposition (in arbitrary codimension) of
arguments which were only briefly sketched for the codimension 1 case in the

conference proceedings paper [SL1].

1. LEMMAS VALID FOR ARBITRARY COMPACT X C R"

In each of the 3 lemmas below, ¥ denotes a smooth surface in R™ and
0¥ = ¥\X, where ¥ denotes the closure of ¥ (as a subset of R?). C will
denote a constant depending only on n (and not on ). The first two lemmas
give bounds on diam ¥, where diam ¥ denotes diameter of ¥ as a subset of

R™; that is, dlam X = sup |z —y|.
T#Y, T,y€L

Lemma 1.1. If 8% = 0 and if & is compact and connected, then

JIZI/F(E) < diam® < C/|D)F ().

Here |X| denotes the area of .

Lemma 1.2. In the general case when 0¥ # ( is allowed, and when ¥ is

connected and % is compact, we have

diam¥ < C’(/ |Al +Zdiamfj),
= i

where |A| is the length of the second fundamental form of ¥ and I'; are the

connected components of 0X.

Remark 1.1. Notice that ¥ need not be smooth or even rectifiable here.

Lemma 1.2 has the following useful corollary, where the notation and hy-

potheses on ¥ are as in the lemma, and where we use the notation

By(y) ={z:lz—yl<p},  B,=DB,(0).
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Corollary 1.3. If6 € (0,1), there is g = ag(n, 0) > 0 such that if [5p [A] <
agp, if 3o ;diamT; < agp, if and EN OB, # O and £ N OBy, # 0, then
|2 N B,| > Cp?, where C = C(8).

Proof. By applying Lemma 1.2 to X N B,, for g € ( Mp, p), we conclude that

length(X N 0B,(0)) > Cp for a fixed constant C, and the corollary follows by

virtue of the coarea formula. O

In the third lemma we give a result which can be viewed as a variant of a
lemma of Li and Yau (see [LY, Theorem 6]).

Lemma 1.4. Suppose ¥ is a compact surface without boundary, 0B, inter-
sects ¥ transversely, and ¥ N B, contains disjoint subsets £, Lo with ¥; N
By, # 0, 05; C 0B,, and |0%;| < Bp, j =1, 2, where 6 € (0,3) and § > 0.
Then

F(X)>8r—Cp0,

(where C' does not depend on X, (3, 6).

In the proofs of Lemmas 1.1, 1.4 we use the first variation identity

(1.1) /dWEQJ— /<I> H,
for any C! vector field ® = . ,®") defined in a neighbourhood of X.

Here we use the notation
dive ® =) V; 7,
j=1
where V, f = e; - V= f, V= denoting the gradient operator on X. In particular
if ¥ is the restriction to ¥ of a C' function f defined in a neighborhood of
T, then V,f(z) = YI, ¢¥(z)D;f(z), = € T, where g” is the matrix of the
orthogonal projection P, of R™ onto the tangent space T,%. Also notice that
the identity (1.1) is valid if X is merely a Lipschitz vector field on ¥. Using
these facts, we easily check, for any fixed y € R® and 0 < ¢ < p, that we can
substitute ®(z) = (|X|;2—p~%), X, where X = z—y and | X|, = max(|X|, o).
Since div X = 2, direct computation in(1.1) then shows that
satiml+2 [ b2 - [ 0% - o x e,
. XTI S,
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where £, = ¥ N B,(y), EUP—EOB( )\B ( ), and Xt = X — P,X. By

2
using the identity ,I);I‘I' +3 = ‘1H + |X|2 -

#|H|? we then conclude

(1.2) a‘2|20|+/20 (%H(ﬂ’)*‘ |)§r|l2)

= p2S,| + 1F(S,) + %/E pX H - %/E 07X -H.

Of course since 072|%,| — 7 as o | 0 and |X*| < 8| X|? (with 8 depending on
Y), we can let o | 0 in (1.2), thus giving

L

2
(12) 7+ [ () + &) =B+ 4FE) +4 [ 07X H

Also by dropping the square terms on the left of (1.2) and using the Cauchy

inequality on the right, we have

(1.3) o35, < C(p28, |+ F(Z,), 0<o<p<oo,

where C depends only on n and not on ¥ or ¢ or p, and in particular, by
letting o | O,

(1.4) ™ < C(p™ I8, + F(S,))

Notice that minor modifications of the discussion leading to (1.2) can be ap-
plied in the case when ¥ is compact with smooth boundary 0% # 0, yielding
an identity like (1.2") with p T oo, but with an extra boundary term on the

right; more precisely, we have the identity

(1.5) o+ /E (1H@) + 8) = / n- l—X—|—2-+ L),

where 7 is the outward pointing unit conormal for 0X. This is proved in

exactly the same way as (1.2"), starting with

(1.1) /divzd):/ n-@-/ab.H
b)) oz z

in place of (1.1), and then letting p T co.

Proof of Lemma 1.1. To prove the inequality on the left in Lemma 1.1, we
simply choose ®(z) = z —y in (1.1), where y is a fixed element of ¥, and note
again that divgz = 2 on ; then the required inequality follows by using the
Holder inequality on the right side.
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The proof of the inequality on the right side of Lemma 1.1 involves the
identity (1.2"). Take y € £ and d = max,ex [z — y/, let p € (0,%] and let N =
integer part of p~'d, and for each j = 1,...,N — 1 take y; € 0B j41),(y)-
(Notice that here we use the connectivity of £.) Then with yo = y, the balls
B,/2(y;), j =0,...,N — 1 are pairwise disjoint. Thus by using (1.4) with y;
in place of y and summing over j, we deduce that

(1.6) Nm < C(J—"(Z) + 'p%')

Now select p = 11/[Z[/F(X). By the first inequality of the lemma (which we
already proved above), we deduce d > 2p, so that the condition p € (0,d/2] is
satisfied. Since N > 1p7'd, (1.6) above gives

d < C(pF(2) +p7'[Z)) < 5CY/IEIF(E). O
Proof of Lemma 1.2. First note that it is enough to prove
(1.7) diam T < C’/E 1A,
subject to the assumption that

(1.8) > diamT; < 0 diam %,

J
provided 6 € (0, i) is a fixed constant depending only on n, because otherwise
the required inequality is trivially true with C = 671,

So let 8 € (0, ;) be for the moment arbitrary (we will select § independent
of ¥ below), and let y;, y2 € ¥ be such that |y; —y| = diam X; for convenience
of notation write d = |y; — yo| and let y; = y1 + t(y1 — y2), 0 <t < 1. Choose
e € S"7! such that |e — d™'(y; — y2)| < 3, such that there is an open set

I C [0,d] with
(1.9) 11| > 6d,

and such that the hyperplane normal to e passing through y; meets ¥ trans-
versely in a family I'; = U;.V;I I‘gj ) of smooth Jordan curves I‘gj ), and
(1.10) sup le- 7| > 6.

zerV, reT, 3, |7|=1
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Subject to the assumption (1.8), and with the help of Sard’s theorem, it is an
easy matter to check that this can be arranged by taking 6 small enough (but
not depending on X).

Now for ¢ € I fixed, let y(s) be the arc-length parametrization for 'Y with
z = v(0) such that the sup in (1.10) is attained. Since fr\gl) Y(0) - v'(s)ds =
0 (so that v/(0) - 4/(s) changes sign on (0,lengthT'{")), we can select s; €
(0,length ') such that +/ (0) -+'(s1) = 0. Using the notation so = 0, we then
have by (1.10) that if v; = e /||, where e'¥) is the orthogonal projection of
e onto Ty (s, X, then v; Av'(s;) = 7(v(s;)), 7 = 0, 1, where 7(z) denotes the

orienting unit 2-vector for 7,,3. Then, since e,~'(so),7'(s1) are orthonormal,

(L11) |7 (v(s1)) = T(v(s0)| = [v1 A7 (1) — vo AY'(50)]
> |(vi-e)e Av'(s1) — (vo - €)e Ay (s0)| = \/(e ‘)2 + (e-v1)2 >0,

and hence
81 d
—_ > 0.
|| o) sl 2 0

Therefore, since |7 (y(s))| < 2|A(y(s))|, we deduce that
0<2/[ |A
T,

and integrating over ¢ € I and using (1.9) and the coarea formula we conclude

the required inequality (1.7). O

Proof of Lemma 1.4. Here we are going to use the identity (1.5). We actually
apply this identity separately to the two components f)l, ¥, obtained as the
image of ¥y, X, (as in the statement of Lemma 1.4) under an inversion in the
sphere B,(0). (By a slight perturbation we may assume that 0 ¢ 3.) Take
points yi, y» in X, Sy respectively with ly;] > 6~ 'p. (Such y; exist because
¥, N By,(0) # D, j =1, 2.) Since

FE)+F(E) < FE) = FE),

we thus conclude from (1.5) with ij in place of ¥ and with y; in place of y
that

1 2 _ .
ZWSZf(Z)+Z/é)§ lz—y;| 70 (—y;), =12,
=179%;
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where 7, is the unit conormal of Bij, J =1,2. Since |y;| > 67'p and since
16%;| = |0%;| < Bp we have

2

2

j=1

/~ |z — y;17%n; - (z — y;)| < 408,
o%;
provided 6 € (0, 3). This gives the required inequality. [J

2. APPROXIMATE GRAPHICAL DECOMPOSITION AND BIHARMONIC
COMPARISON

Here, as in the previous section, we continue to work with arbitrary smooth
compact surfaces ¥ in R™. The following lemma asserts that, in balls where
the integral of the square length of the second fundamental form (i.e. [|A|?)
is small, we can decompose such a surface into a union of discs, each of which
is well approximated by a graph of small Lipschitz norm. In this lemma B,
continues to denote the open ball of radius p > 0 (p given) in R™ with centre
0. Also, we adopt the convention that if L is a plane in R™ then we write
u=(U,...,u) € C*E; L), where Q C L, if u(z) € Lt Vz € Q. In this case

we write
(2.1) graphu = {z + u(z): z € Q}.

We need to include here the possibility that u is k-valued for some integer
k > 2; in this case we write u € C?*(Q; L) if for each o € Q there is ¢ > 0
such that w(z) = {ui(z),... ,ux(z)} for each z € B,(zo) N 2, where the u;
are C? functions on B, (zo) N with values in L*. Then we again write (2.1),
keeping in mind that now (2.1) says that graphu is locally expressed as the
disjoint union of k single-valued graphs.

Lemma 2.1. For any 8 > 0, there is €g = €o(n, 8) > 0 (independent of &, p)
such that if € € (0,6, if XN B, =0, if 0 € I, if |~ N B,| < Bp?, and if
Jenp, [Al < €p, then the following holds:

There are pairwise disjoint closed sets Py, ... , Py C ¥ with

N
Z diam P; < Ce'/?p

Jj=1
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and
N M
N BP/Z\(U Pj> = (U graphui> N B,/2,
j=1 i=1
where each u; € C®(Qy; L) is a k;-valued function for some k; > 1 (k; = 1V
if n = 3), with L; a plane in R™, ; a smooth bounded connected domain in
L; of the form Q; = Q\(U, d: ), where Q2 is simply connected and d; . are

0
17

pairwise disjoint closed discs in L; which do not intersect OS2, with graphu;

connected, and with
M
Zki < Cp, Supp_llui| + sup |Du;| £ Oel/2(2n=3)
i=1 Qi Qu

If we also have [ |A[* < €%, then k; = 1Vi and, in addition to the above
conclusions, for any o € (p/4,p/2) such that OB, intersects ¥ transversely
and 0B, N (U, P;) = 0, we have

M
b ﬂﬁa = U Da,i,
i=1

where each D, ; is topologically a disc with graphu; NB, C D, ; and
D, ;\ graphu;
is a union of a subcollection of the P;, and each P; is topologically a disc.

(Note in particular this means that if ﬁj C §; is the projection of graph u; N
B, onto L; and if T'; is the outermost component of 8@]-, then 0D, ; =
graph(u;|T';) C £¥N0B,.)

Roughly speaking the lemma says that ¥ N B, is a union of discs with
smooth boundary contained in dB,, and each of the discs can be expressed
as a graph with small gradient, together with some “pimples” P;, the sum of

diameters of which are small.

Proof. For any 0 > 0, let £, = EN B,. Let n € (0, 1) be for the moment
arbitrary (we choose 7 to be a power of € below), let oo € (Zp, p) be chosen

such that ¥ intersects 0B,, transversely, and let

S={nAmn:n, eS| nl=rl=1mn -1n=0}
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so that in particular 7(z) € S for each z € ¥, and assume S is equipped with
its usual metric. Then S is a compact manifold of dimension 2n — 4 and for

any 79 € S we define
fl@)=l7r(z) - 7|, z€X,

Notice that f is then a smooth function on the region of ¥, where it is non-
zero, and |V f| < |A(z)|. Thus by Sard’s theorem and the coarea formula we
have t € (n/2,n) such that the set I'; = {z € L,,: f(z) = ¢} is contained in
the union of finitely many pairwise disjoint Jordan curves and Jordan arcs,

the endpoints of the arcs being in 0%,,, and

22)  H(T.NS,,) < 9/ A| < 9/ A< Sep.
N JEeon{F<f(z)<n} nJs, n

Now cover all of S by balls B, 2(7;), 7 =1,... , M, with

<
- 77271—4

Then corresponding to each j = 1,..., M, by applying the above argument
with 7; in place of 7o, there is ¢; € (/2,7) such that

(2.3) I ={z € %,,: |7(z) — 7] = ¢t;}
is contained in a finite union of Jordan curves, and
w0 < [ Al j=1,. 0
77 z:p

Actually we note that by selecting the ¢; successively, applying Sard’s theorem
at each stage, we can also arrange that each of the curves T'; is either disjoint
from the remaining I'; or intersects them transversely in a finite set of points.

Hence in particular, selecting n = €/227=3)  we have
M .
(2.4) S HNITU) < CeVPp, C=C(n).
j=1

Now let {Q;}i=1,...,n be the (finitely many) components of £, \ J; I'¥); notice
that, since the B, /»(7;) cover all of S, we have (in view of the above choice of

)
(2.5) sup |7 (z) — T(y)| < CeV?=3 2 yeQ,
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for each 7. Notice also that then each @; is an open subset of ¥, and

M
(2.6) 9Q;NB,, C (U I‘(j)) UdB,,.

j=1
For each i pick a plane L; containing a point y; € Q; N By, with orienting

2-vector T(y;), and select discs {d; }k=1,...r; C L; such that

(2.7) II; (U Fj) - U di ey
j k
where IT; is the orthogonal projection of R™ onto L;, and such that

R;
(2.8) Zdiam(di,k) < Ce'?p.

k=1
Now without loss of generality these discs can be selected to be pairwise dis-
joint; here we use the easily checked general fact that if dy,... ,dx are closed
disks in the plane R? then there is a pairwise-disjoint collection JI, cee d, M With
M < N, UM, d; > UYL, d; and with 3}, diamd; < YN | diamd;. (This is
checked by induction on N, starting with N = 2.) We therefore assume in
the following discussion that the discs d;, k = 1,... , R; are pairwise disjoint
for each given ¢ = 1,..., N. Also, by (2.5), we know that if there is a point
in € L;\(Uy dix) such that II;(z) N Bs,/4 N Q; has k distinct points, then
Q:NII; ' (y) has > k distinct points for each y € B,/32(z)\(Uy dix); then since
the area of ¥, is bounded by Bp?, we must have that (i) there is a bound

(2.9)
number of points in II7'(z) N Q; N Ba,ya < C(n,B), € L,'\(U dik),
k

and (ii) there is an upper bound
(2.10) M < C(n, B)

on the number M of distinct Q; such that Q; N Ba,;s\II; }(Uj, dix) # 0.

Now pick o1 € (2p, 2p) such that ¥ intersects dB,, transversely, and such
that 0B,, N L; intersects none of the discs d;x, k =1,... ,R;, i =1,...,N.
Suppose that the labelling is such that {i: Q; N By, \II; (U, di ) # 0} =
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{1,...,M}, and for each i = 1,..., M let {Q{}4=1,...,x; denote the compo-
nents of Q\IT; '(Ur, di ). In view of (2.9) and (2.5) we know that

Mi,q

(2.11) QINB,, = U graphu? N B,,,

s=1
where each ;" is a k; 5 ,~valued function over Q7 C L; for some k; ,, > 1, and
(by (2.5))

(2.12) sup [Vu |+ sup |uj?(z) — u(y)| < Ce/?Cn=p,
Q3 z,yeq;?

Also from (2.9)

(2.13) > ksig < CB.
{(4,5,9): graphu{"'NB,, #0}

Notice also that each 9d;; which is one of the boundary components of §2]
lifts via u;*? to a curve 7; 4k, = graphu;*?|0d; x on ¥3,/4. By (2.5) and (2.8),
for each i we have
(2.14) Z diamy; g ks < Ce?p, C= C(n, B).

a.k,s
Notice also that by construction the entire collection {~; 4.x,s} over all possible
i,q with Q7 N B,, # § and all possible k, s is a pairwise disjoint collection.
Notice further that if J; ; denotes the components of Q;N By, \ (U, , graph u;?),
then each J;; is a smooth surface in B,, with boundary components in

(U%igk,5) Y OB,; U (Uj Pj)'
Next we claim that for each ¢ = 1,... , M we have

(2.15) Z l‘]i,j N ng/ml S 061/2,02.

J
To see this, note first that Y-, |J;;| < |Z,| < Bp?, hence we can pick os €
(3%p,01) such that J; J;; intersects B,, transversely and length((U, J;,;) N
0B,,) < CBp. In view of (2.14) we can also select o, to ensure that
(2.16) U %k N 0B, = 0.

k,q,s
Then apply (1.1') with J;; N B,, in place of ¥ and with ®(z) = I;(z) —
I1;(2;;), where z; ; is any fixed point of J; ;. By connectedness of J; ; we have
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II,(J; ;) C d;p for some £ (so that |®(z)| < diamd,, on J;;) and by (2.5)
divs II;(z) > 2 — Ce* on J,;, hence (1.1") gives

(2.17) > |Ji,; N B, | < CBp diam d; ;.

{3+ i (Ji,5)Cdi, e}
After summing on £ this gives (2.13) as required by virtue of (2.8). Notice
that by the corollary to Lemma 1.2 and by (2.13) we have the implication

(2.18) Jij N Bopjis # 0 = J; ;N OBy, = 0.

Now let P; be the components of £ N Bo,\(U;,,graphv;?), and note that
by (2.18) we have

(2.19) Pj N 8ng/16 # 0= PJ N aBal =0.

Thus for any j such that P;NBg,/1s # 0, we have that P; is a compact manifold
with boundary equal to a finite subcollection of the curves ; 4k,s, and hence
by (2.14) and Lemma 1.2 (with P; in place of ¥, and keeping in mind that
at most 2 of the P; can have a given 7, .k as a boundary component), we

deduce

(2.20) Z diam P; < Ce'/?p.
{3: PiNBgy/1670}

After some relabelling (and possibly a translation of the planes L;), (2.19)
and (2.20) imply that there exist planes Li,... ,Lp (where the L; are not
necessarily distinct) and k;-valued functions u; € C?(€;; L), where each €;
is a smooth connected domain of the form Q2\(U, d;x) with Q? a simply
connected domain and d;; are pairwise disjoint closed discs in L; such that
d;, N ONY = O Vk, and where u; satisfies

M
(2.21) D ki< C, supp tu| +sup [Vu,| < Ce/Cn3)
i=1 2 Q;
and
M . R .
(2.22) (E\ U graph ui> N By,y/16 = (U Pj> N Bo,) 16,

=1 j=1
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where Pj, ..., Pg are pairwise disjoint compact surfaces with boundary and
R
(2.23) Z diam P; < Ce'/?p.
j=1

In view of (2.21), (2.22), and (2.23) the proof of the first part of the lemma
is complete; in fact there is evidently a set S of measure > £ in (5, %g) such
that

(2.24) <U Pj) NoB, =0, Yo€S,
J

such that ¥ intersects 9B, transversely, and such that

2

(2.25) / AP<CE, Voes.
£NoB, P

Since by (2.21) we have M < C(n, ) it of course follows that 3 § C S with

measure > & such that Vi=1,..., M either

(2.26) L;NB,=0 Yoes,

or

(2.27) diam(L; N B,) > C™'p, Vo€ S",

with C = C(n, ). Now we relabel Li,..., Ly so that (2.27) holds for ¢ =
1,..., M, and (2.26) holds for i = My + 1,...,M. Select py € §, take j €
{1,..., Mo}, and let z; be the center of the disc L; N B,,. Without loss of
generality we assume L; = z; + R? x {0}. Let ;po be the radius of L; N B,,,.
Then notice that any point in graphu; N 0B,, can be uniquely written as

(2.28)
Zj -+ (1 — aj(ﬁ))ajpoew + Uj(Zj + (1 - aj(9))ajpoei9), 0 S 0 < 2]13]'71',
where 0;(0) € (—3, 3) is to be determined implicitly by the relation

(1 — 0;(0);poe™|? + |uj(z; + (1 — 0;(60))ct; poe®®) |* = o p3;

that is, by the relation

(2.29) o;€1- \/1 — ;%05 Ju; (2 + (1 = 05) s p06) 2,
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keeping in mind that the right side is k;-valued for any given o; € (—3 3 8)
Notice that the smooth solution of (2.29) (which is unique modulo choosing

an initial value for o; from the k; possible choices) satisfies

(2.30) |75(0)] < C|Vu,|
and
(2.31) |07 ()] < C(IVuy| + p|Vuy)),

where all functions on the right side are evaluated at the point p;(6) = z; +

(1 —0,(8))a;peet®. Now by definition of second fundamental form we have
[V?u;(z)| < ClA(z + ()],

and hence (2.25) implies

2k 2
(232) L v <

Combining (2.21), (2.30), (2.31) and (2.32) we conclude that
2k]-7r

(2.33) / (|0;|2 +1o”]?) < Cel/2n=3.
0

It now follows directly from (2.21), (2.28) and (2.33) that if «; denotes the
curvature vector of the curve y(0) = p;(6)+u;(p;(9)) (as a space curve in R"),
then

k; = (ayro)~'m; + Ej,
where 7); is the inward pointing (tangent to X,,) unit normal of 0%, and
where [o5 |Ej| < Ce'/227=3) " Thus if k denotes the geodesic curvature of

0%,, (so that kK = n; - k; on the boundary component graphu; N 9B,, of
0%,, ), then

My
|/ K — 2T Z kj| < Ce/2n=3),
0%y, j=1

Then by virtue of the Gauss-Bonnet formula fzpo K =27(2M, — 29 — M,) —
fazpo k, with M; equal to the number of components of £,,, with My(> M;)

equal to the number of components of 0%,,, and with g the total genus of ¥,
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and keeping in mind that fzpo |K| < €% by hypothesis, we conclude that (for €

small enough)

Mo
2M; — 29— Mo— > k; =0,

j=1
and hence that ¢ = 0, k; = 1 for each j and M; = M,. This evidently
completes the proof. [J

Next we derive an important inequality involving biharmonic functions.

Lemma 2.2. Let ¥ C R™ be smooth embedded, £ € R™, L a plane containing
€, u € C®(U) for some open (L-)neighborhood U of LN OB,(£), and

graphu C %, |Du| < 1.
Also, let w € C°(L N B,(£)) satisfy

ANw=0 on LN B,(£)
w=u, Dw=Du onLNJB,E).

Then

[ pwi<cop [ lapan,
LB, () r

where I' = graph(u|L N 9B,(£)), A is the second fundamental form of ¥, and
H? is 1-dimensional Hausdorff measure (i.e. arc-length measure) on T'; C is a

fized comstant independent of X, p.

Remark 2.1. Of course there erists a w as above, because u is C*, so we can
use the existence and regularity theory for the Dirichlet problem; the solution

w is also clearly unique.

Proof of Lemma 2.2. Let Q = LNB,(£). Recall that the function w minimizes
Jo |Aw|? subject to the given boundary conditions, and hence by the identity

JZ gy = D7) = [ (B = (b0

valid for any v, w € C?(Q) with Dv = Dw on 8, we see that w also minimizes
the integral [, ;(Dy;v)? over all v € C*(Q) with Dv = Dw on 0K
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Then, after rescaling so that p = 1, by the appropriate Sobolev-space trace
lemma—see e.g. [TF, 26.5, 26.9 with m = 2]—we have, with Q; = L N B;(§)
and v = LN 9B, (§),

q 'Dzwlz <C <|u|f{3/2(7) + |DU|§11/2(7)) .

Applying the same to w — £ (£ any linear function + constant) we get
/ ID2wf2 < C / ((u = £)? + (Du — DE? + | D).
(951 Y

By selecting ¢ suitably we can then establish that the first two terms on the
right are dominated by a fixed multiple of the third. Thus (in the original

/ |D*w]* < C / | D2ul?.

Q v

Since |Dul* < 1 on v we also have | D?u|?*(z) < C'|A|*(X), where X is the point
(z,u(z)) of graphu corresponding to = € 7y, hence Lemma 2.2 follows. O

scale)

3. REGULARITY OF MEASURE-THEORETIC LIMITS OF MINIMIZING
SEQUENCES

A sequence of compact embedded surfaces ¥; C R™ with 0¥, = 0 is called

a genus g minimizing sequence for F if genus X = g Vk and if
F(Bk) < Bg+ex, €l0.
By translation and scaling we can (and we shall) assume
0€Ty [Tkl=1
Notice that then by Lemma 1.1 we have a fixed constant C > 0 such that
*) ' C™ ! <diam ¥, < C. ‘
Our main result here is the following:

Theorem 3.1. Given any genus g minimizing sequence Xy, as above, there is
a subsequence Ly, and a compact embedded real analytic surface 3o such that
Y — X both in the Hausdorff distance sense and in the measure-theoretic

fot= 1

sense that
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for each fized continuous f on R™. This ¥ has genus go < g, and ¥ minimizes

F relative to all compact smooth embedded genus gy surfaces £ CR".

Remark 3.1. It can of course happen that go = 0 (and ¥ is a round sphere)
even if g > 1. This is a problem in proving existence of the required genus 1

(or higher genus) minima which we show how to overcome in the next section.

Proof. We first prove that u is a C* N W22 surface. First note that since
|Xk] = 1 we may choose a subsequence ¥ such that the corresponding se-
quence of measures fi, given by pg(A) = |A N Zy| for Borel sets A C R”,

converges to a Borel measure p of compact support. Thus

/Zk,f—>/wfdu

for each fixed continuous function f in R", and by (*) the support of p is
compact.
In spt u (the support of 1) we say & is a bad point relative to a preassigned
number € > 0 if
lim (lim inf |Ak/|2> > €2,
plO \ k=00 J5nB,(8)
where Ay is the second fundamental form of 3. Evidently, since, by the

Gauss-Bonnet theorem,
i[5 AP = F(Zx) — m(2 - 29)

we have that [; |Ak|? is bounded, and hence there are only finitely many
bad points for each € > 0. Indeed if &, ... , &y are distinct bad points, let p =
min;; |§; —¢;|, and note that for k' sufficiently large we have [5; 5 (o) |Aw =
€2, so by summing over j and using the fact that B,(&;) N B,(¢;) = 0 for each
i # j, we obtain
Ne < / IAw|? = 4F(Se) — 47(2 - 29),
Ekl

so we have an upper bound on N in terms of e. Denoting the subsequence
simply by ¥, we can actually assume

lim <lim inf |Ak|2> > €
pl0

k—oo  JsnB,(€)

for the finitely many bad points £ = &;,...,&p (P = P(€)).
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On the other hand for any £ € spt u\{é1,...,&p} we can select p(&,€) > 0
such that for p < p(¢, €) we have [ 5 (o) |AL|? < € for infinitely many k, and
hence the last part of Lemma 2.1 is applicable to X, in B, () for infinitely many
k. At the same time we have, since 8, < 8, that we can apply Lemma 1.4 to
deduce that for large enough k and for small enough 6 (6 fixed, independent
of k, €, £), only one of the disks D;-k), say D given by applying Lemma 2.1
can intersect the ball By ,(§). Thus;, in accordance with Lemma 2.1, for € small
enough (which we subsequently assume), for infinitely many k there is a plane
Ly containing ¢ and a C*°(€) function ux: Q — Li (Li the subspace of

vectors orthogonal to L) with
p—llukl + |Duk| S 061/2(271—3)’
(3.1) (graphug U; Pe;) N B,(€) = DY N B, (¢),
ZdiamPk,j < Ce'?p,
J
where each P ; is diffeomorphically a closed disk disjoint from graph(uy|Q),
and where o € (6p/2,0p) does not depend on k.

With C,(¢) = {z +y: z € B,(¢§) N Ly, y € Lit}, the selection principle
of Appendix B guarantees that we can then choose a set T" C (6p/2,60p) of
measure > 0p/8 such that for each o € T we have 0C,(§) N P; = 0 for
infinitely many k, and hence for any such o for infinitely many k£ we can apply
Lemma 5 to obtain a biharmonic function wy on B,(§) N Ly such that

/ |D2w,|? < c/ AL
LknBa(E) Tk

Letting A be the second fundamental form of graph wy, we then in particular

[ iarse [ 1A
graph wy, Ty

On the other hand X is a minimizing sequence for the functional % [, |A|?,

have

and hence the C*'! composite surface T = (Ek\Dik)) U graph wy, satisfies
f(ik) _>_ ]’(Ek) — €k, €k l 0,

so that

LY L
graph wy D(lk)
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Thus we conclude that for infinitely many &

/ |Ak|2sc/ AL+ 6,
xNBo (€) aD{®

where 6, | 0. Since o was selected arbitrarily from the set T of Lebesgue
measure > 6 p/8 in the interval (8p/2,6p) we can arrange that

/ (k) lAklz <4 lAklz’
aD] £xNBo,(£)\Bo,y2(€)

for infinitely many k, so that in fact we get, for p < 0p(€) arbitrary, and for
infinitely many k (depending on p),

/ AP <C AL + 6,
Ekan/z(g) EknBP(f)\BPk(f)

where 6; | 0. Notice that by adding C' times the left side to both sides of this
inequality (i.e., by “hole filling”) we deduce that

/ IAk]2S’)’/ |Ak)? + 6
TxNB,2(£) ZxNB,(§)

for infinitely many k, where v = C/(1 4+ C) is a fixed constant in the interval
(0,1).

We also need to make the remark that p(¢, €) above merely had to be chosen
so that / |A|?> < € for infinitely many k. In particular this means
that if {feknsi;’éi)ﬁ\{fl, ...,&p}, then we may take p(§,€) = p(&o,€)/2 for any
& € spt N Bygy,e)/2(&0). Thus we see that the following is established:

If we let

$(€, ) = limint AL,

= JEkNB,(£)
then we have for all & € sptu\{&1,...,&p} and all p < 0p(&)/2, and all
€ € spt 1N By(go)2(€o) that

Y(p/2, &) <vY(p, )

for some fixed v € (0, 1) independent of p, £. Thus

(3.2) Y(p, &) < Clp/po)*P(po, &) < C(p/po)*h(p(&0)s &o)

for some a € (0, 1) and for all such p, £, where py = 6p(&)/2.



SURFACES MINIMIZING THE WILLMORE FUNCTIONAL 301

Henceforth & € spt p\{&, ... ,&p} is fixed and we take £ € spt uNBe,)/2(é0)
and p € (0, p(&)/2), and let

ar = ag(p, §) = / |A|? (< € for infinitely many k ),
EknBP(E)

and let Ly, Qy, ug, pr, di be as in (3.1). Also let Uy, = Py (graphug N B,(§))

(0 asin (1)), and let 4y denote an extension of ui|Uy to all of Ly such that
(3.3) p~tsup || + | Dig| < Ce/2n=3),

(It is easy to see that such an extension exists—first extend u;|0d;x to d;
appropriately to give @, on Uy U (U; dix).) Since Y, diamd; < Cy/axp (by
Lemma 2.1), the variant of Poincaré’s inequality in the Appendix A below
gives

int [ 1F = <Cf [ IDFP+ OV swplfle,
with C independent of k. Applying this with f = D;u, we have a constant

vector 7, so that

/Q |Duy, — mie]® < C’p2/Q |D2ug|? + Cy/ag p* < Cp?\/ag.
Then since, by Lemma 2.1, 3, |di| < C/ax p?, we have
/ | Dy, — mi|* < Cy/ag p?,
LxNB,, (£)
so finally, by (3.2), for suitable v > 0
(3.4) / | Dy, — ni|? < Cp*t.
BDp/2(£)

Take a subsequence so that the Ly converge to L, 7y — 7, and so that (by the
Arzela-Ascoli theorem) graph @, converges in the Hausdorff distance sense to
graphu, with u € Lip L, p~!sup |u| + sup | Du| < Ce'/2(?7=3) and

(3.5) / |Du —n|* < Cp*™.
Bop/2(§)NL

In measure theoretic terms (provided we take € small enough to begin with)
this means we have established that for all & € spt ;£ N Bg(¢,)/2(€0) and for all

p < bp(€0)/4
H2L (SN B,(€)) = H2 L (graph e N By(€)) + b,



302 LEON SIMON

where 6, is a signed measure with total mass < Cp?*” and (taking limits in

the measure-theoretic sense)

(3.6) pL B,(§) = H* L (graphun B,(¢)) +9,

where total mass of § < C p**7 and where u satisfies (3.5) (with n = n(p, £)).
Of course all the constants C' here are independent of p, £, provided we con-
tinue to assume that & € spt u N Byey)/2(&o) and p € (0, p(&0)/2)-

In view of the arbitrariness of p, £ it then follows from (3.5) and (3.6) that

if € is small enough, firstly

(3.7)
the measure p has a unique multiplicity 1 tangent plane at each point
& € spt N Bap(eq)/a(&o) with normal-space N (€) such that
[N(&) = N(E S Clér— &7, &1y &2 € spt N Boyieg) (o),

and also that then for any preassigned § > 0 there is a neighbourhood U of z,
such that

(3.8) pLU=H>L (ZND),

where ¥ is an embedded C"7/? surface expressible as graphw for some w €
C2(U N Lo) with supyny, |Dw| < 8, where Ly is the tangent plane of y at

éo-

On the other hand, since / H; < Cp” (by (3.2)), where Hy, denotes
N B, (€)

the mean-curvature vector of X, and since ¥ (with multiplicity 1) is the

varifold limit of Xy in Byg,,)/s(&0), we deduce that ¥ has generalized mean

/ H? < Cp,
ZNB,(§)

for £ = x + w(z) € graphw such that dist(z, U) > 2p, and that w is a C*

weak solution of the mean curvature system

curvature H satisfying

2
>_Di(vag"Dsw) = VI H,
2%

(where (g”)-: (gij)_l, g = det(gij), gi; = det(&] + DZ’U) . Djw)). It then
follows from a standard difference quotient argument (e.g. by the obvious
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modifications of the argument used in [GT, Theorem 8.8 ]) that w € W2 2(U)

loc

and that each w, = D,w satisfies a system of the form
2 2
> Di(g"Djwy) = fo+ Y Diff,
ij=1 j=1
with |f,| < C(1 + 6|D*w]|) and |ff| < C|H| in a neighbourhood of z,, where
C does not depend on . By using the weak form of the equation for w, — a,,

where a, is the mean of w, over B, (&), one then very easily checks that, for
suitable p > 0, w satisfies an inequality of the form

/ |D*w|* < C |D*w|? + Co”,
LoNB,/2(¢) B, (§)\Bo/2(€)

for each £ € Ly N B,(xo) and each o € (0, p), where C' depends on p but not
on 0. By holefilling (that is, by adding C [ ) [D?*w|? to each side of the
inequality and iterating the consequent inequality), we then have for suitable
a>0

(3.9) / |D*w|* < Co®, 0<o<p
LoﬂBa(E)

’for each £ € Ly N B,(x,), where C does not depend on o, thus by virtue of
Morrey’s lemma completing the proof that ¥ is a C* N W?2? surface away
from the bad points &;,...,¢ép. O

We now show that w is actually C** for some o > 0. (Higher regularity,
and real-analyticity, of w is standard—see e.g. [MCB]—once we get as far as
C?.) To establish C% ¢ regularity of u we need the following lemma:

Lemma 3.2. Let 8,v, L >0, D= {z € R?: |z| < 1}, and let
u=(u',...,u™) € W>?(D;R™) NC""(D;R™)

satisfy |u| + |Du| <1 in D and

M / |D?ul” < 6 p™
Dn{z: |z—¢€|<p}

for each & € D and p < 1. Suppose further that u is a weak solution of the
4th_order quasilinear system

D;D, (Ajjgs (2,4, Du) D;Dyu?)+D; B(z, u, Du, D*u)+BY(z, u, Du, D*u) =0,
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where A”” = A””(:c,z, p) and B} = Bl(z,z,p,q) satisfy the following for
|2 +[p| < 1

(i) D A 2L Y I

7,]7'5&5 YJY

(111) |Azjrs(x 2 p)l < L |D(z z,p)A’L]TS(ZC,Z,p)I S L,
(iv) |Bi(x,z,p, q)| + |D(m,z,p)Ba(17aZ’pa QI <L+ |Q|2),
iv .
|DyB(x, 2,p, )| < L(1+ |ql),

where we use the notation that DpF' means the tensor of all first order partial
derivatives with respect to the variables P. Then u € W22(D)NC?* for some
a > 0; in fact there are C > 0, a € (0,1), depending only on B,v,n,L such

that
/ |D3u|2 S Cp2a

{z: |z—¢€|<p}
for each £ € D with dist(§, OD) > 2p.
Proof. The weak form of the equation is

(3.10) /A””(w u, Du)DyyuP D;(® — Bl (z,u, Du, D?u)D;(*
+ BY(z,u, Du, D*u)¢* = 0,

valid for any ¢ € Wg?(D), where, here and subsequently, repeated Latin
indices are summed from 1 to 2 and repeated Greek indices are summed from

1 tom.

We are going to use the difference quotient operators
(3.11)
unf(z) = h™' (f(z + he) — f(2)), SBuf(z) = h7'(f(z) — f(z — he)), h#D,
on Dy = {z € D: dist(z,0D) > |h|}, where e = (1,0) or (0,1). Concerning

these, recall the formulae

{ bn(f9)(z) = (6nf(2))g(z + he) + f(z)éng(x)

[ 9t =~ [ s,

the first being valid on D), and the second requiring that the product fg

(3.12)

vanishes outside a compact subset of Dy
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Now take a disk B,(£) with |£] < 1—2p, take 0 < |h| < p/4, and replace (“
in (3.10) by 64((6xu™ — ££)¢), where ¢ € C°(R?) is arbitrary with support in
Bs,/4(€), and where £ = ap, + by, - (z — €), with a; the mean value of §,u® in
the annulus A = B,(§)\B,/2(§) and b, the mean value of Duy, on this annulus.

Notice that then we have

(3.13) |
/A|u,°; _ep< c,;?/A IDug? and also /Aiug P < C’p4/A \D2ug)?

by the Poincaré inequality, where we use the abbreviation
up = 6pu”.

Also, in view of the given L? bounds on D?u and the fact that up(z) =
fol Dyu(z + she)ds, one readily checks the following inequalities for |h| <
1,0<o<p<land|y <1

(3.14)
/ |D6|? < Co?sup |DEy|* < Co?p*'™2 = C(o/p)* 0* < Co™
D|h|r‘|B,(y) D

1
/ | Duy|? < / / |D?u|? dzds < Co®,
D NBs (y) 0 JDNB, (y+she)

where Dy = {z: |z| < 1 —|h|}. Now using (3.12) and the above choice of (*
in (3.10) we obtain

/B . @ggmiruﬁ + 65(AT™ (@, u, Du)) Dartl®) Dy ((uf — £)0)
—6(B3. (2, u, Du, D)) Dy ((uf ~£5)C)+64(B2(z, u, Du, D?u)) (u§—£3)¢ =0,

where aifﬁ” (z) = AY™(z + he,u(x + he), Du(z + he)). Using the given condi-
tions (iii), (iv) we can then check that this is an identity of the form

(3.15) /B (é)(aijrsDirungsu‘,: + E, - D*u$ + F,)¢

+ B (.s)(E‘]; - D*u + FJ)D;¢* + (BZF - D*uf + FI*)Dj(* = 0,
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where
|Eql < C(1 4 |Dup + |D(up — €3)] + |un — £1])(1 + | D*ul)
|Fo| < C(1+ |Dup|? + |D(un — £0)2 + Jun — £,)%)(1 + | D?ul?)
|EL| < C(ID(un — )| + (1 + | D?ul)un — £n])
(3.16)  |F3| < C((1 4 |Dun|? + | D(up — £4)[*)| D
+ (14 |D*ul?)Jun — €h|(1 + | Dua|))
|BZF| < Clup — £
|FZ*| < Clup, — €4](1 + | Duy)),
where C depends only on L, n.
After replacing ¢ by (%, using the ellipticity condition (ii), the Cauchy-
Schwarz inequality, and the inequalities (3.16), and keeping in mind that
sup |up |, sup |4,] < C (the latter being true by (3.14)), we obtain

(3.17)

/ |D2uh|2c4
B, (€) :

<O [ ¢+ Duf + 1D~ 6)F)(1+ D)
B, (&)
e o IDSPICP+ 1Dw + 1D = ) + 1D = £
B,(¢
+0 [ (@D + D¢~ P

Now we use a result of Morrey [MCB, Lemma 5.4.2], which says that if ¢ > 0
on B;(0) C R? and if there are constants 3, v > 0 with fB,(s)nB,(o) q < Bo”
for all £ € B;(0) and o € (0,1), then

[ aP<ef ipopsc[
B1(0)- B1(0) B1(0)

for each v € Wy*(B;(0)) and for each ¢ > 0, where C depends only on the
constants 3,7,¢. By the scaling x — z = p~ !z we see that this implies that
if ¢ > 0 on a ball B,(¢) in R® and if [ )5 a2 < B(o/p)” for all y € B,(¢)
and o < p, then
| aPse[ pofce® [
B,(&) B, (8) ©

I
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for any v € Wy*(B,(¢)) and any € > 0, where C depends only on 3,v,e. That
is, stated in another way, if ¢ > 0 on B,(¢) and fB,,(g)nB,(y)q < Bo” for all
o € (0,p] and all y € B,(£), then for each € > 0

(3.18)
[ aiP<er [ Do [ P, ve WEAB ),
B,(€) B,(€) £

where C depends only on (3,7, e. (Because the previous version can be applied
with p~7¢ in place of q.)

So let B,(&) continue to be such that [£] < 1 — p and take 0 < |h| < p/4,
p < 1/4 in the above. We use (3.18) to estimate some of the terms on the right
in (3.17); in fact, according to (i) we can use (3.18) with ¢ = (1 + |D?u?), so
in particular, assuming { € C(B,(£)),

/ o § (L 1Dus]* 4+ 1D(un = £)*)(1 + [D°ul?)
By (€

<eor [ (D@ +1Dus) ) + 1D+ 1D — ) ) /)P

P

+ C’p"z/
B, (¢

P

| C*(1+ |Dup|* + | D(un — 1)),

which evidently gives

(3.19) / ¢H(1+ [Dunl® + |D(us, — £)[?)(1 + |D?uf?)
B, (€)

< 16ep7 | D+

P

Co [ (72 + D)L+ D + 1Dl ~ 67,

P

Also, using (3.18) with the same choice of ¢, we have

Jo

P

0 CIDCP (L + | D*ul*) [un = £4])

< 6,0"/3 © [ID(CDE @ (ur, — £4)))> + pr'z/ 0 CIDCPluy, — €47,

P

which evidently gives

@20) [ CIDCPQ+ DU~ )



308 LEON SIMON
<160” [ CIDCEIDw +
B, (8)
Cor [ (DCH +CIDCP 4+ 72 DE s — 47

Notice that by virtue of (3.14), assuming (as we subsequently do) that support
of ¢ is contained in Bs,/4(§) and that |h| < p/4, we can also use the choice
q = 1+ |Dupl® + |D(un — €,)|* (rather than ¢ = 1 + [D?ul?) in the above,
giving in place of (3.20) the inequality

b

P

(3.20") <16ep” | C*|DCP | Dunl?
B, ()

) CIDCP(1 + [Dunl® + |D(un — €4)[?) [un — £ul?

+Cp7 [ (DG + CIDACP + 572 ¢IDC) un — ol
B, (&)

Using (3.19), (3.20) and (3.20") in (3.17) we then conclude that

/ | D?up|?¢* < 326/
B, (€) By(

P

+C [ (D¢ + DA + g2 DG — 4
B, (&)

C4|D2uh|2
3]

+Cp7 [ (IDCE + 575" (L4 1Dul + [Dwn — 1) ).
B, (€)

Now, with ¢ = 1 on B,/2(£), |D¢| < Cp~!, and |D*¢| < Cp~? (together with

the previous restriction that ¢ = 0 outside Bs,/4(£)), we conclude
(3.21) / | D?up|?¢* < C’p'4/ [up, — €42
By (¢) A

+ Cp”"g/ ol |D?*ul® + | Dun|* + [D(un — €)[*),
B, (¢

where A = B,(£§)\B,/2(£). Using the Poincaré inequality (3.13) and also (3.14)

we thus have in particular that

/ ]D2uh|2§C/ (1+|D*up),
B,/2(8) B, (&)

with C depending only on 7,n, and § (and not depending on p). Since this
holds for 0 < |h| < p/4, we can let |h| | O to deduce that u € W3?*(B,/2(£))
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and that
(3.22) / |D3u|> < Cp2 / (1 + |D%ul?).
By /2(8) B, (&)
Also, (3.21), (3.13) and (3.14) give (after letting |h| | 0)

(3.23) / ID*uP¢t < C / |DPuf? + Cp?=> /
B,(¢) A B

I3

(1+ D),
©

P

with C independent of p. Since we have shown that u € W2?(D), the Sobolev
embedding theorem then implies D?u € L? for each p > 1, and hence in

loc

particular
/ (1+ |D%f?) < Cyp*~*
B, (£)

for each 6 > 0, and hence (3.23) implies
(3.24) / D%’ < C / |D%uf? + Cp'?,
Bp/2(§) A

with C independent of p, for || < 1—p and p < 1/4. Adding Cme(g) | D3ul?
to each side of the inequality (i.e., hole filling again), we thus get

(3.25) / ID%ul? < 6 / |D3uf? + Cp’2,
B,/2(8) B,(¢)

for a fixed constant § € (0,1) independent of p, and this is valid for any
|¢€] <1 —pand p < 1/4. By iteration we thus have a > 0 such that

/ |D*ul® < Cp**, Jél<1-p, p<1/4,
B,/2(8)

so by Morrey’s lemma u is C*% locally on . This completes the proof of
Lemma 3.2. O '

We can now show that w (as in the discussion preceeding Lemma 3.2) is
actually C%* for some o > 0. Recall that we already proved that w is of class
C* N W?2? on the disc Lo N B,(£) and that

(3.26) / |D*w] < Co?
LoﬂB,,(y)

for some fixed v > 0 and for every y € Lo N B,(§) and o < p (assuming p
is small enough), so in view of Lemma 3.2 we will be done if we can show
that (modulo a rescaling and rigid motion taking the disc Lo N B,(£) to D),
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w is a weak solution of an equation of the form considered in Lemma 3.2. By
construction w is a weak (W?2) solution of the Euler-Lagrange system for the

functional
2 n—2

N(w) = / > 2 (e —9")g g wiwy /g,
Bo(8) 4,j,r5=1a,4=1

where (V) = (g5)7", gi5 = b;j + Dyw - Djw, 9*f = Zf),q:l Dyw*Dyw’g.
(Notice that N (w) is just [, [Awl?, where A, is the second fundamental
form of graphw, and by virtue of the Gauss-Bonnet theorem we therefore
have that $A/(w) differs from the Willmore functional of graphw by only a
boundary integral; this explains why w must be a stationary point for A/ (w)
(relative to variations of w which vanish in a neighbourhood of Ly N9B,(£)).)
Now one checks by direct computation that the Euler-Lagrange system for
the functional N (w) has (after a re-scaling and rigid motion taking the disc
Lo N B,(€) to the unit disc D) exactly the form of the system considered in
Lemma 3.2. In fact w satisfies a system as in Lemma 3.2, with m = n — 2,
Aggs = /9(bag — 9*?)g""g?* and with B(z,z,p,q) equal to homogeneous
quadratic polynomials in ¢ (with coeflicients smooth functions of z, z, p). Since
w has small C* norm, the hypotheses (ii)—(iv) of Lemma 3.2 are easily checked,
and the hypothesis (i) is satisfied by virtue of (3.26)above. We thus deduce
that w € C** as required.

Completion of the proof of Theorem 3.1. Thus we have established the real
analyticity of ¥ = sptu away from the finitely many bad points &, ... ,&p.
Next we establish the Hausdorff distance sense convergence claimed in the
statement of Theorem 3.1. Indeed suppose first that there is a sequence y;
of points with y; € X; for each j, with y; — y and with dist(y,X) = n > 0.
Since ¥; is connected, there is jp such that ¥; N9B,(y) # 0 for all j > j, and
all 0 € (n/4,n/2). Thus for each N > 1 and each j > j, we can find points
zjx € X; N OBayk/Nyn/a- Applying (1.2) with ¥; in place of ¥, with 2, in
place of 0, and witli'p = 1/N we obtain

T < C(p”2|2j N B,(z; )| + F(2; 0 B,(z5k))),

so summing over k and using the disjointness of the B,(z;x) we obtain, by
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virtue of the fact that |3; N B,(z;x)] — 0 foreach k=1,... | N,

N < Climsup F(%;).
J

Since N is arbitrary this says limsup,_,, F(%;) = oo, contrary to the bound-
edness of F(%;). Thus we have shown that the set of all possible limit points
of all possible sequences {y;} with y; € X; is contained in X. Since the re-
verse inclusion is trivially satisfied, this completes the proof of the Hausdorff
distance sense convergence.

Next we want to discuss C'* N W22 regularity of ¥ near the bad points.

First note that (by the measure theoretic convergence of ¥; to ¥ and because
Js, |H;| is bounded) a subsequence X;: of the ¥; converges to ¥ in the varifold
sense (this is a special case of Allard’s compactness theorem—see [SL2]), and
hence we have the convergence of first variation. Thus, for any fixed smooth

®: R™ —» R™ with compact support, we have

(3.27) hm <I> H,—/<I> H.

Now extend H (which is smooth on Y\{&y,... ,&p}) to all of R™\{&y,... ,¢p}
smoothly, and apply (3.27) with ® = (H, where ¢ is C* with compact support
in R*"\{¢1,...,&p}. After an application of the Schwarz inequality and the

measure theoretic convergence of ¥; to ¥, this gives

(3.28) |H|? < liminf H, 2

/znm)\(u{’:l B, (£:) i Iznu\U,, Bae)
for each open U C R™ and each p < 3 min,z; [§; — &;|. In particular
(3.29) / |H|* < lim lim inf . H;2 VYp>o.
£NU pl0 g 2,0\, Bol&:)
By almost the same argument, except that the weak definition of second fun-
damental form and the corresponding compactness theorem ([HJ]) is used in

place of the first variation identity and the Allard compactness theorem, it is

easily checked that

(3.30) / |A|? < lim lim inf i |A;|> Vp>0,
Jenu pl0 J . EJ”U\(U,’=1 B,(&))

where A, A; denote the second fundamental form of ¥ and X; respectively.
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The inequality (3.29) guarantees in particular that [; [H|* < co and the
same application of the Allard compactness theorem guarantees that the first
variation identity 1.1 holds for ¥. (We emphasize that 1.1 holds exactly as
stated; it is not necessary that ® vanish near the bad points.) Then we get in
particular that (1.2)-(1.5) hold for all y € X\{&,...,€p}; in fact if we pick
&k — & and apply this with §; x in place of y we obtain (1.2)-(1.5) for all
y € L.

In particular Lemma 1.4 applies (without change in the proof) to . As
a matter of fact one easily checks that Lemma 1.4 applies to X even if the
subsets X; satisfy 0%; C 0B,(0)U{¢y, ... ,&p} rather then OX; C 0B,(0). We
shall make use of this shortly.

Now let &, € ¥ with &, — & and &, # &; for each k. By applying (1.4)
to X, we get

™ < C(p* 2N B,y(éie)| + F(EN By(€ik)))-

Hence
(3.31) m < C(p?|EN B,(&)| + F(E N B,(&))).

Also, according to (1.2) we have

112
T —Gi
/ I( £)4| < o0,
snB.(¢) T — &l

so that in particular (since |[ENB, (§;)| > Co? for sufficiently small o by (3.31))
we have that for each € > 0 there is 09 = g¢(€) > 0 such that for all & € (0, g9)

(= = &)
|$~fi|

except for a set of measure < Ceo?.

(332) S € on Ba(fi)\Baﬂ(fi)

From now on we assume that o € (0,0¢(¢)) and that o is also small enough

to ensure that
(3.32)) / AP <é&/4, i=1,...,P,
ENBs (&)

and we also assume that € € (0,C '), where C is as in (1.4) (the same as C
in (3.31) above). Next take y; € 0B3,/4(&)NXE. (Notice that 0Bz, 4(€;)NE # 0
for o sufficiently small, because otherwise we could apply (3.31) with p T co to
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the component 3, of ¥ which contains ¢;, thus giving F(X,) > C~!, contrary
to (3.31).) By (3.32) we can apply the approximate graphical decomposition
lemma (Lemma 2.1) to give that there is a plane L; containing y; and a C!

function u;: Q; C L; — L, with
(3.33) oY w;| + | Duy| < Cel/22n=3)

where €; D B,,4(y:)\Ui(dix), where each d;; is a closed disc in L; and
3, diamd; ;. < Ce'/20, and where

(3.34) Byo(yi) N Z = (Boo(y:) N graphu;) U (U Pi,lc),
k

where the P, are pairwise disjoint and each is diffeomorphic to the unit disc

in R2, and

(3.35) > " diam P, < Ce'/2.
k

Notice that by (3.32) we have that the radial vector |y; —&;| ™! (y; —&;) is almost
tangent to L; in the sense that

dist(&;, L) < Cel/2(2n=3) ;.

(Recall that y; € L; by definition.) By virtue of (3.33), (3.34), (3.35) we can
find points yi,, yo; € ¥ with dist(y;s,pj:) < Ce/22n=3g where p;;,pa
denote the two points of 0Bs, /4(&;) N0By, (y:) N L;, and we can make a similar
application of Lemma 2.1 starting with y;,; in place of y;, for j = 1,2. The
corresponding planes L;; must in this case be close to L; in the sense that
|L; — L ;|| < Ce'/?27=3) We now repeat this procedure with y; ;, L;; in place
of y;, L;; after a fixed number of steps, depending only on n, we then have that
there is an annular region A; = {z € L;: 3 - %o <|z—-&| < (3+%)o} C L;
and a C' function u;: A;\(U, eix) — L with

o Hu| + | Du;| < Cel/?(2n=3)

(3.36) LNA = <graph u; U (L}J Pi,k>> N A;

> diam P, < Ce/*®" g, P (P;)) = e,
k
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where Py, is the orthogonal projection onto L;, and where
Ai={r+z:z€ A,z€ L, |2| < 00/2}.

Notice that the latter part of the above argument can be applied to X, for j
sufficiently large, assuming that [ 5 (e)\5, () [A5]° < € for all sufficiently
large j; notice that in this case we cannot use (3.32)because (3.32) relied on
the fact that F(X N B,(&;)) is small, which may not be true for ¥;. However,
in place of (3.32) we can use the Hausdorff distance sense convergence of %;
to ¥, which guarantees that X; is in the ¢; neighbourhood of X, with €; | 0;
~ this means that for ¥; we can take the reference plane and annular regions to
be the same (i.e. L; and A; respectively) that we used for ¥. Thus, assuming
Js,0B,€0\B, (e 1A51? < €, we have C' functions u;;: Ai\(Ukesjx) — Lif
with '

0”1|ui,j| + ID’U,-;‘J'I S Cél/Q(Qn—B)

(3.37) EinA = <graph u;,5 U (U Pi.j,k)) NA;
k

Y diam P, ;, < Ce/2Cn g, Py (Pj1) = ek,
k

where A; is as in (3.36).
Now we claim that in fact, in place of the identity in the second line of (3.37),

we have the stronger identity

(3.38)
E; N Baioy,(E)\Bz_0),(&) = ;N AN Baio),(&)\Ba_0),(&)

Indeed otherwise, since the discussion above (and in particular (3.36)) applies
equally well with any ¢ < o, we would have that there are two components
LW BD of 8N By,/a(&;)\{&:} both containing &; in their closures. This would
contradict the modified version of Lemma 1.4 which applies to ¥ as discussed
above.

Now since &;,...,&p are the only bad points of ¥, we know that for any
fixed o > 0 there is 6 € (0,0/2) such that
(3.39) lim inf |A;]? <€

=% JBs(y)ng;
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for each y € L\(UZ, B,(¢;)). We assume subsequently that § is also chosen

small enough so that

(340) Vslz—y|#0o0n B,(y)\{y}, sup dist(z—y,T,%) <e

TEXNB, (y)

for all y € £\(UL, B,(&)). Now by (3.39) we can apply Lemma 2.1 to give a

plane L;(y) containing y and a smooth function u;, such that
(3.41) sup8~u,| + sup | Duy, | < Cermt=s

(3.42) ( (U Pj(y)> U graph uj,y) N Bos(y) = B5 N Bys (),
J
where P;(y) are disjoint, each diffeomorphic to the closed disk in R?, and

(3.43) > diam P;(y) < Ce'/?.
J

Now, from (3.40) and the fact that ¥; converges in the Hausdorff distance
sense, we have

I(Li(y) —y) = T,E|| < Cel/2(2n=3)

for j sufficiently large, and hence we can arrange that
graphu;, = graph,,,

where u;, is defined over the closure of some domain Q;, C L(y) = y +
T,%Y with smooth boundary (the inner boundary components being close to
circular), and where in place of (3.41) and (3.42) we still have

(3.44) sup 6~ !i; | + sup | Dy, | < Cel/2@n=3)
(3.45)
((UP;(v)) Ugraph i) N Bos(y) = T; N Bos(y), Y diam Pjy, < Ce'/?6
J k

where the P; , are pairwise disjoint, each diffeomorphic to the closed unit disk
in R?, and 0P, is a smooth Jordan curve equal to graph(@; ,|yx), where 74 is
one of the inner boundary components of ;.

Notice that, by virtue of the lower semi-continuity (3.30), (3.39) implies

that
/ IA|2 S 62
Bs(y)nZ
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for each y € X\ (U, Bs/2(&:)), and then the regularity theory established above
in the first part of the proof of Theorem 3.1 establishes (assuming, as we do
subsequently, that € > 0 is small enough, depending only on n) that for all
such y

Bys(y) N X = graph u N Bys(y)

where u is C? on Bys(y) N (y + T, X) and
(3.46) 6 |u| + | Du| + 8| D?u| < Cel/2Cn=3),

with C depending only on n. Here 6 € (0, 31-) is a constant depending only on
n.

Now, with the notation
S,(y) ={z+2: 2 € SNB,(y), z € (TX)*, |2| < p/2}, y € X,

according to (3.44), (3.45), (3.46) we have, for y € \(UL, B, (&),

(3.47) S,(y) NX; C grapha,,,

for a set I;(y) of p € (06/2,06) with
measure [;(y) > 66/4.

Also, for each i =1,..., P, by (3.37) we can find a set I;(§;) such that
measure I;(§;) > 0o /2

and such that

(3.48) S,(&)NXE; C graphu;,

for all p € I;(&;).

Now select a cover of X\(U;_, Bso/s(é:)) by balls Bgsa(yk), k = 1,..., M
and define yp4; = & for i = 1,..., P. By successively applying the selection
principle of Appendix 2 we have a subsequence {j'} C {j} and 7 € N;, I (k)
for k=1,...,M + P such that for each k # ¢ 0B;,(yx) N E, 0B.,(ye) N T are

either disjoint or intersect transversely, and such that
0B, (yx) N 0By, (ye) N OBy, (ym) NE =0

for all distinct k,¢,m =1,... ,M + P.
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Then the smooth Jordan curves
M4P

sz(z\( U Bm(?/k)) ﬁaBn(ye), £=1,... , M+ P
k=M+1

divide all of 2\(Upthi,1) Br (yx)) into polygonal regions Ry, ... , Rg. For £ =
1,...,Q, let

Re={z+z: 1€ Ry, z € (TLX)4, |2| < 06/4}.

Then for j sufficiently large, by (3.37) and (3.44)—(3.48) we have, writing X;
for 3;., that X, "R, is diffeomophic to R,, and hence

=AU 2w

is diffeomorphic to X\ (UQQ};H B., (yk)> for all sufficiently large j.

We can now construct comparison surfaces ¥; with

M+P M+P M+P
(_U Br(y), SN U Brlwe)), =\ _U B, (yk)),

all diffeomorphic for each j, with
(3:49) S,NVe=%,nV;
for some neighbourhood Vj of 8B, (yx),

(3.50) SA( U Bntw) =5\ U B,

k=M+1 k=M+1

and

(3.51) |A,]? < Cé.

/ijnBZ'rk (yk)\B‘rk (yk)
Notice that then by (3.49) and the minimizing property of ¥; we have

/;J\( A4

k=M+1

< [ P+,
B ) SAUMY By

k=A+1

where €; | 0. However by (3.50) and (3.51) this gives

(3.52) / ) H, |2</ - H? + ¢, + Ce.
oy \(UM+ k)) 2\(U 1+1

reri1 B k= ,\l+132"k(y’°))
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Also, since

(3.53) / |ﬁ.|2_/ H,[?
SAUM By SAUM Bew))

k=M+1 k=M+1

/ M+Pr |Aj!2 B / M+P |Aj|2
=\ B, (yx)) =\ Ba, ()

k=M+1 k=M+1

by (3.49) and the Gauss-Bonnet formula, we then have also that

(3.54) / |A~|2§/ |A]2 +€; + Ce>.
SAUM B ) S\UME Bar () ’

k=M+1 k=M+1

Since we can do this for each € > 0 we thus have in particular that
lim lim sup/ p |H,|* < / [H|?
ol jooor Jy \(Uk “;u+1 (vx)) z
A< AP
b

Combining this with the lower semi-continuity (3.29), (3.30), it is then routine

lplimsup | e
i SN, ey Bo (k)

to establish the measure-theoretic convergence
| H,PH2L S, — JHPHL D
|A;PHEL S, — |[APHEL S
in the region R™\{&;,... ,¢p}.
Next we can check that ¥ has a minimizing property as follows: According

(3.55)

to the above discussion for each €, § > 0 sufficiently small thereisa o € (§/2, )
and a 6 € (0, 1) (depending only on n) with

(3.56) limsup |A;* < 62
£;0(U, B2o (€)\Bo (6:))

(3.57) i\ (LlJ B, ({,»)) is diffeomorphic to X\ <L1J B, (5,))
(3.59) FEAUB@) - FoI< s

and such that there are C'*° functions u; ; over domains §2; ; in planes L; s with
(3.59) %5 N B)o(§:)\B-0)0(&:)
= (graph ;i U (U Pm.k)) N B(+6)0(§:)\Ba-6)0 (&)

k
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P
(3.60) P yxN (U graphu;;|0L; s N Bg(fi)> =0,

=1
where 3", diam P; ;, < C6'/? and j' is a subsequence of j, and
67 ug ;| + |Duyj| < Cemm=D
fai,jnBza(gi)\Bd(gi) |D?u; | < C6°.
Thus choosing sequences ¢;, 6, | 0 sufficiently slowly, we have a sequence
o; € (6;/2,6;) such that (3.55)-(3.61) hold with ¢;,8;,0; in place of €6, 0
respectively. In particular by (3.58)

(3.61) {

(3.62) lim}'(Zj\ <LPJ B,, (gg)) - F(%).

=1
Now recall that for o sufficiently small we know that ¥ N 0B, (¢;) is a single
smooth Jordan curve close in the C*-sense to some plane L; , and in fact ¥ N
Bs(&)\Bo/2(&:) is close to the annulus L; , N B2, (&) \ By (&) in the C'-sense.
So we can take a smooth compact surface  such that, for suitable points
Y1, ,Yp € ¥ and all sufficiently small o, f)\ (Uf=1 B, (yi)) is diffeomorphic
to X\ (Uil Bg(fi)). Thus with ¢ = o; | 0 sufficiently slowly (as above),
for large j it is possible to replace £N B,,(y:) by a slight deformation of
¥; N B,, (&) followed by a rigid motion to give (X; N Bo,(&;))*, such that the

composite surface
(i\ (L,J Baj<yi)>> u <U <Ej N B., (&')) )

1

%

is smooth and
F((B;NB,;(&))") < F(Z;N By, (&) + €5, € 10

Then note that
#(5:0(UB.@)) + #(50(UB.@)) = 75
<FE) +e <7 (B (UB,w)) +7 (20 (UBs@)) +5

where €; | 0. Thus in view of (3.62) we have

(3.63) F(Z) < F().
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Because of this minimizing property, we can repeat the biharmonic comparison
argument for ¥ (exactly as in the proof of Lemma 2.2) with balls centered at
the bad points &;. Thus we conclude that

/ |A]* < Cp™
Ean(gi)

for all sufficiently small p, with C' independent of p. Then combining this with
the previous estimates we now have a fixed constant C such that

/ |A]? < Cp»
=B, (v)

for all y € ¥ and all sufficiently small p. Then we deduce that ¥ is a Ch*NW 22
surface (even in a neighbourhood of the bad points) by the same argument that
we used before in the discussion of the good points. In view of the minimizing
property (3.63) we can now also apply Lemma 3.2 as before to deduce that ¥
is C? (and hence real analytic) near the bad points.

Finally, a simple modification of the argument leading to (3.63) shows that
Y minimizes relative to all surfaces with the same genus as ¥, as claimed. This

completes the proof of Theorem 3.1. O

4. PrRoOOF OF THE MAIN FIXED GENUS RESULT IN R"

Suppose first that ¢ = 1 and let X, be a sequence of embedded tori with
F(Ex) — (1. Assume we normalize (as in §3) so that 0 € ¥; and || = 1.
Then by Theorem 3.1 we have a subsequence (still denoted Xi) and a real
analytic compact embedded surface ¥ of genus < 1 which minimizes F relative
to all surfaces ¥ of the same genus as ¥. If ¥ is a sphere (genus 0) then it
must be a round sphere (because only round spheres minimize F). We are

thus left with the alternatives

(4.1)

either ¥ is genus 1 with F(X) = 3, as required
or ¥ is a round sphere.

Naturally the second alternative can occur; what we want to show is that we
can make an appropriate inversion and rescaling to give a new minimizing
sequence 3 of tori for which the limit surface ¥ definitely satisfies the first

alternative in (4.1).
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As a matter of fact we shall show quite generally the following, which guar-
antees that, for arbitrary g > 1, we get a new minimizing sequence converging
to a minimizer which is not the round sphere. (Since only round spheres

minimize in the genus zero case, this will complete the existence proof.)

Lemma 4.1. If 3, is any genus g minimizing sequence in the sense of §3 with
g > 1, then there is a new genus g minimizing sequence Sk C By (0) converging

in the sense of Theorem 3.1 to a minimizing surface of genus > 1.

Proof. For the moment consider an arbitrary embedded compact genus g sur-
face ¥ C R", and for y € R™\X let

ds(y) = dist(y, X)

and
Se(y) ={q€S: ly—ql < (1+)ds(y)}

Now there is €, € (0, 1) (independent of £) such that if € € (0,€) and dx(y) <
1 diam(X) then diam(Se~(y)) > edsx(y) implies that the inversion z — dx(y)|z—
y|~%(z — y) takes = to ¥ C B;(0) with

1< diam(X)
(4.2) ~ —
Hausdorff distance(X, S) > 5; for any round sphere S C B1(0).

(Because the points p, g € Sc(y) with |p — g| > eds(y) map to points p, § € )
with |[p — q] > €/2 and with 1 > |p|, |g] > (1 + €*)7}; also since dx(y) <
3 diam(X) there is a point 7 € ¥ with |7 < 3, and one can easily check that—
for € sufficiently small—any round sphere in B;(0) must be at least distance
6—14 from one of the 3 points p, g, 7, thus giving (4.2) as required.

From now on assume € € (0, 1) is small enough to ensure that (4.2) holds
under the stated conditions. Thus we have either there is an inversion & C
B,(0) of ¥ such that (4.2) holds, or else

(4.3)  diam(S.(y)) < edn(y) Vy € R\ with dy(y) < %diam(E).

So consider the alternative that (4.3) holds. Since genus of ¥ > 1, there is a
smooth map I'y of S"~2 into R\ which links ¥ in the sense that. I'y is not
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homotopic, in R™\%, to a constant map. Let [['g] denote the class of smooth
maps from S"2 into R™\¥ which are homotopic to Iy in R™\X, and let

(4.4) 8o = sup min_dist(I'(w), ).
re(lo) wes™ 2

Assume 6, < & diam(Z), and take any 6; € ((1 — €3/100)&o, 6). We can then
by definition select T' € [I'g] with mingegn—2 dist(I'(w),E) = 6 > 6;. Now for
each y, z € R™\X it follows from the triangle inequality that

Ses2(z) C Se(y) whenever |y — 2| < ;€%ds(y).

In particular, by (4.3), if dg(y) < § diam(%),

(4.5) |(z = q) — (y — p)| < 2eds(y)

whenever |y — z| < ;€%ds(y) and q € S¢j2(2), p € Sej2(y). Now let {(;}j=1,.. v
with support {; C Besag(y;)/4(¥;), 5 =1,... , N, be a partition of unity for the
compact set I'(S"~?) subordinate to a covering of I'(S*~2) by a sub-collection
{Besasg(y;)/4(y5): 5 = 1,... ,N} of the collection {Besggy)/4(y): y € T(S*2)}
of balls, the subcollection being chosen so that

(4.6)
any given point of I'(S*?) is in at most C(n) of the balls Besagy;)/a(¥;)-

(Such a collection is guaranteed by the Besicovich covering lemma.) For each

J select a point ¢; € Se/2(y;), let

(4.7) v =95 = 4
and define Ty (for t € [0, 1]) by

(4.8) Ty(w) =T(w)+ tZ G(C(W))e;

= 1) + S5 (0) - g) + 25 TG I, - ) - ae)

where, for each w € S"72, ¢(w) is any point of S,/2(I'(w)). Notice that by (4.5)
and (4.6) for each w € S™~? we can write

63

C0W) —g@) +E, Bl < Cln)iedy (D))

IN(w) =T(w)+¢
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at all points where ds(I'(w)) < gdiamX. So assume dg(I'(w)) < § diam .
By (4.3) ly — q(w)| < eds(I'(w))/2 for all y € S/»(T'(w)), and it is an easy
geometric argument to show that I'(w) + t%(f‘(w) — q(w)) then has distance
at least te*ds(T'(w))/32 from any point of Sc/2(I'(w)). On the other hand it
trivially has distance > €*dx(I'(w))/2 from any point of £\S,/2(['(w)). Thus
I'w)+ t;—;(l"(w) — g(w)) has distance from ¥ of at least > te3ds(I'(w))/32 for
any w such that ds(I'(w)) < 3diamE. Finally, using the above observation
that the error term |E| has magnitude < C(n)te*ds(I'(w)), we thus have (for
small enough € depending only on n), that I';(w) has distance at least >
te3ds(I'(w))/64 for any w such that dg('(w)) < gdiam¥. If on the other
hand dg(T'(w)) > & diam X, we trivially have that I';(w) has distance at least
$ diam ¥ — te’dy(I'(w))/8 from X. Thus if € supds(T'(w)) < diam ¥ and if
also 6g < % diam ¥, then we have shown that T'; is a homotopy of " in R\ %,
and
ds(Ty(w)) > min{(1 + £)6;, & diam T} > &,

16
thus contradicting the definition of §. Now (by composing I' with a suitable
smooth retraction), it is easily seen that we could have arranged our original

choice of T" to have the additional property that
sup ds(I'(w)) < 2diam %,

and hence the above argument shows that for any ¥ of genus > 1 with §, <
- diam(X), there is always an inversion % C B1(0) of ¥ as in (4.2) above.
We can now prove the claim of the lemma. We are assuming that the
sequence %, converges in the sense of Theorem 1 to a round sphere, otherwise
there is nothing to prove. Clearly then, if we apply the above discussion with
¥ (with diameter bounded between fixed positive constants independent of k)

(()k) — (O as

in place of ¥, then (assuming & sufficiently large) we must have that §
k — oo, where 6(()'“) corresponds to 8y when we use ¥ in place of ¥ in the above
discussion. Thus by the above discussion there is an inversion ¥ c B;(0) of

Yk such that (4.2) holds with S in place of Y. This completes the proof. O

APPENDIX A.

Here we prove the following variant of the L? Poincaré inequality:
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Lemma A.1. Suppose 6 € (0, 3) is given, and let @ C D = {z € R?: |z| < 1}
be a domain of the form Q@ = D\ E, where E is measurable and has projection

E5 onto the y-azis of Lebesgue measure < 6 and projection Ey onto the x-axis
of measure < 3. Then for any f € Wh2(Q)

inf/lf—/\IQSC/IDf]2+C5sup|f|2,
Q Q

AER

where C 1s an absolute constant.

Proof. Pick A such that {z: f(z) > A} and {z: f(z) < A} both have measure
> %|Q| First, since the projection F; has measure < %, we can select a set
ScC (—%, %) of positive measure such that, for all x5 € S,

(A1) ‘ANJDf@mquys4lﬂDfV

and £y N E = 0, where £y = {(zo,¥): y € R}. But by 1-dimensional calculus
we have

pr—f@m®P54/ IDFP, w0 €S,
£oN2 £oN2

and hence, with A = f(z,,0) we have by (A.1) that
(A.2) sup |f — A < 0/ IDfP, o€ S.
£oN Q
On the other hand by using the calculus inequality
b b
[ we-o? [y,

valid for h € C'(a,b) with h = 0 at some point of (a,b), we have, for each
BS (_1’ 1)\E2?

[ 1@y - @yl <af prp,
,NQ L,NQ

v

where L, = {(z,y): « € R}. Then by (A.2) we have

2 2 2
[ JM@w-arss[ ipseec [ ipse,

Yy

and by integration over y € (-1, 1)\ E, we conclude

[ RRTES L R
\py ' (E2) Q
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where p, is the projection onto the y-axis. Now by adding this to the obvious

inequality
| If =P < dsuplsPs
Qnp; 1 (E2)

we then have the required inequality. O

APPENDIX B.

Here we establish the following simple selection principle, which is used in

several places of the present paper.

Lemma B.1. If § > 0, if I is a bounded interval of R, and if A; C I is
measurable with measure > § for each j = 1,2,..., then there is a set S C I

of measure > 6 such that each x € S lies in A; for infinitely many j.

Proof. If £ = Lebesgue measure,

L{z: z € A; for any infinitely many j} = E(ﬂ U Aj> = lim E(U Aj) > 6,

C 7 1—00 )
1=172>1 Jj=i

so that L{z: z € A; for any infinitely many j} > §, as required. [
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