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Characteristic gluing with Λ:
1. Linearised Einstein equations on

four-dimensional spacetimes

Piotr T. Chruściel and Wan Cong

We establish a gluing theorem for linearised vacuum gravitational
fields in Bondi gauge on a class of characteristic hypersurfaces
in static vacuum four-dimensional backgrounds with cosmologi-
cal constant Λ ∈ R and arbitrary topology of the compact cross-
sections of the null hypersurface. This generalises and comple-
ments, in the linearised case, the pioneering analysis of Aretakis,
Czimek and Rodnianski, carried-out on light-cones in Minkowski
spacetime.
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1. Introduction

In their pioneering work [1, 2, 3], Aretakis, Czimek and Rodnianski pre-
sented a gluing construction, along a null hypersurface, of characteristic
Cauchy data for the vacuum Einstein equations, for a class of asymptot-
ically Minkowskian data. We wish to generalise their construction to null
hypersurfaces with non-spherical sections, and to allow for a cosmological
constant, in spacetimes of dimension four or higher.

As a first step towards this, in this paper we consider four-dimensional
vacuum Einstein equations, with a cosmological constant Λ ∈ R, linearised
at Birmingham-Kottler metrics. Recall, now, that the analysis in [1, 2, 3]
is based on the Christodoulou-Klainerman version of the Newman-Penrose
formalism. Recall also that there exists a well-studied Bondi-type param-
eterisation of the metric (see [4] and references therein), which generalises
readily to any dimensions. So it appears of interest to analyse the problem
in Bondi coordinates, to be able to exploit results which have already been
established in the Bondi setting, with an eye-out both for possible advan-
tages of the alternative setting and for higher dimensions. Indeed, while we
are concerned with four-dimensional spacetimes in this work, we carry-out
the higher dimensional construction in a companion paper [5].

Interestingly enough, some more work needs to be done in other topolo-
gies and dimensions because of different properties of the differential oper-
ators involved. In fact, the analysis on null three-dimensional hypersurfaces
with spherical cross-sections turns out to be somewhat simpler than the gen-
eral case. One of key new aspects of other topologies or dimensions, when
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compared to null hypersurfaces with two-dimensional spherical sections, is
the existence of non-trivial transverse-traceless two-covariant tensors. Their
existence leads to new difficulties which need to be addressed. While the
collection of TT-tensors is finite-dimensional on two dimensional manifolds,
these tensors carry the bulk of information about the geometry in higher
dimensions.

To make things precise, we consider the linearisation of the vacuum
Einstein equations at a metric

(1) g = −
(
ε− α2r2−2m

r

)
du2 − 2du dr + r2γ̊ABdx

AdxB ,

with

α ∈ {0,
√

Λ/3} ⊂ R ∪
√
−1R , m ∈ R ,

where γ̊ABdx
AdxB is a u and r-independent metric with scalar curvature

2ε, with ε ∈ {0,±1}. Roughly speaking, the question addressed here is
the following: given two smooth linearised solutions of the vacuum Einstein
equations defined near the null hypersurfaces {u = 0 , r < r1} and {u =
0 , r > r2}, where r2 > r1, can we find characteristic initial data on the
missing region {u = 0 , r1 ≤ r ≤ r2} which, when evolved to a solution of
the linearised Einstein equations, provide a linearised metric perturbation
which coincides on {u = 0}, together with u-derivatives up to order k, with
the original data. We refer to this construction as the Ck

u C
∞
(r,xA)-gluing. The

resolution of this problem is presented in Theorem 4.1, p. 727 below, which
is the main result of this paper. This theorem is the key step towards a
nonlinear gluing [6], where a suitable implicit function theorem is used.

An equivalent way of formulating the gluing problem, advocated in [1],
is that of connecting two sets of “sphere data” using null-hypersurface data.
This perspective can also be taken in our setting, with “sphere data” re-
placed by suitable linearised data on codimension-two spacelike manifolds,
viewed as cross-sections of a null hypersurface.

It was found by Aretakis et al., in the case Λ = 0 and ε = 1, that there ex-
ists a ten-parameter family of obstructions to do such a gluing-up-to-gauge,
when requiring continuity of two u-derivatives of the metric components
along the null-hypersurface. Our analysis shows that the analysis is affected
both by the dimension, by the cosmological constant, by the topology of
sections of the level sets of u (which we assume to be compact), by the
mass, and by the number of transverse derivatives which are required to be
continuous. In the spherical four-dimensional case with m = 0 we provide an
alternative proof of the corresponding result in [2] for C2

u C
∞
(r,xA)-gluing, with
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Table 1.1: The dimension of the space of obstructions for C2
u C

∞
(r,xA)-gluing.

The radial charges
[a]

Q, a=1,2, are defined in (59), p. 705 and (72), p. 708;

the radially-conserved tensor fields qAB,
[2]
q AB, and

[3,i]

Q are defined in (100),
p. 714, (159), p. 725, and (115), p. 717; g is the genus of the cross-sections of
the characteristic initial data hypersurface; the superscripts [H], respectively
[TT], denote the L2-orthogonal projection on the set of harmonic 1-forms,
respectively on transverse-traceless tensors. On S2 the four obstructions as-

sociated with
[2]

Q correspond to spacetime translations, the three obstructions

associated with
[1]

Q when m �= 0 correspond to rotations of S2, with the fur-
ther three obstructions arising when m = 0 corresponding to boosts

S2
T
2 higher genus

[1]

Q: m = 0 6 2 0

m �= 0 3 2 0
[2]

Q: m = 0 4 1 1

m �= 0 1 1 1
[3,1]

Q [H]: m = 0 0 coincides with
[2]

Q 2g

m �= 0 0 0 0

q
[TT]
AB : m = 0, α = 0 0 2 6(g− 1)

m = 0, α �= 0 0 0 0

m �= 0 0 0 0
[3,2]

Q [H]: m = 0 0 0 2g

m �= 0 0 0 0
[2]
q
[TT]
AB : m = 0 0 2 6(g− 1)

m �= 0 0 0 0
together: m = 0, α = 0 10 7 16g− 11

m = 0, α �= 0 10 5 10g− 5
m �= 0 4 3 1

the same number of obstructions. Table 1.1 lists the obstructions which arise

in the linearised gluing depending upon the geometry of the cross-sections

of the initial data hypersurface and the mass parameter m. A key role in our

construction is played by the radially-constant function χ (cf. (80), p. 710
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below), the existence of which has already been pointed-out in [7], and the

radially constant fields qAB and
[3,1]

Q A (cf. (100), p. 714 and (106), p. 715),
which do not seem to have been noticed so far in the Bondi gauge, and which
seem to be related to the radially constant fields Q2, Q3 and Q4 discovered
in [1]. We point out a slightly different interpretation of the result, namely
that the gluing can be performed without obstructions after adding fields,
which carry the missing radial charges and which we describe explicitly, to
the data on {r > r2}. We describe the additional obstructions that arise for
Ck
u C

∞
(r,xA)-gluing, k ≥ 3, when linearising on a background with m = 0, see

Tables 4.1, p. 732, and 4.2, p. 733. We show, with a considerable amount
of work, that the higher-order obstructions disappear on backgrounds with
m �= 0.

In their introduction, the authors of [1] discuss several applications of
their construction. The results presented here lead immediately to corre-
sponding results for the linearised fields in our setting.

This work is organised as follows: In Section 2 we introduce some of our
notations. In Section 3 we analyse the linearised Einstein equations in the
Bondi gauge, following [7]. As already observed in [1, 2, 3], a key part of the
gluing is played by the residual gauges, discussed in Section 3.2. The main
new element, as compared to [7], is Section 3.7, where inductive formulae for
higher-order transverse derivatives are presented. The gluing construction
is carried-out in Section 4. We present our strategy in Section 4.1, with
further details provided in the remaining sections there. In Section 6 we
reformulate our gluing result as an unobstructed gluing-with-perturbation
problem for the data on {r > r2}. Various technical results are presented in
the appendices.

We note that the first arxiv version of this work established solvability
of the linearised gluing problem through an argument which was inadequate
for the full gluing problem, addressed in [6], because of insufficient differen-
tiability of solutions of some of the equations used. The current, alternative
version resolves these issues.

2. Notation

Let γ̊ = γ̊ABdx
AdxB be a metric on a 2-dimensional, compact, orientable

manifold S, with covariant derivative D̊. We let d̊iv(1), respectively d̊iv(2),
denote the divergence operator on vector fields ξ, respectively on two-index
tensor fields h:

(2) d̊iv(1) ξ := D̊Aξ
A , (d̊iv(2) h)A := D̊Bh

B
A .
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Given a function f we denote by f [1] the L2-orthogonal projection of f on
the constants:

(3) f [1] :=
1

|S|̊γ

∫
S
fdμγ̊ , where |S|̊γ =

∫
S
dμγ̊ .

Note that f [1] should not be confused with f [=1], which we use when de-
composing a function or a tensor field in spherical harmonics on S2. We
set

(4) f [1⊥] := f − f [1] .

Let CKV, respectively KV, denote the space of conformal Killing vector
fields on S, respectively Killing vector fields. Thus (cf. Appendix C.2), CKV
is six-dimensional on S2, consists of covariantly constant vectors on T

2, and
is trivial on manifolds of higher genus. Given a vector field ξ on S we denote
by (ξA)[CKV] the L2-orthogonal projection on the space CKV, with

(ξA)[CKV⊥] := ξA − (ξA)[CKV] ,

with a similar notation for (ξA)[KV] and (ξA)[KV⊥].
We will denote by H the space of harmonic 1-forms:

(5) H = {ξA | D̊AξA = 0 = εABD̊AξB} .

By standard results (cf., e.g., [8, Theorems 19.11 and 19.14] or [9, Theo-
rem 18.7]), the space H has dimension 2g on cross-sections S with genus g,

in particular it is trivial on spherical sections. We will denote by ξ
[H]
A the

L2-orthogonal projection of ξA on H, and by ξ
[H⊥]
A the projection on the

L2-orthogonal to H.
Let TT denote the space of transverse-traceless symmetric two tensors:

(6) TT = {hAB |h[AB] = 0 = γ̊CDhCD = D̊EhEF } .

The space TT is trivial on S2, consists of covariantly constant tensors on T
2,

and is 6(g−1)-dimensional on two-dimensional manifolds of genus g ≥ 2 (cf.,
e.g., [10] Theorem 8.2 and the paragraph that follows, or [11, Theorem 6.1
and Corollary 6.1]).

Given a tensor field h = hABdx
AdxB we denote by h

[TT]
AB the L2-orthogo-

nal projection of h on TT, and set

(7) h
[TT⊥]
AB := hAB − h

[TT]
AB .
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Clearly, for two-covariant traceless symmetric tensors on S2 it holds that

h
[TT⊥]
AB = hAB, but this is not true anymore for the remaining two-dimensional

compact manifolds.
We will often follow terminology and notation from [1]. In particular,

scalar functions, vector fields, and traceless two-covariant symmetric tensors
on S2 will be decomposed into spherical harmonics, see Appendix C.1 for a
summary. The notation t[=�] will denote the L2-orthogonal projection of a
tensor t on the space of �-spherical harmonics. Then

(8) t[≤�] =

�∑
i=0

t[=i] , t[>�] = t− t[≤�] ,

with obvious similar definition of t[<�], etc.
One of the operators appearing below is the operator

(9) L̊ := Δγ̊(Δγ̊ + 2ε)

acting on functions. Its kernel consists of linear combinations of � = 0 and
� = 1 spherical harmonics on S2, and of constants on the remaining com-
pact orientable two-dimensional manifolds. Given a function f we will write

f [ker L̊] for the L2-orthogonal projection on this kernel, and f [(ker L̊)⊥] for the
projection on its orthogonal.

3. Linearised characteristic constraint equations in Bondi
coordinates

Let (M , g) be a (3 + 1)-dimensional spacetime. Locally, near a null hyper-
surface for which the optical divergence scalar is non-vanishing, we can use
Bondi-type coordinates (u, r, xA) in which the metric takes the form

gαβdx
αdxβ = −V

r
e2βdu2 − 2e2βdudr(10)

+ r2γAB

(
dxA − UAdu

)(
dxB − UBdu

)
,

where

(11) det[γAB] = det[̊γAB] ,

with γ̊AB(x
C) being a metric of constant scalar curvature 2ε. In particular,

det[γAB] is r and u-independent, which implies

(12) γAB∂rγAB = 0 , γAB∂uγAB = 0 .
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As such, the inverse metric reads

(13) g� = e−2β V

r
∂2
r − 2e−2β ∂u∂r − 2e−2βUA ∂r∂A +

1

r2
γAB ∂A∂B .

Note that each surface {u = constant } is a null hypersurface with null
normal proportional to ∂r, and r is a parameter which varies along the null
generators. Finally, the xC ’s are local coordinates on the codimension-two
surfaces of constant (u, r) which, as r varies, foliate each null hypersurface
of constant u.

The restriction of the Einstein equations (E.E.) to a null hypersurface
gives a set of null constraint equations for the metric functions (V, β, UA,
γAB), which leads to obstructions to the gluing of characteristic data. In
this work we will study the linearised problem around a null hypersurface
in a Birmingham-Kottler background, which includes a Minkowski, anti-de
Sitter or de Sitter background. In Bondi coordinates the background metrics
can be written as

(14) g ≡ gαβdx
αdxβ = guudu

2 − 2du dr + r2γ̊ABdx
AdxB ,

with

guu := −
(
ε− α2r2−2m

r

)
, ε ∈ {0,±1} , α ∈ {0,

√
Λ/3} , m ∈ R ,

where γ̊ABdx
AdxB is a u- and radially constant metric of scalar curvature

2ε, and note that α ∈ R ∪ iR: a purely imaginary value of α is allowed to
accommodate for a cosmological constant Λ < 0. It holds that

gαβ∂α∂β = −2∂u∂r − guu(∂r)
2 + r−2γ̊AB∂A∂B .

Consider now a perturbation of the metric of the form

(15) gμν → gμν + εhμν ,

where ε should be thought as being very small. The conditions on the lin-
earised fields such that the perturbed metric is still in the Bondi form to
O(ε) are,

(16) hrA = hrr = γ̊ABhAB = 0 .

In what follows for perturbations around a Birmingham-Kottler background,
we shall sometimes find it convenient to use fields {δV, δβ, δUA := γ̊ABδU

B}
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to denote metric perturbations. These correspond respectively to

(17) {δV + 2V δβ, δβ, δUA} ≡ {−rhuu,−hur/2,−huA/r
2} .

We will also use the notation

(18) ȟμν := hμν/r
2 .

3.1. The linearised Ck
u C∞

(r,xA)-gluing problem

One of the key objects that arise in the characteristic gluing construction
of [1] are the “sphere data”. Roughly speaking, these are data that are
needed on a cross-section of a characteristic surface for the integration of
the transport equations (see below).

Using a Bondi parameterisation of the metric, these data can be defined
as follows. Let NI be a null hypersurface {u = u0, r ∈ I}, where I is an
interval in R, and let S be a cross-section of N , i.e. a two-dimensional
submanifold of N meeting each null generator of S precisely once. Let
2 ≤ k ∈ N be the number of derivatives of the metric that we want to
control at S. Using the Bondi parameterisation of the metric, we define
linearised Bondi cross-section data of order k as the collection of fields

(19) dS = (∂�
u∂

j
rhAB|S, ∂�

u∂
j
rδβ|S, ∂�

u∂
j
rδU

A|S, ∂�
u∂

j
rδV |S) ,

for integers �, j such that �+ j ≤ k.1

For simplicity we assume that all the fields in (19) are smooth, though
a finite sufficiently large degree of differentiability would suffice for our pur-
poses, as can be verified by chasing the number of derivatives in the relevant
equations; compare Section 3.6 below.

A natural threshold for the gluing is k = 2, as then one expects existence
of an associated space-time solving the vacuum Einstein equations when the
fields are sufficiently differentiable in directions tangent to S (cf. [13] for a
small data result in a different gauge; see [14, 15, 16] for existence without
smallness restrictions under more stringent differentiability conditions). In
the linearised Ck

u C
∞
(r,xA)-gluing problem we start with two sections S1 and

S2 ⊂ J+(S1) of a null hypersurface {u = 0} equipped with Bondi coor-
dinates as in (10), each with constant r, and their linearised Bondi cross-
section data of order k, dS1

and dS2
. The goal is to interpolate between dS1

1The data dS are closely related to the data ΨBo[S, k] of [12, Section 5]. As
discussed in more detail there, some of the fields in (19) are not independent, but
this is irrelevant for our purposes.
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and dS2
along a null hypersurface N[r1,r2] such that (i) dS1

agrees with the
restriction to r1 of the interpolating field along N[r1,r2]; (ii) dS2

agrees with
the restriction to r = r2 of the interpolating field; and (iii) the constructed
field satisfies the linearised null constraint equations. We shall see in Sec-
tion 3.3 how the linearised null constraint equations lead to obstructions to
the gluing.

Since linearised Bondi data are defined up to linearised gauge transfor-
mations, we shall use these transformations to help us with the gluing.

3.2. Gauge freedom

Recall that linearised gravitational fields are defined up to a gauge transfor-
mation

(20) h �→ h+ Lζg

determined by a vector field ζ. Once the metric perturbation has been put
into Bondi gauge, there remains the freedom to make gauge transformations
which preserve this gauge:

Lζgrr = 0 ,(21)

LζgrA = 0 ,(22)

gABLζgAB = 0 ,(23)

For the metric (14) this is solved by (cf., e.g., [7])

ζu(u, r, xA) = ξu(u, xA) ,(24)

ζB(u, r, xA) = ξB(u, xA)− 1

r
D̊Bξu(u, xA) ,(25)

ζr(u, r, xA) = −1

2
rD̊Bξ

B(u, xA) +
1

2
Δγ̊ξ

u(u, xA) ,(26)

for some fields ξu(u, xA), ξB(u, xA), and where D̊A and Δγ̊ are respectively
the covariant derivative and the Laplacian operator associated with the two-
dimensional metric γ̊AB appearing in (14).

We define

L̊ζ

to be the Lie-derivation in the xA-variables with respect to the vector field
ζA∂A.
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The transformation (20) can be viewed as a result of linearised coordi-

nate transformation to new coordinates x̃μ such that

(27) xμ = x̃μ + εζμ(x̃μ) ,

where ε is as in (15). Writing guu as

guu = −ε+ α2r2 +
2m

r
=: εN2 , where ε ∈ {±1},

under (27), the linearised metric perturbation transforms as

huA → h̃uA = huA + LζguA(28)

= huA + ∂A(εN
2ζu − ζr) + r2γ̊AB∂uζ

B

= huA − 1

2
∂A [ (Δγ̊ξ

u + 2εξu)− r(D̊Bξ
B − 2∂uξ

u)]

+ r2
(̊
γAB∂uξ

B +
(
α2 +

2m

r3
)
∂Aξ

u
)
,

hur → h̃ur = hur + Lζgur = hur − ∂uζ
u + εN2∂rζ

u − ∂rζ
r(29)

= hur − ∂uξ
u +

1

2
D̊AξA ,

huu → h̃uu = huu + Lζguu = huu + εζr∂rN
2 + 2∂u(εN

2ζu − ζr)(30)

= huu − (2ε+Δγ̊)∂uξ
u + r

(
D̊B∂uξ

B +
(
α2 − m

r3
)
Δγ̊ξ

u
)

+
(
α2r2 +

2m

r

)
(2∂uξ

u)−
(
α2r2 − m

r

)
D̊Bξ

B ,

hAB → h̃AB = hAB + LζgAB = hAB + 2rζrγ̊AB + r2L̊ζ γ̊AB ,(31)

with

TS[XAB] :=
1

2
(XAB +XBA − γ̊CDXCDγ̊AB)

denoting the traceless symmetric part of a tensor on a section S.

Given Su0,r0 corresponding to a {u = u0, r = r0}-section of some N ,

equations (28)-(31) together with all their u- and r-derivatives up to order

k define a new set of order-k cross-section data on

S̃u0,r0 : = {ũ = u0, r̃ = r0}
= {u = u0 + εζu(u0, r0, x

A), r = r0 + εζr(u0, r0, x
A)} ,
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a section lying close to the original Su0,r0 , in terms of the gauge fields

{∂i
uξ

B|u=u0
, ∂i

uξ
u|u=u0

}0≤i≤3

as well as the original metric perturbations evaluated on S̃u0,r0 .

Equation (29) shows that we can always choose ζ so that

(32) h̃ur = 0 .

After having done this, we are left with a residual set of gauge transfor-
mations, defined by a u-parameterised family of vector fields ξA(u, ·), and
ξu(u, ·), with the condition

(33) ∂uξ
u(u, xA) =

D̊Bξ
B(u, xA)

2

needed to preserve the gauge h̃ur = 0.

Under the residual gauge transformations with (33), the transformed
fields take the form

h̃uA = huA − 1

2
D̊AΔγ̊ξ

u + εN2D̊Aξ
u + r2∂uξA(34)

= huA − 1

2
D̊A [ (Δγ̊ξ

u + 2εξu)]

+ r2
[̊
γAB∂uξ

B +
(
α2 +

2m

r3
)
D̊Aξ

u
]
,

h̃uu = huu + r
[(
α2 − m

r3
)
Δγ̊ξ

u + D̊B∂uξ
B
]

(35)

−
(
ε+

1

2
Δγ̊ −

3m

r

)
D̊Bξ

B ,

h̃AB = hAB + 2r2TS[D̊AξB]− 2rTS[D̊AD̊Bζ
u] .(36)

Let dS1
and dS2

be linearised Bondi cross-section data of order k on S1

and S2 respectively. Given gauge fields

{∂i
uξ

B|S̃a
, ∂i

uξ
u|S̃a

}0≤i≤k+1 ,1≤a≤2 ,

the associated transformed Bondi cross-section data are given by (28)-(31)
and their ∂u and ∂r derivatives. In the linearised gluing problem, we shall
allow for such gauge transformations to the data; that is, we consider gluing
along a null hypersurface of the transformed data d̃S̃1

and d̃S̃2
with the
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freedom of choosing gauge fields to achieve the gluing. We shall call this

gluing-up-to-gauge.

To simplify notation we will write

L1(ξ
u)A := −1

2
D̊A [ Δγ̊ξ

u + 2εξu] = −D̊B TS[D̊AD̊Bξ
u] ,(37)

C(ζ)AB := TS[D̊AζB] ,(38)

L2(ξ) := −
(
ε+

1

2
Δγ̊

)
D̊Bξ

B .(39)

For further convenience we note the transformation laws, in this notation

and for i ≥ 1,

h̃uA = huA + L1(ξ
u)A + r2

(
∂uξA +

(
α2 +

2m

r3
)
D̊Aξ

u
)
,(40)

∂i
uh̃uA = ∂i

uhuA +
1

2
L1(D̊B∂

i−1
u ξB)A(41)

+ r2
[
∂i+1
u ξA +

1

2

(
α2 +

2m

r3
)
D̊AD̊B∂

i−1
u ξB

]
,

h̃uu = huu + r
[(
α2 − m

r3
)
Δγ̊ξ

u + D̊B∂uξ
B
]
+ L2(ξ)(42)

+
3m

r
D̊Bξ

B ,

h̃AB = hAB + 2r2C(ζ)AB(43)

= hAB + 2r2C(ξ)AB − 2rTS[D̊AD̊Bξ
u] ,

∂i
uh̃AB = ∂i

uhAB + 2r2C(∂i
uξ)AB(44)

− rTS[D̊AD̊BD̊C∂
i−1
u ξC ] ,

D̊Ah̃uA = D̊AhuA − 1

2
Δγ̊ (Δγ̊ + 2ε)ξu(45)

+ r2
[
D̊A∂uξ

A +
(
α2 +

2m

r3
)
Δγ̊ξ

u
]
,

D̊Bh̃AB = D̊BhAB + r2(Δγ̊ + ε)ξB − rD̊A(Δγ̊ + 2ε)ξu(46)

= D̊BhAB + r2(Δγ̊ + ε)ξA + 2rL1(ξ
u)A ,

D̊AD̊Bh̃AB = D̊AD̊BhAB + r2(Δγ̊ + 2ε)D̊Aξ
A(47)

− rΔγ̊(Δγ̊ + 2ε)ξu

= D̊AD̊BhAB − 2r2L2(ξ)− rΔγ̊(Δγ̊ + 2ε)ξu .
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3.3. Null constraint equations

We now turn our attention to Einstein equations,

(48) Gμν := Rμν −
1

2
gμνR = 8πTμν − Λgμν

and their linearisation in Bondi coordinates.

3.3.1. hur. The Grr component of the Einstein tensor, which we repro-
duce from [4], reads:

(49)
r

4
Grr = ∂rβ − r

16
γACγBD(∂rγAB)(∂rγCD) .

Since the right-hand side of (49) is quadratic in ∂rγAB, after linearising in
vacuum we find

(50) ∂rδβ = 0 ⇐⇒ δβ = δβ(u, xA) .

Using a terminology somewhat similar to that of [1], we thus obtain a point-
wise radial conservation law for δβ, and an apparent obstruction to gluing:
two linearised fields can be glued together if and only if their Bondi functions
δβ coincide.

However, it follows from (32) that we can always choose a gauge so that
δβ ≡ 0. Thus, (50) does not lead to an obstruction for gluing-up-to-gauge.
Hence, when gluing, we will always use the gauge where δβ = 0. As such,
in the current section we will not assume δβ = 0 unless explicitly indicated
otherwise.

3.3.2. huA. From the GrA-component of the Einstein equations one has

∂r

[
r4e−2βγAB(∂rU

B)
]
= 2r4∂r

( 1

r2
DAβ

)
(51)

−r2γEFDE(∂rγAF ) + 16πr2TrA .

The linearisation of GrA at a Birmingham-Kottler metric reads

2r2δGrA = ∂r
[
r4γ̊AB(∂rδU

B)
]
− 2r4∂r

( 1

r2
D̊Aδβ

)
(52)

+r2∂r

(
r−2D̊BhAB

)
.
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The linearised vacuum Einstein equation thus gives

∂r

[
r4∂r(r

−2huA) + 2r2D̊Aδβ
]
= 8rD̊Aδβ + D̊Br2∂r

(
r−2hAB

)
.(53)

Integration of this transport equation gives us a representation formula for

∂rhuA:[
s4∂s(s

−2huA) + 2s2D̊Aδβ
]r
s=r1

=

∫ r

r1

8sD̊Aδβ + D̊Bs2∂s
(
s−2hAB

)
ds .(54)

In the gauge δβ = 0, and after performing an integration by parts on the

right-hand side, this can be written as,

r4∂rȟuA|r = r41∂rȟuA|r1 +
[
D̊BhAB

]r
r1
− 2

∫ r

r1

κ̂1(s)D̊
BhAB ds(55)

where we have defined,

κ̂1(s) :=
1

s
.(56)

Given dS1
and dS2

, equation (55) evaluated at r = r2 gives a condition for

the field hAB(r), where r ∈ (r1, r2) which has to hold when constructing the

solution to the gluing problem on N[r1,r2].

Now, the cokernel of the operator d̊iv(2)

d̊iv(2) : ϕAB �→ D̊BϕAB

acting on traceless symmetric tensors ϕAB, and which appears in (53) in

front of hAB, is spanned by solutions of the system

(57) TS[D̊AπB] = 0 ,

with πA = πA(u, x
B). The space of solutions of (57) is the space of conformal

Killing vector fields, which we denote by CKV. This space is six-dimensional

on S2, and is isomorphic to the Lie algebra of the Lorentz group. On a two-

dimensional torus T2, solutions of (57) belong to the two-dimensional space

of covariantly constant vectors. Finally, the space of solutions of (57) on

a two-dimensional negatively curved compact manifold is trivial; cf . Ap-

pendix C.2.
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The projection of (53) onto πA in the gauge δβ = 0 gives

∂r

∫
S
πA
[
r4∂r(r

−2huA)
]
dμγ̊ =

∫
S
πAD̊B

[
r2∂r

(
r−2hAB

) ]
dμγ̊(58)

=

∫
S
TS[D̊BπA]

(
r2∂r

(
r−2hAB

) )
dμγ̊

= 0 ,

and thus the integrals

[1]

Q(πA)[S] :=

∫
S
πA
[
r4∂r(r

−2huA)
]
dμγ̊(59)

form a family of radially conserved charges, with

∂r
[1]

Q = 0

along any u = constant null hypersurfaces with the gauge choice δβ = 0.

This leads to a six-dimensional family of obstructions to gluing on S2,

two-dimensional on T
2, and no obstructions on null surfaces with sections

of higher-genus.

We shall denote the dependence of
[1]

Q on dS as
[1]

Q =
[1]

Q[dS]. Thus in the

gauge δβ = 0, to achieve gluing of dS1
and dS2

, it must hold that

(60)
[1]

Q[dS1
] =

[1]

Q[dS2
] .

Indeed, it follows from Appendix C.3, p. 780 that (60) is a necessary

and sufficient condition for r42∂rȟuA|S2
− r42∂rȟuA|S1

to lie in the image of

the operator d̊iv(2) acting on traceless symmetric tensors, or equivalently,

for the existence of a solution ϕ̃AB(x
C) to the equation

r42∂rȟuA|S2
= r41∂rȟuA|S1

− D̊BhAB|S1
− D̊Bϕ̃AB .(61)

The gluing condition (55) evaluated at r = r2 can thus be achieved by

interpolating hAB on N(r1,r2) so that

(62) 〈hAB, κ̂1〉 = ϕ̃AB ,



706 Piotr T. Chruściel and Wan Cong

where ϕ̃AB is the solution to (61), and where we write, for f, h : (r1, r2) → R,

〈f, h〉 :=
∫ r2

r1

f(s)h(s)ds .

Under the gauge transformation (34),
[1]

Q transforms as∫
S
πA
(
r4∂rȟuA

)
dμγ̊(63)

→
∫
S
πAr4∂r

(
ȟuA +

1

r2
L1(ξ

u)A

+ (̊γAB∂uξ
B +

(
α2 +

2m

r3
)
∂Aξ

u)

)
dμγ̊

=

∫
S
πA

(
r4∂rȟuA + 2rD̊B TS[D̊AD̊Bξ

u]− 6m∂Aξ
u

)
dμγ̊

=

∫
S

(
πAr4∂rȟuA + 6mξuD̊Aπ

A
)
dμγ̊ .

So on S2, if m = 0 we see that
[1]

Q is gauge invariant, hence

[1]

Q[dS1
] =

[1]

Q[dS2
] ⇐⇒

[1]

Q[dS̃1
] =

[1]

Q[dS̃2
] .

If m �= 0,
[1]

Q is invariant under gauge transformations for which D̊Aπ
A

vanishes; these generate rotations of S2.

On the remaining topologies we have D̊Aπ
A = 0, so that the charges

[1]

Q
are gauge-invariant independently of whether or not the mass parameter m
vanishes.

Now, let ψA denote (compare (52)),

ψA := −2r4∂r

(
1
r2DAδβ

)
+ r2∂r

(
r−2D̊BhAB

)
.(64)

Integrating (52) in r twice one obtains a representation formula for huA:

huA(u, r, x
B) = r2μA(u, x

B) +
λA(u, x

B)

r
(65)

−r2
∫ r

r1

ψA(u, s, x
B)

(
1

3r3
− 1

3s3

)
ds ,
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with μA and λA determined by huA(u, r1, x
B) and ∂rhuA(u, r1, x

B).
The part of (65) involving hAB can be viewed as the following map:

hAB �→ −r2
∫ r

r1

s2∂s

(
s−2D̊BhAB

)( 1

3r3
− 1

3s3

)
ds(66)

= −r2

3
D̊B

[∫ r

r1

∂s
(
s−2hAB

)(s2

r3
− 1

s

)
ds

]
= −r2

3
D̊B
[
hAB(u, s, x

A)

(
1

r3
− 1

s3

) ∣∣∣r
r1

−
∫ r

r1

hAB

(
2

sr3
+

1

s4

)
ds
]
.

When δβ ≡ 0 we thus obtain

huA(u, r, x
B) = r2μA(u, x

B) +
λA(u, x

B)

r
(67)

+ D̊BhAB(u, r1, x
A)

(
r

3
− r2

3r31

)
+

r2

3

∫ r

r1

D̊BhAB

(
2

sr3
+

1

s4

)
ds .

For future use we will track the differentiability orders of the fields in-
volved. Denoting the Sobolev spaces over S as HkU

for δUA ≡ −r−2γ̊ABhuB,
and Hkγ

for δγAB ≡ ȟAB = r−2hAB, Equation (67) implies

(68) kγ ≥ kU + 1 .

We emphasise that these spaces keep only track of the differentiability in
directions tangent to S at given r, with no information concerning the be-
haviour in the r-direction. But note that in our setup all fields on the inter-
polating initial data hypersurface are smooth in the r-variable.

3.3.3. huu. To obtain the transport equation for the function V occurring
in the Bondi form of the metric, it turns out to be convenient to consider
the expression for 2Gur + 2UAGrA − V/r Grr:

r2e−2β(2Gur + 2UAGrA − V/r Grr) = R[γ]− 2γAB
[
DADBβ(69)

+(DAβ)(DBβ)
]
+

e−2β

r2
DA

[
∂r(r

4UA)
]
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−1

2
r4e−4βγAB(∂rU

A)(∂rU
B)− 2e−2β∂rV ,

(It follows directly from the definition of Gμν and the Bondi parametrisation

of the metric that r2e−2β(2Gur + 2UAGrA − V/r Grr) can equivalently be

written as r2gABRAB; compare Appendix D).

Let R̊AB = ε̊γAB denote the Ricci tensor of the metric γ̊AB. As hAB is

γ̊-traceless we have

r2δ(R[γ])|γ=γ̊ = −D̊AD̊A(̊γ
BChBC) + D̊AD̊BhAB − R̊ABhAB(70)

= D̊AD̊BhAB .

Linearising (69) around a Birmingham-Kottler background thus gives

∂r(δV − r2

2
D̊AδU

A) =
1

2

{
D̊AD̊BȟAB − 2γABD̊AD̊Bδβ

}
(71)

+ rD̊AδU
A + 2(ε− r2Λ)δβ .

We note that since δ(Gur +UAGrA) = δGur, (71) is equivalent to the equa-

tion r2δGur = r2Λhur.

In the δβ = 0 gauge, Equation (71) provides another family of radially

conserved charges:

[2]

Q(λ) :=

∫
S
λ

[
δV − r

2
∂r

(
r2D̊AδUA

)]
dμγ̊ ,(72)

where the functions λ(xA) are solutions of the equation

(73) TS[D̊AD̊Bλ] = 0 .

The only solutions of this equation on a torus or on a higher genus manifold

are constants. On S2 such λ’s are linear combinations of � = 0 or � = 1

spherical harmonics [17]. We thus obtain another four-dimensional family

of obstructions on S2, and a one-dimensional family of obstructions in the

remaining topologies.

The conservation equation ∂r
[2]

Q = 0 is the consequence of an identity,

already observed in [7], of the form

(74) δGur −
1

r
D̊AδGrA = ∂r(....) ,
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which can be derived as follows:

∂r

[
δV − r

2
∂r

(
r2D̊AδUA

)]
= ∂rδV − ∂r

(
r

2
∂r

(
r2D̊AδUA

))
(75)

= ∂rδV − 2rD̊AδU
A − r2

2
D̊A∂rδU

A︸ ︷︷ ︸
=1/2D̊AD̊B ȟAB

−1

2
(r3∂2

r D̊AδU
A + 4r2∂rD̊AδU

A)︸ ︷︷ ︸
=r/2∂r

(
D̊AD̊B ȟAB

)
= D̊AD̊B

[
1

2
ȟAB +

r

2
∂rȟAB

]
=

1

2
∂r

(
rD̊AD̊BȟAB

)
.

Hence

(76) ∂r
[2]

Q =
1

2

∫
S
λ∂r
(
rD̊AD̊BȟAB

)
dμγ̊ = 0.

Under a gauge transformation the radial charge
[2]

Q transforms as∫
S
λ
[
δV +

r

2
D̊A∂rhuA

]
dμγ̊(77)

→
∫
S
λ
[
δV + r

(
ε+

1

2
Δγ̊ −

3m

r

)(
D̊Bξ

B
)

− r2
[
D̊B∂uξ

B +
(
α2 − m

r3
)
Δγ̊ξ

u
]

+
r

2

(
D̊A∂rhuA + 2r

[
D̊B∂uξ

B +
(
α2 − m

r3
)
Δγ̊ξ

u
])]

dμγ̊

=

∫
S
λ
[
δV +

r

2
∂rD̊

AhuA

]
dμγ̊

+

∫
S
λ
[
r

(
ε+

1

2
Δγ̊ −

3m

r

)(
D̊Bξ

B
)]

dμγ̊ .

Taking D̊A of (73) gives,

(78) D̊BΔγ̊λ = −2R̊ABD̊
Aλ ,
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where R̊AB is the Ricci tensor of the metric γ̊. Inserting this into (77) gives

[2]

Q �→
∫
S
λ
[
δV +

r

2
D̊A∂rhuA

]
dμγ̊ − 3m

∫
S
λD̊Bξ

B .(79)

Therefore, a)
[2]

Q(λ) is gauge invariant when m = 0 for all λ’s satisfying (73),

while b) when m �= 0, only
[2]

Q(λ[1]) is gauge invariant.
As already pointed out, (75) takes the form of a pointwise radial conser-

vation law:

∂rχ = 0 ,

where

χ := −δV +
r

2
∂r

(
r2D̊AδUA

)
+

1

2
rD̊AD̊BȟAB(80)

= −δV − r

2
∂rD̊

AhuA +
1

2r
D̊AD̊BhAB .

We note that (71) can be used to rewrite χ as (cf. [7, Equation (D.4)])

(81) χ = −r2∂rhuu + D̊AhuA .

Under gauge transformations χ transforms as

(82) χ �→ χ− 1

2
(Δγ̊ + 2ε)Δγ̊ξ

u︸ ︷︷ ︸
=L̊(ξu)

+3mD̊BξB .

This shows that, on S2, χ[(ker L̊)⊥] = χ[≥2] can be made to achieve any desired
value by a suitable choice of (ξu)[≥2]. For the remaining topologies this is

the case for χ[(ker L̊)⊥] = χ[1⊥] using (ξu)[1
⊥].

It further follows from (82) that the projection χ[1] is gauge invariant for
all topologies regardless of m. Moreover, when m = 0, the projection χ[≤1] is
also gauge-invariant on S2. These projections are determined by the radial
charge (72), i.e.

[2]

Q(λ) = r

∫
S
λ
[
− huu +

1

2
∂rD̊

AhuA
]
dμγ̊(83)

= −r

∫
S
λhuudμγ̊ +

r

2
∂r

∫
S
λD̊AhuAdμγ̊ ,
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where λ is a linear combination of � = 0 and � = 1 spherical harmonics on
S2, and is a constant in the remaining cases, as follows: Recall that

[1]

Q(D̊λ) =

∫
S
D̊Aλ

[
r4∂r(r

−2huA)
]
dμγ̊(84)

= −
∫
S
λ
[
r4∂r(r

−2D̊AhuA)
]
dμγ̊

= −r4∂r
(
r−2

∫
S
λD̊AhuA dμγ̊

)
,

see (59). Integrating (84) over S shows that there exists a function
[1]

C(u, xA)
such that

∫
S
λD̊AhuA dμγ̊ =

[1]

Q(D̊λ)

3r
+

[1]

Cr2 ,(85)

which is non-zero on S2 only. It then follows from (83) that

∫
S
λhuudμγ̊ = −

[2]

Q(λ)

r
+

1

2
∂r

∫
S
λD̊AhuAdμγ̊(86)

= −
[2]

Q(λ)

r
−

[1]

Q(D̊λ)

6r2
+

[1]

Cr .

Hence, whatever the topology,∫
S
λχdμγ̊ =

∫
S
λD̊AhuAdμγ̊ − r2∂r

∫
S
λhuudμγ̊ = −

[2]

Q(λ) .(87)

Writing HkV
for the Sobolev space of the δV ’s, (71) above implies

(88) kγ ≥ kV + 2 and kU ≥ kV + 1.

3.3.4. ∂uhAB. We continue with ∂uhAB, as determined from [4, Equa-
tion (32)]:

∂r

[
r∂uγAB − 1

2
V ∂rγAB − 1

2r
V γAB

]
(89)

= −1

2
∂r(V/r)γAB − 1

r
TS
[
e2βR[γ]AB − 2eβDADBe

β
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+ γCADB[∂r(r
2UC)]− 1

2
r4e−2βγACγBD(∂rU

C)(∂rU
D)

+
r2

2
(∂rγAB)(DCU

C) + r2UCDC(∂rγAB)

− r2(∂rγAC)γBE(D
CUE −DEUC) + Λe2βgAB − 8πe2βTAB

]
.

The linearisation of (89) around a Birmingham-Kottler background in
vacuum reads, keeping in mind that TS[R[γ]AB] = 0 in dimension two,

0 =
1

r
TS[δGAB](90)

= ∂r

[
r∂uȟAB − 1

2
V ∂rȟAB − 1

2r
V ȟAB − rTS

[
D̊AȟuB

]]
+
1

2
∂r(V/r)︸ ︷︷ ︸

mr−2−α2r

ȟAB − r−1
(
2D̊AD̊Bδβ + rTS

[
D̊AȟuB

])
.

Integrating this equation gives

s∂uȟAB

∣∣∣r
r1

=
[1
2
V ∂sȟAB +

V

2s
ȟAB + sTS

[
D̊AȟuB

]]r
r1

(91)

+

∫ r

r1

[
− 1

2
∂s(V/s)ȟAB

+ 1/s
(
2D̊AD̊Bδβ + sTS

[
D̊AȟuB)

])]
ds .

Denoting Hk∂uγ
� ∂uȟAB, (91) implies

(92) kβ ≥ k∂uγ + 2 and kU ≥ k∂uγ + 1.

When δβ = 0, using (67) in the last term of (91) leads to

∂uhAB = r
∂uhAB|r1

r1
− r

2

[
V ∂rȟAB +

1

s
V ȟAB(93)

−
( 1

s2
− 1

r2

)
TS
[
D̊AD̊

ChBC

]]∣∣∣
s=r1

+ 2rTS
{r21(r21 − r2)

4r2
∂sD̊AȟuB|r1 − r1D̊AȟuB|r1

+ rD̊A

[
r2μB(u, x

C) +
λB(u, x

C)

r

− r2

3
D̊ChBC(u, r1, x

A)

(
1

r31
− 1

r3

)]}
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+ r

[
V

2r

[
r∂rȟAB + ȟAB

]
+

∫ r

r1

[(α2

s
− m

s4
)
hAB +

( 1

3sr2
+

2r

3s4

)
TS
[
D̊AD̊

ChBC

]]
ds

]
.

Recall that

V = rε− α2r3−2m.

Let us write b.d.|r1 for terms known from “boundary data at r1”. We

rewrite (93) as

∂uhAB = b.d.|r1 + r

[
V

2r

[
r∂rȟAB + ȟAB

]
+

∫ r

r1

[(α2

s
− m

s4
)
hAB(94)

+
( 1

3sr2
+

2r

3s4
)
TS
[
D̊AD̊

ChBC

]︸ ︷︷ ︸
=:PhAB

]
ds

]

=
r(εr − α2r3 − 2m)

2

[
∂r(r

−2hAB) +
1

r3
hAB

]
+

∫ r

r1

[
(
α2r

s
− mr

s4
)︸ ︷︷ ︸

(1,0)

ψ

hAB +
( 1

3sr
+

2r2

3s4
)

︸ ︷︷ ︸
(1,1)

ψ (s,r)

PhAB

]]
ds+ b.d.|r1 .

For further use it is convenient to separate the terms involving α and m

from the remaining ones:

∂uhAB =
ε

2

[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
1

3sr
+

2r2

3s4

)
PhAB ds

(95)

− (
α2r2

2
+

m

r
)
[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
α2r

s
− mr

s4
)hAB ds+ b.d.|r1 .

3.4. A pointwise radial conservation law

In this section we show that the equation

TS
(1
r
δGAB + D̊AδGrB

)
= 0(96)
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can be written as a radial conservation law, ∂r(....) = 0 when m = 0 = α =
δβ, where P is as in (94):

PhAB := TS[D̊AD̊
ChBC ] .(97)

We further show that the equation obtained by taking d̊iv(2) of (96),

(98) D̊A
[
TS
(1
r
δGAB + D̊AδGrB

)]
= 0

can likewise be written as a radial conservation law when m = 0 = δβ,
for any α. This is likely to be related to the contracted Bianchi identity
discussed in Section 3.5 below, but if and how is not clear.

Indeed, when δβ = 0, taking 1
2r2 × C of (53) gives

1

2r2
∂r

[
r4∂r(r

−2TS[D̊BhuA])
]
− 1

2
∂r
(
r−2PhAB

)
= 0 .(99)

Subtracting (99) from (90) leads to

∂r

[
r∂uȟAB − V

2
∂rȟAB − V

2r
ȟAB −

∂r
(
r2TS[D̊AhuB]

)
2r2

+
PȟAB

2︸ ︷︷ ︸
:=qAB

]
(100)

=
(α2

r
− m

r4
)
hAB .

Hence qAB is radially conserved when α = m = 0.
Under a gauge transformation qAB transforms as

qAB �→ qAB −
[
TS[D̊AD̊BD̊Cξ

C ]− (P − ε+ α2r2 − 2m

r
)C(ξ)AB

)
(101)

− (2αr +
m

r2
) TS[D̊AD̊Bξ

u]
]
.

Since C(X)[TT] = 0 for any vector field XA (cf. Proposition C.3, Ap-

pendix C.2 below), the field q
[TT]
AB is gauge-independent and, when α = 0 =

m, gives a 2-dimensional family of radially conserved charges on T
2, and a

6(g− 1)-dimensional family of such charges on sections with genus g ≥ 2.
Next, taking the divergence of (100) and using (53) we find

∂r(D̊
BqAB) = −α2

2
∂r

[
r4∂r(r

−2huA)− D̊BhAB

]
− m

r4
D̊BhAB .(102)
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Setting δβ = 0 in (53) we have

∂r

(
3ȟuA + r∂rȟuA − r−3D̊BhAB

)
= r−4D̊BhAB .(103)

Equation (103) allows us to rewrite (102) as:

∂r

[
D̊BqAB +

α2

2

(
r4∂r(ȟuA)− D̊BhAB

)
(104)

+m
(
3ȟuA + r∂rȟuA − r−3D̊BhAB

)]
= 0 .

We define

[3,1]

Q A

2
:=rD̊B∂uȟAB − 1

2
V ∂rD̊

BȟAB − 1

2r
V D̊BȟAB(105)

− 1

2r2
∂r
(
r2D̊B TS[D̊AhuB]

)
+

1

2
D̊BPȟAB +

α2

2

(
r4∂r(r

−2huA)− D̊BhAB

)
+m(3ȟuA + r∂rȟuA − r−3D̊BhAB) ,

with
[3,1]

Q A being r− independent by (104), where the notation
[3,1]

Q A should
be clear from (115) below. Equivalently, the field

[3,1]

Q A =D̊B
[
2r∂uȟAB − V ∂rȟAB − 1

r2
∂r
(
r4TS[D̊AȟuB]

)
(106)

+
(
P − ε

)
ȟAB

]
+ α2r4∂rȟuA + 2m(3ȟuA + r∂rȟuA)

is radially conserved.
To continue, for πA ∈ CKV and i ≥ 0 we set

(107)
[4,i]

Q (πA) :=

∫
S
πA

(
3∂i

uȟuA + r∂r∂
i
uȟuA

)
dμγ̊ .

It follows from the u-derivatives of (103) that these are radially conserved
charges. Furthermore it holds that∫

S
πA

[3,1]

Q A dμγ̊ =

∫
S
πA(α2r4∂rȟuA + 2m(3ȟuA + r∂rȟuA)) dμγ̊(108)
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= α2
[1]

Q(πA) + 2m
[4,0]

Q (πA) ;

recall that
[1]

Q(πA) has been defined in (59). Thus
[3,1]

Q
[CKV]
A is zero if m = 0 =

α, and is determined by
[1]

Q and
[4,0]

Q otherwise.

Under a gauge transformation
[3,1]

Q A transforms as

[3,1]

Q A �→
[3,1]

Q A + 2 D̊B
{
− TS[D̊AD̊BD̊Cξ

C ] +
(
P − ε

)
TS[D̊AξB]

}
︸ ︷︷ ︸

=(L̂ξ)A

(109)

+ 6m∂uξA ,

where the operator L̂ can be written as

(110) L̂ = −d̊iv(2)C L , L := D̊ d̊iv(1) − d̊iv(2)C + ε .

It follows from Proposition C.6, Appendix C.4, that the gauge transforma-

tions (109) associated with ξA act transitively on
[3,1]

Q
[(CKV+H)⊥]
A .

In the case m �= 0, the gauge-transformations associated with ∂uξA clearly

act transitively on the collection of all radial charges
[3,1]

Q A.

On S2 we have H = {0}, and when m = 0 but α �= 0 we conclude that

there the integrals

[3,1]

Q
[CKV]
A =

[3,1]

Q
[<2]
A =

[3,1]

Q
[=1]
A ,

provide a 6-dimensional family of gauge-invariant radially-conserved charges.

On T
2 we have (compare (327)-(328) below)

L̂(ξ)A = −1

2
Δγ̊(D̊AD̊

CξC − 1

2
Δγ̊ξA) ,(111)

L(ξ)A = D̊AD̊
CξC − 1

2
Δγ̊ξA ,(112)

with kernels and cokernels spanned by covariantly constant vectors. So

CKV = KV = H, and when m = 0 it follows that on a torus the gauge

transformations (109) act transitively on
[3,1]

Q
[KV⊥]
A , and that

[3,1]

Q
[KV]
A gives a

2-dimensional family of gauge-invariant radially-conserved charges.
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On negatively curved two dimensional manifolds with genus g we have

CKV = {0} so that CKV+H = H and, again when m = 0,
[3,1]

Q A leads to a

2g-dimensional family of gauge-invariant radially-conserved charges
[3,1]

Q [H].

Summarising: we can always choose
(2)

ξ A so that

(113)
[3,1]

Q [dS1
][(CKV+H)⊥] =

[3,1]

Q [dS2
][(CKV+H)⊥]

holds. When m = 0 the equality

(114)
[3,1]

Q [dS1
][CKV+H] =

[3,1]

Q [dS2
][CKV+H]

provides an obstruction to gluing; when m �= 0 it can be enforced by an

appropriate choice of ∂uξ
[CKV+H]
A . On S2 and on T

2 the condition (114)

is trivially satisfied when m = α = 0, and reduces to the requirement of

conservation of
[1]

Q and
[4,0]

Q if mα �= 0.

It should be clear from the above that if we set, for i ≥ 1,

[3,i+1]

Q A :=D̊B
[
2r∂i+1

u ȟAB − V ∂r(∂
i
uȟAB)−

1

r2
∂r
(
r4TS[D̊A∂

i
uȟuB]

)
(115)

+
(
P − ε

)
∂i
uȟAB

]
+ α2r4∂r∂

i
uȟuA

+ 2m(3∂i
uȟuA + r∂r∂

i
uȟuA) ,

then we have:

Lemma 3.1. Suppose that for i ≥ 0 the i’th u-derivative of (53) and (90)

with δβ ≡ 0 hold. Then

∂r
[3,i+1]

Q A = 0 . �
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Similarly to (108), for conformal Killing vectors πA we have∫
S
πA

[3,i]

Q A dμγ̊(116)

=

∫
S
πA
(
α2r4∂r∂

i−1
u ȟuA + 2m(3∂i−1

u ȟuA + r∂r∂
i−1
u ȟuA)

)
dμγ̊

=: α2
[1,i−i]

Q (πA) + 2m
[4,i−1]

Q (πA) ,

so that the left-hand side obviously vanishes if α = 0 = m. In fact, for i ≥ 2
there is no obstruction regardless of α and m, as our arguments below show
that the right-hand side of the last equation is continuous at r2 when the
Einstein equations together with a sufficient number of their u-derivatives
hold on N .

Under gauge transformations, it follows from (109) that

[3,i+1]

Q A �→
[3,i+1]

Q A + 2(L̂∂i
uξ)A + 6m∂i+1

u ξA .(117)

3.5. The remaining Einstein equations

Let us start by recalling that the Einstein equations

Eμν := Gμν + Λgμν − 8πTμν

can be split as

E u
μ = 0 , EAB − 1

2g
CDECDgAB = 0 ,(118)

gCDECD = 0 ,(119)

∂r(r
2e2βE r

u) = 0 , ∂r(r
2e2βE r

A) = 0 ,(120)

and the following holds (cf., e.g., [4, Section 3]): Suppose that (118) holds
on a null hypersurface N and that

(121) ∂uE
u
μ|N = 0 .

Then a) (119) is satisfied automatically on N , and b) the equations E r
u|N =

E r
A|N = 0 will hold if they are satisfied at one single value of r. This follows

from the observation that, in Bondi coordinates, we have the identity

(122) ∇μE μ
ν =

1√
| det g|

∂μ(
√

| det g|E μ
ν) +

1

2
Eμσ∂νg

μσ .
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In the current context this implies, using ∂νg
uμ = 0 = ∂ug

μσ and the diver-
gence identity,

(123) 0 =
1√

| det g|
∂μ(
√

| det g|δE μ
ν) +

1

2

∑
μ,σ �=u

δEμσ ∂νg
μσ︸ ︷︷ ︸

0 if ν=u

.

Since δE u
μ = −δErμ, when the main equations (118) are satisfied (123)

becomes

0 =
1√

| det g|
∂μ(
√

| det g|δE μ
ν) +

1

2

∑
μ,σ �∈{u,r}

δEμσ∂νg
μσ(124)

=
1√

| det g|
∂μ(
√

| det g|δE μ
ν) +

1

2
δEAB ∂νg

AB︸ ︷︷ ︸
0 if ν=u

.

In what follows we assume

(125) δE u
μ|N = 0 = ∂uδE

u
μ|N .

We review the standard argument, which is a somewhat simplified version
of what needs to be done in our gluing. Setting ν = r in (124) one obtains
immediately

0 = −1

r
gABδEAB|N ,(126)

hence the linearisation of (119) holds on S . So the linearised version of the
second equation in (118) is equivalent to δEAB|N = 0. Then δE A

B|N =
gACδECB |N = 0, and (124) with ν = A becomes

0 =
1

r2
∂r(r

2δE r
A)|N ,(127)

as desired. So, if E r
A vanishes for some r on N , it will vanish throughout

N . Now, (124) with ν = u reduces to

0 =
1

r2
∂r(r

2δE r
u)|N +

1

r2
∂A(r

2δE A
u)|N .(128)

and what has been said about δE A
u|N gives the result.

The above means that there is no need to integrate in r these Ein-
stein equations which have not been discussed so far, namely gABEAB = 0,
EuA = 0 and Euu = 0, when (125) holds. Indeed, once the already analysed
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equations (118) are solved, together with their first u-derivatives, the whole

set of Einstein equations will be solved by ensuring that E r
A = 0 = E r

u

holds at one value of r; this is equivalent to ensuring EuA = 0 = Euu at one

value of r.

The same scheme applies to the set of equations obtained by further

differentiating the Einstein equation in u an arbitrary number of times.

3.5.1. ∂u∂rhuA. The equations EuA = 0 are too long to be usefully dis-

played here. Their linearisation δEuA ≡ −δE r
A + (ε − α2r2 − 2m

r )δErA in

vacuum reads

0 = 2δEuA =
1

r2

[
D̊BD̊AhuB − D̊BD̊BhuA + ∂uD̊

BhAB(129)

− r2
((

ε− r2α2 − 2m

r

)
∂2
rhuA + (2α2 +

4m

r3
)huA

− r2∂r∂u

(
huA
r2

)
+ ∂rD̊Ahuu

)]
.

This equation is satisfied both by dS1
and dS2

in vacuum.

Assuming δGrA = 0, using the transport equation (53) to eliminate

∂2
r ȟuA and the identity (81) to eliminate ∂rhuu, we can rewrite (129) as

−r4∂r∂u

(
huA
r2

)
= D̊BD̊AhuB − D̊BD̊BhuA + ∂uD̊

BhAB(130)

− r2
((

ε− r2α2 − 2m

r

)
∂2
rhuA

+ (2α2 +
4m

r3
)huA + ∂rD̊Ahuu

)
= D̊B

[
− 2TS[D̊BhuA] + ∂uhAB

+ (α2r2 − ε+
2m

r
)r2∂r

(
r−2hAB

) ]
+ D̊Aχ .

Using the fact that ∂rχ = 0 we obtain, for any πA(xB) satisfying TS[D̊AπB] =

0,

(131) ∂r

∫
S
πAr4∂u∂rȟuAdμγ̊ ≡ ∂r

[1,1]

Q (πA) = 0 ,
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where we recall from (116) that for 0 ≤ i ∈ N,

(132)
[1,i]

Q (πA) :=

∫
S
πAr4∂i

u∂rȟuAdμγ̊ .

Clearly, by u-differentiating (130), we conclude that ∂i
uδEuA = 0 implies

(133) ∂r
[1,i+1]

Q (πA) = 0 .

for i ≥ 0.
Denoting Hk∂uU

� ∂uδU
A, (129) implies

(134) kU ≥ k∂uU + 2, k∂uγ ≥ k∂uU + 1 and kV ≥ k∂uU + 1.

3.5.2. ∂uhuu. The equation Euu = 0 is likewise too long to be usefully dis-
played here. Its linearised version is shorter and, in vacuum, can be rewritten
as an equation for the transverse derivative ∂u(rhuu − D̊AhuA):

0 = 2δEuu(135)

=
1

r2

[
2
(
∂u +

(
α2r2 − ε+

2m

r

)
∂r +

3m

r2
− ε

r

)
D̊AhuA

− D̊AD̊Ahuu −
(
α2r2 − ε+

2m

r

)(D̊AD̊BhAB

r2

)
− 2r∂uhuu − 2

(
α2r2 − ε+

2m

r

)
∂r(rhuu)

]
This must be satisfied by dS1

and dS2
when the linearised vacuum Ein-

stein equations hold.
Denoting Hk∂uV

� ∂uδV , (135) implies

(136) kU ≥ k∂uV + 1, kV ≥ k∂uV + 2 and kγ ≥ k∂uV + 2.

3.6. Regularity

The regularity analysis carried-out so far is summarised by the following
inequalities for the regularity of the metric components:

huA equation : kβ ≥ kU + 1 , kγ ≥ kU + 1 ,(137)

huu equation : kγ ≥ kV + 2 , kU ≥ kV + 1 ,(138)

∂uhAB equation : kβ ≥ k∂uγ + 2 , kU ≥ k∂uγ + 1 ,(139)
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∂u∂rhuA equation : kU ≥ k∂uU + 2 , kV ≥ k∂uU + 1 ,(140)

k∂uγ ≥ k∂uU + 1 ,

∂uhuu equation : kU ≥ k∂uV + 1 , kV ≥ k∂uV + 2 ,(141)

kγ ≥ k∂uV + 2 .

A consistent scheme for the linearised equations will thus be obtained if we
choose any field hAB such that hAB(r, ·) ∈ Hkγ

(S), for all r ∈ [r1, r2], with
kγ ≥ 4 and

kβ = kγ , kU = kγ − 1 , kV = kγ − 2 , k∂uU = kγ − 3 ,(142)

k∂uV = kγ − 4 , k∂uγ = kγ − 2 .(143)

Note that the question of regularity of r-derivatives of γ has been swept
under the rug using integration by parts. This question will need to be
addressed when dealing with the nonlinear problem.

The regularity properties of the metric will be compatible with gauge
transformations (28)-(31) if we assume, using obvious notation,

huA equation : kξu ≥ kU + 3 , k∂uξu ≥ kU + 1 ,(144)

kξA ≥ kU + 2 ,

hur equation : k∂uξu ≥ kβ , kξA ≥ kβ + 1 ,(145)

huu equation : k∂uξu ≥ kV + 2 , k∂uξB ≥ kV + 1 ,(146)

kξu ≥ kV + 2 , kξB ≥ kV + 1 ,

hAB equation : kξA ≥ kγ + 1 , kξu ≥ kγ + 2 ,(147)

∂uhAB equation : k∂uξA ≥ k∂uγ + 1 , k∂uξu ≥ k∂uγ + 2 .(148)

A scheme consistent with (142)-(148) results by choosing

(149) kξu = kγ + 2 , k∂uξu = kγ , kξA = kγ + 1 , k∂uξA = kγ − 1 .

3.7. Further u-derivatives

The representation formula for higher u-derivatives of the linearised met-
ric components can be obtained by taking the u-derivatives of the existing
equations. This gives, for i ≥ 0, representation formulae of the form

∂i
uhAB =

(i)

ΨAB(u, r, x
A) +

∑
0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

khAB(150)
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+

∫ r

r1

i∑
j=0

(i,j)

ψ (s, r)P jhAB ds ,

∂i
uȟuA =

(i)

XA(u, r, x
A) + D̊B

[ ∑
0≤j+k≤i,k �=i

(i,j,k)
χ (r)∂j

rP
khAB(151)

+

∫ r

r1

i∑
j=0

(i,j)
χ (s, r)P jhAB ds

]
,

where
(i)

X and
(i)

Ψ depend only on data at r1; recall that P denotes the operator

(152) PhAB = TS[DAD
ChBC ] .

The above is proved by induction (see Appendix B), which is initialised with
i = 0 as follows:

1. Order zero for (150) is trivial, with

(0,0,0)

ψ (r) = 1 ,
(0)

ΨAB(u, r, x
A) = 0 =

(0,0)

ψ (s, r) .(153)

We note that order one for (150) is obtained from (94), with

(1,0,0)

ψ (r) = − ε

2r
+

α2r

2
+

m

r2
,

(1,1,0)

ψ (r) =
1

2

(
ε− α2r2 − 2m

r

)
,

(1,0,1)

ψ (r) = 0 ,
(1,1)

ψ (s, r) =
2r2

3s4
+

1

3sr
,

(1,0)

ψ (s, r) =
α2r

s
− mr2

s4
.

2. Order zero for (151) follows from (67), where μ and λ are determined
from huA|r1 and ∂rhuA|r1 , with

(0,0,0)
χ (r) = 0 ,

(0,0)
χ (s, r) =

1

3

(
2

sr3
+

1

s4

)
.(154)

We note that the terms involving
(i,j,k)

ψ and
(i,j,k)
χ are innocuous at r = r2,

as they are determined by known boundary data at r2. However, they are
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essential for the induction procedure for r �= r2, as they contribute to the

key terms
(i,j)

ψ and
(i,j)
χ in the iteration. This implies in particular that the

explicit form of
(i,j,k)

ψ etc. with the highest index i = � is not needed when
gluing at order �.

Again by induction (cf. Appendix B), one shows the following:

1. All the integral kernels in (150)-(151), depending upon r and s, are
polynomials in s−1 with coefficients depending upon r;

2. when m = 0,
(i,0)

ψ is proportional to α2s−1.

3. The highest power of 1/s in
(1,j)

ψ is s−4.

4. The highest power of 1/s in
(i,j)

ψ with 1 ≤ j ≤ i is s−(i+3) when m = 0,
and this power is not larger than s−2i+j−3 whenm �= 0; cf. Lemma B.1,
Appendix B.2.

5. It holds that

(i+1,i+1)

ψ (s, r) =

∫ r

s

(i,i)

ψ (y, r)
(1,1)

ψ (s, y) dy ,

with
(1,1)

ψ (s, r) =
2r2

3s4
+

1

3rs
,

independently of m.

6. The highest power of 1/s in
(i,j)
χ with 0 ≤ j ≤ i is s−(i+4) when m = 0,

and this power is not larger than s−2i+j−4 when m �= 0.

In what follows we will often use the notation

κ̂i(s) :=
1

si
.(155)

We have collected the explicit formulae for all the integral kernels appearing
in (150)-(151), and needed for C2

u C
∞
(r,xA)-gluing, in Appendix B.

3.7.1. The transverse-traceless part. For most of our further pur-

poses, the essential role is played by the integral kernels
(i,j)
χ and

(i,j)

ψ ap-
pearing in (150)-(151). However, it turns out that when m = 0 the TT-part
of ∂i

uhAB leads to obstructions to gluing, in which case the boundary terms
in (150) become significant. This forces us to revisit the induction, as follows:
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We first consider the L2-projection of (93) on TT, with m = 0:

∂uh
[TT]
AB = r

[
∂uh

[TT]
AB

∣∣
r1

r1
− 1

2
(ε− α2r21)

(
1

r1
∂rh

[TT]
AB

∣∣
r1
− 1

r21
h
[TT]
AB

∣∣
r1

)]
︸ ︷︷ ︸

q
[TT]
AB

∣∣
r1

(156)

+
r

2
(ε− α2r2)

(
1

r
∂rh

[TT]
AB − 1

r2
h
[TT]
AB

)
+ α2r

∫ r

r1

1

s
h
[TT]
AB ds ;

equivalently,

1

r
∂uh

[TT]
AB − 1

2
(ε− α2r2)

(
1

r
∂rh

[TT]
AB − 1

r2
h
[TT]
AB

)
︸ ︷︷ ︸

q[TT]
AB

∣∣
r

=(157)

[
∂uh

[TT]
AB

∣∣
r1

r1
− 1

2
(ε− α2r21)

(
1

r1
∂rh

[TT]
AB

∣∣
r1
− 1

r21
h
[TT]
AB

∣∣
r1

)]
︸ ︷︷ ︸

q
[TT]
AB

∣∣
r1

+α2

∫ r

r1

1

s
h
[TT]
AB ds .

This can of course also be derived directly from (100), but note that this
calculation makes it clear how the tensor field qAB appears in the formalism.

It follows that when α = 0 = m, the field q
[TT]
AB provides a 2-dimensional

family of gauge-independent radially conserved charges on T
2, and a 6(g−1)-

dimensional family of such charges on sections with genus g ≥ 2.
When α �= 0 but m remains zero, taking u-derivatives of (157) leads to

[p+1]
q

[TT]
AB

∣∣∣r
r1

= α2

∫ r

r1

κ̂1(s)∂
p
uh

[TT]
AB ds ,(158)

where, for i ≥ 1,

(159)
[i]
qAB :=

1

r
∂i
uhAB − 1

2
(ε− α2r2)

(1
r
∂r∂

i−1
u hAB − 1

r2
∂i−1
u hAB

)
.

Making use again of (156) we find∫ r

r1

κ̂1(s)∂uh
[TT]
AB ds(160)
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=

∫ r

r1

[
q
[TT]
AB

∣∣
r1
+

1

2
(ε− α2s2)

(1
s
∂sh

[TT]
AB

∣∣
s
− 1

s2
h
[TT]
AB

∣∣
s

)]
ds

+ α2

∫ r

r1

∫ s

r1

(
1

y
h
[TT]
AB

∣∣
y

)
dy ds

=

[
s q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)h

[TT]
AB

∣∣
s

]r
r1

+ α2r

∫ r

r1

κ̂1(s)h
[TT]
AB ds .

It follows by induction that

∂p
u

∫ r

r1

κ̂1(s)h
[TT]
AB ds(161)

=

p−1∑
k=0

(α2r)k∂p−1−k
u

[
s q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)h

[TT]
AB

∣∣
s

]r
r1

+ (α2r)p
∫ r

r1

κ̂1(s)h
[TT]
AB ds

=

p−1∑
k=0

(α2r)k
[
s

[p−k]
q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)∂p−1−k

u h
[TT]
AB

∣∣
s

]r
r1

+ (α2r)p
∫ r

r1

κ̂1(s)h
[TT]
AB ds .

This allows us to rewrite (158) as

[p+1]
q

[TT]
AB

∣∣∣r
r1

(162)

= α2
p−1∑
k=0

(α2r)k
[
s

[p−k]
q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)∂p−1−k

u h
[TT]
AB

∣∣
s

]r
r1

+ α2(p+1)rp
∫ r

r1

κ̂1(s)h
[TT]
AB ds .

4. Gluing up to gauge

We now present a scheme for matching, up-to residual gauge, the linearised
fields

(163) {hμν , ∂uhμν . . . ∂k
uhμν}

in Bondi gauge, with 2 ≤ k < ∞. We will assume, for simplicity, that each
of the fields ∂i

uhμν
∣∣
{u=0}, 0 ≤ i ≤ k, is smooth. The collection of fields of



Characteristic gluing with Λ: 1. Linearised EE on 4D spacetimes 727

this differentiability class will be denoted by Ck
u C

∞
(r,xA).

Let 0 ≤ r0 < r1 < r2 < r3 ∈ R. Consider two sets of vacuum linearised
gravitational fields in Bondi gauge, of Ck

u C
∞
(r,xA)-differentiability class, de-

fined in spacetime neighbourhoods of N(r0,r1] and N[r2,r3). Let us denote by
S1 the section of N(r0,r1] at r = r1. The linearised gravitational field near
N(r0,r1] induces a set of Bondi cross-section data on S1, which we denote
as dS1

. Similarly, we denote by S2 the section of N[r2,r3) at r = r2 and

the induced gluing data by dS2
. Let us also denote by S̃1 (resp. S̃2) the

codimension-two section obtained by gauge-transforming S1 (resp. S2) us-

ing arbitrary gauge fields
(1)

ξ μ (resp.
(2)

ξ μ), the associated gluing data by d̃S̃1

(resp. d̃S̃2
) and the outgoing null hypersurface on which it lies by Ñ (r0,r1]

(resp. Ñ [r2,r3)).

Of course, in the linearised gluing the initial hypersurface N(r0,r3) does

not change, thus Ñ (r0,r3) = N(r0,r3) as a set, but the Bondi coordinates on
either N(r0,r1] or on N[r2,r3) need to be “infinitesimally deformed” both in

transverse and in tangential directions. We use the symbol Ñ to empha-
sise the infinitesimal adjustment of Bondi coordinates, as an adjustment of
N(r0,r1] or N[r2,r3) is generically needed when passing to the nonlinear gluing
both in our case and in [3].

The goal is to glue d̃S̃1
and d̃S̃2

along Ñ [r1,r2] so that the resulting

linearised field on Ñ (r0,r3) provide smooth characteristic data for Einstein
equations together with a matching of k transverse derivatives. Indeed, we
claim:

Theorem 4.1. A Ck
u C

∞
(r,xA)-linearised vacuum data set on N(r0,r1] can be

smoothly glued to another such set on N[r2,r3) if and only if the obstructions
listed in Tables 4.1-4.2 are satisfied.

The rest of this section is devoted to the proof of this theorem.

Let vAB be any symmetric traceless tensor field defined on a neighbour-
hood of N[r1,r2] which interpolates between the original fields hAB|N(r0,r1]

and hAB|N[r2,r3)
, so that the resulting field on N(r0,r3) is as differentiable as

the original fields. When attempting a Ck
u C

∞
(r,xA)-gluing, we can add to vAB

a field wAB|[r1,r2] which vanishes smoothly (i.e. together with r-derivatives of
all orders) at the end cross-sections {r1}×S and {r2}×S without affecting
the gluing of hAB. To take into account the gauge freedom, let φ(r) ≥ 0 be
a smooth function which equals 1 near r = r1 and equals 0 near r = r2. Let
(1)

ξ u and
(1)

ξ A be gauge fields used to gauge the metric around N(r0,r1], and
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let
(2)

ξ u and
(2)

ξ A be gauge fields used to gauge the metric around N[r2,r3).

For r1 ≤ r ≤ r2 we set

(164) h̃AB = vAB + wAB + φr2TS[L̊(1)

ζ
γ̊AB] + (1− φ)r2TS[L̊(2)

ζ
γ̊AB] .

(Recall that ζA = ξA − D̊Aξu/r, cf. (25).)

In the gluing problem, the gauge fields evaluated on S̃1,2 and the field

wAB on Ñ (r1,r2) are free fields which can be chosen arbitrarily. Our aim

in what follows is to show how to choose these fields to solve the transport

equations of Section 3.3-3.7 to achieve gluing-up-to-gauge. When extending

fields across r1 by solving the transport equations, we will always choose

initial data at r1 which guarantee smoothness of the fields there.

For the Ck
u C

∞
(r,xA)-gluing we will need smooth functions

κi : (r1, r2) → R , i ∈ {0, . . . , k[m] + 4} ,

where k[m] = k when m = 0 and k[m] = 2k when m �= 0, satisfying

〈κi, κ̂j〉 ≡
∫ r2

r1

κi(s)κ̂j(s) ds = 0 for i > j ,(165)

〈κi, κ̂i〉 = 1 ,(166)

and vanishing near the end points r ∈ {r1, r2}, which is possible since the

κ̂i’s are linearly independent; see Appendix A.

The fields wAB of (164) will be taken of the following form: for s ∈
[r1, r2],

wAB(s) =

k[m]+4∑
i=1

κi(s)
[i]
ϕAB .(167)

We define

(168)
[j]

ϕ̂AB := 〈wAB, κ̂j〉 .

We will show how to construct the fields {
[j]

ϕ̂AB}k[m]+4
j=1 . In view of (165)-(166)
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we have

(169)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[1]

ϕ̂AB

[2]

ϕ̂AB

...
[k[m]+4]

ϕ̂ AB

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 0 · · · 0
〈κ1, κ̂2〉 1 · · · 0

...
. . .

...
〈κ1, κ̂k[m]+4〉 〈κ2, κ̂k[m]+4〉 · · · 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

[1]
ϕAB
[2]
ϕAB

...
[k[m]+4]

ϕ AB

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which allows one to determine {[j]ϕAB}
k[m]+4
j=1 in terms of {

[j]

ϕ̂AB}k[m]+4
j=1 in the

obvious way.

4.1. Strategy

A collection of fields {∂i
uhμν}0≤i≤k on a null hypersurface N will be called

characteristic Ck
u C

∞
(r,xA)-data for linearised vacuum Einstein equations on

N , or simply Ck
u C

∞
(r,xA)-data, if the fields ∂

i
uhμν are smooth on N and sat-

isfy on N the equations which are obtained by differentiating the linearised
vacuum Einstein equations in u up to k-times, and in which no-more than k
derivatives of the hμν ’s with respect to u occur. In Bondi gauge this means
that the equations ∂i

uEμν = 0 should hold with 0 ≤ i ≤ k − 1, and that in
addition we also have ∂k

uErA = 0 = ∂k
uErr = ∂k

uEur.
We will say that Ck

u C
∞
(r,xA)-data are smooth if the ∂i

uhμν ’s are smooth
on N .

We note that the linearised Einstein equations are invariant under lin-
earised gauge transformations. In our scheme we will perform gauge trans-
formations which will be needed to ensure the continuity of the fields, but
which will have no influence on the question whether or not the linearised
Einstein equations hold.

A set of Ck
u C

∞
(r,xA)-data can be obtained by restricting a smooth solution

of linearised vacuum equations, and its transverse derivatives, to a null hy-
persurface. The converse is also true for null hypersurfaces with boundary,
e.g. N[r0,r1) or N[r0,r1], in the following sense: any such data set arises by
restriction of (many) solutions of vacuum Einstein equations to N . This
can be realised by solving a characteristic Cauchy problem with two null
hypersurfaces intersecting transversally at {r = r0}, and requires provid-
ing data on both hypersurfaces. We note that losses of differentiability are
unavoidable in the characteristic Cauchy problem when the data are not
smooth: solutions constructed from characteristic initial data which are of
Ck-differentiability class will typically be of differentiability class Ck−k0 , for
some k0 ∈ N which typically depends upon k. Compare [13, 14].
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Our gluing procedure for such fields rests on the following elementary

result. Let a < b < c, and let us for simplicity assume that all fields ∂i
uhμν , i ∈

N, on N(a,b] and N[b,c) are smooth in all variables, up-to-and-including the

common boundary at b; a similar result for finitely-differentiable fields, with

distinct finite losses of differentiability for distinct fields, can be established

using the results of Section 3.6, and is left as an exercise to a concerned

reader.

Lemma 4.2. Let k ∈ N. Two Ck
u C

∞
(r,xA) data sets in Bondi gauge on N(a,b]

and N[b,c), with hAB extending smoothly across {r = b}, extend to smooth

Ck
u C

∞
(r,xA) data on N(a,c) if and only if the fields

1. ∂i
uhur, ∂

i
uhuA, ∂

i
uhAB, with 0 ≤ i ≤ k, as well as

2. ∂rhuA and huu

extend by continuity at {r = b} to continuous fields.

Proof. The necessity is obvious. The sufficiency follows from the equations

in Sections 3.3-3.5, together with their u-derivatives, as follows:

Suppose that δβ extends by continuity at b, then (50) shows that δβ

extends to a smooth function. Next, (53) shows that continuity of ∂r(r
−2huA)

at b guarantees a smooth extension of ∂r(r
−2huA). But then, by another

integration, continuity of huA at b guarantees smooth extendability. One

can now use (71) and (90) to similarly show that continuity, at b, of δV

and ∂uhAB leads to smooth extensions of these fields. In particular ∂uhAB

is now smooth on N(a,c), and one can apply the argument just given to the

equations obtained by u-differentiating the vacuum Einstein equations to

obtain smoothness on N(a,c) of ∂uhμν and ∂2
uhAB.

Iterating this argument a finite number of times establishes the result.

As such, Lemma (4.2) will apply directly at r = r2, once we have shown

that all desired equations hold for r ∈ (r0, r2). However, the argument that

we are about to present is more complicated because, within our construc-

tion, for r ∈ [r1, r2] we can only solve some of the Einstein equations. For-

tunately the conditions of the Lemma are not independent, and the crux of

the argument is to isolate and enforce the independent ones in a hierarchical

way, proving as we progress both the continuity of the fields listed in the

Lemma, and the satisfaction of the linearised Einstein equations, as well as

their u-derivatives, on N(r0,r2].
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Given k ∈ N, k ≥ 2, in order to carry out a Ck
u C

∞
(r,xA)-gluing the smooth

solution on N(r0,r1] is extended to one on N(r0,r2] using a smooth interpo-

lating field vAB as in (167) and smooth gauge fields
(1)

ζ and
(2)

ζ as in (164),
with the u-derivatives extended using the equations in Section (3.7). This
guarantees that some of the Einstein equations are satisfied. It now remains

to show that we can choose v,
(1)

ζ and
(2)

ζ to satisfy the remaining conditions
of Lemma 4.2 together with the Einstein equations on N(r0,r2]. This can be
done in three steps:

1. The requirement of continuity of the fields ∂p
uh̃μν for 0 ≤ p ≤ k at S̃2

imposes conditions on the given data dS1
and dS2

, as well as on the

gauge fields
(2)

ξ A and
(2)

ξ u and the gluing fields
[p]

ϕ̂AB. We summarise
these conditions here (cf. Tables 4.1-4.2), with further details presented
in the next section:

i. h̃uu: Continuity of h̃uu at S̃2 requires

χ[dS̃1
] = χ[dS̃2

] .(170)

The continuity of χ[ker L̊] at r2 requires the radial-charge matching-
condition

(171)
[2]

Q[dS1
](λ) =

[2]

Q[dS2
](λ) ,

for all λ with vanishing Hessian, where L̊ has been defined in (9).
When m = 0, this condition is a gauge-invariant obstruction to

gluing. The continuity of the remaining part χ[(ker L̊)⊥] can be

achieved using the gauge field (
(2)

ξ u)[(ker L̊)
⊥] (see (82)).

When m �= 0, the gauge-invariant obstruction is (171) with con-
stant λ. The remaining projection of χ can be made continuous
at r2 using the same gauge field as when m = 0, together with

proper conformal Killing vectors
(2)

ξ
[CKV]
A (which are zero unless

we are on S2).

ii. ∂rh̃uA: Continuity of ∂rh̃uA at S̃2 requires the radial-charge match-
ing condition

(172)
[1]

Q[dS̃1
] =

[1]

Q[dS̃2
] ,



732 Piotr T. Chruściel and Wan Cong

Table 4.1: Fields used to ensure the continuity at r2 when m = 0. The conti-
nuity for the fields in the last two lines follows from Bianchi identities. The

fields h̃μν are the gauge-transformed fields hμν using the gauge fields
(1)

ξ for

r ≤ r1 and
(2)

ξ for r ≥ r2, cf. Section 3.2; the operator L̊ has been defined in

(9); the fields vAB and
[k]

ϕ̂AB are defined in (164) and (167)-(168); projections
such as (·)[TT] and (·)[H] (both trivial on S2), or (·)[CKV⊥] (identity on higher

genus) are defined in Section 2; the radial charges
[a]

Q, a=1,2, are defined in

(59) and (72); the radially-conserved fields
[i]
qAB and

[3,i]

Q are defined in (159)

and (115); the operator P has been defined in (94); the coefficients
(p,j)
χ p+4

are defined inductively in (151) and (219).

Gluing field Gauge field Obstruction

hAB vAB

∂i
uh̃ur , i ≥ 0 ∂i+1

u

(1)

ξ u and ∂i+1
u

(2)

ξ u

h̃uu (
(2)

ξ u)[(ker L̊)⊥]
[2]

Q(λ)

∂rh̃uA

[1]

ϕ̂
[TT⊥]
AB

[1]

Q(π)

h̃uA

[4]

ϕ̂
[TT⊥]
AB ∂u

(2)

ξ
[CKV]
A

∂uh̃
[TT⊥]
AB : g ≤ 1

(2)

ξ
[CKV⊥]
A

[1]

Q(π) if α �= 0

g ≥ 2
(2)

ξ
[H⊥]
A

[3,1]

Q [H]

∂uh̃
[TT]
AB , α �= 0

[1]

ϕ̂
[TT]
AB

∂uh̃
[TT]
AB , α = 0 q

[TT]
AB

(trivial on S2)

∂p
uh̃

[TT⊥]
AB , 2 ≤ p ≤ k ∂p−1

u

(2)

ξ
[(CKV+H)⊥]
A

[3,p]

Q [H] if g ≥ 2

∂p
uh̃

[TT]
AB , α = 0

[p]
q

[TT]
AB

α �= 0 see (239), involves
[p]
q

[TT]
AB [dSa ]

2 ≤ p ≤ k

∂p
uh̃uA, 1 ≤ p ≤ k − 2

[p+4]

ϕ̂
[TT⊥]
AB ∂p+1

u

(2)

ξ
[CKV]
A ker

(∑p
j=0

(p,j)
χ p+4P

j
)

(trivial if g ≥ 2)

∂p
uh̃uA, k − 1 ≤ p ≤ k

[p+4]

ϕ̂
[TT⊥]
AB only S2 and T

2

T
2: ∂p+1

u

(2)

ξ
[1]
A

S2: ∂p+1
u

(2)

ξ
[1≤�≤p+1]
A

∂p
uh̃uu, 1 ≤ p ≤ k

∂p
u∂rh̃uA, 1 ≤ p ≤ k
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Table 4.2: Fields used to ensure the continuity at r2 when m �= 0. The
notation, and the last two lines, are as in Table 4.1. “KV of S” stands for
“Killing vector of (S, γ̊)”

Gluing field Gauge field Obstruction

hAB vAB

∂i
uh̃ur , i ≥ 0 ∂i+1

u

(1)

ξ u and ∂i+1
u

(2)

ξ u

h̃uu (
(2)

ξ u)[(ker L̊)⊥]
[2]

Q(λ[1])

and
(2)

ξ
[CKV]
A ,

with D̊A
(2)

ξ A �= 0

∂rh̃uA

[1]

ϕ̂
[TT⊥]
AB only on S2: (

(2)

ξ u)[=1]
[1]

Q(πA)
πA – KV of S

h̃uA

[4]

ϕ̂
[TT⊥]
AB ∂u

(2)

ξ
[CKV]
A

only for S2 and T
2:

(2)

ξ
[CKV⊥]
A

∂uh̃
[TT]
AB

[1]

ϕ̂
[TT]
AB and
[4]

ϕ̂
[TT]
AB

{∂p
uh̃

[TT⊥]
AB }1≤p≤k {∂p

u

(2)

ξ
[(CKV+H)⊥]
A }0≤p≤k,

{∂p
u

(2)

ξ
[H]
A }0≤p≤k

∂p
uh̃

[TT]
AB , 2 ≤ p ≤ k

[2p+2]

ϕ̂
[TT]
AB and

(cf. (242))
[2p+1]

ϕ̂
[TT]
AB

{∂p
uh̃uA, 1 ≤ p ≤ k} {

[j]

ϕ̂
[TT⊥]
AB }5≤j≤2k+4 ∂p+1

u

(2)

ξ
[CKV]
A

∂p
uh̃uu, 1 ≤ p ≤ k

∂p
u∂rh̃uA, 1 ≤ p ≤ k

as well as a suitable choice of the field
[1]

ϕ̂
[TT⊥]
AB . This condition is

equivalent to the obstruction

(173)
[1]

Q[dS1
] =

[1]

Q[dS2
] ,

except if S = S2 and m �= 0. In this last case we use the gauge

field (
(2)

ξ u)[=1] to get rid of the obstructions associated with proper

conformal Killing vectors in (173).

iii. h̃uA: Continuity of h̃uA at S̃2 is achieved by a suitable choice of
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[4]

ϕ̂
[TT⊥]
AB and of ∂u

(2)

ξ
[CKV]
A .

iv. ∂p
uh̃AB for 1 ≤ p ≤ k: This is addressed in Sections 4.2.2, 4.2.6

and 4.3.2. The continuity of ∂p
uh̃

[TT⊥]
AB requires

[3,p]

Q A[dS̃1
] =

[3,p]

Q A[dS̃2
] .(174)

In the case m = 0, the gauge fields ∂p−1
u

(2)

ξ
[(CKV+H)⊥]
A can be used

to achieve the matching of (
[3,p]

Q )[(CKV+H)⊥]. (
[3,p]

Q )[H] provide ob-
structions for gluing on negatively curved manifolds of g ≥ 2. The

requirement of continuity of ∂p
uh̃

[TT]
AB , which is non-trivial only on

T
2 and manifolds of higher genus, is subjected to the obstruc-

tion (239), p. 754, namely

∂p
uq

[TT]
AB |S̃2

− ∂p
uq

[TT]
AB |S̃1

= α2
p−1∑
k=0

(α2r2)
k

[
s

[p−k]
q

[TT]
AB

∣∣
r1

(175)

+
1

2s
(ε− α2s2)∂p−1−k

u h
[TT]
AB

∣∣
s

]r2
r1

+ (α2r2)
p(q

[TT]
AB |S̃2

− q
[TT]
AB |S̃1

) ,

which simplifies considerably when α = 0.

In the case m �= 0, the collection {∂p
u

(2)

ξ
[(CKV+H)⊥]
A }kp=0 of gauge

fields can be used to match {
[3,p]

Q [(CKV+H)⊥]}kp=1. The gauge fields

∂p
u

(2)

ξ
[H]
A can be used to achieve the matching of

[3,p]

Q [H]. The re-

quirement of continuity of ∂p
uh̃

[TT]
AB is ensured by a suitable choice

of

(176)
(p,0)

ψ 2p+2(r2)
[2p+2]

ϕ̂
[TT]
AB +

(p,0)

ψ 2p+1(r2)
[2p+1]

ϕ̂
[TT]
AB .

v. ∂p
uh̃uA for 1 ≤ p ≤ k: In the case m = 0, the continuity of ∂p

uh̃uA

at S̃2 determines
[p+4]

ϕ̂
[TT⊥]
AB and ∂p+1

u

(2)

ξ
[CKV]
A , with additional ob-

structions coming from the kernel of the operator
∑p

j=0

(p,j)
χ p+4P

j .
We provide an analysis of this kernel in Appendix C.1.
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In the case m �= 0, the continuity of {∂p
uh̃uA}kp=1 at S̃2 is obtained

by solving a system of equations for the collections {
[p]

ϕ̂
[TT⊥]
AB }2k+4

p=5

and {∂p+1
u

(2)

ξ
[CKV]
A }kp=1.

2. Once the gauge fields and the fields
[p]

ϕ̂AB with 1 ≤ p ≤ k + 4 in the
case m = 0, and with 1 ≤ p ≤ 2k + 4 in the case m �= 0, have been
determined, we construct the fields ∂p

uh̃μν on Ñ [r1,r2) by setting h̃AB

according to (164) and using this to solve the transport equations of
Section 3.3-3.7:

i. ∂p
uh̃ur for 0 ≤ p ≤ k: We set ∂p

uh̃ur|Ñ ≡ 0, which guarantees both

smoothness of h̃ur and the validity of the equations, for all i,

0 = ∂i
uδErr|Ñ ≡ −∂i

uδE
u
r|Ñ ≡ ∂i

uδE
uu|Ñ .(177)

ii. ∂p
uh̃uA for 0 ≤ p ≤ k: Using the representation formulae (151),

with all hμν ’s there replaced by h̃μν ’s. This guarantees that on

Ñ [r0,r2) we have

(178) ∂p
uδErA|Ñ [r0,r2)

≡ −∂p
uδE

u
A|Ñ [r0,r2)

= 0 .

It follows that

(179) ∂p
uδE

A
B|Ñ [r0,r2)

= gAC∂p
uδECB|Ñ [r0,r2)

.

The divergence identity

0 ≡ ∇μδE
μ
A(180)

= r−2∂r(r
2δE r

A) + ∂uδE
u
A + D̊BδE

B
A ,

together with its u-derivatives, shows that we also have ∀ 0 ≤ i ≤
k − 1,

(181)
(
r−2∂r(r

2∂i
uδE

r
A) + D̊B∂

i
uδE

B
A

)∣∣∣
Ñ [r0,r2)

= 0 .

iii. ∂p
uh̃uu for 0 ≤ p ≤ k: We impose ∂r

[p]
χ |Ñ [r1,r2)

= 0 with the initial

conditions
[p]
χ |r1 =

[p]
χ [dS̃1

], together with the value of
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∂p−1
u h̃uA|Ñ [r1,r2)

determined in (ii) above. This ensures

(182) ∂p
uδEru|Ñ [r0,r2)

− 1

2r
D̊A∂p

uδErA|Ñ [r0,r2)
= 0 .

Together with (178), Equation (182) ensures

(183) ∂p
uδEru|Ñ [r0,r2)

≡ −∂p
uδE

u
u|Ñ [r0,r2)

= 0 .

iv. ∂p
uh̃AB for 1 ≤ p ≤ k: We use the representation formulae (150),

with all hμν ’s replaced by h̃μν ’s. This ensures that

(184) TS
(
δ∂p−1

u EAB

)∣∣
Ñ [r0,r2)

= 0 .

The u differentiated divergence identity (123) with ν = r reads

0 ≡ ∂p
uδE

u
r +

1

r2
∂r(r

2δ∂p−1
u E r

r)(185)

+
1√

| det γ̊|
∂A(
√

| det γ̊|δ∂p−1
u E A

r)

− 1

r
gABδ∂p−1

u EAB ,

so that, in view of (178) and (183), we have now

(186) ∀ 0 ≤ i ≤ k 0 =
1

r
gAB∂i

uδEAB

∣∣
Ñ [r0,r2)

.

Together with (184), it follows that

(187) ∀ 0 ≤ i ≤ k − 1 ∂i
uδEAB

∣∣
Ñ [r0,r2)

= 0 .

Equation (181) then gives, ∀ 0 ≤ i ≤ k − 1,

0 = r−2∂r(r
2∂i

uδE
r
A)|Ñ [r0,r2)

(188)

= −r−2∂r(r
2∂i

uδEuA)|Ñ [r0,r2)
,

where we have used

∂i
uδE

r
A|Ñ [r0,r2)

= −guu∂
i
uδErA|Ñ [r0,r2)

− ∂i
uδEuA|Ñ [r0,r2)

= −∂i
uδEuA|Ñ [r0,r2)

;



Characteristic gluing with Λ: 1. Linearised EE on 4D spacetimes 737

note that the last equality is justified by (178). Continuity at r1,
where all the fields ∂i

uEμν , i ∈ N, vanish when the data there arise
from a smooth solution of linearised Einstein equations, together
with (188) implies that

(189) ∀ 0 ≤ i ≤ k − 1 ∂i
uδE

r
A|Ñ [r0,r2)

= 0 = ∂i
uδEuA|Ñ [r0,r2)

.

Meanwhile, the divergence identity for the Einstein tensor with a
free lower index u now reduces to ∀ 0 ≤ i ≤ k − 1,

(190) 0 ≡ ∂i
u∇μδE

μ
u

∣∣
Ñ [r0,r2)

= r−2∂r(r
2∂i

uδE
r
u)
∣∣
Ñ [r0,r2)

.

Continuity and vanishing at r1 together with (177) and (183)
implies that ∀ 0 ≤ i ≤ k − 1

0 = ∂i
uδEuu

∣∣
Ñ [r0,r2)

= −∂i
uδE

r
u

∣∣
Ñ [r0,r2)

(191)

= ∂i
uδE

rr
∣∣
Ñ [r0,r2)

.

3. The construction above guarantees the continuity of h̃uu, ∂uh̃AB, ∂
p
uh̃uA

with 0 ≤ p ≤ k, and ∂i
uh̃

[TT]
AB with 2 ≤ i ≤ k at r2. Continuity of the

fields ∂r∂
p
uh̃uA and ∂p

uh̃uu for 1 ≤ p ≤ k and ∂i
uh̃

[TT⊥]
AB for 2 ≤ i ≤ k at

r2 follows now by induction: The explicit form (129) of the equation
δEuA = 0 together with the continuity of h̃uu, h̃uA and ∂uh̃AB at r2
ensures the continuity of ∂r∂uh̃uA at r2. This guarantees continuity of
[1,1]

Q and
[4,1]

Q , hence of
[3,2]

Q [CKV] in view of (116), namely∫
S
πA

[3,k]

Q A dμγ̊ = α2
[1,k−1]

Q (πA) + 2m
[4,k−1]

Q (πA) ,(192)

with k = 2. This, together with point 1.iv ensures continuity of
[3,2]

Q A

at r2, which in turn renders ∂2
uh̃

[TT⊥]
AB continuous there.

Meanwhile the explicit form (135) of δEuu = 0 together with smooth-
ness at r2 of h̃uu, h̃uA and ∂uh̃AB, leads to continuity of ∂uh̃uu at
r2.
Now, suppose that the continuity of the fields ∂p

uh̃uu, ∂r∂
p
uh̃uA and

∂p
uh̃

[TT⊥]
AB has been achieved up to p = k − 1. It follows that we have

∂k−2
u δEuA|Ñ = 0 and thus ∂r

[1,k−1]

Q (πA)|Ñ = 0 = ∂r
[4,k−1]

Q (πA)|Ñ
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(compare (133)). Further, (192) implies that the (
[3,k]

Q )[CKV+H]-part of

the radial charges on S2 and T
2 are continuous. Meanwhile, recall that

continuity of the radial charge (
[3,k]

Q )[(CKV+H)⊥] was ensured using the

gauge field ∂k−1
u

(2)

ξ A, while on higher-genus sections continuity of the

charge (
[3,k]

Q )[CKV+H] = (
[3,k]

Q )[H] is achieved by ∂k
u

(2)

ξ
[H]
A when m �= 0 and

is an obstruction whose continuity has to be assumed when m = 0. We

have now the continuity of (
[3,k]

Q ) = (
[3,k]

Q )[(CKV+H)⊥] + (
[3,k]

Q )[(CKV+H)],

which ensures the continuity of ∂k
uh̃

[TT⊥]
AB at r2.

Next, by differentiation of (129) we obtain the explicit form of (189)

with i = k − 1

r2∂r

(
∂k
uhuA
r2

)
= − 1

r2

[
D̊BD̊A∂

k−1
u huB − D̊BD̊B∂

k−1
u huA

+ ∂uD̊
B∂k−1

u hAB

]
+

(
ε− r2α2 − 2m

r

)
∂2
r∂

k−1
u huA

+ (2α2 +
4m

r3
)∂k−1

u huA + ∂rD̊A∂
k−1
u huu .

This equation, together with the continuity of ∂k−1
u h̃uu, ∂

k−1
u h̃uA and

∂k
uh̃AB, ensures the continuity of ∂r∂

k
uh̃uA at r2.

Finally, the explicit form of (191) with i = k − 1, i.e.

0 = ∂k−1
u δEuu

∣∣
N[r1,r2)

=
1

r2

{
2
[
∂k
u +
(
α2r2 − ε+

2m

r

)
∂r +

3m

r2
− ε

r

]
D̊AhuA

− D̊AD̊A∂
k−1
u huu − (α2r2 − ε+

2m

r

)(D̊AD̊B∂k−1
u hAB

r2
)

− 2r∂k
uhuu − 2(α2r2 − ε+

2m

r

)
∂r(r∂

k−1
u huu)

}
,

together with smoothness at r2 of ∂k−1
u h̃uu, ∂

k−1
u h̃uA and ∂k−1

u h̃AB,

ensures the continuity of ∂k
uh̃uu at r2.

We now pass to a more detailed presentation of some of the arguments

above.
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4.2. Continuity at r2

4.2.1. Gluing of δβ. The sets of gauge functions ∂i
u

(1)

ξ u|S̃1
and ∂i

u

(2)

ξ u|S̃2

with i ≤ k + 1 allow us to transform ∂j
uδβ̃ for j ≤ k to zero on S̃1 and S̃2,

and hence, by invoking the ur-component of the linearised Einstein equa-

tion (50), on the whole Ñ [r1,r2]. In what follows, we assume that this gauge

choice has been made, and set ∂j
uδβ̃ = 0 for j ≤ k everywhere.

Furthermore, to simplify notation we omit the “|S̃j
” on all gauge fields,

with the understanding that all
(1)

ξ fields, and their u-derivatives, are evalu-

ated on S̃1, while all
(2)

ξ fields, and their u-derivatives, are evaluated on S̃2,

unless indicated otherwise.

4.2.2. Freezing part of the gauge. First, recall that the radial charge
[1]

Q is gauge invariant except in the case m �= 0 on S2. In this case, we can

use the gauge field (
(2)

ξ u)[=1] for the matching of
[1]

Q(πA) when the conformal

Killing field πA is such that D̊AπA �= 0, i.e. a proper conformal Killing vector

field. According to (63), this is achieved by choosing (
(2)

ξ u)[=1] so that∫
S2

πA(r42∂rȟuA
∣∣
r2
− 6mD̊A

(2)

ξ u)dμγ̊ =

∫
S1

πA(r41∂rȟuA|r1)dμγ̊ .(193)

However, for Killing vector fields the terms explicitly involving m integrate-

out to zero, and we obtain an obstruction to gluing.

Next, we determine the gauge fields needed to ensure continuity of χ.

For this, we evaluate the function χ of (80) at S1:

(194) χ[dS1
] =
(
− δV +

r

2
∂r
(
r2D̊AδUA

)
+

1

2
rD̊AD̊BȟAB

)∣∣∣
S1

,

and use the transformation law (82), i.e.

(195) χ �→ χ− 1

2
(Δγ̊ + 2ε)Δγ̊ξ

u + 3mD̊BξB ,

to do the gluing. As already pointed out, and clearly seen from this equation,

the integral average of χ over S, i.e.
[2]

Q(λ = 1), is gauge-invariant regardless
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of topology or of the value m. Now, when m = 0, we can find a function

(
(2)

ξ u)[(ker L̊)
⊥] so that

−1

2
L̊(

(2)

ξ u)[(ker L̊)
⊥] ≡ −1

2
(Δγ̊ + 2ε)Δγ̊(

(2)

ξ u)[(ker L̊)
⊥](196)

= χ[(ker L̊)⊥][dS1
]− χ[(ker L̊)⊥][dS2

] .

The smooth fields (
(2)

ξ u)[ker L̊] are left arbitrary at this stage.

When m �= 0, to ensure the desired gluing we use the field (
(2)

ξ u)[(ker L̊)
⊥]

determined in (196) together with the equation

(197) (3mD̊A

(2)

ξ A)[ker L̊] = χ[ker L̊][dS1
]− χ[ker L̊][dS2

] .

On S2 this determines the proper-conformal-Killing-vectors part of
(2)

ξ
[CKV]
A ,

but does not provide a useful equation for the remaining topologies as there
are no proper conformal Killing vectors there.

Next, we determine the gauge fields ∂i
u

(2)

ξ A for 0 ≤ i ≤ k as follows: We

evaluate the radially-constant covector field
[3,i+1]

Q A of (115) at S1:

[3,i+1]

Q A[dS1
] =D̊B

(
2r∂i+1

u ȟAB − V ∂r(∂
i
uȟAB)(198)

− 1

r2
∂r
(
r4TS[D̊A∂

i
uȟuB]

)
+ (P − ε)∂i

uȟAB

)∣∣∣
S1

+
(
α2r4∂r∂

i
uȟuA + 2m(3∂i

uȟuA + r∂r∂
i
uȟuA)

)∣∣
S1

.

The idea now is to use the transformation law (117) to find gauge-vector
fields such that

2(L̂∂i
u

(2)

ξ [(CKV+H)⊥])A + 6m∂i+1
u

(2)

ξ A(199)

= (
[3,i+1]

Q A)[dS1
]− (

[3,i+1]

Q A)[dS2
]︸ ︷︷ ︸

=:Δ
[3,i+1]

Q A

.

We start by noting that the image of L̂ is orthogonal to CKV + H;
(cf. Proposition C.6, p. 782). (The spaces H and CKV can be viewed as
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being orthogonal to each other, in that H a) is trivial on S2; b) can be
ignored on T

2 being a subset of CKV; c) is non-trivial on the remaining
topologies but CKV is trivial there.)

Note next that for πA ∈ CKV we have∫
S
πA

[3,i]

Q A dμγ̊(200)

=

∫
S
πA(α2r4∂r∂

i−1
u ȟuA + 2m(3∂i−1

u ȟuA + r∂r∂
i−1
u ȟuA)) dμγ̊

= α2
[1,i−1]

Q (πA) + 2m
[4,i−1]

Q (πA) .

Thus the continuity of
[3,i]

Q
[CKV]
A will be guaranteed by the continuity of

[1,i−1]

Q

and
[4,i−1]

Q , with the latter two being addressed in point 3, p. 737. Hence we

ignore for the moment the condition Δ
[3,i]

Q
[CKV]
A = 0 and consider the system

of equations

2(L̂
(2)

ξ [(CKV+H)⊥])A + 6m∂u
(2)

ξ
[(CKV+H)⊥]
A =

(
Δ

[3,1]

Q A

)[(CKV+H)⊥]
,(201)

6m∂u
(2)

ξ
[H]
A =

(
Δ

[3,1]

Q A

)[H]
,(202)

...

2(L̂∂k−2
u

(2)

ξ [(CKV+H)⊥])A + 6m∂k−1
u

(2)

ξ
[(CKV+H)⊥]
A =

(
Δ

[3,k−1]

Q A

)[(CKV+H)⊥]
,

(203)

6m∂k−1
u

(2)

ξ
[H]
A =

(
Δ

[3,k−1]

Q A

)[H]
,(204)

2(L̂∂k−1
u

(2)

ξ [(CKV+H)⊥])A + 6m∂k
u

(2)

ξ
[(CKV+H)⊥]
A =

(
Δ

[3,k]

Q A

)[(CKV+H)⊥]
,

(205)

6m∂k
u

(2)

ξ
[H]
A =

(
Δ

[3,k]

Q A

)[H]
.(206)

In the case m �= 0 we set, e.g.,

(207) ∂k
u

(2)

ξ
[(CKV+H)⊥]
A = 0 ,

and we can solve (205)-(206) to guarantee continuity of
[3,k]

Q
[CKV⊥]
A on T

2 and
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S2, and
[3,k]

Q
[H]
A on other topologies. The solution of (205) can then be inserted

into (203) to obtain a solution of (203)-(204). Continuing in this way, after
a finite number of steps we obtain a solution of the system (201)-(206).

Clearly the argument breaks down when m = 0, in which case we can

still solve (199) for ∂i
u

(2)

ξ
[(CKV+H)⊥]
A , but the equations

(
Δ

[3,i]

Q A

)[H]
= 0 , i = 0, . . . , k ,

provide obstructions to gluing.

4.2.3. Continuity of h̃uu. It follows from the pointwise radial conserva-
tion of the function χ defined in (80) that the gluing of h̃uu requires

(208) χ[dS̃1
] = χ[dS̃2

] .

This is achieved by the condition
[2]

Q[dS1
] =

[2]

Q[dS2
] together with formu-

lae (196)-(197) for the projected gauge fields (
(2)

ξ u)[(ker L̊)
⊥] and

(2)

ξ
[CKV]
A .

4.2.4. Continuity of ∂rh̃uA. Taking into account the allowed gauge per-
turbations to Bondi data, the gluing of ∂rh̃uA requires h̃AB to satisfy on
Ñ (r1,r2),

r42∂rȟuA|S̃2
= 2r2L1(

(2)

ξ u)A + 2r22D̊
BC(

(2)

ζ )AB−6mD̊A

(2)

ξ u(209)

+ ΦA(x
C) + D̊BhAB|S̃2

− 2

∫ r2

r1

κ̂1(s)D̊
Bh̃AB ds .

We have

D̊A(
(2)

ξ u)[1] = 0 , L1

(
(
(2)

ξ u)[ker L̊]
)
= 0 , C(

(2)

ξ [CKV])AB = 0 ,

so that the gauge-part of the right-hand side of (209) involving
(2)

ξ u, except

for the term explicitly involving m, depends only on (
(2)

ξ u)[(ker L̊)
⊥] and has

already been determined in terms of the given data by (196). When m �= 0

and S ≈ S2 the term −6mD̊A

(2)

ξ u depends only on (
(2)

ξ u)[=1], which is already
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known from (193). When m �= 0 and S ≈ S2 the remaining part, which

contributes to −6mD̊A

[2]

ξ u, is already known from (193). For the remaining
topologies the kernel of L̊ consists of constants, which do not contribute to

the right-hand side. Thus in all cases, the terms in (209) involving
(2)

ξ u are
either vanishing or already determined.

To clarify the freedom left, let us rewrite (209) as an equation for
[1]

ϕ̂AB ≡
〈κ̂1, wAB〉, where wAB is as in (164):

D̊B
[1]

ϕ̂
[TT⊥]
AB = Φ̃A(x

C) + D̊B
[
r22C(

(2)

ξ [CKV⊥])AB(210)

− 2

∫ r2

r1

κ̂1(s)(1− φ)s2C(
(2)

ξ [CKV⊥](s))AB ds
]
,

where the already known fields such as ȟuA|S̃2
, vAB and (

(2)

ξ u)[(ker L̊)
⊥], as

well as the gauge fields
(1)

ξ A and
(1)

ξ u have been collected into the term Φ̃A.
Now, the divergence operator on traceless symmetric two-tensors in two

dimensions is elliptic; it has a cokernel spanned on conformal Killing vectors;
on S2 it has no kernel (see Appendix C.3). It follows that (210) determines

a unique tensor field
[1]

ϕ̂
[TT⊥]
AB on S2 provided that the source term Φ̃ is L2-

orthogonal to the cokernel. This orthogonality is guaranteed by the condition
[1]

Q[dS1
] =

[1]

Q[dS2
] and either the gauge invariance of

[1]

Q in the case m = 0, or

by a suitable choice of the gauge field (
(2)

ξ u)[=1] if m �= 0. In other words, if

the radial charge
[1]

Q of the linearised field on N |(r0,r1] coincides with that

of the linearised field on N |[r2,r3), the field
[1]

ϕ̂
[TT⊥]
AB satisfying (210) exists,

and is uniquely determined in terms of the given data and the gauge field
(2)

ξ
[CKV⊥]
A .
By a similar analysis for the remaining topologies, (210) determines

[1]

ϕ̂
[TT⊥]
AB uniquely in terms of the given data and the gauge field

(2)

ξ
[CKV⊥]
A

provided that the radial charges
[1]

Q at r = r1 and r = r2 coincide.

4.2.5. Continuity of h̃uA. Taking into account the allowed gauge per-
turbations of Bondi data, it follows from (34) and (67) that the continuity
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of h̃uA at r2 can be achieved by choosing
[4]

ϕ̂
[TT⊥]
AB so that

huA|S̃2
+ L1(

(2)

ξ u)A + r22
[
∂u

(2)

ξ A + (α2 +
2m

r32
)D̊A

(2)

ξ u
]

(211)

= XA(x
C) +

1

3
D̊B

∫ r2

r1

h̃AB

(
2κ̂1(s)

r2
+ κ̂4(s)r

2
2

)
ds ,

where XA depends only on data at r1. More explicitly:

r22
3
D̊B

[4]

ϕ̂
[TT⊥]
AB ≡ r22

3
D̊B〈κ̂4, wAB〉(212)

= r22∂u
(2)

ξ A − X̃A(x
C)− 2

3r2
D̊B

[1]

ϕ̂AB + (α2 +
2m

r3
)r22D̊A

(2)

ξ u

− 2

3

∫ r2

r1

(
2κ̂1(s)

r2
+ κ̂4(s)r

2
2

)
(1− φ)s2D̊BC(

(2)

ξ [CKV⊥])AB ds

= r22∂u
(2)

ξ A − X̃A(x
C)− 2r2

3
D̊BC(

(2)

ξ [CKV⊥])AB

− 2

3r2
Φ̃A + (α2 +

2m

r3
)r22D̊A(

(2)

ξ u)[ker L̊]

− 2r22
3

∫ r2

r1

κ̂4(s)(1− φ)s2D̊BC(
(2)

ξ [CKV⊥])AB ds ,

where once again the already known fields such as

huA|S̃2
, vAB and (

(2)

ξ u)[(ker L̊)
⊥]

as well as the gauge fields
(1)

ξ A and
(1)

ξ u have been collected into the term
X̃A. Since ker(C) = im(d̊iv(2))

⊥, we can use the freedom in choosing the
smooth fields

(213)
(
∂u

(2)

ξ A + (α2 +
2m

r3
)D̊A

(2)

ξ u)[CKV]

to arrange that the right-hand side of (212) lies in the image of d̊iv(2) .
(Note that the first term in (213) has not been determined so far, while the
remaining ones have only been determined if m �= 0.) It follows that (212)

can be solved uniquely for both
[4]

ϕ̂
[TT⊥]
AB and ∂u

(2)

ξ
[CKV]
A in terms of ∂u

(2)

ξ
[CKV⊥]
A
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and
(2)

ξ
[CKV⊥]
A when α = 0 = m. For α,m �= 0 there remains some freedom

in the gauge field (
(2)

ξ u)[ker L̊], made clear by (213). On sections with higher
genus, it follows from the surjectivity of d̊iv(2) (Lemma C.4, Appendix C.3)

that (212) determines
[4]

ϕ̂
[TT⊥]
AB uniquely in terms of ∂u

(2)

ξ A.
A conserved, gauge dependent, radial charge involving huA and ∂rhuA is

derived in Appendix E.1.

4.2.6. Continuity of ∂uh̃AB.

4.2.6.1. The case m = 0. It follows from the pointwise radial conservation

of
[3,1]

Q A that the gluing of ∂uh̃
[TT⊥]
AB requires

(214)
[3,1]

Q A[dS̃1
] =

[3,1]

Q A[dS̃2
] .

This is achieved on S2 by the condition
[1]

Q[dS1
] =

[1]

Q[dS2
] together with the

expressions (199) with i = 0 for the gauge field
(2)

ξ
[CKV⊥]
A .

For the remaining topologies we use (100) to obtain an equation for

q
[TT]
AB :

∂rq
[TT]
AB = ∂r

[
r∂uȟ

[TT]
AB − 1

2
V ∂rȟ

[TT]
AB − 1

2r
V ȟ

[TT]
AB

]
=

α2

r
h
[TT]
AB .(215)

Integrating, we obtain

q
[TT]
AB |S̃2

− q
[TT]
AB |S̃1

= α2

∫ r2

r1

κ̂1(s)h̃
[TT]
AB ds

= α2
[1]

ϕ̂
[TT]
AB + α2

∫ r2

r1

κ̂1(s)v
[TT]
AB ds .

This provides an equation for
[1]

ϕ̂
[TT]
AB when α �= 0:

α2
[1]

ϕ̂
[TT]
AB = q

[TT]
AB |S̃2

− q
[TT]
AB |S̃1

− α2

∫ r2

r1

κ̂1(s)v
[TT]
AB ds .(216)

When α = 0, ∂uh
[TT]
AB is part of the radially conserved charge q

[TT]
AB

of (100). In this case, the continuity of ∂uh̃
[TT]
AB at r2 imposes the radial
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conservation law

q
[TT]
AB [dS1

] = q
[TT]
AB [dS2

] .(217)

4.2.6.2. The case m �= 0. Taking into account the allowed gauge perturba-
tions of Bondi data, it follows from (94) that we need to satisfy the equation

∂uhAB|S̃2
=

(1)

Ψ̃AB(r2, x
A)− 2r22C(∂u

(2)

ζ )AB

+ r2

(
ε− α2r22 −

2m

r2

)
C(

(2)

ξ )AB

+ (α2r2 +
1

3r2
P )

[1]

ϕ̂AB − (mr2−
2r2

3
P )

[4]

ϕ̂AB

+ 2

∫ r2

r1

(α2r2 +
1

3r2
P )(1− φ)κ1(s)s

2C(
(2)

ξ )AB

− 2

∫ r2

r1

(mr2−
2r2

3
P )κ4(s)s

2C(
(2)

ξ )AB .

Since C(ξ)[TT] = 0 for any vector field ξ, and similarly the image of P is

orthogonal to TT, continuity of ∂uh̃
[TT]
AB at S̃2 requires

[1]

ϕ̂
[TT]
AB and

[4]

ϕ̂
[TT]
AB to

satisfy

∂uh
[TT]
AB |S̃2

=
(1)

Ψ̃ [TT]
AB(r2, x

A) + α2r2
[1]

ϕ̂
[TT]
AB −mr2

[4]

ϕ̂
[TT]
AB ,(218)

which can be achieved by setting, for example,
[1]

ϕ̂
[TT]
AB = 0 and solving (218)

for
[4]

ϕ̂
[TT]
AB .

4.3. Higher derivatives

Recall from Section 3.7 that the terms
(i,j)
χ (s, r) are linear combinations of

κ̂j(s)’s with 1 ≤ j ≤ i[m], j �= 2, 3, with i[m] = i + 4 when m = 0 and
i[m] = 2i+4 when m �= 0, where i[m] is not necessarily optimal unless i = 0;
see Appendix B. We shall henceforth write them as

(219)
(i,j)
χ (s, r) =

i[m]∑
�=1

(i,j)
χ �(r) κ̂�(s) , with

(i,j)
χ 2 = 0 =

(i,j)
χ 3 .
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Similarly we write, for i ≥ 1,

(220)
(i,j)

ψ (s, r) =

i[m]−1∑
�=1

(i,j)

ψ �(r) κ̂�(s) , with
(i,j)

ψ 2 = 0 =
(i,j)

ψ 3 ,

where again the upper bound i[m]−1 is not necessarily optimal unless i = 1.

4.3.1. Continuity of ∂i
uh̃uA. While this is not needed for the current ar-

gument, we note that a conserved, gauge dependent, radial charge involving

∂uhuA is derived in Appendix E.2.

To continue, let k be the order at which we want to perform the gluing,

i.e. the number of u-derivatives of hμν which we want to be continuous, and

let 1 ≤ p ≤ k.

4.3.1.1. The case m = 0. After performing a gauge transformation, Equa-

tion (151) at order i = p together with (41) provides a gluing equation of

the form,

∂p
uȟuA|S̃2

= − 1

2r22
L1(D̊

C∂p−1
u

(2)

ξ C)−
(
∂p+1
u

(2)

ξ A +
α2

2
D̊AD̊

C∂p−1
u

(2)

ξ C

)
+

(p)

XA +
∑

0≤j+�≤p,��=p

(p,j,�)
χ (r)∂j

rD̊
BP �hAB

+
∑

0≤j+�≤p,��=p

(p,j,�)
χ (r)∂j

rD̊
BP �

(
2r2C(

(2)

ζ )AB

)

+

p∑
j=0

D̊B

∫ r2

r1

(p,j)
χ (s, r2)P

j h̃AB(s) ds ,

which equals⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂p+1

u

(2)

ξ
[CKV]
A +

(p)

X̃A +

p∑
j=0

p+4∑
�=1

D̊B

∫ r2

r1

(p,j)
χ �(r2)κ̂�(s)P

jwAB(s) ds ;

−∂p+1
u

(2)

ξ A +
(p)

X̃A +

p∑
j=0

p+4∑
�=1

D̊B

∫ r2

r1

(p,j)
χ �(r2)κ̂�(s)P

jwAB(s) ds,
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with the first case arising when p ≤ k− 2 and the second for p ∈ {k− 1, k},
and which we rewrite as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∂p+1
u

(2)

ξ
[CKV]
A +

(p)

X̃A +

p∑
j=0

p+4∑
�=1

(p,j)
χ �(r2)D̊

BP j
[�]

ϕ̂
[TT⊥]
AB , p ≤ k − 2;

−∂p+1
u

(2)

ξ A +
(p)

X̃A +

p∑
j=0

p+4∑
�=1

(p,j)
χ �(r2)D̊

BP j
[�]

ϕ̂
[TT⊥]
AB , p = k − 1, k.

Here we used the fact that P |TT = 0, that the fields ∂�
u

(2)

ξ
[CKV⊥]
C with

� ≤ k − 1 are already known from Section 4.2.2, and we included them,

together with all other already known fields, in
(p)

X̃A =
(p)

X̃A(r, x
A). Recall that

[1]

ϕ̂AB has been determined in Section 4.2.4,
[4]

ϕ̂AB in (212), and we further
set

[2]

ϕ̂AB =
[3]

ϕ̂AB = 0 .

For the sake of induction, suppose that the fields
[�]

ϕ̂AB with 4 ≤ � ≤ p + 3

are known. Together with
(p)

X̃A and ∂p
uȟuA|S̃2

we collect them into a term
(p)

ˆ̃XA, so that the requirement that ∂p
uh̃uA be continuous at r2 results in an

equation of the form

D̊B
( p∑

j=0

(p,j)
χ p+4(r2)P

j
[p+4]

ϕ̂
[TT⊥]
AB

)
=

⎧⎪⎪⎨⎪⎪⎩
∂p+1
u

(2)

ξ
[CKV]
A −

(p)

ˆ̃XA, p ≤ k − 2;

∂p+1
u

(2)

ξ A −
(p)

ˆ̃XA, p = k − 1, k.

(221)

Now, the operator at the left-hand side of this equation, namely

(222)
(p)
χ := d̊iv(2) ◦

p∑
j=0

(p,j)
χ p+4(r2)P

j
[p+4]

ϕ̂
[TT⊥]
AB ,

is elliptic, of order 2p+1, and has a non-trivial cokernel on S2 and T
2. (For

example, the cokernel on S2 is the space of spherical harmonic vectors with
index 1 ≤ � ≤ p + 1, see Appendix C.5.2; it is 30-dimensional when p = 2
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and 48-dimensional when p = 3.) Recall that the fields ∂p+1
u

(2)

ξ
[CKV]
A , i ≥ 2,

have not been determined so far. We can use this freedom to arrange that

∂p+1
u

(2)

ξ
[CKV]
A −

(p)

ˆ̃XA is in the image of d̊iv(2). For all p ≤ k we can therefore

find a unique
[p+4]

ϕ̂
[(ker

(p)
χ )⊥]

AB and ∂p+1
u

(2)

ξ
[CKV]
A satisfying

(223)
(p)
χ (

[p+4]

ϕ̂ [(ker
(p)
χ )⊥]) = ∂p+1

u

(2)

ξ
[CKV]
A −

(p)

ˆ̃X [im
(p)
χ ] .

For p ≤ k−1 the (im
(p)
χ )⊥-part of

(p)

ˆ̃XA constitutes thus a further obstruction
to the solvability of (221), as it is not clear whether or not the right-hand
side is orthogonal to the cokernel.

However, if p = k or k + 1, since the fields ∂k
u

(2)

ξ A and ∂k+1
u

(2)

ξ A are un-
constrained so far, we can use (221) to choose these fields so that continuity
of ∂k−1

u h̃uA and ∂k
uh̃uA at r2 holds:

(224) (im
(p)
χ )⊥ � ∂p+1

u

(2)

ξ A :=

(p)

ˆ̃X
[(im

(p)
χ )⊥]

A .

4.3.1.2. The case m �= 0. After performing a gauge transformation, Equa-
tion (151) at order i = p together with (41) provides a gluing equation of
the form,

∂p
uȟuA|S̃2

= − 1

2r22
L1(D̊

C∂p−1
u

(2)

ξ C)A − ∂p+1
u

(2)

ξ A(225)

−
(α2

2
+

m

r32

)
D̊AD̊

C∂p−1
u

(2)

ξ C +
(p)

XA

+
∑

0≤j+�≤p,��=p

(p,j,�)
χ (r2)∂

j
rD̊

BP �hAB

+
∑

0≤j+�≤p,��=p

(p,j,�)
χ (r2)∂

j
rD̊

BP �
(
2r22C(

(2)

ζ )AB

)

+

p∑
j=0

D̊B

∫ r2

r1

(p,j)
χ (s, r2)P

j h̃AB(s) ds

= −∂p+1
u

(2)

ξ A +
(p)

X̃A
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+

p∑
j=0

2p+4∑
�=1

D̊B

∫ r2

r1

(p,j)
χ �(r2)κ̂�(s)P

jwAB(s) ds

= −∂p+1
u

(2)

ξ A +
(p)

X̃A +

2p+4∑
�=1

p∑
j=0

(p,j)
χ �(r2)D̊

BP j

︸ ︷︷ ︸
=:Lp,�

[�]

ϕ̂AB ,

where we have collected the fields ∂j
u

(2)

ξ A for j ≤ p, together with all other

already known fields, into
(p)

X̃A.

For k ≥ 1 we let

Φk :=

⎛⎜⎜⎜⎝
[5]

ϕ̂
...

[4+k]

ϕ̂

⎞⎟⎟⎟⎠ , Ψk :=

⎛⎜⎜⎜⎝
[5+k]

ϕ̂
...

[4+2k]

ϕ̂

⎞⎟⎟⎟⎠ ,

and

Xk :=

⎛⎜⎜⎜⎜⎝
∂uȟuA|S̃2

+ ∂2
u

(2)

ξ A −
(1)

X̃A

...

∂k
uȟuA|S̃2

+ ∂k+1
u

(2)

ξ A −
(k)

X̃A

⎞⎟⎟⎟⎟⎠ .

The system of equations (225) with 1 ≤ p ≤ k takes the form

(226) d̊iv(2) ◦ LkΦk + d̊iv(2) ◦MkΨk = Xk ,

where

(227) Lk =

⎛⎜⎝ L1,5 . . . L1,k+4
...

. . .
...

Lk,5 . . . Lk,k+4

⎞⎟⎠ , Mk =

⎛⎜⎝ L1,k+5 . . . L1,2k+4
...

. . .
...

Lk,k+5 . . . Lk,2k+4

⎞⎟⎠ .

Recall that the fields ∂i
u

(2)

ξ
[CKV]
A , i ≥ 2, have not been determined so far. We

can use this freedom to arrange that ∂uȟuA|S̃2
+∂2

u

(2)

ξ A−
(1)

X̃A is in the image
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of d̊iv(2). Inserting the result into
(2)

X̃A we can arrange that

∂2
uȟuA|S̃2

+ ∂3
u

(2)

ξ A −
(2)

X̃A

also lies in the image of d̊iv(2). Continuing in this way we obtain that all the

entries in Xk are in the image of d̊iv(2).

We continue by noting that the operator Lk is elliptic in the sense of

Agmon, Douglis and Nirenberg (cf., e.g., [18], in particular see the estimates

of Theorem C there). Indeed, in each row of Lk the operators Li,j are of

order less than 2i, except for the operator Li,i lying on the diagonal, which

is elliptic and precisely of order 2i. This shows that the Agmon-Douglis-

Nirenberg condition on the orders si+ tj of Li,j holds by setting si = 2i and

tj = 0; ellipticity readily follows.

It is instructive to consider explicitly the case k = 2:

L2 =

(
1
4(P + 2ε) −3m

2
15mα2

8 − 3m
8r22

(P + 2ε) 9m2

4r22
+ 1

10(P + 2ε)(P + 5ε)

)
,(228)

M2 =

(
0 0

−7m
4 (P + 11ε

3 ) 75m2

8

)
,

so that (226) can be rewritten as

(
L1,5(P ) −a
L2,5(P ) L2,6(P )

)⎛⎝ [5]

ϕ̂
[6]

ϕ̂

⎞⎠+

(
0 0

L2,7(P ) c

)⎛⎝ [7]

ϕ̂
[8]

ϕ̂

⎞⎠(229)

= (d̊iv(2))
−1

(
x1
x2

)
,

with ac �= 0, where the Li,j(P )’s are polynomials in P , and where (d̊iv(2))
−1

is the inverse of d̊iv(2) viewed as a map from (ker d̊iv(2))
⊥ to im d̊iv(2) =

(kerC)⊥. It should be clear from this equation that for generic m the oper-

ator L2 is invertible from (ker d̊iv(2))
⊥ to (kerC)⊥, so that for such m’s we

can solve the problem by setting
[7]

ϕ̂ =
[8]

ϕ̂ ≡ 0 and solving (229) for
[5]

ϕ̂ and
[6]

ϕ̂. However, this genericity condition is not needed; indeed, for any m �= 0
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we can proceed as follows: From the first equation of (229) we find

(230)
[6]

ϕ̂ = a−1
(
L1,5(P )

[5]

ϕ̂ − (d̊iv(2))
−1x1

)
.

Inserting into the second equation we obtain

(231) L2,6(P )L1,5(P )︸ ︷︷ ︸
=:L2

[5]

ϕ̂ + aL1,2(P )
[5]

ϕ̂ = a
(
(d̊iv(2))

−1x2 −L2,7(P )
[7]

ϕ̂ − c
[8]

ϕ̂
)
.

We can choose smooth fields
[7]

ϕ̂ and
[8]

ϕ̂ so that

L2,7(P )
[7]

ϕ̂ + c
[8]

ϕ̂ =
(
(d̊iv(2))

−1x2
)[im(L2)⊥] ∈ (imL2)

⊥

(e.g., by setting
[7]

ϕ̂ = 0, but other choices might be more convenient); note
that (imL2)

⊥ is finite dimensional and is spanned by smooth functions by

ellipticity of L†
2. We then solve the elliptic equation

(232) L2

[5]

ϕ̂ + aL1,2(P )
[5]

ϕ̂ = a
(
(d̊iv(2))

−1x2
)[imL2] ,

with a unique
[5]

ϕ̂ ∈ (kerL2)
⊥. Inserting into (230) we have thus obtained a

desired solution of

(233) LkΦk +MkΨk = (d̊iv(2))
−1Xk ,

with k = 2.
Let us pass now to general k’s. We note first that ellipticity and self-

adjointness of P implies existence of a complete set of smooth, pairwise L2-
orthogonal, eigenfunctions φ� with a corresponding discrete set of eigenvalues
λ� →�→∞ ∞. We can therefore write

(234) Φk =
∑
�

Φk,�φ� , Ψk =
∑
�

Ψk,�φ� , (d̊iv(2))
−1Xk =

∑
�

Xk,�φ� .

Equation (233) can be solved mode-by-mode:

(235) LkΦk,�+MkΨk,� = Xk,� ⇐⇒ Lk|P 	→λ�
Φk,�+Mk|P 	→λ�

Ψk,� = Xk,� ,

where P �→ λ� means that every occurrence of P should be replaced by λ�.
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Now, detLk|P 	→λ�
is a polynomial in λ�. Keeping in mind that in each

line of the matrix Lk the highest power of P is on the diagonal, we see
that detLk|P 	→λ�

is non-zero for � large enough, and therefore there exists
N(k) such that we can find a unique solution of (235) with Ψk,� = 0 for
all � > N(k). It remains to show that (235) can be solved in the finite
dimensional space of Φk’s and Ψk’s of the form
(236)

Φk =
∑

�≤N(k)

Φk,�φ� , Ψk =
∑

�≤N(k)

Ψk,�φ� , (d̊iv(2))
−1Xk =

∑
�≤N(k)

Xk,�φ� .

This is equivalent to the requirement that all the linear maps obtained by
juxtaposing Lk|P 	→λ�

and Mk|P 	→λ�
with � < N(k) are surjective. (Note, by

the way, that we have already established surjectivity for � ≥ N(k).) This,
in turn, is equivalent to the fact that the adjoints of these linear maps have
no kernel.

Let us denote by (Lk Mk) the relevant matrices. For simplicity write Li,j

for Li,j(P )|P 	→λ�
. It follows from Appendix B.2 that (Lk Mk) is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

L1,4+1 L1,4+2

L2,4+1 L2,4+2

...
...

...
...

...
...

Lk,4+1 Lk,4+2

. . .

0 0
...

...
0 0

Lk−j,3+2(k−j) Lk−j,4+2(k−j)

...
...

Lk,3+2(k−j) Lk,4+2(k−j)

. . .

0 0
...

...
· ·
...

...
0 0

Lk,3+2k Lk,4+2k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the (i, j)-th entry is Li,4+j . Note that each of the two-columns pairs,
as grouped above, has a specific vanishing-block structure. This gives the
following adjoint matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1,4+1 L2,4+1 . . . . . . . . . . . . . . . . . . . . . . . . Lk,4+1

L1,4+2 L2,4+2 . . . . . . . . . . . . . . . . . . . . . . . . Lk,4+2

...

0 0 . . . 0 Lk−j,4+2(k−j)−1 . . . . . . . . . Lk,4+2(k−j)−1

0 0 . . . 0 Lk−j,4+2(k−j) . . . . . . . . . Lk,4+2(k−j)

...

0 0 . . . . . . . . . . . . . . . 0 Lk−1,4+2k−3 Lk,4+2k−3

0 0 . . . . . . . . . . . . . . . 0 Lk−1,4+2k Lk,4+2k−2

0 0 . . . . . . . . . . . . . . . 0 0 Lk,4+2k−1

0 0 . . . . . . . . . . . . . . . 0 0 Lk,4+2k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(237)
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Equation (300) shows that the entries (boxed in the above) Li,4+2i are non-

zero whenm �= 0. This easily implies that that the matrix (237) has maximal

rank, and thus has trivial kernel.

We have therefore proved:

Theorem 4.3. The system (225) with p ∈ {1, . . . , k} can be solved by a

choice of gluing fields and gauge fields for any finite k. Its solutions are

determined by an elliptic system, uniquely up to a finite number of eigen-

functions of P .

4.3.2. Continuity of ∂p
uh̃AB, p ≥ 2.

4.3.2.1. The case m = 0. It follows from the pointwise radial conservation

law of
[3,p]

Q (cf. (115)) that the continuity of ∂p
uh̃

[TT⊥]
AB at r2 requires

(238)
[3,p]

Q [dS̃1
] =

[3,p]

Q [dS̃2
] .

The gauge field ∂p−1
u

(2)

ξ
[(CKV+H)⊥]
A is used to achieve the matching of

(
[3,p]

Q )[(CKV+H)⊥] according to (199).

On S2, this ensures the continuity of ∂p
uh̃AB at r2 since then ∂p

uh̃
[TT⊥]
AB =

∂p
uh̃AB.

For the remaining topologies we return to (162). Taking into account the

gauge invariance of h
[TT]
AB , Equation (162) provides a necessary and sufficient

condition for the continuity of ∂p
uh̃

[TT]
AB at r2 according to:

∂p
uq

[TT]
AB |S̃2

− ∂p
uq

[TT]
AB |S̃1

(239)

= α2
p−1∑
k=0

(α2r2)
k

[
s

[p−k]
q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)∂p−1−k

u h
[TT]
AB

∣∣
s

]r2
r1

+ α2(p+1)rp2

[
[1]

ϕ̂
[TT]
AB +

∫ r2

r1

κ̂1(s)v
[TT]
AB ds

]

= α2
p−1∑
k=0

(α2r2)
k

[
s

[p−k]
q

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)∂p−1−k

u h
[TT]
AB

∣∣
s

]r2
r1

+ (α2r2)
p(q

[TT]
AB |S̃2

− q
[TT]
AB |S̃1

) ,
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where we used the formula (216) for
[1]

ϕ̂
[TT]
AB in the last step. Equation (239)

provides a further obstruction to be satisfied by the data. When α = 0, the
condition reduces to

(240) ∀ 0 ≤ p ≤ k−1
[p+1]
q

[TT]
AB [dS1

] =
[p+1]
q

[TT]
AB [dS2

] .

4.3.2.2. The case m �= 0. The continuity at r2 of the TT⊥-part of ∂p
uhAB

has already been addressed in Section 4.2.2. Taking into account the allowed
gauge perturbations of the linearised gravitational field, it follows from (150)
that it remains to satisfy the equation

∂p
uh

[TT]
AB |S̃2

=
((p)
Ψ̃AB(r2, x

A)− 2r22 TS[D̊A∂
p
u

(2)

ξ B]
)[TT]

(241)

+
( 2∑

j=0

2p+2∑
�=2p+1

(p,j)

ψ �(r2)P
j
[�]

ϕ̂AB

)[TT]
.

Here, for the sake of induction, we treated the fields ∂j
u

(2)

ξ A for 0 ≤ j ≤ p−1

and
[�]

ϕ̂AB for 1 ≤ � ≤ 2p as known, and collected them together with the

remaining known fields into the term
(p)

Ψ̃AB(r2, x
A). This equation is non-

trivial only for T
2 and for cross-sections S of higher genus, can be solved

using a linear combination of
[2p+2]

ϕ̂
[TT]
AB and

[2p+1]

ϕ̂
[TT]
AB :

∂p
uh

[TT]
AB |S̃2

=
(p)

Ψ̃
[TT]
AB (r2, x

A) +
(p,0)

ψ 2p+2(r2)
[2p+2]

ϕ̂
[TT]
AB +

(p,0)

ψ 2p+1(r2)
[2p+1]

ϕ̂
[TT]
AB .

(242)

5. An isomorphism theorem

In Section 3.6 we have verified that a consistent scheme for the linearised
equations is obtained

if we assume that hAB(r, ·) ∈ Hkγ
(S), for all r ∈ [r1, r2], with kγ ≥ 4

and

kβ = kγ , kU = kγ − 1 , kV = kγ − 2 , k∂uU = kγ − 3 ,(243)

k∂uV = kγ − 4 , k∂uγ = kγ − 2 .



756 Piotr T. Chruściel and Wan Cong

as well as

(244) kξu = kγ + 2 , k∂uξu = kγ , kξA = kγ + 1 , k∂uξA = kγ − 1 .

We wish to check that this is consistent with the equations satisfied by
the gluing functions, and that the gluing equations provide surjections in the

relevant spaces, with splitting kernels, so that the implicit function theorem
can be applied to the full nonlinear problem.

More precisely, we assume that the gluing fields take the form as in (164)

and (167). Assuming that the fields at r1 and r2 satisfy (243), and that all
r-derivatives of the interpolating field vAB are in Hkγ

≡ Hkγ
(S), we want to

show that the gluing fields
[i]

ϕ̂AB will be in Hkγ
, and that the gauge functions

will satisfy (244).

Note that within the scheme presented above, the r-derivatives of all
fields preserve their Sobolev class.

Whether for the sake of induction when m = 0, or for the analysis of the

elliptic system (226) when m �= 0, we assume that each u-derivative of all
fields obtained in a previous induction step has a loss of no more than two

degrees of differentiability:

(245) k∂i
uU = kγ − 1− 2i , k∂i

uV = kγ − 2i , k∂i
uγ = kγ − 2i ,

while for the gauge fields it holds that

(246) k∂i
uξ

u = kγ + 2− 2i , k∂i
uξ

A = kγ + 1− 2i

(we have listed the condition on ∂i
u

(2)

ξ u with i ≥ 1 for clarity of the arguments

below, but in fact it follows from the one on ∂i
u

(2)

ξ A since we impose (33),
namely

(247) ∂u
(2)

ξ u(u, xA) =
D̊B

(2)

ξ B(u, xA)

2
.)

We start with the β-equation, the linearised version of which, namely

(49), is clearly consistent with the above.

Next, the field χ[dS1
] given by (194), p. 739 is in Hkγ−2. When m = 0, it

follows by standard elliptic estimates that the solution (
(2)

ξ u)[(ker L̊)
⊥] of (196)
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is in Hkγ+2. Since the field (
(2)

ξ u)[ker L̊], which is left undetermined at that

stage of the argument, is smooth, we conclude that

(2)

ξ u ∈ Hkγ+2 ,

as desired. When m �= 0, we use again the field (
(2)

ξ u)[(ker L̊)
⊥] determined

by (196) and, on S2, the field (D̊A

(2)

ξ A)[=1], determined by (197); this is

implemented by a smooth field
(2)

ξ ∈ CKV.

We pass now to the covector fields
[3,i+1]

Q A of (198), which are inHkγ−2i−3.

When m = 0 the vector fields ∂i
u

(2)

ξ
[(CKV+H)⊥]
A , i ≥ 0, solve the fourth-order

elliptic equation (199) (cf. Proposition C.6, p. 782), hence we have

∂i
u

(2)

ξ A ∈ Hkγ−2i+1 , i ≥ 0 ,

as desired. When m �= 0, the solution of the set of equations (201)-(206), as

obtained in Section 4.2.2, is again of the desired differentiability class when

the condition (207) is imposed.

As the next step, consider the field
[1]

ϕ̂AB ≡ 〈κ̂1, wAB〉 solving (210),

cf. also (209). Here a note on the differentiability class of the boundary

term appearing in (210), or in the equations that will be referred to in what

follows, is in order. We have already checked that the differentiability classes

in (245)-(246) are consistent with all the equations. The boundary terms

in all integrated equations are obtained by integration by parts in the r-

variable, which does not change the differentiability in the S-directions. The

boundary terms for the gauge equations only involve the known boundary

data, which have the needed regularity by hypothesis. The boundary terms

for the gluing fields are either determined by the known boundary data, or

from the gauge fields. When m = 0, the hierarchical structure of our proof

implies that the boundary terms arising at each further step of our analysis

will have the right differentiability properties for the induction argument.

When m �= 0 the solutions are obtained by a global system of equations,

with boundary terms determined by the known boundary data.

In any case, one can directly chase through the derivatives of the already

known fields which appear in (209)-(210), and use that on two-dimensional
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manifolds the operator d̊iv(2) is elliptic, and that the field
[1]

ϕ̂
[TT]
AB solving (216)

is smooth, to obtain that
[1]

ϕ̂AB ∈ Hkγ
.

as needed.
When m = 0, we continue with (221), where p is an induction parameter.

The operator appearing at the left-hand side is elliptic, of order 2p+ 1. By
the arguments just given, or by a direct inductive calculation, the boundary

terms

(p)

ˆ̃XA are inHkγ−2p−3. For p ≤ k−2, where k is the number of derivatives
that we wish to glue, the operator recovers the number of derivatives lost
by the right-hand side, which results in a field

(248)
[p+4]

ϕ̂
[TT⊥]
AB ∈ Hkγ

.

The case m �= 0 is taken care of by Theorem 4.3.
Keeping in mind that all the operators considered in the analysis of the

linearised equations have splitting kernels, we have proved:

Theorem 5.1. The linearised gluing map, assigning to the collection

{data at r1, the gluing fields, and the gauge fields}

the data at r2, as described above, is continuous and surjective in the Sobolev
spaces defined in (245)-(246), with splitting kernel, modulo the obstructions
listed in Tables 4.1, p. 732 and 4.2, p. 733.

6. Unobstructed gluing to perturbed data

Given that there exist obstructions to glue two arbitrary characteristic data
sets of order k, the question arises whether something can be done about
that. Since we are dealing with linear equations, the simplest solution is to
add to the data another data set with charges chosen to compensate for the
obstructions. This requires families of data sets with a sufficient number of
radial charges to cover all obstructions.

Now, a static family of such data sets can be obtained by differentiating
the Birmingham-Kottler metrics with respect to mass:

(249)
d

dm

[(
ε− α2r2−2m

r

)
du2 − 2du dr + r2γ̊ABdx

AdxB
]
= −2

r
du2 .
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These metric perturbations can be used to compensate for the missing charge
[2]

Q(λ) with λ = 1.
Another such family is obtained by differentiating (1) with respect to

a parameter along a curve of metrics λ �→ γ̊AB(λ) with constant scalar
curvature:

(250)
d

dλ

[(
ε−α2r2−2m

r

)
du2−2du dr+r2γ̊ABdx

AdxB
]
= r2

d̊γAB

dλ
dxAdxB .

By [19, Theorem 8.15] every TT-tensor, say m̊AB, is tangent to such a curve,
and thus metric perturbations of the form

(251) r2m̊ABdx
AdxB , with D̊Am̊

AB = 0 = γ̊ABm̊
AB

provide the missing radial charges
[i]
q
[TT]
AB .

Yet another, time-independent, family is provided by differentiating the
Kerr-(Anti) de Sitter metrics with respect to the angular-momentum. (Since
there is no explicit formula for these metrics in Bondi coordinates, the as-
sociated linearised metrics can only be obtained by an indirect calculation.)
When calculated at the (A)dS solution (with m �= 0), this leads to the met-
ric perturbation (252) below, where λ̊A∂A is a u-independent Killing vector
on S2, with the remaining fields there vanishing.2

It turns out that we can obtain a family of metric perturbations com-
pensating for all radial charges needed for C2

u C
∞
(r,xA)-gluing by setting

h̊ =
( μ̊(u, xC)

r
− D̊Aλ̊A(u, x

C)

2r2
+

1

2r
D̊AD̊B s̊AB(u, x

C)
)
du2(252)

+
( λ̊A(u, x

C)

r
+

1

2
D̊B s̊AB(u, x

C)
)
dxAdu

+(rs̊AB(u, x
C) + r2m̊AB(u, x

C))dxAdxB ,

with symmetric γ̊-traceless tensors s̊AB and m̊AB. In addition, anticipating

the fact that D̊B s̊AB plays a role in adjusting (
[3,i]

Q )[H], we impose

(253) D̊AD̊B s̊AB(u, x
A) = 0 .

After using

(254) D̊AΔγ̊ψ
A = (Δγ̊ + ε)D̊Aψ

A ,

2We are grateful to Finn Gray for checking this.
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the linearised Einstein equations will hold if and only if

D̊AD̊Bm̊AB = 0 , α2s̊AB − ∂um̊AB = 0 , 3mD̊Aλ̊A = 0 ,(255)

TS
[
D̊Aλ̊B

]
+ms̊AB = 0 ,(256)

3α2D̊Aλ̊A + 2∂uμ̊ = 0 , 3∂uλ̊A − D̊Aμ̊+
1

2
(Δγ̊ − ε)D̊B s̊AB = 0 ,(257)

2ε̊λA + D̊AD̊
Bλ̊B − D̊BD̊Aλ̊B +Δγ̊ λ̊A + 2mD̊B s̊AB = 0 ,(258)

εD̊Aλ̊A +
1

2
Δγ̊D̊

Aλ̊A = 0 .(259)

For completeness we listed above all conditions obtained from the linearised
Einstein equations, cf. Sections 3.3 and 3.5, but we note that (255)-(257)
suffice. Indeed, taking 2 × d̊iv(2) of (256) gives equation (258), while equa-

tion (259) can be obtained by taking d̊iv(1) of (258) and by making use
of (255).

Equation (255) implies that d̊iv(1) λ̊ has to vanish when m �= 0, and
∂um̊AB has to vanish when α = 0 or when we are on S2. In addition, it
follows from (256) that λ̊A has to vanish when m = 0 and ε = −1.

Equations (257) together with their u-differentiated versions show that

2∂2
uμ̊ = −3α2Δγ̊μ̊ ,(260)

∂2
uλ̊A = −α2

2
D̊AD̊

Bλ̊B − 1

6
(Δγ̊ − ε)D̊B∂us̊AB .(261)

When m �= 0 we can use (256) to rewrite the last equation as

∂2
uλ̊A = −α2

2
D̊AD̊

Bλ̊B +
1

6m
(Δγ̊ − ε)D̊B∂uTS

[
D̊Aλ̊B

]
.(262)

So, when m �= 0, Equations (260) and (262) provide evolution equations for
μ̊ and λ̊A, solutions of which determine the time-evolution of the remaining
fields.

To continue, we note that equation (258) can be rewritten as,

1

2
(Δγ̊ + ε)̊λA +mD̊B s̊AB = 0 .(263)

Next, the second equation in (257), together with (263), implies that

(Δγ̊ + ε)D̊Aμ̊ = 3(Δγ̊ + ε)∂uλ̊A +
1

2
(Δγ̊ + ε)(Δγ̊ − ε)D̊B s̊AB
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= −6m(Δγ̊ + ε)D̊B∂us̊AB +
1

2
(Δγ̊ + ε)(Δγ̊ − ε)D̊B s̊AB .

Taking d̊iv(1) of this and making use of D̊AD̊B s̊AB = 0 = ∂uD̊
AD̊B s̊AB

gives

D̊A(Δγ̊ + ε)D̊Aμ̊ = Δγ̊(Δγ̊ + 2ε)μ̊ = 0 .

In particular, when we are not on S2, the “mass aspect function” μ̊ must be
xA-independent, while on S2 it is a linear combination of � = 0 and � = 1
spherical harmonic. It follows that

∂2
uμ̊ =

{
3α2μ̊, S = S2 and μ̊ has no � = 0 harmonics;
0, S �= S2, or S = S2 and μ̊ has no � = 1 harmonics.

Next, when m = 0 the space of λ̊’s satisfying (256) is six-dimensional on
S2 and two-dimensional on T

2; for negatively curved S one finds λ̊A ≡ 0.
The tensor field h̊AB carries the full set of conserved radial charges

needed for C2
u C

∞
(r,xA)-gluing when μ̊, λ̊A, s̊AB and m̊AB run over the set

of solutions of (255)-(257):

[1]

Q(π) = −3

∫
S
πAλ̊A dμγ̊ ,

[2]

Q(λ) = −
∫
S
λμ̊ dμγ̊ ,(264)

q
[TT]
AB = − V

2r
m̊

[TT]
AB + α2rs̊

[TT]
AB + ∂us̊

[TT]
AB ,(265)

[2]
q
[TT]
AB = −α2V

2r
s̊
[TT]
AB + α2r∂us̊

[TT]
AB + ∂2

us̊
[TT]
AB ,(266)

(
[3,1]

Q )
[H]
A = −3α2λ̊

[H]
A +

2m

r
(D̊Bm̊AB)

[H] − m

r2
(D̊B s̊AB)

[H](267)

+ 2(D̊B∂us̊AB)
[H] ,

(
[3,2]

Q )
[H]
A = −3α2∂uλ̊

[H]
A +

2mα2

r
(D̊B s̊AB)

[H] − m

r2
(D̊B∂us̊AB)

[H](268)

+ 2(D̊B∂2
us̊AB)

[H] ,

where π and λ satisfy, respectively, (57) and (73). Note that when α =
0 = m, we have V/r = ε, in which case all expressions in (264)-(268) are
r-independent, as they should be in this case.

Keeping in mind that C2
u C

∞
(r,xA)-gluing with m �= 0 needs only the

matching of
[1]

Q and
[2]

Q, we have proved:
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Theorem 6.1. Any C2
u C

∞
(r,xA) linearised vacuum data on N(r0,r1] can be

C2
u C

∞
(r,xA)-glued to any C2

u C
∞
(r,xA) linearised vacuum data on N[r2,r3) after

adding to one of them a suitable field of the form (252).

Proof. Indeed, when m �= 0 we only need (cf. Table 1.1, p. 693)

h̊ =
μ̊

r
du2 +

λ̊A(x
C)

r
dxAdu ,(269)

with μ̊ being a constant and λ̊A being a combination of � = 1 vector harmon-

ics satisfying D̊Aλ̊A = 0 on S2; with constant μ̊ and covariantly constant λ̊A

on T
2; with constant μ̊ and vanishing λ̊A on higher genus manifolds. In all

cases the fields are chosen so that the radial charges

[1]

Q(π) = −3

∫
S
πAλ̊A dμγ̊ ,

[2]

Q(λ) = −
∫
S
λμ̊ dμγ̊ ,(270)

compensate for the difference of radial charges calculated from the fields at

r1 and at r2.

When m = 0 we obtain the desired fields by choosing μ̊ and λ̊A so that

the radial charges in (270) compensate for the difference of the respective

radial charges at r1 and r2 at u = 0, and by choosing

(271) m̊AB

∣∣
u=0

= 0 = s̊AB

∣∣
u=0

.

The remaining fields vanish on S2, in which case we are done.

Otherwise recall the obstruction (239) with p = 1:

[2]
q
[TT]
AB |S̃2

∣∣∣r2
r1

= α2

[
sq

[TT]
AB

∣∣
r1
+

1

2s
(ε− α2s2)h

[TT]
AB

∣∣
s

]r2
r1

+ α2r2q
[TT]
AB

∣∣∣r2
r1

= α2

[
sq

[TT]
AB

∣∣
s
+

1

2s
(ε− α2s2)h

[TT]
AB

∣∣
s

]r2
r1

.

So at, say, r = r2 we can compensate all radial charge deficits by choosing

the remaining fields as

∂us̊
[TT]
AB

∣∣
u=0

=

⎧⎨⎩−q
[TT]
AB

∣∣∣r2
r1

0 ,
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∂2
us̊

[TT]
AB

∣∣
u=0

=

⎧⎪⎪⎨⎪⎪⎩
−[2]
q
[TT]
AB

∣∣∣r2
r1

−[2]
q
[TT]
AB

∣∣∣r2
r1
+ α2

[
sq

[TT]
AB

∣∣
s
+ 1

2s(ε− α2s2)h
[TT]
AB

∣∣
s

]r2
r1

,

with the upper case being for α = 0 and the lower case for α �= 0, and

(D̊B∂us̊AB)
[H]
∣∣
u=0

=

⎧⎨⎩0 , g = 1 ,

−1
2

[3,1]

Q
[H]
A

∣∣∣r2
r1

, g ≥ 2 ,

(D̊B∂2
us̊AB)

[H]
∣∣
u=0

=

⎧⎨⎩0 , g = 1 ,

−1
2

[3,2]

Q
[H]
A

∣∣∣r2
r1

, g ≥ 2 ,

where
[
f(r)

]r2
r1

≡
[
f(s)

]r2
r1

≡ f(s)
∣∣r2
r1

:= f(r2) − f(r1), and where we have

used that λ̊A vanishes if g ≥ 2.

Appendix A. Constructing the κi’s

Recall that κ̂i(s) = s−i. We wish to construct a sequence of smooth functions
κi compactly supported in (r1, r2) satisfying

〈κi, κ̂j〉 ≡
∫ r2

r1

κi(r)κ̂j(r) dr = 0 for j < i ,(272)

〈κi, κ̂i〉 = 1 .(273)

This can be done as follows: Let χ be any smooth non-negative function
supported away from neighborhoods of r1 and r2, with integral 1. Let

κi = ciχfi ,

where the fi’s are constructed by a Gram-Schmidt orthonormalisation pro-
cedure from the family of monomials in 1/r, namely {1, r−1, r−2, . . .}, in the
space H := L2([r1, r2], χdr), so that the scalar product is

〈φ, ψ〉H =

∫ r2

r1

(φψχ)(r) dr ,

and the ci’s are constants chosen so that (273) holds; the possibility of
doing so will be justified shortly. Then, by construction, fi is a polynomial
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of order i in 1/r which is H-orthogonal to any such polynomial of order
j < i; this is (272). As for (273), we note that each of the functions r−i can
be decomposed in the basis {fj}j∈N as r−i =

∑i
j=0 aijfj(r), with aii �= 0

since otherwise the right-hand side would be a polynomial in 1/r of order
less than or equal to i− 1. This shows that∫ r2

r1

r−ifi(r)χ(r) dr = aii �= 0 ,

so that we can indeed choose ci = 1/aii to fulfill (273).

Appendix B. Recursion formulae

For ease of further reference we collect here all the integral kernels appear-
ing in (150)-(151), as needed for C2

u C
∞
(r,xA)-gluing and for various induction

arguments in the rest of this Appendix:

(1,0,0)

ψ (r) = − 1

2r

(
ε− α2r2−2m

r

)
,(274)

(1,1,0)

ψ (r) =
1

2

(
ε− α2r2−2m

r

)
,

(1,0,1)

ψ (r) = 0 ,(275)

(1,0)

ψ (s, r) = α2rκ̂1(s)−mrκ̂4(s) ,
(1,1)

ψ (s, r) =
2r2κ̂4(s)

3
+

κ̂1(s)

3r
,(276)

(2,0)

ψ (s, r) =
9m2r

2
κ̂6(s) +

α2(2m+ 4r3α2)

4r
κ̂1(s)(277)

− 8m2 + 16mr3α2

16r
κ̂4(s)−

3mrε

2
κ̂5(s) ,

(2,1)

ψ (s, r) = (r2ε− 3mr

4
)κ̂5(s) +

(9m− 4rε)κ̂1(s)

12r3
+

εrκ̂4(s)

3
(278)

− 3mr2κ̂6(s) ,

(2,2)

ψ (s, r) =
r2κ̂5(s)

2
− κ̂1(s)

6r2
− rκ̂4(s)

3
,(279)

(0,0,0)
χ (r) = 0 ,

(1,1,0)
χ (r) =

(1,0,1)
χ (r) = 0 ,

(1,0,0)
χ (r) =

ε

2r4
− α2

2r2
,(280)

(0,0)
χ (s, r) =

1

3

(
2κ̂1(s)

r3
+ κ̂4(s)

)
,(281)

(1,0)
χ (s, r) = −3mκ̂6(s)

2
− mκ̂4(s)

2r2
+

α2κ̂1(s)

2r2
+

εκ̂5(s)

2
,(282)

(1,1)
χ (s, r) =

κ̂5(s)

4
− κ̂1(s)

4r4
,(283)
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(2,0)
χ (s, r) = m

(
75m

8
κ̂8(s)−

77ε

12
κ̂7(s) +

3

8
(5α2 − 2ε

r2
)κ̂5(s)

)
(284)

+
α2(15m+ 8rε)

24r4
κ̂1(s)−

15m2 + 8r(m+ r3α2)ε

24r4
κ̂4(s)

+ (
9m2

4r2
+ ε2)κ̂6(s) ,

(2,1)
χ (s, r) = −7m

4
κ̂7(s)−

3m

8r2
κ̂5(s) +

7ε

10
κ̂6(s)(285)

+
6m− 2r3α2 + rε

6r3
κ̂4(s) +

15m− 80r3α2 + 16rε

120r6
κ̂1(s) ,

(2,2)
χ (s, r) =

κ̂1(s)

15r5
− κ̂4(s)

6r2
+

κ̂6(s)

10
.(286)

These are all linear combinations of the κ̂i’s with 0 ≤ i ≤ 8, i �∈ {2, 3}, with
coefficients which might depend upon r.

Next, recall (95):

∂uhAB =
ε

2

[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
1

3sr
+

2r2

3s4

)
PhAB ds(287)

− (
α2r2

2
+

2m

r
)
[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
α2r

s
−mr

s4
)hAB ds

+ b.d.|r1 ,

where b.d.|r1 stands for terms known from data at r1.

B.1. α = m = 0

When α = m = 0, inserting (287) into the u-derivative of (150) leads to

∂i+1
u hAB =

∑
0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

k∂uhAB

(288)

+

i∑
j=0

∫ r

r1

(i,j)

ψ (s, r)P j∂uhAB ds+ b.d.|r1

=
∑

0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

k
[ε
2

[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
1

3sr
+

2r2

3s4

)
PhAB ds

]
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+

i∑
j=0

∫ r

r1

(i,j)

ψ (s, r)P j

[
ε

2

[
∂shAB︸ ︷︷ ︸

integrate by parts

−1

s
hAB

]
s

+

∫ s

r1

(
1

3ys
+

2s2

3y4

)
PhAB |ydy

]
ds+ b.d.|r1

=
∑

0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

k
[ε
2

[
∂rhAB − 1

r
hAB

]
+

∫ r

r1

(
1

3sr
+

2r2

3s4

)
PhAB ds

]
+

ε

2

i∑
j=0

(i,j)

ψ (s, r)
∣∣
s=r

P jhAB

+

i∑
j=0

∫ r

r1

(
− ε

2
∂s

(i,j)

ψ (s, r)− ε

2s

(i,j)

ψ (s, r)
)
P jhAB

∣∣
s
ds

+

i∑
j=0

∫ r

r1

(i,j)

ψ (s, r)

∫ s

r1

(
1

3ys
+

2s2

3y4

)
P j+1hAB|ydy ds︸ ︷︷ ︸∫ r

r1

(∫ r

s

(
1

3ys
+

2y2

3s4

)
(i,j)

ψ (y, r)dy

)
P j+1hAB|sds

+b.d.|r1 .

One finds that a term

(289) aki�s
−� in

(k,i)

ψ

with � �∈ {0, 3} induces terms s−1, s−4 and

(290) aki�ε
�− 1

2
s−(�+1) in

(k+1,i)

ψ and aki�
�− 1

�(�− 3)
s−(�+1) in

(k+1,i+1)

ψ ;

see Figure B.1, where we have anticipated the fact that the highest powers
of s−1 are not affected by α.

We thus find

(291)
(k,k)

ψ (s, r) =
2r2

(k − 1)!(k + 2)︸ ︷︷ ︸
=:

(k,k)

ψ k+3(r)

1

sk+3
+ . . . ,
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Figure B.1: Highest powers of s−1 in
(i,j)

ψ when m = 0, α ∈ R. The structure

of the tree for
(i,j)
χ is identical after replacing (i, j) in the table by (i−1, j−1),

thus (1, 1) becomes (0, 0), etc.

where . . . denotes a sum of lower-order powers of s−1.

An identical calculation applies to the
(k,i)
χ ’s, since (151) has an identical

structure as (150) from the point of view of induction. In particular the re-
currence relation (289)-(290) remains unchanged. After taking into account
the initialisation of the recurrence, which is different for the χ’s and ψ’s, one
obtains

(292)
(k,k)
χ =

1

(k)!(k + 3)︸ ︷︷ ︸
=:

(k,k)
χ k+4

1

sk+4
+ . . . .

Let us write

(293)
(i,j)
χ (s, r) =

i+4∑
�=1

(i,j)
χ �(r) s

−� ,
(i,j)

ψ (s, r) =

i+4∑
�=1

(i,j)

ψ �(r) s
−� .

Since (cf. (276)-(283) with m = 0, and regardless of α)

(2,0)

ψ 5(r) = 0 =: 2r2
(0,−1)
χ 5(r) ,

(2,1)

ψ 5(r) = 2r2
(1,0)
χ 5(r) ,

(2,2)

ψ 5(r) = 2r2
(1,1)
χ 5(r) ,
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it follows by induction from (290) that

(294)
(i,j)

ψ i+3(s, r) = 2r2
(i−1,j−1)

χ i+3(s, r) .

Next, using

(295)
(1,0)
χ (s, r) =

α2κ̂1(s)

2r2
+

εκ̂5(s)

2
,

(1,1)
χ (s, r) =

κ̂5(s)

4
− κ̂1(s)

4r4
,

(cf. (282)-(283)) it follows by induction that

(296)
(i,j)
χ i+3(s, r) = 0 .

B.2. The general case

When α �= 0 and m �= 0, we will have instead

∂i+1
u hAB

= right-hand side of (288)

+
∑

0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

k

[
− (

α2r2

2
+

m

r
)
[
∂rhAB − 1

r
hAB

]

+

∫ r

r1

(
α2r

s
− mr

s4
)hAB ds

]

+

i∑
j=0

∫ r

r1

(i,j)

ψ (s, r)P j

[
− (

α2s2

2
+

m

s
)
[
∂shAB

∣∣
s︸ ︷︷ ︸

integrate by parts

−1

s
hAB

∣∣
s

]

+

∫ s

r1

(
α2s

y
−ms

y4
)hAB

∣∣
y
dy

]
ds

= right-hand side of (288)

+
∑

0≤j+k≤i,k �=i

(i,j,k)

ψ (r)∂j
rP

k

[
− (

α2r2

2
+

m

r
)
[
∂rhAB − 1

r
hAB

]

+

∫ r

r1

(
α2r

s
− mr

s4
)hAB ds

]
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−
i∑

j=0

(
(
α2r2

2
+

m

r
)
(i,j)

ψ (s, r)
)∣∣

s=r
P jhAB

∣∣
r

+

i∑
j=0

∫ r

r1

(
∂s
[
(
α2s2

2
+

m

s
)
(i,j)

ψ (s, r)
]
+ (

α2s

2
+
m

s2
)
(i,j)

ψ (s, r)︸ ︷︷ ︸
=(α2s2

2
+m

s
)∂s

(i,j)

ψ (s,r)+ 3α2s

2

(i,j)

ψ (s,r)

)
P jhAB

∣∣
s
ds

+

i∑
j=0

∫ r

r1

(i,j)

ψ (s, r)

∫ r

r1

(
α2s

y
− ms

y4
)P jhAB

∣∣
y
dy ds︸ ︷︷ ︸

=
∫ r

r1

( ∫ r

s
(α2y

s
−my

s4
)
(i,j)

ψ (y,r)dy
)
P jhAB |s ds

+ b.d.|r1 ,

It follows that, in addition to (290), a term

aki�s
−� in

(k,i)

ψ ,

with k ≥ 1 and 0 ≤ � �= 2, induces terms involving 1/s, 1/s4, and a term

(297) aki�
(1− �)

2(2− �)

(
α2(4− �)s−�+1 + 2m(1− �)s−�−2

)
in

(k+1,i)

ψ ;

cf. Figures B.2 and B.3. This shows in particular that the recursion formu-
lae (291) and (292), established with α = 0, remain valid for α,m ∈ R; but
e.g. (294) does not hold anymore when m �= 0.

To continue, it is convenient to set

(298)
(k,−1)

ψ � = 0 .

Using this notation, putting together (290) with (297) we find the recursion
formula, for k ≥ i ≥ 0 and k ≥ 1,

(k+1,i)

ψ (s, r) =
(k+1,i)

ψ 0(r) +

(k+1,i)

ψ 1(r)

s
+

(k+1,i)

ψ 4(r)

s4

+

k+3∑
�=4

[ (1− �)

2(2− �)s�

(
α2(4− �)s− (�− 2)ε

s
+

2m(1− �)

s2

)(k,i)
ψ �(r)

+
(�− 1)

�(�− 3)s�+1

(k,i−1)

ψ �(r)
]
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Figure B.2: Recursion tree for the integral kernels. The dash-dotted lines de-
scribe the contributions from the mass parameter m, increasing each power
by 2. The dotted lines describe the contributions from the Gauss curvature
ε, increasing each power by 1. The dashed lines arise from the cosmological
constant, and are slanted to the left to visualise the fact that they decrease
powers by 1.

=
(k+1,i)

ψ 0(r) +

(k+1,i)

ψ 1(r)

s
+

(k+1,i)

ψ 4(r)

s4

+

k+3∑
�=4

(�− 1)

[
α2(4− �)

2(�− 2)

(k,i)

ψ �(r)

s�−1
− m(�− 1)

�− 2

(k,i)

ψ �(r)

s�+2

+
(ε
2

(k,i)

ψ �(r) +
1

�(�− 3)

(k,i−1)

ψ �(r)
) 1

s�+1

]
,

An identical formula holds for χ with k ≥ i ≥ 0 after setting

(299)
(k,−1)
χ � = 0 .

One is led to:

Lemma B.1. The integral kernels
(i,j)

ψ and
(i,j)
χ are polynomials in 1/s with

coefficients depending upon r, with no terms 1/s2 and 1/s3. Moreover

a) When m = 0, the integral kernels
(i,j)

ψ , i ≥ 1, 1 ≤ j ≤ i, are polynomials

in 1/s of order i+ 3, with
(i,0)

ψ of order 1.
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Figure B.3: Highest powers of s−1 in
(i,j)

ψ when m �= 0. The dash-dotted
lines describe the contributions from the mass parameter m, corresponding
to an increase of the highest power by 2. The dotted lines describe the

contributions from (290), increasing the power by 1. The tree for
(i,j)
χ is

identical after replacing (i, j) in the table by (i− 1, j − 1).

b) When m = 0, the integral kernels
(i,j)
χ , 0 ≤ j ≤ i, are polynomials in

1/s of order i+ 4.

c) When m �= 0, the integral kernels
(i,j)

ψ , i ≥ 1, 0 ≤ j ≤ i, are polynomials

in 1/s of order not larger than 2i + 3 − j, with
(i,0)

ψ and
(i,1)

ψ of order

2i+ 2, and
(i,i)

ψ of order i+ 3.

d) When m �= 0, the integral kernels
(i,j)
χ , 0 ≤ j ≤ i, are polynomials in

1/s of order not larger than 2i + 4 − j, with
(i,0)
χ of order 2i + 4, and

(i,i)
χ of order i+ 4.

Proof. We summarise the arguments so far, and add some details:

1. The functions that initialise the induction for ∂uhAB involve only 1/s
and 1/s4 terms, and the functions that initialise the induction for
∂uhuA involve only 1/s and 1/s5 terms.

2. One then applies the recursion formulae (290) and (297); cf. Fig-
ures B.1 and B.3. We note that ln r- and/or ln s-terms could a priori
arise in the induction from 1/s terms in some integrals, but the multi-
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plicative coefficients (�−1) which appear in the second and third lines
in (290) and (297) guarantee that there will be no s−2 terms in any
of the integral kernels, which in turns guarantees that no logarithmic
terms will occur.

3. Whenm = 0, the fact that
(i,j)

ψ is of order i+3 in s−1 follows from (346).

4. Point a) together with the equality
(i,j)

ψ i+3(s, r) = 2r2
(i−1,j−1)

χ i+3(s, r)
(cf. (294)) establishes b).

5. It follows from (291) that
(i,i)

ψ is of order s−i−3 when m = 0, and
Figure B.3 makes it clear that this is not affected by the non-vanishing
of m.

6. By following the dashed-dotted arrows in Figure B.3 starting from the

(1, 1) entry makes it clear that
(i,1)

ψ is of order 2i + 2 in s−1 when

m �= 0. The same holds for
(i,0)

ψ since the recursion formulae do not

depend upon the index j of
(i,j)

ψ , and both initialising polynomials
(1,0)

ψ

and
(1,1)

ψ are of order 4. In fact one checks that

(k,0)
χ 2k+4 =

(−m)k

3

(
(2k + 1)!

)2
23k(k!)3

,(300)

(k,0)

ψ 2k+2 =
r(−m)k

23k−1(k − 1)!

(
(2k)!

k!

)2

= −3m

2r

(k,1)

ψ 2k+2 ,(301)

which further implies

(k,0)
χ 2k+4 = − 1

3mr

(k+1,0)

ψ 2k+4 =
1

2r2

(k+1,1)

ψ 2k+4 .(302)

We finish this section with the following relations, needed for (370):

Lemma B.2. For k ≥ 2 we have

(k−1,0)
χ 2k+2

(k,0)

ψ 2k+1 =
(k−1,0)
χ 2k+1

(k,0)

ψ 2k+2 ,(303)

(k−1,0)
χ 2k+2

(k,1)

ψ 2k+1 =
(k−1,1)
χ 2k+1

(k,0)

ψ 2k+2 +
(k−1,0)
χ 2k+1

(k,1)

ψ 2k+2 ,(304)

(k−1,0)
χ 2k+2

(k,2)

ψ 2k+1 =
(k−1,1)
χ 2k+1

(k,1)

ψ 2k+2 .(305)
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Proof. We start by noting the following recursion formulae, which can be
read off (298)-(299), for k ≥ 1, k ≥ i ≥ 0, and n ≥ 5:

(k,i)
χ n = mn

(k−1,i)
χ n−2 + εn

(k−1,i)
χ n−1 + αn

(k−1,i)
χ n+1 + ιn

(k−1,i−1)
χ n−1 ,

(k,i)

ψ n = mn

(k−1,i)

ψ n−2 + εn
(k−1,i)

ψ n−1 + αn

(k−1,i)

ψ n+1 + ιn
(k−1,i−1)

ψ n−1 ,

where mn arises from the mass m, εn from the Gauss curvature ε of γ̊, αn

from the cosmological constant encoded in α, and ιn is associated with the
term containing a shift in i:

mn = −m
(n− 3)2

n− 4
, εn = ε

n

2
, αn = −α2n(n− 3)

2(n− 1)
,

ιn =
n− 2

(n− 1)(n− 4)
.

By Lemma B.1, the coefficients
(i,j)
χ � vanish for � + j > 2i + 4, and the

coefficients
(i,j)

ψ � vanish for �+ j > 2i+ 3. Thus, for k ≥ 2 we can write

(k,0)

ψ 2k+2 = m2k+2

(k−1,0)

ψ 2k ,
(k,1)

ψ 2k+2 = m2k+2

(k−1,1)

ψ 2k ,

(k,i)

ψ 2k+1 = m2k+1

(k−1,i)

ψ 2k−1 + ε2k+1

(k−1,i)

ψ 2k + α2k+1

(k−1,i)

ψ 2k+2

+ ι2k+1

(k−1,i−1)

ψ 2k ,

(k,2)

ψ 2k+1 = m2k+1

(k−1,2)

ψ 2k−1 + ε2k+1

(k−1,2)

ψ 2k + α2k+1

(k−1,2)

ψ 2k+2︸ ︷︷ ︸
=0

+ ι2k+1

(k−1,1)

ψ 2k ,

(k,1)

ψ 2k+1 = m2k+1

(k−1,1)

ψ 2k−1 + ε2k+1

(k−1,1)

ψ 2k + α2k+1

(k−1,1)

ψ 2k+2︸ ︷︷ ︸
=0

+ ι2k+1

(k−1,0)

ψ 2k ,

(k,0)

ψ 2k+1 = m2k+1

(k−1,0)

ψ 2k−1 + ε2k+1

(k−1,0)

ψ 2k

+ α2k+1

(k−1,0)

ψ 2k+2 + ι2k+1

(k−1,−1)

ψ 2k︸ ︷︷ ︸
=0

.
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Similarly for k ≥ 3 we have

(k−1,0)
χ 2k+2 = m2k+2

(k−2,0)
χ 2k ,

(k−1,1)
χ 2k+1 = m2k+1

(k−2,1)
χ 2k−1 + ε2k+1

(k−2,1)
χ 2k + α2k+1

(k−2,1)
χ 2k+2︸ ︷︷ ︸

=0

+ ι2k+1
(k−2,0)
χ 2k ,

(k−1,0)
χ 2k+1 = m2k+1

(k−2,0)
χ 2k−1 + ε2k+1

(k−2,0)
χ 2k

+ α2k+1
(k−2,0)
χ 2k+2 + ι2k+1

(k−2,−1)
χ 2k︸ ︷︷ ︸

=0

.

We now check that (303)-(305) hold with k = 2:

(1,0)
χ 6︸︷︷︸

− 3m

2
by (282);

(2,0)

ψ 5︸︷︷︸
− 3mrε

2
, by (277);

=
(1,0)
χ 5︸︷︷︸

ε

2
by (282);

(2,0)

ψ 6︸︷︷︸
9m2r

2
by (277);

,

(1,0)
χ 6︸︷︷︸

− 3m

2
by (282);

(2,1)

ψ 5︸︷︷︸
r2ε− 3mr

4
by (278);

=
(1,1)
χ 5︸︷︷︸

1

4
by (283);

(2,0)

ψ 6︸︷︷︸
9m2r

2
by (277);

+
(1,0)
χ 5︸︷︷︸

ε

2
by (282);

(2,1)

ψ 6︸︷︷︸
−3mr2 by (278);

,

(1,0)
χ 6︸︷︷︸

− 3m

2
by (282);

(2,2)

ψ 5︸︷︷︸
r2

2
by (279);

=
(1,1)
χ 5︸︷︷︸

1

4
by (283);

(2,1)

ψ 6︸︷︷︸
−3mr2 by (278);

.

To continue, let k ≥ 3 and assume that (303) holds with k replaced by k−1,
then:

(k−1,0)
χ 2k+2

(k,0)

ψ 2k+1 −
(k−1,0)
χ 2k+1

(k,0)

ψ 2k+2

= m2k+2
(k−2,0)
χ 2k

(
m2k+1

(k−1,0)

ψ 2k−1 +�������
ε2k+1

(k−1,0)

ψ 2k

)
−
(
m2k+1

(k−2,0)
χ 2k−1 +�������

ε2k+1
(k−2,0)
χ 2k

)
m2k+2

(k−1,0)

ψ 2k

= m2k+2m2k+1

((k−2,0)
χ 2k

(k−1,0)

ψ 2k−1 −
(k−2,0)
χ 2k−1

(k−1,0)

ψ 2k

)
= 0 .
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Next, we assume that (304) holds with k replaced by k − 1. Then

(k−1,0)
χ 2k+2

(k,1)

ψ 2k+1 −
(k−1,1)
χ 2k+1

(k,0)

ψ 2k+2 −
(k−1,0)
χ 2k+1

(k,1)

ψ 2k+2

= m2k+2
(k−2,0)
χ 2k

(k,1)

ψ 2k+1 −
(k−1,1)
χ 2k+1m2k+2

(k−1,0)

ψ 2k

− (k−1,0)
χ 2k+1m2k+2

(k−1,1)

ψ 2k

= m2k+2

[
(k−2,0)
χ 2k

(
m2k+1

(k−1,1)

ψ 2k−1 +��������������ε2k+1

(k−1,1)

ψ 2k

+�������
ι2k+1

(k−1,0)

ψ 2k

)
−
(
m2k+1

(k−2,1)
χ 2k−1 +�������

ι2k+1
(k−2,0)
χ 2k

)(k−1,0)

ψ 2k

−
(
m2k+1

(k−2,0)
χ 2k−1 +��������������ε2k+1

(k−2,0)
χ 2k

)(k−1,1)

ψ 2k

]
= m2k+2m2k+1

[
(k−2,0)
χ 2k

(k−1,1)

ψ 2k−1 −
(k−2,1)
χ 2k−1

(k−1,0)

ψ 2k

− (k−2,0)
χ 2k−1

(k−1,1)

ψ 2k

]
= 0 .

Finally, suppose that (305) holds with k replaced by k − 1. Then

(k−1,0)
χ 2k+2

(k,2)

ψ 2k+1 −
(k−1,1)
χ 2k+1

(k,1)

ψ 2k+2

= m2k+2
(k−2,0)
χ 2k

(
m2k+1

(k−1,2)

ψ 2k−1 +�������
ι2k+1

(k−1,1)

ψ 2k

)
−
(
m2k+1

(k−2,1)
χ 2k−1 +�������

m2k+2
(k−2,0)
χ 2k

)
ι2k+1

(k−1,1)

ψ 2k

= m2k+2m2k+1

((k−2,0)
χ 2k

(k−1,2)

ψ 2k−1 −
(k−2,1)
χ 2k−1

(k−1,1)

ψ 2k

)
= 0 .

The validity of (303)-(305) follows thus by induction.

Appendix C. Operators on S

The aim of this appendix is to analyse the mapping properties of sev-

eral operators acting on tensor fields defined on a compact orientable two-
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dimensional manifold (2M ≡ S, γ̊) with constant Gauss curvature ε ∈
{0,±1}.

C.1. Vector and tensor spherical harmonics

For integers � ≥ 1, −� ≤ m ≤ �, let Y (�m) be the standard spherical harmon-
ics on the unit sphere. Following the notations and conventions of [2, 20],
we define the vector spherical harmonics, as well as trace-free symmetric
2-tensor spherical harmonics on S2 as:

1. For � ≥ 1, −� ≤ m ≤ �, define the vector fields

E
(�m)
A := − 1√

�(�+ 1)
D̊AY

(�m) , H
(�m)
A :=

1√
�(�+ 1)

εABD̊
BY (�m) ,

(306)

where εAB denote the volume two-form of S2.
2. For � ≥ 2, −� ≤ m ≤ �, define the trace-free symmetric 2-tensors

ψ
(�m)
AB := − 1√

1
2�(�+ 1)− 1

C(E(�m))AB ,(307)

φ
(�m)
AB := − 1√

1
2�(�+ 1)− 1

C(H(�m))AB ,(308)

where the operator C(ξ)AB = TS(D̊AξB) of (38) corresponds to the
operator − /D∗

2 of [2, 20].

Let us summarise the properties of these tensor harmonics, as needed in
the main text. More details and proofs can be found in [20], see also [17].

Lemma C.1. The following holds.

1. On S2, L2-integrable functions f , vector fields ξ and trace-free sym-
metric 2-tensors ϕ can be decomposed as

f =
∑
�≥0

∑
−�≤m≤�

f �mY (�m) ,

ξA =
∑
�≥1

∑
−�≤m≤�

ξ
(�m)
E E

(�m)
A + ξ

(�m)
H H

(�m)
A ,

ϕAB =
∑
�≥2

∑
−�≤m≤�

ϕ
(�m)
ψ ψ

(�m)
AB + ϕ

(�m)
φ φ

(�m)
AB ,
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where

f (�m) :=

∫
S2

fY (�m)dμγ̊ ,

ξ
(�m)
E :=

∫
S2

ξAE
(�m)
A , ξ

(�m)
H :=

∫
S2

ξAH
(�m)
A dμγ̊ ,

ϕ
(�m)
ψ :=

∫
S2

ϕABψ
(�m)
AB , ϕ

(�m)
φ :=

∫
S2

ϕABφ
(�m)
AB dμγ̊ .

2. It holds that for � ≥ 2,

D̊Aψ
(�m)
AB =

√
1

2
�(�+ 1)− 1E

(�m)
B ,(309)

D̊Aφ
(�m)
AB =

√
1

2
�(�+ 1)− 1H

(�m)
B .(310)

3. The space of conformal Killing vector fields on S2 is spanned by E
(1m)
A

and H
(1m)
A .

C.2. The conformal Killing operator

Consider the conformal Killing operator on a closed 2-dimensional Rieman-
nian manifold (2M, γ̊):

(311) ξA �→ D̊AξB + D̊BξA − D̊CξC γ̊AB ≡ 2C(ξ)AB .

We have

Proposition C.2. The conformal Killing operator on two dimensional man-
ifolds is elliptic, with

1. six dimensional kernel and no cokernel on S2;
2. two dimensional kernel and cokernel on T

2;
3. no kernel and 6(g − 1) dimensional cokernel on manifolds of genus

g ≥ 2.

Proof. We first show that C is elliptic. For this, let 0 �= k ∈ T ∗(2M) and let
σ(k) be the symbol of C, with kernel determined by the equation

(
σ(k)

)
AB

≡ 1

2

(
kAξB + kBξA − kCξC γ̊AB

)
= 0 .(312)
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Contracting with kAkB one obtains

(313) kAkAk
CξC = 0 =⇒ kCξC = 0 .

Equation (312) becomes now

kAξB + kBξA = 0 .(314)

Contracting with kA one concludes that

kAkAξB = 0 .(315)

Hence ξB = 0, and ellipticity of C follows.

Concerning the kernel in point 1., we start by noting that the equation

(316) D̊AξB + D̊BξA − D̊CξC γ̊AB = 0

is conformally invariant. Hence it suffices to analyse it on the unit round
sphere. Therefore, by Lemma C.1, its solution are of the form

ξA = D̊Aϕ+ εABD̊
Bψ ,

where ϕ and ψ are linear combinations of � = 1 spherical harmonics. The
ϕ-solutions are in one-to-one correspondence with the three generators of
boosts of four-dimensional Minkowski space-time, while the ψ-solutions cor-
respond to rotations.

The statements about the kernel in points 2. and 3. follow from Propo-
sition C.3 which we are about to prove.

The statements about the cokernels follow from

C† = −d̊iv(2)

where d̊iv(2) is the divergence operator on two-symmetric trace-free tensors,

(317) (d̊iv(2) h)A := D̊BhAB ,

together with the results in Section C.3 below.

Recall that we use the symbol CKV to denote the space of conformal
Killing vectors, while TT denotes the space of trace-free divergence-free
symmetric two-tensors, and orthogonality is defined in L2. Then:
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Proposition C.3. 1. On T
2 all conformal Killing vectors are covariantly

constant, hence Killing.
2. There are no nontrivial Killing vectors or conformal Killing vectors

on higher genus two dimensional manifolds.
3. im(d̊iv(2)C) = CKV⊥.

4. For any vector field ξ we have C(ξ)[TT] = 0.

Proof. 1. and 2.: Taking the divergence of (316) and commuting derivatives
leads to

(318) D̊AD̊AξB + R̊BCξ
C = 0 .

Multiplying by ξB and integrating over 2M one finds

(319)

∫
(|D̊ξ|2 − R̊BCξ

BξC) = 0 .

If R̊BC ≤ 0 we find that ξ is covariantly constant, vanishing if R̊BC < 0.

3. Let η be L2-orthogonal to the image of d̊iv(2)C, thus for any vector
field ξ we have

0 =

∫
S
ηAD̊B(D̊AξB + D̊BξA − D̊CξC γ̊AB)dμγ̊

= 2

∫
S
ηAD̊B

(
TS(D̊AξB)

)
dμγ̊

= −2

∫
S
D̊BηATS(D̊AξB)dμγ̊ = −2

∫
S
TS(D̊BηA) TS(D̊AξB)dμγ̊ .

Letting ξ = η we conclude that η is a conformal Killing vector.

4. The field C(ξ)[TT] is obtained by L2-projecting C(ξ) on TT. As such,
for any h ∈ TT we have∫

S
hABC(ξ)AB dμγ̊ =

∫
S
hAB

(
TS(D̊AξB)

)
dμγ̊

=

∫
S
TS(hAB)D̊AξB dμγ̊ =

∫
S
hABD̊AξB dμγ̊

= −
∫
S
D̊Ah

AB︸ ︷︷ ︸
0

ξB dμγ̊ = 0 .

Hence C(ξ)[TT] = 0.
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C.3. d̊iv(2)

We denote by d̊iv(1) the divergence operator on vector fields:

(320) d̊iv(1) ξ := D̊Aξ
A .

and by d̊iv(2) that on two-symmetric trace-free tensors,

(321) (d̊iv(2) h)A := D̊BhAB .

As is well-known, d̊iv(2) is conformally covariant in all dimensions. In
particular, in dimension two if gAB = eϕḡAB then

(322) DAh
AB = e−2ϕD̄A(e

2ϕhAB) ,

where D is the Levi-Civita connection of g and D̄ that of ḡ. It follows that
it suffices to understand the kernel for metrics of constant Gauss curvature.

As already pointed out, on a two-dimensional closed negatively curved
manifold of genus g ≥ 2, the operator d̊iv(2) has a 6(g − 1)-dimensional

kernel; it has no kernel on S2; on a flat torus d̊iv(2) has a two-dimensional
kernel consisting of covariantly constant fields (cf., e.g., [10] Theorem 8.2
and the paragraph that follows or [11, Theorem 6.1 and Corollary 6.1]).

We claim that:

Lemma C.4. Consider a two-dimensional Riemannian manifold (2M, γ̊).
Then the operator d̊iv(2) acting on symmetric traceless tensors is elliptic,
and it holds that

im d̊iv(2) = CKV⊥ .

In particular if R̊BC < 0, the operator d̊iv(2) is surjective.

Proof. We start with ellipticity. For this, let 0 �= k ∈ T ∗(2M) and let σ(k)
be the symbol of d̊iv(2), with kernel determined by the equation(

σ(k)h
)
A
≡ kChAC = 0 .(323)

In an orthonormal frame in which k2 = 0 this is equivalent to

h11 = h12 = 0 .(324)

For symmetric and traceless tensors hAB this is the same as hAB = 0. So
σ(k) has trivial kernel for k �= 0, which is the definition of ellipticity.
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Next, let ξ be L2-orthogonal to the image of d̊iv(2), then for all smooth
symmetric traceless tensors h we have

(325) 0 =

∫
ξAD̊BhAB = −

∫
D̊BξAhAB = −

∫
TS(D̊BξA)hAB .

This shows that TS(D̊BξA) = 0, hence ξA is a conformal vector field.

Since no such fields exist when the Ricci tensor is negative by Proposi-
tion C.3, surjectivity for such metrics follows.

C.4. L̂ and L

To continue, we wish to analyse the operators

(326) L̂ = −d̊iv(2)C L , L = (D̊d̊iv(1) − d̊iv(2)C + ε) ;

recall that d̊iv(1) ξ = D̊Aξ
A, (d̊iv(2) h)A = D̊BhAB, and that ε ∈ {0,±1} is

the Gauss curvature of γ̊.

We consider first the operator ξ �→ d̊iv(2)C(ξ). One finds

(327)
(
d̊iv(2)C(ξ)

)
A
=

1

2
(Δγ̊ + ε)ξA ,

which is elliptic, self-adjoint, with kernel and cokernel spanned by conformal
Killing vectors.

Next, we turn our attention to L:

L(ξ)A = D̊AD̊
CξC +

1

2

(
D̊AD̊

CξC − D̊C(D̊AξC︸ ︷︷ ︸
−R̊C

AξC

+D̊CξA)
)
+ εξA(328)

= D̊AD̊
CξC +

1

2

(
−Δγ̊ + ε

)
ξA .

One readily checks that L is also elliptic and self-adjoint.

Applying D̊A to (328), commuting derivatives, and using

(329) R̊AB = ε̊γAB

one finds that the kernel of L consists of vector fields satisfying

(330)
1

2
Δγ̊D̊Aξ

A = 0 ,
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hence D̊Aξ
A = c for some constant c. Integrating this last equality over 2M

shows that c = 0. It now follows that the kernel of L̂ consists of vector fields
satisfying

(331)
(
−Δγ̊ + ε

)
ξA = 0 , D̊Aξ

A = 0 .

Recall the Hodge decomposition: on a compact two dimensional oriented
manifold every one-form can be decomposed as

(332) ξA = D̊Aψ + εABD̊
Bφ+ rA ,

where rA is a harmonic one-form, i.e. a covector field satisfying

(333) D̊ArA = 0 = εABD̊ArB = (−Δγ̊ + ε)rA .

On S2 the forms rA vanish identically, and on manifolds with genus g the
space of rA’s is 2g-dimensional; cf., e.g., [8, Theorems 19.11 and 19.14] or
[9, Theorem 18.7].

From the second equation in (331) together with (332)-(333) we find
that the Laplacian of ψ vanishes, hence ψ is constant, and the first equation
in (331) gives

(334) εABD̊BΔγ̊φ = 0 .

It readily follows that φ is also constant, hence ξA = rA, and we conclude
that:

Lemma C.5. The operator L is elliptic, self-adjoint, with kernel and cokernel
consisting of one-forms rA satisfying (333), hence of dimension equal to
twice the genus of the compact, oriented, two-dimensional manifold.

We are ready now to pass to the proof of:

Proposition C.6. The operator L̂ is elliptic, self-adjoint, with

ker L̂ = coker L̂ = CKV+H .

In particular:

1. on S2 and on T 2 we have ker L̂ = coker L̂ = CKV;
2. on two-dimensional compact orientable manifolds of genus g ≥ 2 both

the kernel and cokernel of L̂ are spanned by the 2g-dimensional space
of harmonic 1-forms.
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Proof. We first check that L and −d̊iv(2)C commute. In view of (327)-(328)
it suffices to check the identity

(335) (Δγ̊ + ε)D̊AD̊
CξC = D̊AD̊

C(Δγ̊ + ε)ξC ,

which follows from a straightforward commutation of derivatives. This shows
that L̂ is the composition of two commuting self-adjoint elliptic operators,
hence elliptic and self-adjoint.

On S2 the operator L is an isomorphism by Lemma C.5, hence the
cokernel of L̂ is determined by that of −d̊iv(2)C. The claim on the kernel
follows by duality.

It should be clear that in manifestly flat coordinates on T
2 the kernels

of both L and −d̊iv(2)C consist of covectors ξA with constant entries, which
span the space of conformal Killing vectors on T

2. Self-adjointness implies
the result for the cokernel.

In the higher genus case the operator −d̊iv(2)C is an isomorphism, so

that the kernel of L̂ coincides with the kernel of L, as given by Lemma C.5.
One concludes as before.

C.5. P

Consider the operator

PhAB := TS[D̊AD̊
ChBC ] .(336)

of (97). where h is symmetric and γ̊-traceless.

We have:

Proposition C.7. The operator P is elliptic, self-adjoint and negative, with

1. six-dimensional cokernel and kernel on S2;
2. two-dimensional kernel and cokernel on T

2;
3. 6(g−1)-dimensional cokernel and kernel on manifolds of genus g ≥ 2.

Proof. Note that

(337) P = C ◦ d̊iv(2)

is a composition of elliptic operators, hence is elliptic. Using

(338) d̊iv(2)
† = −C , C† = −d̊iv(2) ,
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we have

(339) P = −d̊iv(2)
† ◦ d̊iv(2) ,

from which self-adjointness follows.
Finally, we have

(340)

∫
hABPhAB = −

∫
h d̊iv(2)

† ◦ d̊iv(2) h = −
∫

|d̊iv(2) h|2 ≤ 0 ,

hence all eigenvalues of P are negative, and Ph = 0 implies d̊iv(2) h = 0.

C.5.1. S2. As already discussed in Section C.1, it follows from [2, 20] that
on S2 we can write symmetric trace-free 2-tensors ϕAB as

(341) ϕAB =
∑
�≥2

∑
−�≤m≤�

ϕ
(�m)
ψ ψ

(�m)
AB + ϕ

(�m)
φ φ

(�m)
AB .

It follows from (307)-(308) and (309)-(310) that the operator P of (152),
namely

(342) PϕAB = TS[D̊AD̊
CϕBC ] ≡ C(D̊CϕCD)AB ,

acts on ϕAB as

PϕAB =
∑
�≥2

∑
−�≤m≤�

ϕ
(�m)
ψ C(D̊Bψ

(�m)
AB ) + ϕ

(�m)
φ C(D̊Bφ

(�m)
AB )

(343)

=
∑
�≥2

∑
−�≤m≤�

√
1

2
�(�+ 1)− 1

(
ϕ
(�m)
ψ C(E(�m))AB + ϕ

(�m)
φ C(H

(�m)
AB )

)
= −

∑
�≥2

∑
−�≤m≤�

(
1

2
�(�+ 1)− 1

)
︸ ︷︷ ︸

>0 for �≥2

(
ϕ
(�m)
ψ ψ

(�m)
AB + ϕ

(�m)
φ φ

(�m)
AB

)
.

In particular the operator P is self-adjoint and has trivial kernel on S2. On
the other hand the operator d̊iv(2) (P+2), which appears in (221) with p = 1
and m = 0, acts according to

d̊iv(2) (P + 2)(ϕ)B := D̊A(P + 2)ϕAB

(344)
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= −
∑
�≥2
|m|≤�

(
�(�+1)

2 − 1− 2
)
D̊A
(
ϕ
(�m)
ψ ψ

(�m)
AB + ϕ

(�m)
φ φ

(�m)
AB

)

= −
∑
�≥2
|m|≤�

(
�(�+1)

2 − 3
)√

�(�+1)
2 − 1︸ ︷︷ ︸

=0 for �=1,2
>0 for �>2

(
ϕ
(�m)
ψ E

(�m)
B + ϕ

(�m)
φ H

(�m)
B

)
.

It follows that the L2-orthogonal
(
im(d̊iv(2) (P +2))

)⊥
of im(d̊iv(2) (P +2))

is spanned by conformal Killing vectors together with spherical harmonic
vector fields with � = 2. Subsequently, for any covector field XA ∈ L2 the
equation

(345) D̊B (P + 2)ϕAB − ξ
[≤2]
A = XA

admits a unique solution with a symmetric traceless 2-tensor ϕAB and a

covector field ξ
[≤2]
A .

For a C2
u C

∞
(r,xA) gluing we need the operator

d̊iv(2) (P
2 + 7εP + 10ε) ,

as determined from the coefficients of κ̂6 in the formulae (286) for
(2,i)
χ .

On S2, a calculation similar to that in (344) shows that its kernel consists
of spherical harmonic tensors with � = 1, 2, 3, which results in a cokernel
spanned on spherical harmonic vectors with � = 1, 2, 3.

C.5.2. Polynomials in P . In this section we assume that m = 0.

For Ck-gluing, the operator
∑k

i=0

(k,i)
χ k+4P

i appearing in (221) is of the
form

k∑
i=0

(k,i)
χ k+4(r2)P

i = ĉk

k∏
i=1

(P + εai) , ai =
1

2
i(3 + i) ,(346)

where

ĉk =
1

k!(k + 3)
.

This can be verified by induction.
Indeed, when k = 1 this follows from (282)-(283) with ĉ1 = 1/4. Using

the recursion formula (290), a straightforward calculation shows that the
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κ̂k+5 component of the (k + 1)-order coefficient are given by

(347)
(k+1,i)
χ k+5 = ck ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εak+1

(k,0)
χ k+4 , i = 0 ,

εak+1
(k,i)
χ k+4 +

(k,i−1)
χ k+4 , 1 ≤ i ≤ k ,

(k,k)
χ k+4 , i = k + 1 ,

with ck = k+3
(k+4)(k+1) . Therefore, assuming (346), the operator at order k+1

is actually r2-independent and reads,

k+1∑
i=0

(k,i)
χ k+5(r2)P

i = ck

k∑
i=0

(
(k,i)
χ k+4P

i+1 + εak+1
(k,i)
χ k+4P

i

)

= ck

k∑
i=0

((k,i)
χ k+4P

i
)
(P + εak+1)

= ck ĉk(P + εak+1)

k∏
i=1

(P + εai)

= ĉk+1

k+1∏
i=1

(P + εai) , with ĉk+1 = ck ĉk .

It thus follows from (343) that, on S2, spherical harmonic vector fields with
mode � ≥ 0 satisfying

0 =

k∏
i=1

(
−1

2
�(�+ 1) + 1 + ai

)
=

1

2

k∏
i=1

(1 + i− �)(2 + i+ �)(348)

belong to ker

(∑k
i=0

(k,i)
χ k+4P

i

)
. The corresponding values of � are � =

2, ..., k + 1.
For the remaining topologies, each of the operators

P + εai

appearing in (346) is negative. On T
2 its kernel, when acting on traceless ten-

sors, is two-dimensional, consisting of covariantly constant tensors. Hence,
in the toroidal case, the kernel of the left-hand side of (346) is also two-
dimensional, which can be seen e.g. by a Fourier-series decomposition.
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On higher genus manifolds P + εai is strictly negative and therefore has
no kernel. Hence so does the left-hand side of (346).

Appendix D. A trace identity

The aim of this appendix is to prove the following curious consequence of
Bianchi identities:

r−1γABδGAB = −1

2
γAB∂rδRAB + D̊AδGrA ,(349)

when ∂i
uδβ = 0 (i.e., ∂i

uδGrr = 0) for i = 0, 1.
For this, we start by noting that the operator gABRAB is related to that

appearing in (69), which can be seen as follows: From the definition (48) of
the Einstein tensor Gμν and the Bondi parametrisation of the metric (10)
we have

Gur =
1

2
e2βgrrGrr − UAGrA +

1

2
e2βgABRAB .(350)

Now, from the linearisation of (350), when δβ = 0, Grr = 0, and ∂i
uδGrr = 0,

we have

1

2
γ̊ABδRAB = r2δGur =⇒ 1

2
γ̊AB∂rδRAB = 2rδGur + r2∂rδGur ,

(351)

and hence the identity (349) is equivalent to

D̊AδGrA − 1

r
γ̊ABδGAB = 2rδGur + r2∂rδGur .(352)

Meanwhile, it follows from the divergence identity (122) with ν = r that

0 =
1√
|g|

∂μ(
√

|g|E μ
r) +

1

2
∂r(g

μρ)Eμρ .(353)

The linearisation of (353) with ∂uδGrr = 0 gives,

0 = − 1

r2
∂r(r

2δGur) +
1

r2
D̊AδGrA +

1

2
∂r

(
1

r2
γ̊AB

)
δGAB ,(354)

and hence,

2rδGur + r2∂rδGur = D̊AδGrA − 1

r
γ̊ABδGAB ,(355)



788 Piotr T. Chruściel and Wan Cong

which agrees with (352).

Appendix E. Conserved charges for ∂i
uȟuA

The aim of this appendix is to present an alternative way to obtain the

obstructions for gluing of ∂i
uhuA, i = 0, 1, in terms of gauge-dependent radial

charges, as suggested to us by S. Czimek. We assume in what follows that

m = 0 .

Similar calculations can be done for m �= 0 and for higher derivatives, but

we have not pursued these ideas any further.

E.1. ȟuA

Recall (103):

∂r

(
3ȟuA + r∂rȟuA − r−3D̊BhAB

)
= r−4D̊BhAB .(356)

In particular we obtain a collection of radially-conserved charges

(357) ∂r

∫
S
πA

(
3ȟuA + r∂rȟuA

)
dμγ̊︸ ︷︷ ︸

=:
[4,0]

Q (πA)

= 0 ,

where the πA’s are conformal Killing vectors of (S, γ̊). Keeping in mind our

assumption that m = 0, under gauge transformations we have

(358) 3ȟuA + r∂rȟuA �→ 3ȟuA + r∂rȟuA +
1

r2
L1(ξ

u)A +3(∂uξA +α2D̊Aξ
u) .

Hence the gauge-dependent radial charge
[4,0]

Q transforms as,

(359)
[4,0]

Q (πA) �→
[4,0]

Q (πA) + 3

∫
πA
(
∂uξA + α2D̊Aξ

u
)
dμγ̊ ,

since the L1-gauge term in (358) has zero projection onto the πA’s.
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E.2. ∂uȟuA

Now, we hope to obtain a conserved radial charge involving ∂uȟuA. For this,
take ∂u of (356):

(360) ∂r

(
3∂uȟuA + r∂r∂uȟuA

)
=

1

r
D̊B∂r

(
∂uȟAB

)
.

We can then achieve the goal by rewriting the RHS into terms of the form
∂r(·)+ (terms involving only ∂i

rhAB). For this, recall (90) with δβ = 0:

0 =∂r

[
r∂uȟAB − 1

2
V ∂rȟAB − 1

2r
V ȟAB − rTS

[
D̊AȟuB

]]
(361)

+
1

2
∂r(V/r)ȟAB − TS

[
D̊AȟuB

]
.

We wish to combine the above two equations by taking RHS of (360)
+ Arc × D̊B (361) for some constants A, c such that all the ∂uD̊

BȟAB

terms collect into the form B∂r(r
aD̊B∂uȟAB), for some constants B, a. By a

straightforward comparison of coefficients, we find that this is possible with

A = −1
2 = −B and c = −2, a = −1. Indeed, we have,

∂r

(
3∂uȟuA + r∂r∂uȟuA

)
=

1

r
D̊B∂r

(
∂uȟAB

)
− 1

2r2
∂r
(
r∂uD̊

BȟAB

)
+

1

2r2
D̊B∂r

[1
2
V ∂rȟAB +

1

2r
V ȟAB + rTS

[
D̊AȟuB

]]
− 1

4r2
∂r(V/r)D̊

BȟAB +
1

2r2
D̊B TS

[
D̊AȟuB

]
=

1

2
∂r

(
1

r
∂uD̊

BȟAB

)
+

1

2r2
D̊B∂r

[1
2
V ∂rȟAB +

1

2r
V ȟAB + rTS

[
D̊AȟuB

]]
− 1

4r2
∂r(V/r)D̊

BȟAB +
1

2r2
D̊B TS

[
D̊AȟuB

]
.

We rewrite this as

∂r

(
3∂uȟuA + r∂r∂uȟuA − 1

2r
∂uD̊

BȟAB

)
(362)

=
1

2r2
D̊B∂r

[V
2
∂rȟAB +

V

2r
ȟAB

]
− 1

4r2
∂r

(
V

r

)
D̊BȟAB
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+
1

2r2
∂r

(
rD̊B TS

[
D̊AȟuB

])
+

1

2r2
D̊B TS

[
D̊AȟuB

]
.

Next, we perform a similar trick, by taking RHS of (362)
+D rd × D̊B TS[D̊A[LHS of (356)]] to collect all the D̊B TS[D̊AȟuA] terms
into the form

Ã∂r
(
rã∂r(r

b̃D̊B TS[D̊AȟuA])
)

for some constants D, d, Ã, ã, b̃. By power matching and comparing coeffi-
cients, we get d = −1 and D = −3/8 = Ã = −1/b̃ = 1/ã. Explicitly, as a
first step we write

1

2r2
∂r

(
rD̊B TS

[
D̊AȟuB

])
+

1

2r2
D̊B TS

[
D̊AȟuB

]
− 3

8r
∂r

(
3D̊B TS[D̊AȟuB] + r∂rD̊

B TS[D̊AȟuB]

)
︸ ︷︷ ︸

= 1

r
∂r(D̊BPȟAB) by (356)

= −3

8
∂r
(
r−8/3∂r(r

8/3D̊B TS[D̊AȟuB])
)
.

Substituting this into (362) then gives,

∂r

(
3∂uȟuA + r∂r∂uȟuA − 1

2r
∂uD̊

BȟAB

)
=

1

2r2
D̊B∂r

[V
2
∂rȟAB +

V

2r
ȟAB

]
− 1

4r2
∂r

(
V

r

)
D̊BȟAB

− 3

8
∂r
(
r−

8

3∂r(r
8

3 D̊B TS[D̊AȟuB])
)
+

3

8r2
∂r

(
D̊BPȟAB

)
,

which we rewrite as

∂r

(
3∂uȟuA + r∂r∂uȟuA − 1

2r
∂uD̊

BȟAB +
3

8
r−

8

3∂r
(
r

8

3 D̊B TS[D̊AȟuB]
))

=
1

2r2
D̊B∂r

[V
2
∂rȟAB +

V

2r
ȟAB

]
− 1

4r2
∂r

(
V

r

)
D̊BȟAB

+
3

8r2
∂r

(
D̊BPȟAB

)
= ∂r

(
V

4r5
D̊BhAB +

V

4r4
D̊B∂rhAB +

3

8r4
PhAB

)
+

(
9V

4r6
− 3∂rV

4r5

)
D̊BhAB +

3

4r5
D̊BPhAB ,
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or equivalently,

∂r

(
3∂uȟuA + r∂r∂uȟuA − 1

2r
∂uD̊

BȟAB +
3

8
r−

8

3∂r
(
r

8

3 D̊B TS[D̊AȟuB]
)

− V

4r5
D̊BhAB − V

4r4
D̊B∂rhAB − 3

8r4
PhAB

)

=
3

4r5
D̊B

(
3V

r
− ∂rV︸ ︷︷ ︸
=2ε

+P

)
hAB .

(363)

Let us denote by,

[1]
q A :=3∂uȟuA + r∂r∂uȟuA − 1

2r
∂uD̊

BȟAB +
3

8
r−

8

3∂r
(
r

8

3 D̊B TS[D̊AȟuB]
)

− V

4r5
D̊BhAB − V

4r4
D̊B∂rhAB − 3

8r4
PhAB .(364)

Let μA ∈ coker(d̊iv(2) (P + 2ε)). Equation (363) gives

∂r
[5]

Q(μA) = 0,(365)

where

[5]

Q(μA) :=

∫
S
μA[1]

q Adμγ̊ .(366)

We have thus found a gauge-dependent radial charge involving ∂uȟuA.
From the analysis in Appendix C.5.2, on S2, coker(d̊iv(2) (P + 2ε)) is the
16-dimensional space of � = 1 and � = 2 spherical harmonic vectors; on T

2,
coker(d̊iv(2) (P + 2ε)) is the two dimensional space of covariantly constant

vectors; on negatively curved manifolds of higher genus, coker(d̊iv(2) (P+2ε))

is trivial. Note that coker(d̊iv(2) (P + 2ε)) corresponds exactly to the space
of obstructions for solving (221) with p = 1 (compare also (344)).

Under gauge transformations,
[1]
q A transforms as

[1]
q A �→ [1]

q A − ε

r3
L1(ξ

u)A +
3α2

2
(D̊AD̊Bξ

B + D̊BC(ξ)AB)

+ 3∂2
uξA − 3

4r2
D̊B(2ε+ P )C(ξ)AB .
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Note that the r-dependent gauge terms in this equation vanish upon pro-

jection onto μA. Hence, the charge
[5]

Q transforms as,

[5]

Q(μA) �→
[5]

Q(μA) + 3

∫
S
μA

(
α2

2
(D̊AD̊Bξ

B + D̊BC(ξ)AB) + ∂2
uξA

)
dμγ̊ .

(367)

Appendix F. An identity

One way of ensuring continuity of ∂p
uȟuA and ∂p

uh
[TT⊥]
AB at r2 is through the

fields {
[2p+4]

ϕ̂
[TT⊥]
AB , ∂p+1

u

(2)

ξ
[CKV]
C } and the gauge field ∂p

u

(2)

ξ
[CKV⊥]
C respectively.

This turns out not to be convenient from the perspective of nonlinear the-

ory, as it involves losses of derivatives, which is avoided by the argument

presented in the main body of the paper. We present this alternative calcu-

lation here as it involves some unexpected identities which might be useful

for further applications.

We thus revisit (225). For the sake of the induction here we assume that

the fields
[�]

ϕ̂AB for � ≤ 2p + 2 are known and collect them, together with

−∂p
uȟuA|S̃2

, into a new term

(p)

ˆ̃XA, allowing us to rewrite the L2-projections

on CKV and CKV⊥ of (225) respectively as

∂p+1
u

(2)

ξ
[CKV]
A =

(p)

ˆ̃X
[CKV]
A ,(368)

−(p,0)
χ 2p+4(r2)D̊

B
[2p+4]

ϕ̂
[TT⊥]
AB = −∂p+1

u

(2)

ξ
[CKV⊥]
A +

(p)

ˆ̃X
[CKV⊥]
A(369)

+ D̊B(
(p,0)
χ 2p+3(r2) +

(p,1)
χ 2p+3(r2)P )

[2p+3]

ϕ̂
[TT⊥]
AB .

An argument identical to that below (213) shows that, both on S2 and

T
2, (368) determines ∂p+1

u

(2)

ξ
[CKV]
A uniquely in terms of

(p)

ˆ̃X
[CKV]
A while (369)

determines
[2p+4]

ϕ̂
[TT⊥]
AB uniquely in terms of

(p)

ˆ̃X
[CKV⊥]
A ,

[2p+3]

ϕ̂
[TT⊥]
AB and

∂p+1
u

(2)

ξ
[CKV⊥]
A ; the fields

[2p+3]

ϕ̂
[TT⊥]
AB and ∂p+1

u

(2)

ξ
[CKV⊥]
A remain free to use for

other gluing equations. On negatively curved sections with higher genus, (369)
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determines
[2p+4]

ϕ̂
[TT⊥]
AB in terms of

(p)

ˆ̃XA,
[2p+3]

ϕ̂
[TT⊥]
AB and ∂p+1

u

(2)

ξ
[CKV⊥]
A =

∂p+1
u

(2)

ξ A, with the fields
[2p+3]

ϕ̂
[TT⊥]
AB and ∂p+1

u

(2)

ξ A remaining free.

Next, in order to take into account the dependence of
[2p+2]

ϕ̂ and
[2p+1]

ϕ̂

upon ∂p
u

(2)

ξ
[CKV⊥]
C , we consider the equation obtained by acting with d̊iv(2)

on (241). There occur some miraculous cancellations, which are likely to
have some simple origin:

D̊A∂p
uh

[TT⊥]
AB |S̃2

= D̊A
(p)

Ψ̃
[TT⊥]
AB (r2, x

A)− 2r22D̊
ATS[D̊A∂

p
u

(2)

ξ
[CKV⊥]
B ]

(370)

+ D̊A(
(p,0)

ψ 2p+2(r2) +
(p,1)

ψ 2p+2(r2)P )
[2p+2]

ϕ̂
[TT⊥]
AB

+ D̊A(
(p,0)

ψ 2p+1(r2) +
(p,1)

ψ 2p+1(r2)P +
(p,2)

ψ 2p+1(r2)P
2)

[2p+1]

ϕ̂
[TT⊥]
AB

= D̊A
(p)

Ψ̃
[TT⊥]
AB (r2, x

A)− 2r22D̊
ATS[D̊A∂

p
u

(2)

ξ
[CKV⊥]
B ]

+
(p,0)

ψ 2p+2/
(p−1,0)
χ 2p+2 ∂

p
u

(2)

ξ
[CKV⊥]
B

+
(p,1)

ψ 2p+2/
(p−1,0)
χ 2p+2 D̊

AC(∂p
u

(2)

ξ [CKV⊥])AB

= D̊A
(p)

Ψ̃
[TT⊥]
AB (r2, x

A)− 3mr2∂
p
u

(2)

ξ
[CKV⊥]
B ,

where in the second equality we made use of the expression for
[2p+2]

ϕ̂
[TT⊥]
AB

from (369) at order (p − 1), while the last equality uses (302)-(305), Ap-

pendix B. Thus, continuity of ∂p
uh

[TT⊥]
AB can be achieved by solving (370) for

∂p
u

(2)

ξ
[CKV⊥]
C :

3mr2∂
p
u

(2)

ξ
[CKV⊥]
B = −D̊A∂p

uh
[TT⊥]
AB |S̃2

+ D̊A
(p)

Ψ̃
[TT⊥]
AB (r2, x

A) .(371)

In fact, Lemma B.2, p. 772 shows that we have the factorisation

(p−1,0)
χ 2p+2(r2)

((p,0)
ψ 2p+1(r2) +

(p,1)

ψ 2p+1(r2)P +
(p,2)

ψ 2p+1(r2)P
2
)

=
((p,0)
ψ 2p+2(r2) +

(p,1)

ψ 2p+2(r2)P
)((p−1,0)

χ 2p+1(r2) +
(p−1,1)
χ 2p+1(r2)P

)
.
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[5] W. Cong, P. Chruściel, and F. Gray, Characteristic gluing with Λ: II.

Linearised Einstein equations in higher dimension, arXiv:2401.04442.
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