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INTRODUCTION 

A quaternionic Kahler manifold (M,g) is a Riemannian manifold of di- 

mension 4n, where n > 1, whose reduced holonomy group is a subgroup of 

Sp(n)-Sp(l). One extends this definition to the case when n = 1 by saying a 

4 dimensional quaternionic Kahler manifold is one that is both self-dual and 

Einstein. Ever since this type of geometry was introduced by Ishihara [II] 

there has been a continuous effort to study and classify these spaces. Wolf 

[Wo] classified all compact, homogeneous, and symmetric quaternionic Kahler 

manifolds. This classification was extended to the non-compact case by Alek- 

seevskii [A]. As the group Sp(n)-Sp(l) appears in Berger's [Ber] classification 

theorem as the possible holonomy group of a locally irreducible, non-symmetric 

Riemannian space, this naturally raises the question of the existence of non- 

symmetric space examples. [A] and [Gl] gave examples of non-compact man- 

ifolds with quaternionic Kahler metrics with negative scalar curvature which 

are not locally symmetric. If (M, g) is compact with positive scalar curvature 

the classification problem has not been answered in general. There are, how- 

ever, some classification results in dimension four [H] and eight [PoSal], where 

the only compact quaternionic Kahler manifolds of positive scalar curvature 

are, in fact, the symmetric Wolf spaces. 

Many of the recent developments mentioned above were possible due to the 

introduction of various associated fibrations. First, Salamon [Sail] constructed 
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grants. 
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a natural fibration 

(0.1) Z(M) -> M 

over any quaternionic Kahler manifold M, where the total space, Z(M), is 

called the twistor space of M. Z(M) is a complex manifold whose holomor- 

phic structure encodes all the information about the Riemannian geometry 

of M. Moreover, if M is compact with positive scalar curvature, then Z{M) 

is a Kahler-Einstein manifold. Salamon's construction was later inverted by 

Pedersen and Poon [PePo2] and by LeBrun [L]. They show how a quaternionic 

Kahler geometry can be reconstructed from holomorphic data on a complex 

manifold with some additional structure. These results, which give a 4n- 

dimensional generalization of the twistor correspondence introduced by Pen- 

rose [Pe, AHS] for self-dual 4-manifolds, make it possible to formulate many 

problems concerning the Riemannian geometry of the quaternionic Kahler 

manifolds in the language of the holomorphic geometry on the corresponding 

twistor spaces. 

Next, Swann [Swl, Sw2] introduced another fibration over any quaternionic 

Kahler manifold M by defining an associated quaternionic bundle of M 

(0.2) U(M) = M xsp(ny spii) (H7(Z/2)) -> M, 

where the total space U{M) is a (pseudo)-hyperkahler manifold with some 

additional properties. It admits a certain isometric G = S'p(l), or G = 50(3), 

action rotating the hyperkahler structure. This is locally equivalent to the 

requirement that U(M) has a hyperkahler potential function; i.e., a func- 

tion which is simultaneously a Kahler potential with respect to every complex 

structure on the 2-sphere of complex structures. Yet another way to charac- 

terize U(M), which is locally equivalent to the two ways above, is to say that 

it admits a non-zero scalar curvature (pseudo)-quaternionic Kahler metric in 

the same quaternionic class. Swann demonstrates how to invert his bundle 

construction; that is, how to obtain a quaternionic Kahler manifold from a 

given hyperkahler space with these properties. In much the same way that 

the holomorphic data on Z(M) encodes all the information about the Rie- 

mannian geometry of M, the hyperkahler geometry in the associated bundle 
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U(M) carries all the information about the quaternionic Kahler geometry of 

M. In some sense Swann's bundle is even simpler and more fundamental than 

the twistor space as U(M) fibers over both M and Z(M) with fibers M*/(Z/2) 

and C*/(Z/2) respectively. The manifold M and its twistor space Z(M) are 

thus obtained in a very natural way as Sp(l) and Sl quotients of some hyper- 

surface in U{M) given by the level sets of the hyperkahler potential function 

v. This construction led Swann to observe that nilpotent adjoint orbits of the 

complexification of a compact semisimple Lie group L, with the hyperkahler 

structure introduced by Kronheimer [Kr3], fiber this way over quaternionic 

Kahler spaces. Let us remark that the associated quaternionic bundle is a 

mathematical model for the scalar couplings in 4-dimensional N = 2 confor- 

mal supergravity theory [G3]. 

In this paper we investigate another fibration over quaternionic Kahler base 

and its relations to both Swann's and Salamon's constructions. We begin in 

§1 with a hyperkahler manifold M with an isometric G action which permutes 

the hyperkahler structure, where G is either Sp(l) or 50(3). For any such 

action we define functions v : M —* M and 0 : M —> SAH, where H is the 

standard complex representation of Sp(l). The level sets of v are G-invariant 

hypersurfaces in M and, assuming that G acts freely, we can introduce the 

quotient Mf = z/_1(c)/G. We show that the vanishing of the obstruction cf) is 

both necessary and sufficient for M' to be a quaternionic Kahler manifold. It is 

easy to see that the vanishing of (/> is equivalent to the condition Swann assumes 

about the Sp(l) action on a hyperkahler manifold which is locally a model for 

his associated bundle, and in this case our M must be locally hoiiiothetic to his 

Z//(M'). What is new here is that, in this more general situation, the vanishing 

of (/> is also a necessary condition for M' to be quaternionic Kahler. We 'close 

Section 1 with various corollaries of our obstruction theory. For example, 

under the assumption that </> vanishes, we show that the Kahler quotient of 

M by any 17(1) C G is Kahler-Einstein. 

In Section 2 we turn our attention to the level sets of the function ZA As 

they are hypersurfaces in a hyperkahler manifold they carry a natural almost 

contact metric 3-structure.   When the obstruction </> vanishes u becomes a 
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hyperkahler potential function on M. We then show that the hypersurface 

Sc = ^""1(c) is a 3-Sasakian manifold with the 3-Sasakian structure defined by 

the vector fields of the G action. Moreover, when G acts freely on 5C then the 

level sets have a structure of a fibered Riemannian space and the Riemannian 

submersion Sc —► M' is the 3-Sasakian submersion. In particular, the level 

sets of the hyperkahler potential function in Swann's associated bundle are all 

Einstein manifolds and are compact and of positive scalar curvature whenever 

M' is compact and of positive scalar curvature. 

Ishihara [12] showed that when the distribution given by the Killing vector 

fields of a 3-Sasakian structure is regular then the manifold fibers naturally 

over a quaternionic Kahler manifold. Konishi [Kon] also showed that there is 

always a 3-Sasakian submersion over an arbitrary quaternionic Kahler man- 

ifold of positive scalar curvature. Our analysis shows that these two results 

are closely related to the work of Swann. More precisely, we prove 

Theorem A. Let G be Sp(l) or 50(3) and let M be a hyperkahler manifold 

admitting a free action of G by isometries permuting the complex structures. 

Let Z(M) denote the twistor space of M, and suppose that the obstruction <f) £ 

H0(Z(M), A(1,0)(4)) described in Section 3 vanishes. Furthermore, suppose 

the action of G extends to a homothetic F action on M, where F is W or 

H*/(Z/2) respectively. Then there is a diagram of locally trivial fibrations 

M 
C* L 

/ \ 

(0.3) Z{MI) S(M'), 

CP1 RP3 

\ / 
M' 

where all maps except t are projections of the fibrations with fiber as indicated, 

Mf is a quaternionic Kahler manifold of positive scalar curvature, Z(M') is 

its twistor space which is Kahler-Einstein of positive scalar curvature, S(M') 

is a fibered Riemannian Einstein manifold with 3-Sasakian structure and a 

second non-isometric Einstein metric, and L is an embedding.  Moreover, M 
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is homothetic to the associated quaternionic bundle U{Mt) of Swann. 

Conversely, if M' is a quaternionic Kdhler manifold of positive scalar cur- 

vature, then the diagram above holds with the stated properties, and the ob- 

struction (j) vanishes. Furthermore, if M' is complete, then M', Z^M'), and 

S(Mf) are all compact. 

In the case that the obstruction </> does not vanish, the manifold M' is not 

quaternionic Kahler, S(M') is an almost contact metric 3-structure, but not 3- 

Sasakian, and Z{Mf) is a Kahler manifold, but without a fibering by 2-spheres, 

and is not Kahler-Einstein. It is quite remarkable that all four geometries 

appearing in 0.3 are Einstein. As ^(M') fibers naturally over Z(M') we have 

the following diagram: 

SiM')        ^-^       Z(Mr). 

(0.4) CP1 

RP
3
       y 

M' 

It is the generalization of the relation between the Hopf fibrations of S'4fc+3 over 

HPfc and CP2;c+1 respectively, where CP2/c+1 fibers over M^k as its twistor space. 

Notice that the fibers themselves form the Hopf fibration S1 -> RP3 -> CP1. 

The diagram 0.4 is well-known in the case when M' is a quaternionic Kahler 

manifold of positive scalar curvature [Bes]. The manifold Si^M') admits two 

non-isometric Einstein metrics. It follows from Theorem A that S^M') is, in 

fact, a 3-Sasakian manifold with respect to one of these metrics. 

One can generalize 0.4 to the case of "orbifold" fibrations, where Mf is a 

quaternionic Kahler orbifold of positive scalar curvature. This can be seen as 

follows: If G acts only locally freely on 5c then, using theorem 2.1, we obtain 

a 3-Sasakian structure on it but now, as the distribution defined by the vector 

fields of the G action is not regular, Sc no longer fibers over a quaternionic 

Kahler manifold. The manifold 5C can be a compact 3-Sasakian space and 

the quotient Sc/G yields a compact quaternionic Kahler orbifold with positive 



234 BOYER, GALICKI AND MANN 

scalar curvature. We call such a distribution weakly regular (see also [Th]). 

In this case the projection map of S(Mf) onto the twistor space Z(M') has 

the structure of a Seifert fibration [OW]. 

Hence, we get an interesting generalization of Theorem A involving orb- 

ifolds: 

Theorem B. Let G be either- Sp(l) or 50(3) and let M be a hyperkdhler 

manifold admitting a locally free (but not free) isometric action ofG permuting 

the complex structures. Let Z(M) denote the twistor space of M, and suppose 

that the obstruction (f) G H0(Z(M), A(1'0)(4)) described in Section 3 vanishes. 

If the action of G extends to a homothetic F action on M, where F is H* or 

]EP/(Z/2) respectively, then there is a diagram 

M 
c* 

\ 

(0.3') Z{MI) S(M'), 

CP1 RP3 

\ / 
M' 

CP* 
where all maps except L and Z(Mf) —> M' are quotient maps indicated, M' is 

a quaternionic Kdhler orbifold of positive scalar curvature, Z{Mf) is a complex 

contact orbifold which is Kdhler-Einstein of positive scalar curvature, S(Mf) 

is an Einstein manifold with 3-Sasakian structure and a second non-isometric 
(pp* 

Einstein metric, L is an embedding, and Z^M') —> M' is a twistor fibration 

away from the orbifold singularities of M'.   Moreover, M is homothetic to 

the associated quaternionic bundle U(M') of Swann away from the orbifold 

singularities of Mf.   Furthermore, if M1 is complete, then Mf, Z(M'), and 

^(M') are all compact. 

We emphasize here that although M' and Z(Mf) are Einstein orbifolds, 

S(Mf) is a smooth Einstein manifold. Theorem B allows for a construc- 

tion of 3-Sasakian manifolds that are not fibered Riemannian spaces, thus 

providing us with examples of new Einstein manifolds in dimension An + 3. 
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Both theorems A and B have straightforward generalizations to the pseudo- 

Riemannian category. In particular, if M' is a quaternionic Kahler manifold 

or orbifold (Riemannian) of dimension 4n with negative scalar curvature, then 

^(M^StM'^ZtM') have signature (4n,4), (4n,3), and (4n,2) respectively. 

In Section 3 we briefly describe the twistor space of hyperkahler and quater- 

nionic Kahler manifolds, and then show that the obstructions described in Sec- 

tion 1 are represented by an element (f) of HQ(Z{M), A(1'0)(4)) on the twistor 

space Z(M) of the hyperkahler manifold M. 

We conclude this paper in Section 4 by giving many examples of hyperkahler 

manifolds with an isometric G action permuting the hyperkahler structure 

which illuminate various aspects of the theory developed in the earlier sections. 

When the obstruction cj) vanishes we obtain many new examples by using 

the quaternionic Kahler quotient [G2, GL] and hyperkahler quotient [HKLR] 

methods. If M admits a group of hyperkahler isometries H commuting with 

the G action then, under some additional assumptions given in Section 4, we 

can construct a new manifold M which is a quotient of the zero level set of the 

momentum map ji by H. This quotient is precisely the quaternionic Kahler 

reduction of M' by H. It follows from [Swl, Sw2] that the following diagram 

commutes: 

(0.5) 

M 

M' 

\ 

H 

H1- 

H 

M 

F Z(M')    =>    ZtikP) 

M'. 

That is, M is locally homothetic to the associated bundle of M'. When M — 

U(Mf) then M is homeomorphic to U{Mf). The above diagram implicitly 

defines a reduction of the 3-Sasakian manifold S(Mf) by the action of H to 

yield ^(M'). When M = Mk \ {0} then we can take H to be any subgroup 

of Sp(k) acting by matrix multiplication from the left and the hyperkahler 

quotient on M.k \ {0} becomes the quaternionic Kahler quotient on HP^-1. 
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For example, if H = 17(1) or 5^(1) we obtain diagram 0.3 when Mf is a 

Grassmannian Gf2,fc(C) or (^^(M) respectively. In these cases, the S(M') are 

RP3 bundles over quaternionic Kahler manifolds with the 3-Sasakian structure 

obtained by Konishi [Kon] and they are homogeneous Einstein manifolds. Us- 

ing techniques described in this paper, together with the results of Swann 

[Swl, Sw2], one can explicitly construct such fibrations for any compact sym- 

metric Wolf space of positive scalar curvature. It also follows that the level 

sets of the hyperkahler potential function of the hyperkahler metric on the 

nilpotent adjoint orbit of the complexification of a compact semisimple Lie 

group L carry a natural 3-Sasakian structure and, in particular, are Einstein 

manifolds. 

In many ways the most interesting class of examples comes from considering 

the 150(3) action on the associated bundle of the complex weighted projective 

space CPl+g £±1 z+s, where p, g, s are pairwise coprime positive integers and 
2     '    2    '    2 

(p + q + s) is odd. The orbifold CP2
p+q q+s p+s has a singular locus consisting 
2     '    2     '     2 

of three isolated points except when p = q = 1 and has a self-dual Einstein 

metric of positive scalar curvature [GL]. The associated quaternionic bun- 

dle U(CF2
p+q ^ £±£) is an incomplete hyperkahler manifold with hyperkahler 
2     '     2     '     2 

potential function v. The level sets of u are smooth compact hypersurfaces 

with an induced 3-Sasakian structure. The space 5^,5 = i/~1(l/2) is, there- 

fore, an example of a compact 3-Sasakian space for which the distribution 

defined by the vector fields of the 50(3) action is not regular. However, it 

is almost (or weakly) regular [Th] and SPtqiS/SO(3) is the Riemannian orb- 

ifold CP^ q+s p^.  In particular, S^^ is a compact Einstein 7-manifold of 
2     »    2    '    2 

positive scalar curvature for any choice of such triple (p, g, s). It is a quotient 

of 5(7(3) by a free circle action. In the case (p + q + s) is even Sp^^ has a 

locally free Sp(l) action and the projection SpiqiS/Sp(l) = CFp+qiP+3iq+s. We 

can also think of Sptqia as a reduction of the standard 3-Sasakian structure on 

the 11-dimensional sphere by a circle action. The Einstein metric constructed 

on SPiqtS is non-homogeneous, and we believe these are new non-homogeneous 

compact Einstein manifolds of positive scalar curvature in odd dimension. Our 

theory allows construction of many other examples in dimension 7 as well as 

in a general dimension Ak + 3. 
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Even dimensional examples of compact non-homogeneous Einstein mani- 

folds with positive cosmological constant were introduced first by Page [Pa] 

and later his construction was generalized by Berard Bergery [BeBer]. Koiso 

and Sakane [KoiSal, KoiSa2] constructed examples of non-homogeneous Kahler- 

Einstein metrics of positive scalar curvature on compact complex manifolds. 

Their method allows for the construction of such manifolds with arbitrary 

cohomogeneity. Tian and Yau [TY] have also constructed non-homogeneous 

Kahler-Einstein metrics on the del Pezzo surfaces CF2#k(-CF2) for 3 < k < 

8. Wang and Ziller's showed that a circle bundle .Pai,...,<*„ over a product of 

Kahler-Einstein manifolds of positive scalar curvature Mi x • • • x Mn admits 

an Einstein metric of positive scalar curvature [WanZil, WanZi2]. Now, if all 

M^'s are homogeneous so is P. But choosing non-homogeneous examples of 

Koiso and Sakane or Yau and Tian for some of the M^'s, one can construct 

non-homogeneous Einstein metrics on P with positive Einstein constant and 

of arbitrary cohomogeneity. We believe our examples are different. They fiber 

over compact Kahler-Einstein orbifolds of positive scalar curvature but the 

circle action has the structure of a Seifert fibration. A detailed study of the 

geometry and topology of our orbifold examples is currently under investiga- 

tion [BGM]. 

Recently Wang introduced another interesting construction of Einstein met- 

rics on some principal bundles over products of quaternionic Kahler mani- 

folds [Wanl]. In a sense it is a quaternionic analogue of the construction in 

[WanZi2]. Let M^ 1 < i < m, be quaternionic Kahler manifolds of positive 

scalar curvature and Pi the principal 50(3) bundle over M^. In our notation 

Pi = S(Mi). Let F = [50(3) x • • • x 50(3)]/A50(3) (m factors), and M be 

the fiber bundle associated to Pi x • • • x Pm with fiber F. Wang shows that M 

admits an Einstein metric with positive scalar curvature such that the projec- 

tion TT : M —► Mi x • • • x Mm is a Riemannian submersion onto a product metric 

on Mi x • • • x Mm and such that the fibres are totally geodesic and isometric 

to F equipped with a normal homogeneous metric. Wang observed that if 

all Mi's are homogeneous so is M. Since all known examples of quaternionic 

Kahler manifolds of positive scalar curvature are homogeneous his construc- 

tion yields only homogeneous Einstein metrics in the bundle.   However, his 



238 BOYER, GALICKI AND MANN 

theorem can be easily generalized using the results of this paper. Notice that, 

in our notation, M is just the quotient [S(Mi) x • • • x «S(Mm)]/50(3) where 

SO(3) acts diagonally. We have 

Theorem C. Let Si, 1 < i < m, be compact 3-Sasakian manifolds of posi- 

tive scalar curvature such that the distributions defined by the vector fields of 

the 3-Sasakian structures are weakly regular for all i = 1,..., ra, i.e., the quo- 

tients Si/SO(3) are compact quaternionic Kdhler orbifolds with positive scalar 

curvature. Define S = (S'I x • • • x 8^/80(3), where 80(3) acts diagonally. 

Then 8 is a compact Riemannian orbifold which admits an Einstein metric of 

positive scalar curvature at all regular points. Moreover, if the diagonal 80(3) 

action is free on Si x • • • x Sm then 8 is a smooth compact Einstein manifold. 

Using our non-homogeneous examples of weakly regular 3-Sasakian struc- 

tures and the theorem above one can construct many new non-homogeneous 

Einstein .metrics of positive scalar curvature in dimension 4A; + 3, k > 1. There 

are similar "orbifold" generalizations of the Wang and Ziller's construction of 

Einstein metrics on torus bundles over products of Kahler-Einstein manifolds 

[BGM]. 

Our final example discusses applications of our theory to the hyperkahler 

structure and associated free Sp(l) action on instanton moduli space thus 

giving a companion theory to the one developed in [BoMal]. 

We would like to thank Gerardo Hernandez for helpful conversations about 

3-Sasakian manifolds. The second author would like to thank the Institute for 

Advanced Study for its support and hospitality. Some of this work was done 

during his stay there for the second term of 1990-1991. 

1. THE QUATERNIONIC KAHLER REDUCTION OBSTRUCTION 

In this section we develop an obstruction theory to when a hyperkahler 

manifold with a locally free action of Sp(l) or 80(3) via isometries has a 

quaternionic Kahler quotient. When our obstruction vanishes we obtain the 

assumptions of Swann, under which he proved such a quotient exists [Swl, 

Sw2].   Conversely, we show that when our obstruction does not vanish, no 
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such quotient can exist. We end this section with several other consequences 

implied by the vanishing of our obstruction. 

Let (M, g) be a hyperkahler manifold. Then M comes equipped with com- 

plex structures {Ia}l=1, which satisfy the quaternionic relations 

(1.1) IaIh = -Sab + €abcr. 

The complex structures {Ia}l=1 span a trivial three dimensional subbundle 

1 of the endomorphism bundle End(TM). Dually, with respect to the hy- 

perkahler metric g, there are three Kahler forms u)a which span a trivial sub- 

bundle Q of A2M. Let Aut(fi) C Isom(M, g) be a group of isometries acting 

on (M, g) such that the four-form 

3 

(1.2) ft = ]£a;aAa;a 

a=l 

is invariant under the action of Aut(fi). Then there is a normal subgroup 

H C Aut(O) which acts trivially on G, i.e., H leaves {ooa}a=i,2,3 invariant. We 

call H the group of hyperkahler isometries of M. Let G C Aut(fi) be either 

S^l) or 50(3) and such that G acts nontrivially on Q by permuting the 

hyperkahler structure. For the remainder of this paper G will denote either 

Sp(l) or 50(3) and we assume that G acts effectively on M. 

Suppose that G acts locally freely on a smooth manifold M. Let rx denote 

the isotropy subgroup at x £ M. Tx is a finite subgroup of G for all x 6 M. 

Such an action gives rise to a weakly regular foliation J7 on M whose leaf 

through x is G/Yx. Since all the leaves are compact, the quotient space M/JF 

has the structure of an orbifold or Satake manifold [Mo]. The union of the 

principal orbits is a dense open set which is a smooth manifold. There are two 

cases to consider. 

CASE 1: The action of G on M is free. In this case the foliation is regular and 

the map TT : M —> M/G is a submersion, in fact, a principal G bundle over 

M/G. We refer to this as the regular case. 

CASE 2: The action of G on M is not free, but is locally free, and there is 

a dense set of points M C M where the action is free.  Over the dense open 
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subset MjT C MjT of regular points, M is a principal G bundle over MjT. 

The fibres (singular fibres) over the singular points of MjT have the structure 

of G/Tx, Tx ^ {id}. We refer to this case as the singular case. We treat 

the singular case by first working on the dense set of regular points and then 

adding back the singular fibres. 

The complexified cotangent bundle T^M of any 4n dimensional quaternionic 

Kahler manifold M can be written as E ® H [Sail] for locally defined vector 

bundles E and H of complex rank 2n and 2 respectively. The fibres of E and 

H are the standard complex representations of Sp{n) and Spil) respectively. 

The quaternionic Kahler metric g on M can be given as an element UJE ® 

cuH in A2E (g> A2H C A2(£ <g> H). When M is hyperkahler the bundles E 

and H are globally defined and the form UJH is the flat symplectic form e. 

Furthermore, there is an identification of the bundle G with the symmetric 

tensor product bundle S2H. If G acts freely on M, M is the total space of a 

principal G bundle. So there is a trivial three dimensional subbundle V of the 

tangent bundle TM spanned by the fundamental vertical vector fields {£*} 

corresponding to £ G £p(l). Of course, the fibres of V can be identified with 

the Lie algebra sp(l), so we get the following moment map construction. 

The Lie derivative gives a map V ® S2H —» sp(l) 0 S2H defined by 

(1.3) £€.w = d(rjw) = -K>w]. 

This gives rise to a moment map fi by identifying sp(l) with S2H and decom- 

posing 

(1.4) S2H®S2H ~  1®S2H®S4H 

in irreducible components. The components of £*Ju;, with respect to each 

irreducible component in (1.4), give the factors of the moment map /i. Since 

the right hand side of (1.3) lies in the second factor S^i?, the first and third 

factors of £*Ju; are closed one-forms. Thus, assuming that if^M, M) = 0, 

these closed forms are exact and we have 

(1.5) £*Ju; = di/0 77 0d0 

with the following irreducible factors of /x: 
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(1) v:M -+R 

(2) rjiTM ->sp(l)~S2H 

(3) 0 : M -► S4H. 

The first map z/ is a G invariant function. Thus, for any regular value c G R, 

h>~1(c)/G is a Riemannian manifold in a natural way. We are interested in the 

geometric structures that this manifold can carry. In particular, under what 

conditions will v~l(c)/G be quaternionic Kahler? 

Notice that (1.3) implies that 

(1.6) dr) = -2a;. 

This, together with the simplicity of 5p(l), implies 

Proposition 1.1. Let (M,g) be a hyperkdhler manifold on which there is an 

action of G by isometrics which act non-trivially on the bundle Q. Then the 

de Rham cohomology class of any Kahler form u in Q vanishes. In particular, 

any such M is non-compact 

The S^l) (respectively, £0(3)) action on M can be extended to an H* 

(respectively, H*/^) action as follows. Since u is an G invariant function, the 

vector field grad u commutes with £* for any £ G £p(l). Furthermore, dualizing 

equation 1.5 with respect to the metric #, we see that 

(1.7) gradi/ = tr/f, 

where / is any complex structure in the two sphere of complex Kahler struc- 

tures on M. It follows from (1.7) that gradz/ is nowhere vanishing on M 

whenever G acts locally freely. Now assume that grad u is complete. Then the 

Lie algebra sp(l) ©sp{gradi/} exponentiates to an H* or H*/Z2 action on M. 

In this case we can identify i/"1^)/^!) with M/H* or zy-1(c)/S'0(3) with 

M/(B[*/Z/2). 
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Consider the diagram 

v-1(c)      -^    M, 

(1.8) 

u-\c)/G 

where the horizontal map is a Riemannian embedding and the vertical map 

is a principal Riemannian submersion. The pullback bundle L*TM on ^~1(c) 

splits in terms of its vertical, normal, and horizontal components, respectively, 

(1.9) L*TM = V®Af®'H. 

We have bundles ^(c) x^ L*1 and z/"1^) X
G ^Q on M' = v~l(c)/G. 

We can define a bundle map 

(1.10) ^•^~1(c) Xs^^A2]^ 

as follows. On an open set Ua in M', choose a local trivialization x H-» 

(Njsa(W)) 0f the principal bundle ^~1(c) —>• M7. Then, with respect to 

this local trivialization, we can give a local section of the associated bundle 

^_1(c) xG L*Q by setting cua = ads-i a;. Let X' and F' be vector fields on M' 

and let X and y be their unique horizontal lifts. Then we can define the map 

t/j by '^(a;a)(X/, Yf) = uJa{X, Y). Equivalently, in terms of the almost complex 

structure, we have a map 

(1.11) ^ : v'^c) xG i*I -> End(TM'). 

When does the image of T/J, or equivalently ifj$ define a quaternionic structure 

on M7? A necessary condition is that ip or ip^ be injective. We have 

Lemma 1.2. The image of ^ defines an almost quaternionic structure on 

M' if and only if every complex structure I G 1 restricted to ^"^(c) leaves the 

horizontal subbundle H invariant. 

Proof If the horizontal subspace Hx for any x 6 ^~1(c) is invariant under any 

complex structure /, then the restriction J of / to 7ix defines a complex struc- 

ture on 7ix for each x € i/-1^). Thus, with respect to a local trivialization, 

^(la) defines a quaternionic structure on T[X]M' ~ 7ix for each [x] G M'. 
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Conversely, suppose that / on TXM and J defined as the horizontal compo- 

nent of the restriction of / to 7ix on 7{x are both complex structures. Then 

with a choice of basis of TXM respecting the decomposition TXM = HX® H^, 

I can be written in the block matrix form (i M)- Since I2 = — 1 and J2 — —1 

we have KL = 0. But, as / is an isometry, this implies that P = — I and 

thus L = —K*. Hence, KK1 = 0 which implies that K — L = 0. Thus, TCX is 

invariant.    □ 

In fact more is true: 

Proposition 1.3. The structure induced by ij) on TM1 is an almost quater- 

nionic structure if and only if it is quatemionic Kdhler. 

Proof The if direction is obvious. The fact that the almost quaternionic 

structure implies M' is quaternionic Kahler follows from Lemma 1.2 and the 

proof of theorem 3.1 of Galicki and Lawson [GL].    □ 

Theorem 1.4. Let (M, #, G) be a hyperkdhler manifold with a free action ofG 

by isometrics that induces the adjoint action on Q. Then the structure induced 

by I/J on the quotient M' = v~l(c)/G is a quaternionic Kdhler structure if and 

only if (j) is constant on M. Furthermore, if either condition is satisfied then 

we have 

(1) H 0 JV = ker rj and there is a choice of bases and of the constant in 

the moment map v such that 

(2) r)a{Xb) = g(Xa,Xb) = 2u6ab. 

Proof The dual of (1.5) is 

(1.12) J£* ^grad^egrad^er/11. 

Choose a basis for the Lie algebra £p(l); for example, the basis {ea}^=1 corre- 

sponding to the imaginary quaternions so that [ea, eb] = 2eabcec. Let {Xa} de- 

note the corresponding basis for the fundamental vertical vector fields. Then, 

if (p is constant, writing (1.12) with respect to this basis gives 

(1.13) rXb = 6ab grad u + eabc(^)c. 
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Hence, we have 

(1.14) IlXl = I2X2 = /3X3 - grad v. 

We show that the horizontal subbundle Ti is invariant under all the complex 

structures /. Then ij) will induce a quaternionic Kahler structure on M' by 

Lemma 1.2 and Proposition 1.3. By orthogonality H is invariant under the 

complex structures if and only if V ©AT is. But (1.14) and (1.1) imply 

(1.15) Xa = -Ia grad i/,        rXb = eabcXc + 6ab grad i/, 

so V 0 Af is invariant under the complex structures. Furthermore, it follows 

from (1.13) and (1.15) that (rf)" = Xa, so that HQAf^kerrj. 

Conversely, if the quotient is quaternionic Kahler, then H is invariant under 

the complex structures by Lemma 1.2. Hence, the righthand side of 1.12 can 

have no horizontal components. Clearly, this implies condition TC C keirj. To 

show that cf) must be constant on M we prove a lemma. First notice that, 

restricted to the tangent bundle of the principal bundle ^~1(c), H defines a 

connection, and up to a change of basis, rj is its connection one-form. 

Lemma 1.5. Under the hypothesis above, the Lie algebra of the holonomy 

group of the principal connection defined by Ti is sp(l). 

Proof. From (1.6) we have for any horizontal vector fields X and Y and any 

£ € sp(i) 

(1.16) 
- MX, Y) = dri(X, Y) = Xr,(Y) - Y^X) - T,([X, Y}) = -r,([X, Y}). 

But the vertical component of [X, Y] is essentially the curvature of the con- 

nection 7i of the principal G bundle ^~1(c). So, if the holonomy group were 

discrete, (1.16) would imply that any u would be degenerate on Ti. Similarly, 

if the restricted holonomy group were an 51, then we could choose £ such that 

the nondegeneracy of cu were violated.    □ 

Lemma 1.5 says that any vertical vector can be written as the Lie bracket of 

horizontal vector fields. It follows that </> is annihilated by vertical vector fields 
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as well as horizontal vector fields. Thus, we have shown that (/> is constant on 

the level sets of v. This implies that (1.12) can be rewritten as 

(1.17) /r=(1<B/<Bl»l)grad^(,«r, 

where / is an S4H valued function of v alone and || • || denotes the norm with 

respect to the hyperkahler metric g. To show that </> is constant on M, we 

show that / vanishes. The symmetric part of (1.17) gives the following set of 

equations 

PX1 = (1 + Z11) grad i/ PX2 + I2Xl = 2/12 grad u 

(1.18) I2X2 = (1 + f22) grad v I3X2 + I2X3 = 2/23 grad u 

PX3 = (1 + /33) grad v I'X3 + PX1 = 2/13 grad v. 

A straightforward calculation, using (1.1) and (1.18), together with the fact 

that / is traceless, implies / = 0 and, hence, that </> is constant on M. 

Finally, to prove condition (2) we notice that from (1.14) we have 

g(Xa,Xb) = u;a(Xb,gradi/) = Xb\uja(giadu) = 6abdu(gradu)+eabcrjc(gvsidu). 

But the left hand side is symmetric in ab so we get 77c(grad^) = 0 and 

(1.19) 77a(X6) = g(Xa,Xb) = Sab || gradu ||2 . 

Let us set u =|| gradi/ ||2. We show first that u depends only on v. From 

(1.16) we have, 

0 = -2uja(Xa,Xb) = dr}a(Xa,Xb) = Xaria(Xb)-Xbria(Xa)-ria([Xa,Xh]). 

For a T^ b this implies Xbu = 0. Therefore u is independent of the vertical 

directions. Similarly, the invariance of H, under the G action implies that 

Hu = 0 for any horizontal vector field H. Thus, u is a function of u only. 

Next, a similar computation using (1.19) gives 

2\\gradv\\26ab = 2g(Xa,Xb) 

= -2uja(gr&dv,Xb) 

= (gvadu)r]a(Xb) - XV (gradi/) - r?a([gradi/,X6]). 
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The second term on the right hand side vanishes by condition (1), and the 

third term vanishes by the G invariance of v. Thus, we have the ODE 

(1.20) (grad v)u = 2 || grad v ||2 . 

This has a global solution u = 2v + c where c is a constant. By the standard 

uniqueness theorem, u is uniquely determined by c. But, since v was only 

defined up to a constant we can take c = 0. This proves condition (2). Notice 

that with this choice of constant, we have 

(1.21) ||gradz/||2=2zA    □ 

Remark 1.1. Conditions (1.14) are precisely the conditions assumed by Swann 

[Swl, theorem 3.5.1] to obtain a quaternionic Kahler quotient. On the other 

hand, Theorem 1.4 shows these conditions are not only sufficient but also 

necessary conditions for (M, g, Q) to have a quaternionic Kahler quotient. 

Proposition 1.6. Let (M,g,Q) be a hyperkdhler manifold with a free action 

of G by isometries that induce the adjoint action on Q and such that the 

hypothesis of Theorem 1.4 is satisfied. Then 

(1) £gradl/z/ = 2z/; 
(2) £grad^ = 2aA 

(3) gradz/ is a homothety of the metric g. 

Proof. To prove (1) we notice that Cgr^vv = du(gva,du) =|| gradz/ ||2= 2v. 

We show (2) by direct calculation. Assume b ^ 1. Then 

= eblcd{g{rXx, ■)) = eblcd(X1Jwc) 

= eblcd(6lcdv + ecl V) = eblceclddr}d 

= -€blcecld2ud = 2ujb. 

When b = 1 we repeat the same argument with gradz^ = PX2. 

Finally (3) follows from the fact that {w0}a=1]2,3 are the Kahler forms and 

grad v is holomorphic with respect to any of the complex structures.    □ 
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Proposition 1.6 has several important corollaries which follow under the 

assumption of its hypothesis. 

Corollary 1.7. {gradz/jX1,^2,^3} generates a local homothetic H* action 

on M. 

Corollary 1.8. The quaternionic Kdhler metrics gf
c on M' = z/~1(c)/G ob- 

tained from different level sets of v are homothetic. 

The function i/, in this case, is called the hyperkahler potential on M; i.e., it 

is a Kahler potential with respect to any complex structure I G X [Swl, Sw2]. 

Swann shows that such a v completely determines the hyperkahler metric on 

M. In fact, with our normalization, 

(1.22) V2i/ = p> 

as one can easily see from (1.21). Moreover, the orbits of the H* or EI*/(Z/2) 

action are totally geodesic and flat. He also shows that any hyperkahler 

manifold with a hyperkahler potential is locally homothetic to the associated 

quaternionic bundle of its quaternionic Kahler quotient or, in our notation, 

Proposition 1.9. // M satisfies the hypothesis of the Theorem 1.4 then it 

is locally homothetic to U(Mf) where U{M') is the associated quaternionic 

bundle of M'. Moreover, M C U(Mf) is an open submanifold, andU{M') is 

its homothety completion. 

Since Swann's associated quaternionic bundle U(Mf) is associated to the 

principal frame bundle on M' with group Sp(n) • 5p(l), U(M') is naturally an 

E[*/(Z/2) bundle, and the obstruction to lifting the Z/2 is the Marchiafava- 

Romani class e on M' [MR]. Furthermore, Salamon [Sail] has shown that, if 

M' is a complete quaternionic Kahler manifold of positive scalar curvature, 

then e vanishes if and only if M' = HP77. Thus, if we assume that our obstruc- 

tion dcf) vanishes and that M' is complete, then the only case where G = Sp(l) 

is when M is an open submanifold of the quaternionic vector space HIn+1 with 

its flat hyperkahler metric. This is not true when M7 is a quaternionic Kahler 

orbifold. 
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Another consequence of the equation (1.22) is that the metric g on U{Mf) 

cannot be complete (see [Ya]). 

When we fix a complex structure / E X then M is a Kahler manifold with 

Kahler form uj and a holomorphic circle action generated locally by — Igrad v. 

We can then consider an ordinary Kahler quotient of M by this circle action. 

Corollary 1.10. A Kahler quotient of M by any circle subgroup U(l) C G is 

Kdhler-Einstein; that is, Z = i/_1(c)/[/(l) is a Kahler-Einstein manifold. 

The Kahler-Einstein quotients were first studied by Futaki in the case when 

M is compact and of positive scalar curvature [F]. He showed that if M 

admits a holomorphic circle action by isometrics such that the reduced space 

M is a manifold then the metric on M is Kahler-Einstein if and only if the 

norm of the vector field for the circle action is constant on the level sets of 

the moment map. In the more general case of an arbitrary Kahler-Einstein 

space this condition is not enough. This can be easily seen by the following 

example. One can consider an S'1 action on C^ x C™ where S'1 acts diagonally 

on Ck and trivially on Cm. The vector field for this action is clearly constant 

on the level sets of the momentum map. The level sets are simply S2k~l x Cm 

and the ordinary Kahler quotient yields CP^-1 x Cm with the product metric. 

While this is again a Kahler manifold it is not Einstein. 

However, Pedersen and Poon [PePol] observed that if one requires, in ad- 

dition to the vector field being constant on each level set, that the quotient 

metrics coming from different level sets are homothetic then the quotient met- 

ric is not only Kahler but also Einstein. Both of the conditions are satisfied 

for any circle subgroup of G acting on M and, as a consequence, we get Corol- 

lary 1.10. In Section 3 we shall see that Z = Z(M') is, in fact, the twistor 

space of M'. 

In the next section we shall study the Riemannian geometry of the level 

sets of the hyperkahler potential function v. We will demonstrate that in the 

case of vanishing obstructions they carry a natural 3-Sasakian structure. In 

particular, the metric given by the inclusion map is Einstein. 
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2. THREE-SASAKIAN STRUCTURE 

In this section we will see how 3-Sasakian structures arise naturally in the 

context discussed in §1. To begin we review some basic definitions and facts 

about Sasakian and 3-Sasakian structures (see for example [Ku, Sasl, Sas2, 

IK, 12, SasHa, Kon, Ka]). Let S be a differentiable manifold with a type (1,1) 

tensor field $, a vector field £ G X(S), and a 1-form 77 € AT*S such that 

(2.1a) $o$(y) = -Y + n(Y)£, 

(2.1b) ^ = 0, 

(2.1c) r/(*y) = 0, 

and 

(2.1d) 7/(0 = 1, 

for any vector Y G TS. Then (5, $, ^, 77) is called an almost contact manifold. 

Given any such S we can always choose a Riemannian metric g with the 

following properties 

(2.2a) 9(Y,0 = r,(Y), 

and 

(2.2b) g($Y, $Z) = g(Y, Z) - V(Y)ri(Z), 

for any y, Z G TS'. The metric g is said to be associated to the almost contact 

structure and (3, $,£,77) is called an almost contact metric structure. An 

almost contact metric structure is a contact structure if, for any Y, Z G TS, 

(2.3) dr,(Y,Z) = 2g(<f>Y,Z). 

Let us denote the Nijenhuis torsion tensor of $ by NQ, that is 

jv»(y, z) = [$y, $z] + $2
[F, z] - $[y, $z] - $[$F, Z}. 

The almost contact structure ($,£,77) is normal [Sasl] if 

(2.4) N* (Y, Z) = -dT](Y, Z)®Z. 
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(S^^.^rj) is called a Sasakian manifold if (#,$,£,77) is a contact metric 

structure which is normal. In particular, it follows that the vector field £ is a 

Killing vector field on S. 

Suppose now there are three distinct Sasakian structures {$',£% ^j^x^s 

on (5, g) such that 

(2.5) 9(e,ti) = Sii,     [C,e} = 2e^e,    i,j,k = 1,2,3. 

Then (5, {3>\£%T7l}i=i,2,3) is called a 3-Sasakian structure and 5 is called a 

3-Sasakian manifold. This structure implies that S must have dimension n = 

4k + 3. The distribution J7 spanned by {C}i=i,2,3 is integrable and every 

integral manifold of J7 is totally geodesic in S and of constant curvature 1 [IK]. 

Moreover, if the distribution J7 is regular then there is a natural projection 

TT : S —> M' = SjT where M' is the set of all maximal integral submanifolds 

of T. [S, g) is called a fibered Riemannian space with Sasakian 3-structure 

{$l,£l,77t} and TT is a 3-Sasakian submersion. It is known that any manifold 

with 3-Sasakian structure is Einstein [Ka] and that the base space M' of a 

3-Sasakian submersion is a quaternionic Kahler manifold [12]. Konishi [Kon] 

constructed a 3-Sasakian submersion over an arbitrary quaternionic Kahler 

manifold of positive scalar curvature. 

We shall show that, under the assumptions of the Theorem 1.4, i/~1(l/2) 

has a natural 3-Sasakian structure and the projection map TT of (1.8) is a 

3-Sasakian submersion. Let S = ^~1(|) C M. Since, by definition, S is G 

invariant, the Killing vector fields on M, 

(2.6) Xi = -F grad 1/,    i = 1,2,3 

can be considered as vector fields on S. Let g be the metric on S given 

by restriction of the hyperkahler metric g on M to the hypersurface 5; i.e., 

g = 2*<?, and let p be the natural orthogonal projection p : TmM —> rm5, 

m G S. We define 

(2.7) ^(Y)=s(y,X*),   YGTS,   t = 1,2,3, 
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and 

(2.8)     -$i(y)=po7iy = /iy-r7i(y)gradi/,    Y G TS,   i = l,2,3. 

Theorem 2.1. The manifold S is a fibered Riemaniann space with the 3- 

Sasakian structure (g, {X%f]\ $2}) and ir : S —> M' = S/G is a 3-Sasakian 

submersion. In fact, S is a principal G bundle over the quaternionic Kdhler 

manifold M'. 

Proof. It is enough to show that (^,X1,$1,r/1) is a Sasakian structure be- 

cause the conditions in (2.5) follow from Proposition 1.6. First we show that 

((^X1, $1,7)1) defines a contact metric structure on S. Notice that (1.12) and 

(1.13) imply that 

In fact rf (y) = g{Y,Xi),i = 1,2,3 for any Y £ TM. Thus, the fj1 defined on 

S by (2.7) are pullbacks of the ry^s from M to S by the inclusion map; i.e, 

fj1 = i*rj\ for i = 1,2,3. 

We first check condition (2.3). As 

-^($1y, Z) = -g&Y, Z) = gil'Y - ^(Y) gradi/, Z) 

= g(IlY, Z) - r]
l{Y)g{g^dv) Z) = LU

1
{Y,Z) = i*u>\Y, Z) 

for all y,Z G TS, (2.3) implies that dff = -2*2^, for i = 1,2,3. But 

this follows from (1.6) and the fact that pullbacks commute with the exte- 

rior differentiation. Equation (2.Id) follows from Theorem 1.4 and condition 

(2.1a)-(2.1c) follow by simple algebra: 

-ri\&Y) = -g(&Y,Xl) = g^Y - v\Y) gradi/.X1) 

= gil^X1) - r1\Y)g(gvadu,X1) = -g(YJlXl) 

■= -g{Y, grad v) = 0, 

-^(X1) = PX1 - ^(X1) gradu = PX1 - grad v = 0, 

^io^^F) = -Z1^1^ + ^1($1y) gradi/ = /^^F - r/^Y) gradz/) 

= -y + 7?1(y)x1,   yGT5. 
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Condition (2.2a) is true by definition and next we check (2.2b): 

gi&Y^'Z)   =   g(I1Y-r]1(Y)gradu,I1Z-r]1(Z)gradu) 

=   ^^) + ^(^)r/1(^)l|gradz/||2 

-V
l(Z)g(IlY, grad v) - r1\Y)g(IlZ, grad u) 

=   g(Y,Z)-2vr]
1(YW(Z)-2r]

1(Y)V
1(Z) 

=   g(Y,Z)-V
1(Y)r1

1(Z)(2 + 2u) 

=   g(Y,Z)-^(Y)f,1(Z),    Y,Z€TS. 

This completes the proof that (^, $1,X1,771) is the contact metric structure. 

We need to show that this structure is normal. This can be done again by 

an explicit calculation. However, the normality of the contact structure also 

follows from the fact that S is a hypersurface in the Kahler manifold and the 

vector field X1 is Killing [YK].    □ 

Notice that, since the metrics on Sc = ^~1(c) are homothetic, a 3-Sasakian 

structure can be defined on an arbitrary level set. 

Thus, Theorem 2.1 shows that there is a 3-Sasakian geometry naturally 

associated to any quaternionic Kahler manifold M' of positive scalar curvature. 

One can simply consider Swann's associated quaternionic bundle U{Mf) of Mf. 

This is a hyperkahler manifold with a hyperkahler potential function v and 

an Sp(l) or 50(3) action as in Theorem 1.4. The level sets of this function 

carry a 3-Sasakian structure, and they are either principal S3 or MP3 bundles 

over the base space M'. Thus, we have an alternative proof of Konishi's result 

[Kon] mentioned previously. The relationship between the quaternionic Kahler 

geometry of M', the Kahler-Einstein geometry of the twistor space, the 3- 

Sasakian geometry of the level sets of the hyperkahler potential function, and 

the hyperkahler geometry of the associated bundle ZY(M/) are described by 

diagram (0.3). When M is the flat space then the fiber of Swann's associated 

bundle is in fact H* and the fiber of the 3-Sasakian submersion is 53. 

An interesting corollary of Theorem 2.1 and known results about 3-Sasakian 

manifolds is: 
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Corollary 2.2. The manifold S is an Einstein manifold of positive scalar cur- 

vature, and the fibres ofn are totally geodesic of constant curvature 1. Hence, 

if M' is complete, both M' andS{M') are compact, and the fundamental group 

ofS(M') is either {0} or Z/2. 

Proof That a 3-Sasakian manifold is Einstein is well-known [Ka], and Kuo 

and Tachibana (cf. [IK]) showed that the fibres of a fibered Riemannian man- 

ifold with a 3-Sasakian structure are totally geodesic of constant curvature 

1. Assuming that S has positive scalar curvature, Myers' theorem says that 

S(Mf) is compact with finite fundamental group. But M' is known to be 

simply connected [Sail], so the last statement follows from the long exact se- 

quence in homotopy. It remains to show that S has positive scalar curvature. 

This follows from results in chapter 9 of Besse [Bes]. Since S is Einstein with 

totally geodesic fibres, [Bes, 9.36, and 9.61], implies that r = Ag, where r and 

g are the Ricci tensor and metric of S respectively. Thus, the scalar curvature 

5 of S is (4n + 3)A. Now for a Riemannian manifold of dimension n with 

constant curvature K, its scalar curvature is n(n — 1)«. So s — 6 where s is 

the scalar curvature of the fibres, and [Bes, 9.62a] gives | A |2= 3A — 6, where 

A is O'Neill's tensor. Thus, Lemma 1.5 implies that A > 2, so 

s = (An + 3)A > 2(4n + 3) > 0.    □ 

Another immediate corollary of Theorem 2.1 and results of Hit chin [H] and 

Poon and Salamon [PoSal] is: 

Corollary 2.3. Let S be a complete principal Riemannian fibration with 3- 

Sasakian structure of positive scalar curvature.  Then, 

(1) if S has dimension 7, then S is either S7, RF7, or SU(3)/U(1). 

(2) if S has dimension 11, then S is either S11, MP11, SU(4)/S(U(2) x 

£/(!)), orG2/SU(2). 

In particular, every such fibered Riemannian manifold of dimension 7 or 11 

with 3-Sasakian structure of positive scalar curvature is homogeneous. 

One of the assumptions in Theorem 2.1 is that the G action on M is free. 
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We do not need this assumption to show that the level sets of the hyperkahler 

potential have locally a 3-Sasakian structure. For suppose that G acts only 

locally freely on M. If the action is not free on Sc then Sc will not fiber over 

the quaternionic Kahler base. In other words the distribution defined by the 

vector fields of the G action is not regular. Notice, however, that in this case 

Sc still is homothetic to a 3-Sasakian manifold and the quotient M' = Sc/G 

is a quaternionic Kahler orbifold of positive scalar curvature. Furthermore, 

Sc will still have positive scalar curvature since this depends only on local 

curvature computations. We have arrived at 

Theorem 2.4. Let M be a hyperkahler manifold with a locally free action of 

Sp(l) or SO(3) (but not free) permuting the complex structures. Suppose fur- 

ther that the obstructions d(f) vanish, and that the level sets of the hyperkahler 

potential Sc = ^-1(c) are compact. Then Sc is homothetic to a smooth com- 

pact 3-Sasakian manifold of positive scalar curvature. Furthermore, S is a 

singular fibration over a compact quaternionic Kahler orbifold M' of positive 

scalar curvature with totally geodesic fibres of constant curvature 1 away from 

the orbifold singularities of M'. 

This theorem provides us with new examples of compact non-homogeneous 

Einstein manifolds of positive scalar curvature in dimension 4n+3. In Section 4 

we give very interesting examples of compact 3-Sasakian manifolds as singular 

fibrations over quaternionic Kahler orbifolds. They admit a locally free (but 

not free) G action. In particular, in dimension 7 we obtain smooth Einstein 

manifolds whose quotients are complex weighted projective spaces with three 

isolated orbifold points and with the self-dual Einstein metric constructed by 

Galicki and Lawson [GL]. There are plenty of examples in higher dimensions 

as well. Also notice that Theorem 2.1 can be generalized to the case when 

M itself is a hyperkahler orbifold. The level sets of the hyperkahler potential 

function 5C will then be Riemannian orbifolds with a 3-Sasakian structure 

defined away from the singular locus. 

Another interesting observation comes from a theorem of Berard-Bergery 

[Bes, 9.73]. 
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Theorem 2.5. Let Sc denote the level sets of v so that the hypotheses of 

theorem 2.1 or theorem 2.4 are satisfied. Then there are two distinct Einstein 

metrics on Sc. 

Proof. If the action of G is free on the hyperkahler manifold M, then we 

can apply theorem 9.73 of [Bes] directly. We only need to check that the 

conditions of theorem 9.73 of [Bes] are satisfied for the manifolds 5C. Whereas, 

if the action of G is only locally free, we cannot apply theorem 9.73 of [Bes] 

directly. However, since the level surfaces Sc are assumed to be compact, there 

are a finite number of orbifold singularities on M', and if we remove these 

singularities together with their fibres, the result is a Riemannian submersion 

to which we can apply theorem 9.73 of [Bes]. The only condition in this 

theorem that does not follow immediately from Corollary 2.2 and 9.61 of [Bes] 

is condition 9.73e. This condition is 

(2.9) \2-dimF{n + 2v) > 0, 

where | A |2= /i • dimF = v • diml?, B is the base, and F is the fibre of the 

fibration. In our case we have JJ, = ^, and from the proof of Corollary 2.2, 

we have | A \2= 3A - 6, s = 6, and s = (An + 3) A. Now [Bes, 9.37] gives 

7r*5 = s+ | A |2 —s. 

Combining this with f = Xg gives 

\ _ (4n + 6)A-12 
An 

Putting this information into the left hand side of (2.9) and rearranging, one 

sees that condition (2.9) becomes 

16n2(A2-6A + 12) + 24n(2A - 3)(A - 2) + 36(A - 2)2  > 0. 

This is satisfied since 0 <| A \2= 3(A — 2). To complete the proof in the 

singular case we need only put back the orbifold singularities and their fibres, 

and notice that thfe metrics on (S'c- singular fibres) extend smoothly since the 

singular fibres have the form G/T for some finite subgroup F C G.    □ 
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Remark 2.1. In the regular case Corollary 2.2 and Proposition 9.61 of [Bes] 

imply that the horizontal distribution Ti on Sc defines a Yang-Mills connection. 

In fact, it can be checked directly that these connections are anti-self-dual in 

the sense of [CSal] and [GP]. Moreover, the principal bundles Y constructed 

in Proposition 14.85 of [Bes] are precisely our manifolds S. However, we have 

seen from the local nature of [Bes, 9.73] that all of these results generalize to 

the case of singular fibrations over quaternionic Kahler orbifolds. 

In the regular case, the level sets Sc are also circle bundles over the twistor 

space Z(M'). One can fix a complex structure I on M and view M as a Kahler 

manifold with the associated Kahler form cuj. Then there is a circle subgroup 

of G which acts on M by holomorphic isometrics, and, locally, is given by the 

vector field X. This gives the usual Kahler moment map ///. In the case of 

vanishing obstructions fij = u coincides with the hyperkahler potential and 

the quotient of z/_1(c) by the circle action gives the twistor space of M'. We 

then have the following diagram of fibrations: 

StM')        -^       Z(M'). 

(2.10) 
CP

1 

M' 

As already pointed out in Corollary 1.10 Z(M') = v~l(c)/S1 is an example 

of a Kahler-Einstein quotient and in the regular case both M and Z(M') are 

Kahler-Einstein manifolds. The vector field X defines a Sasakian structure on 

Sc compatible with this fibration. In the singular case, Z(M') is a Kahler- 

Einstein orbifold and the horizontal map in (2.10) is a Seifert fibration. 

This suggests the following question. Suppose we have a Kahler (but not 

necessarily hyperkahler) manifold (M, #, 7, CJ) with a holomorphic circle action 

by isometrics. Let X be the Killing vector field of this action. Consider its 

moment map /x and suppose S = ^^(c) 6 M is a smooth manifold. Let us 

define r](Y) = g(Y, X) on M. Consider (#, $, fy, X) defined on S as follows: 

(2.11) g = i*g,    * = poJ,    f/ = 2*r/, 
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where i is the inclusion map of S into M and p is the orthogonal projection as 

in (2.8). Is (g,$,fj,X) a Sasakian structure? Clearly not, as condition (2.Id) 

would then imply that the norm of the vector field X is equal one on S. This is 

usually not the case and such condition turns out to be very restrictive. Now 

assume that this is the case. Even then condition (2.3) would not be satisfied 

in general. However, we will show that it is satisfied when the metrics coming 

from the different level sets are homothetic. This is equivalent to requiring that 

the normal vector grad/x = IX generates a local homothety transformation 

on M and that the complexification of S1 acts on M by homothety. 

Proposition 2.6. Let (M, #, /, cu) be a Kdhler manifold with an isometric and 

holomorphic circle action. Let /A be the associated equivariant moment map 

and let S = fJT1^) be a submanifold in M. If the norm of the vector field X 

for the action of S1 is constant on S and IX is a local homothety then S is a 

Sasakian manifold with Sasakian structure given by (2.11). 

Proof The moment map for the 51 action on M is defined as 

dfi=-X\uj,        /i:M-»M, 

where u is the Kahler form and X is the holomorphic Killing vector field for 

the circle action. Since 

g(IX,Y) = u(X,Y) = X\u(Y) = d^Y) = g(grad»,Y) 

for each Y G TM, we obtain 

grad /x = IX, 

or X = —grad//. The vector fields X and IX generate a local holomorphic 

action of the complexification of S1. Let us choose Sc = lJi~l{c) C M. This is 

an SMnvariant submanifold. Since the norm of the vector field X (and of IX) 

is constant on the level sets of the moment map, we can always normalize it 

so that gr(X, X) = ^(/X, IX) = 1 on Sc. As 77 is defined to be the contraction 

of the metric with X, r](Y) = g(Y,X), the condition fj(X) = 1 is satisfied 

trivially. Also 

$(X) = poI(X) = IX - rj(X) grad p = 0 
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and 

TI($Y) = g($Y, X) =g(IY- V(Y) grad p, X) = g(IY, X) = -g(Y, IX) = 0 

for each Y G TSC. Similarly 

$o$(y) = H$Y) - r?($y)gradM 

= I{IY - r]{Y) grad /i) = -Y + r]{Y)X)    Y € TSC. 

Hence, (i*g,X,§,i*r]) is an almost contact structure on 5C. This structure is 

compatible with the metric as 

g($Y, $Z) = g(IY - ri(Y) grad^, IZ - TJ(Z) grad^ = g(Y, Z) - V(Y)T,(Z). 

Moreover, it is a normal almost contact metric structure and the proof of 

normality is identical to the one in Thereom 2.1. 

Notice that we have not used the assumption that grad fi generates a local 

homothety transformation. We need this to show that the almost contact nor- 

mal metric structure (i*g, X, $, i*r]) is contact; i.e., Sc is a Sasakian manifold. 

If IX is a local homothety then 

CJXUJ = XOJ. 

Without loss of generality we can assume that A = — 1, as one can always 

rescale both the vector field X and the metric g on M in such a way that the 

new X has still norm one in the new metric but A is any constant. Notice that 

V(Y) = g(Y, X) = g{IY, IX) = u(Y, IX) = -(IX\u)(Y),    YeTM 

or rj = — IX\OJ. Hence, 

dr] = — d(IX\u) = —Cixw = UJ 

and dfj = di*rj = i*uj. This is enough to show that (2.3) holds and that the 

almost contact structure is contact.    □ 

The proposition above shows that there is a natural Sasakian geometry 

associated to any Kahler-Einstein quotient and many new Sasakian manifolds 

can be obtained this way [PePol]. 
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3. THE TWISTOR SPACE 

We now reinterpret Theorem 1.4 in terms of twistor geometry. Our main 

result in this regard is theorem 3.2 below. We begin by setting notation. Let 

0(k) denote the fc-fold tensor product of the hyperplane bundle on the complex 

projective line P1 or on any rational curve P1 —> Z embedded in a complex 

manifold Z. Note that O = O(0) is the trivial line bundle and 0(—l) is the 

dual tautological bundle. If E is a holomorphic vector bundle on Z we can 

"twist" E with 0(k) to get new vector bundles E ® 0(k) which are denoted 

by E{k). 

Recall that on any quaternionic manifold M there is the locally defined vec- 

tor bundle H corresponding to the standard complex representation of 5p(l) 

discussed in Section 1. Although H is, in general, only defined locally, the sym- 

metric product bundle S^H and the projective bundle P(if) are both globally 

defined on M. Furthermore, the representation spaces S2!! can be identified 

with the adjoint representation sp(l) of 5p(l). This is a 3-dimensional real vec- 

tor bundle on M whose unit sphere bundle Z(M), which is called the twistor 

space of M, is of basic interest. Indeed, Salamon [Sail, Sal2] has shown that, 

if M is a quaternionic manifold, then Z{M) is a complex manifold fibered by 

rational curves. There are converses to Salamon's result, given in [PePo2, L] 

for the general quaternionic case, and in [HKLR] for the hyperkahler case. 

More precisely, Salamon's theorem shows that the twistor space Z — Z(M) 

of any quaternionic manifold M is a complex manifold of complex dimension 

2n + 1 satisfying the following properties: 

(i) There is an antiholomorphic fixed point free involution r on Z, called 

a real structure, 

(ii) Z is fibered by rational curves that are r-invariant, called real twistor 

lines, 

(iii) The normal bundle N of any real twistor line is isomorphic to C2n ® 

Conversely, if Z is any complex manifold of complex dimension 2n + 1 

that satisfies conditions (i)-(iii), then it is the twistor space of a quaternionic 
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manifold M of real dimension 4n where the quaternionic manifold M is the 

space of all real twistor lines in Z, [Sail, PePo2, L, HKLR]. There are two 

distinct cases to consider: 

Case 3.1. Non-zero scalar curvature [PePo2, L]: To obtain a (pseudo)-qua- 

ternionic Kahler structure with nonzero scalar curvature on M, we must have 

a complex contact structure on Z compatible with the real structure, and such 

that the contact distribution D is transverse to the real twistor lines. This is 

given by a 1-form 6 with values in the contact line bundle L on Z such that 

8 A (d6)n is a non-degenerate holomorphic 2n + 1 form. This then determines 

a quaternionic Kahler metric on M. Furthermore, if this metric has positive 

scalar curvature, then Z(M) has a Kahler-Einstein metric [Sail]. 

Case 3.2. Zero scalar curvature [HKLR]: In this case there is a holomorphic 

fibration 

(3.1) p-.Z-^F1, 

and, instead of a contact structure on Z, there is a holomorphic section K, of 

A2T£(2) defining a complex symplectic structure on each fibre F of p. Fur- 

thermore, each fibre is diffeomorphic to a manifold M whose points are the 

fixed point set of the real structure r. Here Z is diffeomorphically, but not 

holomorphically, a product M x S2. Again the hyperkahler metric on M is 

determined from «. 

To tie this into our discussions in Section 1 we consider the case that M 

has a given hyperkahler metric g with complex structures Ja. The complex 

structure on Z is given by 3 = (x • 7, IQ) where x £ S2 is written in standard 

Cartesian coordinates in R3, / G X, and IQ is the standard complex structure 

on the Riemann sphere P1. Now suppose, as in section Section 1, that M 

admits a locally free action of G that acts nontrivially on the bundle of complex 

structures X (or equivalently on £/), and consider the standard action of 50(3) 

on S2. As before let Xa denote the infinitesimal generators of the G action on 

M corresponding to the standard basis in sp(l). Let £a denote the infinitesimal 

generators for the standard SO(3) action on 5'2, then 

(3.2) Ya = Xa + <f 
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are easily seen to be infinitesimal automorphisms of the complex structure 3 

on Z. Hence, there is an holomorphic action of G on the twistor space Z(M). 

Furthermore, since under p this action projects to a transitive action of 50(3) 

on the 2-sphere of complex structures on M, we have 

Proposition 3.1. Let (M,g) be a hyperkdhler manifold on which there is an 

action of Sp(l) or 50(3) by isometrics which act non-trivially on the bundle 

X.  Then all the complex structures I G X are holomorphically equivalent 

For each point x G P1, Mx ~ p~1(x) is a divisor on Z, and Proposition 

3.1 says that all these divisors are biholomorphically equivalent. Furthermore, 

each divisor Mx has a Kahler structure given by UJX = x -cu = Yl xawa, and the 

50(3) action taking x to xf carries the Kahler structure on Mx to the Kahler 

structure on Mx'. The stabilizer in 50(3) of a divisor Mx with its Kahler 

structure UJX is a circle group U(l)x. This gives rise to a Kahler moment map 

(3.3) fix:Mx^ R, 

which, using Theorem 1.4, is easily seen to be given by 

(3.4) fix = u + x - (j> • x. 

The Marsden-Weinstein quotient Zf
x = ii~l{c)/U{\)x is a Kahler manifold with 

Kahler form induced from u)x. In the case that the obstructions dcj) vanish, we 

can take /ix = v) and thus the [/(I) moment map iix on M is independent of 

the complex structure. Since the stability subgroups U{l)x are all isomorphic, 

the quotient Z' — v~l(c)/U(l) is independent of x. Furthermore, since the 

level sets of /ix = v are G invariant, we obtain a fibration of Z' = u~l{c)/U{l) 

over the quaternionic Kahler manifold v~l(c)/G with fibres IP1. This fibration 

is contained in diagram (0.4). One can then check that Z' is the twistor space 

of i/"1(c)/G. However, if the obstructions dcj) do not vanish, then G does not 

act on the level sets of the Kahler moment map nx] hence, no such fibering of 

Z'x by rational curves exists, and Z'^. is not the twistor space of a quaternionic 

Kahler manifold. 

Let T^1,0) denote the sheaf of germs of holomorphic vector fields of type (1, 0) 

on Z,   Since the vector Ya defined in (3.2) are infinitesimal automorphisms 
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of the complex structure 3 on Z, the vector fields Za — (Ya — i3Ya)/2 are 

holomorphic. Consider the sheaf 0(2) on P1, it has 3 linearly independent 

sections which we can take to be 

(3.5) Q1 = 2C1C2,      Q2 = (C2)2 - (C1)2,      Qs = <((C1)a + (Oa)- 

Then the twisted complex symplectic form K, along the fibres of p is given by 

(3.6) K = Q-uj = Y^Qaua, 

and we can define a twisted holomorphic vector field on Z; that is, a section 

of T*1'0* (2), by 

(3.7) y = Q'Z = Y,QaZa' 

Thus, 4> = *J^ defines a holomorphic section of A(1,0)(4). But, since K is a 

holomorphic (2,0) form along the fibres of p, and since the sections Q in (3.5) 

lie on the quadric cone Q2 = 0, we have 

4> = Q - Z\ti = Q • X\K = Q • X\UJ •Q = Q-d<f>-Q. 

This implies the main result of this section: 

Theorem 3.2. The Kdhler manifold Z'x = /i~1(c)/[/(l)a; is the twistor space 

of a quaternionic Kdhler manifold with positive scalar curvature if and only if 

0etfoO2,A(1'o)(4)) 

vanishes. 

4. EXAMPLES 

In this section we give explicit examples of quaternionic Kahler reductions 

to show the scope of the theory analyzed in Section 1. 

EXAMPLE 4.1. QUATERNIONIC PROJECTIVE SPACE. 

The model example of the Sp(l) quotient is that of the n-dimensional 

quaternionic vector space EIn. Let u G Hn and let u* be its quaternionic 

conjugate. We define the flat metric g = Re{du* ® du] and the hyperkahler 

structure uo = ^Im{du* ® du} = ]Ca=1tt;aea, where {ea}a=it2,3 = {hj,k} is 
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the standard basis for the unit quaternions. If we introduce real coordinates 

u = f + xaea then 

(4.1) ua = ]£ LT* A dx^ - ^eahcdxb
a A dx^ . 

First, let us consider the action of Sp(l) on EIn by the scalar multiplication 

from the right, 

(4.2) Wl3u^u(j     for     a G' Sp(l). 

This is an isometric action rotating the quaternionic structure as in (1.3); 

that is, u) A GOJG. The action is free on W1 \ {0}. Locally, it is generated by 

X = Xaea = Jiafu*1-^—) where 7^ = -^z;H-ea7rzr. In real coordinates we have 
cm au     or        axa 

With this choice of normalization [Xa,X6] = 2eabcXc. A direct calculation 

shows that u = ^u, </) = 0, and rj = Im^du). Clearly, rjb(Xa) = 2v8ab. 

In this case M' = ^"^^/^^(l) ~ HP71-1 and the quotient metric is the 

standard one. The S'p(l) action extends to a homothetic H* action and M' = 

v-l{c)/Sp{l) cz W1 \ {0}/H* where W1 \ {0} is the Z/2 lift of the associated 

quaternionic bundle over HP72-1 in the sense of Swann [Swl, Sw2]. 

One can take any (7(1) C 5p(l) and projectivize EIn \ {0} - C2n \ {0} with 

respect to this particular U{\). Such projectivization gives the twistor space Z 

of HP72-1 which, in our case, is CP271-1. Z carries its Fubini-Study metric. It 

is Kahler-Einstein and CP271-1 can be viewed as the Kahler-Einstein quotient 

of the hyperkahler manifold Hn \ {0}. We have the following diagram: 

(4.4) 
M = H" \ {0} = U(M') 

/ \ 

2;(M') = CP: i2n-l 
H* «S(M') = 54ri-1 = i/-1(c). 

\ / 
M' = HP"-1 
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The level sets of the momentum map v are (4n — l)-dimensional spheres with 

the standard symmetric Einstein metric. They are model examples of a 3- 

Sasakian manifold, with a 3-Sasakian structure defined by the vector fields 

(4.3) [Sasl]. The (4n — 1)-dimensional sphere fibers over HP72"1 and the pro- 

jection map is the 3-Sasakian submersion. In this case it is just the quater- 

nionic Hopf fibration. But SAn~l fibers also over the complex projective space 

Qp2n-i ^ a cjrcie bundle. This is the standard Hopf fibration. The complex 

projective space CP272-1 is the twistor space of HP71-1 with fiber CP1. We have 

the following diagram of fibrations: 

0472-1 S  ) (p]p2n-l 

(4.5) / 

m—1 

It is well-known that there exist a second Sp(n + l)-invariant homogeneous 

Einstein metric on SAn~l which is not isometric to the standard round sphere 

metric [Bes]. For n ^ 4 there are no other homogeneous Einstein metrics on 
oAn-l 

Next, we will present two examples of hyperkahler manifolds with 50(3) 

action by isometrics rotating the hyperkahler structure and with non-vanishing 

obstruction (j). 

EXAMPLE 4.2. FLAT QUATERNIONIC VECTOR SPACE REVISITED. 

Let M = HIn with the same flat metric and the hyperkahler structure as 

before but now consider the adjoint action of Sp(l) on M; that is, 

(4.6) W 3 u A aua     for     a e Sp(l). 

Here Z/2 acts trivially so we get an 50(3) action on M. It is an isometry 

rotating the quaternionic structure just as in Example 1. The action is not 

locally free but let us restrict our attention to the subset of M where the 

action of 50(3) is free defined as a union of the orbits with trivial isotropy 

group.  This is an open dense set in Hn (for n > 1) and it is a hyperkahler 
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manifold. Choose the basis for the £0(3) such that Xa = \{—eau + uea). A 

simple calculation shows that 

v=l\\imm\\2=li:Ky, 

Za=l 

Va = -J2Kdra + leabcxbdxc). 

As cf) is not constant on ^"H0) ^he quotient Mf — u~1(c)/S0(3) is not a 

quaternionic Kahler manifold. 

Notice that we can mix the two actions on the different coordinates of HP1. 

Any such Sp(l) action would rotate the quairrhionic structure as in (1.3) but 

cf) would not be constant on z/"1^). 

EXAMPLE 4.3. THE GENERALIZED TAUB-NUT METRIC. 

Let M be the 4n-dimensional analogue of the Taub-NUT hyperkahler met- 

ric. Again, we will introduce M as a hyperkahler quotient of the flat space 

HIn+1. There is a free R action on Mn+1 by hyperkahler isometries 

(4.7) Hn+1 3 (w, w) A (e**!?, w + t)     for     te R. 

The moment map /x : Hn+1 —> R is given by 

(4.8) ii(u, w) = iTHu + 2Im(w). 

The zero-level set /^(O) C Mn+1 is a submanifold and the quotient M = 

/i~1(0)/R carries a natural hyperkahler structure. The isometry group of M 

is U(n) x Sp(l), where U(n) acts preserving the hyperkahler structure and 

Sp(l) by rotating it. The ^(l) action can be described explicitly as 

(4.9) M 3 [u, w] A [ua,awa]     for     a G 5p(l), 

where [u, ty] is the "homogeneous" coordinate on M. Notice that Z/2 subgroup 

acts trivially. Example 4.2 shows that this action hats a nontrivial obstruction 
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Many examples of hyperkahler manifolds with 50(3) action rotating the 

hyperkahler structure and with vanishing obstruction (f> can be obtained from 

flat space with the right action described in Example 4.1. This is an ob- 

servation due to Swann [Swl] which makes use of the hyperkahler reduction 

procedure of [HKLR]. 

Let M be a hyperkahler manifold satisfying the hypothesis of the Theorem 

1.4. Let H be a compact Lie group of hyperkahler isometrics of M and such 

that H commutes with the Sp(l) (or 50(3)) action. Suppose H defines an 

equivariant momentum mapping /i : M —> ()* (8> M3 such that 0 G fj* ® M3 is 

its regular value. If H acts freely on /x-1^) C M then the quotient M = 

H~l($)/H is again a hyperkahler manifold. It is the hyperkahler reduction 

of M by H. Suppose that the moment map /x is chosen in such a way that 

/^(O) is an 50(3) (or 5p(l)) invariant submanifold in M. This can always 

be done, for example, when if^MjR) = 0 and H is Abelian. In this case /x 

can be written as 

(4.10) </i(m),C>=»7(C*),    Cef), meM, 

where 77 is the sp(l)-valued one-form defined in (1.2) and £* is the vector field 

for the if-action associated to £. Also, H projects to a quaternionic isometry 

of the quaternionic Kahler base M'. One can see that the reduced space M 

satisfies the hypothesis of the Theorem 1.4 and we have the commutative dia- 

gram (0.5). The commutativity follows from a theorem of Swann [Swl, Sw2]. 

He observed that the quaternionic Kahler quotient of Galicki and Lawson [GL] 

is simply the hyperkahler quotient of Hitchin et. al. [HKLR] in the associated 

quaternionic bundle U(Mf) with respect to the zero level set. But our M is 

locally homothetic to the associated quaternionic bundle ZY(M'). 

Let us further remark that the diagram (0.5) can be used to define a reduc- 

tion of fibered Riemannian 3-Sasakian spaces by certain group of isometrics. 

This reduction is an analogue of the hyperkahler reduction. 

EXAMPLE 4.4. WOLF SPACES AND NILPOTENT ADJOINT ORBITS. 

Let M be the highest weight nilpotent orbit C?n+i of SL(n + 1, C) acting by 

the adjoint action on its Lie algebra of traceless endomorphisms of Cn. There 
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is a very simple model of On+i as a hyperkahler quotient of the flat space 

jgn+i \ ^o}. Consider the hyperkahler U(l) action on E[n+1 \ {0} defined as 

(4.11) Hn+1 \ {0} 5 u £ ^u     for     t G [0,2ir). 

Such an action is free and gives the hyperkahler moment map fi : M —> R3 ~ 

sp(l)* defined by 

(4.12) /x(iZ) = ir*m. 

Now, ^~1(0) C Mn+1 \ {0} is a f7(l)-invariant open submanifold and the quo- 

tient On+i = fi~1(0)/U(l) can be easily seen to be diffeomorphic to the highest 

weight nilpotent adjoint orbit of SL(n+ 1,C). In fact, the quotient metric is 

hyperkahler, although it is incomplete. On+i admits an 50(3) action rotating 

the hyperkahler structure. One can write this action as 

(4.13) On+1 3 [u] A [ua]     for     a G Sp(l), 

where [u] is a "homogeneous coordinate" on On+i. Now 50(3) extends to a 

homothetic action by E[*/(Z/2) and the obstruction (j) vanishes. The quotient 

is a smooth compact quaternionic Kahler manifold of positive scalar curvature; 

more precisely, the complex symmetric Wolf space 

(4-14) 
M' = z/-1(C)/50(3) ~ On+1/(W/Z/2) 

Furthermore, one can fix any U(l) C Sp(l) and take the Kahler quotient by 

that U(l). This gives the twistor space 

(4.18) zm = F1Ml = U{n_$$)xm 

of X(n — 1) with its homogeneous Kahler-Einstein metric. Again, the compact 

complex flag jFi^n+i can be viewed as the Kahler-Einstein quotient of the 

incomplete hyperkahler metric on On+i. The 3-Sasakian manifold fibering 

over both G2,n+i(C)) and Fi?2,n+i is the homogeneous Einstein space 

U{n + 1) 
(4.16) StM') 

U{n-l) x U{1). 
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This particular example can be understood in terms of the £7(1) reduction 

of the diagram (0.5) for the flat space: 

(4.17) 

H" ♦■\{o>                 "S a+i 
/ \                  / 

1 
\ 

i 

£471+3 H-               CP2"+1     f*    Z HV(Z/2)                  S. 

\ 
^ 

/                                    \ / 

HFn C/(l) 
X{n-\) 

The 3-Sasakian manifold S — S{X{n — 1)) is a compact homogeneous Einstein 

manifold of positive scalar curvature. It is a hypersurface in the nilpotent 

orbit On+i. One can also think of S as a 3-Sasakian reduction of the (4n + 3)- 

dimensional sphere by a circle action. 

Using the S'p(l) reduction of lHIn+4 \ {0} one can construct similar diagram 

of fibrations over the Grassmannian (^^(R). 

W(Gn,4(R)) 
/ \ 

(4.18) 5Q(n+4) 
50(n)x<S'0(3)xt/(l) 

\ 

M* /(Z/2) 
50(n+4) 

50(n)x50(3)* 

Gn, 
/ 

In general, any compact homogeneous symmetric Wolf space M can be 

written as M = K/N(Sp(l)) = K/L-Sp(l) [Wo], where K is a compact 

semisimple Lie group and N(Sp(l)) is the normalizer of 5^(1) in K. We get 

the following fibrations 

U(M) 
/ \ 

(4.19) KIL'U{\) 

\ 

HV(Z/2) JFT/L , 

M = K/L-Sp(l) 

where U{M) is highest weight nilpotent adjoint orbit of Kc [Swl, Sw2]. 
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The fibrations 

K/L -^       K/L-U(l) 

(4.20) RP-* 

K/L.Sp(l) 

are well-known [Bes]. In fact, K/L is known to admit two different Einstein 

metrics, one of which is given by our construction. The diagram (4.21) is an 

example of the fibrations described in (0.4). When K is an exceptional Lie 

group, £2, i7^, Ee, E7, or i£8, and under some additional restrictions on the 

geometry of the quotient, diagram (4.20) cannot be obtained as a reduction 

of the flat space example 4.4 [Swl]. 

The example above is of particular interest as it relates to the geometry 

of nilpotent variety. It was recently shown by Kronheimer [Kr3] that for any 

compact, connected, semisimple Lie group if, a nilpotent adjoint orbit of its 

complexification Kc has a natural hyperkahler structure. Furthermore, such 

orbits admit a homothetic W action and the quotient of any orbit by that 

action O/W is a quaternionic Kahler manifold [Swl]. The complex projec- 

tivization of the orbit O is the twistor space of O/H*. O has a hyperkahler 

potential function v. It follows from our theory that 

Proposition 4.1. The level sets of the hyperkahler potential function u in O 

are 3-Sasakian manifolds. In particular the metric induced on ^~1(c) from the 

hyperkahler metric on O is Einstein and has positive scalar curvature. 

Besides the (4n—l)-dimensional sphere, the only known complete 3-Sasakian 

manifolds obtained this way can be realized as hypersurfaces in the highest 

weight nilpotent orbit of Kc, where K is the group of a isometries of compact 

symmetric Wolf space. They are MP3 bundles over Wolf spaces and are ho- 

mogeneous. We do not know if there are any compact examples coming from 

other nilpotent orbits. 
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EXAMPLE 4.5. COMPLEX WEIGHTED PROJECTIVE SPACES. 

Let M = H3 \ {0}. Consider the following circle action on M: 

(4.21) H3 \ {0} 3 (uu u2,u3) & (TpuUTqu2,T
S
U3), 

where r 6 S1 and (p, g, 5) are pairwise coprime positive integers. The action 

above is hyperkahler and descends to a quaternionic Kahler action on the 

projective space HP2. Let us describe the hyperkahler quotient of H3 \ {0} by 

this action. The momentum map /x is 

(4.22) n(ui,U2,Us) = puiiui + qu2iu2 + susius EM® 5p(l). 

The circle action is free on /^(O). The quotient Mp,g)S = /^(O)/,?1 is an 

8-dimensional hyperkahler manifold. It is the associated bundle of the quater- 

nionic reduction of HP2 by the circle action above. The quaternionic Kahler 

reduction of HP2 is obtained as follows. The hyperkahler momentum map /i 

of (4.23) descends to the quaternionic Kahler map 

(4.23) AQ^ij ^2? ^3]) = puiiui + qu2iu2 + susius G R ® Q. 

It follows from the work of Galicki and Lawson [GL] that the quotient 

[1.11) li    W/b   -|CP2 if(p + g + S)isodd. 
V 2     '     2     »     2 

This is a self-dual and Einstein 4-orbifold with positive scalar curvature and 

with the singular locus consisting of three isolated orbifold points except when 

p = q = 1. The hyperkahler quotient Mp,q,s = U{CPl+qiP+ss+q) (p+q+s even) 

is just the associated quaternionic bundle (at least away from the orbifold 

singularities). 

Let us consider the level sets of the hyperkahler potential function z> on the 

manifold Mp,g,5 = U(CFp+qp_{_ss+q). We denote by [^1,112,^3] the coordinates 

on Mp>g,s. Then the hyperkahler potential function z> is given by 

(4.25) £([^1,^2,^3]) = (wi^i + U2U2 + usus)- 

A level set of z> 

(4.26) 

SP,q,, = S{CFl+qtP+StS+q) = {[«i,«2,ti3] € MP,q,s I »>([«i, Ma,us}) = c} 
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is a smooth compact 7-manifold. It is 3-Sasakian and therefore Einstein. But 

it is not a fibered Riemannian space. It admits an S^l) action which is locally 

free but not free and the quotient 

(4-27) SMJSp{l) = CFl+q^s+q 

is a Riemannian orbifold. The projection map 

is a singular orbifold fibration. We have the following diagram 

/ \ 
(4.28)     Z(CFl+q^s+q) — 5(CF^,p+SjS+g). 

\ 
1)2 
■ p-{-q,p+s,s+q 

One can view the manifold SP}q,s as a quotient of Np^iS = /x~1(0) PIS'11 C S*11 C 

H3 \ {0} by the free circle action (4.22). The manifolds NPiqiS are smooth and 

compact. For all different values of (p, q, s) Np^q^ is homeomorphic to SU(3). 

Finally, one can think of Sp^^s as a smooth surface of real codimension 3 in 

the weighted complex projective space CPppg(LS)S. The 3-Sasakian manifold 

Sp,q,s is compact and simply connected. It cannot have constant curvature as 

it would have to be isometric to the standard 7-sphere. It follows now from 

the work of Tanno [Tal] that 

(4.29) dimIsom(Sp,Q,s) - dim Aut(SP)q,s) = 2, 

where Aut(Sp,qiS) is the automorphism group of any Sasakian structure of 

Sp,q,s. Moreover, the Lie algebra of the Killing vector fields on SPiq,s splits as 

i{Sp,q,s) = sp(l)©f), where 5p(l) is the Lie algebra of the vector fields generated 

by the Sp(l) action. This implies that Sp,qiS cannot be homogeneous unless 

p — q = s = 1. We have 

PROPOSITION 4.2. The simply connected 3-Sasakian manifold Sp,q,s carries an 

Einstein metrics of positive scalar curvature. Si^^ = SU(3)/U{1) with a 

homogenous metric. However, Sp,q,s is non-homogeneous for all other values 

of{p,q,s). 
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The existence of a second non-isometric Einstein metric on 5pj9jS follows 

from Theorem 2.5. The self-dual Einstein metric on CPp+9)P_f.S)S+g is a gen- 

eralization of the standard self-dual positive scalar curvature Einstein met- 

ric on CP2. In view of the classification of self-dual Einstein 4-manifolds 

by Hitchin [H], any such generalization would involve singularities. In our 

case CPp+^p+S)S+9 has just three isolated orbifold points. In the same spirit 

5(CP2
+gj)+S)5+g) generalizes the 3-Sasakian structure on SU(3)/U(1) which 

is an RP3 bundle over CP2. But now 5(CP2
+^p+5)S+g) is a smooth manifold 

rather than an orbifold. Note that in the case when (p+q + s) is odd the mani- 

fold Sp^iS has a locally free SO(3) action (Z/2 subgroup of Sp(l) acts trivially). 

The quotient map Sp^iS/SO(3) gives CP2
+(7 q+3 p+s. When p = q = s = lwe 
2     '     2     »     2 

recover our standard example of 50(3) bundle over CP2. 

Wang showed that, if one considers N = SU(3) and 

rw = diag(rfe,r',r-(^) 

as its circle subgroup, where r is the parameter on the circle and (fc, Z) = 

1, then the quotient manifold Mfcj/ = N/T^i admits an S,C/(3)-homogeneous 

Einstein metric for all such k and /. Moreover, as if4(Mfcj/,Z) is the cyclic 

group of order \k2 + I2 + kl\, there are infinitely many homotopy types among 

the Mkj [Wan2]. We would like to point out that our 7-manifold SpiqiS is 

homeomorphic to a quotient of SU(3) by a different free circle action. This 

action can be described as follows: Let A = diag(rp,T9,rs), $ E 317(3) ~ 

Np^s, and B = diag(l, 1,T-
(P+9+S)

). Then Sp^s is the quotient of SU(3) by 

the free action 

$ A A<f>B. 

This circle action is not a subgroup of SU{3). Our metrics, however, can be 

computed explicitly. They are non-homogeneous unless p = q = s = 1, in 

which case M1A - 5i,ifi = <S(CP2) = SU(3)/U(l). 

This example readily generalizes to higher dimension. A detailed study 

of the homotopy types and the diffeomorphism types within a fixed homo- 

topy type as well as the geometry of these and other examples is currently in 

progress [BGM]. 
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EXAMPLE 4.6. OTHER 4-DIMENSIONAL ORBIFOLDS. 

Recently all the Asymptotically Locally Euclidean (ALE) hyperkahler grav- 

itational instantons were obtained as hyperkahler quotients [Krl, Kr2]. For 

any discrete subgroup F C Sp(l) consider the flat quaternionic vector space 

E[|r|. There is a unique subgroup G(|r|) of the unitary group U(\T\)/U(1) 

together with a group homomorphism A : G(|r|) —>• 5p(|r|), defining a hy- 

perkahler action on H'1"' by 

(4.30) H|r| 3 u A A(g)u     for     g G G(|r|). 

The hyperkahler quotient of H^l by this action gives all the hyperkahler ALE 

spaces. Choose any homomorphism b : G(|r|) —► Sp(l). We can define an 

action of G(|r|) on Hlrl+1 \ {0} by 

(4.31) Hlrl+1 \ {0} 3 (iT, w) A (A(g)u, b(g)w)    for    g G G(|r|). 

Under certain assumptions on the homomorphism b [GN], the hyperkahler 

quotient of 3Hllrl+1 \ {0} by the action above with respect to the zero-level set 

is an 8-dimensional hyperkahler manifold with an 50(3) action rotating the 

hyperkahler structure and satisfying the condition of Theorem 1.4. It is the 

associated bundle of the positive scalar curvature self-dual Einstein orbifolds 

(9(r, b) constructed in [GN]. Just as in the previous example, the level sets of 

the hyperkahler potential function on ZY(0(r, b)) are, in fact, compact smooth 

3-Sasakian manifolds. Hence, for any F and an appropriate, choice of b we 

can construct a compact Einstein 7-manifold <S((9(r, b)). Let us illustrate this 

construction with a simple case. 

When F = Z/3 then G(r) = U(l) x U(l). If g = (e^e**) G U(l) x 17(1) we 

have 

(4.32) A(g) 

Then Kronheimer's construction gives the following action of U(l) x U(l) on 

H3: 

g-(u1,U2,u3) = (eiau1,e
iit-s)U2,e-itus), 

■eis 0 0 \ 
0 ei(t-a) 0 I e Sp(3). 
0 0 e-V 
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and the hyperkahler momentum maps is 

(4.33) Mm, U2, u3) = M
Ui ' -2iU2) e M2 ® sp(l). 

Now 

(4.34) /X-MIWI) x ^(1) = M(Z/3,0, 

where ^ G M2 (8)Sp(l) is chosen in such a way that the G(T) action on the level 

set of the moment map is free, is the two-center multi-Eguchi-Hanson metric. 

It is easy to see that it is enough to assume that £i =^ —£2- Now we consider 

a homomorphism b : U(l) x (7(1) —> Sp(l) 

(4.35) b(eis, eift) = eiaa+i6* G 5p(l),     a, 6 G Z. 

so that the action of U(l) x C/(l) extends to HP3 3 [^oj^ij^^s] &s 

(4.36) »• [1X0,^1^2, tia] = [e^+^ucc^ui,^-^^^-*^] 

and the quaternionic Kahler moment map is 

,     _ _„ n      fu^ui - U2iu2 + au0iuo\ 

Consider the iSp(l)-invariant zero section ^~
1
(Q) in HP3. For any a, b G Z\{0}, 

a ^ -6 the action of t/(l) x U(l) is locally free on /x"1^) G HP3. Hence 

(4.38) ©(Za; a, 6) - /i"1 T j /C/(l) x t/(l) 

is a compact 4-dimensional orbifold with self-dual Einstein metric and positive 

scalar curvature. 

Let us examine the lift of the above quotient to the associated bundle of 

HP3. There we have the hyperkahler momentum map 

(4.39) M(«o, ui, 1*2, us) = (-^ " -^ ! f0^0) € R2 ® Sp(l) v      /        ^V y      \U2iU2 - u3iu3 + buoiuoJ rv y 

It is easy to see that the action of (7(1) x 17(1) is, in fact, free on M~1(o) ^ 

H4 \ {0} provided a ^ -b, a, b G Z\ {0}. It is, therefore, free on 7V(Z/3; a, 6) = 
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M"1© n ^"'(c) C H4 \ {0}, where 

(4.40) u(uo,Ui)U2,u3) = (u0u0 + u1u1 +U2U2 + u3u3). 

The manifold N(Z/3] a, b) is a compact surface in H4 \ {0} of real codimension 

7. The quotient of 7V(Z/3; a, 6) by [/(I) x U(l) is a compact 7-manifold for any 

nonzero integers a and 6 where a ^ —b and it carries a 3-Sasakian structure. 

By construction 

(4.41) Ar(Z/3; a, b)/U(l) x [/(I) = «S(0(Z/3; a, 6)) 

and 

(4.42) S(<9(Z/3; a, 6))/50(3) = 0(Z/3; a, 6). 

Let us remark that in the case of F = Z/fc, the group G(T) = Tk~1. Any 

homomorphism b : T^-1 —> Sp(l) can be written as 

(4.43) T1*-1 3 (e2^*1,...^2^**-1) ^ e2™(a1t1+...+afc_1tfc_1) G ^j^ 

where (ai,... ,0^-1) G Zfc_1. In this case, using our construction, we obtain 

the 3-Sasakian 7-manifold 

Sau...,ak.1 = S(0(Z/k] ai,..., aik-i)) 

involving /c — 1 integers (ai,..., afc-i) such that l^fe==:1 ai / 0 for all 1 < Z < 

fc-1. 

EXAMPLE 4.7. THE MODULI SPACE OF INSTANTONS. 

The moduli spaces of instantons (self-dual connections with respect to a 

conformal class of metrics) associated to principal G bundles over Rieman- 

nian four-manifolds give another class of examples of hyperkahler manifolds 

with quaternionic Kahler reductions. It had been observed by Donaldson, 

Hitchin, Taubes, and others that the self duality equations on S4 have the 

interpretation of an infinite dimensional hyperkahler moment map with re- 

spect to the action of the based gauge group on the infinite dimensional affine 

space of G connections. Hence, the hyperkahler quotient procedure of [HKLR] 

gives the moduli space, which we denote by Mk{G) the structure of a hy- 

perkahler manifold.   Hitchin also observed that the quadratic constraints of 
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the well-known ADHM construction [ADHM] can be interpreted as the zero 

set of a hyperkahler moment map with respect to the natural 0(k) action 

that occurs there. Furthermore, it has now been proven by Kronheimer and 

Nakajima [KrNa] and by Maciocia [M] that these two methods give equivalent 

hyperkahler structures on Mk(G). 

A detailed study of the hyperkahler geometry on .Mfc(G), obtained by hy- 

perkahler reduction from the ADHM construction is given in [BoMal]. There 

it is shown that the hyperkahler geometry of the ADHM construction is a 

special case of a more general theory that is relevant to the discussion in Sec- 

tion 1. Let g denote a real orthogonal symmetric Lie algebra. The tensor 

product over the reals Q ® H has a natural algebraic structure determined by 

the Lie algebra on g and the quaternionic algebra structure of HL In [BoMal] 

this algebraic structure is called the quaternionic adjoint map. If p denotes 

the plus one eigenspace in the symmetric space decomposition of g, then the 

diagonal restriction of the quaternionic adjoint map is a hyperkahler moment 

map on p (g) HI with respect to the adjoint action of the Lie group K generated 

by the minus one eigenspace of g. The ADHM construction is associated to 

the K module p(lH) obtained as the direct sum of the plus one eigenspaces of 

the symmetric Lie algebras £)/(&, M) and n copies of o(&, 1) tensored with EL 

For example, we have 

Proposition 4.3 ([BoMal, 4.5.3]). Mk has a projectivization FMk> More- 

over, for k > 1, there is a principal fibration H* —> Mk —> FMk such that the 

quotient manifold FA4k is a quaternionic Kdhler manifold. 

This proposition implies that Mk is an example of an associated hyperkahler 

bundle to the quaternionic Kahler manifold PA'U. Moreover, the obstructions 

of Section 1 vanish, and the whole diagram (0.3) applies. While the original 

motivation in [BoMal] was to study the topology of Mk, the techniques and 

results in the first half of that paper are closely related to some of the ideas 

and constructions in this paper. Hence, the reader is referred to the first half 

of [BoMal] to see further connections between instantons and the results of 

this paper. 
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