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INTRODUCTION 

It is a well known fact, due to Federer and Fleming[F-F], that if iV is a 

smooth, compact (n + l)-dimensional manifold, then for any nontrivial integer 

homology class a G ij^iV, Z), k < n, there is a A;-dimensional integer multi- 

plicity rectifiable current T, of least area representing a. One can think of T 

as a (possibly singular) surface with multiplicity and orientation. Of course 

T may have singularities for topological, or other reasons. There are however 

partial regularity results. Frederick Almgren [AF] has shown that in general, 

the singular set has Haussdorff dimension at most k — 2, and Sheldon Chang 

[CS] further showed that if k = 2 the singularities are isolated branch points. 

In codimension 1 (k = n) it follows from the work of various people, including 

Federer, DeGiorgi, and Simons that sing(T') is empty for n < 7 (see chapter 

7 of [SL1], or chapter 3 of [FH1] for an exposition of this result), and Fed- 

erer [FH2] proved that if n > 7 then the singular set has dimension at most 

n — 7, and is disctrete in case n = 7 . It should be noted that in the codimen- 

sion 1 case, there is no topological obstruction for the existence of a smooth 

minimizer in a given homology class; that is, given a G Hn(N,Z) there is a 

smooth, oriented hypersurface M (with multiplicity) homologous to a. There 

are no known examples of singular homologically minimizing hypersurfaces, 

however one would certainly expect them to exist, since hypercurrents that 

minimize area with fixed boundary certainly can be singular (e.g. minimizing 

cones). The question that we are interested in here is whether for generic 

metrics on AT, the minimizing current T homologous to a is smooth. We state 
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the following conjecture 

CONJECTURE 0.1. Given a smooth, compact (n + 1) dimensional manifold TV 

with nonzero n dimensional integral homology group, and given a € Hn{N, Z), 

a 7^ 0, there exists an open, dense set F, in the space of C3 metrics, such that 

for g G J7, there is a smooth area minimizing (relative to g) hypersurface M, 

homologous to a. 

The purpose of this paper is to prove this in the lowest dimension where 

singularities may occur, n = 7. The reason the proof works in dimension 7, is 

essentially that the structure of the singular set in this case is well understood, 

that is singularities are isolated and each singularity has a unique, regular 

tangent cone, to which M converges to in fairly strong way [SL2]. We also use 

in a crucial way, a result of Hardt and Simon [H-S] which states that if T is a 

locally area minimizing hypercurrent with p E spt(T) and sing(T) D Bp(p) = 

{p} where Bp(p) is the geodesic ball in TV of radius p, and T has a regular 

tangent cone at p, then any minimizing hypercurrent in Bp(p) whose support 

is on one side of spt(T) (in particular, if dT lies on one side), with boundary 

close to dT fl Bp(p), must be smooth. In fact, it follows from [H-S] that for 

generic boundaries in M8, there is a smooth area minimizing hypersurface 

with given boundary. One can of course form the analogous conjecture for 

minimizing hypercurrents with given boundary. In higher dimensions, very 

little is known. Rafe Mazzeo and the author [M-S], have some results in this 

direction, showing that certain kinds of higher dimensional singularities can 

be perturbed away, by a large family of boundary perturbations. 

The idea of the proof is fairly simple. The openness condition is fairly 

straightforward, and follows from standard geometric measure theory, includ- 

ing the Allard regularity theorem, so most of the proof is devoted to showing 

that for a given metric go on JV and minimizer T homologous to a; € H7(N, Z), 

there are nearby metrics such that the corresponding minimizer is smooth. The 

idea is to conformally perturb the metric so that the minimizer is pulled off 

to one side of T, and then use the results of [H-S]. 

The author would like to thank Rick Schoen, Leon Simon and Brian White 

for their interest and useful conversations on this problem.  In fact, the au- 
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thor had previously perturbed away the singularities with more complicated 

metrics, when Brian White pointed out to him that it could probably be done 

more simply with a conformal perturbation. 

1. ONE SIDED PERTURBATIONS OF THE METRIC 

Let N be a smooth, compact, (n + l)-dimensional manifold with nontrivial 

Hn(N,Z). For k = 3,4,..., let Mk denote the class of Ck metrics on N, 

endowed with the Ck topology, and let || ||fc be a norm defining the topology, 

(any other such norm of course being equivalent, as TV is compact). For 

a G Hn(N,Z), a ^ 0, we define the subclass J7* C Mkj to be the set of 

metrics such that ^ G J^ if and only if there is a smooth area minimizing 

(relative to g) n-dimensional, integer multiplicity current T homologous to a. 

We also define the subclass £k C J7*, to be the set of metrics in Mk that satisfy 

g ■ 6 £k if and only if there is a unique area minimizing, integer multiplicity 

current T homologous to a, and T is smooth. Finally, set ^ = Cl/seH^ ^p] 

that is, the set of Ck metrics such that every n-dimensional homology class 

admits a smooth, area minimizing representative. Of course, as mentioned 

above, any nontrivial homology class admits some area minimizing current as 

representative, by [F-F]. We will say that a subfamily Q C Mk is generic if 

it contains an open, dense set of A4k. Our main result then, is 

Theorem 1.1. For n = 7, J7^ is generic in Mk. 

A subfamily Q C .M^ will be called generic in the Baire sense if it is the 

countable intersection of generic subfamilies. A corollary of the theorem is 

then 

Corollary 1.2. For n = 7, J7* is generic in the Baire sense in Mk. 

This is clear, since Hn(N,Z) is finitely generated. The main ingredient in 

the proof of the Theorem is 

Main Lemma. For n = 7, £k is dense in M.k. 

Assuming the main lemma for a moment, we can prove the Theorem as fol- 

lows. If go G £%) with corresponding unique, smooth minimizer To homologous 

to a, we claim that there is a e = e(go) > 0 such that if \\g — go\\ < £, then 
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g £ T^. If not, then there is a sequence g$ € Mt* with g^ -* go, with area mini- 

mizing currents Tj (relative to gk), and sing(rj) nonempty. But, since gj —> go, 

clearly Mass(T:;) is bounded independent of ji, and so by compactness of inte- 

ger multiplicity currents [F-F], and the fact that homology classes are weakly 

closed, there must be a subsequence, still denoted by {Tj}, and an integer 

multiplicity current T homologous to a, such that Tj —> T, in the sense of cur- 

rents. By lower semi-continuity of mass, we have mass(T) < mass(To), and so 

T = To, since To is the unique homological minimizer. But since To is smooth, 

it follows from Allards regularity theorem [AW], that if x G spt(T) then there is 

a neighborhood U of x in N such that for all sufficiently large j, Unspt(Tj), is 

smooth, contradicting the assumption that smg(Tj) was nonempty, and prov- 

ing the claim. But then if we set Q = \Jge£k Be(g)(g), where Ba(h) is the ball of 

radius a centered at h in Mk, it follows that Q C J7* is a dense, open family 

in Mk. 

The proof of the Main Lemma is broken up into the following two density 

lemmas. 

Lemma 1.3. Given go € Mk, and minimizing hypercurrent TQ homologous to 

a, and given e > 0, there is a metric g E Mk such that \\g — go\\k < £, and To 

is the unique minimizing current (relative to g) homologous to a. 

Lemma 1.4. Let n = 7. Given go G Mk, with unique minimizing current To 

homologous to a, and given e > 0, there exists g G J7* with \\g — go\\k < £- 

The Main Lemma is a consequence of Lemmasl.3 and 1.4 as follows. Given 

go G A/ik and e > 0, use Lemma 1.3 to find gi G Mk, with \\gi — g^k < e/3, 

such that the corresponding minimizer Ti homologous to a is unique. Now 

apply Lemma 1.4, to find 72 G J7^ with \\g2 — gi\\k < e/3, and let T2 be a 

corresponding minimizer homologous to a which is smooth. Finally, apply 

Lemma 1.3 again, to find #3 G Aik with \\g3 — fl^lU < £/3, such that T2 is the 

unique minimizer homologous to a. Such a g3 is in £%, and ||^3 — golU < £, 

showing that £k is dense in Mk. 

Remark 1.1. Before proving Lemmas 1.3 and 1.4, we make some general re- 

marks on area minimizing currents. If T is a n dimensional integer multiplicity 
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current in (A/", 5), then T = (M, d/j,, ^), where M is a n-dimensional rectifiable 

set, d/i = OdTiM with Q(x) G Z the multiplicity, being H71 measurable, and 

dTV}^ denoting the n-dimensional Hausdorff measure on M. Also £ is a choice of 

orientation for the approximate tangent space of M (which is W1 measurable). 

In our case (codimension 1) it follows from the regularity theory mentioned in 

the introduction that M = \Ji=zl Mi, where Mi are the components of M , and 

Mi\Si is a smooth hypersurface where Si C Mi has Haussdorff dimension < 7, 

and is isolated if n = 7. Furthermore, 0(x) = Oi on Mi and with appropriate 

choice of £ we can assume that Oi > 0. Also, clearly the multiplicity 1 current 

(Mi,d7-^.,£) is homologically area minimizing (or else T wouldn't be). The 

mass of T is just the area of M (with multiplicity) 

M(T) = / 0{x)dHn{x) = Y^Oi [   dHn. 
JM i=1       JMi 

See either chapters 6 and 7 of [SL1] or [FH1] for a good reference on the theory 

of currents. 

Much of the proof does not require that n = 7, and so we will fix n = 7 

only where needed. 

Proof of Lemma 1.3. Let #0 € Mk and let To be an area minimizing current 

(relative to go) homologous to a G Hn{N^ Z), a ^ 0. Thus TQ is as in the 

remark, TQ = (M, d/i, £) with M = (J^Li M,-. For each M,-, j = 1,..., iV, we 

will perform a conformal perturbation of go in a neighborhood of a regular 

point. Basically, we will 'pinchW about Mj. Let pj € reg(M7), and let p > 0 

be small enough so that Bp(pj) fl Mj C reg(M) and so that we have well 

defined Fermi coordinates (r, x) in Bp(pj), where x = (xi,... ,xn) are normal 

coordinates on Mj centered at p^, and r is the signed distance from Mj (that 

is p is chosen small enough so that Mj divides Bp(pj) into two pieces and we 

have chosen one side to have r > 0). Let rj be a non negative bump function 

on M with the properties 

T}(x) = 1   for x € Bp/2{Pj) n Mj,   and 77(0:) = 0  for a; € Bp{pj)\B^p/A{pj). 

We will denote supp(77) by fi. Now let 0o • K —> K be a smooth function with 
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the properties 

supple [-3/4, 3/4] 

</>(r)>0,     for all re [-1,1] 

0(0) = 1,    and   </>(r) < 1   if r ^ 1. 

Finally, for some fixed t > k we let 0e(r) = ^^^(r/e), for all e > 0. Evidently, 

there is a So > 0 such that if e < So, the function (r, x) —> (f)£(r)r](x), where 

(r, x) are Fermi coordinates as above, is supported in Uj=i ^Sp/^iPj)^ and so 

we can define the following function on all of M 

ue = l- (f)£r}. 

We now defined our perturbed metrics to be g£ = u^ngo, for 6 < So, and we 

have the following 

Proposition 1.5. There is a ei > 0 such that for 0 < e < Si, TQ Z5 the unique 

area minimizer, relative to g£, and homologous to a. 

Proof This is intuitively obvious, since we have decreased the area of spt(To) 

strictly more than any competing hypersurface. The proof uses cutting and 

pasting arguments, and the definition of 0£, and is very similar to the proof 

of Lemma 1.4, so we will omit the precise details. Basically, if S is any hyper- 

surface in iV, then 

A£(5) = / (1 - &»7)<L4o 

where A£ is the n-dimensional Hausdorff measure relative to g£, and 0e is 

strictly maximized on M (where r = 0).    □ 

Proof of Lemma 1.4. Here we use a somewhat different conformal perturba- 

tion, one that will force the minimizer off to one side. Let go € .Mfc, such 

that there is a unique minimizing current TQ homologous to a £ Hn{N, Z) (in 

a later part of the argument we will require that n — 7). As in the proof of 

Lemma 1.3, let TQ = (M,d/x,£) where M - spt(ro) = U^M; and Mi are 

the connected components of M, and let Bp(pi) be pairewise disjoint, geodesic 

balls centered at regular points Pi of M^ with Fermi coordinates (r, x) so that 

£ points to the side of Mi with r > 0. Note that Mi with multiplicity one 

is the unique homological area minimizer in its homology class.  We also let 
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77 = r](x) be as in the proof of Lemma 1 and £1 = supp^). For p0 > 0 to 

be fixed later, we let ^o be a smooth function </>o : M —> M with the following 

properties 

</>o(-s) = —0o(s)    for 5 e M, 

00(5) > 0    for 5 > 0, 

00(5) = 8    for 0 < s < Po/4, 

Ms) = Po/2    for po/2 < s < 3po/4 

^o(s) = 0    for s > po- 

A crucial property of 0o, is that it is linear in a neighborhood of zero. We 

now fix po so small that (r, x) —> (j)o(r)r](x) is supported in |J^:1 Bp(pi). Also, 

fix some £ G (0,1), and define for £ G (0,1) the function </>£(r) = ^(^(r). We 

finally define the function u£ : M —> E by 

ue(y) = 1 - (pe{r)r](x)  for y G |J £p(p;), 
z=l 

^(y) = 1  for 2/^ |J.BpO;), 
i=l 

and we let g£ G Al^ be the metric ge = u2Jngo. We will finish the proof of the 

lemma by showing that for all sufficiently small e, there is a smooth minimizing 

current T (relative to ge), homologous to TQ. Suppose on the contrary, that 

there was a sequence Sj —> 0, and corresponding homologically area minimizing 

currents Te. relative to gej, and homologous to TQ, with sing(Tej.) 7^ 0. Clearly, 

M(Tej) < c for some constant c independent of e since g£ -* go in Ck, thus 

it follows from compactness of minimizing currents in a homology class (and 

the above convergence of metrics) that there is a subsequence, still denoted by 

T£j such that T£j —^ T, for some homologically minimizing current T relative 

to #o> homologous to TQ. Since TQ is the unique such current, we must have 

T — TQ. NOW T£j — (Pi,dpj,&) as in the remark above, Pj denoting the 

support of T£., dpi the n-dimensional Hausdorff measure (with multiplicity) 

on Pi and ^ an orientation on the approximate tangent spaces of P-7, and of 

course P-7 satisfying the regularity properties mentioned in the remark. We 

will use the result of Hardt and Simon to show that each Pi must be a regular 
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hypersurface for j sufficiently large, getting a contradiction. As in the above 

remark, each Pj decomposes into a union of sheets of multiplicity 1, each 

being homologically area minimizing. For each j, let Qj be such a sheet, with 

sing(Qj) ^ 0, and i/j G sing(Qj). By the area minimizing property, we must 

have Qj —> M in Hausdorff distance, and thus Qj —> Q in Hausdorff distance, 

where Q is one of the sheets of To, (that is, one of the Mi). By the Allard 

regularity theorem [AW], this convergence is smooth away from sing(Q), and 

thus (after taking a subsequence if necessary) yj —> yo for some yo G sing(Q). 

Let AT be a distance neighborhood of Q in N, such that M D J\f = Q, and so 

that Q divides Af into two disjoint, open pieces, jV"+, and A/l, where A/V and 

A/*_ correspond to r > 0 and r < 0 respectively. To finish the proof of the 

Lemma, we note that it suffices to prove the following proposition (we have 

simplified notation, setting (f)j = ^>ej) 

Proposition 1.6. For sufficiently large j, Qj has the following properties: 

A. QjnAf-=(b) 

B. QjnA^^0, 

C. Qjr\N+\supp((l)jr))^$. 

The proposition, together with Leon Simon's maximum principle[SL3] imply 

that QJ\supp(0J-77) C A/"+\supp(^77). Then, if j is large enough, Qj can be 

made as close as we want to Q in Hausdorff distance, and so it follows from 

Theorem 5.6 of [H-S] that Qj must be smooth (since ge = go on N\supp((j)jri)), 

thus finishing the proof of the Lemma. Of course property C implies B but 

the proof of C requires the result of B. 

Proof of the Proposition. Let E C Af be a union of open balls containing 

sing(Q), of sufficiently small radii such that E fl s\ipp(<pQr]) = 0. Then, since 

Qj —> Q smoothly, away from E, there exist C3 functions fj : Q\E —■> M, such 

that in Fermi coordinates Qj\E is given by {(r, x) : r — fj(x), x G Q\E}, and 

\fj\c3 —> 0 as j —> oo. To prove property A, note that 

Aej(Qj) = A0(Qj) - [  feridAo, 
jQj 
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where A£., and AQ denote the n-dimensional Hausdorff measure relative to g£j 

and go respectively. Also of course (f)£jr) < 0 on A/L. Now if A were false, then 

there would exist a nontrivial connected component Qj of Qj fl A/l, and we 

can assume that Qj has nonempty boundary dQj C Q (otherwise Qj C A/l- 

and so Qj would be smooth by the above remarks and [H-S]). Let Q be the 

subset of Q homologous to Qj with dQ = dQj, and let Qj = (Qj\Qj) U Q. 

Then, 

A£j(Qj) = Ao{Qj) - /   (freVdAo 

<AQ(Qj)- I   (i)£r)dA0 
JQj 

= A0{Qj) - [       fcrj- I fcridAo 
JQAQJ        

J
Q 

< Ao{Qj) - (t>eV-       (/>eVdAo 
JQjXQj JQj 

= A£j(Qjl 

where the first inequality holds because Ao(Q) < Ao(Qj), and the second 

because <f)£r] = 0 on Q (r = 0), and <f)£rj < 0 on Qj where r < 0. But then 

the multiplicity one current associated to Qj is also ge-homologically area 

minimizing. However, it is easy to see that Q must intersect Qj transversally 

along dQj, and thus Qj has a codimension 1 singularity, contradicting the fact 

that it is area minimizing, thus proving property A. 

Due to the result of A, it suffices in proving B to construct a n-dimensional 

rectifiable varifold Q^, whose associated current is homologous to Q, such that 

Qj PlA/V 7^ 0 and A£j(Qj) < Aej(Q). We will construct such a Q'j by cutting 

and pasting from Q inside supp(0o?7). Let s G (0,po/8), and let hs : Q —> R 

be a function with the following properties 

0 < hs(x) < 5, 

hs(x) = s,   for x e UPieQBPo/8(pi) 

hs(x) = 0  for x e Q\ UPiGQ BPo/4(pi), 

\Vhs\(x) < c for some c independent of s, and x £ Q. 

Now define the varifold Qs in Fermi coordinates about Q by Qs = {(h3(x),x) : 
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x e Q}. Clearly Qs C W+ for s small, Qs nAf+ 7^ 0 and the multiplicity one 

current associated to Qs is homomlogous to Q. Note that by the linearity 

property of 0o near 0, and the definition of QS1 we have 

C2S > /    </>o77 GL4O > cis, 
Jo. 

for some constants ci, and C2, and furthermore, by the first variation formula 

we must have 

Ao(Qs) = A0(Q) + 0(s2). 

Then it follows from the definition of (f)£ that 

A£j(Qs) = i4o(Qa) - e) I   for/dAo, 
JQS 

<A0(Q) + O(s2)-c1s
t

js, 

and therefore if we set s = Sj, we get 

Aei{Qej)<A0{Q) + c,{e2
i-et;1), 

< MQ), 

for £j sufficiently small, since t < 1.  As observed, this finishes the proof of 

statement B. 

To prove statement C, we need to show that Qj does not coincide with Q 

outside of supp(<^o??)- Suppose, on the contrary, that Qj\Cl = Q^. Then, 

it follows from properties A and B above, that the function fj defined at the 

beginning of the proof, whose graph is Q^, is compactly supported within fi, 

fj > 0 on Q and fj is not identically zero on f2. That is, Qj lies on the A/+ side 

of Q, and comes in tangentially to Q inside supp((f)ov)• Now, for a G (0,1), 

define fi^ = {x G Jl : dist(x,d£l) > a} and let T,jia. = {(x,fj(x)) : x G dQa}. 

From the above remark, there exists a (for each j), so that Sjj0. lies above 90^, 

and does not coincide with <9fia. Now, clearly Qj^ = {(x,fj(x) : x G fi\fi<j} 

is the g£j -area minimizing current with boundary 917 U E^. Let Rj^ be the 

^o-area minimizing current with boundary dft U Ej)0. which is homologous to 

Qj^cr. It follows from Allards regularity theorem, that for j sufficiently large, 
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Rjya is the graph overT^Q^ of some C3 function hj. Of course, we have 

hj > 0 on fi\fia 

hj ^ 0 on n\fiCT 

hj = 0  on 9f2,   and /ij = /j   on 9fiCT. 

We now claim that hj < fj on n\ncr. Note that this would finish the proof of 

C, since this would imply that Rj^ is tangent to 0,^^ along dQ and lies on 

one side of $l\fia, and therefore by the maximum principle (since they are both 

minimizing relative to go) would have to coincide with f^f^ contradicting the 

fact that fj ^ 0. However, the claim follows easily from the definition of fa. 

Assume that the claim was false, and let A be a component of {x G ri\no- : 

hj(x) > fj(x)}, and let Rji<7 and Qji(T denote the graphs of hj and fj over A 

respectively. But then, since 

1 — (j)j(fj(x))r}(x) < 1 — (j)j{hj(x))r)(x)   for x £ A, 

and Rji(j has smaller <7o-&rea than Qj^ it easily follows that 

Ae.(Rjt<r) = f    (1 - fa(hj{x))r){x)dAo{x) 

< [    (1 - fa{fj{x))ri(x)dA0{x) = Aej{Qjia), 

contradicting the fact that Qj is homologically area minimizing relative to g£, 

proving the claim, and thus completing the proof of part C of the proposition. 

As remarked earlier, this completes the proof of the Theorem. 

It should be remarked that the only place in the proof, that we used n = 

7,was where we invoked Theorem 5.6 of [H-S] to conclude that Qj was smooth. 

In particular, if the result of [H-S] was extended to n > 7, then the proof given 

here would imply the conjecture for n > 7. Unfortunately, not much is known 

in this direction for higher dimensions, although some partial results are given 

in [M-S].    □ 
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