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Spacelike CMC surfaces near null infinity of the
Schwarzschild spacetime

Luen-Fai Tam
∗

Motivated by a result of Treibergs, given a smooth function f(y)
on the standard sphere S

2, y ∈ S
2, and any positive constant H0,

we construct a spacelike surface with constant mean curvature H0

in the Schwarzschild spacetime, which is the graph of a function
u(y, r) defined on r > r0 for some r0 > 0 in the standard coor-
dinates exterior to the blackhole. Moreover, u has the following
asymptotic behavior:∣∣∣∣u(y, r)− r∗ −

(
f(y) + r−1φ(y) +

1

2
r−2ψ(y)

)∣∣∣∣ ≤ Cr−3

for some C > 0, where r∗ = r + 2m log( r
2m − 1). Here φ, ψ are

functions on S
2 given by{

φ = 1
2

(
H−2

0 + |∇S2f |2S2
)
;

ψ = 1
2

(
H−2

0 ΔS2f + 〈∇S2 |∇S2f |2S2 ,∇S2f〉S2
)
.

In particular, the surface intersects the future null infinity with the
cut given by the function f . In addition, we prove that the function
u− r∗ is uniformly Lipschitz near the future null infinity.

MSC 2020 subject classifications: Primary 53C44; secondary 83C30.
Keywords and phrases: Schwarzschild spacetime, spacelike constant
mean curvature surface, null-infinity.

1. Introduction

In [12], Treibergs proved the following: Given a C2 function f(y) on the
standard sphere Sn−1 and a constant H0 > 0 there exists an entire spacelike
surface in the Minkowski space Rn,1 with constant mean curvature H0 which
is the entire graph of a function u such that

lim
r→∞

(u(y, r)− r) = f(y).
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Here (y, r) ∈ S
n−1 × (0,∞) is the spherical coordinates of Rn. The result

implies that the surface will intersect the future null infinity at the cut given

by (y, f(y)).

Motivated by this result, we want to study what one may obtain for

Schwarzschild spacetime. Recall the standard Schwarzschild metric defined

on r > 2m > 0 is:

(1.1) gSch = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2σ,

−∞ < t < ∞, where r =
∑3

i=1(x
i)2 with (x1, x2, x3) ∈ R

3 and σ is the

standard metric of the unit sphere S
2. The future null infinity I+ of the

Schwarzschild spacetime is of the form S
2 × R with S

2 being the standard

sphere, see §2 for more details. Given a cut C in I+ represented as (y, f(y)),

y ∈ S
2 and f is a function of y, we want to construct a spacelike constant

mean curvature (CMC) surface with positive constant mean curvature which

intersects I+ at this cut. To state our result, let

(1.2) r∗ = r + 2m log(
r

2m
− 1).

We obtain the following:

Theorem 1.1. Let f be a smooth function on S
2. For any constant H0 > 0,

there exists u(y, r) defined for y ∈ S
2, r > r0, for some r0 > 2m such that

the graph of u in the Schwarzschild spacetime is a spacelike hypersurface

of constant mean curvature H0 > 0 with boundary value at the future null

infinity given by f . More precisely, u satisfies:

lim
r→∞

(u(y, r)− r∗) = f(y),

for all y ∈ S
2. In fact, there exists C > 0 such that∣∣∣∣u(y, r)− r∗ −

(
f(y) + r−1φ(y) +

1

2
r−2ψ(y)

)∣∣∣∣ ≤ Cr−3

for all y ∈ S
2, r > r0, where⎧⎨⎩ φ = 1

2

(
H−2

0 + |∇̃f |2
S2

)
;

ψ = 1
2

(
H−2

0 Δ̃f + 〈∇̃|∇̃f |2
S2 , ∇̃f〉S2

)
.
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Here ∇̃ and Δ̃ are the covariant derivative and Laplacian of the standard S
2

respectively. The inner product is taken with respect to the standard metric
of S2.

We should emphasis that unlike [12], we can only construct a surface
which is defined near the future null infinity.

In addition to the results on spacelike CMC surfaces in the Minkowski
space by Treibergs [12], there is a well-known result by Bartnik [2] which
states that there exists a complete spacelike maximal hypersurface asymp-
totic to the spatial infinity in an asymptotically flat spacetime satisfying a
uniform interior condition (see [2, p.169] for the definition). In [1], Andersson
and Iriondo proved the existence of a complete spacelike CMC surface with
positive constant mean curvature on an asymptotically Schwarzschild space-
time (see [1, Definition 2.1]) which satisfies a uniform future interior condi-
tion (see [1, Definition 4.1]). The constructed surface intersects the future
null infinity at (y, f(y)) with f(y) =constant. In [3], Bartnik, Chruściel and
Ó Murchada studied complete spacelike surfaces which are maximal outside
a spatially compact set on certain asymptotically flat spacetimes. Recently,
spacelike graph of a function which is asymptotically zero in the Minkowski
spacetime R

n,1 with prescribed mean curvature outside a compact set in
R
n has been constructed in [4] by Bartolo, Caponio and Pomponio. On the

other hand, spacelike CMC surfaces in the Schwarzschild spacetime have
been studied by many people. In particular, In [7, 8] K-W Lee and Y-I Lee
gave a complete description of spacelike spherical symmetric constant mean
curvature surfaces in the Kruskal extension of Schwarzschild spacetime. See
also the references therein.

In Theorem 1.1, the constructed surface is asymptotically to a cut in the
null infinity. Some higher order rate of approximation is also obtained. The
main idea is to construct a good foliation near the future null infinity as
in [1] with good estimates so that one can obtain estimates of the so-called
tilt factor of a spacelike surface, using a result in Bartnik [2]. We also need
to construct suitable barrier. Our construction is to use the results by Li,
Shi and the author in [9]. Without further assumptions on f one might not
be able to construct a better barrier to obtain a better approximation. See
Remark 4.1 for details.

A natural question is on the regularity of the function u − r∗. In [11],
Stumbles constructed spacelike CMC surfaces in the Minkowski spacetime
(or nearby spacetime) so that the surfaces are C3 near and up to the future
null infinity, provided the cut is represented by (y, f(y)) with f being close
to a constant. One may not expect a C4 regularity by the results in [9]. In
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our case, the foliation mentioned above in our construction is given by a time
function. From the construction, the so-called tilt factor (see the definition in
§3) of the constructed surface with respect to this time function is uniformly
bounded. Using this fact, we have the following:

Corollary 1.1. The function Q(y, s) = r∗ − u(y, r) with r = s−1 is uni-
formly Lipschitz on S

2 × (0, s0) for some s0 > 0.

This is a corollary of a more general result. See Theorem 5.1 for details.
This theorem might also be applied to the spacelike CMC surface in [1,
Theorem 4.1].

The organization of the paper is as follows. In §2, we will recall the
structure of future null infinity I+ in the Schwarzschild spacetime and will
construct a suitable foliation near I+. In §3, we will give detailed estimation
on the foliation which will be used later. In §4 we will prove Theorem 1.1.
In §5 we will discuss a general Lipschitzian regularity property of spacelike
surfaces near I+ and prove Corollary 1.1.

2. Future null infinity and a foliation

2.1. Future null infinity

Let us recall the future null infinity of the Schwarzschild spacetime. We
always assume that ∂

∂t is future pointing. Consider the retarded null coordi-
nate

(2.1) v = t− r∗,

where r∗ is given by (1.2). Let s = r−1, then

g = gSch =− (1− 2ms)dv2 + 2s−2dvds+ s−2σ

=s−2(−s2(1− 2ms)dv2 + 2dvds+ σ)

= : s−2ḡ,

(2.2)

with 0 < s < 1
2m , −∞ < v < ∞. Here the unphysical metric ḡ is the product

metric:

(2.3) g = (σAB)⊕
(

0 1
1 −s2(1− 2ms)

)
,

where (σAB) is the standard metric for S
2 in local coordinates y1, y2. So

y1, y2, s, v are coordinates of the spacetime. We also write (y1, y2, s, v) as
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(y1, y2, y3, y4). g can be extended as a smooth Lorentz metric defined on
y ∈ S

2, s ∈ [0, 1/2m), v ∈ R. The future null infinity I+ is identified with
the boundary s = 0, which is a null hypersurface. For later reference,

(2.4) (gab) = (g)−1 = (σAB)⊕
(

s2(1− 2ms) 1
1 0

)
.

where (σAB) is the inverse of (σAB). Hence for the physical metric, gab =
s2gab.

Convention: In the following a, b, c . . . run from 1 to 4; i, j, k, . . . run
from 1 to 3 and A,B,C, . . . run from 1 to 2. Einstein summation convention
will be used.

2.2. Foliation

Given a smooth function f(y) on S
2. Consider the cut C given by (y, f(y)),y

∈ S
2 in I+. We want to extend it to a spacelike CMC surface in the

Schwarzschild spacetime. As in [1], we need to construct a suitable folia-
tion near I+ related to f . For τ > 0, let

(2.5) P (y, s, τ) = f(y) + sφ(τ,y) +
1

2!
s2ψ(τ,y),

where φ = Ps, ψ = Pss at s = 0 are smooth functions in τ,y, given by

(2.6)

⎧⎨⎩ φ = −1
2

(
τ2 + |∇̃f |2

S2

)
;

ψ = 1
2

(
τ2Δ̃f + 〈∇̃|∇̃f |2

S2 , ∇̃f〉S2

)
.

The choice of φ, ψ is motivated by the result in [9, Theorem 3.1], so that if
Στ is the surface given by (y, s) → (y, s,−P ) in the y, s, v coordinates, then
Στ is spacelike near s = 0 and its mean curvature H is such that H = τ−1

and ∂sH = 0 at s = 0.
Direct computations give:

(2.7)

⎧⎪⎨⎪⎩
Pτ = −τs+ 1

2τs
2Δ̃f = −τs

(
1− 1

2sΔ̃f
)
;

Ps = φ+ sψ;
PA = fA + sφA + 1

2s
2ψA, A = 1, 2.

Here for a smooth function θ in y, s, τ , the partial derivative of θ with respect
to s is denoted by θs etc.
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Let 0 < τ1 < τ2 < ∞ be fixed. Let

M = {y ∈ S
2, s ∈ (0,

1

2m
), τ ∈ (τ1, τ2)} = S

2 × (0, s0)× (τ1, τ2).

Consider the map Φ from M to the Schwarzschild spacetime in y, s, v coor-
dinates defined by:

(2.8) Φ(y, s, τ) = (y, s, v(y, s, τ))

with v(y, s, τ) = −P (y, s, τ).

Lemma 2.1. There is 1
2m > s0 > 0 depending only on τ1, τ2, f such that Φ

is a diffeomorphism onto its image. Hence Φ(M) is parametrized by y, s, τ .
Moreover,

(2.9)
∂τ

∂v
= − 1

Pτ
;
∂τ

∂s
= −Ps

Pτ
;
∂τ

∂yA
= −PA

Pτ
, A = 1, 2.

Proof. It is easy to see that if s0 > 0 is small enough, then Pτ < 0. From
this and some computations, it is easy to see the lemma is true.

Let s0 > 0 be as in the lemma, then

(2.10) Φ(M) = {(y, s, v)| P (y, s, τ2) < v < P (y, s, τ1)}.

By the lemma, we can see that τ is a smooth function on Φ(M).
Given τ ∈ (τ1, τ2), let

Στ = {v = −P (y, s, τ)}

which is a level surface of τ . For fixed τ , let F (y, s, v) = v + P (y, s, τ). To
simplify notation, define

L =:−
(
2Ps + s2(1− 2ms)P 2

s + |∇̃P |2
)
= −g(∇F,∇F )(2.11)

where ∇ is the derivative with respect to the unphysical metric g. Here
and later, we simply write |∇̃P | instead of ||∇̃P ||S2 if this does not cause
confusion.

Lemma 2.2. There is 1
2m > s0 > 0 depending only on τ1, τ2 and f such

that Στ is spacelike in (0, s0) for τ ∈ (τ1, τ2). In fact,

∇τ = −P−1
τ

(
gva + giaPi

)
∂ya ,
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and

g(∇τ,∇τ) = −s2P−2
τ L.

Moreover, for all τ ∈ (τ1, τ2), Στ is a smooth up to I+ in the sense that P is
smooth up to s = 0, which intersects I+ at the cut C given by {(y, f(y))| y ∈
S
2}.

Proof. First let s0 be as in Lemma 2.1 so that Pτ < 0. Recall that

(y1, y2, y3, y4) = (y1, y2, s, v).

Denote the coordinate frame by ∂a. For τ ∈ (τ1, τ2), by (2.9), we have

∇τ =gab
∂τ

∂ya
∂b

=

(
gvb

∂τ

∂v
+ gib

∂τ

∂yi

)
∂b

=− 1

Pτ

(
gvb + gibPi

)
∂b.

On the other hand, direct computation shows

〈∇τ,∇τ〉 =s2gab
∂τ

∂ya
∂τ

∂yb

=− s2P−2
τ L.

By (2.7), Pτ = −(τs+O(s)). By (2.7) and (2.11),

L =−
(
−τ2 − |∇̃f |2 + |∇̃f |2 +O(s)

)
=τ2 +O(s).

(2.12)

It is easy to see that if 0 < s0 <
1
2m is small enough, depending only on τ1, τ2

and f , then Στ is spacelike in 0 < s < s0. The last assertion is obvious.

Let s0 be as in the lemma. Since ∂
∂t = ∂v, we have

g(∇τ,
∂

∂t
) =− P−1

τ g((gva + giaPi)∂a, ∂v)

=− P−1
τ (gva + giaPi)gav

=− P−1
τ

>0.

(2.13)

So τ is a time function on Φ(M) with ∇τ being past directed.
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3. Estimates on the foliation

Let s0 be as in Lemma 2.2 so that Στ is spacelike for 0 < s < s0. Let
M = S

2 × (0, s0) × (τ1, τ2). Then Φ is a parametrization of Φ(M), with
τ being a time function. Recall that, if θ is a function in y, s, τ , then the
partial derivatives will be denoted by θA, θs, θτ etc. On the other hand, when
consider τ as a function of (y1, y2, y3, y4) = (y1, y2, s, v), the derivative of θ
with respect to ya will be denoted by ∂aθ. Hence

(3.1) ∂Aθ = θττA + θA, ∂sθ = θττs + θs, ∂vθ = θττv.

Let T be the unit future pointing timelike normal of Στ so that

(3.2) T = −α∇τ

where α > 0 is the lapse function of τ given by

(3.3) α2 = −(〈∇τ,∇τ〉)−1 = s−2P 2
τ L

−1.

For a spacelike hypersurface Σ with future directed unit normal n, the tilt
factor ν with respect to T is defined as ν = −gSch(T,n).

We want to apply a result of Bartnik [2] to estimate the tilt factor for
spacelike surfaces in Φ(M). First recall the following setting in the Bartnik’s
work. In Φ(M), introduce the Riemannian metric Θ:

(3.4) Θ = gSch + 2ω ⊗ ω

where ω is the dual of the unit normal T . For example, for a vector field
V , ||V ||2Θ =

∑3
i=1〈V,wi〉2 + 〈V, T 〉2, where w1, w2, w3 form an orthonormal

basis of Στ with respect to metric induced by the Schwarzschild metric g.
In order to apply [2, Theorem 3.1(iii)] (see also remarks on [2, p.162]) to
a compact spacelike hypersurface Σ with smooth boundary ∂Σ in Φ(M) so
that τ =constant on ∂Σ, we need to estimate the following quantities:

(3.5) α, ||α−1∇α||Θ, ||K||Θ, ||∇T ||Θ, ||∇∇T ||Θ, || �H∂Σ||Θ

where K is the second fundamental form of Στ and ∇ is the connection of
gSch and �H∂Σ is the mean curvature vector of ∂Σ. We have used the fact
that the gSch is Ricci flat. Our result will be summarized in Theorem 3.1
below. We proceed as in [1].

Since we may cover S2 with finitely many coordinate neighborhoods, we
may work on a coordinate neighborhood first. Hence let us fix a coordinate
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neighborhood U with local coordinates y1, y2. The coordinate frame with
respect to this coordinate is given by:

(3.6)

⎧⎨⎩
eA =: Φ∗(

∂
∂yA ) = −PA∂v + ∂A, A = 1, 2;

e3 =: Φ∗(
∂
∂s) = −Ps∂v + ∂s;

e4 =: Φ∗(
∂
∂τ ) = −Pτ∂v.

Here ∂a are coordinate frames with respect to y1, y2, y3 = s, y4 = v. Note
that if θ is a smooth function in y, s, τ , then eA(θ) = θA etc. Note also that
e1, e2, e3 are tangential to Στ , i.e. τ =constant. It is easy to see:

(3.7)

⎧⎨⎩
∂v = − 1

Pτ
e4;

∂s = −Ps

Pτ
e4 + e3;

∂A = −PA

Pτ
e4 + eA, A = 1, 2.

We may assume that σAB is smooth up to the boundary of U and that
the eigenvalues of (σAB) is bounded below by some constant λ > 0.

Notation: In the following c(s�), cab(s
�), . . . for integers 
 will denote

functions of the form s�Λ where Λ is a smooth function in y, s, τ in U ×
[0, s0] × [τ1, τ2]. They may vary from line to line. For example, in (3.7), we
have

∂v = c(s−1)e4,

if s0 is small enough.

Lemma 3.1. In the above setting, for y ∈ U , then the following are true:

(i) The metric g in the frame ea is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g(eA, eB) = σAB − s2(1− 2ms)PAPB, 1 ≤ A,B ≤ 2;
g(eA, e3) = g(e3, eA) = −PA − s2(1− 2ms)PAPs, 1 ≤ A ≤ 2;
g(e3, e3) = −2Ps − s2(1− 2ms)P 2

s

g(eA, e4) = g(e4, eA) = −s2(1− 2ms)PτPA, 1 ≤ A ≤ 2;
g(e3, e4) = g(e4, e3) = −s2(1− 2ms)PτPs;
g(e4, e4) = −s2(1− 2ms)P 2

τ .

(ii) Let {ε1, ε2, ε3} be an orthonormal basis for Στ with respect to g ob-
tained from e1, e2, e3 using Gram-Schmidt process with respect to the
metric induced by g. Then εi = cik(s

0)ek, ei = cik(s0)εk.
(iii) If s0 > 0 is small enough depending only τ1, τ2 and f , then α = 1+c(s)

and

T = ci(s)ei + α−1e4.
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Proof. Using (3.6) and (2.3), direct computations give (i).
In the following, we always assume s0 > 0 is small depending only on

τ1, τ2 and f . Let gab = g(ea, eb). Recall that gab can be extended smoothly
up to s = 0. Moreover, at s = 0, PA = fA. Hence at s = 0, for any
(ξ1, ξ2, ξ3) ∈ R

3, let fA = σABf
B, for any ε > 0 we have:

gijξ
iξj =σABξ

AξB − 2fAξ
Aξ3 + (τ2 + |∇̃f |2)(ξ3)2

=σABξ
BξB − 2σABf

BξAξ3 + (τ2 + σABf
AfB)(ξ3)2

≥σABξ
BξB −

(
εσABξ

AξB + ε−1σABf
AfB(ξ3)2

)
+ (τ2 + σABf

AfB)(ξ3)2

=(1− ε)σABξ
BξB + (τ2 + (1− ε−1σABf

AfB)(ξ3)2

≥C
(
(ξ1)2 + (ξ2)2 + (ξ3)2

)
,

for some C > 0 depending only on λ, τ1, τ2 and |∇̃f |, if we choose ε < 1, ε
close to 1 so that τ2 + (1− ε−1σABf

AfB) ≥ τ2/2. On the other hand, away
from s = 0, (gij) is smooth and positive definite. Let εi = cikek as in the
lemma, one can see that cik are smooth function of ya. On the other hand,

δij = cikcjlgkl.

Hence gij = ckickj . In particular, for each i, gii =
∑

k c
2
ik. From this one can

conclude that cik = c(s0). Similarly one can prove that cik = c(s0).
(iii) By (3.3), (2.7) and (2.12),

α =− s−1PτL
− 1

2

=1 + c(s).

By Lemma 2.2

T =− α∇τ

=αP−1
τ

(
gvb∂v + gibPi

)
∂b

=αs2P−1
τ

[
σBAPB∂A + (1 + s2(1− 2ms)Ps)∂s + Ps∂v

]
=αs2P−1

τ

[
σBAPB(−

PA

Pτ
e4 + eA) + (1 + s2(1− 2ms)Ps)(−

Ps

Pτ
e4 + e3)

− Ps

Pτ
e4

]
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=αs2P−1
τ

(
σBAPBeA + (1 + s2(1− 2ms)Ps)e3

)
+ αs2P−2

τ Le4

=c(s)ei + α−1e4,

by (iii), (2.7), (3.3) and (3.7). This completes the proof of the lemma.

Let

(3.8) wi = sεi, i = 1, 2, 3.

Then wi form an orthonormal frame for Στ with respect to the metric in-
duced by the Schwarzschild metric g.

Lemma 3.2. If s0 is small enough, depending only on τ1, τ2 and f , then
α, α−1, ||∇α||Θ are uniformly bounded in U × (0, s0)× (τ1, τ2).

Proof. The estimates of α, α−1 follow immediately from Lemma 3.1. Let us
estimate the derivatives of α. By Lemma 3.1, (3.6) and

wi(α) =sεi(α)

=scik(s
0)ek(1 + c(s))

=ci(s).

T (α) =(ci(s)ei + α−1e4)(α)

=c(s).

Hence ||∇α||Θ is uniformly bounded in U × (0, s0)× (τ1, τ2).

Let K be the second fundamental form of Στ . We want to estimate ||K||Θ.
Since the metric g is a product metric, it is more easy to compute the second
fundamental form with respect to g. Let us recall the following fact:

Lemma 3.3. Let Σ be a spacelike hypersurface in a spacetime (M, g). Sup-
pose g = e2λg. Let n be a unit normal of M with respect to g. Let n = eλn,
which is a unit normal with respect to g. Let K,K be the second fundamental
forms of Σ with respect to g,n and g,n respectively. Then for any tangential
vector fields X,Y , we have

K(X,Y ) = eλ
(
K(X,Y ) + dλ(n)g(X,Y )

)
.

Proof. Let ∇,∇ be the connections of g, g respectively. Then any smooth
vector fields X,Y , we have

∇XY = ∇XY + Γ(X,Y ),
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where Γ is given by

g(Γ(X,Y ), Z) = X(λ)g(Y, Z) + Y (λ)g(X,Z)− Z(λ)g(X,Y ).

Let X,Y be tangent to Σ. Then

K(X,Y ) =− g(∇XY,n)

=− g(∇XY,n)−X(λ)g(Y,n)− Y (λ)g(X,n) + n(λ)g(X,Y )

=− eλg(∇XY,n) + eλn(λ)g(X,Y )

=eλ
(
K(X,Y ) + dλ(n)g(X,Y )

)
.

In our case, n = T , λ = − log s. Let n = eλT = s−1T . Then by
Lemma 2.2,

dλ(n) = −s−2T (s) = αs−2∇τ(s) = −αP−1
τ

(
1 + s2(1− 2ms)Ps)

)
.

So the second fundamental forms K, K of Στ with respect to g, g are related
by:

(3.9) K = s−1
[
K − αP−1

τ

(
1 + s2(1− 2ms)Ps

)
g
]
.

The following lemma basically is contained in [9].

Lemma 3.4. Let K be the second fundamental form of Στ . Then in U ×
(0, s0)× (τ1, τ2)

K(wi, wj) = τ−1δij + cij(s),

where w1, w2, w3 are given by (3.8) which form an orthonormal basis of Στ

with respect to g. In particular, ||K||Θ is uniformly bounded.

Proof. Let ei, εi be as in (3.6) and Lemma 3.1. By Lemma 3.5 below, we
have

K(ei, ej) = cij(s
0).

Hence using Lemma 3.1, (2.7) and (3.9), we have

K(wi, wj) =s2K(εi, εj)

=s
(
K(εi, εj)− αP−1

τ

(
1 + s2(1− 2ms)Ps

)
g(εi, εj)

)
=sK(εi, εj)− αsP−1

τ

(
1 + s2(1− 2ms)Ps

)
δij
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=scik(s
0)cjl(s

0)K(ei, ej) + τ−1δij + c(s)

=τ−1δij + c(s).

Lemma 3.5. With the notation as in Lemma 3.4, we have K(ei, ej) =
cij(s

0) in U × (0, s0)× (τ1, τ2)

Proof. Using Lemma 2.3, direction computations show:

(3.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇∂A

∂B = ∇̃∂A
∂B, 1 ≤ A,B ≤ 2;

∇∂A
∂a = ∇∂a

∂B = 0, 3 ≤ a ≤ 4, 1 ≤ A ≤ 2;

∇∂3
∂3 = 0;

∇∂4
∂4 = s3(1− 5ms+ 6m2s2)∂3 + s(1− 3ms)∂4

∇∂3
∂4 = ∇∂4

∂3 = −s(1− 3ms)∂3.

On the other hand,

∇eiej =∇(−Pi∂4+∂i)(−Pj∂4 + ∂j)

=Pi∂4(Pj)∂4 + PiPj∇∂4
∂4 − ∂i(Pj)∂4 − Pi∇∂4

∂j +∇∂i
∂j

=
[
Pi∂4(Pj)−ms2PiPj − ∂i(Pj)

]
∂4 −ms4(1− 2ms)PiPj∂3

− Pi∇∂4
∂j +∇∂i

∂j .

(3.11)

We want to compute g(∇eiej ,n) where n = s−1T is the unit normal of Στ

with respect to g. By Lemma 3.1, g(T, e4) = −α. By (3.7), and the fact that
g(T, ei) = 0, we have,

(3.12)

{
g(n, ∂i) = sg(T, ∂i) = sαP−1

τ Pi, 1 ≤ i ≤ 3;
g(n, ∂4) = sg(T, ∂4) = sαP−1

τ .

Moreover,

PA∂4(PB)− ∂A(PB) =− P−1
τ PAe4(PB) + P−1

τ PAe4(PB)− eA(PB)

=− PAB.

Similarly, for 1 ≤ A ≤ 2,

P3∂4(PA)− ∂3(PA) = −PAs;P3∂4(P3)− ∂3(P3) = −Pss.

Combining these with (3.11), (3.12) and (2.7), the results follow.
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Next we want to estimate of ||∇T ||Θ and ||∇2T ||Θ. First we have the
following:

Lemma 3.6. Let wi be as in (3.8). Denote T by w4. Then{
[wi, wj ] = cijk(s

0)wk, 1 ≤ i, j, k ≤ 3;

[T,wi] =
∑4

a=1 cia(s
0)wa, 1 ≤ i ≤ 3.

Proof. Observe that ea in (3.6) are coordinate frames with respect to the
coordinates y1, y2, s, τ . Hence [ea, eb] = 0. Now by Lemma 3.1

[wi, wj ] =[sεi, sεj ]

=[scik(s
0)ek, scjl(s

0)el]

=scik(s
0)ek(scjl(s

0))el − scjl(s
0)el(scik(s

0))ek

=cijk(s)ek

=cijk(s
0)wk.

By Lemma 3.1 again, we have

[T,wi] =[ck(s)ek + α−1e4, scij(s
0)ej ]

=ck(s)ek + [α−1e4, scij(s
0)ej ]

=cia(s
0)wa

where we have used the fact that e4(s) = 0 and e4 = α(T − ck(s)ek).

Lemma 3.7. ||∇T ||Θ is uniformly bounded in U × (0, s0)× (τ1, τ2).

Proof. Let wi be as in (3.8). To estimate ||∇T ||Θ it is sufficient to estimate
||∇wi

T ||Θ and ||∇TT ||Θ. Now

g(∇wi
T, T ) = 0; g(∇wi

T,wj) = K(wi, wj).

By Lemma 3.4, ||∇wi
T ||Θ are uniformly bounded for 1 ≤ i ≤ 3.

Next, we want to estimate ||∇TT ||Θ. It is easy to see that g(∇TT, T ) = 0.
Since g(T,wi) = 0, we have

g(∇TT,wi) =− g(T,∇Twi)

=− g(T, [T,wi]) + g(T,∇wi
T )

=− g(T, [T,wi]).

By Lemma 3.6, we conclude that ||∇TT ||Θ is uniformly bounded. This com-
pletes the proof of the lemma.
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For ∇∇T , we have:

Lemma 3.8. ||∇∇T ||Θ is uniformly bounded in U × (0, s0)× (τ1, τ2).

Proof. It is sufficient to prove that for all 1 ≤ a, b ≤ 4, ||∇wa
∇wb

T ||Θ is
uniformly bounded. Here w4 = T .

(i) To estimate ||∇T∇TT ||Θ:

g(∇T∇TT, T ) = −g(∇TT,∇TT ),

which is uniformly bounded by Lemma 3.7. On the other hand,

g(∇T∇TT,wi〉 =T (g(∇TT,wi))− g(∇TT,∇Twi)

=T (g(∇TT,wi))− g(∇TT, [T,wi])− g(∇TT,∇wi
T ).

By Lemmas 3.7, 3.6, the last two terms above are uniformly bounded. By
Lemma 3.6

T (g(∇TT,wi)) =− T (g(T, [T,wi]))

=T (ci(s
0))

=ci(s
0),

(3.13)

by Lemma 3.1(iii). Hence ||∇T∇TT ||Θ is uniformly bounded.

(ii) To estimate ||∇wi
∇TT ||Θ:

g(∇wi
∇TT, T ) = −g(∇TT,∇wi

T ),

which is uniformly bounded by Lemma 3.7. Next,

g(∇wi
∇TT,wj) = wi(g(∇TT,wj))− g(∇TT,∇wi

wj).

The first term on the RHS is uniformly bounded similar to (3.13). Consider
the second term, we have

g(∇TT,∇wi
wj) =g(∇TT,wk) · g(∇wi

wj , wk).

Now
(3.14)

g(∇wi
wj , wk) =

1

2
(g([wi, wj ], wk)− g([wi, wk], wj)− g([wj , wk], wi)) .

Hence by Lemma 3.7 and 3.6, the second term on the RHS is also uniformly
bounded. So ||∇wi

∇TT ||Θ is uniformly bounded.
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(iii) To estimate ||∇T∇wi
T ||Θ:

g(∇T∇wi
T, T ) =− g(∇wi

T,∇TT )

=− g(∇wi
T,wj) · g(∇TT,wj)

=−K(wi, wj)g(∇TT,wj),

=c(s0)

which is uniformly bounded by Lemmas 3.4 and 3.7. Next,

g(∇T∇wi
T,wj) =T (g(∇wi

T,wj))− g(∇wi
T,∇Twj)

=T (K(wi, wj))− g(∇wi
T,wk)) · g(∇Twi, wk)

=T (K(wi, wj))−K(wi, wk) (g([T,wi], wk)−K(wi, wk)) ,

which is uniformly bounded by Lemmas 3.1, 3.4, and 3.6.

Hence ||∇T∇wi
T ||Θ is uniformly bounded.

(iv) To estimate ||∇wi
∇wj

T ||Θ:

g(∇wi
∇wj

T, T ) = −g(∇wj
T,∇wi

T ),

which is uniformly bounded by Lemma 3.4.

g(∇wi
∇wj

T,wk〉 =wi(g(∇wj
T,wk))− g(∇wj

T,∇wi
wk)

=wi(K(wj , wk))−K(wj , wl) · g(∇wi
wk, wl).

As before, one can see that this is uniformly bounded. This completes the

proof of the lemma.

Finally, we want to estimate ||Hτ,s||Θ, where Hτ,s is the mean curvature

vector of the two-surface given by τ =constant, s =constant.

Lemma 3.9. ||Hτ,s||Θ is uniformly bounded for s ∈ (0, s0), τ ∈ (τ1, τ2) and

y ∈ U .

Proof. Let N ⊂ Στ which is the level set of s. Let ea, εi, wi be as in (3.6),

Lemma 3.1, and (3.8). Observe that e1, e2 form a basis for the tangent space

of N , and ε1, ε2, ε3 form an orthonormal basis for Στ obtained by Gram-

Schmidt process on e1, e2, e3 with respect to g. Hence w1, w2 form an or-

thonormal basis for the tangent space of N . w3, T form an orthonormal
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basis for the normal bundle of N .

Hτ,s =

(
2∑

A=1

∇wA
wA

)⊥

=−
2∑

A=1

g(∇wA
wA, T )T +

2∑
A=1

g(∇wA
wA, w3)w3

=

2∑
A=1

K(wA, wA)T +

2∑
A=1

g(∇wA
wA, w3)w3.

By Lemmas 3.4, 3.6 and (3.14), we conclude that the lemma is true.

Since S
2 can be covered by finitely many coordinate neighborhoods, by

Lemmas 2.2, 3.2, 3.5, 3.7, 3.8 and 3.9, we have the following:

Theorem 3.1. There is s0 > 0 depending only on τ1, τ2, f such that for any
τ ∈ (τ1, τ2) the level set Στ is spacelike. Moreover, if α is the lapse function
of the time function τ , T is the future pointing unit normal of Στ and �Hτ,s

is the mean curvature vector of the surface τ = constant, s = constant, then
the following are all uniformly bounded in S

2 × (0, s0)× (τ1, τ2):

α, α−1, ||∇α||Θ, ||∇T ||Θ, ||∇∇T ||Θ, || �Hτ,s||Θ.

Moreover, the mean curvature H of Στ is given by

H = τ−1 + c(s).

4. Construction of CMC surfaces

Using t,x = (x1, x2, x3) as coordinates for the Schwarzschild metric in the

form (1.1) with r = |x| =
(∑3

i=1(x
i)2

) 1

2

,

(4.1) gSch = −hdt2 + gij(x)dx
idxj ,

where h = 1− 2m
r = 1− 2ms with s = r−1 and

gij = δij + (h−1 − 1)r−2xixj .

Notation: In this section, we use gSch to denote the Schwarzschild metric
and gij(x)dx

idxj will be denoted by g. The inverse of (gij) is denoted by
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gij . For a function v of x = (x1, x2, x3), Dv = gijvi
∂

∂xj where vi = ∂v
∂xi .

Div = gijvj . |Dv|2 = DivDiv. The Hessian of v with respect to g will be

denoted by vij .

We will prove Theorem 1.1 for the case H0 = 1. The other case is similar.

Let f(y) be a smooth function on S
2. Let

M = S
2 × (0, s0)× (

1

2
, 2),

and define the map Φ as in § 2.2 given by P (y, s, τ) in (2.5) with f replaced

by −f . Let s0 be as in Lemma 2.1. Let β be a constant, define

Q(y, s;β) = −f(y) + φ(y)s+
1

2
ψ(y)s2 + βs3 = P (y, s, 1) + βs3,

where φ, ψ are defined as in (2.6) with f replaced by −f and τ = 1. For

fixed β, if s0 is small enough then P (y, s, 2) < Q(y, s;β) < P (y, s, 12). Hence

the surface Σ given by v = −Q(y, s;β) will be in Φ(M), provided s0 is small

enough depending only on f and the bound of β.

We want to compute the mean curvature of Σ. All mean curvature will

be computed with respect to future pointing unit normal.

Lemma 4.1. There exist β1 < 0, β2 > 0 and s0 > 0 depending only on

f such that the surfaces Σ1, Σ2 which are the graphs of v = −Q1, v =

−Q2 respectively, are in Φ(M). Here Q1(y, s) =: Q(y, s;β1), Q2(y, s) =:

Q(y, s;β1). Moreover, the mean curvature of Σ1 is smaller than 1 and the

mean curvature of Σ2 is larger than 1.

Proof. The first part of the lemma is obvious. To simplify notation, in the

following let us denote Q1 by Q and Σ1 by Σ. We may assume that Σ is

spacelike. Let H be the mean curvature of Σ. By the computation in [9,

Lemma 2.2],

−3HL
3

2 =sL
(
s2(1− 2ms)Qss + Δ̃Q

)
− 1

2
s
(
Ls + s2(1− 2ms)LsQs + 〈∇̃L, ∇̃Q〉

)
− s2LPs − 3L

(4.2)

where

L = −(2Qs + s2(1− 2ms)Q2
s + |∇̃Q|2).



Spacelike CMC surfaces near null infinity 871

One can see that H is smooth up to s = 0, provided s0 > 0 is small enough
depending only on f . By the choice of φ, ψ and [9, Theorem 3.1], at s = 0
H = 1, Hs = 0.

In below, c, ck will denote smooth functions in y, s up to s = 0, which
are independent of β, it may vary from line to line. It is easy to see that at
s = 0, Qs = c,Qss = c,Qsss = 6β. At s = 0, L = 1, Ls = c, Lss = −12β+ c.
Therefore, at s = 0

(−3HL
3

2 )ss =− 3HssL
3

2 − 3H(L
3

2 )ss

=− 3Hss −
9

2
(L

1

2Ls)s

=− 3Hss + 54β + c;[
sL

(
s2(1− 2ms)Qss + Δ̃Q

)]
ss

=2
[
L
(
s2(1− 2ms)Qss + Δ̃Q

)]
s

=c;

−1

2

[
s
(
Ls + s2(1− 2ms)LsQs + 〈∇̃L, ∇̃Q〉

)]
ss

=−
(
Ls + s2(1− 2ms)LsQs + 〈∇̃L, ∇̃Q〉

)
s

=12β + c;

and

(−s2LQs − 3L)ss =36β + c.

Hence we have

−3Hss + 54β + c1 =c2 + 12β + c3 + 36β + c4.

Or

(4.3) Hss = 2β + c.

First choose β = β1 < 0 so that 2β1 + c < 0. Then β1 depends only on f .

(4.4) H = 1 +
1

2
(2β1 + c)s2 +O(s3).

In particular, H < 1 for 0 < s < s0 provided s0 is small enough depending
only on f . Similarly, one can choose β2 > 0 so that 2β2 + c > 0. This
completes the proof of the lemma.
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Remark 4.1. The construction in the above lemma does not work for higher

order. Namely, suppose

(4.5) Q(y, s) =

k∑
i=0

1

i!
fi(y)s

i + βsk+1,

and suppose we can choose fi so that the mean curvature H satisfies H = 1,

and ∂iH
∂si = 0 for 1 ≤ i ≤ k − 1 at s = 0. Then at s = 0

3∂k
sH = (3− k)(k + 1)!β + c

where c is a function of y, s. Note that (3−k)(k+1)! ≤ 0 if k ≥ 3 in contrast

to (4.3). Another issue is that in general one cannot find fi so that ∂i
sH = 0

at s = 0 if k ≥ 4, see [9, Theorem 3.1].

Let t,x be as in (4.1).

∇t = −h−1 ∂

∂t
.

The lapse function α̃ for the time function t is given by:

α̃−2 = −gSch(∇t,∇t) = h−1.

So α̃ = h
1

2 . The future pointing unit normal of t = constant is:

T̃ = h−
1

2
∂

∂t
.

Lemma 4.2. Let T be the future pointing unit normal of τ =constant. Then

gSch(T, T̃ ) = −s−1L− 1

2h−
1

2 , where L is given by (2.11) with s = r−1.

Proof. By (3.3), the lapse function of τ is α = −s−1PτL
− 1

2 . By (2.13),

gSch(∇τ,
∂

∂t
) = P−1

τ .

Hence

gSch(T, T̃ ) = −αgSch(∇τ, h−
1

2∂t) = −s−1L− 1

2h−
1

2 .
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Consider a surface given by the graph of u(x), where x = (x1, x2, x3),

namely, it is given by t = u(x). Then it is the level surface of F (t,x) =

t− u(x) = 0. Normal is given by

∇F = −h−1 ∂

∂t
−Diu

∂

∂xi
.

gSch(∇F,∇F ) = gabFaFb = −h−1 + |Du|2.

Hence the surface is spacelike if and only if

(4.6) 1− h|Du|2 > 0.

If u is spacelike, the future pointing unit normal is:

ñ =
(
h−1 − |Du|2

)− 1

2 ∇F =
(
h−1 − |Du|2

)− 1

2

(
h−1 ∂

∂t
+Diu

∂

∂xi

)
.

The tilt factor with respect to T̃ is given by:

(4.7) ν̃ = −gSch(T̃ , ñ) = h−
1

2

(
h−1 − |Du|2

)− 1

2 = (1− h|Du|2)− 1

2 .

Suppose the surface is spacelike, it is more easy to appeal to [2, p.160]

to obtain the mean curvature equation of u. Namely, its graph has mean

curvature H if and only if:

3H = Div

(
U

(1− |U |2) 1

2

)
+ 3ν̃Ho + ν̃gSch(U,∇ ˜T T̃ ) +

1

2
ν̃3T̃ (|U |2).

Here Div is the divergence with respect to the metric (gij), and U = α̃Du.

|U | is the norm with respect to g so that |U |2 = α̃2|Du|2 = h|Du|2. Ho is

the mean curvature of t =constant, which is zero. Note that T̃ (|U |2) = 0,

because |U |2 does not depend on t.

gSch(U,∇ ˜T T̃ ) = −1

2
DiuDi log h.

Therefore, the graph of u has mean curvature H if and only if

(4.8) Div

(
h

1

2Du

(1− h|Du|2) 1

2

)
− 1

2
(1− h|Du|2)− 1

2DiuDi log h = 3H.
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Hence the mean curvature equation is of the form:

(4.9) Aijuij +B(x,Du) = 3h−
1

2 (1− h|Du|2) 1

2H.

where {
Aij = (1− h|Du|2)glj + hDiuDju,

B(x,Du) = h−
1

2 g(Du,D(h
1

2 )) + 1
2
|Du|2g(Du,Dh)
(1−h|Du|2) .

Here uij is the Hessian of u with respect to g.

Lemma 4.3. Assume the graph of u is spacelike, then any a = (a1, a2, a3),
we have

|a|2 ≥ Aljalaj ≥ (1− h|Du|2)|a|2,

where aj = gijai and |a|2 = aia
i.

Proof.

Aljalaj =(1− h|Du|2)|a|2 + hgijgkluiukalaj

=(1− h|Du|2)|a|2 + h(
∑
i

uia
i)2.

From this the lemma follows.

Recall the following basic fact, see [2, Lemma 3.3]:

Lemma 4.4. In a Lorentzian vector space with inner product 〈 , 〉, Let
T1, T2, T3 be future-directed unit timelike vectors. Then

1 ≤ −〈T1, T2〉 ≤ 2〈T1, T3〉〈T2, T3〉.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. For simplicity, we prove the case that H0 = 1. The
other case is similar. Consider the foliation by P (y, s, τ) at the beginning
of the section with M = S × (0, s0) × (12 , 2). We assume that s0 is chosen
such that in the retarded null coordinate v = t− r∗, Φ(y, s, τ) = (y, s,−P )
is a diffeomorphism between M and Φ(M). Note that in terms standard
coordinates as in (1.1),

Φ(M)= {(y, r, t)| y∈ S
2, r >

1

s0
, r∗ − P (y, r−1, 2) > t > r∗ − P (y, r−1,

1

2
)}.

(4.10)
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Choose β1 < 0, β2 > 0 as in Lemma 4.1 and let w1(y, r) = r∗ −Q1(y, r
−1),

w2(y, r) = r∗ − Q2(y, r
−1) where Q1, Q2 are as in the lemma. Here s0 is

chosen so that the conclusion of the lemma is true and so that the conclusion
of Theorem 3.1 is also true for τ1 = 1

2 , τ2 = 2. Also, let w(y, r) = r∗ −
P (y, r−1, 1).

Let 1
2r0 = 1

s0
. For any R > r0, consider the spacetime NR given by

S
2×(12r0, 2R)×R with metric induced by the Schwarzschild metric. One can

see that the surface given by t = w(y, r) is spacelike and acausal in NR, see
[10, Corollary 46]. That is: no two different points on the surface are causally
related. By [5, Theorem 5.1], we can find smooth function uR of y, r, with
r0 ≤ r ≤ R so that the graph of uR is spacelike with constant mean curvature
1, so that uR has the same boundary value as w(y, r). Since β1 < 0, β2 > 0,
we have Q1(y, s) < P (y, s, 1) < Q2(y, s). We have w1 > w > w2. Moreover,
the mean curvature of the graph of w1 is less than 1, and the mean curvature
of w2 is larger than 1. By the form of (4.9) and the fact that the graphs of
w1, w2, uR are all spacelike up to the boundary, by (4.6) and Lemma 4.3,
one can apply the comparison principle [6, Theorem 10.1] to conclude that

(4.11) w1(y, r) ≥ uR(y, r) ≥ w2(y, r).

Hence the graph of uR is in Φ(M). In the (y, s, τ) coordinates, this graph is
given by (y, s, τ(y, s)) with y ∈ S

2, 1
R < s < 1

r0
and

uR(y, r) = r∗ − P (y, s, τ(y, s)),

with r = s−1. On the boundary s = 1
R ,

1
r0
, we have τ(y, s) = 1.

The next step is to prove that uR will subconverge to a solution of (4.9)
withH = 1 asR → ∞. In order to do this, by Lemma 4.3 we need to estimate
the tilt factor of the surface with respect to the time function t. So let nR be
the future pointing unit normal of the surface and let νR = −gSch(nR, T ) be
the tilt factor with respect to the time function τ where T is given by (3.2).
By Theorem 3.1 and the fact that the Schwarzschild spacetime is Ricci
flat, we can apply the Bartnik’s gradient estimate [2, Theorem 3.1(iii)] to
conclude that

(4.12) νR ≤ C1

for some constant C1 independent of R. Let T̃ be the future pointed unit
normal of the surface t =constant, by Lemma 4.4 and (2.13), we have

(4.13) ν̃R =: −gSch(nR, T̃ ) ≤ 2gSch(nR, T )gSch(T̃ , T ) ≤ C2s
−1 = C2r
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for some constant C2 independent of R. Here we use the fact that the time
function τ restricted on the graph is bounded between 3

4 and 2
3 . Hence

by (4.7), for any open set Ω with compact closure in the region r > r0, there
is a constant C3 independent of R such that

(1− h|DuR|2)−
1

2 ≤ C3.

In particular, |DuR| ≤ C4 in Ω for some constant C4 independent of R.
By (4.9) with H = 1, we may apply [6, Theorem 13.6] to obtain a uniform
Hölder estimate for ui. Using Schauder estimates, we conclude that there
is a subsequence Rk → ∞ such that uRk

converge in C∞
loc in {r > r0} to

function u so that its graph is spacelike and has constant mean curvature 1.
By (4.11), for any R > r0, we have

w2(y, r) ≤ u(y, r) ≤ w1(y, r).

where s = r−1. Hence

|u(y, r)− r∗ − P (y, r−1, 1)| ≤ max{−β1, β2}r−3.

This completes the proof of the theorem.

As a corollary of the proof, in particular by (4.12), we have:

Corollary 4.1. Let u be the solution in Theorem 1.1. The tilt factor of the
graph of u with respect to the time function τ is uniformly bounded by a
constant.

We should remark that Lemma 4.1 also implies the following:

Corollary 4.2. Let f be a smooth function on S
2. Suppose u is a function

defined on r > r0 such that the graph of u in the Schwarzschild spacetime is
spacelike with constant mean curvature H0 > 0 so that u(r,y)− r∗ → f(y)
are r → ∞. Suppose there is C > 0 such that

u(y, ri)− r∗ −
(
f(y) + r−1

i φ(y) +
1

2
r−2
i ψ(y)

)
− Cr−3

i ≤ 0.

for some ri → ∞, where φ, ψ are as in Theorem 1.1. Then we have

lim sup
r→∞

(
u(y, r)− r∗ −

(
f(y) + r−1φ(y) +

1

2
r−2ψ(y)

)
− C ′r−3

)
≤ 0.

for some C ′ > 0. Similar result is true for the lower bound estimate.
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Proof. In the proof of Lemma 4.1, we may choose β1 > 0 large enough so
that β1 + c < 0 in the notation in the proof and so that β1 > C. Then by
the maximum principle, it is easy to see that the corollary is true.

5. Lipschitzian regularity

We want to prove that the solution u given by Theorem 1.1 is Lipschitz near
infinity in the sense that the function r∗ − u is Lipschitz up to s = 0 in the
coordinates y ∈ S

2, s and v = t − r∗. In fact, more general result can be
obtained. Here is the setup. Let y, s, v be as in §2. Consider the metric given
by

(5.1) G = ω−2G

where G = g+ p and ω = s(1+ c(s3)). Here g is the unphysical metric (2.3)
and p = pabdy

adyb with pab = pab(s
3) in the coordinates y = (y1, y2), y3 =

s, y4 = v. Here pab(s
3) means that pab = s3Λab where Λab is a smooth

function on S
2 × [0, s0) × R for some s0 > 0. Similar definition for c(s3).

Hence for fixed v1 < v2, on S
2 × (0, s0) × (v1, v2) we have G

ab
= gab + pab,

with pab = pab(s3), provided s0 is small enough.
Let f be a smooth function on S

2. Suppose P (y, s, τ), τ > 0 is such that

(5.2) P (y, s, τ) = f(y)− 1

2

(
τ2 + |∇̃f |2

)
s+ s2c(y, s, τ)

where c is smooth function on S
2 × [0, s0) × (0,∞). As before, one can see

that for fixed 0 < τ1 < τ2, (y, s, τ) → (y, s, v) with v = −P (y, s, τ) is a
diffeomorphism from M =: S2× (0, s0)× (τ1, τ2) onto its image N , provided
s0 is small enough. Its image is:

N = {(y, s, v)| y ∈ S
2, s ∈ (0, s0), P (y, s, τ1) < v < P (y, s, τ2)}.

Moreover, in terms of the metric G, ∇τ is timelike. Here ∇ is the derivative
with respect to G. Let T = −α∇τ as before, where α−2 = −G(∇τ,∇τ). We
have the following:

Theorem 5.1. Suppose Σ is a spacelike surface inside N for some 0 < τ1 <
τ2, which is given by v + Q(y, s) = 0, (y, s) ∈ S

2 × (0, s0). Suppose the tilt
factor of Σ with respect to T is bounded, that is suppose −G(T,n) ≤ C on
Σ for some C > 0 where n is the future pointing unit normal of Σ. Then Q
is uniformly Lipschitz on S

2 × (0, s1) for some 0 < s1 < s0.
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By Corollary 4.1 and the proof of Theorem 1.1 we have:

Corollary 5.1. Let u be the solution in Theorem 1.1. Let Q(y, s) = r∗ −
u(y, r) with s = r−1. Then Q(y, s) is uniformly Lipschitz in S

2 × (0, s0) for
some s0 > 0.

Proof. Let uR be as in the proof of Theorem 1.1. Since uR converges to u
in C∞

loc, by (4.12), one can conclude that Q satisfies the conditions in the
theorem. Hence the corollary is true.

Remark 5.1. It seems likely that Theorem 5.1 can also be applied to the
spacelike CMC surface constructed by Andersson and Iriondo in [1, Theorem
4.2].

Before we prove Theorem 5.1, we need to obtain some estimates. Con-
sider the coordinates t, x1, x2, x3 with t = v + r∗, r = s−1 and y, r are
the spherical coordinates of R

3. In the following, we always assume that
τ1 < τ < τ2. Hence we are doing estimates in M or N .

Lemma 5.1. ∂
∂t is timelike with respect to G provided s0 is small enough.

Moreover, if Gij = G( ∂
∂xi ,

∂
∂xj ) is the induced metric on t =constant, and

if α̃ is the lapse function and βi is the shift vector, then Gij = δij + O(s),
α̃ = 1 +O(s), βi = O(s). Here βi = Gijβ

j.

Proof. ∂
∂t = ∂v. By the assumption on p,

G(
∂

∂t
,
∂

∂t
) = ω−2(gvv + pvv) < 0

if s0 > 0 is small enough. Since t = v+ r∗, ∂v(t) = 1, ∂st = −s−2h−1, ∂yAt =
0, for A = 1, 2, where h = 1− 2ms as before. Let ∂a = ∂ya . Here y1, y2 are
local coordinates of S2, y3 = s, y4 = v. So

∇t = Gab∂at∂b =
(
Gvb − s−2h−1Gsb

)
∂b.

G(∇t,∇t) =Gab∂at∂bt

=Gvv − 2s−2Gvsh−1 +Gsss−4h−2

=ω2(G
vv − 2s−2G

vs
h−1 +G

ss
s−4h−2)

=ω2
[
(gvv + pvv)− 2s−2(gvs + pvs)h−1 + (gss + pss)s−4h−2

]
=− 1 +O(s).

Hence

α̃ = 1 +O(s).
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Comparing with gSch, we see that in the coordinates t, xi,

G = s2ω−2gSch + ω−2p.

On the other hand,
∂

∂t
= ∂v,

and

∂

∂xi
=

∂r

∂xi
∂

∂r
+

∂yA

∂xi
∂

∂yA

=
xi

r

(
−h−1∂v − s2∂s

)
+

∂yA

∂xi
∂yA .

Here we have used:

∂

∂r
=

∂v

∂r
∂v +

∂s

∂r
∂s = −h−1∂v − s2∂s.

Hence

βi =G(
∂

∂t
,
∂

∂xi
)

=ω−2p(
∂

∂t
,
∂

∂xi
)

=ω−2p(∂v,
xi

r

(
−h−1∂v − s2∂s

)
∂s +

∂yA

∂xi
∂yA)

=ω−2

(
xi

r
h−1pvv −

xi

r
s2pvs +

∂yA

∂xi
pvA

)
=O(s).

Here we have used the fact that ∂yA

∂xi = O(s).

Gij =s2ω−2gSch(
∂

∂xi
,

∂

∂xj
) + ω−2p(

∂

∂xi
,

∂

∂xj
)

=δij +O(s) + ω−2p

(
xi

r

(
−h−1∂v − s2∂s

)
∂s +

∂yA

∂xi
∂yA ,

xj

r

(
−h−1∂v − s2∂s

)
∂s +

∂yB

∂xj
∂yB

)
=δij +O(s).

This completes the proof of the lemma.

As before, we consider ∂
∂t as future pointing.
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Lemma 5.2. ∇τ is future pointing. Let α be the lapse function of the time

function τ , we have

α = 1 +O(s).

Moreover if T̃ = −α̃∇t, then

−G(T, T̃ ) = (τs)−1 +O(1).

Proof. In the coordinates y1, y2, y3 = s, y4 = v,

∇τ = Gab∂yaτ∂yb .

As in Lemma 2.1,

G(
∂

∂t
,∇τ) = − 1

Pτ
> 0,

provided s small enough. Hence ∇τ is past directed. As in the proof of

Lemma 2.1

G(∇τ,∇τ) =Gab∂yaτ∂ybτ

=ω2(gab∂yaτ∂ybτ + pab∂yaτ∂yb)

=ω2(P−2
τ (2Ps + s2hP 2

s + |∇̃P |2 +O(s−2))

=s2P−2
τ (2Ps + s2hP 2

s + |∇̃P |2) +O(s).

Hence α = 1 +O(s). Next,

G(T, T̃ ) =αα̃G(∇τ,∇T )

=αα̃ω2(gab + pab)∂yaτ∂ybt

=αα̃ω2(s−2P−1
τ +O(1))

=− (τs)−1 +O(1).

Proof of Theorem 5.1. Let F (y, s, v) = v+Q(y, s). Then the surface Σ given

by F = 0 is spacelike. First, let us prove that −G(∇F,∇F ) is bounded on

Σ. For τ1 < τ < τ2, by (2.9) we have

(5.3)

∂vτ = (τs+O(s2))−1, ∂sτ = (τs+O(s2))−1Ps, ∂yAτ = (τs+O(s2))−1PA,
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A = 1, 2. Moreover, Ps, PA are all bounded. We will work on a coordinate

neighborhood U of S2, so that the standard metric σAB is bounded from

above and the eigenvalues of (σAB) is bounded from below by a positive

constant on U .

Let T, T̃ be as in Lemma 5.2. Then by Lemma 4.4 and the assumption

on −G(T,n),

−G(T, T̃ ) ≤ 2G(T,n)G(T̃ ,n) ≤ −C1G(T̃ ,n)

for some C1 > 0. By Lemma 5.2, we have

(5.4) −G(T̃ ,n) ≥ C2s
−1

for some C2 > 0. Here and below, we implicitly assume that 0 < s < s0 with

s0 is small enough.

In the t, xi coordinates, F = t− r∗ +Q =: t− u. We have

−G(∇F,∇F ) = α̃−2
(
(1 + βiu

i)2 − α̃2uiui
)
> 0.

where ui = ∂u
∂xi and ui = Gijuj . From this inequality, by Lemma 5.1, we

conclude that uiui is uniformly bounded on Σ and hence 3
2 ≥ 1+βiu

i ≥ 1
2 > 0

provided s is small enough. We can write

−G(∇F,∇F ) = α̃−2(1 + βiui)
2(1− |U |2),

where

U =
α̃Du

1 + βiui

and Du = ui ∂
∂xi . On the other hand,

−G(T̃ ,n) = (1− |U |2)− 1

2 .

By (5.4) we have

1− |U |2 ≤ C3s
2

for some C3 > 0. We conclude that by Lemma 5.1,

(5.5) −G(∇F,∇F ) ≤ C4s
2.
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for some C4 > 0, because 1+βiu
i is bounded. By the assumption on the tilt

factor with respect to the time function τ , we have

C5 ≥−G(T,n)

=− α(−G(∇F,∇F ))−
1

2G(∇τ,∇F )

=− α(−G(∇F,∇F ))−
1

2ω2
(
G

ab
∂yaτ∂ybF

)
=− α(−G(∇F,∇F ))−

1

2ω2
(
(gab + pab)∂yaτ∂ybF

)
=− α(−G(∇F,∇F ))−

1

2ω2×[
gvv∂vτ∂vF + gvs(∂sτ∂vF + ∂vτ∂sF ) + gss∂sτ∂sF

+ gAB∂yAτ∂yBF + qb∂ybF

]
=− α(−G(∇F,∇F ))−

1

2ω2×[
1

Pτ

(
−(Ps +Qs)− s2(1− 2ms)PsQs − 〈∇̃P, ∇̃Q〉

)
+ qb∂ybF

]
where qb = O(s2) and we have used (5.3). By (5.3) and (5.5) we conclude
that

−Qs − s2(1− 2ms)PsQs − 〈∇̃P, ∇̃Q〉+ qb∂ybF ≤ C6

for some constant C6 > 0. Since Ps, PA are uniformly bounded and

σABQAQB ≥ C

2∑
A=1

Q2
A

for some C > 0, we have for any ε > 0, we have

(5.6) − (1 +O(s2))Qs − (ε+O(s2))|∇̃Q|2 ≤ C7(ε)

for some constant C7 which also depends on ε.
Since Σ is spacelike, we have

G(∇F,∇F ) ≤ 0.

Computations similar to the above, we have

2Qs + s2(1− 2ms)Q2
s + |∇̃Q|2 +O(s3)

(
1 +Q2

s + |∇̃Q|2
)
≤ 0.
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This implies that Qs ≤ Cs3 and

(5.7) (2 +O(s3))Qs + (s2(1− 2ms) +O(s3))Q2
s + (1 +O(s3))|∇̃Q|2 ≤ C8

for some C8 > 0. Multiply (5.7) by δ > 0 and add it to (5.6), if s > 0 is
small enough, we have

− [1 +O(s2)− δ(2 +O(s3))]Qs + [δ(1 +O(s3))− (ε+O(s2))]|∇̃Q|2

≤ C7 + δC8

Let δ = 2ε and ε = 1
8 , we can conclude that

−Qs ≤ C9

for some C9 > 0 provided s is small enough. Hence −C9 ≤ Qs ≤ Cs3 if s
is small enough. From this and (5.7), we conclude that |∇̃Q|2 is uniformly
bounded provided s is small enough. This completes the proof of the theo-
rem.
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