Spacelike CMC surfaces near null infinity of the Schwarzschild spacetime

Luen-Fai Tam[∗](#page-0-0)

Motivated by a result of Treibergs, given a smooth function $f(\mathbf{y})$ on the standard sphere \mathbb{S}^2 , $\mathbf{y} \in \mathbb{S}^2$, and any positive constant H_0 , we construct a spacelike surface with constant mean curvature H_0 in the Schwarzschild spacetime, which is the graph of a function $u(\mathbf{y}, r)$ defined on $r > r_0$ for some $r_0 > 0$ in the standard coordinates exterior to the blackhole. Moreover, u has the following asymptotic behavior:

$$
\left| u(\mathbf{y},r) - r_{*} - \left(f(\mathbf{y}) + r^{-1} \phi(\mathbf{y}) + \frac{1}{2} r^{-2} \psi(\mathbf{y}) \right) \right| \leq C r^{-3}
$$

for some $C > 0$, where $r_* = r + 2m \log(\frac{r}{2m} - 1)$. Here ϕ, ψ are functions on \mathbb{S}^2 given by

$$
\begin{cases} \phi = \frac{1}{2} \left(H_0^{-2} + |\nabla_{\mathbb{S}^2} f|_{\mathbb{S}^2}^2 \right); \\ \psi = \frac{1}{2} \left(H_0^{-2} \Delta_{\mathbb{S}^2} f + \langle \nabla_{\mathbb{S}^2} |\nabla_{\mathbb{S}^2} f|_{\mathbb{S}^2}^2, \nabla_{\mathbb{S}^2} f \rangle_{\mathbb{S}^2} \right). \end{cases}
$$

In particular, the surface intersects the future null infinity with the cut given by the function f . In addition, we prove that the function $u - r_*$ is uniformly Lipschitz near the future null infinity.

MSC 2020 subject classifications: Primary 53C44; secondary 83C30. Keywords and phrases: Schwarzschild spacetime, spacelike constant mean curvature surface, null-infinity.

1. Introduction

In [\[12\]](#page-31-0), Treibergs proved the following: Given a C^2 function $f(\mathbf{y})$ on the standard sphere \mathbb{S}^{n-1} and a constant $H_0 > 0$ there exists an entire spacelike surface in the Minkowski space $\mathbb{R}^{n,1}$ with constant mean curvature H_0 which is the entire graph of a function u such that

$$
\lim_{r \to \infty} (u(\mathbf{y}, r) - r) = f(\mathbf{y}).
$$

arXiv: [2306.03353v2](http://arxiv.org/abs/2306.03353v2)

[∗]Research partially supported by Hong Kong RGC General Research Fund #CUHK 14300420.

854 Luen-Fai Tam

Here $(\mathbf{y}, r) \in \mathbb{S}^{n-1} \times (0, \infty)$ is the spherical coordinates of \mathbb{R}^n . The result implies that the surface will intersect the future null infinity at the cut given by $(\mathbf{y}, f(\mathbf{y})).$

Motivated by this result, we want to study what one may obtain for Schwarzschild spacetime. Recall the standard Schwarzschild metric defined on $r > 2m > 0$ is:

(1.1)
$$
g_{\text{Sch}} = -\left(1 - \frac{2m}{r}\right)dt^2 + \left(1 - \frac{2m}{r}\right)^{-1}dr^2 + r^2\sigma,
$$

 $-\infty < t < \infty$, where $r = \sum_{i=1}^{3} (x^i)^2$ with $(x^1, x^2, x^3) \in \mathbb{R}^3$ and σ is the standard metric of the unit sphere \mathbb{S}^2 . The future null infinity \mathcal{I}^+ of the Schwarzschild spacetime is of the form $\mathbb{S}^2 \times \mathbb{R}$ with \mathbb{S}^2 being the standard sphere, see §[2](#page-3-0) for more details. Given a cut \mathcal{C} in \mathcal{I}^+ represented as $(\mathbf{y}, f(\mathbf{y}))$, $y \in \mathbb{S}^2$ and f is a function of y, we want to construct a spacelike constant mean curvature (CMC) surface with positive constant mean curvature which intersects \mathcal{I}^+ at this cut. To state our result, let

(1.2)
$$
r_* = r + 2m \log(\frac{r}{2m} - 1).
$$

We obtain the following:

Theorem 1.1. Let f be a smooth function on \mathbb{S}^2 . For any constant $H_0 > 0$, there exists $u(\mathbf{y}, r)$ defined for $\mathbf{y} \in \mathbb{S}^2$, $r > r_0$, for some $r_0 > 2m$ such that the graph of u in the Schwarzschild spacetime is a spacelike hypersurface of constant mean curvature $H_0 > 0$ with boundary value at the future null infinity given by f. More precisely, u satisfies:

$$
\lim_{r \to \infty} (u(\mathbf{y}, r) - r_*) = f(\mathbf{y}),
$$

for all $y \in \mathbb{S}^2$. In fact, there exists $C > 0$ such that

$$
\left| u(\mathbf{y},r) - r_{*} - \left(f(\mathbf{y}) + r^{-1} \phi(\mathbf{y}) + \frac{1}{2} r^{-2} \psi(\mathbf{y}) \right) \right| \leq C r^{-3}
$$

for all $y \in \mathbb{S}^2$, $r > r_0$, where

$$
\left\{ \begin{array}{l} \phi = \frac{1}{2} \left(H_0^{-2} + |\widetilde{\nabla} f|_{\mathbb{S}^2}^2 \right); \\ \psi = \frac{1}{2} \left(H_0^{-2} \widetilde{\Delta} f + \langle \widetilde{\nabla} | \widetilde{\nabla} f|_{\mathbb{S}^2}^2, \widetilde{\nabla} f \rangle_{\mathbb{S}^2} \right). \end{array} \right.
$$

Here $\tilde{\nabla}$ and $\tilde{\Delta}$ are the covariant derivative and Laplacian of the standard \mathbb{S}^2 respectively. The inner product is taken with respect to the standard metric of \mathbb{S}^2 .

We should emphasis that unlike [\[12\]](#page-31-0), we can only construct a surface which is defined near the future null infinity.

In addition to the results on spacelike CMC surfaces in the Minkowski space by Treibergs $[12]$ $[12]$, there is a well-known result by Bartnik $[2]$ $[2]$ which states that there exists a complete spacelike maximal hypersurface asymptotic to the spatial infinity in an asymptotically flat spacetime satisfying a uniform *interior condition* (see [\[2,](#page-30-0) p.169] for the definition). In [\[1](#page-30-1)], Andersson and Iriondo proved the existence of a complete spacelike CMC surface with positive constant mean curvature on an asymptotically Schwarzschild spacetime (see $[1,$ Definition 2.1) which satisfies a uniform future interior condition (see $[1,$ Definition 4.1]). The constructed surface intersects the future null infinity at $(\mathbf{y}, f(\mathbf{y}))$ with $f(\mathbf{y}) = \text{constant}$. In [\[3\]](#page-30-2), Bartnik, Chrussiel and O Murchada studied complete spacelike surfaces which are maximal outside ´ a spatially compact set on certain asymptotically flat spacetimes. Recently, spacelike graph of a function which is asymptotically zero in the Minkowski spacetime $\mathbb{R}^{n,1}$ with prescribed mean curvature outside a compact set in \mathbb{R}^n has been constructed in [\[4](#page-30-3)] by Bartolo, Caponio and Pomponio. On the other hand, spacelike CMC surfaces in the Schwarzschild spacetime have been studied by many people. In particular, In [\[7](#page-31-1), [8](#page-31-2)] K-W Lee and Y-I Lee gave a complete description of spacelike spherical symmetric constant mean curvature surfaces in the Kruskal extension of Schwarzschild spacetime. See also the references therein.

In Theorem [1.1,](#page-1-0) the constructed surface is asymptotically to a cut in the null infinity. Some higher order rate of approximation is also obtained. The main idea is to construct a good foliation near the future null infinity as in [\[1](#page-30-1)] with good estimates so that one can obtain estimates of the so-called tilt factor of a spacelike surface, using a result in Bartnik [\[2](#page-30-0)]. We also need to construct suitable barrier. Our construction is to use the results by Li, Shi and the author in $[9]$. Without further assumptions on f one might not be able to construct a better barrier to obtain a better approximation. See Remark [4.1](#page-19-0) for details.

A natural question is on the regularity of the function $u - r_*$. In [\[11](#page-31-4)], Stumbles constructed spacelike CMC surfaces in the Minkowski spacetime (or nearby spacetime) so that the surfaces are C^3 near and up to the future null infinity, provided the cut is represented by $(\mathbf{y}, f(\mathbf{y}))$ with f being close to a constant. One may not expect a $C⁴$ regularity by the results in [\[9\]](#page-31-3). In

our case, the foliation mentioned above in our construction is given by a time function. From the construction, the so-called tilt factor (see the definition in §[3\)](#page-7-0) of the constructed surface with respect to this time function is uniformly bounded. Using this fact, we have the following:

Corollary 1.1. The function $Q(y, s) = r_* - u(y, r)$ with $r = s^{-1}$ is uniformly Lipschitz on $\mathbb{S}^2 \times (0, s_0)$ for some $s_0 > 0$.

This is a corollary of a more general result. See Theorem [5.1](#page-24-0) for details. This theorem might also be applied to the spacelike CMC surface in [\[1](#page-30-1), Theorem 4.1].

The organization of the paper is as follows. In $\S2$, we will recall the structure of future null infinity \mathcal{I}^+ in the Schwarzschild spacetime and will construct a suitable foliation near \mathcal{I}^+ . In §[3,](#page-7-0) we will give detailed estimation on the foliation which will be used later. In $\S 4$ $\S 4$ we will prove Theorem [1.1.](#page-1-0) In §[5](#page-24-1) we will discuss a general Lipschitzian regularity property of spacelike surfaces near \mathcal{I}^+ and prove Corollary [1.1.](#page-3-1)

2. Future null infinity and a foliation

2.1. Future null infinity

Let us recall the future null infinity of the Schwarzschild spacetime. We always assume that $\frac{\partial}{\partial t}$ is future pointing. Consider the retarded null coordinate

$$
(2.1) \t\t v = t - r_*,
$$

where r_* is given by [\(1.2\)](#page-1-1). Let $s = r^{-1}$, then

(2.2)
$$
g = g_{\text{Sch}} = -(1 - 2ms)dv^{2} + 2s^{-2}dvds + s^{-2}\sigma
$$

$$
= s^{-2}(-s^{2}(1 - 2ms)dv^{2} + 2dvds + \sigma)
$$

$$
= : s^{-2}\bar{g},
$$

with $0 < s < \frac{1}{2m}$, $-\infty < v < \infty$. Here the unphysical metric \bar{g} is the product metric:

(2.3)
$$
\overline{g} = (\sigma_{AB}) \oplus \begin{pmatrix} 0 & 1 \\ 1 & -s^2(1-2ms) \end{pmatrix},
$$

where (σ_{AB}) is the standard metric for \mathbb{S}^2 in local coordinates y^1, y^2 . So y^1, y^2, s, v are coordinates of the spacetime. We also write (y^1, y^2, s, v) as

 (y^1, y^2, y^3, y^4) . \overline{g} can be extended as a smooth Lorentz metric defined on $\mathbf{y} \in \mathbb{S}^2$, $s \in [0, 1/2m)$, $v \in \mathbb{R}$. The future null infinity \mathcal{I}^+ is identified with the boundary $s = 0$, which is a null hypersurface. For later reference,

(2.4)
$$
(\overline{g}^{ab}) = (\overline{g})^{-1} = (\sigma^{AB}) \oplus \begin{pmatrix} s^2(1-2ms) & 1\\ 1 & 0 \end{pmatrix}.
$$

where (σ^{AB}) is the inverse of (σ_{AB}) . Hence for the physical metric, g^{ab} = $s^2\overline{g}^{ab}.$

Convention: In the following $a, b, c \dots$ run from 1 to 4; i, j, k, \dots run from 1 to 3 and A, B, C, \ldots run from 1 to 2. Einstein summation convention will be used.

2.2. Foliation

Given a smooth function $f(\mathbf{v})$ on \mathbb{S}^2 . Consider the cut C given by $(\mathbf{v}, f(\mathbf{v}))$, \mathbf{v} $\in \mathbb{S}^2$ in \mathcal{I}^+ . We want to extend it to a spacelike CMC surface in the Schwarzschild spacetime. As in [\[1](#page-30-1)], we need to construct a suitable foliation near \mathcal{I}^+ related to f. For $\tau > 0$, let

(2.5)
$$
P(\mathbf{y}, s, \tau) = f(\mathbf{y}) + s\phi(\tau, \mathbf{y}) + \frac{1}{2!} s^2 \psi(\tau, \mathbf{y}),
$$

where $\phi = P_s$, $\psi = P_{ss}$ at $s = 0$ are smooth functions in τ , **y**, given by

(2.6)
$$
\begin{cases} \phi = -\frac{1}{2} \left(\tau^2 + |\widetilde{\nabla} f|_{\mathbb{S}^2}^2 \right); \\ \psi = \frac{1}{2} \left(\tau^2 \widetilde{\Delta} f + \langle \widetilde{\nabla} |\widetilde{\nabla} f|_{\mathbb{S}^2}^2, \widetilde{\nabla} f \rangle_{\mathbb{S}^2} \right). \end{cases}
$$

The choice of ϕ, ψ is motivated by the result in [\[9](#page-31-3), Theorem 3.1], so that if Σ_{τ} is the surface given by $(\mathbf{y}, s) \to (\mathbf{y}, s, -P)$ in the **y**, s, v coordinates, then Σ_{τ} is spacelike near $s = 0$ and its mean curvature H is such that $H = \tau^{-1}$ and $\partial_s H = 0$ at $s = 0$.

Direct computations give:

(2.7)
$$
\begin{cases} P_{\tau} = -\tau s + \frac{1}{2}\tau s^2 \widetilde{\Delta} f = -\tau s \left(1 - \frac{1}{2}s \widetilde{\Delta} f \right); \\ P_s = \phi + s\psi; \\ P_A = f_A + s\phi_A + \frac{1}{2}s^2 \psi_A, A = 1, 2. \end{cases}
$$

Here for a smooth function θ in **y**, s, τ , the partial derivative of θ with respect to s is denoted by θ_s etc.

Let $0 < \tau_1 < \tau_2 < \infty$ be fixed. Let

$$
M = \{ \mathbf{y} \in \mathbb{S}^2, s \in (0, \frac{1}{2m}), \tau \in (\tau_1, \tau_2) \} = \mathbb{S}^2 \times (0, s_0) \times (\tau_1, \tau_2).
$$

Consider the map Φ from M to the Schwarzschild spacetime in **y**, s, v coordinates defined by:

(2.8)
$$
\Phi(\mathbf{y}, s, \tau) = (\mathbf{y}, s, v(\mathbf{y}, s, \tau))
$$

with $v(\mathbf{y}, s, \tau) = -P(\mathbf{y}, s, \tau)$.

Lemma 2.1. There is $\frac{1}{2m} > s_0 > 0$ depending only on τ_1, τ_2, f such that Φ is a diffeomorphism onto its image. Hence $\Phi(M)$ is parametrized by **y**, s, τ . Moreover,

(2.9)
$$
\frac{\partial \tau}{\partial v} = -\frac{1}{P_{\tau}}; \frac{\partial \tau}{\partial s} = -\frac{P_s}{P_{\tau}}; \frac{\partial \tau}{\partial y^A} = -\frac{P_A}{P_{\tau}}, A = 1, 2.
$$

Proof. It is easy to see that if $s_0 > 0$ is small enough, then $P_\tau < 0$. From this and some computations, it is easy to see the lemma is true. □

Let $s_0 > 0$ be as in the lemma, then

(2.10)
$$
\Phi(M) = \{(\mathbf{y}, s, v) | P(\mathbf{y}, s, \tau_2) < v < P(\mathbf{y}, s, \tau_1)\}.
$$

By the lemma, we can see that τ is a smooth function on $\Phi(M)$.

Given $\tau \in (\tau_1, \tau_2)$, let

$$
\Sigma_{\tau} = \{v = -P(\mathbf{y},s,\tau)\}
$$

which is a level surface of τ . For fixed τ , let $F(\mathbf{y}, s, v) = v + P(\mathbf{y}, s, \tau)$. To simplify notation, define

(2.11)
$$
L =: -\left(2P_s + s^2(1-2ms)P_s^2 + |\tilde{\nabla}P|^2\right) = -\overline{g}(\overline{\nabla}F, \overline{\nabla}F)
$$

where $\overline{\nabla}$ is the derivative with respect to the unphysical metric \overline{q} . Here and later, we simply write $|\nabla P|$ instead of $||\nabla P||_{\mathbb{S}^2}$ if this does not cause confusion.

Lemma 2.2. There is $\frac{1}{2m} > s_0 > 0$ depending only on τ_1 , τ_2 and f such that Σ_{τ} is spacelike in $(0, s_0)$ for $\tau \in (\tau_1, \tau_2)$. In fact,

$$
\nabla \tau = -P_{\tau}^{-1} \left(g^{va} + g^{ia} P_i \right) \partial_{y^a},
$$

and

$$
g(\nabla \tau, \nabla \tau) = -s^2 P_{\tau}^{-2} L.
$$

Moreover, for all $\tau \in (\tau_1, \tau_2)$, Σ_{τ} is a smooth up to \mathcal{I}^+ in the sense that P is smooth up to $s = 0$, which intersects \mathcal{I}^+ at the cut \mathcal{C} given by $\{(\mathbf{y}, f(\mathbf{y})) | \mathbf{y} \in$ \mathbb{S}^2 .

Proof. First let s_0 be as in Lemma [2.1](#page-5-0) so that $P_\tau < 0$. Recall that

$$
(y^1, y^2, y^3, y^4) = (y^1, y^2, s, v).
$$

Denote the coordinate frame by ∂_a . For $\tau \in (\tau_1, \tau_2)$, by [\(2.9\)](#page-5-1), we have

$$
\nabla \tau = g^{ab} \frac{\partial \tau}{\partial y^a} \partial_b
$$

= $\left(g^{vb} \frac{\partial \tau}{\partial v} + g^{ib} \frac{\partial \tau}{\partial y^i} \right) \partial_b$
= $-\frac{1}{P_{\tau}} \left(g^{vb} + g^{ib} P_i \right) \partial_b.$

On the other hand, direct computation shows

$$
\langle \nabla \tau, \nabla \tau \rangle = s^2 \overline{g}^{ab} \frac{\partial \tau}{\partial y^a} \frac{\partial \tau}{\partial y^b}
$$

$$
= -s^2 P_\tau^{-2} L.
$$

By [\(2.7\)](#page-4-0), $P_{\tau} = -(\tau s + O(s))$. By (2.7) and [\(2.11\)](#page-5-2),

(2.12)
$$
L = -\left(-\tau^2 - |\tilde{\nabla}f|^2 + |\tilde{\nabla}f|^2 + O(s)\right)
$$

$$
= \tau^2 + O(s).
$$

It is easy to see that if $0 < s_0 < \frac{1}{2m}$ is small enough, depending only on τ_1 , τ_2 and f, then Σ_{τ} is spacelike in $0 < s < s_0$. The last assertion is obvious.

Let s_0 be as in the lemma. Since $\frac{\partial}{\partial t} = \partial_v$, we have

(2.13)
\n
$$
g(\nabla \tau, \frac{\partial}{\partial t}) = -P_{\tau}^{-1} g((g^{va} + g^{ia} P_i) \partial_a, \partial_v)
$$
\n
$$
= -P_{\tau}^{-1} (g^{va} + g^{ia} P_i) g_{av}
$$
\n
$$
= -P_{\tau}^{-1}
$$
\n
$$
> 0.
$$

So τ is a time function on $\Phi(M)$ with $\nabla \tau$ being past directed.

860 Luen-Fai Tam

3. Estimates on the foliation

Let s_0 be as in Lemma [2.2](#page-5-3) so that Σ_{τ} is spacelike for $0 < s < s_0$. Let $M = \mathbb{S}^2 \times (0, s_0) \times (\tau_1, \tau_2)$. Then Φ is a parametrization of $\Phi(M)$, with τ being a time function. Recall that, if θ is a function in **y**, s, τ , then the partial derivatives will be denoted by $\theta_A, \theta_s, \theta_\tau$ etc. On the other hand, when consider τ as a function of $(y^1, y^2, y^3, y^4)=(y^1, y^2, s, v)$, the derivative of θ with respect to y^a will be denoted by $\partial_a \theta$. Hence

(3.1)
$$
\partial_A \theta = \theta_\tau \tau_A + \theta_A, \ \partial_s \theta = \theta_\tau \tau_s + \theta_s, \ \partial_v \theta = \theta_\tau \tau_v.
$$

Let T be the unit future pointing timelike normal of Σ_{τ} so that

$$
(3.2) \t\t T = -\alpha \nabla \tau
$$

where $\alpha > 0$ is the *lapse function* of τ given by

(3.3)
$$
\alpha^2 = -(\langle \nabla \tau, \nabla \tau \rangle)^{-1} = s^{-2} P_\tau^2 L^{-1}.
$$

For a spacelike hypersurface Σ with future directed unit normal **n**, the tilt factor ν with respect to T is defined as $\nu = -g_{Sch}(T, \mathbf{n})$.

We want to apply a result of Bartnik [\[2\]](#page-30-0) to estimate the tilt factor for spacelike surfaces in $\Phi(M)$. First recall the following setting in the Bartnik's work. In $\Phi(M)$, introduce the Riemannian metric Θ:

$$
(3.4) \t\t\t \Theta = g_{\text{Sch}} + 2\omega \otimes \omega
$$

where ω is the dual of the unit normal T. For example, for a vector field $V, \ ||V||^2_{\Theta} = \sum_{i=1}^3 \langle V, w_i \rangle^2 + \langle V, T \rangle^2$, where w_1, w_2, w_3 form an orthonormal basis of Σ_{τ} with respect to metric induced by the Schwarzschild metric g. In order to apply $[2,$ $[2,$ Theorem 3.1(iii)] (see also remarks on $[2, p.162]$ $[2, p.162]$) to a compact spacelike hypersurface Σ with smooth boundary $\partial \Sigma$ in $\Phi(M)$ so that $\tau = constant$ on $\partial \Sigma$, we need to estimate the following quantities:

(3.5)
$$
\alpha, ||\alpha^{-1}\nabla\alpha||_{\Theta}, ||\mathcal{K}||_{\Theta}, ||\nabla T||_{\Theta}, ||\nabla\nabla T||_{\Theta}, ||\vec{H}_{\partial\Sigma}||_{\Theta}
$$

where K is the second fundamental form of Σ_{τ} and ∇ is the connection of g_{Sch} and $\vec{H}_{\partial\Sigma}$ is the mean curvature vector of $\partial\Sigma$. We have used the fact that the g_{Sch} is Ricci flat. Our result will be summarized in Theorem [3.1](#page-16-1) below. We proceed as in [\[1](#page-30-1)].

Since we may cover \mathbb{S}^2 with finitely many coordinate neighborhoods, we may work on a coordinate neighborhood first. Hence let us fix a coordinate neighborhood U with local coordinates y^1, y^2 . The coordinate frame with respect to this coordinate is given by:

(3.6)
$$
\begin{cases} e_A =: \Phi_*(\frac{\partial}{\partial y^A}) = -P_A \partial_v + \partial_A, A = 1, 2; \\ e_3 =: \Phi_*(\frac{\partial}{\partial s}) = -P_s \partial_v + \partial_s; \\ e_4 =: \Phi_*(\frac{\partial}{\partial \tau}) = -P_\tau \partial_v. \end{cases}
$$

Here ∂_a are coordinate frames with respect to $y^1, y^2, y^3 = s, y^4 = v$. Note that if θ is a smooth function in **y**, s, τ , then $e_A(\theta) = \theta_A$ etc. Note also that e_1, e_2, e_3 are tangential to Σ_{τ} , i.e. τ =constant. It is easy to see:

(3.7)
$$
\begin{cases} \n\partial_v = -\frac{1}{P_r} e_4; \\
\partial_s = -\frac{P_s}{P_r} e_4 + e_3; \\
\partial_A = -\frac{P_A}{P_r} e_4 + e_A, \quad A = 1, 2. \n\end{cases}
$$

We may assume that σ_{AB} is smooth up to the boundary of U and that the eigenvalues of (σ_{AB}) is bounded below by some constant $\lambda > 0$.

Notation: In the following $c(s^{\ell}), c_{ab}(s^{\ell}), \ldots$ for integers ℓ will denote functions of the form $s^{\ell} \Lambda$ where Λ is a smooth function in **y**, s, τ in \overline{U} × $[0, s_0] \times [\tau_1, \tau_2]$. They may vary from line to line. For example, in [\(3.7\)](#page-8-0), we have

$$
\partial_v = c(s^{-1})e_4,
$$

if s_0 is small enough.

Lemma 3.1. In the above setting, for $y \in U$, then the following are true:

(i) The metric \overline{g} in the frame e_a is given by

$$
\begin{cases}\n\overline{g}(e_A, e_B) = \sigma_{AB} - s^2(1 - 2ms)P_AP_B, 1 \le A, B \le 2; \\
\overline{g}(e_A, e_3) = \overline{g}(e_3, e_A) = -P_A - s^2(1 - 2ms)P_AP_s, 1 \le A \le 2; \\
\overline{g}(e_3, e_3) = -2P_s - s^2(1 - 2ms)P_s^2 \\
\overline{g}(e_A, e_4) = \overline{g}(e_4, e_4) = -s^2(1 - 2ms)P_\tau P_A, 1 \le A \le 2; \\
\overline{g}(e_3, e_4) = \overline{g}(e_4, e_3) = -s^2(1 - 2ms)P_\tau P_s; \\
\overline{g}(e_4, e_4) = -s^2(1 - 2ms)P_\tau^2.\n\end{cases}
$$

- (ii) Let $\{\varepsilon_1,\varepsilon_2,\varepsilon_3\}$ be an orthonormal basis for Σ_{τ} with respect to \overline{g} obtained from e_1, e_2, e_3 using Gram-Schmidt process with respect to the metric induced by \overline{g} . Then $\varepsilon_i = c_{ik}(s^0)e_k$, $e_i = c^{ik}(s^0)\varepsilon_k$.
- (iii) If $s_0 > 0$ is small enough depending only τ_1, τ_2 and f, then $\alpha = 1+c(s)$ and

$$
T = c_i(s)e_i + \alpha^{-1}e_4.
$$

Proof. Using (3.6) and (2.3) , direct computations give (i).

In the following, we always assume $s_0 > 0$ is small depending only on τ_1, τ_2 and f. Let $\overline{g}_{ab} = \overline{g}(e_a, e_b)$. Recall that \overline{g}_{ab} can be extended smoothly up to $s = 0$. Moreover, at $s = 0$, $P_A = f_A$. Hence at $s = 0$, for any $(\xi^1, \xi^2, \xi^3) \in \mathbb{R}^3$, let $f_A = \sigma_{AB} f^B$, for any $\varepsilon > 0$ we have:

$$
\overline{g}_{ij}\xi^{i}\xi^{j} = \sigma_{AB}\xi^{A}\xi^{B} - 2f_{A}\xi^{A}\xi^{3} + (\tau^{2} + |\widetilde{\nabla}f|^{2})(\xi^{3})^{2}
$$
\n
$$
= \sigma_{AB}\xi^{B}\xi^{B} - 2\sigma_{AB}f^{B}\xi^{A}\xi^{3} + (\tau^{2} + \sigma_{AB}f^{A}f^{B})(\xi^{3})^{2}
$$
\n
$$
\geq \sigma_{AB}\xi^{B}\xi^{B} - (\varepsilon\sigma_{AB}\xi^{A}\xi^{B} + \varepsilon^{-1}\sigma_{AB}f^{A}f^{B}(\xi^{3})^{2})
$$
\n
$$
+ (\tau^{2} + \sigma_{AB}f^{A}f^{B})(\xi^{3})^{2}
$$
\n
$$
= (1 - \varepsilon)\sigma_{AB}\xi^{B}\xi^{B} + (\tau^{2} + (1 - \varepsilon^{-1}\sigma_{AB}f^{A}f^{B})(\xi^{3})^{2}
$$
\n
$$
\geq C ((\xi^{1})^{2} + (\xi^{2})^{2} + (\xi^{3})^{2}),
$$

for some $C > 0$ depending only on λ, τ_1, τ_2 and $|\widetilde{\nabla} f|$, if we choose $\varepsilon < 1$, ε close to 1 so that $\tau^2 + (1 - \varepsilon^{-1} \sigma_{AB} f^A f^B) \ge \tau^2/2$. On the other hand, away from $s = 0$, (\overline{g}_{ij}) is smooth and positive definite. Let $\varepsilon_i = c_{ik}e_k$ as in the lemma, one can see that c_{ik} are smooth function of y^a . On the other hand,

$$
\delta_{ij} = c_{ik} c_{jl} \overline{g}_{kl}.
$$

Hence $\overline{g}^{ij} = c_{ki}c_{kj}$. In particular, for each $i, \overline{g}^{ii} = \sum_{k} c_{ik}^2$. From this one can conclude that $c_{ik} = c(s^0)$. Similarly one can prove that $c^{ik} = c(s^0)$.

(iii) By (3.3) , (2.7) and (2.12) ,

$$
\alpha = -s^{-1}P_{\tau}L^{-\frac{1}{2}}
$$

=1 + c(s).

By Lemma [2.2](#page-5-3)

$$
T = -\alpha \nabla \tau
$$

\n
$$
= \alpha P_{\tau}^{-1} \left(g^{vb} \partial_v + g^{ib} P_i \right) \partial_b
$$

\n
$$
= \alpha s^2 P_{\tau}^{-1} \left[\sigma^{BA} P_B \partial_A + (1 + s^2 (1 - 2ms) P_s) \partial_s + P_s \partial_v \right]
$$

\n
$$
= \alpha s^2 P_{\tau}^{-1} \left[\sigma^{BA} P_B \left(-\frac{P_A}{P_{\tau}} e_4 + e_A \right) + (1 + s^2 (1 - 2ms) P_s) \left(-\frac{P_s}{P_{\tau}} e_4 + e_3 \right) \right]
$$

\n
$$
- \frac{P_s}{P_{\tau}} e_4 \right]
$$

Spacelike CMC surfaces near null infinity 863

$$
=\alpha s^2 P_\tau^{-1} \left(\sigma^{BA} P_B e_A + (1 + s^2 (1 - 2 ms) P_s) e_3 \right) + \alpha s^2 P_\tau^{-2} L e_4
$$

=c(s)e_i + \alpha⁻¹ e₄,

by (iii), (2.7) , (3.3) and (3.7) . This completes the proof of the lemma. \Box

Let

$$
(3.8) \t\t w_i = s\varepsilon_i, \ i = 1, 2, 3.
$$

Then w_i form an orthonormal frame for Σ_{τ} with respect to the metric induced by the Schwarzschild metric g.

Lemma 3.2. If s_0 is small enough, depending only on τ_1, τ_2 and f, then $\alpha, \alpha^{-1}, ||\nabla \alpha||_{\Theta}$ are uniformly bounded in $U \times (0, s_0) \times (\tau_1, \tau_2)$.

Proof. The estimates of α, α^{-1} follow immediately from Lemma [3.1.](#page-8-2) Let us estimate the derivatives of α . By Lemma [3.1,](#page-8-2) [\(3.6\)](#page-8-1) and

$$
w_i(\alpha) = s\varepsilon_i(\alpha)
$$

= $s\varepsilon_i(k)$ ⁰ $)e_k(1 + c(s))$
= $c_i(s)$.

$$
T(\alpha) = (c_i(s)e_i + \alpha^{-1}e_4)(\alpha)
$$

= $c(s)$.

Hence $||\nabla \alpha||_{\Theta}$ is uniformly bounded in $U \times (0, s_0) \times (\tau_1, \tau_2)$.

Let K be the second fundamental form of Σ_{τ} . We want to estimate $||\mathcal{K}||_{\Theta}$. Since the metric \bar{g} is a product metric, it is more easy to compute the second fundamental form with respect to \overline{g} . Let us recall the following fact:

Lemma 3.3. Let Σ be a spacelike hypersurface in a spacetime (M, g) . Suppose $g = e^{2\lambda} \overline{g}$. Let **n** be a unit normal of M with respect to g. Let $\overline{\mathbf{n}} = e^{\lambda} \mathbf{n}$, which is a unit normal with respect to \overline{q} . Let $\mathcal{K}, \overline{\mathcal{K}}$ be the second fundamental forms of Σ with respect to g, **n** and \overline{g} , \overline{n} respectively. Then for any tangential vector fields X, Y , we have

$$
\mathcal{K}(X,Y) = e^{\lambda} \left(\overline{\mathcal{K}}(X,Y) + d\lambda(\overline{\mathbf{n}}) \overline{g}(X,Y) \right).
$$

Proof. Let ∇ , ∇ be the connections of g , \overline{g} respectively. Then any smooth vector fields X, Y , we have

$$
\nabla_X Y = \overline{\nabla}_X Y + \Gamma(X, Y),
$$

 \Box

where Γ is given by

$$
g(\Gamma(X,Y),Z) = X(\lambda)g(Y,Z) + Y(\lambda)g(X,Z) - Z(\lambda)g(X,Y).
$$

Let X, Y be tangent to Σ . Then

$$
\mathcal{K}(X,Y) = -g(\nabla_X Y, \mathbf{n})
$$

= $-g(\overline{\nabla}_X Y, \mathbf{n}) - X(\lambda)g(Y, \mathbf{n}) - Y(\lambda)g(X, \mathbf{n}) + \mathbf{n}(\lambda)g(X, Y)$
= $-e^{\lambda} \overline{g}(\overline{\nabla}_X Y, \overline{\mathbf{n}}) + e^{\lambda} \overline{\mathbf{n}}(\lambda) \overline{g}(X, Y)$
= $e^{\lambda} (\overline{\mathcal{K}}(X, Y) + d\lambda(\overline{\mathbf{n}}) \overline{g}(X, Y)).$

In our case, $\mathbf{n} = T$, $\lambda = -\log s$. Let $\overline{\mathbf{n}} = e^{\lambda}T = s^{-1}T$. Then by Lemma [2.2,](#page-5-3)

 \Box

$$
d\lambda(\overline{\mathbf{n}}) = -s^{-2}T(s) = \alpha s^{-2} \nabla \tau(s) = -\alpha P_{\tau}^{-1} \left(1 + s^2 (1 - 2ms) P_s \right).
$$

So the second fundamental forms $\mathcal{K}, \overline{\mathcal{K}}$ of Σ_{τ} with respect to g, \overline{g} are related by:

(3.9)
$$
\mathcal{K} = s^{-1} \left[\overline{\mathcal{K}} - \alpha P_{\tau}^{-1} \left(1 + s^2 (1 - 2ms) P_s \right) \overline{g} \right].
$$

The following lemma basically is contained in [\[9](#page-31-3)].

Lemma 3.4. Let K be the second fundamental form of Σ_{τ} . Then in $U \times$ $(0, s_0) \times (\tau_1, \tau_2)$

$$
\mathcal{K}(w_i, w_j) = \tau^{-1} \delta_{ij} + c_{ij}(s),
$$

where w_1, w_2, w_3 are given by [\(3.8\)](#page-10-0) which form an orthonormal basis of Σ_{τ} with respect to g. In particular, $||\mathcal{K}||_{\Theta}$ is uniformly bounded.

Proof. Let e_i, ε_i be as in [\(3.6\)](#page-8-1) and Lemma [3.1.](#page-8-2) By Lemma [3.5](#page-12-0) below, we have

$$
\overline{\mathcal{K}}(e_i, e_j) = c_{ij}(s^0).
$$

Hence using Lemma [3.1,](#page-8-2) (2.7) and (3.9) , we have

$$
\mathcal{K}(w_i, w_j) = s^2 \mathcal{K}(\varepsilon_i, \varepsilon_j)
$$

= $s \left(\overline{\mathcal{K}}(\varepsilon_i, \varepsilon_j) - \alpha P_\tau^{-1} \left(1 + s^2 (1 - 2ms) P_s \right) \overline{g}(\varepsilon_i, \varepsilon_j) \right)$
= $s \overline{\mathcal{K}}(\varepsilon_i, \varepsilon_j) - \alpha s P_\tau^{-1} \left(1 + s^2 (1 - 2ms) P_s \right) \delta_{ij}$

Spacelike CMC surfaces near null infinity 865

$$
=sc_{ik}(s^0)c_{jl}(s^0)\overline{\mathcal{K}}(e_i,e_j)+\tau^{-1}\delta_{ij}+c(s)
$$

= $\tau^{-1}\delta_{ij}+c(s)$.

Lemma 3.5. With the notation as in Lemma [3.4,](#page-11-1) we have $\overline{\mathcal{K}}(e_i, e_i)$ = $c_{ij} (s^0)$ in $U \times (0, s_0) \times (\tau_1, \tau_2)$

Proof. Using Lemma [2.3,](#page-3-2) direction computations show:

(3.10)
$$
\begin{cases} \nabla_{\partial_A} \partial_B = \widetilde{\nabla}_{\partial_A} \partial_B, 1 \leq A, B \leq 2;\\ \nabla_{\partial_A} \partial_a = \overline{\nabla}_{\partial_a} \partial_B = 0, 3 \leq a \leq 4, 1 \leq A \leq 2;\\ \nabla_{\partial_3} \partial_3 = 0;\\ \nabla_{\partial_4} \partial_4 = s^3 (1 - 5ms + 6m^2 s^2) \partial_3 + s(1 - 3ms) \partial_4\\ \nabla_{\partial_3} \partial_4 = \overline{\nabla}_{\partial_4} \partial_3 = -s(1 - 3ms) \partial_3. \n\end{cases}
$$

On the other hand,

$$
\overline{\nabla}_{e_i} e_j = \overline{\nabla}_{(-P_i \partial_4 + \partial_i)} (-P_j \partial_4 + \partial_j)
$$
\n
$$
= P_i \partial_4 (P_j) \partial_4 + P_i P_j \overline{\nabla}_{\partial_4} \partial_4 - \partial_i (P_j) \partial_4 - P_i \overline{\nabla}_{\partial_4} \partial_j + \overline{\nabla}_{\partial_i} \partial_j
$$
\n
$$
= [P_i \partial_4 (P_j) - m s^2 P_i P_j - \partial_i (P_j)] \partial_4 - m s^4 (1 - 2 m s) P_i P_j \partial_3
$$
\n
$$
- P_i \overline{\nabla}_{\partial_4} \partial_j + \overline{\nabla}_{\partial_i} \partial_j.
$$

We want to compute $\overline{g}(\overline{\nabla}_{e_i}e_j, \overline{\mathbf{n}})$ where $\overline{\mathbf{n}} = s^{-1}T$ is the unit normal of Σ_{τ} with respect to \overline{g} . By Lemma [3.1,](#page-8-2) $g(T, e_4) = -\alpha$. By [\(3.7\)](#page-8-0), and the fact that $\overline{g}(T,e_i) = 0$, we have,

(3.12)
$$
\begin{cases} \overline{g}(\overline{n}, \partial_i) = sg(T, \partial_i) = s\alpha P_\tau^{-1} P_i, & 1 \leq i \leq 3; \\ \overline{g}(\overline{n}, \partial_4) = sg(T, \partial_4) = s\alpha P_\tau^{-1}. \end{cases}
$$

Moreover,

$$
P_A \partial_4(P_B) - \partial_A(P_B) = -P_\tau^{-1} P_A e_4(P_B) + P_\tau^{-1} P_A e_4(P_B) - e_A(P_B) \\
= - P_{AB}.
$$

Similarly, for $1 \leq A \leq 2$,

$$
P_3 \partial_4(P_A) - \partial_3(P_A) = -P_{As}; P_3 \partial_4(P_3) - \partial_3(P_3) = -P_{ss}.
$$

Combining these with (3.11) , (3.12) and (2.7) , the results follow.

 \Box

 \Box

Next we want to estimate of $||\nabla T||_{\Theta}$ and $||\nabla^2 T||_{\Theta}$. First we have the following:

Lemma 3.6. Let w_i be as in (3.8) . Denote T by w_4 . Then

$$
\begin{cases} [w_i, w_j] = c_{ijk}(s^0)w_k, 1 \le i, j, k \le 3; \\ [T, w_i] = \sum_{a=1}^4 c_{ia}(s^0)w_a, 1 \le i \le 3. \end{cases}
$$

Proof. Observe that e_a in (3.6) are coordinate frames with respect to the coordinates y^1, y^2, s, τ . Hence $[e_a, e_b] = 0$. Now by Lemma [3.1](#page-8-2)

$$
[w_i, w_j] = [s\varepsilon_i, s\varepsilon_j]
$$

\n
$$
= [s\varepsilon_{ik}(s^0)e_k, s\varepsilon_{jl}(s^0)e_l]
$$

\n
$$
= s\varepsilon_{ik}(s^0)e_k(s\varepsilon_{jl}(s^0))e_l - s\varepsilon_{jl}(s^0)e_l(s\varepsilon_{ik}(s^0))e_k
$$

\n
$$
= c_{ijk}(s)e_k
$$

\n
$$
= c_{ijk}(s^0)w_k.
$$

By Lemma [3.1](#page-8-2) again, we have

$$
[T, w_i] = [c_k(s)e_k + \alpha^{-1}e_4, sc_{ij}(s^0)e_j]
$$

= $c_k(s)e_k + [\alpha^{-1}e_4, sc_{ij}(s^0)e_j]$
= $c_{ia}(s^0)w_a$

where we have used the fact that $e_4(s) = 0$ and $e_4 = \alpha (T - c_k(s)e_k)$. \Box

Lemma 3.7. $||\nabla T||_{\Theta}$ is uniformly bounded in $U \times (0, s_0) \times (\tau_1, \tau_2)$.

Proof. Let w_i be as in [\(3.8\)](#page-10-0). To estimate $||\nabla T||_{\Theta}$ it is sufficient to estimate $||\nabla_{w_i}T||_{\Theta}$ and $||\nabla_TT||_{\Theta}$. Now

$$
g(\nabla_{w_i}T,T)=0; \quad g(\nabla_{w_i}T,w_j)=\mathcal{K}(w_i,w_j).
$$

By Lemma [3.4,](#page-11-1) $||\nabla_{w_i}T||_{\Theta}$ are uniformly bounded for $1 \leq i \leq 3$.

Next, we want to estimate $||\nabla_T T||_{\Theta}$. It is easy to see that $g(\nabla_T T, T) = 0$. Since $g(T, w_i) = 0$, we have

$$
g(\nabla_T T, w_i) = - g(T, \nabla_T w_i)
$$

= - g(T, [T, w_i]) + g(T, \nabla_{w_i} T)
= - g(T, [T, w_i]).

By Lemma [3.6,](#page-13-0) we conclude that $||\nabla_T T||_{\Theta}$ is uniformly bounded. This completes the proof of the lemma. \Box

For $\nabla \nabla T$, we have:

Lemma 3.8. $\|\nabla \nabla T\|_{\Theta}$ is uniformly bounded in $U \times (0, s_0) \times (\tau_1, \tau_2)$.

Proof. It is sufficient to prove that for all $1 \le a, b \le 4, ||\nabla_{w_a}\nabla_{w_b}T||_{\Theta}$ is uniformly bounded. Here $w_4 = T$.

(i) To estimate $||\nabla_T \nabla_T T||_{\Theta}$:

$$
g(\nabla_T \nabla_T T, T) = -g(\nabla_T T, \nabla_T T),
$$

which is uniformly bounded by Lemma [3.7.](#page-13-1) On the other hand,

$$
g(\nabla_T \nabla_T T, w_i) = T(g(\nabla_T T, w_i)) - g(\nabla_T T, \nabla_T w_i)
$$

= $T(g(\nabla_T T, w_i)) - g(\nabla_T T, [T, w_i]) - g(\nabla_T T, \nabla_{w_i} T).$

By Lemmas [3.7,](#page-13-1) [3.6,](#page-13-0) the last two terms above are uniformly bounded. By Lemma [3.6](#page-13-0)

(3.13)
\n
$$
T(g(\nabla_T T, w_i)) = -T(g(T, [T, w_i]))
$$
\n
$$
= T(c_i(s^0))
$$
\n
$$
= c_i(s^0),
$$

by Lemma [3.1\(](#page-8-2)iii). Hence $||\nabla_T \nabla_T T||_{\Theta}$ is uniformly bounded.

(ii) To estimate $||\nabla_{w_i}\nabla_T T||_{\Theta}$:

$$
g(\nabla_{w_i}\nabla_T T,T) = -g(\nabla_T T,\nabla_{w_i}T),
$$

which is uniformly bounded by Lemma [3.7.](#page-13-1) Next,

$$
g(\nabla_{w_i}\nabla_T T, w_j) = w_i(g(\nabla_T T, w_j)) - g(\nabla_T T, \nabla_{w_i} w_j).
$$

The first term on the RHS is uniformly bounded similar to [\(3.13\)](#page-14-0). Consider the second term, we have

$$
g(\nabla_T T, \nabla_{w_i} w_j) = g(\nabla_T T, w_k) \cdot g(\nabla_{w_i} w_j, w_k).
$$

Now

(3.14)

$$
g(\nabla_{w_i} w_j, w_k) = \frac{1}{2} (g([w_i, w_j], w_k) - g([w_i, w_k], w_j) - g([w_j, w_k], w_i)).
$$

Hence by Lemma [3.7](#page-13-1) and [3.6,](#page-13-0) the second term on the RHS is also uniformly bounded. So $||\nabla_{w_i}\nabla_T T||_{\Theta}$ is uniformly bounded.

(iii) To estimate
$$
||\nabla_T \nabla_{w_i} T||\Theta
$$
:
\n
$$
g(\nabla_T \nabla_{w_i} T, T) = - g(\nabla_{w_i} T, \nabla_T T)
$$
\n
$$
= - g(\nabla_{w_i} T, w_j) \cdot g(\nabla_T T, w_j)
$$
\n
$$
= - \mathcal{K}(w_i, w_j)g(\nabla_T T, w_j),
$$
\n
$$
= c(s^0)
$$

which is uniformly bounded by Lemmas [3.4](#page-11-1) and [3.7.](#page-13-1) Next,

$$
g(\nabla_T \nabla_{w_i} T, w_j) = T(g(\nabla_{w_i} T, w_j)) - g(\nabla_{w_i} T, \nabla_T w_j)
$$

= $T(\mathcal{K}(w_i, w_j)) - g(\nabla_{w_i} T, w_k) \cdot g(\nabla_T w_i, w_k)$
= $T(\mathcal{K}(w_i, w_j)) - \mathcal{K}(w_i, w_k) (g([T, w_i], w_k) - \mathcal{K}(w_i, w_k)),$

which is uniformly bounded by Lemmas [3.1,](#page-8-2) [3.4,](#page-11-1) and [3.6.](#page-13-0)

Hence $||\nabla_T \nabla_{w_i} T||_{\Theta}$ is uniformly bounded.

(iv) To estimate $||\nabla_{w_i}\nabla_{w_j}T||_{\Theta}$:

$$
g(\nabla_{w_i}\nabla_{w_j}T,T)=-g(\nabla_{w_j}T,\nabla_{w_i}T),
$$

which is uniformly bounded by Lemma [3.4.](#page-11-1)

$$
g(\nabla_{w_i}\nabla_{w_j}T, w_k) = w_i(g(\nabla_{w_j}T, w_k)) - g(\nabla_{w_j}T, \nabla_{w_i}w_k)
$$

= $w_i(\mathcal{K}(w_j, w_k)) - \mathcal{K}(w_j, w_l) \cdot g(\nabla_{w_i}w_k, w_l).$

As before, one can see that this is uniformly bounded. This completes the proof of the lemma. \Box

Finally, we want to estimate $||\mathbf{H}_{\tau,s}||_{\Theta}$, where $\mathbf{H}_{\tau,s}$ is the mean curvature vector of the two-surface given by $\tau = constant$, s = constant.

Lemma 3.9. $||\mathbf{H}_{\tau,s}||_{\Theta}$ is uniformly bounded for $s \in (0, s_0)$, $\tau \in (\tau_1, \tau_2)$ and $y \in U$.

Proof. Let $N \subset \Sigma_{\tau}$ which is the level set of s. Let e_a, ε_i, w_i be as in (3.6) , Lemma [3.1,](#page-8-2) and (3.8) . Observe that e_1, e_2 form a basis for the tangent space of N, and $\varepsilon_1, \varepsilon_2, \varepsilon_3$ form an orthonormal basis for Σ_{τ} obtained by Gram-Schmidt process on e_1, e_2, e_3 with respect to \overline{g} . Hence w_1, w_2 form an orthonormal basis for the tangent space of N. w_3 , T form an orthonormal

basis for the normal bundle of N.

$$
\mathbf{H}_{\tau,s} = \left(\sum_{A=1}^{2} \nabla_{w_A} w_A\right)^{\perp}
$$

= $-\sum_{A=1}^{2} g(\nabla_{w_A} w_A, T)T + \sum_{A=1}^{2} g(\nabla_{w_A} w_A, w_3) w_3$
= $\sum_{A=1}^{2} \mathcal{K}(w_A, w_A)T + \sum_{A=1}^{2} g(\nabla_{w_A} w_A, w_3) w_3.$

By Lemmas [3.4,](#page-11-1) [3.6](#page-13-0) and [\(3.14\)](#page-14-1), we conclude that the lemma is true. \Box

Since \mathbb{S}^2 can be covered by finitely many coordinate neighborhoods, by Lemmas [2.2,](#page-5-3) [3.2,](#page-10-1) [3.5,](#page-12-0) [3.7,](#page-13-1) [3.8](#page-14-2) and [3.9,](#page-15-0) we have the following:

Theorem 3.1. There is $s_0 > 0$ depending only on τ_1, τ_2, f such that for any $\tau \in (\tau_1, \tau_2)$ the level set Σ_{τ} is spacelike. Moreover, if α is the lapse function of the time function τ , T is the future pointing unit normal of Σ_{τ} and $H_{\tau,s}$ is the mean curvature vector of the surface $\tau = constant$, $s = constant$, then the following are all uniformly bounded in $\mathbb{S}^2 \times (0, s_0) \times (\tau_1, \tau_2)$:

$$
\alpha, \alpha^{-1}, ||\nabla \alpha||_{\Theta}, ||\nabla T||_{\Theta}, ||\nabla \nabla T||_{\Theta}, ||\vec{H}_{\tau,s}||_{\Theta}.
$$

Moreover, the mean curvature H of Σ_{τ} is given by

$$
H = \tau^{-1} + c(s).
$$

4. Construction of CMC surfaces

Using $t, \mathbf{x} = (x^1, x^2, x^3)$ as coordinates for the Schwarzschild metric in the form [\(1.1\)](#page-1-2) with $r = |\mathbf{x}| = \left(\sum_{i=1}^{3} (x^i)^2\right)^{\frac{1}{2}}$,

(4.1)
$$
g_{\text{Sch}} = -h dt^2 + g_{ij}(x) dx^i dx^j,
$$

where $h = 1 - \frac{2m}{r} = 1 - 2ms$ with $s = r^{-1}$ and

$$
g_{ij} = \delta_{ij} + (h^{-1} - 1)r^{-2}x^{i}x^{j}.
$$

Notation: In this section, we use g_{Sch} to denote the Schwarzschild metric and $g_{ij}(x)dx^idx^j$ will be denoted by g. The inverse of (g_{ij}) is denoted by

870 Luen-Fai Tam

 g^{ij} . For a function v of $\mathbf{x} = (x^1, x^2, x^3)$, $Dv = g^{ij}v_i \frac{\partial}{\partial x^j}$ where $v_i = \frac{\partial v}{\partial x^i}$. $D^i v = g^{ij} v_j$. $|Dv|^2 = D^i v D_i v$. The Hessian of v with respect to g will be denoted by v_{ij} .

We will prove Theorem [1.1](#page-1-0) for the case $H_0 = 1$. The other case is similar. Let $f(\mathbf{y})$ be a smooth function on \mathbb{S}^2 . Let

$$
M = S^2 \times (0, s_0) \times (\frac{1}{2}, 2),
$$

and define the map Φ as in \S [2.2](#page-4-1) given by $P(y, s, \tau)$ in [\(2.5\)](#page-4-2) with f replaced by $-f$. Let s_0 be as in Lemma [2.1.](#page-5-0) Let β be a constant, define

$$
Q(\mathbf{y}, s; \beta) = -f(\mathbf{y}) + \phi(\mathbf{y})s + \frac{1}{2}\psi(\mathbf{y})s^2 + \beta s^3 = P(\mathbf{y}, s, 1) + \beta s^3,
$$

where ϕ, ψ are defined as in [\(2.6\)](#page-4-3) with f replaced by $-f$ and $\tau = 1$. For fixed β , if s_0 is small enough then $P(\mathbf{y}, s, 2) < Q(\mathbf{y}, s; \beta) < P(\mathbf{y}, s, \frac{1}{2})$. Hence the surface Σ given by $v = -Q(y, s; \beta)$ will be in $\Phi(M)$, provided s_0 is small enough depending only on f and the bound of β .

We want to compute the mean curvature of Σ . All mean curvature will be computed with respect to future pointing unit normal.

Lemma 4.1. There exist $\beta_1 < 0, \beta_2 > 0$ and $s_0 > 0$ depending only on f such that the surfaces Σ_1 , Σ_2 which are the graphs of $v = -Q_1$, $v =$ $-Q_2$ respectively, are in $\Phi(M)$. Here $Q_1(\mathbf{y},s) =: Q(\mathbf{y},s;\beta_1), Q_2(\mathbf{y},s) =:$ $Q(\mathbf{y}, s; \beta_1)$. Moreover, the mean curvature of Σ_1 is smaller than 1 and the mean curvature of Σ_2 is larger than 1.

Proof. The first part of the lemma is obvious. To simplify notation, in the following let us denote Q_1 by Q and Σ_1 by Σ . We may assume that Σ is spacelike. Let H be the mean curvature of Σ . By the computation in [\[9](#page-31-3), Lemma 2.2],

$$
(4.2)
$$
\n
$$
-3HL^{\frac{3}{2}} = sL\left(s^2(1-2ms)Q_{ss} + \tilde{\Delta}Q\right)
$$
\n
$$
-\frac{1}{2}s\left(L_s + s^2(1-2ms)L_sQ_s + \langle \tilde{\nabla}L, \tilde{\nabla}Q \rangle\right) - s^2LP_s - 3L
$$

where

$$
L = -(2Q_s + s^2(1 - 2ms)Q_s^2 + |\tilde{\nabla}Q|^2).
$$

One can see that H is smooth up to $s = 0$, provided $s_0 > 0$ is small enough depending only on f. By the choice of ϕ, ψ and [\[9](#page-31-3), Theorem 3.1], at $s = 0$ $H = 1, H_s = 0.$

In below, c, c_k will denote smooth functions in **y**, s up to $s = 0$, which are independent of β , it may vary from line to line. It is easy to see that at $s = 0, Q_s = c, Q_{ss} = c, Q_{sss} = 6\beta.$ At $s = 0, L = 1, L_s = c, L_{ss} = -12\beta + c.$ Therefore, at $s = 0$

$$
(-3HL^{\frac{3}{2}})_{ss} = -3H_{ss}L^{\frac{3}{2}} - 3H(L^{\frac{3}{2}})_{ss}
$$

$$
= -3H_{ss} - \frac{9}{2}(L^{\frac{1}{2}}L_{s})_{s}
$$

$$
= -3H_{ss} + 54\beta + c;
$$

$$
\[sL\left(s^2(1-2ms)Q_{ss}+\widetilde{\Delta}Q\right)\]_{ss} = 2\left[L\left(s^2(1-2ms)Q_{ss}+\widetilde{\Delta}Q\right)\right]_{s} = c;
$$

$$
-\frac{1}{2}\left[s\left(L_s + s^2(1-2ms)L_sQ_s + \langle \tilde{\nabla}L, \tilde{\nabla}Q \rangle\right)\right]_{ss}
$$

= -\left(L_s + s^2(1-2ms)L_sQ_s + \langle \tilde{\nabla}L, \tilde{\nabla}Q \rangle\right)_s
=12\beta + c;

and

$$
(-s^2LQ_s - 3L)_{ss} = 36\beta + c.
$$

Hence we have

$$
-3H_{ss} + 54\beta + c_1 = c_2 + 12\beta + c_3 + 36\beta + c_4.
$$

Or

$$
(4.3) \t\t\t H_{ss} = 2\beta + c.
$$

First choose $\beta = \beta_1 < 0$ so that $2\beta_1 + c < 0$. Then β_1 depends only on f.

(4.4)
$$
H = 1 + \frac{1}{2}(2\beta_1 + c)s^2 + O(s^3).
$$

In particular, $H < 1$ for $0 < s < s_0$ provided s_0 is small enough depending only on f. Similarly, one can choose $\beta_2 > 0$ so that $2\beta_2 + c > 0$. This completes the proof of the lemma.□ Remark 4.1. The construction in the above lemma does not work for higher order. Namely, suppose

(4.5)
$$
Q(\mathbf{y}, s) = \sum_{i=0}^{k} \frac{1}{i!} f_i(\mathbf{y}) s^i + \beta s^{k+1},
$$

and suppose we can choose f_i so that the mean curvature H satisfies $H = 1$, and $\frac{\partial^i H}{\partial s^i} = 0$ for $1 \leq i \leq k-1$ at $s = 0$. Then at $s = 0$

$$
3\partial_s^k H = (3-k)(k+1)!\beta + c
$$

where c is a function of **y**, s. Note that $(3-k)(k+1)! \leq 0$ if $k \geq 3$ in contrast to [\(4.3\)](#page-18-0). Another issue is that in general one cannot find f_i so that $\partial_s^i H = 0$ at $s = 0$ if $k \geq 4$, see [\[9,](#page-31-3) Theorem 3.1].

Let t , \mathbf{x} be as in [\(4.1\)](#page-16-2).

$$
\nabla t = -h^{-1}\frac{\partial}{\partial t}.
$$

The lapse function $\tilde{\alpha}$ for the time function t is given by:

$$
\widetilde{\alpha}^{-2} = -g_{\text{Sch}}(\nabla t, \nabla t) = h^{-1}.
$$

So $\tilde{\alpha} = h^{\frac{1}{2}}$. The future pointing unit normal of $t =$ constant is:

$$
\widetilde{T} = h^{-\frac{1}{2}} \frac{\partial}{\partial t}.
$$

Lemma 4.2. Let T be the future pointing unit normal of τ =constant. Then $g_{\text{Sch}}(T, \tilde{T}) = -s^{-1}L^{-\frac{1}{2}}h^{-\frac{1}{2}},$ where L is given by [\(2.11\)](#page-5-2) with $s = r^{-1}$.

Proof. By [\(3.3\)](#page-7-1), the lapse function of τ is $\alpha = -s^{-1}P_{\tau}L^{-\frac{1}{2}}$. By [\(2.13\)](#page-6-1),

$$
g_{\text{Sch}}(\nabla \tau, \frac{\partial}{\partial t}) = P_{\tau}^{-1}.
$$

Hence

$$
g_{\text{Sch}}(T,\widetilde{T}) = -\alpha g_{\text{Sch}}(\nabla \tau, h^{-\frac{1}{2}}\partial_t) = -s^{-1}L^{-\frac{1}{2}}h^{-\frac{1}{2}}.
$$

 \Box

Consider a surface given by the graph of $u(\mathbf{x})$, where $\mathbf{x} = (x^1, x^2, x^3)$, namely, it is given by $t = u(\mathbf{x})$. Then it is the level surface of $F(t, \mathbf{x}) =$ $t - u(\mathbf{x}) = 0$. Normal is given by

$$
\nabla F = -h^{-1} \frac{\partial}{\partial t} - D^i u \frac{\partial}{\partial x^i}.
$$

$$
g_{\text{Sch}}(\nabla F, \nabla F) = g^{ab} F_a F_b = -h^{-1} + |Du|^2.
$$

Hence the surface is spacelike if and only if

(4.6)
$$
1 - h|Du|^2 > 0.
$$

If u is spacelike, the future pointing unit normal is:

$$
\widetilde{\mathbf{n}} = (h^{-1} - |Du|^2)^{-\frac{1}{2}} \nabla F = (h^{-1} - |Du|^2)^{-\frac{1}{2}} \left(h^{-1}\frac{\partial}{\partial t} + D^i u \frac{\partial}{\partial x^i}\right).
$$

The tilt factor with respect to \widetilde{T} is given by:

(4.7)
$$
\widetilde{\nu} = -g_{\rm Sch}(\widetilde{T}, \widetilde{\mathbf{n}}) = h^{-\frac{1}{2}} \left(h^{-1} - |Du|^2 \right)^{-\frac{1}{2}} = (1 - h|Du|^2)^{-\frac{1}{2}}.
$$

Suppose the surface is spacelike, it is more easy to appeal to [\[2,](#page-30-0) p.160] to obtain the mean curvature equation of u . Namely, its graph has mean curvature H if and only if:

ature
$$
H
$$
 if and only if:
\n
$$
3H = \text{Div}\left(\frac{U}{(1-|U|^2)^{\frac{1}{2}}}\right) + 3\widetilde{\nu}H^o + \widetilde{\nu}g_{\text{Sch}}(U,\nabla_{\widetilde{T}}\widetilde{T}) + \frac{1}{2}\widetilde{\nu}^3\widetilde{T}(|U|^2).
$$

Here Div is the divergence with respect to the metric (g_{ij}) , and $U = \tilde{\alpha}Du$.
 $|U|$ is the norm with respect to g so that $|U|^2 = \tilde{\alpha}^2|Du|^2 = h|Du|^2$. H^o is the mean curvature of $t = constant$, which is zero. Note that $\widetilde{T}(|U|^2) = 0$, because $|U|^2$ does not depend on
 $t.$ $g_{\textrm{Sch}}(U,\nabla_{\tilde{T}}\tilde{T})$

$$
g_{\text{Sch}}(U, \nabla_{\widetilde{T}}\widetilde{T}) = -\frac{1}{2}D^i u D_i \log h.
$$

Therefore, the graph of u has mean curvature H if and only if

(4.8) Div
$$
\left(\frac{h^{\frac{1}{2}}Du}{(1-h|Du|^2)^{\frac{1}{2}}}\right) - \frac{1}{2}(1-h|Du|^2)^{-\frac{1}{2}}D^i u D_i \log h = 3H.
$$

Hence the mean curvature equation is of the form:

(4.9)
$$
A^{ij}u_{ij} + B(x, Du) = 3h^{-\frac{1}{2}}(1 - h|Du|^2)^{\frac{1}{2}}H.
$$

where

$$
\begin{cases}\nA^{ij} = (1 - h|Du|^2)g^{lj} + hD^i u D^j u, \\
B(x, Du) = h^{-\frac{1}{2}} g(Du, D(h^{\frac{1}{2}})) + \frac{1}{2} \frac{|Du|^2 g(Du, Dh)}{(1 - h|Du|^2)}.\n\end{cases}
$$

Here u_{ij} is the Hessian of u with respect to g.

Lemma 4.3. Assume the graph of u is spacelike, then any $\mathbf{a} = (a_1, a_2, a_3)$, we have

$$
|\mathbf{a}|^2 \ge A^{lj} a_l a_j \ge (1 - h|Du|^2)|\mathbf{a}|^2,
$$

where $a^j = g^{ij}a_i$ and $|\mathbf{a}|^2 = a_i a^i$.

Proof.

$$
A^{lj}a_{l}a_{j} = (1 - h|Du|^{2})|\mathbf{a}|^{2} + hg^{ij}g^{kl}u_{i}u_{k}a_{l}a_{j}
$$

$$
= (1 - h|Du|^{2})|\mathbf{a}|^{2} + h(\sum_{i} u_{i}a^{i})^{2}.
$$

From this the lemma follows.

Recall the following basic fact, see [\[2](#page-30-0), Lemma 3.3]:

Lemma 4.4. In a Lorentzian vector space with inner product \langle , \rangle , Let T_1, T_2, T_3 be future-directed unit timelike vectors. Then

$$
1 \le -\langle T_1, T_2 \rangle \le 2\langle T_1, T_3 \rangle \langle T_2, T_3 \rangle.
$$

We are now ready to prove Theorem [1.1:](#page-1-0)

Proof of Theorem [1.1.](#page-1-0) For simplicity, we prove the case that $H_0 = 1$. The other case is similar. Consider the foliation by $P(\mathbf{y}, s, \tau)$ at the beginning of the section with $M = \mathbb{S} \times (0, s_0) \times (\frac{1}{2}, 2)$. We assume that s_0 is chosen such that in the retarded null coordinate $v = t - r_*$, $\Phi(\mathbf{y}, s, \tau) = (\mathbf{y}, s, -P)$ is a diffeomorphism between M and $\Phi(M)$. Note that in terms standard coordinates as in (1.1) ,

(4.10)
\n
$$
\Phi(M) = \{ (\mathbf{y}, r, t) | \mathbf{y} \in \mathbb{S}^2, r > \frac{1}{s_0}, r_* - P(\mathbf{y}, r^{-1}, 2) > t > r_* - P(\mathbf{y}, r^{-1}, \frac{1}{2}) \}.
$$

 \Box

Choose $\beta_1 < 0, \beta_2 > 0$ as in Lemma [4.1](#page-17-0) and let $w_1(y, r) = r_* - Q_1(y, r^{-1}),$ $w_2(y, r) = r_* - Q_2(y, r^{-1})$ where Q_1, Q_2 are as in the lemma. Here s_0 is chosen so that the conclusion of the lemma is true and so that the conclusion of Theorem [3.1](#page-16-1) is also true for $\tau_1 = \frac{1}{2}, \tau_2 = 2$. Also, let $w(\mathbf{y}, r) = r_*$ – $P(\mathbf{y}, r^{-1}, 1).$

Let $\frac{1}{2}r_0 = \frac{1}{s_0}$. For any $R > r_0$, consider the spacetime N_R given by $\mathbb{S}^2 \times (\frac{1}{2}r_0, 2R) \times \mathbb{R}$ with metric induced by the Schwarzschild metric. One can see that the surface given by $t = w(\mathbf{y}, r)$ is spacelike and acausal in N_R , see [\[10,](#page-31-5) Corollary 46]. That is: no two different points on the surface are causally related. By $[5,$ $[5,$ Theorem 5.1], we can find smooth function u_R of \mathbf{y}, r , with $r_0 \leq r \leq R$ so that the graph of u_R is spacelike with constant mean curvature 1, so that u_R has the same boundary value as $w(\mathbf{y}, r)$. Since $\beta_1 < 0, \beta_2 > 0$, we have $Q_1(y, s) < P(y, s, 1) < Q_2(y, s)$. We have $w_1 > w > w_2$. Moreover, the mean curvature of the graph of w_1 is less than 1, and the mean curvature of w_2 is larger than 1. By the form of (4.9) and the fact that the graphs of w_1, w_2, u_R are all spacelike up to the boundary, by (4.6) and Lemma [4.3,](#page-21-1) one can apply the comparison principle [\[6,](#page-30-5) Theorem 10.1] to conclude that

(4.11)
$$
w_1(\mathbf{y},r) \geq u_R(\mathbf{y},r) \geq w_2(\mathbf{y},r).
$$

Hence the graph of u_R is in $\Phi(M)$. In the (\mathbf{y}, s, τ) coordinates, this graph is given by $(\mathbf{y}, s, \tau(\mathbf{y}, s))$ with $\mathbf{y} \in \mathbb{S}^2$, $\frac{1}{R} < s < \frac{1}{r_0}$ and

$$
u_R(\mathbf{y},r) = r_* - P(\mathbf{y},s,\tau(\mathbf{y},s)),
$$

with $r = s^{-1}$. On the boundary $s = \frac{1}{R}, \frac{1}{r_0}$, we have $\tau(\mathbf{y}, s) = 1$.

The next step is to prove that u_R will subconverge to a solution of (4.9) with $H = 1$ as $R \to \infty$. In order to do this, by Lemma [4.3](#page-21-1) we need to estimate the tilt factor of the surface with respect to the time function t. So let \mathbf{n}_R be the future pointing unit normal of the surface and let $\nu_R = -g_{Sch}(\mathbf{n}_R, T)$ be the tilt factor with respect to the time function τ where T is given by [\(3.2\)](#page-7-2). By Theorem [3.1](#page-16-1) and the fact that the Schwarzschild spacetime is Ricci flat, we can apply the Bartnik's gradient estimate $[2,$ Theorem 3.1(iii) to conclude that

$$
(4.12) \t\t \nu_R \le C_1
$$

for some constant C_1 independent of R. Let \widetilde{T} be the future pointed unit normal of the surface $t = constant$, by Lemma [4.4](#page-21-2) and (2.13) , we have

(4.13)
$$
\widetilde{\nu}_R =: -g_{\text{Sch}}(\mathbf{n}_R, \widetilde{T}) \le 2g_{\text{Sch}}(\mathbf{n}_R, T)g_{\text{Sch}}(\widetilde{T}, T) \le C_2 s^{-1} = C_2 r
$$

for some constant C_2 independent of R. Here we use the fact that the time function τ restricted on the graph is bounded between $\frac{3}{4}$ and $\frac{2}{3}$. Hence by [\(4.7\)](#page-20-1), for any open set Ω with compact closure in the region $r>r_0$, there is a constant C_3 independent of R such that

$$
(1 - h|Du_R|^2)^{-\frac{1}{2}} \le C_3.
$$

In particular, $|Du_R| \leq C_4$ in Ω for some constant C_4 independent of R. By (4.9) with $H = 1$, we may apply $[6,$ Theorem 13.6 to obtain a uniform Hölder estimate for u_i . Using Schauder estimates, we conclude that there is a subsequence $R_k \to \infty$ such that u_{R_k} converge in C_{loc}^{∞} in $\{r > r_0\}$ to function u so that its graph is spacelike and has constant mean curvature 1. By (4.11) , for any $R>r_0$, we have

$$
w_2(\mathbf{y},r) \le u(\mathbf{y},r) \le w_1(\mathbf{y},r).
$$

where $s = r^{-1}$. Hence

$$
|u(\mathbf{y},r) - r_{*} - P(\mathbf{y},r^{-1},1)| \le \max\{-\beta_1,\beta_2\}r^{-3}.
$$

This completes the proof of the theorem.

As a corollary of the proof, in particular by (4.12) , we have:

Corollary 4.1. Let u be the solution in Theorem [1.1.](#page-1-0) The tilt factor of the graph of u with respect to the time function τ is uniformly bounded by a constant.

We should remark that Lemma [4.1](#page-17-0) also implies the following:

Corollary 4.2. Let f be a smooth function on \mathbb{S}^2 . Suppose u is a function defined on $r>r_0$ such that the graph of u in the Schwarzschild spacetime is spacelike with constant mean curvature $H_0 > 0$ so that $u(r, y) - r_* \rightarrow f(y)$ are $r \to \infty$. Suppose there is $C > 0$ such that

$$
u(\mathbf{y}, r_i) - r_* - \left(f(\mathbf{y}) + r_i^{-1} \phi(\mathbf{y}) + \frac{1}{2} r_i^{-2} \psi(\mathbf{y}) \right) - C r_i^{-3} \le 0.
$$

for some $r_i \rightarrow \infty$, where ϕ, ψ are as in Theorem [1.1.](#page-1-0) Then we have

$$
\limsup_{r \to \infty} \left(u(\mathbf{y}, r) - r_{*} - \left(f(\mathbf{y}) + r^{-1} \phi(\mathbf{y}) + \frac{1}{2} r^{-2} \psi(\mathbf{y}) \right) - C' r^{-3} \right) \leq 0.
$$

for some $C' > 0$. Similar result is true for the lower bound estimate.

$$
\Box
$$

Proof. In the proof of Lemma [4.1,](#page-17-0) we may choose $\beta_1 > 0$ large enough so that $\beta_1 + c < 0$ in the notation in the proof and so that $\beta_1 > C$. Then by the maximum principle, it is easy to see that the corollary is true. \Box

5. Lipschitzian regularity

We want to prove that the solution u given by Theorem [1.1](#page-1-0) is Lipschitz near infinity in the sense that the function $r_* - u$ is Lipschitz up to $s = 0$ in the coordinates $y \in \mathbb{S}^2$, s and $v = t - r_*$. In fact, more general result can be obtained. Here is the setup. Let y, s, v be as in $\S2$. Consider the metric given by

$$
(5.1)\t\t G = \omega^{-2}\overline{G}
$$

where $\overline{G} = \overline{g} + p$ and $\omega = s(1 + c(s^3))$. Here \overline{g} is the unphysical metric [\(2.3\)](#page-3-2) and $p = p_{ab}dy^ady^b$ with $p_{ab} = p_{ab}(s^3)$ in the coordinates $\mathbf{y} = (y^1, y^2), y^3 =$ $s, y^4 = v$. Here $p_{ab}(s^3)$ means that $p_{ab} = s^3 \Lambda_{ab}$ where Λ_{ab} is a smooth function on $\mathbb{S}^2 \times [0, s_0) \times \mathbb{R}$ for some $s_0 > 0$. Similar definition for $c(s^3)$. Hence for fixed $v_1 < v_2$, on $\mathbb{S}^2 \times (0, s_0) \times (v_1, v_2)$ we have $\overline{G}^{ab} = \overline{g}^{ab} + p^{ab}$, with $p^{ab} = p^{ab}(s^3)$, provided s_0 is small enough.

Let f be a smooth function on \mathbb{S}^2 . Suppose $P(\mathbf{y}, s, \tau)$, $\tau > 0$ is such that

(5.2)
$$
P(\mathbf{y}, s, \tau) = f(\mathbf{y}) - \frac{1}{2} \left(\tau^2 + |\widetilde{\nabla} f|^2 \right) s + s^2 c(\mathbf{y}, s, \tau)
$$

where c is smooth function on $\mathbb{S}^2 \times [0, s_0) \times (0, \infty)$. As before, one can see that for fixed $0 < \tau_1 < \tau_2$, $(\mathbf{y}, s, \tau) \rightarrow (\mathbf{y}, s, v)$ with $v = -P(\mathbf{y}, s, \tau)$ is a diffeomorphism from $M =: \mathbb{S}^2 \times (0, s_0) \times (\tau_1, \tau_2)$ onto its image N, provided s_0 is small enough. Its image is:

$$
\mathcal{N} = \{(\mathbf{y}, s, v) | \mathbf{y} \in \mathbb{S}^2, s \in (0, s_0), P(\mathbf{y}, s, \tau_1) < v < P(\mathbf{y}, s, \tau_2)\}.
$$

Moreover, in terms of the metric G, $\nabla \tau$ is timelike. Here ∇ is the derivative with respect to G. Let $T = -\alpha \nabla \tau$ as before, where $\alpha^{-2} = -G(\nabla \tau, \nabla \tau)$. We have the following:

Theorem 5.1. Suppose Σ is a spacelike surface inside N for some $0 < \tau_1 <$ τ_2 , which is given by $v + Q(\mathbf{y}, s) = 0$, $(\mathbf{y}, s) \in \mathbb{S}^2 \times (0, s_0)$. Suppose the tilt factor of Σ with respect to T is bounded, that is suppose $-G(T, n) \leq C$ on Σ for some $C > 0$ where **n** is the future pointing unit normal of Σ . Then Q is uniformly Lipschitz on $\mathbb{S}^2 \times (0, s_1)$ for some $0 < s_1 < s_0$.

878 Luen-Fai Tam

By Corollary [4.1](#page-23-0) and the proof of Theorem [1.1](#page-1-0) we have:

Corollary 5.1. Let u be the solution in Theorem [1.1.](#page-1-0) Let $Q(\mathbf{y}, s) = r_*$ $u(\mathbf{y}, r)$ with $s = r^{-1}$. Then $Q(\mathbf{y}, s)$ is uniformly Lipschitz in $\mathbb{S}^2 \times (0, s_0)$ for some $s_0 > 0$.

Proof. Let u_R be as in the proof of Theorem [1.1.](#page-1-0) Since u_R converges to u in C^{∞}_{loc} , by [\(4.12\)](#page-22-1), one can conclude that Q satisfies the conditions in the theorem. Hence the corollary is true. \Box

Remark 5.1. It seems likely that Theorem [5.1](#page-24-0) can also be applied to the spacelike CMC surface constructed by Andersson and Iriondo in [\[1](#page-30-1), Theorem 4.2].

Before we prove Theorem [5.1,](#page-24-0) we need to obtain some estimates. Consider the coordinates t, x^1, x^2, x^3 with $t = v + r_*, r = s^{-1}$ and **y**, r are the spherical coordinates of \mathbb{R}^3 . In the following, we always assume that $\tau_1 < \tau < \tau_2$. Hence we are doing estimates in M or N.

Lemma 5.1. $\frac{\partial}{\partial t}$ is timelike with respect to G provided s₀ is small enough. Moreover, if $G_{ij} = G(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$ is the induced metric on $t = constant$, and if $\tilde{\alpha}$ is the lapse function and β^i is the shift vector, then $G_{ij} = \delta_{ij} + O(s)$, $\tilde{\alpha} = 1 + O(s), \ \beta_i = O(s).$ Here $\beta_i = G_{ij} \beta^j$.

Proof. $\frac{\partial}{\partial t} = \partial_v$. By the assumption on p,

$$
G(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}) = \omega^{-2}(\overline{g}_{vv} + p_{vv}) < 0
$$

if $s_0 > 0$ is small enough. Since $t = v + r_*$, $\partial_v(t) = 1$, $\partial_s t = -s^{-2}h^{-1}$, $\partial_{y^A} t =$ 0, for $A = 1, 2$, where $h = 1 - 2ms$ as before. Let $\partial_a = \partial_{y^a}$. Here y^1, y^2 are local coordinates of \mathbb{S}^2 , $y^3 = s$, $y^4 = v$. So

$$
\nabla t = G^{ab} \partial_a t \partial_b = \left(G^{vb} - s^{-2} h^{-1} G^{sb} \right) \partial_b.
$$

$$
G(\nabla t, \nabla t) = G^{ab} \partial_a t \partial_b t
$$

= $G^{vv} - 2s^{-2} G^{vs} h^{-1} + G^{ss} s^{-4} h^{-2}$
= $\omega^2 (\overline{G}^{vv} - 2s^{-2} \overline{G}^{vs} h^{-1} + \overline{G}^{ss} s^{-4} h^{-2})$
= $\omega^2 [(\overline{g}^{vv} + p^{vv}) - 2s^{-2} (\overline{g}^{vs} + p^{vs}) h^{-1} + (\overline{g}^{ss} + p^{ss}) s^{-4} h^{-2}]$
= $-1 + O(s)$.

Hence

$$
\widetilde{\alpha} = 1 + O(s).
$$

Comparing with g_{Sch} , we see that in the coordinates t, x^i ,

$$
G = s^2 \omega^{-2} g_{\text{Sch}} + \omega^{-2} p.
$$

On the other hand,

$$
\frac{\partial}{\partial t} = \partial_v,
$$

and

$$
\frac{\partial}{\partial x^i} = \frac{\partial r}{\partial x^i} \frac{\partial}{\partial r} + \frac{\partial y^A}{\partial x^i} \frac{\partial}{\partial y^A} = \frac{x^i}{r} \left(-h^{-1} \partial_v - s^2 \partial_s \right) + \frac{\partial y^A}{\partial x^i} \partial_{y^A}.
$$

Here we have used:

$$
\frac{\partial}{\partial r} = \frac{\partial v}{\partial r}\partial_v + \frac{\partial s}{\partial r}\partial_s = -h^{-1}\partial_v - s^2\partial_s.
$$

Hence

$$
\beta_i = G\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x^i}\right)
$$

\n
$$
= \omega^{-2} p\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x^i}\right)
$$

\n
$$
= \omega^{-2} p\left(\partial_v, \frac{x^i}{r} \left(-h^{-1}\partial_v - s^2\partial_s\right)\partial_s + \frac{\partial y^A}{\partial x^i}\partial_{y^A}\right)
$$

\n
$$
= \omega^{-2} \left(\frac{x^i}{r}h^{-1}p_{vv} - \frac{x^i}{r}s^2p_{vs} + \frac{\partial y^A}{\partial x^i}p_{vA}\right)
$$

\n
$$
= O(s).
$$

Here we have used the fact that $\frac{\partial y^A}{\partial x^i} = O(s)$.

$$
G_{ij} = s^2 \omega^{-2} g_{\text{Sch}} \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) + \omega^{-2} p \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right)
$$

$$
= \delta_{ij} + O(s) + \omega^{-2} p \left(\frac{x^i}{r} \left(-h^{-1} \partial_v - s^2 \partial_s \right) \partial_s + \frac{\partial y^A}{\partial x^i} \partial_{y^A} \right)
$$

$$
\frac{x^j}{r} \left(-h^{-1} \partial_v - s^2 \partial_s \right) \partial_s + \frac{\partial y^B}{\partial x^j} \partial_{y^B} \right)
$$

$$
= \delta_{ij} + O(s).
$$

This completes the proof of the lemma.

As before, we consider $\frac{\partial}{\partial t}$ as future pointing.

 \Box

Lemma 5.2. $\nabla \tau$ is future pointing. Let α be the lapse function of the time function τ , we have

$$
\alpha = 1 + O(s).
$$

Moreover if $\widetilde{T} = -\widetilde{\alpha} \nabla t$, then

$$
-G(T, \widetilde{T}) = (\tau s)^{-1} + O(1).
$$

Proof. In the coordinates $y^1, y^2, y^3 = s, y^4 = v$,

$$
\nabla \tau = G^{ab} \partial_{y^a} \tau \partial_{y^b}.
$$

As in Lemma [2.1,](#page-5-0)

$$
G(\frac{\partial}{\partial t}, \nabla \tau) = -\frac{1}{P_{\tau}} > 0,
$$

provided s small enough. Hence $\nabla \tau$ is past directed. As in the proof of Lemma [2.1](#page-5-0)

$$
G(\nabla \tau, \nabla \tau) = G^{ab} \partial_{y^a} \tau \partial_{y^b} \tau
$$

\n
$$
= \omega^2 (g^{ab} \partial_{y^a} \tau \partial_{y^b} \tau + p^{ab} \partial_{y^a} \tau \partial_{y^b})
$$

\n
$$
= \omega^2 (P_{\tau}^{-2} (2P_s + s^2 h P_s^2 + |\tilde{\nabla} P|^2 + O(s^{-2}))
$$

\n
$$
= s^2 P_{\tau}^{-2} (2P_s + s^2 h P_s^2 + |\tilde{\nabla} P|^2) + O(s).
$$

Hence $\alpha = 1 + O(s)$. Next,

$$
G(T, \tilde{T}) = \alpha \tilde{\alpha} G(\nabla \tau, \nabla T)
$$

=\alpha \tilde{\alpha} \omega^2 (\overline{g}^{ab} + p^{ab}) \partial_{y^a} \tau \partial_{y^b} t
=\alpha \tilde{\alpha} \omega^2 (s^{-2} P_{\tau}^{-1} + O(1))
= - (\tau s)^{-1} + O(1).

 \Box

Proof of Theorem [5.1.](#page-24-0) Let $F(\mathbf{y}, s, v) = v + Q(\mathbf{y}, s)$. Then the surface Σ given by $F = 0$ is spacelike. First, let us prove that $-G(\nabla F, \nabla F)$ is bounded on Σ. For $τ_1 < τ < τ_2$, by (2.9) we have (5.3) $\hat{\theta}_{v}\tau = (\tau s + O(s^{2}))^{-1}, \partial_{s}\tau = (\tau s + O(s^{2}))^{-1}P_{s}, \partial_{v^{A}}\tau = (\tau s + O(s^{2}))^{-1}P_{A},$

 $A = 1, 2$. Moreover, P_s , P_A are all bounded. We will work on a coordinate neighborhood U of \mathbb{S}^2 , so that the standard metric σ_{AB} is bounded from above and the eigenvalues of (σ_{AB}) is bounded from below by a positive constant on U.

Let T, \tilde{T} be as in Lemma [5.2.](#page-27-0) Then by Lemma [4.4](#page-21-2) and the assumption on $-G(T, n)$,

$$
-G(T, \widetilde{T}) \le 2G(T, \mathbf{n})G(\widetilde{T}, \mathbf{n}) \le -C_1 G(\widetilde{T}, \mathbf{n})
$$

for some $C_1 > 0$. By Lemma [5.2,](#page-27-0) we have

(5.4)
$$
-G(\widetilde{T}, \mathbf{n}) \ge C_2 s^{-1}
$$

for some $C_2 > 0$. Here and below, we implicitly assume that $0 < s < s_0$ with s_0 is small enough.

In the t, x^i coordinates, $F = t - r_* + Q =: t - u$. We have

$$
-G(\nabla F, \nabla F) = \tilde{\alpha}^{-2} \left((1 + \beta_i u^i)^2 - \tilde{\alpha}^2 u^i u_i \right) > 0.
$$

where $u_i = \frac{\partial u}{\partial x^i}$ and $u^i = G^{ij}u_j$. From this inequality, by Lemma [5.1,](#page-25-0) we conclude that $u^i u_i$ is uniformly bounded on Σ and hence $\frac{3}{2} \geq 1 + \beta_i u^i \geq \frac{1}{2} > 0$ provided s is small enough. We can write

$$
-G(\nabla F, \nabla F) = \tilde{\alpha}^{-2} (1 + \beta^i u_i)^2 (1 - |U|^2),
$$

where

$$
U = \frac{\widetilde{\alpha}Du}{1 + \beta_i u^i}
$$

and $Du = u^i \frac{\partial}{\partial x^i}$. On the other hand,

$$
-G(\widetilde{T}, \mathbf{n}) = (1 - |U|^2)^{-\frac{1}{2}}.
$$

By (5.4) we have

$$
1 - |U|^2 \leq C_3 s^2
$$

for some $C_3 > 0$. We conclude that by Lemma [5.1,](#page-25-0)

(5.5)
$$
-G(\nabla F, \nabla F) \leq C_4 s^2.
$$

for some $C_4 > 0$, because $1 + \beta_i u^i$ is bounded. By the assumption on the tilt factor with respect to the time function τ , we have

$$
C_5 \geq -G(T, \mathbf{n})
$$

\n
$$
= -\alpha(-G(\nabla F, \nabla F))^{-\frac{1}{2}}G(\nabla \tau, \nabla F)
$$

\n
$$
= -\alpha(-G(\nabla F, \nabla F))^{-\frac{1}{2}}\omega^2 \left(\overline{G}^{ab}\partial_{y^a}\tau \partial_{y^b}F\right)
$$

\n
$$
= -\alpha(-G(\nabla F, \nabla F))^{-\frac{1}{2}}\omega^2 \left((\overline{g}^{ab} + p^{ab})\partial_{y^a}\tau \partial_{y^b}F\right)
$$

\n
$$
= -\alpha(-G(\nabla F, \nabla F))^{-\frac{1}{2}}\omega^2 \times
$$

\n
$$
\left[\overline{g}^{vv}\partial_v\tau \partial_v F + \overline{g}^{vs}(\partial_s\tau \partial_v F + \partial_v\tau \partial_s F) + \overline{g}^{ss}\partial_s\tau \partial_s F\right]
$$

\n
$$
+ \overline{g}^{AB}\partial_{y^A}\tau \partial_{y^B}F + q^b\partial_{y^b}F\right]
$$

\n
$$
= -\alpha(-G(\nabla F, \nabla F))^{-\frac{1}{2}}\omega^2 \times
$$

\n
$$
\left[\frac{1}{P_{\tau}}\left(-(P_s + Q_s) - s^2(1 - 2ms)P_sQ_s - \langle \widetilde{\nabla}P, \widetilde{\nabla}Q \rangle\right) + q^b\partial_{y^b}F\right]
$$

where $q^b = O(s^2)$ and we have used [\(5.3\)](#page-27-1). By (5.3) and [\(5.5\)](#page-28-1) we conclude that

$$
-Q_s - s^2(1 - 2ms)P_sQ_s - \langle \widetilde{\nabla}P, \widetilde{\nabla}Q \rangle + q^b \partial_{y^b} F \le C_6
$$

for some constant $C_6 > 0$. Since P_s , P_A are uniformly bounded and

$$
\sigma^{AB} Q_A Q_B \ge C \sum_{A=1}^2 Q_A^2
$$

for some $C > 0$, we have for any $\varepsilon > 0$, we have

(5.6)
$$
-(1+O(s^2))Q_s - (\varepsilon + O(s^2))|\widetilde{\nabla}Q|^2 \leq C_7(\varepsilon)
$$

for some constant C_7 which also depends on ε .

Since Σ is spacelike, we have

$$
G(\nabla F, \nabla F) \leq 0.
$$

Computations similar to the above, we have

$$
2Q_s+s^2(1-2ms)Q_s^2+|\widetilde{\nabla}Q|^2+O(s^3)\left(1+Q_s^2+|\widetilde{\nabla}Q|^2\right)\leq 0.
$$

This implies that $Q_s \leq Cs^3$ and

$$
(5.7) \ (2 + O(s^3))Q_s + (s^2(1 - 2ms) + O(s^3))Q_s^2 + (1 + O(s^3))|\tilde{\nabla}Q|^2 \leq C_8
$$

for some $C_8 > 0$. Multiply (5.7) by $\delta > 0$ and add it to (5.6) , if $s > 0$ is small enough, we have

$$
- [1 + O(s^{2}) - \delta(2 + O(s^{3}))]Q_{s} + [\delta(1 + O(s^{3})) - (\varepsilon + O(s^{2}))]|\widetilde{\nabla}Q|^{2}
$$

$$
\leq C_{7} + \delta C_{8}
$$

Let $\delta = 2\varepsilon$ and $\varepsilon = \frac{1}{8}$, we can conclude that

$$
-Q_s \leq C_9
$$

for some $C_9 > 0$ provided s is small enough. Hence $-C_9 \leq Q_s \leq Cs^3$ if s is small enough. From this and (5.7) , we conclude that $|\nabla Q|^2$ is uniformly bounded provided s is small enough. This completes the proof of the theorem. □

References

- [1] L. Andersson and M. S. Iriondo, Existence of constant mean curvature hypersurfaces in asymptotically flat spacetimes, Ann. Global Anal. Geom. **17** (1999), no. 6, 503–538. [MR1728086](https://mathscinet.ams.org/mathscinet-getitem?mr=1728086)
- [2] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys. **94** (1984), no. 2, 155–175. [MR0761792](https://mathscinet.ams.org/mathscinet-getitem?mr=0761792)
- [3] R. Bartnik, P. T. Chrusciel and N. Murchadha, On maximal surfaces in asymptotically flat space-times, Comm. Math. Phys. **130** (1990), no. 1, 95–109 [MR1055687](https://mathscinet.ams.org/mathscinet-getitem?mr=1055687)
- [4] R. Bartolo, E. Caponio and A. Pomponio, Spacelike graphs with prescribed mean curvature on exterior domains in the Minkowski spacetime, Proc. Amer. Math. Soc. **149** (2021), no. 12, 5139– 5151. [MR4327421](https://mathscinet.ams.org/mathscinet-getitem?mr=4327421)
- [5] C. Gerhardt, H-surfaces in Lorentzian manifolds, Comm. Math. Phys. **89** (1983), no. 4, 523–553. [MR0713684](https://mathscinet.ams.org/mathscinet-getitem?mr=0713684)
- [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., rev. 3rd printing. Berlin; New York: Springer, 1998. [MR3793605](https://mathscinet.ams.org/mathscinet-getitem?mr=3793605)
- [7] K-W Lee and Y-I Lee, Spacelike spherically symmetric CMC foliation in the extended Schwarzschild spacetime, Ann. Henri Poincaré 17 (2016), no. 6, 1477–1503. [MR3500222](https://mathscinet.ams.org/mathscinet-getitem?mr=3500222)
- [8] K-W Lee and Y-I Lee, Spacelike spherically symmetric CMC hypersurfaces in Schwarzschild spacetimes (I): Construction, [arXiv:1111.2679v2,](http://arxiv.org/abs/1111.2679v2) 2011.
- [9] C. Li, Y.-G. Shi and L.-F. Tam, Boundary behaviors of spacelike constant mean curvature surfaces in Schwarzschild spacetime, Ann. Global Anal. Geom. **65** (2024), no.3, Paper No. 23, 33 pp. [MR4728753](https://mathscinet.ams.org/mathscinet-getitem?mr=4728753)
- [10] B. O'Neill, Semi-Riemannian geometry: with applications to relativity, New York: Academic Press 1983. [MR0719023](https://mathscinet.ams.org/mathscinet-getitem?mr=0719023)
- [11] S. Stumbles, Hypersurfaces of constant mean extrinsic curvature, Annals of Physics **133** (1980), 28–56. [MR0626082](https://mathscinet.ams.org/mathscinet-getitem?mr=0626082)
- [12] A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math. **66** (1982), no. 1, 39– 56. [MR0652645](https://mathscinet.ams.org/mathscinet-getitem?mr=0652645)

Luen-Fai Tam The Institute of Mathematical Sciences and the Department of **MATHEMATICS** The Chinese University of Hong Kong **SHATIN** Hong Kong **CHINA** E-mail address: lftam@math.cuhk.edu.hk

Received July 3, 2023; accepted January 9, 2024