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Abstract null geometry, energy-momentum map
and applications to the constraint tensor

Marc Mars

We introduce and study the notion of null manifold. This is a
smooth manifold N endowed with a degenerate metric γ with one-
dimensional radical at every point. We also define the notion of
ruled null manifold, which is a special case of null manifolds. We
prove that ruled null manifolds are in one-to-one correspondence
with equivalence classes of null metric hypersurface data. This
correspondence is used to endow any null manifold (N , γ) with
a family of torsion-free connections related to each other by a well-
defined gauge group. The whole construction allows one to define
and use geometric notions on arbitrary null manifolds. The paper
has a second part where we introduce a canonical map on any
null metric hypersurface data and use its algebraic properties to
define a canonical decomposition of any symmetric (0,2)-covariant
tensor. This decomposition, together with two new differential op-
erators compatible with this splitting, are used to decompose the
constraint tensor in full generality and at the purely abstract level.
This leads to a hierarchical structure of the (detached) Einstein
vacuum null constraint equations without the need of introducing
special coordinates or special foliations. The results are applied
to study null shells arising from the matching of two spacetimes
across null boundaries. The equations governing such objects are
obtained in hierarchical form without imposing any topological,
gauge or coordinate conditions on the shell.
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1. Introduction

Among the very many relevant contributions that Robert Bartnik made to
analysis, geometry and relativity, one of the comparatively less known is his

arXiv: 2402.07488

797

https://www.intlpress.com/site/pub/pages/journals/items/bpam/_home/_main/index.php
http://arxiv.org/abs/2402.07488


798 Marc Mars

notion of null quasispherical gauge introduced in 1997 [2]. Bartnik’s main
motivation was to develop a framework to write down and study explicit
formulations of the Einstein vacuum field equations where gauge freedom
could be minimized. Bartnik writes “Ideally, a ‘good’ parametrization of
the Einstein equations will have limited or no gauge freedom (...) with pa-
rameters free of constraints and having a direct relation to known radiation
parameters”. The null quasi-spherical (NQS) gauge was an attempt towards
this goal. The basic geometric framework was to consider a foliation of the
spacetime by null hypersurfaces and fix the gauge (coordinate) freedom by
foliating each null hypersurface by metric spheres. The null quasi-spherical
gauge consisted in expressing the geometry in terms of a foliation defining
function u, the area radius r of the spheres and standard angular coordi-
nates on each sphere. Thus, the NQS gauge is a modification of previous
characteristic formulations involving other coordinate conditions, such as
e.g. Bondi-Sachs coordinates [5, 6] or null affine coordinates [34]. Bartnik’s
main motivation was to have a framework where numerical implementations
of the Einstein field equations could be successfully developed. And, indeed,
later works used the NQS gauge to implement the vacuum field equations in
numerical codes (e.g. [3]). However, this was not the only objective, and sev-
eral applications of the NQS gauge appeared already in [2]. In particular, the
matching problem across null boundaries of two vacuum spacetimes written
in NQS gauge was considered under a number of simplifying assumptions.

While fixing the gauge in one way or another is certainly essential to do
numerical implementations, the completely opposite point of view is more
valuable for other types of problems. It is advantageous to let the gauge
remain completely unfixed in order to have a flexible framework capable of
adjusting itself to different situations. For problems involving hypersurfaces,
it is also a very useful point of view to try and separate the geometric prop-
erties (both intrinsic and extrinsic) that have to do with the hypersurface
to those that have to do with the ambient space. Of course, the two sets of
properties are not unrelated from each other, and this is expressed by equa-
tions that link them. This separation is well-understood in the case when the
hypersurfaces are spacelike or timelike. Then, the intrinsic geometry is the
induced metric, the extrinsic geometry is the second fundamental form and
the equations that link them to ambient properties are the Gauss identity
for the connection, as well as the Gauss-Codazzi identities for the curva-
ture. The coordinates in which the hypersurface is described can be chosen
completely separated from the coordinates of the ambient space where the
hypersurface is embedded. In fact, the separation is so powerful that one
can view the hypersurface as completely detached from the spacetime, and
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encode the ambient curvature as fields on this detached manifold. This point
of view is essential, for instance, when the ambient needs to be reconstructed
from the hypersurface, e.g. via the solution of suitable prescribed geometric
PDE.

The null case is much harder. Certainly, there is no problem in viewing
the hypersurface as a detached manifold separated from the spacetime and
let the embedding map carry all the information about how it sits in the
ambient space. However, while in the timelike and spacelike case the hyper-
surface carries a semi-riemannian metric induced by the embedding, which
allows one to develop all the necessary tools to do geometry on the abstract
space, in the null case there is no induced metric. So, is there any detached
geometry one can construct?

If one does not insist in actually detaching the hypersurface, several ap-
proaches can be taken. The first one capable of dealing with general null
hypersurfaces was developed by J.A. Schouten [43]. It is based on the use
of a rigging vector and it has been used successfully in many contexts. The
rigging approach actually works in hypersurfaces of arbitrary signature [30].
A different but related approach is based on the use of screen distribu-
tions [11]. A third approach is to construct a riemannian metric on the null
hypersurface by combining the induced first fundamental form and the cov-
ector metrically associated to the rigging. There are several ways to do this
[17, 30, 13], the approach in [13] being advantageous in that it requires no
extra condition on the rigging.

As already mentioned, it is of interest to detach the hypersurfaces from
the ambient space. In [28, 29] a framework has been developed to this pur-
pose. The basic notion is that of metric hypersurface data. In a certain sense
the construction can be regarded as an abstraction of the rigging construc-
tion for general hypersurfaces (and also of the screen distribution construc-
tion for null hypersurfaces). However, there are also differences, the main
one being that the metric hypersurface data only encodes information on
the ambient metric along the hypersurface, not of its transverse derivatives,
unlike the rigging or screen constructions in the embedded case. Any metric

hypersurface data carries a natural torsion-free connection
◦
∇. This connec-

tion depends only on zeroth order information about the ambient metric on
the (abstract) hypersurface. This is an important advantage over other op-
tions, since less information is required to construct it. Besides allowing for
a fully detached description, the key idea in [28, 29] was to treat the large
freedom inherent to the choice of rigging (at the abstract level) by means of
a gauge group acting on geometrically equivalent metric hypersurface data.
Although the framework was successful in detaching the hypersurface from
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the ambient, the definition of null metric hypersurface data still encodes
a priori quantities that, in the embedded picture, correspond to a rigging
vector. The main purpose of this paper is to lift this a priori restriction.

We want to start from a abstract manifold N endowed with a degener-
ate symmetric tensor γ. Besides smoothness, the only assumption we make
on γ is that it is minimally degenerate, in the sense that its radical is one-
dimensional at each point. We call this a null manifold. We emphasize that
this restriction is completely natural in the present context, as all null hy-
persurfaces embedded in a semi-riemannian manifold have this property. It
turns out that one can establish a neat relationship between null manifolds
and null metric hypersurface data structures. Specifically, there always exists
a covering Ñ of N (which may be one-to-one or two-to-one) that admits a
null metric hypersurface data uniquely defined from (N , γ) up to the action
of the gauge group. It is remarkable that, even in the 2:1 covering case, the

connection
◦
∇ associated to the null metric hypersurface data on Ñ descends

to N . Thus, any null manifold admits a collection of torsion-free connections

{
◦
∇} related to each other by a suitable gauge group (defined on the cover-
ing space). This allows us to define a geometry on any null manifold in a
fully covariant and fully detached way. When the covering is one-to-one, the
construction recovers the null metric hypersurface data geometry in [28, 29].

Coming back to general relativity, and specifically to the Einstein field
equations, one of the main advantages of null hypersurfaces over spacelike or
timelike ones is that the equations acquire a hierarchical structure. This has
been noted in several contexts, e.g. [38, 37, 2, 8, 39]. In all cases, a foliation of
the hypersurface by spacelike sections, as well as suitable coordinate systems
adapted to the foliation are necessary. This fact restricts the applicability
of this results to null hypersurfaces with simple (product) topology. The
development of a fully detached and fully covariant null geometry leads to
the question of whether this hierarchical structure can be identified without
the need of assuming a specific foliation and a specific coordinate system.
The second aim of this paper is to show that this is indeed possible.

In order to describe the constraint equations of general relativity at the
abstract level it is necessary, first of all, to extend the notion of null met-
ric hypersurface data by incorporating a symmetric tensor Y that codifies
(abstractly) the extrinsic information of the hypersurface. This geometric
notion is called hypersurface data [28, 29]. In that setup one can define
[39, 23] a symmetric tensor called constraint tensor that, in the null case,
codifies at the abstract level the tangential-tangential components of the
ambient Ricci tensor. This tensor is the equivalent to the null constraint
equations of general relativity when written in detached form.
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The hierarchical decomposition of the constraint tensor obtained here
is based on a canonical algebraic decomposition of arbitrary symmetric 2-
covariant tensors that we derive from a natural linear map τ that sends sym-
metric (0, 2)-tensors to symmetric (2, 0)-tensors. This map is called “energy-
momentum map” because of its close connections to the geometry of null
shells (see [28] and Section 7). However, the algebraic decomposition of sym-
metric tensors in itself is not sufficient to achieve a hierarchical decomposi-
tion of the constraint tensor. The reason is that the constraint tensor involves
differential operations on the fields. Thus, to accomplish the decomposition
we need to identify differential operators that respect the algebraic decompo-
sition. Once this is achieved, the hierarchical decomposition of the constraint
tensor can be worked out.

The constraint tensor involves the null metric hypersurface data as well
as the extrinsic tensor Y. We carry out the hierarchical decomposition of
the constraint tensor only concerning its dependence on the tensor Y. The
reason is two-fold. Firstly, it is natural to view the constraints as equations
for the extrinsic tensorY, i.e. to consider the metric part of the data as given.
In this perspective, the terms independent of Y can be treated as sources,
so finding its explicit algebraic decomposition does not affect the structure
of the equations. The second reason concerns applying the decomposition to
study the shell equations that arise when two spacetimes are matched across
null boundaries. As we shall see, the terms not involving Y disappear in this
case. This application wraps up the relationship of the present work with
Robert Bartnik’s paper [2], where these equations were discussed in a specific
scenario. Here we find the equations in a fully covariant and detached way,
and we write them down in an explicitly hierarchical form without the need
to assume either a special topology for the matching surface, or any specific
choice of foliation to do the decomposition. The result is completely general,
so it can be adapted to whatever choices of foliations and of coordinates
depending on the specific problem at hand.

The plan of the paper is as follows. In Section 2 we introduce the notion
of null manifold and ruled null manifold and analyze the relationship
with each other as well as with the notion of null metric hypersurface data.
We find that there exists of a one-to-one correspondence between ruled null
manifolds and equivalence classes of null hypersurface metric data (Propo-
sition 2.1) and that any null manifold admits a canonical covering (at most
2:1) which defines a ruled null manifold structure. In Section 3 we recall

the connection
◦
∇ for null metric hypersurface data and study how it can be

extended to general null manifolds. The main result is Theorem 3.1 where

the existence of a class of connections {
◦
∇} for general null manifolds is
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established. The rest of the paper is devoted to the decomposition of the
constraint tensor and of the shell equations. In Section 4 we study the alge-
braic properties of the energy-momentum map and obtain as a consequence
a canonical decomposition of symmetric (2, 0)-tensors (Proposition 4.2). We
also study the gauge properties of the energy-momentum map and their
consequences for the gauge properties of the algebraic decomposition. In
Section 5 we study the PDE consequences of the energy-momentum map
and introduce two first order, linear, covariant differential operators that
have good properties with respect to the canonical decomposition discussed
before. Section 6 is devoted to finding the canonical decomposition of the
constraint tensor. As already mentioned we concentrate on the terms that
involve the extrinsic part of the data. Finally, in Section 7 we use the canon-
ical decomposition of the constraint tensor to obtain a completely general,
detached and fully covariant hierarchical decomposition of the shell equa-
tions describing, at the purely abstract level, thin concentrations of matter
and/or impulsive gravitational waves propagating on null hypersurfaces.

1.1. Notation

All manifolds are assumed to be second countable, Hausdorff, smooth and
without boundary. Recall that such a manifold is automatically paracompact
(see e.g. [44]). Unless otherwise stated, all manifolds are also connected.
F(N ) denotes the set of smooth real functions on a manifold N and F�(N )
the subset of functions that vanish nowhere. X(N ) is the set of smooth vector
fields and X�(N ) the set of smooth covector fields on N . A tensor is said to
be of type (p, q) when it is p-contravariant and q-covariant. The vector space
of symmetric (0, 2)-tensors defined on a vector space V is written as S0

2(V ).
Similarly S2

0(V ) stands for the vector space of symmetric (2, 0)-tensors on
V . The signature of an element of S0

2(V ) is written (p, q, r) where p is the
number of +1, q the number of −1 and r the number of 0 in its canonical
form. As usual, brackets enclosing indices indicate antisymmetrization and
parenthesis denote symmetrization. The symmetrized tensor product of two
tensors A and B is A⊗sB := 1

2(A⊗B+B⊗A). We shall use both abstract
index notation and index-free notation depending on our needs. The Lie
derivative along a vector field X is £X and the exterior derivative d.

2. Null manifolds

Any hypersurface N embedded in a pseudo-riemannian manifold (M, g) in-
herits a symmetric (0, 2)-tensor, namely the first fundamental form γ defined
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as γ := φ�(g) if φ : N −→ M is the embedding. Recall that the radical of a

symmetric (0, 2)-tensor is defined as

Radγ |p := {V ∈ TpN , γ(V, ·) = 0}, p ∈ N .

The radical is, at every point p, a vector subspace of TpN and, in the case
of hypersurfaces, it is easy to show that its dimension is at most one1

dim(Radγ |p) ≤ 1.

A non-trivial radical means that the first fundamental form is not a metric
or, equivalently, that at each point p ∈ φ(N ) there is a non-zero normal

vector which is at the same time tangential. Such hypersurfaces are called
null and obviously they can only exist when the metric g is not definite

(namely, its signature is neither (0, n + 1, 0) nor (n + 1, 0, 0) where n + 1
is the dimension of N ). Any attempt to study null hypersurfaces from a
purely detached point of view requires dealing with manifolds endowed with

a degenerate symmetric (0, 2)-tensor γ whose radical is one-dimensional at
every point. Thus, we put forward the following definition.

Definition 2.1. A null manifold (N , γ) is a manifold of dimension n ≥ 1

endowed with a smooth, symmetric (0, 2)-tensor γ satisfying

dim(Rad|γ |p) = 1 ∀p ∈ N .

One of our aims in this paper is to define a geometry on null manifolds.
The main complication of course arises from the fact that γ is not a metric,

so in particular there is no Levi-Civita connection associated to γ.

We start by analyzing some geometric consequences of the definition.
The (disjoint) union of all vector spaces E =

⋃
p∈N Radγ |p defines a vector

bundle over N . We call π : E → N the projection map. This bundle is a

(real) line bundle. It is a standard fact (see e.g. [32][Theorem 2.2]) that a
line bundle is trivial (i.e. isomorphic to the product bundle π1 : N×R → N )

if and only if it admits a nowhere zero section, i.e. a smooth map n : N → E
satisfying π ◦ n = IdN such that n|p 
= 0 for all p ∈ N .

1The set of normal vectors Nor|q to φ(N ) at q ∈ φ(N ) is a one-dimensional
vector space. The push-forward of Radγ |p lies in Nor|φ(p). Since φ� is injective the
dimension of Radγ |p is the same as the dimension of its image, so the bound follows.
See also [29][Lemma 2.2] where the result is proved in the more general context of
metric hypersurface data.
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Any real line bundle π : E −→ N admits a trivial double covering. More
precisely there exists a manifold Ñ and a double cover of the base

f : Ñ −→ N(1)

such that the line bundle f�(E) is trivial. When the original bundle (E,N , π)
is already trivial then Ñ is just N × {−1, 1}, so it consists simply of two
copies of N .

Line bundles are classified by its first Stiefel-Whitney characteristic class.
The first Stiefel-Whitney class of a line bundle (E,N , π) is denoted by ω1(E)
and is an element of H1(N ,Z2), the first cohomology of N with coefficients
in Z2 := Z mod 2. A line bundle is trivial if and only if ω1(E) = 0. In
particular, when H1(N ,Z2) contains only the zero element, all line bundles
over N are necessarily trivial. Of course, this happens in particular when N
is simply connected or contractible.

The line bundle of a null manifold is not just any line bundle. It is asso-
ciated to a one-dimensional distribution on N , which in turn is associated
to the tensor γ. Note that γ having a one-dimensional radical at every point
is equivalent to saying that γ has signature (p, q, 1) with p+ q = n− 1. The
numbers q and p are locally constant, so they are constant if N is connected.

Every manifold is known to admit a (positive definite) riemannian met-
ric (see e.g. [20][Proposition 13.3]). It is natural to ask whether there are
any obstructions to define a null manifold structure on a manifold N . In the
case of general signature, the only result we know is a theorem by Bel´ko
[4] which, particularized to the present setup, states that N admits a null
manifold structure (N , γ) of signature (p, q, 1) if and only if N admits three
mutually complementary smooth distributions of dimensions p, q and 1 re-
spectively.

From a physical point of view, the most interesting case is when γ is
positive semidefinite, as this is the situation that arises in null hypersurfaces
embedded in Lorentzian manifolds. As we show in the next lemma, the only
condition for N to admit a semi-definite null manifold structure is that
N admits a one dimensional distribution, i.e. a line bundle (E,N , π) with
π−1(p) ⊂ TpN , for all p ∈ N .

Lemma 2.1. An n dimensional manifold N admits a null manifold struc-
ture (N , γ) of signature (n−1, 0, 1) (or (0, n−1, 1)) if and only if N admits
a one-dimensional distribution.

Proof. Necessity is obvious. For sufficiency take a riemannian metric g in
N . At every point p ∈ N consider the pair of vectors {±e} ∈ π−1(p) defined



Abstract null geometry 805

by g|p(e, e) = 1. Although in general there is no way to extract a vector field
on N from this collection of vectors (indeed, this occurs if and only if the
bundle is trivial), the tensor field

γ := g − g(e, ·)⊗ g(e, ·)

is nevertheless well-defined because its expression is invariant under change
of sign in e. It is clear that γ has signature (n− 1, 0, 1) so the claim follows.

So, in positive (or negative) semi-definite signature the existence of a
null manifold structure boils down to the existence of a one-dimensional
distribution. This has the following corollary.

Corollary 2.1. Let N be an n-dimensional manifold. If N is not compact
then it always admits a positive (or negative) semi-definite null manifold
structure. If N is compact, it admits a positive/negative semi-definite null
manifold structure if and only if its Euler characteristic is zero.

Proof. It is a standard fact that any non-compact manifold admits a nowhere
zero vector field. Thus, it also admits a one-dimensional distribution. For the
compact case, existence of a one-dimensional distribution is equivalent to the
Euler characteristic χ(N ) of N being zero [27][Theorem 3].

It is a well-known fact that compact manifolds have vanishing Euler
characteristic if and only if they admit a nowhere zero vector field. Indeed,
if N admits a nowhere zero vector field, then a direct application of the
Poincaré-Hopf index theorem implies χ(N ) = 0. The converse was proved
by Hopf in [15]. It is also well-known (see e.g. [35]) that a manifold admits
a Lorentzian metric if and only if it admits a nowhere zero vector field. So,
the previous corollary can also stated as

Corollary 2.2. An n-dimensional manifold N admits a positive (or nega-
tive) semi-definite null manifold structure if and only if it admits a nowhere
zero vector field. Equivalently, if and only if N admits a Lorentzian metric.

Note that the vector field in this corollary has in general no relation with
the one-dimensional distribution in Lemma 2.1.

As we shall see below the definition of a geometry on (N , γ) is simplest
when this line bundle is trivial. Moreover, this case will serve as the basis
for the more general setup, so we introduce the following definition.

Definition 2.2. A ruled null manifold is a null manifold (N , γ) for which
the line bundle (E :=

⋃
p∈N Radγ |p,N , π) is trivial.
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Understanding ruled null manifolds is relevant for the general null man-

ifold case thanks to the covering map (1). Indeed, consider a null manifold

which is not ruled, i.e. such that (E :=
⋃

p∈N Radγ |p,N , π) is non-trivial. As

already discussed, the pull-back bundle f�(E) over Ñ is a trivial line bundle.

Moreover, it is a subbundle of the tangent bundle of Ñ because from f being

a local diffemorphism it follows f�(TN ) ≈ T Ñ , where the diffeomorphism

is in the sense of vector bundles. Since E is by construction a subbundle of

TN , the pull-back f�(E) is, via the isomorphism above, also a subbundle of

T Ñ . Hence, it defines a one-dimensional distribution in Ñ . The line bundle

f�(E) being trivial, it admits a nowhere vanishing section. As already said,

this section can be identified with a nowhere zero vector field ñ ∈ X(Ñ ).

Now γ̃ := f�(γ) is a symmetric two covariant vector field on Ñ . Its radical

is one-dimensional at every point, and by construction ñ spans this radical.

Consequently the null manifold structure (N , γ) induces a ruled null mani-

fold structure (Ñ , γ̃) on Ñ . Thus, understanding ruled manifold structures

is relevant not only for its own sake but, particularly, for the consequences

it has concerning the more general case of null manifold structures.

We shall study ruled manifolds via the concept ofmetric hypersurface

data. This notion was introduced in [28, 29] with a precursor appearing

already in [30]. Further properties of this notion can be found in [23] and

applications to the matching problem have been discussed in [24, 25] while

applications to characteristic initial value problem appear in [39, 40]. For

the purposes of this paper we shall restrict to a particular case, namely the

so-called null metric hypersurface data. The definition is as follows [29].

Definition 2.3. Null metric hypersurface data is a 4-tuple {N , γ, �, �(2)}
where N is a smooth manifold of dimension n ≥ 1, γ is a smooth symmetric

(0, 2)-tensor field with one-dimensional radical at every point, � ∈ X�(N )

and �(2) ∈ F(N ), provided the following symmetric (0, 2)-tensor A|p defined

on TpN ⊕ R

A|p((X1, a1), (X2, a2)) := γ(X1, X2) + a1�(X2) + a2�(X1) + a1a2�
(2)(2)

is non-degenerate at every p ∈ N .

Since the tensor A|p is non-degenerate, there is a unique symmetric

contravariant tensor A�|p on TpN ⊕ R defined by

A�|p((X1, a1), ·) = (X1, a1), ∀(X1, a1) ∈ TpN ⊕ R
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where the covector (X1, a1) is associated to (X1, a1) by (X1, a1)(·) :=
A|p((X1, a1), ·). One can then define the tensors {P |p, n|p} on TpN by split-
ting A�, namely for any ω1,ω2 ∈ T �

pN ,

P (ω1,ω2) = A�|p((ω1, 0), (ω2, 0)), n|p(ω1) := A�|(ω1, 0), (0, 1)).

P defines a (2, 0)-tensor field and n a vector field on N . In abstract index
notation, they are defined by [28, 29]

γabn
b = 0,(3)

�an
a = 1,(4)

P ab�b + �(2)na = 0,(5)

P abγbc + na�c = δac .(6)

Note that by construction n is a nowhere zero section of the bundle (E =⋃
p∈N Radγ |p,N , π). So, the null manifold (N , γ) associated to any null met-

ric hypersurface data is always a ruled null manifold. It is natural to ask
whether the converse is also true, namely whether one can associate null
metric hypersurface data to any ruled null manifold, and if so in how many
fundamentally different ways this is possible.

To answer this question we first need to recall the fact that null metric
hypersurface data has a natural built-in gauge group and that two null met-
ric hypersurface data related by a gauge transformation are to be regarded
as equivalent from a geometric point of view. We first recall the action of
the gauge group (details can be found in [29]).

Define the following internal operation on the set G := F�(N )× X(N )

· : G × G −→ G
((z2, ζ2), (z1, ζ1)) �→ (z2z1, ζ1 + z−1

1 ζ2).

This operation endows G with a group structure. This group is called hy-
persurface data gauge group or simply gauge group if no confusion can arise.
The inverse of (z, ζ) and the neutral element e are

(z, ζ)−1 = (z−1,−zζ), e = (1, 0).

Given (z, ζ) ∈ G, its action on the null metric hypersurface data, denoted
by G(z,ζ), is defined as follows

G(z,ζ)(γ) = γ, G(z,ζ)(�) = z(�+ γ(ζ, ·)),(7)
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G(z,ζ)(�
(2)) = z2

(
�(2) + 2�(ζ) + γ(ζ, ζ)

)
.(8)

One checks easily that the action is well-defined, i.e. takes metric hyper-
surface data D := {N , γ, �, �(2)} and produces metric hypersurface data
G(z,ζ)(D) := {N ,Gz,ζ(γ),G(z.ζ)(�),Gz,ζ)(�

(2))}, and one also checks that this
action is a realization of the group, namely

G(z1,ζ1) ◦ G(z2,ζ2) = G(z1,ζ1)·(z2,ζ2).

The gauge behaviour of the contravariant tensors {P, n} is obtained from (3)-
(6). The result is [28]

G(z,ζ)(P ) = P − 2n⊗s ζ, G(z,ζ)(n) = z−1n.(9)

This gauge transformation leads to a notion of geometric equivalence of
metric hypersurface data.

Definition 2.4. Let D1 := {N , γ1, �1, �
(2)
1 } and D2 := {N , γ2, �2, �

(2)
2 } two

null metric hypersurface data on the same manifold N . We say that they
are geometrically equivalent and write

(N , γ1, �1, �
(2)
1 ) ∼ (N , γ2, �2, �

(2)
2 )

whenever there exists a group element (z, ζ) ∈ G such that G(z,ζ)(D1) = D2.

It is obvious that ∼ defines an equivalence relation on the set null metric
hypersurface data on a given manifold N . We shall denote the equivalence

class of {N , γ, �, �(2)} with a bar, namely D or {N , γ, �, �(2)}
We have already stated that any metric hypersurface data defines a ruled

null geometry (N , γ). By the gauge invariance of γ it is clear that this null
geometry only depends on the equivalence class. We now want to show that
there exists a one-to-one correspondence between ruled null geometries and
equivalence classes of metric hypersurface data. We start by finding under
which conditions a given covector and scalar fields defined on a ruled null
manifold define null metric hypersurface data.

Lemma 2.2. Let (N , γ) be a ruled null manifold. Let � ∈ X�(N ) and �(2) ∈
F(N ) be given. Then {N , γ, �, �(2)} is null metric hypersurface data if and
only if for one (and hence any) nowhere zero section e1 of (E,N , π) it holds
�(e1) 
= 0 everywhere (in other words, � is transverse to Radγ at every
point).
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Proof. If {N , γ, �, �(2)} is null metric hypersurface data, we may chose e1|p =
n|p and the condition �(e1) 
= 0 is satisfied. To prove the converse we only
need to make sure that the symmetric (0, 2)-tensor A|p on TpN ⊕R defined
in (2) is non-degenerate. Let e1 be a non-zero section of (E,N , π). By as-
sumption �|p(e1) 
= 0 everywhere. We work at a fixed point p ∈ N from now
on. Define n := dim(N ) and complete e1 to a canonical basis {ea} of γ|p,
i.e. a basis satisfying

γ(ea, eb) = 0 if a 
= b, γ(ea, ea) = εa

with ε1 = 0 and ε2A = 1 if 2 ≤ A ≤ n. Define V ∈ TpN by V :=
−
∑n

B=2 εB�|p(eB)eB. Then, the vectors {E0 := (V, 1), Ea := (ea, 0)} consti-
tute a basis of TpN × R. From (2) we get

A|p(E0, E0) = γ|p (V, V ) + 2�|p (V ) + �(2), A|p(E0, E1) = �|p (e1) ,
A|p(E0, EA) = γ|p (V, eA) + �|p (eA) = 0, A|p(E1, E1) = 0,

A|p(E1, EA) = 0, A|p(EA, EB) = δABεA.

The determinant of A|p in this basis is

det(A|p) = −(�|p(e1))2
n∏

B=2

εB,

which is non-zero. Hence, A|p is non-degenerate, as claimed.

The following lemma, first proved in [23], is key to establish the relation-
ship between ruled null manifolds and equivalent classes of null hypersurface
data. We include the proof in order to make this paper as self-contained as
possible.

Lemma 2.3. Let {N , γ, �, �(2)} be null metric hypersurface data. Let ω ∈
X�(N ) and u ∈ F(N ). Assume that ω(n) 
= 0 everywhere. Then there exists
a unique gauge transformation G(z,ζ) satisfying

G(z,ζ)(�) = ω, G(z,ζ)(�
(2)) = u.(10)

Moreover, the gauge group element (z, ζ) is given by

z = ω(n), ζ =
1

ω(n)
P (ω, ·) + u− P (ω,ω)

2 (ω(n))2
n.(11)
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Remark 2.1. The condition ω(n) 
= 0 is necessary by Lemma 2.2.

Proof. We first assume that the gauge transformation exists and use this
fact to restrict its form up to a free function. We then restrict ourselves to
such class of group elements and show that there exists precisely one group
element satisfying (10), and that this is given by (11). This will prove both
the existence and uniqueness claims of the lemma. For the first part we
impose (10) namely

G(z,ζ)(�) = z (�+ γ(ζ, ·)) = ω,(12)

G(z,ζ)(�
(2)) = z2

(
�(2) + 2�(ζ) + γ(ζ, ζ)

)
= u.(13)

Contracting (12) with n gives z = ω(n), so

ρ := γ(ζ, ·) = 1

ω(n)
ω − �.

Note that ρ(n) = 0. The computation

γab

(
ζb − P bcρc

)
= ρa − (δca − nc�a) ρc = 0

shows that the vector ζ − P (ρ, ·) lies in the kernel of γ, so there exists a
function f such that

ζa = P abρb + fnb =
1

ω(n)
P abωb +

(
�(2) + f

)
na.

Thus, it suffices to restrict oneself to gauge parameters in the class{(
z = ω(n), ζ =

1

ω(n)
P (ω, ·) + qn

)
, q ∈ F(N )

}
.(14)

We now start anew and prove that there is precisely one function q such
that the corresponding (z, ζ) in (14) fulfills conditions (10). For ζ as in (14)
we get

γ(ζ, ·) = 1

ω(n)
γ(P (ω, ·), ·) = 1

ω(n)
ω − �,(15)

ω(ζ) =
1

ω(n)
P (ω,ω) + qω(n),

�(ζ) = −�(2) + q,(16)
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γ(ζ, ζ) =
1

ω(n)
ω(ζ)− �(ζ) =

P (ω,ω)

ω(n)2
+ �(2).(17)

Condition in (12) is satisfied for all q as a direct consequence of (15).
From (16) and (17), condition (13) is satisfied if and only if

ω(n)2
(
2q +

P (ω,ω)

ω(n)2

)
= u ⇐⇒ q =

u− P (ω,ω)

2ω(n)2
.

Lemma 2.3 has the following interesting consequences.

Corollary 2.3. Let N be a smooth manifold and D1 := {N , γ1, �1, �
(2)
1 },

D2 := {N , γ2, �2, �
(2)
2 } two null metric hypersurface data defined on N .

Then, there is a gauge group element (z, ζ) ∈ F�(N) × Γ(T �N ) such that
G(z,ζ)(D1) = D2 if and only if γ1 = γ2.

Proof. The necessity is obvious because γ remains unchanged under a gauge
transformation. Sufficiency is a direct application of Lemma 2.3 to ω = �2
and u = �

(2)
2 .

Proposition 2.1. Let N be a smooth manifold. There is a one-to-one cor-
respondence between ruled null manifold structures on N and equivalence
classes of null metric hypersurface data in N .

Proof. We already know that an equivalence class of null metric hypersurface

data {N , γ, �, �(2)} defines a ruled null manifold structure (N , γ). To prove
the converse we consider a ruled null manifold structure (N , γ) on N (note
this may not exist, in which case there are no null metric hypersurface
structures either, and there is nothing to prove). We need to show two
things: (i) that one can complete (N , γ) to a null metric hypersurface data
{N , γ, �, �(2)} and (ii) that any two null metric hypersurface data of this
form belong to the same equivalence class. The validity of (ii) is the content
of Corollary 2.3, so it only remains to establish (i). By definition of ruled
null manifold, there exists a smooth nowhere zero vector field n such that
n|p ∈ Radγ |p for all p ∈ N . We have already mentioned the fundamental
fact that any smooth manifold can be endowed with a smooth riemannian
metric. Let g0 one such metric and define

� :=
1

g0(n, n)
g0(n, ·).
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By construction � is a smooth covector field that satisfies �(n) = 1. Thus,
by lemma 2.2 the data {N , γ, �, �(2)} where �(2) is any smooth real function
(e.g. �(2) = 0) defines null metric hypersurface data.

The following corollary determines the necessary and sufficient condi-
tions for a manifold N to admit null metric hypersurface data {N , γ, �, �(2)}
with positive semidefinite γ.

Corollary 2.4. Let N be a smooth manifold of dimension n. Then N can be
endowed with null metric hypersurface data {N , γ, �, �(2)} with γ of signature
(n−1, 0, 1) (equivalently, with a ruled null manifold structure (N , γ)) if and
only if N admits a nowhere zero vector field, i.e. if and only if either N is
non-compact, or it is compact with vanishing Euler characteristic.

Proof. Ruled manifold structures are in particular null manifold structures,
so existence of a nowhere-zero vector field is necessary by Corollary 2.2. For
sufficiency, simply pick up a riemannian metric g0 on N and a nowhere zero
vector field X ∈ X(N ) and define

γ := g0 −
1

g0(X,X)
g0(X, ·)⊗ g0(X, ·).

This tensor has signature (n− 1, 0, 0) and Radγ = span(X).

Remark 2.2. Since all compact manifolds of odd dimension have vanish-
ing Euler characteristic (e.g. [14, Corollary 3.37]), it follows from Corol-
laries 2.1 and 2.4 that every manifold N of odd dimension admits a null
manifold structure and also a (different in general) ruled manifold structure
(or equivalently null metric hypersurface data). This applies in particular to
the physical dimension of four-dimensional ambient spaces.

3. The
◦
∇ connection

A key property of null hypersurface data is that it admits a well-defined
covariant derivative with good gauge behaviour. In this section we recall this
result and show in what sense it can be extended to general null manifolds.

Given a null metric hypersurface data {N , γ, �, �(2)}, it is convenient to
introduce the following (0, 2)-tensor fields

U
def
=

1

2
£nγ,(18)

F
def
=

1

2
d�,(19)
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as well as the covector s

s = ιnF.

where ι means contraction in the first index, i.e. sb = Fabn
a. It is easy to

show that [39]

U(n, ·) = 0, ds = £nF.

The following result, proved in [29], establishes the existence of the torsion-

free connection
◦
∇ as well as its gauge behaviour. We use the standard defi-

nition of the difference (∇(1)−∇(2)) between two connections ∇(1) and ∇(2),

namely the (1, 2)-tensor given by

(∇(1) −∇(2))(X,Z) = ∇(1)
X Z −∇(2)

X Z.

Proposition 3.1. Let {N , γ, �, �(2)} be null metric hypersurface data. There

exists a unique torsion-free connection
◦
∇, called metric hypersurface

connection defined by the two properties

(
◦
∇Xγ)(Z,W ) = −U(X,Z)�(W )−U(X,W )�(Z)(20)

(
◦
∇X�)(Z) + (

◦
∇Z�)(X) = −2�(2)U(X,Z), X, Z,W ∈ X(N ).(21)

Moreover, under a gauge transformation with gauge parameters (z, ζ), the

connection transforms as

G(z,ζ)

◦
∇ =

◦
∇+ ζ ⊗U+

1

2z
n⊗ (£zζγ + 2�⊗s dz) .(22)

The connection
◦
∇ has good behaviour under the gauge group, in the

sense that the transformation (22) realizes the group structure.

Lemma 3.1. Let {N , γ, �, �(2)} be null metric hypersurface data. The con-

nection
◦
∇ satisfies

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(
◦
∇) = G(z2,ζ2)·(z1,ζ1)(

◦
∇)

for any pair of group elements (z1, ζ1), (z2, ζ2) ∈ G.
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Proof. We shall need the following easy fact. For any vector field X and
scalar function f it holds

£fXγ = f£Xγ + 2df ⊗s ̂X.(23)

where for any vector X ∈ V (N ) we define ̂X := γ(X, ·). Given that n lies in
the radical of γ, the gauge behaviour of U follows directly from (23)

G(z,ζ)(U) =
1

2
£z−1nγ =

1

2z
£nγ = z−1U.

Expanding the Lie derivative term in (22) the gauge transformed connection
can also be written as

G(z,ζ)(
◦
∇) =

◦
∇+ ζ ⊗U+

1

2
n⊗£ζγ + n⊗ (�+ ̂ζ)⊗s

dz

z
(24)

=
◦
∇+ zζ ⊗ G(z,ζ)U+

1

2
n⊗£ζγ + G(z,ζ)(n)⊗ G(z,ζ)(�)⊗s

dz

z
.(25)

Now we apply this expression to
◦
∇ → G(z1,ζ1)(

◦
∇) and (z, ζ) → (z2, ζ2). Since

the connection G(z1,ζ1)(
◦
∇) is simply

◦
∇ in the transformed gauge, the expres-

sion above needs to be written with all metric hypersurface data quantities
expressed in the new gauge. Thus,

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(
◦
∇) = G(z1,ζ1)(

◦
∇) + z2ζ2 ⊗

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(U)

(26)

+
1

2
G(z1,ζ1)(n)⊗£ζ2γ

+
(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(n)⊗

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(�)⊗s

dz2
z2

.

We now write (z2, ζ2) ·(z1, ζ1) as (z3, ζ3) and apply (25) with (z, ζ) → (z1, ζ1)
to replace the first term in the right-hand side of (26). This yields, after using
that z3 = z2z1,

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(
◦
∇) =

◦
∇+

(
ζ1 +

1

z1
ζ2

)
⊗U

+
1

2
n⊗

(
£ζ1γ +

1

z1
£ζ2γ + 2(�+ ̂ζ1)⊗s

dz1
z1

)

+ G(z3,ζ3)(n)⊗ G(z3,ζ3)(�)⊗s
dz2
z2

.
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We now apply (23) and get, recalling also that ζ3 = ζ1 + z−1
1 ζ2,

(
G(z2,ζ2) ◦ G(z1,ζ1)

)
(
◦
∇) =

◦
∇+ ζ3 ⊗U

+
1

2
n⊗

(
£ζ3γ + 2̂ζ2 ⊗s

dz1
z21

+ 2(�+ ̂ζ1)⊗s
dz1
z1

)

+ G(z3,ζ3)(n)⊗ G(z3,ζ3)(�)⊗s
dz2
z2

=
◦
∇+ ζ3 ⊗U+

1

2
n⊗£ζ3γ

+ n⊗
(
�+ ̂ζ1 + z−1

1 ̂ζ2
)
⊗s

(
dz1
z1

+
dz2
z2

)

=G(z3,ζ3)(
◦
∇)

where in the last equality we used (24) with (z, ζ) → (z3, ζ3) = (z1z2, ζ1 +
z−1
1 ζ2).

The connection
◦
∇ is defined by its action on γ and �. Its action on all

other null metric hypersurface fields is then fully determined. The result is
the following [29][Lemma 4.8]

◦
∇aγbc = −�bUac − �cUab,(27)
◦
∇a�b = Fab − �(2)Uab,(28)
◦
∇an

b = nbsa + P bfUaf ,(29)
◦
∇aP

bc = −
(
nbP cf + ncP bf

)
Faf − nbnc

◦
∇a�

(2).(30)

So far we have considered null metric hypersurface data. For a given
ruled null manifold (N , γ) the correspondence in Proposition 2.1 establishes

that on (N , γ) we can define a collection of connections {
◦
∇} related to each

other by the gauge group G according to (22). The question is whether we
can do a similar construction in the more general case of null manifold data.

Consider (N , γ) a null manifold. As already said, there exists a double
covering f : Ñ → N such that (N , γ) induces by pull-back a ruled null
manifold structure (Ñ , γ̃). Hence, on (Ñ , γ̃) we can construct an equivalence

class of null metric hypersurface {Ñ , γ̃, �̃, �̃(2)} as well as the gauge group G̃ =
F�(Ñ )×X(Ñ ). Thus the double covering admits a collection of connections

{
G̃
(z̃,˜ζ)

(
◦
∇̃), z̃ ∈ F�(Ñ ), ζ̃ ∈ X(Ñ )

}
.
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The family of null metric hypersurface data is far too large from the point of
view ofN , in the sense that most of them will not descend toN . Our aim now
is to restrict this class in such a way that a suitable geometry can be defined
on (N , γ). Since f is a local diffeomorphim, at any point q̃ ∈ Ñ we can define
a map f�|q̃ : T �

q̃ Ñ → T �
f(q̃)N by f�|q̃ := f−1�|f(q̃) where f−1 : f(Ũ) → Ũ is

the inverse of f restricted to a suitable small neighbourhood Ũ of q̃. For any
two points q̃1, q̃2 ∈ Ñ we write q̃1 ∼ q̃2 iff f(q̃1) = f(q̃2). We say that null

metric data {Ñ , γ̃, �̃, �̃(2)} is compatible with the covering (or simply
“compatible”) iff the following two conditions hold:

(i) For any pair of points q̃1 ∼ q̃2 there exists ε ∈ {−1, 1} such that

f�|q̃2(�̃) = εf�|q̃1(�̃),(31)

(ii) There exists �(2) ∈ F(N ) such that �̃(2) := f�(�(2)).

Note that for any function h̃ ∈ F(Ñ ) the condition h̃(q̃1) = h̃(q̃2) for all
pairs of point q̃1 ∼ q̃2 is equivalent to the existence of a function h ∈ F(N )

such that h̃ = f�(h). Thus, condition (ii) is equivalent to �̃(2)(q̃1) = �̃(2)(q̃2).
Note also that an immediate consequence of (i) is that

f�|q̃2(ñ) = εf�|q̃1(ñ)(32)

where we have called ñ the section in the radical normalized by �̃(ñ) = 1
(cf. (4)). The following proposition shows that this set of compatible data is
not-empty, and identifies the gauge subgroup of G̃ which acts internally in
this class. The case when (N , γ) itself is a ruled manifold is trivial because
then Ñ is simply two disjoint copies of N . We therefore assume that (N , γ)
is not a ruled manifold. In that case the manifold Ñ is connected, as we
show next.

Lemma 3.2. If the null manifold (N , γ) is not a ruled manifold, then its
covering ruled manifold (Ñ , γ̃) is connected.

Proof. We use the standard fact the restriction of any covering to a con-
nected component of the domain is still a covering. If Ñ had more than one
connected component, then the restriction of f to one such components,
say Ñ1 would define a diffemorphism f1 : Ñ1 → N (the restriction of f to
each connected component of Ñ is a covering, so when Ñ has more than
one component the anti-image of f1 must have precisely one element). Since
(Ñ1, γ| ˜N1

) is a ruled null manifold, so it would be (N , γ), against hypothe-
sis.
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Proposition 3.2. Let (N , γ) be a null manifold which is not a ruled null
manifold. Let (Ñ , γ̃) be the ruled null manifold constructed from the double
covering of (N , γ). Then the class of null metric hypersurface data com-

patible with the covering is not empty. Moreover if D := {Ñ , γ̃, �̃, �̃(2)} is
compatible with the covering then G

(z̃,˜ζ)
(D) is also compatible if and only if

(i) There exists z ∈ F�(N ) such that z̃ = f�(z).

(ii) For any pair of points q̃1 ∼ q̃2 it holds f�|q̃2(ζ̃) = εf�|q̃1(ζ̃), where ε is
the same as in (31).

Proof. To show existence, choose a riemannian metric g in N and define
g̃ := f�(g). Select a nowhere zero section X̃ of the radical bundle Ẽ :=⋃

q̃∈ ˜N Radγ̃ |q̃ and define ñ =
˜X√

g̃( ˜X, ˜X)
as well as

�̃ := g̃(ñ, ·).

Choose also any smooth function �(2) ∈ F(N ) and define �̃(2) := f�(�(2)). It

follows directly from Lemma 2.2 that {Ñ , γ̃, �̃, �̃(2)} defines null metric hy-
persurface data on Ñ . The construction is such that this data is compatible
with the covering. Indeed, for any pair of related points q̃1 ∼ q̃2 with image
q := f(q̃i), the two vectors f�|q̃i(ñ) belong to the radical of γ|q and are unit
with respect to g, so they are related by a sign ε. The claim follows because
f�|q̃i(�̃) = g(f�|q̃i(ñ), ·).

To identify the subgroup of G̃ that maps compatible data into com-

patible data, we consider any two metric data D̃1 = {Ñ , γ̃, �̃1, �̃(2)1}, D̃2 =

{Ñ , γ̃, �̃2, �̃(2)2} compatible with the covering. We know by Corollary 2.3

that there exist z̃ ∈ F(Ñ ) and ζ̃ ∈ X(Ñ ) such that G
(z̃,˜ζ)

(D̃1) = D̃2. Let ñ1

and ñ2 be the corresponding sections of the radical satisfying �̃1(ñ1) = 1 and

�̃2(ñ2) = 1. They are related by ñ1 = z̃ñ2. Select any two points q̃1 ∼ q̃2 and
let ε1, ε2 be the signs such that (32) hold for ñ1 and ñ2 respectively. Then

z̃|q̃1f�|q̃1(ñ2) = f�|q̃1(ñ1) = ε2f�|q̃2(ñ1) = ε2f�|q̃2(z̃ñ2) = z̃|q̃2ε2f�|q̃2(ñ2)
= z̃|q̃2ε2ε1f�|q̃1(ñ2)

which implies z̃|q̃1 = εz̃|q̃2 with ε := ε1ε2 ∈ {−1,+1}. However z̃ vanishes

nowhere and Ñ is connected, so z̃ is either everywhere positive or everywhere
negative. Thus ε = 1. As we have already noted, z̃|q̃1 = z̃|q̃2 for any pair
q̃1 ∼ q̃2 is equivalent to the existence of a function z ∈ F�(N ) such that



818 Marc Mars

z̃ = f�(z). This proves item (i) of the proposition. Note that ε = 1 means

also that ε1 = ε2. We now use

f�|q̃2(�̃i) = εif�|q̃1(�̃i), i = 1, 2.(33)

We define q := f(q̃1) = f(q̃2). Inserting the gauge transformation (7),

f�|q̃2(�̃2) =

⎧⎨
⎩

f�|q̃2
(
z̃(�̃1 + γ̃(ζ̃ , ·))

)
= z|q

(
f�|q̃2(�̃1) + γ(f�|q̃2(ζ̃), ·)

)
ε2f�|q̃1(�̃2) = ε2z|q

(
f�|q̃1(�̃1) + γ(f�|q̃1(ζ̃), ·)

)
.

Since ε2f�|q̃2(�̃1) = f�|q̃1(�̃1) (here we use that ε2 = ε1), we conclude

γ(f�|q̃2(ζ̃), ·) = ε1γ(f�|q̃1(ζ̃), ·)

which is equivalent to

f�|q̃2(ζ̃) = ε1f�|q̃1(ζ̃) + aX, a ∈ R(34)

where 0 
= X ∈ Radγ |q. Finally, we apply �̃(2)i(q̃1) = �̃(2)i(q̃2), i = 1, 2

�̃(2)2(q̃2) =

⎧⎪⎨
⎪⎩

z2|q
(
�̃(2)1(q̃2) + 2�̃1(ζ̃)|q̃2 + γ̃(ζ̃ , ζ̃)|q̃2

)
�̃(2)2(q̃1) = z2|q

(
�̃(2)1(q̃1) + 2�̃1(ζ̃)|q̃1 + γ̃(ζ̃, ζ̃)|q̃1

)
which means that

2�̃1(ζ̃)|q̃2 + γ̃(ζ̃, ζ̃)|q̃2 = 2�̃1(ζ̃)|q̃1 + γ̃(ζ̃, ζ̃)|q̃1 .

This equality can be equivalently written as

2f�|q̃2(�̃1)(f�|q̃2(ζ̃)) + γ(f�|q̃2(ζ̃), f�|q̃2(ζ̃))
=2f�|q̃1(�̃1)(f�|q̃1(ζ̃)) + γ(f�|q̃1(ζ̃), f�|q̃1(ζ̃))

which after inserting (33) with i = 1 and (34) simplifies to

2ε1f�|q̃1(�̃1)(aX) = 0.

The only solution to this equation is a = 0, which concludes the proof.
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The main consequence of Proposition 3.2 is that a null manifold (N , γ)

admits a class of well-defined torsion-free connections {
◦
∇}. The key property

behind this fact is that the metric hypersurface connection remains invariant
under the transformation defined by the gauge element (z = −1, ζ = 0).

Theorem 3.1. Let (N , γ) be a null manifold. There exists a family of

torsion-free connections Q = {
◦
∇} globally defined on N . Moreover, on each

non-empty open subset U ⊂ N where (U, γ|U ) is a ruled null manifold, each

element
◦
∇ ⊂ Q restricted to U corresponds to the metric hypersurface con-

nection of a null metric hypersurface data of the form {U, γ|U , �, �(2)}.

Proof. If the null manifold (N , γ) is ruled, the class of connections Q is
simply the class of metric hypersurface connections on (N , γ). Restricting a
metric hypersurface data to a non-empty open subset U still defines a null
metric hypersurface data, and the restriction of the connection is obviously

the
◦
∇ connection of the restricted null hypersurface data. So, we only need

to worry about the case when (N , γ) is not a ruled null manifold. We know
that the double cover (Ñ , γ̃) is a ruled null manifold, so we can define the

collection of null metric hypersurface connections {
◦
∇̃}. We fix a null metric

hypersurface data {Ñ , γ̃, �̃, �̃(2)} compatible with the covering and let
◦
∇̃ be

the corresponding metric hypersurface connection. We want to prove that
◦
∇̃ descends to N and thus defines a connection which we call

◦
∇. To define

◦
∇ we select a sufficiently small neighbourhood U of q ⊂ N so that π−1(U)
has two connected components Ũi, i = 1, 2. Let q̃i = π−1(q) ∩ Ũi, i = 1, 2
and fi : Ũi → U be the restriction of f to Ũi. By construction fi are

diffeomorphisms. We can use each fi to define a connection
◦
∇i on U by

transferring (with this diffeomorphism)
◦
∇̃ in Ũi to U . Since

◦
∇̃ is defined

geometrically in terms of the metric hypersurface data, it follows that
◦
∇i is

the null metric hypersurface connection of the null metric hypersurface data

{U, γ|U , �i := f−1
i

�(�̃|
˜Ui
), �

(2)
i := �̃(2) ◦ f−1

i }.

Each of them defines a null metric hypersurface data on the same manifold U
and they share the tensor γ, so by Corollary 2.3 they are related by a gauge
transformation. By definition of null metric hypersurface data compatible
with the covering, there exists ε ∈ {−1, 1} such that (in principle the sign ε
could depend on the point, but this cannot happen in the present context
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because �1 and �2 are smooth and nowhere zero covectors on U)

�1 = ε�2, �
(2)
1 = �

(2)
2 .

The gauge element that transforms one to the other is (z = ε, ζ = 0).
The transformation law for the metric hypersurface connection (22) implies
◦
∇1 =

◦
∇2 =:

◦
∇. So,

◦
∇̃ defines the same connection

◦
∇ on U . It is clear that

◦
∇ defines a torsion-free connection on all of N .

The second claim in the theorem is immediate because if U is such

that (U, γ) is a ruled manifold then π−1(U) has two connected components,

and by construction
◦
∇ is the metric hypersurface data of the null metric

hypersurface data (U, γ|U , f−1
1

�(�̃|
˜U1
), �̃(2) ◦ f−1

1 ).

4. The energy-momentum map: algebraic properties

In this section we introduce a linear map on metric hypersurface data and

study its properties. This map finds its motivation in the theory of matching
of spacetimes across null boundaries. However, it has many more applica-

tions. Thus, for the moment we prefer to simply put forward its definition
and explore the consequences. The connection with the matching problem

will be the subject of Section 7. The justification for the name of the map
will also be described there.

So, we define a linear map τ called energy-momentum map that

sends symmetric (0, 2)-tensors to symmetric (2, 0)-tensors on any null metric
hypersurface data set.

Definition 4.1. Let {N , γ, �, �(2)} be null metric hypersurface data and

p ∈ N . We define the energy-momentum map at p τ |p : S0
2(TpN ) −→

S2
0(TpN ) as the map

V �→ τ |p(V )ab
def
=

(
2n(aP b)cndVcd − P abncndVcd − nanbP cdVcd

)∣∣∣
p
.(35)

In this section we shall study the algebraic properties of the energy-
momentum map and in the following section its PDE properties. Throughout

this section everything is evaluated at a single point p. For simplicity we drop
any explicit reference to p, e.g. we write τ instead of τ |p, except when this

may cause confusion. We shall also write S0
2 instead of S0

2(TpN ) and S2
0

instead of S2
0(TpN ).
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The map τ is linear and can therefore be written in terms of a four-
contravariant tensor Sabcd as τ(V )ab = SabcdVcd, where

Sabcd =2n(aP b)(cnd) − nanbP cd − ncndP ab.(36)

This tensor has the following explicit algebraic properties

Sabcd = Sbacd, Sabcd = Sabdc, Sabcd = Scdab,

so that S defines a symmetric linear map S : S0
2 ⊗ S2

0 −→ R (i.e. it is
a symmetric two-covariant tensor on S0

2) by S(V1, V2) = Sabcd(V1)ab(V2)cd.
Using the natural identification between S2

0 and the dual space (S0
2)

�, we
can write the map τ as

τ(V ) = S(·, V )

and view τ as a map τ : S0
2 −→ (S0

2)
�. As a consequence of the symmetry

of S, the dual map τ� (also called transpose) is the same as τ . Recall the
standard relationship (see e.g. [45]) between the kernel of a linear map f :
F1 −→ F2 and the range of its dual f� : F�

2 −→ F�
1

Ker(f) = Ran(f�)⊥

where obviously the orthogonal is in the sense of dual spaces. If we denote
by K0 ⊂ S0

2 the kernel of τ , it follows

Ran(τ) = Ran(τ�) = Ker(τ)⊥ = K⊥
0 =

= {T ∈ S2
0; T abVab = 0 for all V ∈ S0

2 satisfying τ(V ) = 0}.(37)

Our aim is to identify the kernel and the range of τ as well as the pre-image
of any element T ∈ Ran(τ).

Using the fact that n belongs to the radical of γ together with (6) it is
immediate to show that

τγ(V )ac
def
= τ(V )abγbc = nanbVcb − δacn

bndVbd.(38)

Taking the trace of this expression yields

τγ(V )aa = −(n− 1)ncndVcd.(39)

We also compute τ(V )ab�b which, after using (5), becomes

τ(V )ab�a = P bcVcdn
d − nbP cdVcd(40)
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and its contraction with γbf gives, from (6),

τ(V )abγbf �a = Vfdn
d − �fn

cndVcd.(41)

We can now characterize the range and the kernel of τ and identify the
pre-image of any element in the range.

Proposition 4.1. Let {N , γ, �, �(2)} be null metric hypersurface data of
dimension n ≥ 2. Let p ∈ N and τ the energy-momentum map at p. Then
the kernel K0 of τ is

K0 = {V ∈ S0
2(TpN ); Vabn

b = 0, VabP
ab = 0}.(42)

Moreover, a symmetric tensor T ab at p belongs to Ran(τ) if and only if there
exists a vector X ∈ TpN and a scalar Q ∈ R such that

T = 2n⊗s X −QP.(43)

Given T ∈ Ran(τ), the vector X and scalar Q in this decomposition are
uniquely defined, and the anti-image of T is given by

τ−1(T ) = {2�⊗s ̂X +Q�⊗ �− 1

n− 1

(
Q�(2) + 2�(X)

)
γ + V H , V H ∈ K0}

where ̂X def
= γ(X, ·).

Proof. Let V ∈ Ker(τ), namely τ(V ) = 0. Then, using the condition n ≥ 2,
(39) implies ncndVcd = 0 which inserted in (41) gives nbVcb = 0 and then (40)
implies P cdVcd = 0 (recall that n cannot vanish anywhere). Conversely, any
symmetric tensor Vab satisfying Vabn

a = 0 and P abVab = 0 lies in the kernel
of τ , as τ(V ) = 0 follows directly from (35). So the kernel is the vector
subspace K0 defined in (42). From (37) we also get

Ran(τ) = {T ∈ S2
0 ; T abVab = 0 for all Vab s.t. Vabn

b = 0, P abVab = 0}.

The dimension of S0
2 is obviously n(n + 1)/2 and hence dim(K0) = n(n −

1)/2 − 1 because the subspace K0 is defined by n + 1 linearly independent
conditions. Thus, dim(Ran(τ)) = n+1. Note first that, by the very definition
of K0, given any X ∈ TpN and Q ∈ R one has

(
naXb + nbXa −QP ab

)
Vab = 0
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for any V ∈ K0. Let us now check that a tensor of the type T ab = naXb +
Xbna −QP ab is identically zero if and only if Xa = 0, Q = 0. Sufficiency is
obvious. To show necessity we contract T ab with γacγbd to get Qγcd = 0, so
Q = 0 because γcd 
= 0 (here we use again that n ≥ 2), and now Xa = 0
follows at once because a tensor product of two vector X1 ⊗s X2 can vanish
only if one of the vectors vanishes. Consequently, the set of tensors of the
form naXb + nbXa − QP ab is a vector subspace of dimension n + 1, so it
must agree with Ran(τ). Note that the argument above also proves that a
given T ∈ Ran(τ) defines unique Xa, Q according to the expression T ab =
naXb + nbXa −QP ab, so the uniqueness claim in the proposition holds.

It only remains to find the general solution of τ(V ) = T for

T ab = naXb + nbXa −QP ab.

It suffices to find a particular solution. Recalling that ̂X def
= γ(X, ·) we look

for solution of the form

Vab = �a ̂Xb + �b ̂Xa + α�a�b + βγab

where α and β are quantities to be determined. Since γabn
b = 0, ̂Xan

a = 0,

na�a = 1 and P abγab = n − 1 we have T a
a

def
= T abγab = −(n − 1)Q. Given

that Vcdn
cnd = α, equation (39) fixes α = Q. We impose now (40). A direct

calculation which uses P ab ̂Xb = P abγbcX
c = Xa − na(�cX

c) yields simply

na
(
2�cX

c +Q�(2) + β(n− 1)
)
= 0 =⇒ β = − 1

n− 1

(
Q�(2) + 2Xc�c

)
and β has been determined. It is now a matter of substitution into (35) to
check that

V
(p)
T

def
= 2�⊗s ̂X +Q�⊗ �− 1

n− 1

(
Q�(2) + 2�(X)

)
γ(44)

satisfies τ(V
(p)
T ) = 2n⊗s X −QP , as claimed.

Our next result is a simple consequence of Proposition 4.1 and will be
used repeatedly. Before stating the proposition it is convenient to introduce
the following terminology:

Terminology 4.1. For any symmetric (0, 2)-tensor V we define the follow-
ing scalars, covector and vector

trPV := P abVab, QV := Vabn
anb, (ιnV )b := Vabn

a,
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V
a
:= P ab(ιnV )b −

1

2
trPV na.(45)

Moreover, for any vector X we use an underhat to denote the covector ̂X :=
γ(X, ·) and let X� be defined by the decomposition

X = �(X)n +X�.

By construction the vector X� satisfies �(X�) = 0.

The following expression follows directly from the definitions

̂V a = γabV
b
= γab

(
P bc(ιnV )c −

1

2
trPV nb

)
= (ιnV )a −QV �a(46)

where in the last equality we used (3) and (6). Moreover,

�(V ) = P ab�a(ιnV )b −
1

2
trPV = −�(2)nb(ιnV )b −

1

2
trPV =

= −QV �
(2) − 1

2
trPV,(47)

so the vector V � takes the explicit form

V
a
� = P ab(ιnV )b +QV �

(2)na(48)

and we can also write

V = −
(
QV �

(2) +
1

2
trPV

)
n + V �.(49)

We note for later use that (46) and (48) imply at once

V �
a = P ab ̂V b.(50)

Proposition 4.2. Let {N , γ, �, �(2)} be null metric hypersurface data, p ∈ N
and V ∈ S0

2(TpN ). Then V can be decomposed uniquely as

V = 2�⊗s ̂V +QV

(
�⊗ �+

1

n− 1
�(2)γ

)
+

trPV

n− 1
γ + V H ,(51)

where V H is a tensor in the kernel of τ , i.e. V H ∈ K0.

Remark 4.1. Using (46) this decomposition can also be written as

(52) V = 2�⊗s ιnV −QV �⊗ �+
1

n− 1

(
QV �

(2) + trPV
)
γ + V H .
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Remark 4.2. If V satisfies ιnV = 0, then both ̂V and QV vanish identically
and the decomposition simplifies to

V =
1

n− 1
(trPV )γ + V H , V H ∈ K0.

Corollary 4.1. Let ωi, i = 1, 2 be a pair of two-forms satisfying ωi(n) = 0.
Then V := ω1 ⊗s ω2 decomposes as

V =
P (ω1,ω2)

n− 1
γ + (ω1 ⊗s ω2)

H .

Proof of Proposition 4.2. With the definitions of V and QV as given in Ter-
minology 4.1, it is immediate that τ(V ) (cf. (35)) takes the form

τ(V ) = 2n⊗s V −QV P.

So, directly from Proposition 4.1 with Xa = V
a
and Q = QV we can write

V = 2�⊗s ̂V +QV �⊗ �− 1

n− 1

(
QV �

(2) + 2�(V )
)
γ + V H ,

and the decomposition is unique. By (47) this decomposition takes the
form (51).

By construction, the decomposition in Proposition 4.2 is well adapted to
the energy-momentum map. For later use we quote how τ acts on a tensor
V decomposed according to the lemma.

Corollary 4.2. Let {N , γ, �, �(2)} be null metric hypersurface data, p ∈ N
and V ∈ S0

2(TpN ). Decompose V according to Proposition 4.2. Then, its
image under the energy-momentum map is

τ(V ) = 2n⊗s V −QV P

where QV and V are defined in Terminology 4.1. In terms of the vector V �

it reads

τ(V ) = −(trPV )n⊗ n + 2n⊗s V � −QV

(
P + 2�(2)n⊗ n

)
.(53)

An interesting consequence of Proposition 4.2 is that the map that
sends V into V − V H is a projector. Before proving this fact we note that
decomposition (51) has introduced naturally a symmetric tensor, namely

C := �⊗ �+ �(2)

n−1γ. Let us establish its basic properties
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Lemma 4.1. The symmetric (0, 2)-tensor C := �⊗ �+ 1
n−1�

(2)γ satisfies

ιn C = �, trP C = 0.

Proof. The first is immediate from γ(n, ·) = 0 and �(n) = 1. The second
holds because, from trPγ = n− 1,

P ab
(
�a�b +

1

n− 1
�(2)γab

)
(5)
= −�(2)nb�b + �(2) = 0.

We can now introduce the projector P that will play an important role
in the rest of the paper.

Proposition 4.3. The map P : S0
2(TpN ) −→ S0

2(TpN ) defined by

P(V ) = 2�⊗s ̂V +QV C +
1

n− 1
(trPV ) γ(54)

is a projector, i.e. a linear map satisfying P ◦ P = P.

Proof. It suffices to prove that trP (P(V )) = trPV and ιnP(V ) = ιnV because
then also QP(V ) = QV and

̂

(P (V )) = ̂V , so inserting into (54) with V −→
P(V ) yields P(P(V )) = P(V ) at once.

To establish trP (P(V )) = trPV , and given that P(V ) is the sum of three
terms, it suffices to check that trP γ = n− 1, trP C = 0 and trP (�⊗s ̂V ) = 0.
The first one is clear, the second has been established in Lemma 4.1 and the
third holds true because of

P ab�(a ̂V b) = P ab�a ̂V b = −�(2)nb ̂V b = 0.

Now, the property ιnP(V ) = ιnV follows from expression (46) if ιnγ = 0,
ιn C = � and ιn(2�⊗s ̂V ) = ̂V . The first one is obvious, the second one has
been proved in Lemma 4.1 and the last one is

2na�(a ̂V b) = na�a ̂V b = ̂V b.

Remark 4.3. Inserting the explicit form of ̂V , QV and trPV in P(V ) it
follows that P can be written in the form

P(V )ab = P cd
ab Vcd,
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P cd
ab := 2�(aδ

(c
b)n

d) − ncnd�a�b +
1

n− 1

(
�(2)ncnd + P cd

)
γab.(55)

The following properties of P are either immediate or easily checked

(i) P(V ) = 0 for all V ∈ K0.
(ii) P(γ) = γ.
(iii) P(�⊗s ω) = �⊗s ω, for any covector ω ∈ T �

pN .
(iv) Let ω1,ω2 ∈ T �

pN be orthogonal to n, i.e. ω1(n) = ω2(n) = 0. Then

P(ω1 ⊗s ω2) =
1

n− 1
P (ω1,ω2)γ.

The decomposition in Proposition 4.2 can be written as V = P(V )+V H .
The following corollary is an immediate consequence of the uniqueness of
the decomposition together with Proposition 4.3 (we use I for the identity
map).

Corollary 4.3. The map I − P : S0
2(TpN ) −→ S0

2(TpN ) is a projector.
Moreover Ran(I− P) = K0 and the restriction of I− P to K0 is the identity
map.

4.1. Gauge properties of the energy-momentum map

In order to describe the gauge behaviour of the map τ it is convenient to
introduce the notion of gauge weight.

Definition 4.2. A tensor T at point p is said to be of gauge weight q ∈ Z

if under a gauge transformation with parameters (z, ζ) it transforms as

G(z,ζ)(T ) = zqT.(56)

This notion is well-defined because if (56) holds then

G(z1,ζ1) ◦ G(z2,ζ2)(T ) = G(z1,ζ1)(z
q
2T ) = zq1z

q
2T = (z1z2)

qT = G(z1,ζ1)·(z2,ζ2)(T ).

We will refer to the gauge weight simply as weight when there is no possible
misunderstanding. Two examples of tensors with a well-defined gauge weight
are the tensor γ (which has weight zero, i.e. it is gauge invariant) or the
vector n which has gauge weight q = −1.

The next lemma shows that the map τ has a good behaviour in terms
of weight (this result extends a discussion in [28] in the context of shells, see
also Sect. 7 below).
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Lemma 4.2. Let V be a symmetric (0, 2)-tensor of gauge weight q. Then
T := τ(V ) has gauge weight q − 2.

Proof. Since T ab = SabcdVcd the statement of the lemma is equivalent to
showing that G(z,ζ)(S) = z−2S, i.e. that S has gauge weight −2. From (36)
we may write

Sabcd = 2n(aP b)(cnd) − nanbP cd − ncndP ab.(57)

From the transformation law of P and n given in (9) it follows

G(z,ζ)(n
aP bcnd) =

1

z2

(
naP bcnd − naζbncnd − naζcnbnd

)
,

so

G(z,ζ)(n
(aP b)(cnd)) =

1

z2

(
n(aP b)(cnd) − n(aζb)ncnd − nanbζ(cnd)

)
and the property G(z,ζ)(S) = z−2S follows from (57) and (9).

The property of V having gauge weight q can be stated equivalently in
terms of the decomposition in Proposition 4.2. The result is as follows

Lemma 4.3. A tensor V ∈ S0
2(TpN ) has gauge weight q if and only if the

terms QV , trPV , V , V H in the decomposition (51) satisfy

G(z,ζ)(QV ) = zq−2QV ,(58)

G(z,ζ)(trPV ) = zq (trPV − 2V (n, ξ)) ,(59)

G(z,ζ)(V ) = zq−1
(
V −QV ξ

)
,(60)

G(z,ζ)(V
H) = zq

(
V H + ̂ξ ⊗s (QV ̂ξ + 2QV �− 2ιnV )

− 1

n− 1
(QV (2�(ξ) + γ(ξ, ξ))− 2V (n, ξ)) γ

)
.(61)

Proof. Assume first that V has gauge weight q. Then G(z,ζ)(ιnV ) = zq−1ιnV
as a consequence of the definition of ιnV and (9). The transformation (58)
follows at once. The transformation of trPV is also immediate from its def-
inition and (9). Now, using a prime to denote gauge transformed objects,

V ′a = P ′ab(ιnV )′b −
1

2
(trPV )′n′a =

= (P ab − naξb − nbξa)zq−1(ιnV )b −
1

2
zq−1 (trPV − 2V (n, ξ)) na,
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which is (60) after cancelling terms. To prove (61), as well as the converse in
the lemma, we insert the transformations (58)-(60) in the decomposition (52)
of V ′. This yields the identity

V ′ = zq
(
2(�+ ̂ξ)⊗s ιnV −QV (�+ ̂ξ)⊗s (�+ ̂ξ)

+
1

n− 1

(
QV (�

(2) + 2�(ξ) + γ(ξ, ξ)) + trPV − 2V (n, ξ)
)
γ
)
+ (V H)′.(62)

Now, if we assume that V has gauge weight q then we can replace V ′ by
zqV and insert the decomposition (52) in the left-hand side. This yields (61)
after cancelling terms. Finally, if we assume that (61) holds and replace this
expression in the right-hand side of (62) we conclude by a direct computation
that V ′ = zqV , i.e. that V has gauge weight q.

Remark 4.4. It is easy to check that G(z,ξ)V
H as given in (61) also belongs

to the kernel K0.

It is natural to ask about the converse to Lemma 4.2. Specifically, assume
that the tensor T = τ(V ) has gauge weight r, what is then the possible gauge
behaviour of V ? And, in particular, is there any VT with gauge weight r+2
satisfying τ(VT ) = T ?

We already know that any tensor T in the range of τ can be parametrized
uniquely by a vector X and a scalar Q by

T = 2n⊗s X −QP.(63)

We compute

G(z,ζ)(T ) = 2Gz,ζ(n)⊗s G(z,ζ)(X)− G(z,ζ)(Q)G(z,ζ)(P )

= 2z−1n⊗s G(z,ζ)(X)− G(z,ζ)(Q) (P − 2n⊗s ζ)

= zr (2n⊗s X −QP )

the last equality being true if and only if T has gauge weight r. We have
already proved that 2n ⊗ X1 − Q1P vanishes if and only if X1 = 0 and
Q1 = 0. Thus, the equality above dictates the gauge behaviour of X and Q.
Specifically we have

Lemma 4.4. A tensor T ∈ Ran(τ) has weight r if and only if the compo-
nents X, Q in the decomposition (63) have gauge behaviour

G(z,ζ)(X) = zr+1 (X −Qζ) , G(z,ζ)(Q) = zrQ.
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In particular, we see that when all elements in Ran(τ) have well-defined

weight r the vector subspace in the range of τ defined by the condition Q = 0

is gauge invariant and hence well-defined. To address the question of whether

we can select an element VT ∈ τ−1(T ) with gauge weight r+2 we recall that

we have already found an explicit particular solution of τ(V ) = T , namely

the tensor V
(p)
T defined in (44). Let us therefore ask first what is the gauge

behaviour of V
(p)
T . This tensor is explicitly defined in terms of X and Q, so

finding its gauge transformation is simply a matter of direct computation.

Using as before a prime to denote any gauge transformed object, we get

G(z,ζ)(V
(p)
T ) =2�′ ⊗s ̂X ′ +Q′�′ ⊗ �′ − 1

n− 1

(
Q′�(2)′ + 2�′(X ′)

)
γ

=2z2+r
(
�+ ̂ζ

)
⊗s

(
̂X −Q̂ζ

)
+ z2+rQ

(
�+ ̂ζ

)
⊗s

(
�+ ̂ζ

)
− z2+r

n− 1

(
Q
(
�(2) + 2�(ζ) + ̂ζ(ζ)

)
+ 2(�+ ̂ζ)(X −Qζ)

)
γ

=z2+r
(
−Q̂ζ ⊗ ̂ζ + 2 ̂X ⊗s ̂ζ +

1

n− 1
(Q̂ζ(ζ)− 2̂ζ(X)) γ

)
+ z2+rV

(p)
T .(64)

It is immediate to check that the last term in parenthesis belongs to the

kernel K0, so the tensor V
(p)
T does not have well-defined gauge weight, but the

failure comes only from the addition of a term in the kernel. This suggests

that perhaps some other choice of VT ∈ τ−1(T ) may have a well-defined

weight. This turns out to be the case, but the analysis is different for Q = 0

andQ 
= 0 (as noted above, being in one case or the other is a gauge invariant

statement).

Lemma 4.5. Let {N , γ, �, �(2)} be null metric hypersurface data of dimen-

sion n ≥ 2. Assume that T ∈ Ran(τ) has gauge weight r. Decompose T
uniquely according to (43). Then,

(i) If Q 
= 0 then the tensor

VT
def
= 2�⊗s ̂X +Q�⊗ �+

1

Q ̂X ⊗ ̂X
− 1

n− 1

(
Q�(2) + 2�(X) +

1

Q ̂X(X)

)
γ

satisfies τ(VT ) = T and has gauge weight r + 2.
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(ii) If Q = 0 assume that there exists a covector ω ∈ T �
pN with gauge

behaviour G(z,ζ)(ω) = z(ω + ̂ζ) Then, the tensor

VT
def
= 2(�− ω)⊗s ̂X − 1

n− 1
(2(�− ω)(X)) γ,

satisfies τ(VT ) = T and has gauge weight r + 2.

Proof. In the case Q 
= 0, the difference tensor

V
(p)
T − VT =

1

Q

(
− ̂X ⊗ ̂X +

1

n− 1 ̂X(X)γ

)
def
= Diff

is easily seen to belong to the kernel K0, so τ(VT ) = T follows. For the gauge
behaviour, we note that the gauge group acts on Diff as follows

G(z,ζ)(Diff) =
zr+2

Q

(
−( ̂X −Q̂ζ)⊗s ( ̂X −Q̂ζ) +

1

n− 1
( ̂X −Q̂ζ)(X −Qζ)γ

)
=zr+2Diff

+ zr+2

(
−Q̂ζ ⊗ ̂ζ + 2 ̂X ⊗s ̂ζ +

1

n− 1
(Q̂ζ(ζ)− 2̂ζ(X)) γ

)
,

which combined with (64) implies the gauge covariance G(z,ζ)(VT ) = zr+2VT .
The case Q = 0 is immediate because, on the one hand the difference

tensor, given by

V
(p)
T − VT = 2ω ⊗s ̂X − 1

n− 1
(2ω(X)) γ,

clearly belongs to the kernel and, on the other hand, X has gauge weight
r + 1 (by Lemma 4.4 and Q = 0) and � − ω has gauge weight +1 (by the
second in (8)), so VT has gauge weight r + 2.

5. The energy-momentum map: PDE properties

All the results of the previous section are purely algebraic. In this sec-
tion we want to exploit the decomposition of symmetric tensors induced
by the energy-momentum map to define differential operators that respect
the structure.

We start by writing down the Lie derivative along n of various tensors
on N .
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Lemma 5.1. Let {N , γ, �, �(2)} be null metric hypersurface data. Then

£nγab = 2Uab,(65)

£n�a = 2sa,(66)

£nP
ab = −2sc

(
P acnb + P bcna

)
− 2P acP bfUcf − nanbnc

◦
∇c�

(2).(67)

Proof. (65) is just the definition of the tensorU in (18). (66) follows from the

fact that
◦
∇ has vanishing torsion so that Lie derivatives can be computed

using covariant derivatives. This together with (28) and (29) implies

£n�a = nb
◦
∇b�a + �b

◦
∇an

b = Fban
b + �b

(
nbsa + P bfUaf

)
= 2sa − �(2)nfUaf

= 2sa.

Finally (67) follows from (29) and (30), which gives

£nP
ab =nc

◦
∇cP

ab − P cb
◦
∇cn

a − P ac
◦
∇cn

b

=−
(
naP bf + nbP af

)
Fcfn

c − nanbnc
◦
∇c�

(2)

+ P cb
(
Fcfn

fna − P afUcf

)
+ P ca

(
Fcfn

fnb − P bfUcf

)
which becomes (67) after rearrangement.

At this point we introduce a linear map B acting on symmetric two-co-
variant tensors. This map allows us to define a natural differential operator
taking values in K0 when acting on tensors in K0.

Proposition 5.1. Consider null metric hypersurface data {N , γ, �, �(2)} and
let B be the linear map B : S0

2 −→ S0
2 defined by

(68) B(V )ab
def
= − 2P cdVc(aUb)d − 4̂V (asb) −

QV

n− 1
n(�(2))γab.

Define the differential operator acting on symmetric (0, 2)-tensors

£n(V ) := £nV +B(V ).(69)

Then the following properties hold

(i)
[
£n,P

]
= 0,

(ii) trP (£n(V )) = £n (trP V ) .
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Proof. We start with property (i). Let us compute the commutator

[
£n,P

]
(V ) = £n(P(V ))− P(£n(V ))

= £n(P(V )) +B(P(V ))− P(£n(V ))− P(B(V ))

= (£nP+ [B,P]) (V )

where in the first term of the last expression we are viewing P as the (2, 2)

tensor field on N defined in (55). Thus, we need to prove that £nP+[B,P] =

0. We start with £nP. Using (65)-(67) and the obvious property £nn = 0 it

follows

(£nP)
cd

ab =2δ
(c
(bn

d)£n�a) − 2ncnd�(a£n�b) +
1

n− 1

(
�(2)ncnd + P cd

)
£nγab

+
1

n− 1

(
n(�(2))ncnd +£nP

cd
)
γab

=4δ
(c
(bn

d)sa) − 4ncnd�(asb) +
2

n− 1

(
�(2)ncnd + P cd

)
Uab

+
1

n− 1

(
−4seP

e(cnd) − 2P ceP dfUef

)
γab.

Contracting with V ∈ Γ(S0
2) this gives gives (recall Terminology 4.1)

(£nP)
cd

ab Vcd =4δc(an
dsb)Vcd − 4QV �(asb) +

2

n− 1

(
�(2)QV + trPV

)
Uab

+
1

n− 1

(
−4seP

ecndVcd − 2P ceP dfVcdUef

)
γab

=

(
4δc(asb) −

4

n− 1
seP

ec

)(
̂V c +QV �c

)
− 4QV �(asb)

+
2

n− 1

[(
�(2)QV + trPV

)
Uab − P ceP dfVcdUefγab

]
=4̂V (asb) −

4

n− 1
seP

ec ̂V c

+
2

n− 1

[(
�(2)QV + trPV

)
Uab − P ceP dfVcdUefγab

]
,(70)

where in the last equality we used P ec�c = −�(2)ne and s(n) = 0. We next

compute the commutator [B,P]. It is obvious from the definition of B that

B(V H)ab = −2P cdV H
c(aUb)d, for V H ∈ K0.(71)
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Thus,

B(P(V ))ab = B(V − V H)ab = B(V )ab −B(V H)ab

= −2P cd
(
Vc(a − V H

c(a

)
Ub)d − 4̂V (asb) −

QV

n− 1
n(�(2))γab

= −2P cdP(V )c(aUb)d − 4̂V (asb) −
QV

n− 1
n(�(2))γab.(72)

To compute P(B(V )) we note that ̂V and s are both orthogonal to n. Hence,
the definition of B(V ) and properties (ii), (iv) in Remark 4.3 give

P(B(V ))ab = −2P ef
ab P cdVc(eUf)d −

1

n− 1

(
4P cdsc ̂V d +QV n(�

(2))
)
γab.

(73)

Combining (70), (72) and (73) yields

(£nP+ [B,P]) (V )ab =
2

n− 1

((
�(2)QV + trPV

)
Uab − P ceP dfVcdUefγab

)
− 2P cdP(V )c(aUb)d + 2P ef

ab P cdVc(eUf)d.(74)

We need to elaborate the last two terms. For the last one we define

Wef
def
= 2P cdVc(eUf)d

and note that Wefn
f = P cdVcfUedn

f = P cd(̂V c + QV �c)Ued = P cd ̂V cUed

after using P cd�c = −�(2)nd and Uedn
d = 0. Hence, Wefn

enf = 0. In addition
P efWef = 2P cdP efVceUfd. The definition of P yields

2P ef
ab P cdVc(eUf)d = P(W )ab

= �aP
cd ̂V cUbd + �bP

cd ̂V cUad +
2

n− 1
P cdP efVceUfdγab.(75)

For the penultimate term in (74), the definition of P(V ) and the facts that
P cd�cUdb = −�(2)ndUdb = 0 and P cdγcaUbd =

(
δda − nd�a

)
Udb = Uab imply

P cdP(V )caUdb = �aP
cd ̂V cUdb +

1

n− 1

(
QV �

(2) + trPV
)
Uab

so that

−2P cdP(V )c(aUb)d =− �aP
cd ̂V cUdb − �bP

cd ̂V cUad
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− 2

n− 1

(
QV �

(2) + trPV
)
Uab.(76)

Inserting (75) and (76) into (74) proves (£nP+s[B,P])(V ) = 0 and property
(i) follows.

To prove property (ii) we first observe that the definition of B yields

trP B(V ) = B(V )abP
ab = −2P cdVcaUbdP

ab − 4̂V asbP
ab −QV n(�

(2)).(77)

Recalling (67) it follows

trP (£nV ) = P ab£nVab = £n

(
VabP

ab
)
− Vab£nP

ab

= £n(trP V )− Vab

(
−4scP

canb − 2P acP bfUcf − nanbn(�(2))
)

= £n(trP V ) + 4scP
ca
(
̂V a +QV �a

)
+ 2VabP

acP bfUcf +QV n(�
(2))

= £n(trP V ) + 4scP
ca ̂V a + 2VabP

acP bfUcf +QV n(�
(2)).(78)

where in the last equality we used scP
ca�a = −�(2)Ffcn

fnc = 0. Adding (77)
and (78):

trP
(
£n(V )

)
= trP (£n(V )) + trP B(V ) = £n (trP V ) .

Corollary 5.1. If V H ∈ K0 then £n(V
H) ∈ K0 and

£n(V
H)ab = £nV

H
ab − P cd

(
V H
acUbd + V H

bc Uad

)
.

Proof. By Corollary 4.3 the map I−P projects S0
2 into the kernel K0. Since

£n((I−P)(V )) = £n(V )−£n(P(V )) = £n(V )−P(£n(V )) = (I− P)£n(V )

it follows that £n(V
H) ∈ K0. For the second statement we simply use (71).

Proposition 5.1 allows us to obtain easily the explicit expression of
£n(P(V )).

Lemma 5.2. Let V be a symmetric (0, 2)-tensor field in a null metric hy-
persurface data {N , γ, �, �(2)}. Then

£n(P(V ))ab =2�(a

(
£n ̂V b) + 2Qsb) − P cdUb)d ̂V c

)
+ n(Q)�a�b

+
1

n− 1

(
n(Q)�(2) + n(trPV )

)
γab.(79)
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Proof. Since £n(P(V )) = P(£n(V )) the result will follow as an application

of Proposition 4.3 with Vab replaced by £n(V )ab. Thus, we need to compute

(£n(V ))abn
b = (£nVab)n

b +B(V )abn
b

= £n

(
Vabn

b
)
− P cdVcbUadn

b

= £n

(
̂V a +Q�a

)
− P cdUad

(
̂V c +Q�c

)
= £n ̂V a + n(Q)�a + 2Qsa − P cdUad ̂V c,

where in the second equality we used B(V )abn
b = −P cdVcbUadn

b which

follows at once from the definition (68) of B(V ). Thus

£n(V )abn
anb = n(Q)

and (recall (46))

̂

£n(V )a = £n(V )abn
b − (nbnc£n(V )bc)�a = £n ̂V a + 2Qsa − P cdUad ̂V c.

Moreover, property (ii) of Proposition 5.1 gives

£n(V )abP
ab = £n(VabP

ab) = n(trPV ).

Inserting into (54) with V −→ £n(V ) gives (79) at once.

We have already shown that £n is a well-defined map on the space of
symmetric tensor fields in the kernel of τ (by item (i) in Proposition 5.1). In

the next lemma we introduce another differential operator that also takes
values on the kernel of τ . In this case, the operator acts on covectors orthog-

onal to n.

Lemma 5.3. Consider {N , γ, �, �(2)} null metric hypersurface data. Let ω ∈
X�(N ) be orthogonal to n, i.e. ω(n) = 0. Then the derivative operator

O(ω)ab := 2
◦
∇(aωb) − 2�(a

(
£nωb) − 2Ub)fP

fcωc

)
− 2

n− 1
P cf

◦
∇cωfγab

takes values in the kernel of the energy-momentum map.

Proof. We want to apply the general decomposition (51) to the tensor

Tab
def
=

◦
∇aωb +

◦
∇bωa.
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The contraction with nb gives

Tabn
b =

( ◦
∇aωb +

◦
∇bωa

)
nb

= −ωb

◦
∇an

b + nb
◦
∇bωa = £nωa − 2ωb

◦
∇an

b

= £nωa − 2ωb

(
nbsa + P bfUaf

)
= £nωa − 2ωbP

bfUaf ,

where we used ω(n) = 0 and (29) has been inserted in the fourth step.
Consequently Tabn

anb = 0 and the decomposition (51) gives

◦
∇aωb +

◦
∇bωa =2�(a

(
£nωb) − 2Ub)fP

fcωc

)
+

1

n− 1
P cf

( ◦
∇cωf +

◦
∇fωc

)
γab

+OH(ω)ab

where OH lies in the kernel of τ . Since by definition O(ω) = OH the result
follows.

6. The constraint tensor: decomposition in irreducible
components

So far all the results have only required a null metric hypersurface data set.
This geometric notion encodes at the abstract level the “intrinsic” geometry
of a null hypersurface, by which we mean the metric of the ambient space
evaluated at the points on the hypersurface. The connection is made via the
notion of embedded metric hypersurface data [28, 29].

Definition 6.1 (Embedded null metric hypersurface data). Consider null
metric hypersurface data {N , γ, �, �(2)} of dimension n and let (M, g) be a
pseudo-riemannian manifold of dimension n+1. We say that {N , γ, �, �(2)}
is embedded in (M, g) with embedding Φ and rigging ξ if there exists an em-
bedding Φ : N −→ M and a vector field ξ along Φ(N ) everywhere transversal
to Φ(N ) (i.e. a so-called rigging vector) such that

Φ�(g) = γ, Φ�(g(ξ, ·)) = �, Φ�(g(ξ, ξ)) = �(2).

An immediate consequence of the definition is that the signature of g
must be the same as the signature of the tensor A defined in (2). In fact,
in the embedded case both tensors are equivalent. It is in this sense that
the null metric hypersurface data encodes the ambient metric at an abstract
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level. Since the tensors {n, P} arise as elements in the decomposition of the
contravariant tensor A�, the contravariant metric g� can be expressed in
terms of n and P . Let {ea} be a (local) basis of TN so that {ξ,Φ�(ea)} is
a (local basis) of TM along the hypersurface Φ(N ). Then one can express
(see [39] for details)

g�
Φ(N )
= 2ξ ⊗s ν + P abΦ�(ea)⊗ Φ�(eb)(80)

where ν := Φ�(n) is the null normal to Φ(N ) satisfying g(ν, ξ) = 1. It is
easy to show [29] that if {N , γ, �, �(2)} is embedded in an ambient space with
embedding Φ and rigging ξ, then for all (z, ζ) ∈ G, the gauge transformed
data {N ,G(z,ζ)(γ),G(z,ζ)(�),G(z,ζ)(�

(2))} is also embedded in (M, g) with the
same embedding and rigging

G(z,ζ)(ξ) := z (ξ +Φ�(ζ)) .(81)

Now, null hypersurfaces in an ambient space possess, in addition to an “in-
trinsic” geometry (in the sense above) also an “extrinsic” one in the sense
of encoding first transversal derivatives of the ambient metric at the hy-
persurface. At the abstract level this leads [28, 29] to the definition of null
hypersurface data, which we recall next, together with its appropriate
notion of embeddedness.

Definition 6.2. A null hypersurface data is a 5-tuple {N , γ, �, �(2),Y}
where {N , γ, �, �(2)} is null metric hypersurface data and Y is a smooth
symmetric (0, 2)-tensor field on N on which the gauge group acts as

G(z,ζ)Y = zY + �⊗s dz +
1

2
£zζγ.(82)

We say that {N , γ, �, �(2),Y} of dimension n is embedded in a pseudo-
riemannian manifold (M, g) of dimension n+1 with embedding Φ and rigging
ξ, provided the metric part of the data {N , γ, �, �(2)} is embedded in (M, g)
in the sense of Definition 6.1 and, moreover,

1

2
Φ� (£ξg) = Y.

As before, if {N , γ, �, �(2),Y} is embedded with embedding Φ and rigging
ξ, the gauge transformed data with gauge parameters (z, ζ) is also embedded
with the same embedding and rigging given by (81).
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The connection
◦
∇ defined intrinsically on any null metric hypersurface

data (and hence also in any hypersurface data) can be related, in the embed-
ded case, to the Levi-Civita covariant derivative of (M, g) along tangential
directions of Φ(N ). The specific result is [28, 29]

Lemma 6.1. Let {N , γ, �, �(2),Y} be null hypersurface data embedded in
(M, g) with embedding Φ and rigging ξ. Let ∇ be the Levi-Civita derivative
of (M, g). Then, for any two vector fields X,W ∈ X(N ) it holds

Φ�(
◦
∇XW ) = ∇Φ�(X)Φ�(W )− Φ�(Y(X,W ))ν − Φ�(U(X,W ))ξ

where ν is the unique normal vector to Φ(N ) satisfying g(ν, ξ) = 1 and for
any function f ∈ F(N ) we define Φ�(f) : Φ(N ) → R by Φ�(f) ◦ Φ = f .

In a null hypersurface data set one can define a geometrically relevant
symmetric (0, 2)-tensor called constraint tensor. This tensor is defined at
the level of curvature and involves both the Ricci tensor of the connection◦
∇ as well as covariant derivatives or products of the rest of the hypersurface
data terms. Our convention for the curvature tensor RiemD of a connection
D is

RiemD(ω, X, Z,W ) := ω
(
DZDWX −DWDZX −D[Z,W ]Z

)
where ω is a covector and X,Z,W vector fields and [Z,W ] := £ZW is the
Lie bracket of two vector fields. The Ricci tensor of D, denoted by RicD, is

the trace of RiemD in the first and third indices. For the connection
◦
∇ on

N we shall use
◦

Riem and
◦

Ric respectively. Note that
◦

Ric is not a symmetric
tensor in general. For the Levi-Civita connection ∇ in (M, g) we use Riemg

and Ricg.
For notational simplicity we shall give special names to ιnY and QY, so

we define (note the relative sign between κn and QY)

r := ιnY, κn := −QY = −Y(n, n).

The constraint tensor has been defined in [39] in the context of so-called
characteristic hypersurface data, which is a particular case of null hyper-
surface data, and in [26] for general hypersurface data. In the null case the
definition is as follows

Definition 6.3 (Constraint tensor). Let {N , γ, �, �(2),Y} be null hypersur-
face data. The constraint tensor, denoted by R is the symmetric (0, 2)-tensor
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field

Rab =
◦

Ric(ab) − 2£nYab − (2κn + trPU)Yab +
◦
∇(a

(
sb) + 2rb)

)
− 2rarb + 4r(asb) − sasb − (trPY)Uab + 2P cdUd(a

(
2Yb)c + Fb)c

)
.

The importance of the constraint tensor lies in the fact that it encodes,

at the abstract level, the information of the Ricci tensor along tangential

directions of any embedded null hypersurface. Specifically we have the fol-

lowing result [39, 26].

Proposition 6.1. Let {N , γ, �, �(2),Y} be null hypersurface data embedded

in (M, g) with embedding Φ and rigging ξ. Then the following identity holds

Φ�(Ricg) = R.

The constraint tensor is a symmetric (0, 2)-tensor, so all the results de-

rived in the previous sections can be applied. In particular we intend to

rewrite the tensor using the decomposition ofY according to Proposition 4.2

and using the differential operators introduced in the previous section.

By Proposition 4.2, the tensor Y can be decomposed as

Yab = 2�(âYb) − κn

(
�a�b +

1

n− 1
�(2)γab

)
+

trPY

n− 1
γab +YH

ab,(83)

where the covector ̂Y (c.f. Terminology 4.1) is related to r by means of

(c.f. (46))

r = ̂Y − κn�.(84)

The tensor U being symmetric can also be decomposed uniquely according

to Proposition 4.2. Since U(n, ·) = 0, the only terms that survive are the

trace term and the component in the kernel, see Remark 4.2

U =
trPU

n− 1
γ +UH .(85)

In the decomposition of Proposition 4.2 all covectors involved are or-

thogonal to n except for �. This suggests the convenience of introducing a

derivative on scalar functions f ∈ F(N ) that respects this property. So, we

define Df by means Df := df − n(f)� so that the contraction with n gives
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ιnDf = 0. Thus, we will replace
◦
∇ derivatives acting on scalars in terms of

D derivatives by means of

◦
∇f = Df + n(f)�.(86)

Theorem 6.1. Let {N , γ, �, �(2)} by null hypersurface data. Then the con-

straint tensor R admits the following decomposition

Rab =
◦

Ric(ab) +
◦
∇(asb) + sasb + 2P cdUd(aFb)c

+ �(a
(
−2£n̂Yb) − 2Db)κn + 4κnsb) − 2(trPU)̂Yb)

)
+ κn(trPU) Cab

+
2

n− 1

(
n(κn�

(2) − trPY) + trP

( ◦
∇ ̂Y− (̂Y+ s)⊗ (̂Y+ s)

)
+(κn�

(2) − trPY)(κn + trPU)
)
γab

− 2£nY
H
ab +O(̂Y)ab − 2

(
(̂Y+ s)⊗ (̂Y+ s)

)
H
ab

− (2κn + trPU)YH
ab +

(
2�(2)κn − trPY

)
UH

ab.(87)

Proof. We start by rewriting the combination −2rarb + 4r(asb) that appears

in the constraint tensor in terms of ̂Y, c.f. (84),

−2rarb + 4r(asb) = 4κn�(a
(
̂Yb) − sb)

)
− 2κ2n�a�b − 2̂YâYb + 4̂Y(asb).

Using this and replacing £nY in terms of the operator £nY introduced in

Proposition 5.1 brings the constraint tensor into the form

Rab =
◦

Ric(ab) − 2£nYab +
2κn
n− 1

n(�(2))γab − (2κn + trPU)Yab

+
◦
∇(a

(
sb) + 2̂Yb) − 2κn�b)

)
− 2̂YâYb + 4κn�(a

(
̂Yb) − sb)

)
− 2κ2n�a�b − 4̂Y(asb) − sasb − (trPY)Uab + 2P cdUd(aFb)c.

We can replace 2
◦
∇(âYb) in terms of the derivative operator O defined in

Lemma 5.3, namely

2
◦
∇(âYb) = O(̂Y)ab + �(a

(
2£n̂Yb) − 4Ub)fP

fĉYc

)
+

2

n− 1
(P cf

◦
∇ĉYf )γab

(88)
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and use also the fact that £n has good properties with respect to the pro-

jector P, which gives

2£nYab = 2£n

(
P(Y) +YH

)
ab

= �(a

(
4£n̂Yb) − 8κnsb) − 4Ub)fP

cf ̂Yc

)
− 2n(κn)�a�b

+
2

n− 1

(
−n(κn)�

(2) + n(trPY)
)
γab + 2£nY

H
ab,

where in the second equality we used Lemma 5.2. Subtracting this from (88),

the expression for Rab becomes

Rab =
◦

Ric(ab) − (2κn + trPU)Yab +
◦
∇(a

(
sb) − 2κn�b)

)
− 2

(
κ2n − n(κn)

)
�a�b

+ �(a
(
−2£n̂Yb) + 4κnsb) + 4κn̂Yb)

)
+

2

n− 1

(
κnn(�

(2)) + n(κn)�
(2) − n(trPY) + P cf

◦
∇ĉYf

)
γab

− 2̂YâYb − 4̂Y(asb) − sasb − (trPY)Uab + 2P cdUd(aFb)c

+O(̂Y)ab − 2£nY
H
ab.

At this point we elaborate the term
◦
∇(a(2κn�b)). Taking into account (28)

and (86), this gives

◦
∇(a(2κn�b)) = 2�(aDb)κn + 2n(κn)�a�b − 2κn�

(2)Uab.

Inserting this as well as the decomposition (83) the tensor Rab takes its

nearly final form

Rab =
◦

Ric(ab) +
◦
∇(asb) + κn(trPU)�a�b

+ �(a
(
−2£n̂Yb) − 2Db)κn + 4κnsb) − 2(trPU)̂Yb)

)
+

1

n− 1

(
2n(κn�

(2))− 2n(trPY) + 2P cf
◦
∇ĉYf

+ (κn�
(2) − trPY)(2κn + trPU)

)
γab

− 2̂YâYb − 4̂Y(asb) − sasb +
(
2�(2)κn − trPY

)
Uab + 2P cdUd(aFb)c

+O(̂Y)ab − 2£nY
H
ab − (2κn + trPU)YH

ab.

To arrive at the final result (87) we first apply Corollary 4.1 to ω1 = ω2 =
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̂Y + s. Then, we simply need to replace

�a�b = Cab −
�(2)

n− 1
γab

as well as the decomposition (85), and simplify.

7. Covariant decomposition of the null shell equations

In this section we find an application of the decomposition obtained in The-
orem 6.1 in the context of null shells. The matching theory of spacetimes
is the framework for constructing a new spacetime out of two spacetimes
that have been cut out along a hypersurface. More precisely, one considers
two spacetimes with boundary (M±, g±) and asks under which conditions
one can construct a new spacetime by attaching their boundaries ∂M±. The
theory is well developed and has received many relevant contributions (see
particularly [10, 18, 19, 21, 36, 7, 16, 1, 30, 31, 41]).

It turns out that one can formulate the matching theory at a completely
detached level using the notion of hypersurface data. The basic idea was
introduced in [28] and it has been developed recently in the case when the
boundaries ∂M± are null in the papers [24, 25]. The outcome is that for the
matching to be possible it is necessary and sufficient that there exist two
embeddings Φ± : N −→ M± satisfying Φ±(N ) = ∂M±, and two riggings ξ±

satisfying the orientation condition that one of them points inwards and the
other outwards in their respective manifolds, such that the induced metric
hypersurface data on N are identical. The extrinsic tensor Y induced from
each embedding (denoted by Y± respectively) are in general different. Thus,
any matching problem necessarily leads to a pair of hypersurface data

{N , γ, �, �(2),Y+}, {N , γ, �, �(2),Y−}.

It is a fact [9, 30] that the matched spacetime admits a C1 atlas where the
metric is continuous but in general no more regularity can be expected. In
fact, there exists a C2 atlas in the matched manifold where the metric is C1 if
and only if Y+ = Y−. The physical interpretation of the lack of differentia-
bility of the metric across the matching hypersurface is different in the null
and in the non-null cases, and also depends on the gravity theory under con-
sideration. Assuming General Relativity (see e.g. [42] and references therein
for alternatives theories of gravitation) the physical meaning is as follows.
When the hypersurfaces to be matched are non-null, the matching hypersur-
face carries energy and momentum which is associated to matter fields (by
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which we mean non-gravitational fields) with support in the hypersurface.
In the null case, the shell also carries energy and momentum, but now it can
be associated both to the matter fields and/or to pure gravitational fields
in the form of an impulsive gravitational wave.

Since the theme of this paper is null hypersurface data, we restrict
ourselves to the null case from now on. Then a non-zero difference tensor
[Y] := Y+ −Y− corresponds to an infinitely thin concentration of matter
and/or gravitational field. The matter contents of the shell is described by
a symmetric, contravariant (2, 0) tensor T which is defined in terms of the
jump [Y] by means of

T = τ(ε[Y]),

where τ is the energy-momentum map (indeed, this is the reason for the
name of the map) and ε is a sign that accounts for the relative orientation
of the rigging vector with respect to the boundary. This sign is ε = +1 if the
rigging points from M− to M+ and ε = −1 if it points from M− to M+. In
[28] the rigging was assumed to always point from M− to M+ so ε does not
appear in that paper. The convenience to add this sign in the definition has
been discussed recently in [22, 23].

The gauge behaviour of Y (82) implies at once that [Y] is a field with
gauge weight q = 1. By Lemma 4.2 we conclude that τ([Y ]) has gauge
weight −1. The physical reason behind this behaviour is that T is an energy-
momentum tensor, so it describes energy or momentum per unit volume (i.e.
a density) and this notion depends on the measure of volume. Orientable
metric hypersurface data admits [28, 29] a canonical volume form η� which
turns out to transform under a gauge as G(z,ζ)(η�) = |z|η�). The product T η�

is then gauge invariant, as it must, given that it corresponds to a physical
quantity describing energy and momentum inside the shell.

The fact that the energy-momentum map τ has a non-trivial kernel is
responsible for the fact that a null shell can carry energy and momentum
without carrying matter degrees of freedom. Whenever [Y] belongs to the
kernel of τ , the shell describes a purely gravitational impulsive wave. In the
previous section we have obtained a covariant decomposition of the con-
straint tensor in terms of the decomposition obtained in Proposition 4.2. It
is clear how to apply those results to the present setting. Each spacetime to
be matched (M±, g±) has its own Ricci tensor Ricg± , and their pull-back to
N via Φ± define respective constraint tensors, denoted by R±. The differ-
ence tensor [R] := R+−R− is the jump of the tangential components of the
Ricci tensor at each side (once the two spacetimes are joined together). Via



Abstract null geometry 845

the Einstein field equations, they can be related to the energy-momentum
contents of the bulk spacetime at each side, as well as to the jump of the
cosmological constants on each domain in case they are assumed to be dif-
ferent.

The constraint tensor is expressible in terms of the hypersurface data,
so taking its difference for the corresponding data {N , γ, �, �(2),Y+} and
{N , γ, �, �(2),Y−} provides an explicit link between the jump [R] and the
jump [Y], which one may call null shell equations or also null Israel equa-
tions. In the case of non-null boundaries W. Israel [16] obtained equations
relating the jump of the normal-normal and normal-tangential components
of the Einstein tensor, i.e. [Ein(ν, ·)], and the jump of the extrinsic curva-
tures at each side [Kν ]. They were generalized to the null case in [1] and to
the case of boundaries of arbitrary causal character in [28]. From the jump of
the full constraint tensor [R] one can recover the equations of Israel because
of the identities (we drop the ± sign)

Eing(ν,X)
∂M
= Ricg(ν,X)

Eing(ν, ξ)
∂M
= Ricg(ν, ξ)−

(
Ricg(ν, ξ) +

1

2
P abRicg(Φ�(ea),Φ�(eb))

)
g(ν, ξ)

∂M
= −1

2
P ab(Φ�Ricg)(ea, eb).

Here ν is the normal to the null boundary satisfying g(ν, ξ) = 1, X is any
tangential vector to the boundary and in the last equality we used the decom-
position (80). The left-hand sides of these expressions involve only tangential
components of the spacetime Ricci tensor, so they arise as contractions of
the constraint tensor. Thus the null shell equations constitute an extension
of the Israel equations.

To obtain the null shell equations we simply need to subtract the con-
straint tensors on both sides. The result is much simpler than the corre-
sponding expressions on each side. The reason is that the metric part of the
data is the same, so the difference of every tensor constructed solely from

{γ, �, �(2)} is identically zero. This holds in particular for the
◦
∇-Ricci curva-

ture tensor
◦

Ric. We shall use the notation [·] to denote the difference between
any geometric tensor constructed from the data {N , γ, �, �(2),Y+} and the
corresponding tensor constructed from {N , γ, �, �(2),Y−}. Given that in the
previous section we have worked out the constraint tensor in a decomposed
form, we can also write down the null shells equations in a decomposed form.

Before stating the result, let us introduce some terminology. First we
define an abstract null shell as a pair of null hypersurface data [28]. Following
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[22] we add an extra sign ε to account for the relative orientation of the

riggings with respect to the boundaries

Definition 7.1. A null shell is a a pair of null hypersurface data of the

form {N , γ, �, �(2),Y±, ε}, where ε = ±1.

We have already said that the energy-momentum tensor of the shell is

T = τ(ε[Y]). In view of (53) and since n corresponds (in the embedded

case) to the null direction ruling the null hypersurface, it is reasonable to

interpret physically the various terms in the canonical decomposition (83)

of [Y] as follows (see [22] for a more detailed justification).

Definition 7.2. Let {N , γ, �, �(2),Y±, ε} be a null shell. The energy-den-

sity μ, the pressure p, and the transverse energy flux J of the shell are

defined by

μ := −ε[trP Y], p := ε[κn], J = ε[Y �].

Moreover, the impulsive gravitational wave of the shell is Υ := ε[YH ].

By construction, the energy-momentum tensor of the shell decomposes

as (see (53))

T = μ n⊗ n + 2n⊗s J + p
(
P + 2�(2)n⊗ n

)
.(89)

We can link the jump of the constraint tensors [R] to the energy contents of

the shell and to the impulsive gravitational wave of the shell. To write down

the final result we use the following notation: for any pair of quantities A±

defined on {N , γ, �, �(2),Y±, ε} we let A := 1
2(A

+ +A−).

Proposition 7.1. Let {N , γ, �, �(2),Y±, ε} be a null shell. Then, the jump

of the constraint tensor satisfies the following equation

ε[Rab] =�(a
(
−2£n̂Jb) − 2(trPU)̂Jb) − 2Db)p+ 4sb)p

)
+ p(trPU) Cab(90)

+
2

n− 1

(
n(�(2)p+ μ) + trP (

◦
∇ ̂J − 2(̂Y)⊗s ̂J − 2̂J ⊗s s)

+ 2�(2)κn p− trPY μ+ trPU
(
�(2)p+ μ

) )
γab

− 2£nΥab +O(̂J)ab − 4
(
(̂Y)⊗s ̂J

)H

ab
− 4 (s⊗s ̂J)Hab

− 2κnΥab − 2pYH
ab − trPUΥab +

(
μ+ 2�(2)p

)
UH

ab.
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Proof. Note first that, by linearity, the operators £n and O in (69) and
Lemma 5.3 satisfy

[£n(Y)] = £n([Y]), [O(̂Y)] = O([̂Y]),

and for any tensor T and scalar f we obviously also have [
◦
∇T ] =

◦
∇[T ] and

[Df ] = D[f ] (cf. (86)). We have already said that [
◦

Ric] = [s] = [U] = [F] = 0
and, more generally, any tensor defined only from the metric part of the data
has vanishing jump. Taking difference in (87) yields

[Rab] =�(a
(
−2£n[̂Y]b) − 2Db)[κn] + 4sb)[κn]− 2(trPU)[̂Y]b)

)
(91)

+ [κn](trPU) Cab +
2

n− 1

(
n([κn]�

(2) − [trPY])

+ trP (
◦
∇ [̂Y]− [̂Y ⊗ ̂Y]− 2[̂Y]⊗s s) + �(2)[κ2n]

− [κntrPY] + trPU
(
�(2)[κn]− [trPY]

) )
γab

− 2£n[Y
H ]ab +O([̂Y])ab − 2

[
̂Y ⊗ ̂Y

]H
ab

− 4
(
s⊗s [̂Y]

)H
ab

− 2[κnY
H
ab]− trPU[YH ]ab +

(
2�(2)[κn]− [trPY]

)
UH

ab.

Now, for any pair of quantities A,B the jump of their product is

[AB] = A+B+ −A−B− = A[B] +B[A].

In particular, for a tensor A on has [A⊗A] = 2A⊗s [A]. Note also that

̂J := γ(J, ·) = εγ([Y �], ·) = ε[γ(Y �, ·)] = ε[̂Y],

where in the last equality we inserted (50) and used (6) together with the fact
that ̂Y(n) = 0. Replacing this into (91) yields (90), after using Definition 7.2.

In the embedded case, the jump of constraint tensor in the right-hand
side of (90) can be computed from the geometry of each spacetime (M±, g±).
Since the constraint tensor is symmetric, it can also be decomposed accord-
ing to Proposition 4.2. We therefore define the quantities

ρ := R(n, n), p := trP R, J := R(n, ·)− ρ�, RH := (I− P)(R)

so that

R = 2�⊗s J+ ρ C +
p

n− 1
γ +RH .(92)
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Given that the decomposition of any symmetric tensor according to Propo-
sition 4.2 is unique, the combination of (92) and (90) can be split into its
irreducible parts. The result is

Theorem 7.1. Let {N , γ, �, �(2),Y±, ε} be a null shell.With the notation
introduced above, the following expressions called null shell equations hold
true

ε[ρ] =p trPU,

ε[J] =− 2£n̂J − 2(trPU)̂J − 2Dp+ 4p s,

ε[p] =2n(�(2)p+ μ) + 2trP (
◦
∇ ̂J − 2(̂Y)⊗s ̂J − 2̂J ⊗s s) + 4�(2)κn p

− 2trPY μ+ 2trPU
(
�(2)p+ μ

)
,

ε[RH ] =− 2£nΥ+O(̂J)− 4
(
(̂Y)⊗s ̂J

)H − 4
(
s⊗s ̂J

)H − 2κnΥ− 2pYH

− (trPU)Υ+
(
μ+ 2�(2)p

)
UH .

These equations are remarkable because they have a hierarchical struc-
ture. Assume that we know the geometry of the spacetimes to be matched,
i.e. that we know the constraint tensors R for both hypersurface data. This
means that the left-hand sides of the equations in Theorem 7.1 are known.
Then, the first equation determines p (provided trPU is non-zero). With
this information the second equation is a transport equation for ̂J . Once
this has been solved, the third equation gives a transport equation for μ.
Finally, the last equation involves all the variables, but once the previous
equations have already been solved, it becomes simply a transport equation
for Υ. It is even more remarkable that the splitting has been achieved in
a fully covariant way (as no coordinates have been introduced in N ), in a
completely gauge covariant manner (the equations hold in any gauge) and
without assuming a foliation of N by spacelike sections. In fact we have
made no topological assumption whatsoever2 on N so such a foliation need
not exist.
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