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INTRODUCTION 

The topology of the moduli space M of self-dual connections ("instantons") 

on a principal SU(2)-bnndle over a compact Riemannian 4-manifold (M, g) has 

been studied for a number of years, thanks largely to the pioneering work of 

Donaldson ([Dl]). Relatively speaking, the study of the geometry of M with 

respect to its natural Riemannian metric g-the UL2 metric"-is still in its in- 

fancy. There are only two examples in which g has been computed explicitly 

and in which the geometry is completely understood: the moduli spaces of 

k = 1 instantons over S4 ([GP1, DMM, H]) and CP2 ([Gl, Ko]). (In this pa- 

per S4 and CP2 are always given their standard metrics.) In [GP2] many fea- 

tures of the geometry seen in these examples were shown to be present for all 

1-instanton moduli spaces over compact, positive-definite, simply-connected 

4-manifolds, and in [D2], Donaldson was able to deduce some geometric infor- 

mation under even more general hypotheses. However, the two basic examples 

exhibited more structure than they seemed to have any right to; there were 

several geometric features for which neither proofs nor counterexamples ex- 

isted in the more general setting. In particular the boundary dM. of the 

completion of M was found to be totally geodesic, and g was found to be 

more differentiable at the boundary in these examples than the authors of 

[GP2] were able to prove in general. 

This article is a step towards understanding the general problem of dif- 

ferentiability at the boundary and the geometry of the collar.   In pursuing 
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this problem the author discovered a surprising cancellation phenomenon, dis- 

cussed below, relating to the sectional curvature of M . It also proved useful 

to develop a new method for constructing parametrices for certain Green op- 

erators, and to refine an estimate of Donaldson concerning the decay rate of 

curvatures of concentrated instantons. 

Throughout this paper M denotes a compact, simply connected, oriented, 

positive-definite 4-manifold, and M the space of 1-instantons over M. Under 

these topological assumptions M is generically a 5-dimensional manifold with 

singularities. M contains a 'collar' region M.\0 diffeomorphic (non- canoni- 

cally) to (0, AQ) x M for some AQ > 0; the diffeomorphism ^f-1 assigns to an 

instanton its scale A 6 (0, AQ) and its center p £ M (see [Dl]). We will assume 

some familiarity with these notions and with the definitions and basic prop- 

erties of the L2 metric as discussed in [GP1] and [GP2]. Certain properties 

are true only for AQ sufficiently small; we will always assume, without explicit 

mention, that AQ has been chosen small enough. The following paraphrases 

some basic results of [GP2]. 

Theorem 0.1 (Theorems II-IV of [GP2]). Let M   and M\0  denote the 

metric completions of A4 and M.\0 respectively.    Then the collar map \I/_1 

extends to a diffeomorphism A4\0 = [0, AQ] X M, and the inclusion A^Ao C
^ 

M induces an identification {0} x M = dM . As A —> 0, the metric g is 

asymptotic, in a C0 sense, to a product: 

(0.1) **g~47r2(2dA2e£). 

Thus if we define X[A] = (STr^-^distQ^dAT) for [A] e M , then 

uniformly in [A\ as A —> 0. 

This product structure does not extend to arbitrary derivatives of g. In 

particular, in the S4 and CP2 examples, the curvature of M extends contin- 

uously to the boundary, and its boundary values are not the curvature tensor 

of a cylinder (although the curvature in directions tangent to the boundary is 

(47r2)~1 times that of (M, #), as one would expect from (0.1). It is worthwhile 
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to compare the explicit formulas for g found in these examples (c/. [GP3] and 

[Gl]). In each case M has an 'origin' on the complement of which 

(0.2) **g = 47r2(2f(\)d\2(Bh(\)g) 

for certain functions / and h which approach 1 as A —> 0; see (0.3-0.6) below. 

Note that / is not C2 at the boundary in either case, so it seems paradoxical 

that the curvature of M  manages to be continuous there. 

The solution to this paradox lies in understanding the smooth structure on 

M . In [GP2] it was wrongly stated that the smooth structure on M induced 

by the collar map \I/ is independent of the choices involved in defining \I/, and 

therefore that M has a natural smooth structure. Indeed, in the examples 

above, M does have a natural smooth structure, but it is not the one given by 

the collar map from which (0.3-0.6) were derived. (It should also be noted that 

in these equations, A is the radius of the smallest ball containing exactly half 

the Yang-Mills action; Donaldson's A, which is the one used in Theorem 0.1, 

smooths out the cutoff in a non-canonical way.) The correct smooth structure 

is given not by declaring A to be smooth on jVf Ao—i-e., by using the extension 

of \]/ to [0, AQ) x M as an attaching map—but by declaring A, the (normalized) 

distance to the boundary, to be smooth. This is sensible only because, as the 

next theorem shows, A is smooth in A^Ao- 

DEFINITION 0.1. For AQ sufficiently small define 

*"1 : MAO - (0, oo) x M    by    W\[A]) = (A([A]),p([A])), 

where A([A]) is the normalized distance-to-the- boundary as in Theorem 0.1 

and p([A]) is the closest point in dM~ = M to [A]. (Note that p([A]) is 

unique for AQ as in Theorem 0.1, and \I/ is 1-1 for such AQ.) On any set 

(0, e) x M C imaged" ), let * denote the inverse of W~ . 

Theorem 0.2. Let M be S4 or CP2 . Then *:~1 is smooth on M\0, so we 

can give M the smooth structure of M UsirQO, AQ) X M) without affecting the 

smooth structure on the interior. With respect to this smooth structure on 

M o; ^ g is C5 at the boundary but not C6. 
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Proof. From [GPS, equations (5.15-16)] and [Gl, equations (0.6-7)] the metric 

g takes the form (0.2), where for S4 we have 

(0.3) /(A) = sec2 A(l + 3 tan2 A - 3 sec A tan2 A log(cot(A/2))), 

3 3 
(0.4) h(X) = 1 - -tan2 A + -cos A tan4 Alog(cot(A/2)), 

while for CP  we have 
v2 1 + 3A"    .   6 + 2A'    o (0'5) '<A) = (r^+(Trp^M. 

Prom (0.2) it follows that P([A}) = p([A]) (where V([A]) = (X([A]),p([A]))) 

and that distance-to-the-boundary is a function of A alone. Specifically, 

(0.7) A(A)= t ml'2dt, 
Jo 

which is smooth for A > 0. This equation determines A implicitly as a function 
   2            

of A, so we may rewrite the metric in the form 47r2(2dA © h(X)g). Using 

(0.7) and the formulas for /i, one obtains the result (after some very tedious 

calculations). In fact, in each case we have asymptotic expansions of the form 

/(A) = 1 + A2(a1 log(A) + a2) + A4(a3 log(A) + a4) + 0(A6 log(A)), 

h(X) = 1 + c2A2 + A4(c3 log(A) + C4) + C5A6 log(A) + 0(A6). 

One can check that for any such /, h) the function h(X) is C3 for A > 0. 

Furthermore h is C4 if and only if 3c3 — aiC2 = 0—a condition that holds 

in the two examples above—in which case h is also C5. Finally, under this 

condition h is C6 only if C2 = 0, which does not happen in either of the 

examples.    □ 

It should be noted, however, that while the smooth structure on M depends 

the attaching map, its restriction to dM. does not; it is always the smooth 

structure of M. In addition it follows from Theorem 0.1 that the normalized 

distance A is differentiable at the boundary whichever choice we make (though 

what happens just off the boundary is unclear). 
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In light of Theorem 0.2, an awkward conjecture in [Gl] can be replaced by 

a more natural one. 

CONJECTURE 0.2. For any M, the map *~ is smooth in the collar M\Q. If 

this attaching map is used to define the smooth structure on M , the extension 

ofgtoT^TisC2. 

A necessary condition for Conjecture 0.2 to be true is that the curvature of 

(A^Ao? g) be continuous up to the boundary. In this paper we find substantial 

evidence that this is the case. 

It seems premature to conjecture more differentiability than this based only 

on Theorem 0.2. Loosely speaking, one finds that obtaining Ck information 

about the metric g requires 0(A ) estimates on certain spaces HA — T[A]<M- 

(see (1.2) below). But the estimation scheme presented here (culminating in 

Proposition 5.1) is intrinsically limited from giving estimates stronger than 

0(A2), and hence does not suggest any higher degree of differentiability than 

C2. It" is conceivable that the examples in Theorem 0.2 exhibit more differ- 

entiability because of symmetry; e.g. because both S4 and CP2 are Einstein. 

However, it is also possible that refined estimates would show more differen- 

tiability in the general case. 

1. STATEMENT OF RESULTS AND STRATEGY OF THE PROOFS 

1.1. Results. Our first theorem requires (M, g) to satisfy a certain curvature 

condition. 

DEFINITION l.L Let R and W~ be the scalar curvature and anti-self-dual 

Weyl tensor of (M, g). Define an operator W~ on two-forms by W_(#2 A 6j) = 

^(W~yj
kl6

k A 0l\ this preserves the subspace of anti-self-dual two forms. We 

say that (M, g) satisfies the A- curvature condition at p G M if the operator 

^ id -2w_: /\2_T;M -> /\2_T;M 

is positive-definite. 

Frequently when discussing moduli spaces of self-dual connections one as- 

sumes that a very similar operator, fid— 2W_, is positive-definite; this en- 

sures that the moduli space is a manifold on the complement of the reducible 
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connections. We do not need the latter assumption here since we are only con- 

cerned with the collar, which is always a manifold. Nonetheless the similarity 

between the two curvature conditions is striking. 

The purpose of the /\_ curvature condition is that it ensures a strong decay 

rate for the curvature of a concentrated instanton, which we use in §3 for 

several important estimates that we apply over and over again. Donaldson 

established in [Dl] that such curvatures decay at least as fast as A2-6/^4-6) 

for any 6 > 0. By carefully examining his argument, and observing that the 

/\2_ curvature condition is exactly what is needed to eliminate the 6 (Theorem 

2.2), we sharpen the decay rate to A r~4. This estimate is proven in §4. 

We can now state our main theorems. 

Theorem 1.1. Let (M,g) be a compact, simply connected, oriented, positive- 

definite J^-manifold, and Ai the space of 1-instantons over M. Assume that 

(M, g) satisfies the /\_ curvature condition. Then for AQ sufficiently small the 

sectional curvature of (M\Q, gj is bounded above and below. 

It seems likely that the methods here could be refined to prove continuity 

of the curvature, but the problem of passing from C0 curvature to C2 metric 

would remain. 

It is not actually necessary to assume the l\__ curvature condition on all 

of M in Theorem 1.1 to reach a conclusion. If we assume only that it is 

satisfied in a neighborhood U of some point p, our methods show that the 

same conclusion holds for the corresponding region of the collar. 

We can say a good deal more about the curvature in directions tangent to 

the boundary, even without the /\- curvature condition. After fixing a collar 

map, M\0 is foliated by submanifolds MA of constant A, with the inclusion 

map jx : M —> M. giving a diffeomorphism onto MA. We denote by Riem^J1 

the restriction of the Riemann tensor of (Mx01 g) to this 'tangential' foliation 

and by RieniM the Riemann tensor of (M,g). 

Theorem 1.2. Assume all hypotheses of Theorem 1.1 except the /\_ curva- 

ture condition.    Then Riem^f1 extends continuously to M.\0,  and the limit 
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depends only on RiemM- Specifically, 

Riem£n \dM := lim ft Riem^n = L(RiemM) 

for some geometrically natural endomorphism L. 

By 'geometrically natural' we mean that L is induced from an 50(4)- 

equivariant endomorphism of the subspace of R4 ® M4 0 M4 ® M4 consisting of 

tensors with the symmetries of a Riemann tensor. 

The map L in Theorem 1.2 is computed in the sequel to this paper [G2]; we 

find that L is (47r2)-1 times the identity. This provides a plausibility argument 

for the following conjecture. 

CONJECTURE 1.2. dM\0 is a totally geodesic submanifold of A^Ao- 

The argument is as follows:   if we assume that the metric is C2 at the 

boundary we can apply the Gauss equations 

(1.1) Riem^n \dM = Riema^ +h A /i, 

where h is the second fundamental form of the boundary. The boundary is 

totally geodesic if and only if h is identically zero. Since the metric on dAd 

is simply ATx2g under the natural identification of dM with M (see Theorem 

0.1), we always have Riema^t = (47r2)_1 RiemM- Hence, using L = (47r2)~1Id 

in Theorem 1.2, we find hAh = 0. This implies that h has rank < 1; i.e. there 

is a 1-form 0 (possibly zero) on dAi such that h = 0<8)0. Note that generically 

the second fundamental form of a 4-dimensional submanifold of a 5-manifold 

has rank 4; it seems unlikely that for all {M,g) the second fundamental form 

of dM has rank < 1 unless it is identically zero, as it is for S4 and CP2. In 

fact, if one assumes that h depends on RiemM in a geometrically natural way, 

it is easy to show that if rank(/i) is always < 1 we must have h = 0. 

1.2. Strategy. Our approach to proving Theorems (1.1-1.2) will rely on the 

expression derived in [GP1] for the sectional curvature of Ai at a point [A] 

represented by a self-dual connection A. To review this formula, recall that 

the tangent space Tj^jM is naturally isomorphic to the harmonic space 

(1.2) 

HA = {X e fi^Ad P) | dA*X = 0 G Q0(Ad P) and d*X = 0e n2_(Ad P)}, 
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where P —> M is the principal S'C/(2)-bundle with Pontryagin index 1, dA is 

convariant exterior derivative, and the minus sign denotes projection p_ to 

the space of anti-self-dual two-forms. Alternatively, HA = ker(Af), where 

Af = dA(dAy + 2(d^yd\ 

We introduce notation for two universal bilinear operations, {•, •} : (Ad P(g> 

r*M)(8)(Ad P®T*M) -*AdP and [•, •] : (Ad P®T*M)® (Ad P®T*M) -> 

Ad P 0 /\2T*M. In terms of a local orthonormal basis {l9a} of T*M, the 

antisymmetric pairing {•, •} is defined by 

{X,Y} = [Xa,Ya} 

(Lie-algebra bracket); the symmetric pairing [•, •] is defined by 

[X,Y]-=p4[Xa,Yb]eaA8b). 

We also define Laplacians 

A^ = dA*dA,    AA = dAdA\ 

which act on 0-forms and 2-forms respectively, and are invertible in the collar; 

we denote the inverses by Gfi and GA. If X, Y 6 HA are L2-orthonormal, the 

sectional curvature of (A4 ,g) in the plane spanned by X and Y is then 

(1.3)   aA(X, Y) = 3({X, Y}, G^{X, Y}} 

-([X,YUG*[X,YU) + (IX,XUGA[Y,Y}_), 

where (•, •) denotes L2 inner product. 

Now in general it can be shown that as A —> 0, the eigenvalues of A_ are 

bounded away from zero (cf. [L, Ch. VI §3]), while A0 has three eigenval- 

ues commensurate with A2 and the remainder bounded away from zero (see 

Proposition 8.3). To understand the asymptotic behavior of the individual 

terms in (1.3), it is useful to examine the case M = S4, where we know that 

the curvature has a finite limit as A —> 0. At first glance it would seem that, 

since GA is uniformly bounded, the last two terms in (1.3) must each have a 

finite limit; therefore so must the first term, despite the small eigenvalues of 

AA 
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This naive analysis is flawed because the L2-norms of {X, Y} and [X, Y] 

are not bounded by the L2-norms of X and Y. In fact, for S4 it can be shown 

that all three terms in (1.3) behave as A~2 as A —► 0, but the singularities 

cancel. These conspiratorial cancellations are all the more remarkable in view 

of the unrelated origins of the terms in (1.3): the first term is the curvature of 

the ambient space A /Q = {connections}/{gauge transformations}, while the 

other two terms come from the second fundamental form of the embedding 

M ^AjQ. 

We will prove Theorem 0.3 by showing that this cancellation phenomenon 

is quite general. The first step in the proof, discussed in §2, is to understand 

why the cancellation 'ought' to occur. For this we replace the true tangent 

space HA from which X and Y in (1.3) are drawn by an approximate tangent 

space HA introduced in [GP2]. For X, Y e HA we construct local expressions 

which approximate the global objects G^{X, y} and G^[X, Y\_ up to remain- 

ders that are small with respect to certain weighted Lp-norms. These local 

expressions, when plugged into (1.3), cause each of the three terms to diverge 

as A-2. However the inner products defining these three terms actually cancel 

pointwise, thanks to a quadrilinear identity involving inner products of Ad P- 

valued 1-forms (Lemma 1.5). The remainder terms give only a bounded—and, 

in certain cases, calculable—contribution to the curvature. 

The second and harder step in the proof is to show that the replacement of 

HA by HA alters (1.3) only by a bounded amount. This requires showing that 

the operator (Id— ^A)\HA^ where 

7rA ifi^AdP)-*^ 

is the L2-orthogonal projection, is sufficiently small in appropriate norms. We 

are led to the study of the elliptic equation 

(1.4) A^ry = #V \ FA, 

where ry is an anti-self-dual two-form, H0(j) is the traceless Hessian of a func- 

tion 0, the two-form FA is the curvature of the connection A, and I] is a 

certain bilinear operation that pairs a traceless symmetric tensor with a self- 

dual two-form two produce an anti-self-dual two-form (see (5.5)). From this 
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equation we deduce some strong estimates on the harmonic 1- forms compris- 

ing the tangent space HA (Proposition 4.1). All but one of the bounds we 

need follow fairly easily from (1.4), given the estimates in §3 (for which we use 

the decay estimate proven in §4). For the one remaining bound (5.4), ordinary 

elliptic theory such as that used to prove Lemma 5.3 does not seem to suffice. 

Nor do standard constructions of parametrices for Green kernels, followed by 

convolution with these kernels; the singular nature of the family of operators 

in (1.4) as A —> 0 leads to difficulties. However, since we are not trying to 

solve (1.4) with an arbitrary right-hand side, we avoid these difficulties by 

effectively constructing not a parametrix for the Green kernel, but just for the 

Green operator restricted to the the space consisting of the right-hand side of 

(1.4) for certain functions (j) (essentially functions which are linear in normal 

coordinates based at the center of A). This result, detailed in Theorem 5.1, is 

rather special in certain respects, but general in others, and may be of some 

interest in its own right; it does not depend on any features of the connection 

except self-duality. The technique (detailed in §§6-7) relies on a rather bizarre 

use of representation theory, and should apply to a wider class of equations 

than the one studied here. 

In §8, we provide some final estimates needed for §9, where we prove The- 

orems 1.1-1.2. 

Throughout this paper || • ||p denotes the Lv norm on sections of any normed 

vector bundle over M. We use summation convention for repeated indices, and 

we take the inner product on Ad P to be the one induced by minus the trace 

form of the standard representation of su(2). 

2. LOCALIZATION OF THE CURVATURE FORMULA: FIRST STAGE 

The Green operators G^, Gj: and the harmonic 1-forms X, Y G HA and ap- 

pearing in (1.3) are intrinsically non-local objects. For this reason it is difficult 

to extract information from the curvature formula; there is no obvious relation 

among the terms. For concentrated instantons, however, there is a 'localiza- 

tion principle': as A —> 0, instantons on M more and more closely resemble 

instantons on R4, after a normal-coordinate identification of a neighborhood of 

an instanton's center with a neighborhood of the origin in R4. This principle 
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holds quite strongly as far as the curvature two-form FA of the instanton is 

concerned, but it is less clear how localization affects the harmonic spaces HA 

and the Green operators GA. In [GP2], the author and T. Parker introduced 

a localized approximation HA to HA (see below). In this section we show 

how to localize the Green operators applied to the bilinear objects appearing 

in (1.3) when X and Y lie in HA- This localization is, in essence, 'why' the 

singularities in (1.3) are able to cancel. 

For the rest of this paper we fix a 'cutoff' function b G C^0(E) with b(t) = 1 

for 0 < t < 1, b(t) = 0 for t > 2 and 0 < b(t) < 1 everywhere. We also fix 

a number r0 such that 3ro is less than the injectivity radius of (M^g), and a 

smooth, strictly positive function p : M x M —> R such that p(p, q) = dist(p, q) 

whenever dist(p, q) < 2r0. For each p € M we define rp(q) = p{p,q) and 

Ppio) = Krp((l)/ro)^ we will usually suppress the p's from these and related 

notations to avoid clutter. 

We also fix a collar map ^J-1 as in the introduction. When the letters p, A 

appear during a discussion of a connection A, they always denote the center 

and scale of A, respectively. In such a context, r always refers to distance to 

the center point p. We use FA, or simply F, to denote the curvature 2-form 

of A 

There are numerous estimates in this paper. All constants appearing in 

inequalities, as well as constants implicit in expressions O(-), are independent 

of A G .MA0, 
and in particular of the center point p. We will not make 

explicit mention of this uniformity below; it generally follows from simple 

arguments based on the compactness of M. Our convention concerning strings 

of inequalities is that values of constants are continually updated as needed. 

The letter c in an inequality always denotes a constant, subject to the above 

conventions. 

There are also several types of covariant derivatives in this paper. If E 

is a vector bundle associated to the orthonormal frame bundle of M (e.g. 

E = TM), there is a tensor product connection VA : r(Ad P®E) -> r(Ad P® 

E®T*M) induced by a connection A on Ad P and the Levi-Civita connection 

on M. We let AA denote the trace Laplacian VA*VA; note that on r(Ad P), 

dA = S/A and A^ = AA.   (The Laplacians A^,Af, and A^ were defined 
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in §1.2.) We simply write V and A for the covariant derivative and trace 

Laplacian on E. Frequently we will suppress the A from the tensor product 

operators above; it is always clear from the object being differentiated whether 

these symbols refer to the tensor product connection or simply the Levi-Civita 

connection. 

To define the approximate tangent space we require some notation. Given 

a G TPM, let /a be the unique function on B2r0(p) (the ball of radius 2ro 

centered at p) such that (i) /a is a homogeneous linear polynomial in some (and 

hence any) normal coordinate system based at p, and (ii) grad(/a )(p) = a. 

We extend these functions and the (squared) distance function to all of M by 

setting 

DEFINITION 2.1. The approximate tangent space at a self-dual connection A G 

A4\0 with center p is the subspace of fi^Ad P) defined by 

HA = {LzFA | Z = grad(0a + &<£'),    k E R, a 6 TPM}. 

Henceforth we will write 

Za = grad 0a, Z' = grad ^,. 

and, for any vector field Z and self-dual connection A, 

ZA = iZFA. 

When the connection is understood from context, we simply write Z for ZA. 

As A —> 0, the vector fields Z proportional to Z' correspond to directions in 

TAM approximately normal to the boundary; those of the form Za give the 

directions tangent to the boundary. This is made more precise in [GP2, §3], 

where it is also shown that if Z = Za + aoA~ Z', then 

(2.1) \\tzFA\\L,^2w]/\a\2 + 2al 
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as A -> 0, and that for Z G HA, ||(/d - KA)Z\LI = 0(A1~6)||X||L2 for any 6, 

Later we shall see that this estimate can be improved by a full power of A in 

the tangential direction (Proposition 5.1a). 

The localization we seek for the terms in (1.3) is a consequence of the 

following proposition. 

Proposition 2.1. Let A G M\0, let a G fi1(Ad P), let Z be a vector field, 

and let Z* denote the image of Z under the metric isomorphism from TM to 

T*M.  Then 

(2.2) G${Z, a} = ±LZa + G0
A(/?o(Z, a)), 

and 

(2.3) GA[Z,a}-=p-(Z*Aa) + GA(R2{Z,a)), 

where the remainder terms Ri are given by 

(2.4) 

(2.5) 

/?o(Z, a) = --{tAza - 2iVaZVia + tz(A?a) - LZRic(a)), 

R2{Z, a) = -i{(p_(AZ* A a - 2VaZ* A V^a + Z* A A?a) 

- (Z* A Ric(a))- - K-(Z* A a)_)}. 

Here Ric and 7£_ are pointwise endomorphisms proportional to the Riemann 

tensor of (M, g) and whose precise form does not concern us. 

When a = W this proposition reduces to the following. 

Corollary 2.2.  With the same notation as above, we have 

(2.6) Gt{Z, W} = -±F(Z, W) + G$(R0(Z, W)), 

and 

(2.7) G^[Z, W]_ = p_(Z* AW) + G*(R2{Z, W)). 

The remainder Ri(Z, W) is antisymmetric in Z and W for i = 0 and symmet- 

ric for i = 2. 
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Given Proposition 2.1, the only non-obvious part of the corollary is the sym- 

metry of R2(Z, W); antisymmetry of RQ is immediate from the antisymmetry 

of the other two terms in (2.7). However, from the first part of Lemma 2.3 

below we have 

(2.8) p_(Z*AT^)=p_(W*AZ),' 

so the symmetry of R2 follows from (2.7). 

To prove Proposition 2.1 we begin with a lemma. 

Lemma 2.3. Let R4have the standard inner product orientation. Let {e^} be 

a basis of"R.4and {91} the dual basis of (R4)*. For v G M4, let v* denote the 

image of v under the inner-product isomorphism from M4 to (R4)*. Then for 

all v,w G M4 and f G A+0^4)*; ^e expressions 

(2.9) p-(v*ALwf)eP\JR4y 

and 

(2.10) f(v, e^p- K A F) € A! (K4)* 

are symmetric in v and w. 

Proof. Each of these expressions determines an S'0(4)-equivariant map from 

R4 (8) R4 to Hom(A+(R4)*, A-(^4)*), which is S'0(4)-isomorphic to Sym^R4) 

(see §7 for a review of the representations of #0(4)). But R4(g)R4 ^ Sym2(R4)e 

A (IK4), and there are no nontrivial equivariant maps from A (IK4) to the ir- 

reducible representation Symo(R4). Thus each of the maps above must factor 

through a map from R4 <g> R4 to Sym2(R4), implying that (2.9) and (2.10) are 

symmetric.    □ 

Proof of Proposition 2.1. Writing components relative to a local orthonormal 

basis {6a} of r*M, we have 

(2.11) K(LZa) = AA(LZa) = LAza - 2^vazV^a + LZAAa. 

The Weitzenbock identity for one-forms (see for example [FU, equation (6.25)]) 

asserts that 

(2.12) AAa = Afa + 2[FA, a] - Ric(a) 
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where [F, a] = [Fab, ab] ® 6a. But 

LZ[F,a] = [(tzF)b,ab] = {Z,a}, 

so 

At(±iza) = {Z,a}-R0(Z,a), 

which is equivalent to (2.2). 

Moving on to (2.3), we recall Weitzenbock identity for anti-self-dual two- 

forms ([FU, equation (6.26)]), 

(2.13) AA7? = 2A^77 + ^_(7?). 

Expanding as in (2.11) and using both (2.12) and (2.13), we have 

(2.14) A^(Z*Aa)_=p_(Z*A[F,a])-R2(Z,a). 

Since 

• p_(Z* A [F, a}) = Za[Fbc, ac}(ea A eb)- 

= Za[Fba, ac}(ec A eb)-    (symmetry of (2.10)) 

= [(izF)b,ae](0bAee). 

= [Z,a]-, 

we have 

(2.15) A*(Z* A Q)_ = [Z, a]- - R2(Z, a), 

and (2.3) follows.    D 

We begin to examine the implications of all this for the curvature formula 

(1.3). First, for arbitrary A € Mx0 and X,Y G ft1 (Ad P), define 

(2.16) num(X, Y; A) = right-hand side of (1.3), 

(2.17) denom(X, Y) = \\X\\22\\Y\\22 - {X, Y)2, 

Thus for arbitrary non-proportional X, Y € HA the sectional curvature is 

given by 
num(X, Y; A) 

CTA(X,Y) 
denom(X, Y; A)' 
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We define the approximate sectional curvature a by 

(2.18, .&*)=  ."-ff^L 

for (non-proportional) Z, W G -HA- NOW any 2-plane in HA has a basis of the 

form 

(2.19) Z^Z^    W = Zh + kZ') 

where 

(2.20) alb,     |a|2 = |b|2 + 2k2\2 = 1. 

From [GP2, §3] we know that 

denom(7rAZ, 7rAW) -> (27r)4 as A -> 0 

for such a basis, so we need focus only on num(Z, W; A). Using (2.6) in the 

first term, we have 

(2.21). 

({Z, W}, G{Z, W}) = ({Z, W}, ~F(Z, W) + G(R)) 

= -liiZ, W}, F(Z, W)) + (G{Z, W}, R) 

= ~({Z, W}, F(Z, W)) - 1(F(Z, W), R) + (G(R), R). 

We apply the same argument to the other two terms, after rewriting the last 

as ([W, W}-,GA[Z, Z\_). We then have 

num(Z, W) = L. T.(Z, W) + Rem(Z, W), 

where the leading term L. T.(Z, W) is defined by 

(2.22)    L.T.(Z,W) = ^({Z,W},tzW) 

- ([Z, W]., (Z* A W)_) + ([W, W]-, (Z* A Z)-). 

(The remainder term Rem(Z, W) is written out explicitly in (8.2).) This 

leading term is the integral of the local expression we have been seeking. Each 

inner product separately diverges at the same rate as fM \F\3 ~ A-2 (see 

Lemma 3.3), but, as the next lemma shows, the local inner products cancel. 
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Lemma 2.4. Let (•, •) denote pointwise inner product Let Z be any vector 

field and let a, rj be any Ad P-valued 1-forms. Then 

(2.23)   l({a,V},LzV) - ([a.T,]., (Z* AT/)..) + (far,]-, (Z* A a)_) = 0. 

Proof. Let {9a} be a local orthonormal basis o£T*M. Using Ad-invariance of 

the inner product on Ad P and a basic property of the *-operator, we have 

(M]_,*(Z'Aa))    =    {[riaM^cW M\*{Z* hF)) 

=   irlb,[T]a,ac})(eaAec,*(Z*Aeb) 

=   ([a,ri],*(Z* Ari)). 

Thus 

2([r/,7,]_,(Z*Aa)_)-2([a,77]-,(Z*Aa)_) 

= ([ri,rj\,Z*Aa)-([a,ri\,Z*Ari) 

= (i,z[T],T]],a)-(iz[a,r]},T]) 

= (2[izr], ri},a)- ([iza, rj] - [a, Lzviv) 

= 2(t>zV> {n,«}) - (fcza, {»7, V}) - (t-zri, {«,»?}) 

= -3({a,r/},fcZr/), 

and (2.23) follows.    D 

Corollary 2.5. T/ie expression L. T.(Z, W) in (^2.22^) vanishes identically. 

Hence 

denom^Z', TT^ W) 

Proof. Apply the lemma above with a = 2,7] = W.    D 

To complete our localization analysis, we must study the remainder 

Rem{Z,W) 

as A —► 0. We defer this until §8, where we will also consider the error a — a 

introduced by localization. In the intervening sections we provide the basic 

estimates we will need. 
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3. AN ESTIMATE TOOL-KIT 

From now on we use the symbol 7£(-), with zero or more arguments, to 

denote quantities which depend in some universal and multilinear way on the 

Riemann tensor (and possibly its derivatives) and the arguments. We continue 

to use {0a} to denote a local orthonormal basis of T*M. 

We begin with a completely general Weitzenbock-type identity concerning 

the commutator of a covariant derivative and a Laplacian. 

Lemma 3.1. Let E be a vector bundle over a Riemannian manifold (M,g). 

Let E have a connection A with curvature two-form K and give T*M the 

Levi-Civita connection.  Then for any s € r(i?); 

(3-1) 
V^V^V^s) - V^V^V^s) = Ric(VAs) + 2K{VAs) - (VA*K)(s), 

where 

Ric{VAs) = (i?a6VA
as) ® db, 

K(Vs) = (Kab(V
A

as)) ® eb, 

and 

(VA*K)(s) = -(VA
aKab)(S)eb. 

(In the last formula it is assumed that dOa = 0 at the point at which the 

right-hand side is evaluated.) 

Proof Fix q G M and choose {<9a} so that d6a(q) = 0. Using VA*VAs = 

— tig VAVA5, the result follows from a straightforward computation.    □ 

This tool, together with the Weitzenbock identity (3.6) and integration by 

parts, enables us to bound L2-norms of arbitrary derivatives of a curvature 

two-form FA, weighted by arbitrary powers of r, in terms of weighted norms 

of FA itself. For connections in M\0^ these norms can in turn be bounded in 

terms of A—our goal— thanks to a basic pointwise bound on \FA\. In[GP2], 

the authors relied on Donaldson's bound 

(3.2) \FA\ < cX2-6/r4-8, 
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where 6 can be made arbitrarily small by taking ro sufficiently small. However, 

under the /\- curvature condition, we can eliminate the 6 from this formula 

and sharpen the estimates. 

Theorem 3.2. There exist ro, \O, andc, independent of A, such that ifX(A) < 

AQ and (M, g) satisfies the f\_ curvature condition at the center point p of A, 

then 

(3.3) \FA\<c\2/r* 

on B2r0(p). 

We defer the proof of this estimate to §4. For the rest of this section, we 

assume that ro and AQ have been chosen small enough so that (3.2) applies; 

or, when the /\_ curvature condition is satisfied at p, so that (3.3) applies. 

Lemma 3.3. Assume the /\_ curvature condition holds at p. For A G M AO; 

k > — 2 and q>0, define 

Iktq(A)= [        r2k\FA\< Slig), 

where tt(g) is the volume form of the metric g. 

(a) Assume k > — 2 and let m be arbitrary. Suppose that m > max(g — 

fc, 2 — q); ifk = 2{q — 1), assume the strict inequality m > 2 — q. Then there 

is a constant cm^)(? such that 

Ik,q\A) < Cm)fc,gA 

If k = 2(q — 1) and m — 2 — q, there is a constant cm such that 

Ik,q(A) = l2-2m,2-m(A) < CmA4-2m| log A|. 

(b) Let j > 0 and assume k — j > —2. If m > 0 and k — j > 2 — m, or if 

m = 0 and k — j > 2, then there is a constant Cj^m such that 

(3-4) ||/?rfc(V^y^||2<C,,fc,roA
2-ro. 

In the borderline case m = 0, k = j + 2, there is a constant Cj such that 

||^+2(VAF^||2<CjA
2/|iogA|. 
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Proof, (a) We break the region of integration into two pieces: the ball B\ of 

radius A and its complement B^. There is a constant c such that for r < A, 

A2 

|F|-C(r2 + A2)2; 

cf. the proof of Lemma 3.5 in [GP2], for example. Hence 

as we see by substituting r = \p. If k > q — ra, this will be < cA ~2m. On the 

outside region, using (3.3), we have 

(3.5) / r2k\F\m(g) < c\2q /      r2fc+3-4^r. 
J\<r<2ro J\ 

Let n = 2k + 4 - Aq. If n > 0 (i.e. k>2(q- 1)), the right-hand side of (3.5) 

is < cX2q] if n = 0 (i.e. k = 2{q — 1)), the right-hand side is < cA29| log A|; and 

if n < 0 (i.e. k<2(q- 1)), the right-hand side is < c\2k+4~2q. In the first two 

cases, the inequalities q > 2 — m and q > 2 — ra, respectively, ensure a bound 

of the form cA ~2m, and the requirement k > q — ra from the inner integral 

is redundant. In the third case, the stated hypotheses ensure that both the 

inner and outer integrals have the desired bounds. 

(b) We prove only the first inequality; the second is proven identically, 

up to the appropriate insertions of log A. For j = 0 (3.4) is an immediate 

consequence of (a). For j = 1, we integrate by parts, finding 

{(3rkVF,(3rkVF)    =    (V*(/32r2/cVF),F) 

<    c(f3rkVF, (P + Idfiiy-'F) + (p2r2kV*VF, F). 

But the Weitzenbock identity for self-dual two-forms (see [FU, equation (6.26)]) 

implies that 

(3.6) &AF = -[F,F]+n{F), 

where [F, F] = [Fac, Fbc\ ® 6>a A 0b. Thus 

(t3rkVF, prkVF)    <   cdlpr'VFUI^^)1/2 + Ikf2 + 4,3) 

<    ^||/3rfcVF||2 + c(J(fc-1)>2 + 4,2 + 4,3)- 
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The result for j = 1 now follows from part (a). 

For higher j, we proceed by induction. Suppose the result has been es- 

tablished up to some particular j > 1; we will establish it for j + 1. In the 

following, we will occasionally use (3.4) with (3 replaced by other functions 

(3—e.g. (3 = (3 + \dp\ or (3 = /?1/2—which are supported in B2r0 and have a 

uniform pointwise bound; it is clear from the proof that (3.4) is equally valid 

in these cases. 

Again we start by integrating by parts as above. Using Lemma 3.1, and 

simplifying the calculation by noting that since A is Yang-Mills, the term 

V*K in (3.1) is of the form TZ (though the result still holds without this 

simplification), we find 

(3.7) 
\\prkVj+1F\\l < c\\prkVj+1F\\2\\prk-1ViF\\2 + (V(V*V)Vj-1F,/3VfeVjF) 

+ c f p2r2k(\VjF\2 + |F||VjF|2 + iV'FHV'-'FDnfo). 
JM 

Integrating by parts one more time, and noting that \'V*V:'F\ < |V'7+1F|) we 

find that the first two terms on the right-hand side are together bounded by 

(3.8) cWP^VVFUfPr'-^Fh + ||/3rfc(V*V)VJ-1
JP||2). 

The middle term in the integral in (3.7) gives a contribution bounded by 

\\(3rkVjF\U WPr'-^Fh \\rF\\L*(Barxt). 

By part (a) with m = 2 we have ||rF||L4(£2ro) < c, and the four-dimensional 

Sobolev embedding Z/j* <—> L4, supplemented by Kato's inequality 

(3.9) |dH|<|Vs|, 

implies 

\\prkVjF\U < C(||/3rfcVJF||2 + ||V(/?rfcVJ'F)||2) 

^cdl^-^^Ha + H^V^FIIa). 

Absorbing the first term into (3.8), we then find that the right-hand side of 

(3.7) is bounded by 

(3.11) expression (3.8) + c(\\prk-1VjF\\l + II^V^Fllall^V^^Ha). 

(3.10) 
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Using the inductive hypothesis, it is easy to check that the terms in parentheses 

are bounded by cA ~ m. Combining (3.7), (3.8), and (3.11), we therefore have 

\\prkVj+1F\\l < c(||/?r*(V*V)V^1^!^ + A4"2™), 

so we will be done if we can show that 

(3.12) ||/3rfc(V*V)Vj-1F||2 < cA2"™ 

To establish (3.12), we use Lemma (3.1) inductively and the Weitzenbock 

formula (3.6) to show 

j-i [C7-i)/2] 

v*v(vj-1F) = Y/n(viF) +  J2  Ciiv^v'"-1-^]. 
2=0 z=0 

Hence 

3-1 

i=0 

[0-l)/2] 

i=0 

In the first sum, the inductive hypothesis implies that every term is bounded 

by cA2~m. In the second, we apply (3.10) to each term, bounding the i'th term 

by 

cflliSrVFUa + ||^ri+1V^1F||2)(||^-i-2Vj-1-iF||2 + ll^r^-V"^^). 

Using the inductive hypothesis with m = 2, the first two L2-norms above are 

< c, while the last two are < cA2~m. This establishes (3.12), and the proof is 

complete.    D 

The bounds of greatest use to us are summarized in the following corollary. 
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Corollary 3.4. Assume the A-  curvature condition is satisfied at p.   For 

A E M\0, k > —2, and j > 0, the following bounds hold. 

(3.13) 

(3.14) 

\\prkF\\1<c< 
\\2              ifk>0 
[A2|logA|    ifk = 0' 

'Xk                 ifk<2 
\\prk+jVjF\\2 < c < AVlogA     ifk = 2. 

A2                 ifk>2 < 

'A*5-1              ifk<Z 
\\(3rk+jVjF\\4 < c. AVlogA     ifk = 3. 

A2                 ifk>Z 
(3.15) 

Proof. The L^bounds are immediate consequences of part (a) of the lemma, 

while the L2-bounds follow from part (b). For the L4-bounds we use (3.10) 

and the L2-bounds.    □ 

Remark -3.1. In the absence of the A- curvature condition we would of course 

get weaker estimates in certain cases. All appearances of A2 in (3.13-3.15) 

would be replaced by A2- 1 (and we could of course erase the logs), and the 

restrictions k < 2 and k < 3 in (3.14) and (3.15) would be replaced by k < 2—62 

and k < 3 — ^3, respectively. Here the Si are proportional to the S in (3.2). 

We conclude this section with a very useful and general Sobolev-type in- 

equality, and an application to instantons in A^Ao- 

Lemma 3.5. Let E, (M,g) and A be as in Lemma 3.1, with M compact and 

n = dim(M) > 2. Let ri be the injectivity radius of {M,g). There exists a 

constant c, independent of A, such that for any p G M and any section s of 

E supported in Bri(p), 

(3.16) Ik'^lh < c||VAs||2. 

where r = dist(p, •). Without any assumption on the support ofs, an inequality 

of the form 

(3.17) llr-^lla^cdlV^Ha + llalb) 

holds. 
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There is nothing special about the L2 norm in this lemma; as the proof 

below shows, the same inequality holds with Lp norms on an n-dimensional 

manifold as long as p < n. 

Proof. Since M is compact, the L2 norm over Bri(p) determined by g is 

bounded above and below, uniformly in p, by positive multiples of the L2 

norm determined by the flat metric given by a normal coordinate system. 

Hence it suffices to prove (3.16) on Rn, where we let r denote distance to the 

origin. For / G C^0(Rn) we always have f/r G L2. Expressing ||//r||| as an 

integral in polar coordinates and integrating with respect to r by parts, one 

finds 

||//r||a<c(n)||4f||3. 

Letting / = |s|, where s is a compactly supported section of a vector bundle 

over Mn with connection V, Kato's inequality (3.9) then gives (3.16). To obtain 

(3.17) we simply note that 

Hr-^Ha < WPr-'sh + 11(1 - Py-'sh < Wr^sh + c\\s\\2 

and apply (3.16).   □ 

This lemma has a strong implication for collar instantons. 

Corollary 3.6. There exist constants c such that for A € M\0 and rj, rj' € 

fll(Ad P), 

(3-18) Hr-^lla^clK^r^ll^cllV^lla, 

(3-19) llr-^^b <c||n7||2> 

and 

(3-20) \{r},Gii)\<c\\rn\\2\\rrf\\2. 

Proof. Recall that the first eigenvalue of A^ is bounded away from 0 on M\0: 
for 7/€0?. (Ad P), 

IMI2 < c||A^||2) 

or equivalently 

(3-21) ||r?||2 < c||(^)*»7||2. 
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(This is a consequence of the positive-definiteness of M; see [L, Ch. VI §3].) 

Thus, using the Weitzenbock formula (2.13) we have 

< cm^YvWl + MD 
< c\\(d-Ayv\\i, 

so 

(3.22) l|VA»7||2<c||(^r»7||2<c||V^||2. 

Combining Lemma 3.5 with (3.21) and (3.22) we obtain (3.18).   Using the 

same tools, we have 

\\m'Gir,\\l   =   cir-'G^rv) 
<   c\\(d-AyG*Vh\\rV\\2, 

implying 

lira*G^||2<c||n/||a. 

Using (3.18) a final time, we arrive at (3.19). Equation (3.20) follows imme- 

diately since (^G^r/) = (rr]^r~1G^r]f).    D 

4. THE DECAY ESTIMATE 

To prove Theorem 3.2 we must first review Donaldson's original estimate 

([Dl, Theorem 16(ii)] ; see also [DK, §7.3]). We concentrate on the formal 

aspects of the argument, carefully keeping track of a sign (see (4.13)) that was 

irrelevant in the presentations above. For the analytic details not discussed 

here, we refer the reader to [DK]. 

Below, e is an adjustable small constant that we keep taking smaller as 

needed, updating the values of AQ and TQ accordingly. Throughout this section 

{x1} is a fixed normal coordinate system centered at p, ordered consistently 

with the orientation of M. 

Let B be the disk B3ro(p). Using rescaled normal coordinates y7, = xl/A, we 

identify B with the ball Bf = Bsro/x{0) in M4, and give Bf a metric g\ equal 
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to A-   times the metric pulled back from B. Note that (3.3) is equivalent to 

(4.1) \FA\gx < cp-* on B\ 

where p2 = XX?/2)2- We recall that as A —> 0, an instanton A of scale A, in 

the coordinates {y1} and metric g\, is closely approximated by the standard 

instanton on R4 on any compact subset of B' ([Dl, Theorem 16(i)]; see also 

[GP2, §3, Tact A']). Thus, given iV there exists Ao such that if A < Ao then 

|FA|^A < c(l + p2)~2 on BJV(0),SO we need only consider the complement of 

BN(P). 
Given e, the approximability of A by the standard instanton lets us first 

choose N = N(e) (independent of p) and then AQ = Ao(e) so that 

(4.2) 87r2-6< / \FA\2gxn(gx)<8n2 

i(0) 

for all A 6 A^Ao- (Here and below Q(h) denotes the Riemannian volume 

density of a metric h.) 

On B' — {0} we can write g\ = dp2 © p2gp for a family of metrics {gp} on 

the sphere {XX?/)2 = !}» ^e sum is orthogonal by the Gauss lemma. Writing 

p = iVe*, we can re-express this as 

(4.3) gx = N2e2% 

where 

(4.4) g = dt2®gt 

and gt is a metric on S3. We write gstd for the standard metric on the sphere. 

Tracing through the conformal changes, letting ul = y1 /p, and using the Taylor 

expansion of the original metric g at p, we have 

(4.5) gt = gstd - ^N^R^p^u'du'® duj + OdNXe1)3) 

where Rijki are the components of the Riemann tensor of g with respect to 

{x*}.   Since AiW < 3ro, by taking ro small enough from the start we can 

ensure that gt is in a given C0-neighborhood of gstd for all p, A, t. 

Using (4.3) to rewrite (4.1) what we now need to show is 

\F% < ce-2t     on     [0, log(2ro/A)] x §3. 
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Let T + 1 == log(3ro/A). For 0 < t < T + 1 we define 

\FA\1 «(»), E(t) = f 
/[t,T+l]xS3 

Because of (4.2), 

0 <£(£)<e    for   t€[0,r+l] 

(since the L2 norm on 2-forms is conformally invariant). As explained in [DK], 

by taking e sufficiently small (and ro as well, so that each gt is close enough 

to gstd) we can ensure each of the following. 

(4.6) sup    {\FA\(t,u)} < ce. 
[l,T+l]x§3 

• Let jt denote the inclusion §3 <-> {<} x S3 <-> [0, T + 1] X §3 and let At 

be the restricted connection ft A. For each t G [1, T + 1] there exists a 

gauge 7t—a section of P over {£} x S3—such that if at is the connection 

form of At in this gauge, then 

(4-7)lb>t||^(§3) + \\fiat\\L*m + |b>t||L4(s3) < c||FAt 11^(83) < ce, 

where all norms are taken with respect to gt. 

• For (t,u) e [0,T] xS3, 

(4.8) \FA\l(u,t)<c[ \FA\l  Q(g) 

As in [Dl] we obtain from the estimates above a differential inequality in- 

volving Chern-Simons 3-forms CS(at).   These are defined for su(2)-valued 

1-forms a by 
2 

CS(a) = tr(a A da + -a A a A a); 
o 

here "tr" denotes trace in the standard representation. If a is a connection 

form in some gauge for a connection A' then 

d{CS{a)) = tr{FA' AFA'). 

In addition, if a, a' are connection forms in two different gauges for the same 

connection on a bundle over a closed oriented three-manifold Y, then 

/ CS(a) - f CSta') e 87r2Z. 
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We can express E(t) in terms of the Chern-Simons forms. First, since the 
cylinder retracts to §3 we can extend each gauge 7^ over the whole cylinder. 
Since FA is self-dual we then have 

E(t)    =    [ -tr(FAA*FA) 
Jft,T+llx§3 /[t,T+l]x§3 

■ / d(CS(aT+l)) 

=    f        CS(aT+1) -   f CS(aT+1). 
J{t}xS3 J{T+l}x§3 

If we take e small enough, then in the integral over {t} x S3 we can actually 
replace aT+1 by at. To see this we note that 

I /        CS(aT+1) - f        CS(at)\ 

< E(t) + I /        CS{at)\ + I / CS{aT+l)\ < ce 
J{t}xS3 J{T+l}xS3 

by (4.6-4.7). But the two integrals on the left-hand side are congruent mod 
87r2Z; hence, if e is small enough, they must be equal. Thus 

(4.9) E(t) = [ CSiJtat) -   f CS(ti+1aT+1). 
Js3 Js3 

Furthermore each integral in (4.9) is positive, for if CLB is the connection form 

for A in some gauge defined over the original ball £?, then using (4.2) we have 

87r2-6< / \FA\2gn(g) 
JBXNet(p) 

= - [ d(CS{aB)) = - / CS(ftAB) < STT
2
. 

JBXNet(p) J§3 

But, mod STT
2
, this last integral is congruent to Jg3 CS(Jtat), whose absolute 

value is bounded by ce. Thus — /§3 CS(j^at) is a small negative number, and 
our assertion follows. Consequently, if we define 

J(t) = f CStfat), 
Js3 

then 

(4.10) 0 < E(t) = J(t) - J{T + 1) < J{t) < ce. 
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Because FA is self-dual and the decomposition (4.4) is orthogonal, we have 

\FA\l(t,u) = 2\FA<\l(u) 

for all (t,u) in our cylinder. Hence differentiating the equality in (4.10) gives 

£ - f ~ /        \F% fife) 
at       at J{t}xS3 

(4.11) 

= -2/ \FA%tn(gt) 

(4.12) 

< -2 /   \dat\lt n(gt) + c||at||£«(ss;$,)(||at||£2(ss.dt) + ||at||£4(ss.3t)), 

since \FAt\ = \dat + at A at|. 

Given a metric h on §3, let /i(/i) be the largest number such that, for any 

real-valued 1-form CJ, 

(4.13) - / ujAduj<-4rT I \duj\h   n(h)' 
Js3 Hyh) Js3 

It follows from elliptic theory that ^(h) > 0; in fact 11(h) can be characterized 

as the smallest positive eigenvalue of the operator 

Dh = -*hd 

on the /i-co-closed 1-forms on S3. (Here of course *^ is the Hodge star operator 

for the metric h. In addition, the restriction to co-closed forms is unnecessary; 

see below.) It is the sign in (4.13) that we must keep straight to understand 

the /\_ curvature condition. 

Let us write //t = ^(^). If we write at = a"ea, where {ea} is an orthonormal 

basis of su(2) (so tri^e^e^) — —8ap), we then have 

Js3 J§3 

(4.14) Js3 

= fj,t /   tr(at A dat) 
Js3 

>Ht(J(t)-c\\j;at\\l3(s3;S[)). 
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The eigenvalue fit is continuous in £, so from (4.7), (4.12), (4.14), and (4.11) 

we have 

Let us set 

/Xoo = inf {//*}, 

where the infimum is taken not just over t G [0, T] but over the center point p 

of the construction as well. Because |J| and \dJ/dt\ are small, the differential 

inequality above can then be integrated to yield J(t) < ce~2/Xoot, (see [DK]) 

and hence E(i) < ce~2floot by (4.7). Finally, using (4.8), we obtain 

(4.15) \FA\~g < ce'^1 on [0,log(2ro/A)] x §3. 

Donaldson observed that the eigenvalue n{gstd) is precisely 2. Now ii{h) 

varies continuously with the metric on the sphere (with respect to the C0 

topology), and all the gt can be made arbitrarily close to the standard one by 

taking ro sufficiently small. Hence we can replace /XQO in (4.15) by 2 — 5, for 

any small but positive <!>, yielding (3.2). But we have actually shown more: 

Proposition 4.1. //^oo > 2, then (3.3) holds on B2r0(p)- 

Theorem 3.2 will then follow from the following proposition. 

Proposition 4.2. // (M,g) satisfies the /\2_ curvature condition and r0 is 

sufficiently small, then II^ = 2. 

Our proof essentially consists of calculating a directional derivative of ^(h) 

at the standard metric. Changing our notation slightly from (4.5), we consider 

a family of metrics of the form 

(4.16) gt = gstd - tR^p^nUu1 0 dv? + 0(£3/2),   0 < t < 2ro, 

and we henceforth let the t in *t, Du and /i£ refer to the t in (4.16). It 

suffices to prove that iit > 2 for any such metric. (This will prove equality in 

Proposition 4.2 since, referring back to (4.5) and letting A —> 0, we see that 

Moo < Kdstd)-) 
First we note that each operator Dt : fi^S3) —> ^(S3) is self-adjoint (with 

respect to gt). If Dtuj = ucv and is ^ 0 then LU is automatically co-closed, and 
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hence an eigenform of the ^-Laplacian with eigenvalue v1. Furthermore it is 

not hard to check that the spectrum consists only of eigenvalues. Thus, while 

Dt is not elliptic, its spectrum is still discrete except for a zero eigenvalue of 

infinite multiplicity. In addition the family Dt has a strong derivative D — —*d 

at t = 0, and \\{DQ-tb)uj\\2 < C^HAJO;^ for all a;, t. It follows (cf. [Ka, Ch. 

8 §2]) that the derivative (i of fit exists at t = 0, and moreover that we can find 

a differentiable 1-parameter family of eigenforms c^, with initial derivative a;, 

satisfying 

(4.17) Dtujt = - *t dwf   =   fjLtuju 

(4-18) (VuWt)L*{&',gatd)      =      1 

for all small t. Differentiating (4.17-4.18) at t = 0 we find 

(4.19) DQU — iduo    =   fiu)o + HQLO, 

(4.20) (UJ^U)    =   0. 

(In (4.20) and below, all L2 inner products are taken with respect to gstd-) 

Taking inner product with.a;o on both sides of (4.19), and using self-adjointness 

of Do, we find 

fi = — (u;o, *duJo) = —      UJQ A **du)0' 
Js3 

But we also have (*t)
2 = Id, so **duj0 = *(— * duj0) = */io^o- Hence 

A/Mo = - / 
y§3 

UJO A *c<;o. 

To prove Proposition 4.2 it suffices to show that ft is positive. Therefore we 

are reduced to showing that, under the /\2_ curvature condition, /S3 ou Aiou < 0 

for any nonzero UJ in the //Q-eigenspace (=2-eigenspace) of D0. 

We now regard {2/2},{^2} simply as functions on M4, with its standard 

metric and orientation (which we take to be consistent with the orientation 

of M). Letting fi, * refer to the standard metric on the sphere, we have 

ft = (l/6)eijkiuidui A duk A dul and xdu1 = -(l/2)eijkiujduk A dul. It then 

easy to check that the 2-eigenspace of DQ = — * d is the three-dimensional 

space 

(4.21) {a; - a^dv? \ a G f\ JM4)} 
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We next compute *. For this it is convenient to view gt as the restriction 

from K4 to §3 of the metric gt = (gt)ijdyi (£> dyj, where 

(4.22) ^)y(y) = Sa - tRikjly
hyl + 0{tz'2) 

and Rikji = Rikjiip)- The unit normals to the sphere are the same for each 

metric in this family. Temporarily writing *J \ *t for the star operators on 

M4, S3 respectively, and j for the inclusion §3 ^-> R4, we have 

43)duj   =   -/(VW *t4) dyj) 

-   -f(9ik\9t\1/244)dyk) 

=   3*(9ik\9t\1/2)43)duk. 

Here \gt\ stands for the determinant of the 4x4 matrix ((gtjij), and (glJ) for 

the inverse of this matrix. From (4.22) we have \gt\(u) = l-tRkiukul + 0(t3/2) 

(Rki being the components of the Ricci tensor) and gl3(u) = 6ij + tRikjiukul. 

Thus, simply writing * once again for *5 \ we find 

*duj = BjmknU^U71 * duk, 

where 

-Bjmkn — J^jmkn * ^^ r>-K'mnOjk' 
1 
r 

Now let 0 7^ UJ e fi^S3) be as in (4.21).  Since gatd(duj,duq) = Sj- - "J"? 

and ctij is antisymmetric, we find 

(4.23)   UJ A iu = aijakiBirriqnu
iukurnungstd(duj,duq)n 

= CJ A *UJ = aijakiBirnjnu
lukurnunVL. 

We need one simple computational lemma. 

Lemma 4.3. 
^2 

/ ulukurnunQ, = —(SikSmn + 6im6kn + 8in8km)> 
12v 

Proof. Since the integral over the sphere of any odd function of u vanishes, 

by symmetry we are reduced to computing the integrals J^o := /g3(^1)4 and 

J22 := /§3(^1)2(^2)2. Let V be the (standard) volume of S3; it is elementary 

that V = 27r2. Using J2 {ul)2 = 1 arld symmetry we have 

J4i0 = JKu^il - (u2)2 - (u3)2 - (u4)2)] = V/4 - 3J2>2. 
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We then simply compute 

I40 =  /  cos4 0 - 47r sin2 0d0 = 7r2/4. 

Hence 72,2 — 7r2/12 and we are done.    □ 

Applying this to (4.23) we have 

12   f 
—      u A io; = {aijOLikBjjnkm + aijOLki^Biijk + Bikji)) 

(4.24) *  ^ 1 

= (y-ijOCki{Riijk + -Rzfcji) — -Rotijaij, 

where R is the scalar curvature. Since Rikji = Rijki and OLkiRujk — \o(-ki{Riiik — 

Rkijl)   =    2akl(~Ril3k  ~" Riklj)   =    2akl-^iJkl'>   We  ':iaVe   aijakl(RliJk + -R/Ayi)   = 

^OLijOLkiRijki- If we decompose the Riemann tensor into its Weyl, traceless 

Ricci, and scalar curvature pieces, then the traceless Ricci and the self-dual 

part of the Weyl curvature cannot contribute to this last expression, since 

a £ A-^4) and A-(
K4

) ® A-^4) does not contain the representations of 

30(4) corresponding to these parts of the curvature (cf. §7). Thus we can 

replace R^ki in this expression by the sum of its anti-self-dual Weyl and scalar 

components, namely W^kl + (R/12)(Sik6ji — 6u6jk). The right-hand side of 

(4.24) therefore reduces to 

On the other hand, if we set a = (l/2)aiidxi A dxj G A- TpM (where {x1} 

are our original normal coordinates based at p), then 

R 17? 

(4.2.^ 6 It. 
—  /   u; A *a; 

by the calculation above. Under the A- curvature condition, the left-hand 

side of (4.25) is positive. Thus Jo; A *u; is negative, proving Proposition 4.2, 

and therefore Theorem 3.2. 
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5.  How CLOSE IS HA TO HA1 

With the estimates of §3 now justified we can begin to estimate the error 

introduced by localization, continuing where we left off at the end of §2. For 

this we need to quantify the how good an approximation of HA the space HA 

is; specifically, we need to bound (Id— ^A)\HA somehow. It is clear that to 

estimate num(7rZ, TTW; ^4) — num(Z, W; A) we need at least a bound on the 

norm of Id — -KA as an operator from L2 to L4, but several more operator norms 

are relevant as well. The necessary estimates are summarized in Proposition 

5.1 below. We remark that nothing in this section other than this proposition 

assumes the f\_ curvature condition. 

Notation. Given a vector field Z and a connection A € M\Q, we will write 

(5.1) ^ = TTAZ
A
-Z

A
     eft^AdP). 

When no confusion can arise, we will write £^ simply as ^. 

Proposition 5.1. Assume that (M,g) satisfies the /\i curvature condition. 

Then there are constants c such that for A G M\0 and Z = Zh + kZ/ G HA, 

(a) 

Wtih + \Hz\U + \\rVAi2h < c(|b|A2
V

/|^Ai + \k\X2) 

(b) 

(5.3) 

and (c) 

<c(Ay|logA|||Zb||2 + A||fcZ'||2), 

Il#ll4 + HVA#||a<c(|b|A+|*|A) 

<C(A||Zb||2 + ||fcZ'||2), 

(5-4) Mlh + lk2V^b||2 < C|b|A2 < cX2\\Zbh. 

Remark 5.1. (1) As A -> 0, ||Zb||2 -^ 27r|b| and IIA""1^'^ -»• 2TTV2 (see (2.1)), 

so we need prove only the first half of each inequality above. 

(2) Part (a) improves the 'tangential' (Zb) part of Proposition 3.7 of [GP2] 

by a full power of A, and slightly improves the 'normal' (Z') part. 
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(3) For S4 the pointwise norm of (TTA — Id)(Zb + kZf) is bounded above and 

below by multiples of (|b|r2 + |fc|r3)|F|; moreover Corollary 3.4 holds with the 

inequalities going both ways. This shows that the estimates in part (a) and (c) 

are sharp, as is the tangential part of the estimate in (b). But it also suggests 

that it may be possible to improve the coefficient of |fc| in (5.3) to A \/|logA|. 

Our proof of Proposition 5.1 requires an observation from [GP2] concerning 

the approximate tangent space and the bilinear pairing \\  : r(SymQ(T*M)) ® 

r(A^(r*M)) - r(A2_Cr*M)) given by 

(5.5) T \\ u = Tabu;bce
a A 6°. 

Here SymQ(T*M) is the bundle of traceless symmetric tensors; the above com- 

bination is always anti-self-dual whenever u is self-dual. We use the same 

notation for the obvious extension of this pairing to u G /\+(T*M) ® E for 

any auxiliary bundle E; the pairing then results in an anti-self-dual E-valued 

two-form. 

Lemma 5.2 (Lemma 3.1 of [GP2]). Let Z = grad0 be any gradient vector 

field and A any self-dual connection. Then d\Z = 0 and d^Z = H0(j) \\ FA, 

where H0(f) is the traceless part of the Hessian of (j). 

We apply this to Z G HA- Since HA = ker(d^) fl ker(d^), and d*AZ = 0, it 

follows that Z - TTAZ G (ker d^)1- fl C00 = im(d^)* fl C00. Thus we can write 

(5.6) ^ = Z-7rAZ = (^)*f, 

for some 77 G f^(Ad P). But if Z = grad(/>, we also have dA(Z — TTAZ) = 

dAZ = H0(f) t| FA. Putting this together with (5.6), we conclude that 

(5.7) A^rj = tfV \\ FA. 

This elliptic equation is the source of the bounds in Proposition 5.1. We begin 

with the following lemma. 

Lemma 5.3. There are constants c such that if A £ M\0, 77,0; G Q2_(Ad P), 

and 
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then (a) 

(5-8) Il(dl)*»7ll2<c||ru;||2, 

(b) 

(5.9) IK^rr/IU + \\VA(dA_yvh < c(M2 + A-'lMh), 

and (c) 

(5.10) MdtYvlU + ||rV^(^)*77||2 < c||ra;||2. 

Proof, (a) Using (3.18) 

\\m-T,\\l = (v,AAv) = (r-\ru)  < c||(^)>||2||ra;||a> 

and (5.8) follows. 

(b) From the Sobolev embedding L^ c—> L4 we have 

(5.ii) mynWl < c(\\(dA_yv\\l + Wv^ynWl). 

Using the Weitzenbock identity (2.12) and the fact that dA* o dA* = 0 for 

self-dual connections, we have 

(5.12) 

= ((^)>, 2{dA_y^A_r1 + K({dAyT)) + 2[F, (d^)^]) 

< C((A^, A^) + ||(^)'77iii + Ili^lK^iWK^y. 
Thus 

implying 

||W»?||4<C(||W||2+||(^)>||2(1 + ||F||4)). 

By part (a), we can replace ||(rfd)*7/||2 in this inequality by ||ru;||2. From 

Corollary 3.4, the L4 norm of F over I?2ro(p) 'ls ^ cA-1. (This does not require 

the l\^_ curvature condition; see the remark after Corollary 3.4.) But as A —» 0, 

the sup-norm of F outside Bro(p) goes to 0 uniformly in A (cf. [Dl, Theorem 

13.(ii)]), so ||F||4 < cA-1, and using (5.8) we obtain (5.9). 
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For (c), we proceed as in (b), first obtaining 

\\r(dA_yvr4 < c{Mdtrv\\l + Mdtrv\\4 + \\^Ar(d^yv\\l) 
<   c(\m*ri\\l + \\rVA(d*yr,\\l). 

Integrating by parts and using the Weitzenbock formula again, we have 

\\rVA(dtyri\\l    =    (dA(r2dA*ri),dA*ri) 

<   c{\\rVA(dtrvhh\\(d^rnh + \(^V,dA(r2dA*r]))\ 

+ II^*»7)II2+ l|ri;,||4||r^*»?||4||^\||2). 

Combining this with the previous inequality and using part (a), we find 

MdtyvWl + ||rVA(^)^||2 < c||ra;||2(l + \\rF\U). 

Using Corollary 3.4 and the fact that F is uniformly small for r > ro, we find 

|| rF || 4 < c, which completes the proof.    □ 

To apply this to Proposition 5.1, we need one more lemma. We remark that 

while this lemma is valid for all r, only the behavior as r —> 0 will concern us 

later. 

Lemma 5.4.  There are constants c for which the vector fields Za, Z
f satisfy 

\Za\ + |AZa| < c|a|, 

|VZa| < c|a|r, 

{Z'l + lAZ7! < cr,     and 

IVZ'I < c. 

Proof Let {x1} be normal coordinates centered at p and let Rtjki be the com- 

ponents of the Riemann tensor at p. From Definition 2.1, in these coordinates 

we have Za = a^ grad(/5
3xi) and Z' = £ grad(/33r2).From the Taylor expansion 

of the metric and ChristofFel symbols in normal coordinates, 

Qlj\Xj        Oij        '^■K<minjS'    %    T * * '  5 

Ti3k(x) = -o(RiJkl + RikjlW + • • • , 
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we have 

gx&dx1   =   — + 0(r2), 

(5.13) Vgradx*   =   -(Rijki + Rikji)x
l— ® dxk + 0(r2), ■o(Rijkl + Rikjl)x -Q- 

1 /^ 

(5.14) VVgrad^   =   -{Rm +Rikjl)—® dxk ®dxl+ 0{r), 

(5.15) Vgrad -r2    =    — ® dx^ + 0(r2),    and 

VVgrad-r2    =   0(r). 

Since j3 = 1 in a ball of fixed size near p its presence in Za and Z7 does not 

affect the order of growth. Since AZ = — trp(VVZ), the results follow.    □ 

Proof of Proposition 5.1, part (a). Let Z = Zh + kZ' G HA, and let r? be as 

in (5.6). Then (5.7) holds with (j) = (f)h + &</>', and equations (5.13) and (5.15) 

imply IffVI < c(|b|r + |fc|r2). Let u = H0(f) \\ F; from Corollary 3.4 we then 

have ||ru;||2 < c(|b|A2Y/lTogAJ + |fc|A2). Using Lemma 5.3 we obtain (5.2).    □ 

From Lemmas 5.3 and 5.4 one can quickly obtain a weaker version of (5.3), 

namely 

(5.16) H^IU + HV^Ha < c(|b|Av/|logA| + \k\X), 

as well as a similar weaker verion of (5.4). However, these inequalities are 

not sharp. This can be seen by examining what happens on S4, using the 

pointwise bound mentioned in Remark 5.1 (3). The approach we will take to 

prove parts (b) and (c) of Proposition 5.1 grew out of an attempt to generalize 

this pointwise estimate and thereby obtain sharp inequalities. 

If we take Z = Zb, (f) = </>b in (5.6-5.7), the right-hand side of (5.7) is 

0(|b|r|F|) and is concentrated near r = 0, so one might optimistically hope 

that r/ is 0(|b|r3|F|) and that (d^)*7/ is 0(|b|r2|F|). Were this true, Proposi- 

tion 5.1 would follow from Corollary 3.4, but such a simple pointwise bound 

is wishful thinking. However, Corollary 3.4 shows that, as far as L4 estimates 

involving F are concerned, a power of r effectively cancels a derivative; thus 
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any pointwise estimate of the form 

N 

|(rf-)*r7|<c|b|2ri+2|(VA)J'FA| 

would do just as well. This is still too much to ask, but it turns out that with 

Ar = 3 we can correct the right-hand side by adding a non-local term which 

still has sufficiently small norms. This assertion is far from obvious, and we 

devote the next two sections to proving it and examining some consequences. 

6.   THE EQUATION A^ry = H0^ \\ FA 

For notational simplicity, throughout this section we fix the center point p 

of A and fix a positively oriented normal coordinate system {x1} based at p; 

as usual, our estimates remain independent of these choices. Any components 

Rijki of the Riemann tensor we write down are assumed to be evaluated at p in 

normal coordinates. Except where noted, we do not assume the /\_ curvature 

condition. 

Our approach to (approximately) solving 

(6.1) Atri = H0(f)h \\ FA 

involves a combination of analysis and representation theory. To motivate the 

approach, let us ignore for a moment the presence of the cutoff function /?; 

essentially we are then working on R4, but with a metric pulled back from M 

by the coordinates {x1}. The components of all tensors we write henceforth 

will be written relative to the local basis {dx1} of T*M. For now we will 

take the linear function /b to be some particular x^. The Hessian iJx^ is 

Vdx^ = —T^kdxj (8) dx^, so, using (5.13), we have 

(6.2) #V = ^(Rrito + R^ji) + RlliSjk}xidxj (g) dxk + 0(r2), 

where i?^ = R"^ are the components of the Ricci tensor. Thus i?0^ is 

a traceless symmetric tensor whose components, to leading order, are linear 

polynomials in normal coordinates. It is reasonable to guess that the solution 

of (6.1) will be of the form T \\ FA + 'higher order terms', where T is a traceless 
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symmetric tensor whose components, in normal coordinates, are homogeneous 

polynomials of degree three. Using the Weitzenbock formula (2.13), we have 

(6.3) 
2A^(r \\ FA) = n{T, FA) + AT\\FA + T\\ AAFA - 2VT \\ VAFA, 

where VT \\ FA = g^ViT \\ VAjFA. Assuming the homogeneity above, AT is 

a traceless symmetric tensor whose components are linear terms plus 0(r2); 

let us suppose for now that we can choose T so that the linear terms agree 

with those of H0x^. We will see later that every term on the right-hand 

side of (6.3) except the last is already sufficiently small in all the norms that 

we need. Unfortunately this one bad term remains. We can try to cancel 

it by adding to our approximate solution a term of the form S1 \\ VAiFA, 

or, equivalents, S \\ VAFA, where the components of S G r(Symo(T*M) ® 

T*M) are homogeneous polynomials of degree 4. It turns out that S can be 

chosen to cancel the previous bad term, but a new bad term arises of the form 

VS \\ VAVAFA. We can continue to play this game, hoping that it eventually 

terminates. Indeed it does so after one more term is added, essentially for 

representation-theoretic reasons. 

To explain this, we first extend the definition of \\ . Writing 

(yA)kFA = Fab;il..Ak(dxa A dxb) ® dx'1 ® ... ® dxih, 

given a tensor V e Symo(T*M) ® (T*M)k (the last factor meaning the fc-fold 

tensor product of T*M with itself), we set 

(6.4) v t| (v^i^ = va
bil-ikFbc;il^ke

a Aece r(/\* (r*M) ® Ad p). 

(Indices are raised using g^ here.) Next we note that a normal coordinate 

system determines an isomorphism 

(6.5) 
Lktrn : Sym^R4) ® (R4)fc ® Symm(R4) -, r(Sym^(r*M) ® (T*M)k) ® Pm, 

where Pm C Coo(Br0(p)) is the space of polynomials homogeneous of degree 

m in normal coordinates based at p. This map is defined by sending the 

standard basis of M4 to the local basis of sections {dx1} of r(T*M) in the 

first two factors in the image and to the coordinates {x1} themselves in the 
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third factor. Given an 50(4)-eqmvariant linear map L : Sym^R4) ® M4 -> 

Symo(M4) ® (M4)^ ® Symm(]R4) (where 50(4) acts in the way induced from 

the standard representation on M4), we then set 

L = iktm o L o q), : Sym^(r*M) ® Pl-> Symg(T*M) ® (T*M)fc ® Fm; 

by equivariance, L is independent of the choice of normal coordinates. 

Theorem 6.1. For k E {0,1,2} there exist SO(A)-equivariant linear maps 

L<fc> : Sym^M4) ® M4 -> Sym^M4) ® (M4)fc ® Symfc+3(M4) wife the following 

property. LetT = L^(Wb),5 = L^(nb), U = ^{H*), whereHh is the 1-jet 

of H0fh atp, identified in the obvious way as an element o/Symo(r*M)®P1. 

Let E be a vector bundle over M with self-dual connection A.  Then 

(6.6) 
A^{/33(T ^ + S \\ VAFA + U \\ VAVAFA)} = H0^ \\ FA - i?(b), 

where the remainder R^ satisfies 

(6.7)    \Rih)\ < c(3\b\lr2\FA\ + J2(rj+4\(VAy+1FA\ 

+ rj+3\FA\\(VAyFA\)  + r5|VAFA|2l 

pointwise. If (M,g) is Einstein and its Weyl curvature tensor is anti-self-dual, 

this can be simplified; specifically, we can take U = 0, omit j = 2 from the sum 

in (6.7), and omit the last term in (6.7). On any ball of radius less than the 

injectivity radius of M, (6.6)-(6.7) hold with the p's absent. The constant c 

in the remainder bound depends only on the geometry of the compact manifold 

M; it is independent of the center point p, the connection A, and the bundle 

E. 

Note the universality asserted in the above theorem. No particular Lie group 

is assumed to underlie the bundle E, and the connection A is not assumed to 

be centered at p. 

Before proving this theorem we see what it buys us. 
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Proof of Proposition 5.1 completed, assuming Theorem 6.1. Because of (5.16) 

it suffices to take k = 0 in (5.3). For A G M.x0, Theorem 6.1 implies that if r] 

solves (6.1), then 

»7 = r71 + G_(i2W), 

where 

Vl = (3\T ^F + S^VF + U^ VVF). 

From the homogeneity of T, 5, and [/, we then have 

IIM'tfrlU < C|b|^:i|/3r^2(V^yF||4 < C|b|A 
i=o 

by Corollary 3.4 (it is here we assume the A- curvature condition). Further- 

more, using (5.9) we have 

\\{dXrGi{B^)\\A < c(\\R^% + X-'WrR^h). 

But 

\\RV\\2   <   c|b|(||raF||2+.X;(||r'+4V^1J'||a 
j=0 

+\\r3/2F\U i|^+3/2VJ.P||4) + ||r5/2VF||4
2) 

<   c|b|A, 

and similarly 

||ri?(b)||2<C|b|A2, 

so ||(^)*^||4 < c|b|A. The same approach works for ||V
A
(G!^)*77||2, and we 

obtain (5.3). For (5.4) we have 

\\rd**r)\\2    <    ||r^Vll2 + ||^*Gf(^b))||2 

< c(|b|A2 + ||ri?^||2) 

< c|b|A2
5 

and the argument bounding ||r2VAG^*77||2 is similar.    D 

We remark that an analog of Theorem 6.1 for <// instead of (frh, with one 

higher power of r, would suffice to improve the coefficient of |fc| in (5.3) to 

A2|logA|1//2 as discussed earlier. But, to the author's surprise, so far the 

method used below to prove Theorem 6.1 has failed to prove this analog. 
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We begin the proof of Theorem 6.1 by noting (as in the proof of Lemma 

5.4), that since (3 = 1 near p, it does not affect any order of growth. Hence it 

suffices to prove (6.6-6.7) with the /3's replaced by 1, a simplification we make 

henceforth. 

We will compare the left-hand side of (6.6) to what we would get if the 

Levi-Civita connection were replaced in certain terms by the flat connection 

d determined by the {x1}. We define |T| = maxdc/^l}, where the coefficients 

CHJ are given by T = Ci^dx1 ® dxj; here / denotes a triple-index and x1 

denotes the corresponding cubic monomial. We define [51 and |i7| similarly; 

|F|, |VF|,..., denote the pointwise norms of F and its covariant derivatives. 

Examining the terms in (6.3), and noting that as r —> 0, T = 0(r3|T|) (with 

corresponding statements about derivatives), we have 

AT   =   -<9^T + 0(r3|T|), 

V*VF   =   0(|F|2 + |F|), 

vr = ar + o(r4|r|). 

(We have used (3.6) in the middle equation.) Hence 

ft(T,F) = 0(r3|T||F|) 

AT h F = -didiT \\ F + 0(r3|T||F|) 

T \\ V*VF = 0(r3|T|(|F| + |F|2)) 

VT I] VF = dT \\ VF + 0(r4|T||VF|). 

In these equations, we are still using the definition (6.4), which involves the 

metric g. Let tjt] denote the corresponding pairing defined using the flat 

metric in normal coordinates. Putting all of the above together, we then find 

2A^(T t] F) = -dAT \\\\F- 2dT \\\\ VAF + 0(|T|(r3|F| + r4|VF| + r3|F|2)). 

The Laplacian of S tj VF is handled in a similar fashion, with a little 

more work required to deal with S \\ V*V(VF). To estimate this term we 

use Lemma 3.1, with E = Ad P ® /\2T*M] the curvature K is then of the 

form FA 0 1 + 1 (g) 7£. In our case, the derivatives of F involved in V*^ can 

be ignored, since A is Yang-Mills (though these terms would in any case be 
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comparable to other terms that do not vanish). Applying the lemma, and 

again using the Weitzenbock formula (3.6), we find 

S \\ V*V(VF)   =   S \\ K(F) + ^(VF) - 4[F, VF]) 

=   0(|5|r4(|F| + |VF| + |F||VF|)). 

Putting all of the terms involving S together, we obtain 

2A*(S \\ VF) = -dAS \\\\ VF - 2dS ^ VVF 

+ 0{\S\{rA\F\ + r4|VF| + r5|VVF| + r4|F||VF|)). 

The Laplacian of U \\ VVF is treated identically, except that Lemma 3.1 is 

used twice to commute a Laplacian through two derivatives. Putting every- 

thing together, we find 

2A^(T t) F + S t] VF + U t] VVF) 

={-didiT \\\\F- dAS - 2dT \fo VF + -dAU 

(6.8)       - 2dS ^ VVF - 2dU ^ VVVF} 

+ 0((|r| + \S\ + \U\)(r3\F\ + r4|VF| + r5| VVF| + r6|VVVF| 

+ r3|F|2 + r4|F||VF| + r5|F||VVF| + r5|VF|2)). 

To establish (6.6), we must show that the terms in curly brackets on the 

right-hand side of (6.8) can be chosen to give 2H0fh \\ F, modulo the remain- 

der (6.7), and that |T| + |5| + \U\ < c|b|. (The second-order terms in H0fh 

are the reason the first term in (6.7) is r2F rather than the r3F in (6.8).) This 

rather long representation-theoretic argument is given in the next section. We 

will also see there why U can be taken to be zero if (M,g) is Einstein and 

anti-self-dual; the simplified remainder bound then follows by looking at the 

above argument and keeping track of the terms that arise only from T and 5. 

7. REPRESENTATION THEORY AND THE PARAMETRIX 

In this section we complete the proof of Theorem 6.1. In view of (6.8) it now 

suffices to show that there exist maps L^ as in the statement of the theorem 
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such that we can solve the following system of equations: 

(7.1) -IAT = ^b! 

(7.2) IAS -&r\\VF = 0; 

(7.3) ^A*7 - dS \ VVF   = harmless terms; 

(7.4) dV\VVVF   = harmless terms. 

Here "harmless terms" mean terms of the form in (6.7). For simplicity, in 

the above formula we have renamed the operation t|t| of (6.8) by \ —in 

this section there are no longer two such operations to distinguish—and have 

written —A for c^. We will drop the subscript A from F and V throughout, 

and abbreviate spaces such as Sym (E4) simply as Sym . The ball B^r^V) wiU 

simply be called B. The methods in this section are almost entirely algebraic; 

the manifold M, the metric 5, and the bundle F are essentially irrelevant. 

The outline of the argument is this. First we show that (7.1-7.4) can be 

reduced to an inhomogeneous system of linear equations whose variables are 

the components of T, 5, and [/. This system is too large to be analyzed by 

simple techniques; there are roughly 9,000 unknowns, and—if we replace the 

right-hand sides of (7.3-7.4) by zeroes—over 15,000 equations. It is difficult 

even to determine the rank of the system, let alone whether it admits a so- 

lution. Our strategy is to analyze this system in terms of the representations 

of 50(4), using Schur's lemma to reduce the number of equations as well as 

the number of variables drastically. Using this approach, we find that if we 

set S and [/ equal to zero, the system is overdetermined and the inhomoge- 

neous system admits no solution. If we allow S to be nonzero but not [/, both 

the number of variables and the number of equations increases; what is not 

obvious is that because we are interested in the right-hand sides of (7.3-7.4) 

only modulo 'harmless' terms, the former number grows faster than the lat- 

ter, and in fact we end up with more variables than equations. Unfortunately, 

the inhomogeneous system remains overdetermined and still does not admit a 

solution, save under the special curvature hypotheses mentioned in Theorem 

6.1. Finally, by allowing U to be nonzero we are able to obtain a solution in 

all cases. We end up having to show only that three matrices—a 2x2, a 3x3, 
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and a 4x4—are nonsingular. 

To present the argument in detail we first recall some elementary facts 

concerning the representations of SO (A). The Lie algebra so (4) splits as 

so(3) ©so(3); we call so(3)± the summand that acts trivially on /^ under 

the action induced by the standard representation of 50 (4). The irreducible 

representations of the complexified Lie algebra so(4, C) = s[(2, C)+ ©s[(2, C)_ 

are of the form V+ ® VL, where V± is an irreducible representation of the 

s[(2, C)±. Thus the irreducible representations of so(4, C) are classified by 

pairs (n+,n_) of nonnegative integers, where n± = dim(V±). When n+ and 

n_ have the same parity, the representation (n+,n_) is real and descends to 

50(4). Among the representations we shall see quite often are 

(2,2) ^ M4, 

(3,3)^Sym^ 

and 

(3,i) = A2
+- 

If we let n denote the n-dimensional irreducible representation of $1(2, C), then 

n ® m = (&ki[n-m\+i ^ us^nS the distributive law we then get the multiplica- 

tion rule for the representations of so (4, C). 

We will let (R4)^ denote the A;-fold tensor product of the standard repre- 

sentation, and endow any subspace with the invariant inner product given by 

taking trace over all k indices. The rational group-ring QSk of the symmetric 

group on k letters acts on (M4)fc, and the kernel and image of the endomor- 

phism of (R4)^ associated to a given element are invariant subspaces. This 

remains true if we extend the group-ring by adding in generators qij which 

act by contracting the ith and jth factors and then tensoring with the (dual 

of the) inner product in these factors. Any representation V that arises this 

way is 'symmetric' in the sense that for any n, m, the multiplicities of (n, m) 

and (ra, n) in V are equal. (This can be proven quickly from the fact the the 

standard representation of Spin(4) = SU(2) x SU(2) on R4 is given by left- 

and right- multiplication by unit quaternions.) 

We will be decomposing quite a few tensor representations and identifying 

copies of irreducible representations within them.   When we do so, we will 
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simply assert the truth of our decompositions, which are often not immediately 

obvious, but which follow from basic arguments such as dimension-counting 

and the symmetry principle above. Similarly we leave to the reader tasks such 

as verifying the formulas we will give for numerous orthogonal projections, 

and the fact that all the linear maps we define between representations are 

50(4)-equivariant. 

Our first step is to use the maps Lk,™, (see (6.5)) to recast the system (7.1- 

7.4) in terms of representations of 30(4). To avoid introducing still more 

notation, we will simply regard Hh,T,S, and U above as elements of 

H = Sym2
0(g)R\ 

T=:Symo<g)Sym3, 

<S = Symo(g)M4(g)Sym4, 

and 

U = Symo (g>R4 0 M4 ® Sym5 

respectively. Note that these are tensors of rank 3,5,7, and 9; below, com- 

ponents of tensors of rank k will always be written relative to the standard 

basis of (M4)^. Up to sign and irrelevant combinatorial factors we will ignore, 

A, applied to T, S or [/, is simply trace on the last two indices. Similarly, 

the map d : Symo ^(M4)* Symm -> Sym^®(R4)fc+1 <g> Sym™-1 is simply the 

identity tensored with the natural embedding Symm <—> M4 <g> Sym™-1. 

Let Habi be the components of Tib, and consider the rank-5 tensor A-1^) 

defined by 

(A    (H))abijk = Ha^Sjk) = Habi6jk + (ijk) = Habi6jk + Hahj8ik + Ha^Sij. 

(Throughout this section we will follow a similar convention for symmetrizing 

any tensor; see the caption for Table I in the appendices.) This tensor lies in 

SymQ(g)Sym3 and satisfies (7.1) up to a combinatoric factor cj"1. The general 

solution of (7.1) is therefore given by 

(7.5) T = c1A-1(#)+ T 
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where Tf represents the general element of the kernel of the map 

A : Symo ® Sym3 -> Sym^ (8)M4. 

Since A here is the identity on SyniQ tensored with the trace map from Sym3 

to M4, this is equivalent to 

reT'^Sym^Sym3, 

where Sym^ is the space of rank-three symmetric traceless tensors. 

The solution (7.5) is actually more general than we need, because Hh is not 

an arbitrary element of SyniQ (g)R4, but rather is given by 

Hbd — -^^{Rtibci + Rficbi) + RuiSbcli 

where {b^} are the components of b (see (6.2)). More specifically, 

Sym^ ®M4 ^ (3,3) ® (2,2) ^ (4,4) © (4,2) © (2,4) © (2,2), 

but because of the symmetries of the Riemmann tensor, the (4,4)-component 

(SyniQ-component) of TCh is zero. (See Table 1 for the projection TTM^) : 

Sym^ (g)R4 -* Sym3.) Thus 

(7.6) nhe (4,2) ©(2,4) ©(2,2). 

It will also be useful for us to identify the three irreducible subspaces in (7.6). 

The subspace (2,2) is most easily viewed as the image of the embedding 

M4   -->   Symo(g)M4 

v    i—>    X, 

where 

The subspace 

Xabi = va6bi + vb6ai--vi6ab. 

VW = (4,2) ©(2,4) 

is characterized by 

^4224 = {D G Sym^ ®M4 | Dabi + {abi) = 0}; 

note that an element of V4224 is automatically traceless. To separate the two 

irreducible pieces of V4224 we use the following observation. 
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Lemma 7.1. Let n^m and let V, V be representations of SO {A), with V = 

(n, m) ® (m, n). Suppose that (n,m) occurs in A+ ®V' but not in /\_ ^V, 

that (m, n) occurs in /\2_ ®V' but not in A+ ®Vf, and that w is an equivariant 

isomorphism 

V Z {(n, m) © (m, n) C /\2 ® V'}. 

T/ien i/ie projection 7rn)rn /rom V to i/ie subspace (n, m) (relative to the splitting 

ofV as (n, m) © (n, m)) 25 given fry 

. TTn.m = ^"1 0 (?+ ® 1) 0 W, 

where p+ : /\   —> A+ ^ ^e usuaZ self-dual projection. 

Proof Trivial.    □ 

Alternatively, one can project using an operator of the form a^^+6^n, where 

Kn is the quadratic Casimir operator of the n-dimensional representation of 

50(3)+. For our purposes, however, this is computationally prohibitive. 

One of our eventual applications of this lemma will use the subspace (5,1)© 

(1, 5) C Sym2(/\2), which is familiar as the 'space of Weyl tensors' that arises 

in the decomposition of the Riemanri tensor into irreducible components. For 

this reason we refer to maps w as in the lemma as 'Weyl maps'; Table 2 in the 

appendices lists all the Weyl maps we will need. Our present application of this 

lemma is to VW We observe that A+ <8*4 = (3,1) ® (2,2) ^ (4,2) © (2,2), 

which contains (4,2) but not (2,4). The projection from V4224 to its (4,2)- 

subspace is therefore computable from the relevant Weyl map w in Table 2. 

The image of w is the subspace of traceless tensors satisfying the 'Bianchi 

identity'; i.e. in 

F' = {X e /\2 ® M4 I Xail = 0 and Xabl + (abi) = 0}. 

From this we find that the (4,2)-piece of Tih is proportional to w'1 op+(X), 

where Xabk = a^R^ab+SakR^-SbkR^a] = ^[3W^a6+^(3^a^6-3^6^a- 

2^fca-R/x&+ 2^fc6^A"i)]' here W is the Weyl curvature tensor and R0 the traceless 
Ricci tensor. This piece vanishes identically if (M, g) is Einstein and anti-self- 

dual; we will see later why this accounts for the second assertion in Theorem 

6.1.   (Of course the (2,4)-piece of Hh vanishes under similar conditions, and 
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the (2,2)-piece vanishes if (M,g) is Ricci-flat, but neither of these cases leads 

to a simplification of (6.6).) However, the vanishing of the (4,2)-piece of Hh is 

not a natural condition geometrically for the applications of Theorem 6.1 we 

have in mind; CP2 , for example, is seZ/-dual. 

Now let us return to solving (7.1-7.4). Since (7.5) gives the complete solution 

of (7.1), we turn next to (7.2). Note that for any connection that is Yang- Mills 

with respect to the flat metric 6 induced by normal coordinates on i?, (VF)^ 

lies in the space J7' ®r(End(i?|B)), after the normal-coordinate identification 

T*M = M4 is made for each x G B. For a connection that is self-dual with 

respect to 5, VF lies in Jr^42>)®r(End(E\B))^ where theiirst factor denotes the 

(4, 2)-subspace of J7'. Now the connections we are interested in are not <5-self- 

dual, but g-self-dual. However, since the difference between the two metrics 

is 0(r2), the curvature F of a ^-self-dual connection may be written as the 

sum of a 5-self-dual two-form plus a term of size 0(r2|F|). Similarly, in (7.2- 

7.4) VF is the sum of an element of J7'^) ® r(End(F|JB)) plus a term of size 

0(r2|VF|), and so on for higher derivatives. Thus the errors introduced into 

the explicit terms on the right-hand sides of (6.6 — 6.7) by replacing VF by its 

projection to F'^) ® r(End(F|j5)), with similar replacements for the higher 

derivatives, are already bounded by the remainder terms in those equations, so 

it is without loss of generality that we make these replacements henceforth. We 

will also cease to write the essentially irrelevant factor r(End(F|JB)) explicitly. 

From the fundamental property of the pairing \\, we have —AS+dT \\ VF G 

(1,3) <S> Sym2. Since VF G ^(4,2)5 we may regard the pairing in (7.2), with 

a fixed first argument, as giving us an equivariant map from (4,2) to (1,3) (8) 

Sym2; moreover we know that -AS + dT G Symo(g)M4 <g> Sym2. To solve 

(7.2) simultaneously for all self-dual connections, then, it is sufficient that 

any equivariant map from Synio <g>M4 = (4,4) 0 (4,2) 0 (2,4) © (2,2) to 

Hom((4,2),(l,3)) ^ (4,2) <g> (1,3) ^ (4,4) 0 (4,2), when tensored with the 

identity map of Sym2, vanish on — A'S + dT. Equivalently, we require that 

the component of —AS + dT lying in [(4,4) © (4,2)] ® Sym2 vanish, implying 

-AS + dT e [(2,4) © (2,2)] ® Sym2.  Since Sym2 ^ Sym2 ©M, and since T 
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satisfies (7.5), this can be expressed as 

(7.7) AS = dA-^H) + Tf + C + B, 

where Babijk = Babi6jk, and where 

CfGC = {[(2,4)©(2,2)]    C    Sym^ ®R4} ® Syml 

B et3= [(2,4) © (2,2)]    C   Symo ®M4. 

For T G Symo®R4 (g) Sym2 (which applies to T',C, and B), define 

(A      {T))ahijklm = Tab(ijkSlm)] 

also define 

{A" A~ {H))ahijkim — Hab^6jkSim). 

Then the general solution of (7.7) is given by 

(7.8) S = c2A-lA-\H) + csA-^r + C) + c^A'1^) + S\ 

where the Q are easily-computed combinatoric factors and 

S' G ker A : Sym2 ®M4 ® Sym4 -> Sym2 ®M4 ® Sym2 . 

Since the kernel of the trace map from Sym4 to Sym2 is the space SyniQ, 

S' G ker A if and only if 

5' G S' = Sym2 ®E4 ® Sym4 . 

With the general solution of (7.1-7.2) in hand, we turn to (7.3).  We will 

find the following notation quite useful. 

^=(3,1) 

V^r = Jr'(4,2) = (4,2)C^(8>M4 

F" = T ® R4 ® M4 <g> R4 

VVVJr= VV^^R4 

As the notation suggests, given a self-dual connection, the functor assigning to 

each representation of 50(4) a tensor bundle over (M, g) naturally associates 



190 DAVID GROISSER 

subrepresentations of the above spaces with components of the corresponding 

derivatives of the curvature F. 

Consider the decomposition J7" = F^Sym2 ©.T7® /\ . In the corresponding 

decomposition of VVF, the second piece is K2(F), where K2 is the curvature 

of the bundle E ® tf T*M. Since K2 = F ® 1 0 1 ® U, we have K2(F) = 

0(|F| + l-FI2). Similarly, the second term in the decomposition J7 ® Sym2 = 

J7 ® Sym2 ©J7 ® M, corresponds to AF, which by (3.6) is also 0{\F\ + |F|2). 

Since ^AU — dS is 0(r3(|?7| + |S'|)), the contributions of both of these terms to 

the left-hand side of (7.3) are 'harmless' in the sense defined earlier. Thus it 

suffices to prove (7.3) with VVF replaced by (SyniQ V)F—i.e., the component 

of VVF corresponding to J7 ® Synio—or, equivalently, with ^AU — dS E 

Sym0 ®M4 ® R4 ® Sym   replaced by its projection to Sym0 ® Sym0 ® Sym . 

To make further headway it we consider the decomposition WJ7 and J7" 

into irreducible components. From the tensor product rule, we have 

(7.9) VW = ^3) © J7'^ © [ some J7^] © [ some J7'^], 

where F'^m) denotes a subrepresentation of J7" isomorphic to (n, m); in the 

cases (3,3) and (3,1), these subrepresentations are not unique, having multi- 

plicity two in J7"'. On the other hand, from the decompositions of (3,1) ® (3,3) 

and (3,1)® [(3,1)0(1,3)] we also have Jr®Sym2 = ^^©[some F"3i3)]®F"li3) 

and J7®/\2 = J7'^ © [ some F"^)] © T'^i) © [ some T"^)]. If we define pro- 

jections 7rsym,7ranti as the compositions 

VVF^J7" ^^®Sym2, 

respectively, where the last arrow in each case is the obvious projection, it 

follows that that image(7rsym) C F'^z) ® [ some ^"(s^)] an(i ^^ image(7ranti) C 

F'L 1x © [ some ^(3,3)] © [ some J7^!)], since distinct representations cannot 

intertwine. Now any element of WJ7 can be written as the sum of its sym- 

metric and antisymmetric parts, so by looking at the decomposition of WJ7 

we see that the four distinct representations appearing in the (possible) images 

of these two projections must in fact be present; the only question is whether 

(3,3) appears in both images, and in fact it does.  To prove that it appears 
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in image(7ranti), for example, we can define a map j : Symg —► A ® A by 

j(X)ijkl = SikXji - SuXjk - SjkXu + SjiXik and observe that the composition 

Sym^ 4 A' ® A' ^ ^® A' ^ Sym^ 

is a nonzero multiple of the identity. (Here tr^ denotes trace between the first 

and third indices of A2 ® t\ -) By changing two of the signs in the definition 

of j we prove similarly that image(7rS2/m) D (3,3). By Schur's lemma the map 

k : (3,3) ^-> image(7ranti) ^ VW7 -^^ image(7rsym) 

is either zero or an isomorphism; if zero then VV^7 would contain two inde- 

pendent copies of (3,3), which it does not. Hence k is an isomorphism. As 

a consequence, the (3,3)-component of (SyniQ V)F can be expressed linearly 

in terms of (A2V)F, so |(Symo VF)^)! < c\K2{F)\, and as before we see 

that the contribution of this component to the left-hand side of (7.3) is harm- 

less. Thus we can further replace \&U — OS in (7.3) by its projection to 

[(5,3) C Symo<g)Symo] ® Sym3, which we denote by (^AU - d3)^,3)^sym3- 

(As the reader can check, Sym0 (g)SymQ contains a unique copy of (5,3).) 

To solve (7.3), then, it suffices to set equal to zero any component of 

(^AC/ + 9S')(5)3)^sym3 lying in a subrepresentation isomorphic to an irreducible 

component of 

(7.10) Hom((5,3), (1,3)) ® Sym3 ^ [(5,5) 0 (5,3) 0 (5,1)] ® Sym3 . 

Letting 7r(5)m), m = 1,2,3, denote the projection from Symg^SymQ to the 

subspace (5,m) (each of which has multiplicity 1), letting TTS denote the pro- 

jection 1 ® 7rsym2 ® 1 : Symo OM4 0 M4 ® Sym3 (see Table 1), and using (7.8), 

we see that it suffices to solve the system 

' (7r(5f5) ® 1)(^(-X:)) - (7r(5,5) ® ^(^(A"^-1^)) 

(7.11) | (7r(5,3) ® 1)MX)) = (7r(5,3) ® l^irsiA-'A-'H)) 

k (^(5,1) ® 1)(^(X)) - (TT^D ® l^TrsiA-'A-'H)) 

where X = AU + A'^V + C + B) + S' and T7, C, B and S" are the tensors 

appearing in (7.8), redefined to absorb some constants. 
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A similar but longer argument applies to (7.4). We start by considering the 

decomposition M4(g>M4(g)M4 ^ Sym3 e[M4(g) A2 + A2 ®^4] • The sum in the sec- 

ond factor is not direct; the intersection of the two summands is A3- Tensoring 

through with T we find that (l®71"^ A 2)(VVV^r) = ^JT®^\ which contains 

(4,4) exactly once but does not contain (2,4), that (1 ® TT * 2 TD4)(VVVJr) = 

(A V)Jr(8)M4, which contains (4,4) and (2,4) exactly once each, and that the 

intersection (1 <g> TTAS^VVW
7
) C T ® A3 - (3)!) ® (2,2) does not contain 

(4,4) or (2,4). Thus (1 ® TT^ A2+ A 20]R4)(VVVJr) contains (4,4) with mul- 

tiplicity two and (2,4) with multiplicity one. These representations have the 

same multiplicities in VVVF, so the projection (1 ® TIW A 2 A 2 ^4) must 

be an isomorphism on these subspaces. Now Sym = SymQ ©(complement), 

and it is not hard to check that the complement lies in the (non-direct) sum 

[M C Sym2] ® M4 + R4 ® A2 + A2 ««4. Tensoring through with T and re- 

interpreting this decomposition in terms of the derivatives of a curvature 

two-form F, we find that the first term in the complement corresponds to 

V(AF), the second to K^F) (where K3 is the curvature of E <g> (T*M)3), 

and the third to X^i^^))- Using Lemma 3.1 and (3.6), we see that all of 

these give rise to 'harmless' terms in (7.4), so the only potentially 'harm- 

ful' terms are those coming from T <g) SymQ. But this space is isomorphic 

to (6,4) © (4,4) © (2,4), and we have seen above that all the (4,4)- and 

(2,4)-components of VVV^7 project isomorphically to the 'harmless' sub- 

space (1 (g)TTfl^ A 2 A 2 (o)i^4)(VVV^r). Thus the only significant component of 

VVVF in (7.4) is the (6,4)-component of (Sym^ V)F, and we need only set 

equal to zero any component of (<9[/)[(6,4)Csym2®sym3]®Sym4 tying in a subrep- 

resentation isomorphic to an irreducible component of 

(7.12) Hom((6,4), (1,3)) ® Sym4 ^ [(6,6) © (6,4) © (6,2)] ® Sym4 . 

This can be re-expressed as a system of equations of the form 

' (7r(6,6) ® IXTTCPO) = (T<6,6) ® IXMA^A-'A-1^)) 

(7.13) \ (7r(6>4) ® IJKW) = (7r(6i4) ® ^(^(A-'A"^-1^)) 

w (7r(6)2) ® \){*u(X)) = (^(6,2) ® IXMA^A^A-1^)) 

where X is an appropriate tensor, where TTU = 1 ® TTsymg ® 1 : Sym^ ®IR4 ® 



YANG-MILLS MODULI SPACES 193 

M4 ® M4 ® Sym4 -> Synio ® Synio (g) Sym4 (see Table 1), and where the mean- 

ings of 7r(6)m) should be obvious. (The precise definition of A- A~ A- H is 

irrelevant.) 

It is sufficient for us to solve (7.1-7.4) separately in the three cases corre- 

sponding to the three irreducible subspaces in (7.6); we will proceed from the 

easiest case to the hardest. Only in the last case will we need to worry about 

U. 

CASE 1. Hh e (2,2) 

We start by setting U = 0, so that (7.4) is automatically satisfied, and 

by setting to zero any component of S lying in an irreducible subspace of 

S not isomorphic to (2,2). We demand that the (2,2)-components be the 

images of a standard copy of (2,2) under as-yet to be determined equivariant 

isomorphisms. The spaces T^C,/?, and S' defined earlier contain (2,2) with 

multiplicity 1,2,1, and 1 respectively; by Schur's lemma there are thus five 

free parameters in the general solution (7.8). Completely decomposing (7.10), 

using Sym3 ^ Sym3 eM4 ^ (4,4) 0 (2,2), we find that (2,2) occurs uniquely 

in each of (5,5) ® Sym3 and (5,3) ® Sym3 and is absent from (5,1) ® Sym3; 

thus (2,2) occurs with multiplicity two in (7.10). If we define an equivariant 

isomorphism from the direct sum of these two copies of (2,2) to a standard copy 

of 2(2,2), and compose with the maps vr ® 1 on the left-hand side of (7.11), 

we obtain a map ©i(2,2) -> ©?(2,2), or equivalently from R5 ® (2,2) —► 
M2 <g) (2,2), where 50(4) acts trivially on the first factor in the source and 

target spaces. By Schur's lemma this map must be of the form E <g) 1, where 

n = I^2'2) : R5 -► R2. The system (7.11) will be solvable if 11 is surjective, and 

a splitting of the exact sequence 0 —> R3 —> R5 —> R2 —> 0 will give a solution 

that depends linearly on Hb. Thus it suffices to show that 11 has rank two, 

which we accomplish by finding a nonsingular 2x2 submatrix of a matrix 

representing 11. 

To do this it suffices to ignore B and S", and define maps R4 —► T7, R4 —► C 

by 

T'(v)ijkim = T'ijklm = --V(i8j)(k5im) + [vk(&ii8jm + SimSji - -6ijSlm + (fc/m)], 
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(7.14) C(v)ijkim = Cijklm = [Vk(8ii6jm + SimSji - -6^6^ + (fcZm)], 

where v G M4. To obtain an isomorphism from the 2(2,2)-subspace of (7.10) to 

R4©R4, we use the map Tr(2'2) = ((^(5,5) ® 1) 0^25,36,47, (^(5,3) ®1) 0^25,36,47), 
where 

(^25,36,47(^))z — ^iabcabc 

It is not immediately obvious that Tr(2'2^ is an isomorphism, but since (7.10) 

contains exactly two copies of (2,2) this will be verified a posteriori when we 

show that the 2x2 matrix mentioned above has rank two. 

The only remaining ingredients required to compute this matrix are for- 

mulas for the projections TTfam). Since (5,5) in this context is the subspace 

SyniQ of SymQ®SymQ—in general, SymQ = (n + l,n + 1), and Symn = 

©j=o (n + 1 — 2,7, n + 1 — 2j)—this projection is relatively easy to compute; 

see table 1. The projection TT^S) is harder to get one's hands on because (5,3) 

is not a 'symmetric' representation. By dimension-counting and symmetry, 

however, it is not hard to show that 

(7.15) Sym2(Sym2) £ [(5,5) © (3,3) © (1,1)] © [(5,1) © (1,5)] 

and that 

f\(Sym2
0) * [(5,3) © (3, 5)] © [(3,1) © (1,3)]. 

By antisymmetrizing and taking traces—the subspaces (5,3)©(3, 5) and (5,1)© 

(1,5) are traceless—it is again not hard to obtain a formula for the projection 

^5335 • Sym^ (g) Sym^ -» subspace isomorphic to (5, 3) © (3,5). To project from 

this subspace down to (5,3), we use the Weyl map w : /\2(SymQ) —► Sym^ <g) /\2 

given in Table 2, and define a projection ^53^5335, as in Lemma 7.1.   Then 

^(5,3)  = ^53^5335 0 ^5335- 

We can now compute the 2x2 matrix defined above. These computations 

are extremely cumbersome—after all, we are dealing with tensors with seven- 

index tensors, and Case 3 will involve nine indices—and we leave the details 

to the reader. (The author left the details to Maple.) In the end, the matrix 

one computes is 
50     150 

-50   -30 
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As claimed, this has rank two, and E^2,2^ is surjective. 

CASE 2. nh e (2,4) 

The procedure is almost identical to the previous one, but with (2,2) re- 

placed by (2,4). The spaces T'^C^B and S' contain (2,4) with multiplicity 

1,2,1, and 2 respectively, while each of the spaces (5, m) (g)Sym3 for m = 1,2,3 

contains (2,4) exactly once. Thus we are reduced to showing that a map 

j-[(2,4) . jje _>. ^s^ defined analogously to n^2'2), is surjective. We take our 

standard copy of (2,4) to be the one contained in V4224 C SymQ®R4; us- 

ing Lemma 7.1 with orientations reversed, the (2,4)- subspace can be ex- 

plicitly identified using the isomorphism V4224 — F' given in Table 1. We 

define a map tr15^6 : S —> M4 ® R4 ® M4 by tr15y26(X)ijk = Xabijabk and set 

Tr(2'4)   =   ((^(5,5)  (2) 1) O £7-15,26, (^(5,3) ® 1) O ^15,26,(^(5,1)  ® 1) 0 ^15,26);   this 

restricts to isomorphism from the 3(2,4)- subspace of (7.10) to the direct sum 

of three standard copies. From (7.15) it is not hard to compute the projection 

TTSHS analogous to 7^335 (see Table 1). Obtaining the projection ^51^5115 from 

a Weyl map given in Table 2, we then have TT^I) = TTSI+SUB O 7^115. 

Since we only need to show n^2,4^ has rank three, we need only find a 

nonsingular 3x3 submatrix of the matrix representing this map. For X G 

(2,4), we define T'(X), C(X), and S'^X) by 

(7.16) T-jklm =: Xij(kSlm) + 3(^(fc^m)j + ^(/c^m)i), 

(7.10 Cijkim = [(Xkii - Xkli)6jm + (ij)] + (Zra), 

and 

Sabijklm = {[Xjki($alSbm + ^amhl " -^ab^lrn)\ + {jklm)} 

(7'18) - -£{[8jk(GnaXb)mi + (Zra)) - XimiSab] + {jklm)} 

+ -zXabi6(jk6lm). 

With respect to these maps, the 3x3 submatrix of E^2'4) is found to be 

-8   4   -1 
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This has rank 3, and H^2,4^ is surjective. 

CASE 3. Hh e (4,2) 

Unfortunately we cannot take U — 0 in this case. If we do, and proceed 

as before, we obtain a map 11 : M5 —> R4. One has every right to expect a 

linear map from R5 to R4 to be surjective, but, rather surprisingly, one finds 

that 11 only has rank 3. (Not surprisingly for a map of rank 3, its image does 

not contain the image of the right-hand side of the system (7.11), which is a 

line in R4). This seems to be a consequence of low-dimensional crowding that 

disappears when we allow U to be nonzero. In fact, there is so much room in 

the space U that we can find a solution to (7.1-7.4) for which 

(7.19) ^AU-dS = 0, 

rather than the more delicate condition that led to (7.11). The general solution 

of (7.19), given (7.8), is 

U = csA^A^A-^H) + A-1 A-1 fair + C) + c7B) + csA"1^') + U', 

where U' € ker A, and where we define A-1 : S' + A~l{T' + C) by 

V^      \d ))abijklmnp — ^abi(jklm^np) • 

(The precise definitions of the other A-1 are unimportant.) We will find a 

solution in which B and U' are zero; thus we can take X = A~1A'~1(Tf + C) + 

A-1 (S") in (7.13), after some redefinitions to absorb constants. 

The space (7.12) contains (4,2) with multiplicity four, with one copy com- 

ing from (6,6) <g> Sym4, two from (6,4) ® Sym , and one from (6,2) <g) Sym4. 

Thus it suffices to define four embeddings of (4,2) into U and show that 

the appropriately-defined map E^4,2^ : R4 —> R4 is surjective. For the first 

three embeddings we use the formulas (7.16-7.18), but with X taken from 

(4,2) C Symo®R4 instead of (2,4), and apply A-1 as needed. For the fourth 

embedding we apply A-1 to 

S'Mjkim = {[Xjka6ni6m)b + (ab)] + (jklm)} 

- ji^jkidXu^^m - Xabi8im) + (Zra)) + Xim(a8b)i] + (jklm)} 
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The next step is to identify the projections 7r(6,m) : SyniQ (8) Synio —>• [(6,m)- 

subspace] that appear in (7.13); we proceed as in the earlier cases. In this 

case (6,6) = Sym^ is easy to identify, but the subspaces (6,4) © (4,6) and 

(6, 2) © (2,6) seem to have no simpler description as subspaces of Sym^ ® SyniQ 

than that they are the kernels of 1 — TTQ^Q and 1 — 7^226 respectively (see Table 

1). (We note in passing, though, that (6,6) © (6,4) © (4,6) © (6,2) © (2,6) 

is precisely the totally traceless subspace of SymQ(g)SymQ, just as (5,5) © 

(5, 3) © (3, 5) © (5,1) © (1, 5) is the totally traceless subspace of Synio ® Symg.) 

The images of these spaces under the Weyl maps in Table 2 are easier to 

understand; (6,4) © (4,6) is identified as the subspace of (/\2 ® Sym^o sat- 

isfying the Bianchi identity on the first three indices, while (6,2) © (2,6) C 

(space W of Weyl tensors ) ® R4 C A2 ® A2 ®^4 is just the totally traceless 

subspace (W(S>M4)o (equivalently, the subspace of VV(g)M4 satisyfing the Bianchi 

identity on the last three indices). For m = 2,4 the Weyl maps give us pro- 

jections 7r6m^6mm6 and we set 7r(6,m) = 7r6m<-6mm6 ° 7r6mm6. 

Finally, we need an isomorphism from the 4(4,2) subspace of (7.12) to the 

direct sum of four standard copies (each of which we again take to lie in 

Synio <S>M4), and for this we make use of the triple traces tr 16,27,38(^)ijk = 

Xabcijabck, ^36,47,89(^)ijk = ^ijabkabcc   The map 

Tr(4'2) ^ (tr 16,27,38 0 7r(6,6)j ^16,27,38 0 ^(6,4) j ^36,47,89 0 ^(6,4), ^16,27,38 0 ^"(6,2)) 

gives the desired isomorphism. The matrix of H^4,4^ is found to be 

/ -1008 1512 -126 -252 \ 
128 -432 -64 -168 

-3200 2400 -80          0     ' 
V      400 -120 10        36 / 

which has rank four, as desired. 

The linear maps L^ of Theorem 6.1 are simply the sums of 5, T, and U for 

the three cases above. This completes the proof of this theorem, and hence of 

Proposition 5.1 as well.    □ 
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8. LOCALIZATION OF THE CURVATURE FORMULA: FINAL STAGE 

We are ready to estimate both the approximate sectional curvature a and 

its difference from the true curvature a. First we introduce some notation 

to shorten several long formulas. Throughout this section we abbreviate TTA 

as TT, and we use the notation £# = TTZ — Z as in (5.1). We will frequently 

encounter remainder terms of the form Ri(Z,W),Ri(Z,€w), and Ri(W^z) 

(see Proposition 2.1), the details of whose arguments will often be largely 

irrelevant. For that purpose we let Rzw generically denote any constant- 

coefficient linear combination of such terms; note that this includes Ri(Z, TTW) 

and RiiW.TrZ). 

Recalling Corollary 2.5, we have 

aA(7rZ, TTW) - aA(Z, W) + (^(TTZ, TTW) - aA(7rZ, TTW)) 

(8.1) _ Rem{Z, W) + num(7rZ, TTW; A) - num(Z, W; A) 

denom(7rZ, TTW) 

where 

Rem(Z, W) = \(izW, Ro(Z, W)) + 3(Ro(Z, W), G*{R0(Z, W))) 

(8-2) - ((Z* A W0_, R2(^ ^)) + ((W* A W)-, RaCZ, Z)) 

+ {Rzw, G_Rzw) + (Rzz, G_Rww)' 

To write out the difference of the 'num' terms in (8.1) in usable form, we start 

by noting that 

(8.3)    {TTZ, TTW}, G£{nZ, nW}) - ({Z, W}, G£{Z, W}) 

= ({wZ, nW} - {Z, W}, G$({7rZ, nW} + {Z, W})) . 

From (5.1) we have 

{TTZ, TTW} - {Z, W} = {Z, ^} - {W, ^} + {&,&} 

and 

{TTZ, WW} + {Z, W} = {Z, wW} - {W, irZ} + {&, ^w}. 

Inserting these expressions into (8.3), we can use (2.2) to manipulate the right- 

hand side of (8.3) in the same fashion as in (2.21). After a judicious regrouping 
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of terms, using twZ = —LzW, we find 

(8.4) 

({TTZ, TTW}, <#{TTZ, KW}) - {Z, W}, G£{Z, W}) 

= Imz, KW}, tznW) + ({^, W}, izW) + ({ivW, &}, tw^z) + (W * Z)} 

+ fatw - iwtz, MZ, nW) - Ro(W, irZ)) 

+ (Ro(Z, irW) - Ro(W, TTZ), G^(RO(Z, fa) - Ro(W, ^))) 

+ (Rzw,GQ {^z,^w}) + ({^z,Cw},G0 {^z,^w})- 

(Here (W ♦-»• Z) means the preceding set of terms with W and Z interchanged.) 

Similarly, using (W* A Z)_ = (Z* A W). we have 

(8.5) ([nZ,irW]-,GA[TrZ,TrW]-)-[Z,W]-,G*[Z,W}_} 

= {([fe, vrW]_, (Z* A 7rW)_) + {{&, W]_, (Z* A W)_) 

+ <[7rW,^]_, (W* A ^)_) + (W ~ Z)} 

To handle the difference arising from the third term in num(-, •; A) we write 

(8.6) ([irZ,TrZ}_,G*[irW,irW}_)-([Z,Z]_,G*[W,W}_) 

=1{G^([KZ,TVZ}- - [Z,W]),[irW,irW]- + [W,W]-) + (W ^ Z) 

J^Gti&ZM- + [^,^]-),2[Wr,7rW]_ + \iw,iw\-) + (W » Z) 

={{irW,-KW]_ + \W, W]-,(Z' Afo)-) + <[&,&]-, (W* A TTW).) 

+ 2((W* A 7rW)_, R2(Z, ^)) + (i2zz, G^w, fa].) 

+ {RWW,GA_RZZ) + \([tLzM-,G*[fa,fa]-) + {W~ Z). 

To obtain a^Z^W) - a(Z,W) we multiply (8.4) by 3, subtract (8.5), 

and add (8.6). The terms not involving any Green operator or remainder Rj 

combine to yield 

Qfe, nW, Z, irW) + Qfe, W, Z, W) + Q(irW, &, W, &) + (W~Z), 
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where Q(a, 77, Z, 77) denotes the left-hand side of (2.23). By Lemma 2.4, 

Q(a,ri,Z,rj) = 0, 

so that only the terms in (8.4-8.6) containing Green operators or remain- 

ders contributes to a — a. (This cancellation is fortuitous since if we choose 

Z = Za, |a| = 1 and W = \~1Z'—in which case the denominator of the sec- 

tional curvature formula approaches a nonzero constant—then for example 

({€ziW},LzW) ~ A-1 as A —> 0.) To bound the remaining terms we must 

estimate the remainders R^ in several cases. Below, we let 

Z{h,k) = (7rA-Id)(Zh + kZ'). 

Proposition 8.1. Fori = 0,2 the remainders Ri satisfy the following inequal- 

ities. 

(a) 

(8.7) 1/?^ + kZ',a)\ < c/32{(|b| + |fc|r)(M + r|Va| + |Afa|) 

+ (2-i)\k\ Id^'al + i|fc| \d*a\}. 

(b) 

(8.8) \Ri(Zhl+k1Z
,,Zh2 + k2Z')\ 

< c^dbxl + IfcilrJdbal + Nr)(|F| + r\VAF\). 

(c) 

(8.9) mz^+kj'^^^l^cfd^l 

+ \h\rmib2M)\+r\V\baM)\ + (|b2| + \h\r)(\F\ + r\VAF\)). 

Proof (a) Again it suffices to replace /? by 1 in the proof. From (2.4-2.5) we 

have 

IRiCZ.a)! < c{(\AZ\ + \Z\)\a\ + \VZ\ \VAa\ + \Z\ |Afa|.} 

If k = 0, the stated inequality follows immediately from equations (2.4-2.5) 

and Lemma 5.4> so by linearity it suffices to assume b = 0,fc = 1. First 

consider the case i = 0.  The only parts of the bound that are not apparent 
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are the term proportional to the first derivatives of a. But we can use (5.15) 

to estimate the troublesome term in (2.4), namely 

(8.10) = (Sij + 0(r2))Ld/dxiVd/dxJa 

= -dA*a + 0{r2\Va\), 

so (8.7) follows. Similarly when i = 2 we have 

p_(VaZ'AV0a)   =   p-idx* AS7a/axia + 0(r2\Va\) 

=   ^a + 0(r2|Va|) 

and we again obtain (8.7). 

(b) Let Z = Zbl + kiZ',W = Zb2 + k^Z', and a = W = twF. Using part 

(a) and Lemma 5.2, we have 

R,(Z, W) < c^dbil + |fci|r)(|W| + r\VW\ + |VF0(^b2 + W) \\ F\). 

From (5.13-5.15) we have 

|iyo(0b + A;<A')l<cr(|b| + |A;|r), 

iVf^C^ + ^OI^cdbl + lfclr),     . 

as well as bounds on the other terms above, and we obtain (8.8). 

(c) Let Z, W be as in (b), let £ = £(b,fc)> and let (/> = </>b2 + ^20'. Since 

nW = W + £ € HA, Lemma 5.2 implies dA*(, = 0 and dA$, = -H04> \\ F. 

Hence, using (2.4) and part (a), Af£ = -2dA*(H0(j) \\ F), and 

(8.12) 

R2(Z,0 = P-{Zm Ad^(ifV \\ F)) + OG^dbil + |fci|r)(|$| + r|V^|)), 

with a similar formula for Ro(Z, £). Using (8.11) the desired bound follows as 

in (b).    □ 

Applying Proposition 8.1, (8.12), Proposition 5.1, and Corollary 3.4 we 

obtain the following. 

Corollary 8.2. Let Z = Za,W = Zh + kZ'. Then 

\\Rzzh   <   c|a|2. 

WRzwh   <   c|a|(|b| + |A;|A). 

(s-11) 



202 DAVID GROISSER 

WRwwh < catf + Ar^llogAI1'2). 

WrRzzh < c|a|2A. 

\\rRzwh < claKlblA+lfclA'llogAI1/2)). 

WrRwwh < c(|b|2A + ^A2). 

(8.13)     \\R2(Z,tz) -p_(Z* Adfm* 1, F))||2 < c|a|2A2|logA|1/2. 

Using these estimates, Corollaries 3.4 and 3.6, Proposition 5.1, Lemma 5.4, 

and (5.1) to bound most of the terms in (8.2) and (8.4-8.6) remaining after 

the cancellation discussed earlier, we can rewrite the numerator in (8.1) as 

(8.14) 

^(izW, Ro(Z, W)) - {{Z* A W)., R2(i, W)) + ({W* A W)_, R2(Z, Z)) 

+ 2((W* A 7rW)_, R2(Z, iz)) + 2((Z* A 7rZ)_, R2(W, ^)) 

+ terms involving G$ + 0(A|a|2(|b|2 + A;2A2)). 

It is easy to check using the tools above that the first two terms in (8.14) are 

0(|a|2(|b|2 + A;2A)). So are the third and fourth terms, as we see by noting 

that //?(|b|2 + fc2r2) \F\ |R|) < c(|b|2||R||2 + tf\\prF\\2\\TR\\2). Finally, we get 

the same bound for the fifth term, using (8.9) directly rather than Corollary 

8.2 to do the estimate. 

It remains to estimate the four terms in (8.2) and (8.4) involving G^. This 

requires some delicacy because the eigenvalues of A0 are not bounded away 

from zero; in fact it can be shown that the first three eigenvalues are bounded 

above and below by positive multiples of A . This fact is widely known, but a 

proof does not seem to exist in the literature, so we give a proof of the lower 

bound—which for us is the important one—in the appendix. It is also known 

that all but three (= dim(Ad P)) eigenvalues are uniformly bounded away 

from zero (see [Tl, Lemma 6.10]). Thus we have the following characterization 

of the eigenvalues of A0 in A^Ao- 

Proposition 8.3. Let {^{A)}^ be the eigenvalues of AQ, indexed in non- 

decreasing order.    Then there are positive constants Ci,C2 such that for all 
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A € MXo, 

(8.15) CiA2 < IM < C2,    i< 3, 

and 

(8.16) ^>C2,    t>3. 

Let VA denote the span of the first three eigensections of A^, and V^- 

its L2-orthogonal complement. Writing Rv and R1- for the corresponding 

components of any R € fi0(Ad P) (suppressing the ^-dependence) we have 

(8.17) (RnG*(R2)) = (Rr,GUR^) + (Ri,Gt(R^)). 

Since by Proposition 8.3 GQ O TT^ is uniformly bounded below (where TTy is 

the orthogonal projection to V^1), an argument similar to the proof of (3.20) 

implies that 

(8.18) 

\{Ri, G*I$)\ < c||r^||2||r^||2 < dWrR^ + -ll^ll^dlri^lb + Wlb)- 

To estimate the other term in (8.17) we also will need a bound on ||i?v||2. 

For the i?'s under consideration, one expects this quantity to be small, since 

the sections comprising VA are, loosely speaking, supported mostly away from 

p—they can be closely approximated by sections that are almost covariantly 

constant outside a small ball around p and are zero on a smaller ball— while 

our i?'s are supported mostly near p. The next set of lemmas quantifies these 

ideas. 

Lemma 8.4. Let a € fi^Ad P) satisfy dA*a = 0 and let tp G ft0(Ad P). 

Then 

(8.19) |(/?o(Zb + /cZ',a),^)|<C(||/?(|b| + |A;|r)a||1 

+ (||/3(|b| + \k\r)d±a\\2 + ||/3(|b|r + |fc|r2)a||2)||d^||2). 

Proof. Let Z = Zb + kZ' and R = R0(Z, a). From (2.4) we have 

(8.20) |(Ro(Zb + fcZ',a),^)|<c(||(|AZ| + |Z|)a||1||t/;||co 

+ IM^Va,V')l + K^ZV>,V)|). 



204 DAVID GROISSER 

The first term on the right is bounded by the first term in (8.19). We integrate 

the second term in (8.20) by parts. Since Z is a gradient vector field, dZ* = 0; 

thus 

(8.21) \(Lzd^d^a^)\ = |(^Va,V<8>Z*)| 

= \(d^dA^AZ*)\ < || \Z\ dAa\\2\\dAil>\\2, 

which is bounded by the second term in (8.19). For the third term in (8.20), we 

use the derivation of (8.10) and the assumption dA*a = 0 to write L^azVa a = 

tuyt^ where \u\ < c/?(|b|r+|/c|r2) and |W| < c^(|b| + |fc|r). We then have 

(8.22) K^aVflaJ^>| = KVa,^®17*>| = Ka,V*(^®t7))| 

^IHC/lalhll^lb + lllVt/lalUHU 

and (8.19) follows.    D 

Our intention of course is to apply this lemma to ip G VA. For such ^ we 

have the following. 

Lemma 8.5.  There is a constant c such that for A G M\0 and I/J G VA, 

Moo < C|M|2. 

Proof. For 1 < i < 3 let //; be as in Proposition 8.3 and let ^ be corresponding 

eigensections. Since dim(VA)=3 independent of A it suffices to prove the result 

for each ^. 

We use a simple fact from elliptic theory: given a constant /x, there exists c = 

c(/i) such that if / G L\{M) is nonnegative and satisfies A/ < /// pointwise, 

then 

(8-23) H/lloo < c||/||2. 

(This follows immediately from Theorem 9.20 of [GT].) But a relative of 

Kato's inequality (3.9) gives 

A|Vt| < l^il"1^, AA^) = /Xil^l < C2|^i|, 

where C2 is as in (8.15), so (8.23) implies the result.    □ 
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Lemma 8.6. Let W = Zb2 + k2Z', let a be either W or t^w, let 62 = |b2|, and 

assume kik-2 = 0. Then 

(8.24) mh + NrHli < cC&xM2! log A| + QM + 62|fci|)A2) 

and 

||i9(6i+|fci|r)^a||2+||)9(6ir+|fci|r2)a||2<c(6iM+(^^ 

Proof. We leave most of this to the reader, since the details are similar to 

those of our previous estimates. The only estimate we have not encountered 

before is (8.24) in the case a = ^w For this we use compactness of M to 

bound the L1 norm by the L2 norm, and use (5.2) and (5.4) to note that 

IKuH|2<c(&2 + M)A2.  □ 

Remark 8.1. Were it not for (5.4), we would have 62|&i|A2|log^l1^2 on the 

right-hand side of (8.24) when a = £w Using this to estimate the term 

(Ro(Z, TTW) - Ro(W, TTZ), G£(RO(Z, &) - Ro(W, fe))> 

in (8.4) would then give only a logarithmically divergent upper bound. This 

is the sole reason we need (5.4), and thus Theorem 6.1. 

Corollary 8.7. Let if; € VA satisfy A^ip — /iip and ||^||2=i. There are con- 

stants c, independent of JJL, such that 

(8.25) 
\{RzwM ^claKlblA'llogAl + lfclA' + ^dblA + lfclA'llogAI1/2)}. ' 

(8.26) \\Rv
zwh <c|a|(|b|A+|fc|A2| logAl^). 

(8.27) 

l({^,^}^)| + ||{^,eu'ni2<c|a|A3|logA|1/2(|b|A|logA|1/2 + |A;|A). 

Proof. Let a be as in Lemma 8.6. Combining Lemmas 8.4-8.6 we have 

|(Ro(Zbl+A:Z',a),t/;)|<c{|b1||b2|A2|logA| + (|b1||A;2| + |b2||A;1|)A2) 

+ /i
1/2(|b1||b2|A+(|b1||A;2|-(-|b2||A;1|)A2|logA|1/2)}, 
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from which (8.25) follows. To obtain (8.26), write \\Rv\\l = ELi^V'*)2, 

where {^z} is an orthonormal eigenbasis of VA, and use (8.25) and Proposition 

8.3. Similarly, we obtain (8.27) with the aid of (5.2).    □ 

While (8.26) is good enough for our purposes, in actuality the constant C2 

in Proposition 8.3 is 0(A2), so (8.26) could be improved. 

We apply Corollaries 8.7 and 8.2 to estimate the terms involving Gfi in (8.2) 

and (8.4). Letting Z,W, and Rzw be as in Corollary 8.2 (with R = R0) we 

have 

(8.28) IM^b + ll^^lb^claKlblA+lfclA^logAI1/2). 

Furthermore we have 

(8.29) ||r{£z,Mll2 + ||{^My||2 
< cll&Wlr^lU + ||{6^ni2 < c|a|A2(|b|A| logXf + \k\X). 

Now each term involving GQ is one of the types 

(RZWIGQ (-frzw))? {Rzw,G0 {^zj^w})) or ({€zi€w}iG0{€z,€w})- 

Let {ifji} be an orthonormal eigenbasis of VA with eigenvalues /i^. Then using 

(8.15) and the estimates above we have 

3 

\(R^w,Gt(R^w))\ = \Y,^1{Rzw,ipi){Rzw,i)i)\ 

< c|a|2{A-2(|b|2A4| log A|2 + fc2A4) + |b|2A2 + ^A4] logA|} 

<c|a|2(|b|2A2|logA|2 + A;2A2). 

We can estimate \(Rv
zw,G*{Zz,Zw}v)\ and mzAwY,G${bMv)\ in a 

similar fashion. Using (8.17),(8.18), and (8.28- 8.29), we obtain the following 

bounds, with room to spare. 

(8.30) (iW, Gtf(iW)} = (Rv
zw, Gt{Rv

zw)) + 0(A|a|2(|b|2 + fc2A2)). 

(8.31) (Rv
zw, Gt(Rv

zw)) = 0(|a|2(|b|2A + fc2A2)). 

(8.32) 
\(Rzw,G^z^w})\ + mz^w},G^z,iw})\ = 0(X\a\\\b\2X + k2X2)). 
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9.     BOUNDEDNESS AND PARTIAL CONTINUITY OF THE CURVATURE 

With the estimates behind us, we can finally prove our main theorems. 

Recall that any two-plane in HA has a basis of the form 'KAZ
A
, TT^W^, where 

ZA, WA are as in (2.19-2.20). Then the estimates of the previous section show 

that 

den.om.(7TAZA, 7TAWA) 

where Rem^Z, W] A), which is written out explicitly in (9.1) below, is 

0(|a|2(|b|2 + A;2A2)) = 0(l). 

By (5.2) of this paper and Proposition 3.6 of [GP2]], 

lim denom(7rAZA,7rAWA) = lim denom(ZA, WA) = (27r)4. 

Hence the curvature is bounded, completing the proof of Theorem 1.1. 

To prove Theorem 1.2 we examine Rem'^Z, W; A) in the case Z = Za, W = 

Wb, with |a| = |b| = 1 and a ± b. From (8.14) we have 

(9.1) 

Rem'(Z, W; A) = ^(tzW, Ro(Z, W)) - ((Z* A W)., R2(Z, W)) 

+ ((W* A W)-,R2(Z, Z)) + 2({W* A 7r^)_, R2(Z, |z)) 

+ 2{(Z* A 7rZ)_, R2{W,&)) + 3(Ro(Z, W), G^(Ro(Z, W))) 

+ (Ro(Z,7rW) - Ro(W,7rZ),G^(Ro(Z,^) - Ro(^,60)} 

+ 0(A1-*) 

after suppressing some A's. (We have 0{)}~s) here rather than 0(A) because 

are not assuming the A_ curvature condition here. Because of this our esti- 

mates are weaker than before; see the remark following Corollary 3.4. Here 

and below, 8 does not necessarily mean the 8 in (3.2), but is proportional 

to it.)   Setting k — 0 in (8.30- 8.32) we see that the inner products above 



208 DAVID GROISSER 

involving G^ are 0(A). Using (5.2) and (8.13) we therefore have 

Rem'(Z, W- A) = ^{izW, R0{Z, W)) - ((Z* A W)_, R2(Z, W)) 

(9.2) +((W*AW)_,R2(Z,Z)) 

+ 2{(W* A T^)_, Z* A ^*(iJVa 1] i71)) 

+ 2((Z* A Z)_, W^* A d^{HQ(t)h \\ F)) + 0(A1-5). 

Thus as A —> 0, cr(7rZ, TTVF) reduces to a purely local, and hence computable, 

expression. We will save the detailed computation for [G2]; the qualitative 

nature of the calculation will suffice here. 

If we use (2.4) and (2.5) to write out (9.2) in gory detail as an integral over 

M (modulo 0(A1~<5)), the terms in the integrand can be classified according 

to how many derivatives of F are involved (0 or 1) and the way in which the 

derivatives (if any, up to a total of 2) of the vector fields Z, W and the related 

functions (^a, <^b are distributed. Each term is then of one of the following six 

types, where the meaning of the notation should be obvious. 

• typel: F2 • Z2 • W2 

• type 2: F2 • Z • AZ • W2 or F2 • W • AW • Z2 

• type 3: F2 - Z • VZ • W • VW or F2 - Z2 - {VWf or F2 - W2 • (VZ)2 

• type 4: F2 • Z • Vif Va • ^2 or F2 • W - VH0^ • Z2 

• type 5: F • VF • Z • VZ • W2 or F • VF • W • VW • Z2 

• type 6: F • VF • Z • H0^ -W2 or F-VF-W - H0^ • Z2. 

The type-1 terms occur with coefficients proportional to the endomorphisms 

7Z = Ric,Tl- that arose from Weitzenbock formulas in our derivations of 

(2.4) and (2.5). In terms of normal coordinates centered at p we can write 

TZ = 7l(p) + 0(r). The 0(r) term here gives an integrand which is 0(r|F|2), 

hence an integral which is 0(A) which we can ignore. The 0(|F|2) piece is 

a linear combination of terms of the form (F^,FM) with coefficients that are 

proportional to TZ(p), quadratic in the components of each of a and b. But 

as A —► 0, A approaches a rescaled standard instanton ([Dl, Theorem 16.(i)]) 

and (F^-, F^) approaches a ^-function centered at p, times a universal constant, 

times SikSji — SuSjk + e^i ( cf. [GP2, Lemma 3.5]). Since K is constructed 

naturally from RiemM, the Riemann tensor of (M, #), the limit of the integral 
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is L1(RiemM)|p(a, b, b,a) for some geometrically natural endomorphism Li. 

Similar considerations apply to the other terms. For the terms of type 2 

and 4, RieniM enters from (5.14) rather than from a Weitzenbock formula; 

for types 5 and 6 it enters from (6.2). In types 2 and 4, if we replace the 

components of RieniM in normal coordinates by their values at p, the error 

in the integrand is 0(r|F|2); the same replacement in types 5 and 6 gives 

an error that is 0(r2|F| |VF|). After integration, both of these errors are 

0(X1~6) and hence ignorable in the limit. The terms we are not throwing 

away are proportional to RieniM (p) and to an expression of one of the forms 

(Fij,Fki),x
m(Fij,VrnFki), both of which approach delta-functions times uni- 

versal tensors as above. Finally, the type-3 terms are 0(r2|F|2), and hence 

integrate to 0(A2~ ), so we can throw these terms away as well. 

Thus limA_>oRiem>M(7rZa,7rZb,7rZb,7rZa) = L(RiemM)(a, b, b, a) for some 

universal endomorphism L. By polarization we obtain 

limRiem>i(7rZa,7rZb,7rZc,7rZd) = L(RiemAf)(a, b, c,d). 
A—^0 

Now the subspace of HA spanned by the TrZa's is not precisely the kernel of 

d\—i.e. the tangent space to the leaf M\—but it is close. In fact, by Propo- 

sition 5.2 of [GP2] the unit normals to MA and span{7rZa} differ by 0(\l~e) 

for any 8. Now under the /\- curvature condition (1.1) implies that Riem^ 

is bounded; without this condition the estimates in this paper still show that 

Riem^ = 0{\~6). Thus the limiting curvature is the same whether we re- 

strict it to the tangent space to M\ or to span{7rZa} We can even eliminate 

the 6 using the estimates in this paper, but all that matters is that the differ- 

ence tends to zero; since by Theorem 0.5 , the limiting curvature is the same 

whichever of these subspaces we restrict it to. This completes the proof of 

Theorem (1.2). 

APPENDIX A. TABLES PERTAINING TO §7 

Tablel: Several 'projections' TT above are actually only scalar multiples of 

projections, as the author found convenient; this does not affect the ranks of 

any matrices computed in the text. The indices of X and 7r(X) in the table are 

ordered alphabetically. Our symmetrization convention is that "Y + (ii...ifc)" 
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means the expression obtained by adding to Y the minimal number of terms, 

each of which differs from Y only by a permutation of the indices {ii, ...ik} 

of F, so that the result is symmetric in these indices. In doing so we take 

into account symmetries of the space in column 2; e.g. for X G SyniQ ®R4, 

Xabi + ^abi) is a sum of three terms, not six. Indices surrounded by parentheses 

are to be symmetrized over the same way; e.g. S^jSki) = SijSki + (ijkl) is a 

sum of three terms. 

FORMULAS FOR PROJECTIONS 

projection domain image components of 7r(T) 

^(3,3) R4(8)R4 Sym^ Xij + Xji — -^XaaSij 

^(4,4) Symo <g>R4 Symg X(abi) - | Xikk6ab + (abi)} 
7r(4,4) R4 0 R4 0 R4 Sym£ X(ijk) - ^ 6ij(Xaak+Xaka+Xkaa) + (ijk)] 

7r(5,5) Symo 0 Symo Sym^ ±X{ijkl) - ^(Xakat + (fci)) + (ijkl)] + 

^5335 Symo 0 Symo (5,3)0(3,5)- 
subspace 

Xijki — XkUj 
-UlSik(Xajal-m) + (ij)} + (kl)} 

TTSllS Symo ® Symo (5,1)0(1,5)- 
subspace 

^(2Xijki + 2Xkiij - Xikji 
—Xjiik — Xujk — Xjku) 

+±[6ij(Xakal + (kl))+6kl(Xaiaj + (ij))] 
-lmk(Xajai + (jl)) + (ij)} + (hi)} 
+Xabab(^Sk(iSi)i - %6ij6kl) 

^"(6,6) SymQ 0 SymQ SymS Jo^iijklm)   -   -ioitiijiXakalm   +   (klm))   + 
(ijklm) + 2l0 Xababi8(jkSlm) + (ijklrn) 

^6446 Sym^0Sym^ (6,4)0(4,6)- 
subspace 

BWiMro + \{xiWm + {klm)) + {ij)} 
-4[Xklijm + {klm)}} - ^%[Xafea;m + 
{klm)} - -^[(SikXajaim + {Mm)) + {ij)} 
+^o[{6ikXaiamj + {klm)) + (ij)} 
+ 150 [GklXamaij + (klm)} 
-MSkiXaiajm + (klm)} + (ij)} 

l00[XababiSj(kSlm) + (»j)] 
+150 ^ijXabab(k^lm) 
+ ,50 Xababk6ni6j)m + (klm) 

7r6226 Sym^0Sym^ (6,2)0(2,6)- 
subspace 

^Xijkim - l(Xikjim + (Mm)) + (ij)} 
+[Xkiijm + (Mm)}} + ^Sij [Xakaim + (Mm)} 
-JoKSikXajalm + (klm)) + (ij)} 
-±l(6ikXalamj + (Mm)) + (ij)} 
—^[SklXamaij + (klm)} 
+±[(6klXaiajm + (Mm)} + (ij)} 
-jgSijXabab(kSim) 

+^[XababkSl(iSj)m + (klm) 
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WEYL MAPS 
domain of w image of w W = w(T) T = w-L{W) 
(4,2)0(2,4) 
C Symo ®R4 

(4,2)0(2,4) 

c A2 ®R4 
wabi = 
-UTaib-(ab)) 

Tabi = 

Wiab + (a6) 
(5,3)0(3,5) 
c A2^) 

(5,3)0(3,5) 

CSym^®A2 
Wabij = 

l
d(Taibj - (y)) 

■Labij = 

[Waibj + (ab)} + (ij) 
(5,1)0(1,5) 
C Sym2(Sym^ 

(5,1)0(1,5) 
C Sym2(A2) 

wabij = 
-UTaibj - (ab)) 

J-abij — 

Wiabj + (ab) 
(6,4)0(4,6) 
C Symo ® Symo 

(6,4)0(4,6) 
cf\2®Syml 

Wijkim = 

U(TikJlm + (klm)) 
-m 

Tijklm = 
l(Wikjlm + (Mm)) 

+(y)] 
(6,2)0(2,6) 
C Sym^ ® Sym^ 

(6,2)0(2,6) 
cSym2(A2)®M4 

Wijklm = 

-m 
J-ijklm — 

{(Wikjlm + (klm)) 
+(y)] 

Table 2: For the relations defining the subspaces in columns 1 and 2, consult 
the text. The components of T and W are ordered alphabetically, and our 
symmetrization conventions are as in Table 1. 

APPENDIX B. THE FIRST EIGENVALUE OF A^ 

In this section we establish the lower bound in (8.15). The proof is based 
on ideas of Taubes [T2]. 

Theorem B.l.  There exist AQ, CI > 0 such that for all A E M,\Q and v G 
n0(Ad P), 

\\dAv\\22>Ci\2\\v\\l- 

Our argument is based on the principle that if ||(iA?;||2 is small compared 
to IMI25 then |^| must be nearly constant. Thus the integral of \v\2 over 
any domain D C M should be roughly proportional to the volume of D. 
Approximating an instanton A of scale A by the standard instanton (for A 
small), we show below that JB fp\ \dAv\2 > cX~ JBxrp\ \v\2. Since the volume 

of this ball is essentially A4, the principle above then implies that the integral 
of \dAv\2 over B\(p), and hence over all of M, is bounded below by a constant 
times A2!!^!!^. 

We begin with a completely general fact. 



212 DAVID GROISSER 

domain D C N we have 

1 Vol(D) |m|2 
25 (ai) JD

f^2VoW) 
then 

(B.2) \ml>cVol(Dy-^\\f\\l 

(Here and below \\ • \\p is the Lp-norm over all of N, and Vol denotes volume 
of a subset.) The constant c depends only on Vol(N) and on the first positive 
eigenvalue of the Laplacian on functions on N. 

Remark B.l. (1) We emphasize that the domain D above can depend on f. 
(2) For n = 2, the lemma is still true if we replace 1/2 — 1/n in (B.2) by an 

arbitrarily small but positive exponent (with c depending on the exponent); 
for n = 1 replace the volume exponent in the corresponding inequality by zero. 

Proof Let us write V = Vol(N), VD = V01(D), and let / E L?(N) satisfy 
||/1|2 = 1 and inequality (B.l). We will estimate the L2 norm of / over D from 
the identity 

(B.3) VD/V+ [(f-V-1)^ f f. 
JD JD 

By Holder's inequality we have 

\[ f-v-'i <  ||/ - v-^u^-v^Wf + v-^\\LHD)v^n 

JD 

<  11/ - v-l"\\w-*Hlt)m»(m + v-^vll2)vh,n. 
Thus, using (B.l) we have 

(B.4) |   /   f - V^ < 2V-^\\f - y-1/2||2n/(n-2)^/2+1/n. 
JD 

Now let fav = V'1 fN f be the average value of /; without loss of generality 
we may assume fav > 0. Since fN(f — fav) = 0 we have the Poincare inequality 

(B.5) \\f-fa4l<^X\W\\l 
where /ii is the first positive eigenvalue of the Laplacian acting on functions 
on N. But ||/ - fav\\l = ||/||2

2 - Vpav = 1 - Vfl, so 

o<i-Fi/2/a, < (i + w'Va.rvr'M 
(B.6) <   c\\df\\l 

since /„„'> 0. Combining the Sobolev embedding Ll{N) ^ L2"/^-2)^) with 
(B.5) we have 

(B.7) ||/-/a«||2n/(„-2)<c||d/||2, 
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and thus 
||/-^-1/2||2„/(n_2)<c(||d/||2 + ||d/||^) 

by the triangle inequality and the bounds (B.6- B.7). Returning to (B.4) we 
then find 

\ff-v-i\<cv^2+i/nm\\2+\w\\i)- 
JD 

Inserting this into (B.3) then gives us 

vD/v-c^/2+1/n(||d/||2 + \\df\\l) <jDf
2< \VDIV. 

Writing a = 1/2 — 1/n, the above inequality implies 

cvg < \\df\\2 + ml < leys + (\(cVD)-« + i)\\df\\l 

(where in this line c has the same value in all three appearances). Rearrang- 
ing this inequality and noting that VD is bounded from above by V, (B.2) 
follows.    □ 

Applying this to geodesic balls of radius A in the four-dimensional manifold 
M we immediately have the following. 

Corollary B.3. There exist positive constants C2,cs such that ifp G M, A G 
R, f G L?(M), and 

/2<c2A4||/||^ 
JB> lBx{p) 

then 
mi>czA\f\\i. 

This quantifies the principle mentioned earlier.   The second ingredient is 
the next lemma. 

Lemma B.4. There exist Ao,C4 > 0 such that if A G A^Ao has scale A and 
center p, and ifvE ft0 (Ad P), then 

(B.8) /       |dAT;|2 > C4A-2 /       \v\2. 
JBX{P) JBX(P) 

Proof. Let gfA, {y1} be as in §3 and let B = B\(p). We then have 

(B.9) / \dAv\2gm = A"2 / \dAv\ln(gx). 
J B J B 

Using the coordinates {y1} to pull the problem back to R4, the integral on 
the right is taken simply over the unit ball Bi C M4, and g\ and its volume 
form can be made arbitrarily close to the fiat metric and its volume form by 
taking A sufficiently small. If Ai is the standard instanton on M4, then given e 
there exists AQ such that A G M\0 implies \\A — AiHc-ofBi) < e ([Dl, Theorem 
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16.(ii)]); here the norm is taken with respect to the flat metric. For such A we 
therefore have 

(B.10) JB \d
Av\ln(gx) > \ J   l^vlWy - e2 jT \v\2d4y 

where \dAlv\ is taken in the flat metric. 
Now suppose that 

B.ll inf       P    ,  ,9' -0. 

Taking a minimizing sequence and using the Rellich theorem we find a smooth 
section v0 ^ 0 over Bx such that dAVo = 07 implying [FAl, v0] = dAldAlv0 = 0 
as well. But the standard instanton Ai has the property that at each y E Bi 
and 0 7^ ?i; € Ad Py, [F^^y),^] 7^ 0 (see, for example, the formula for FAl 

in [FU, eq. (6.6)]). This implies the contradiction VQ = 0, so the infimum 
in (B.ll) must be positive. Thus, taking e small enough in (B.10) and using 
(B.9), the bound (B.8) follows.    □ 

Proof of Theorem B.l. Let AQ, C2, C3, C4 be as in Corollary B.3 and Lemma B.4. 
Suppose AeM\0,ve ft0(Ad P), and 

||^||2
2 < C3A2|M|2

2. 

Since \d\v\ \ < \dAv\, Corollary B.3 applied to / = \v\ implies 

/. BA(P) 

H2>C2A4||.;||2. 

But then 

\\dAv\\22 > [       \dAv\2 > C4A-2 /       \v\2 > c2c4X
2\\v\\l 

JBX(P) JBX(P) 

Thus for all v we have ||(iA^||i > min(c3, C2C4)X2\\v|||.    D 
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