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Attaching faces of positive scalar curvature
manifolds with corners
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In memory of Robert Bartnik

We prove a novel desingularization theorem, that allows to smoothly
attach two given manifolds with corners by suitably gluing a pair
of isometric faces, with control on both the scalar curvature of the
resulting space and the mean curvature of its boundary.
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1. Introduction

In 1989 Bartnik proposed a novel, intriguing notion of quasi-local mass [6],

which would propel a tremendous amount of mathematical research in the

following decades. Roughly speaking, and sticking to the simplest possible

setting, he suggested to quantify the amount of gravitational mass in a given

region Ω of a time-symmetric, asymptotically flat initial data set (M, g) by

considering all admissible asymptotically flat extensions of such a region

and then minimizing the ADM mass functional within such a class. Here,

the word “admissible” encodes on the one hand the curvature requirement(s)

imposed by the Einstein constraint equations (cf. e.g. [9]), and on the other

hand additional geometric conditions, such as for instance the prescription

that ∂Ω not be enclosed by apparent horizons (or other, similar yet in general

inequivalent non-degeneracy conditions aimed at ensuring that the infimum

in question not be trivially zero, see [16]). We refer the reader to [7], [19]

and [20, 21], among others, for a comparative discussion of various notions

of quasi-local mass within the framework of general relativity, with main

focus on asymptotically flat initial data sets.
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While enjoying a number of physically desirable properties, Bartnik’s
definition immediately poses some remarkable challenges on the analytic
front, which naturally stem from its very variational character. Firstly, one
would like to understand to what extent the degree of regularity of the afore-
mentioned extensions plays a role in minimizing the functional in question.
Secondly, is it plausible to expect existence of minimizers (that is to say:
to prove that the infimum above is actually achieved) for ample classes of
data? It is clear that such two questions are very much intertwined, for in-
deed – say by analogy with all classic problems in the calculus of variations
– it would be natural to pose the problem above under a lower regularity
requirement and then prove a posteriori the regularity of extremals (if feasi-
ble). Both questions are arguably challenging when posed in full generality,
but the partial advances we have witnessed have nevertheless shed new light
on this matter, sometimes leading to far-reaching and partly unexpected de-
velopments. (For a very recent review of the state of the art concerning the
Bartnik quasi-local mass conjectures the reader may wish to consult [2].)

Concerning the first issue, the most basic singularities one may allow for
are those occurring at the interface of the domain under consideration. Mo-
tivated by the problem of proving the Riemannian positive mass theorem for
metrics that may only have Lipschitz regularity along a closed hypersurface
(and are smooth anywhere else), Miao designed in [18] a method for desin-
gularizing such interfaces in a controlled fashion while keeping the scalar
curvature non-negative, as prescribed by the dominant energy condition in
the time-symmetric case; interestingly, it is not necessary for the mean cur-
vature functions on both sides of the interface to match, but it is simply
enough that they satisfy the pointwise inequality H− ≥ H+ (condition (H)
therein), which one may regard as the requirement of a positive contribution
to the scalar curvature, in a suitable weak (in fact: distributional) sense. This
type of smoothing procedure has, since then, become a standard tool in ge-
ometric analysis: among various applications (and variations on the theme),
it has been crucially employed by the authors to study, on any compact 3-
manifold, the space of Riemannian metrics having positive scalar curvature
and mean-convex boundary [10, 11], proving that such a space is always
either empty or contractible. In general terms, the possiblity of doubling
manifolds with boundary (while preserving suitable curvature conditions)
allows to rephrase the original problem into one for closed manifolds, albeit
in presence of a Z2-equivariance constraint given by a reflectional symmetry.

Our purpose here is to study to what extent this result by Miao can
be extended to the case of manifolds with boundary ; this amounts to in-
vestigating the problem of attaching manifolds with corners (see [13] for an
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interesting overview, and for various background references) by smoothly
gluing a pair of distinguished faces while preserving some pre-assigned cur-
vature conditions; typically the conditions we focus on are the positivity of
the scalar curvature of the resulting manifold and (for instance) the mini-
mality or mean-convexity of its (leftover) boundary. In particular, we shall
be concerned with the case when the isometric faces to be attached form,
in their respectively manifolds, a right angle with the adjacent faces; an
important special case, partly motivated by forthcoming geometric applica-
tions in the spirit of [3], is when the interfaces in question are free boundary
minimal hypersurfaces (see also our recent note [12], where we introduced
the notion of minimal concordance, for related discussions). The main theo-
rem we prove, that is Theorem 5.1, is rather general and structured, so that
the reader may wish to first look at Corollary 6.1 for a simpler, illustrative
application.

After the original proof by Miao, which proceeds by fiberwise convolu-
tion and then conformal deformation, the same result has also been obtained
via different methods: specifically via Hamilton’s Ricci flow in [17] (also with
the aim of proving the positive mass theorems for metrics with edge singu-
larities along a hypersurface) and then, much more recently, with refined
local deformation methods in [5]. Our approach is arguably closest to the
third and latest of the methods above, although it also exploits (in the very
final step) a localized conformal deformation and thus is somewhat hybrid
in spirit; we also note some analogies with the important work by Brendle-
Marques-Neves [8], where counterexamples to the Min-Oo conjectures have
first been constructed. A specific challenge we face is that, since the in-
terface in question has a boundary (hence, ultimately, since the distance
function from such an interface may not be smooth and, no matter that,
its level sets will not in general meet the ambient boundary orthogonally)
we need to handle Riemannian metrics that take the rather general form
g = u(x, t)2dt2 + ht(x) near X, to be contrasted to the important special
case when u ≡ 1 that is indeed the object of [5].

Our main result is proven in Section 5, although we decided to single
out two preparatory reductions deserving separate statements (and corre-
spondingly devoted sections) since we believe that some of such arguments
may be of independent interest and utility, and then to split the proof in
question into two separate steps; in particular, the problem of connecting
two metrics whose warping factors do not match (cf. Remark 5.4), which
is perhaps the most challenging part of the whole work, is studied in Step
1 therein (crucially building on the ad hoc fairly delicate construction of a
suitable interpolation function presented in Appendix A).
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Lastly, in Section 6 we collected some direct yet significant applications,

also partly connected to and motivated by our recent note [12]. In particular,

we justify for instance the following claims: firstly, the relation of weak PSC

min-concordance (as per Definition 2.3 therein) is transitive hence an equiva-

lence relation; secondly, if one restricts a priori to the subspace RR>0,H=0(X)

then two metrics are PSC min-concordant if and only if they are weakly PSC

min-concordant. Said otherwise, it is the same to require, within that sub-

space and on top of conditions (i) and (ii) of that definition, for item (iii)

therein that the faces X × {0} and X × {1} meet ∂X × [0, 1] orthogonally

and satisfy any of the (local) geometric conditions in the following hierarchy:

(doubling) ⇒ (totally geodesic) ⇒ (minimal), or even that the metric be

a Riemannian product in a neighborhood of the faces.

The relevance of the notion of weak concordance has been justified in

[12] (which in turn stems from earlier work of Mantoulidis-Schoen [15] on

the Bartnik mass of apparent horizons), in view of its relation with spaces of

metrics defined by “spectral stability” conditions. Such spaces M>0
κ (X) (and

in particular the central M>0
1/2(X) =: M (X)) are in fact much larger than

RR>0,H=0(X) and, correspondingly, enjoy additional degrees of flexibility

that are desirable in various situations. Thanks to Corollary 6.3, Definition

2.3 in [12] thus emerges as an arguably reasonable extension of the classical,

fundamental notion of concordance to such spaces.

2. The ambient metric near a free boundary minimal
hypersurface

Given n ≥ 2, we let Xn denote a compact differentiable (C∞) manifold,

of dimension equal to n, with possibly non-empty boundary. Consistently

with our previous work [11], we will denote by R = R(X) the cone of

smooth Riemannian metrics on X, and we shall be particularly concerned

with its topological subspaces defined by binary relations involving its scalar

curvature and the mean curvature of its boundary.

For a Riemannian metric h on X we let ν = νh denote an outward-

pointing unit normal vector field along ∂X, take IIh to be the second funda-

mental form (with respect to ν) andHh its trace (that is: the mean curvature

of ∂X); throughout this article, we adopt the convention that the unit sphere

in R
3 has mean curvature equal to 2 and we will say – for a Riemannian

metric h on X – that (X,h) is mean-convex if the mean curvature of such a

manifold is greater or equal than zero, namely if Hh ≥ 0; when we wish to

stress the strict inequality Hh > 0 we will write it explicitly. Geometrically
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speaking, with our convention strict mean-convexity (of a boundary) means
that an outward deformation will increase area to first order.

For later reference and use, we recall some facts from [12]. Firstly, we
collect in the next statement some basic slicing formulae concerning warped
product metrics on cylinders. (Here, and in the sequel, we will informally
employ the word cylinder when referring to any smooth manifold of the form
X ×J for any interval J ⊂ R; the cylindrical boundary is then by definition
∂X × J .)

Lemma 2.1. Let us consider on the product manifold M = X×J a smooth
metric of the form

g(x, t) = u(x, t)2dt2 + ht(x),

where u ∈ C∞(M) and the map J � t �→ ht(x) ∈ R(X) is also smooth.
Then the following formulae hold:

(1) 2nd fundamental form of the slice X × {t}

IIt(x) = (2u(x, t))−1 d

dt
ht(x);

(2) mean curvature of the slice X × {t}

Ht(x) = (2u(x, t))−1 trht

d

dt
ht(x);

(3) scalar curvature of the product manifold

Rg(x, t) = 2u(x, t)−1(−Δht
u+

1

2
Rht

u)

− 2u(x, t)−1 d

dt
Ht(x)− (Ht(x))

2 − | IIt |2

(4) mean curvature of the cylindrical boundary of the product manifold

Hg(x, t) = Hh(x, t) + ∂νh
log u(x, t).

(Note that, for the first two equations we have considered X×{t} as boundary
of X × [0, t], i.e. we worked with respect to the normal ∂t).

Lemma 2.2. Let (Mn+1, g) be a Riemannian manifold and let X be a
compact, connected, properly embedded, two-sided hypersurface meeting the
ambient boundary orthogonally. Then there exist a smooth (C∞) function
f : M → R such that the following conditions hold true:



664 Alessandro Carlotto and Chao Li

(1) f = 0 on X;
(2) the restriction of the g-gradient [∇f ]|∂M is tangent to ∂M at each point;
(3) the g-gradient ∇f does not vanish at any point of X.

A construction of this sort is presented, for instance, in [1, Lemma 2.3];
in fact, we are not even interested in property (iii) therein. While the setting
the author refers to is Euclidean R

N , it is easy to check that the result can
be transplanted, with rather obvious modifications, to general Riemannian
manifolds. We will exploit the following consequence.

Proposition 2.3. Let (Mn+1, g) be a Riemannian manifold and let X be
a compact, connected, properly embedded, two-sided hypersurface meeting
the ambient boundary orthogonally. Then there exists an open neighborhood
U ⊃ X and a diffeomorphism Φ : X × (−δ, δ) → U (for some δ > 0)
such that the pulled-back metric Φ∗g|U takes the form u(x, t)2dt2+ht(x) for
smooth u ∈ C∞(X × (−δ, δ)) and h ∈ C∞((−δ, δ),R(X)).

Proof. Let f : M → R be as in the preceding lemma, and let then Φ denote
the gradient flow of f , namely the flow whose velocity at each point equals
the g-gradient of f . Note that by property (2) above such a flow is well-
defined (for all times) in spite of the boundary of M , and by (3) there exists
an open neighborhood U of X where ∇f does not vanish at any point, and
thus the level sets of f give a foliation of U .

Thanks to Lemma 2.2 Φ determines a smooth diffeomorphism X ×
(−δ, δ) → U , and so Φ∗g|U will have smooth coefficients. We observe that,
by construction, for any index i ∈ {1, . . . , n} the vector field Φ∗∂i is, say
at a point (x, t), tangent to the corresponding level set of f , while the
vector field Φ∗∂t coincides with the gradient of the same function: hence,
Φ∗g(∂i, ∂t) = 0 at each point (x, t) ∈ X × [0, δ). Thereby, the conclusion
follows by simply letting u(x, t)2 = Φ∗g(∂t, ∂t) and ht(x) = Φ∗g(∂i, ∂j) as
one varies i, j = 1, 2, . . . , n.

We note, as an important special case, that the proposition above applies
to two-sided free boundary minimal hypersurfaces.

Remark 2.4. We explicitly remark that the ambient metric g having a block
form as stated in Proposition 2.3 forces, in particular, X to meet ∂M at a
right angle according to the metric g. In this sense, the content of such a
statement is de facto a characterization.

Remark 2.5. One may in fact wish to impose additional requirements on the
warping factor u mentioned in Proposition 2.3 above, but there are definite
obstructions to deal with. In particular, as the following two examples show,
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differently from the closed case one cannot in general expect – no matter

what sort of refinement of the construction – in any such local form u(x, 0) to

be constant in x ∈ X, nor the weaker “compatibility condition” ∂νu(x, 0) =

0 to hold for x ∈ ∂X:

• consider M3 = B
3 the (closure of the) unit ball in Euclidean space

R
3, and let X denote the standard unit disk: then (in the notation

of Lemma 2.1) one has Hg = 2, Hh = 1 and so by item (4) therein

∂ν log u(x, 0) = 1 at any point of the unit circle ∂X;

• consider M3 the (closure of the) connected component in Euclidean

space R
3 that contains the origin among those two bounded by the

standard catenoid of unit waist, and let X denote again the standard

unit disk: then one has Hg = 0, Hh = 1 and so ∂ν log u(x, 0) = −1 at

any point of the unit circle ∂X.

Remark 2.6. We however note, for later reference, that if f satisfies the

conditions of Lemma 2.2 then so will λf for any positive constant λ; fur-

thermore, the resulting metric factor u = u(x, t) gets also rescaled by the

same number. Hence, we can ensure that u(x, 0) > 0 is made arbitrarily

large, or arbitrarily close to zero, if needed.

3. Deformation to C-normal form

From now onward we shall freely adopt and employ the language of manifolds

with corners, cf. [13] and references therein. Given Mn+1 a manifold with

corners, of dimension n + 1 ≥ 3, its singular locus (henceforth denoted

sing(M)) is here understood as the set of points around which M is not

modelled by R
n+1 or R

n × R
+ (for R

+ = [0,∞)); a face is understood as

the closure of a connected component of ∂M \ sing(M). In that setting we

will say that F is a cylindrical face (and that M is cylindrical about F ) if

there exists an open set U ⊃ F that is mapped diffeomorphically (in the

category of manifolds with corners) to a product X ×R
+ for some smooth,

compact manifold with boundary X. (Note that this happens if and only if

sing(M) ∩X is a smooth codimension-two submanifold of M .)

To proceed, note that Lemma 2.2 and Proposition 2.3 can conveniently

be applied to this setting. So let M be as above, let F be a cylindrical

face and assume we are given a Riemannian metric g on M satisfying the

assumption

F meets the adjacent face(s) at a right angle (⊥).
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Then we can write g, in a neighborhood of F as g(x, t) = u2(x, t)dt2+ht(x)
where say 0 ≤ t ≤ t0, for smooth u and h. In fact, all deformations we
present in the present section, as well as the in the next one, are purely local
and so – for the sake of simplicity – we will assume our ambient manifold is
just M = X × R

+ (and, with abuse of notation, we let F denote X × {0},
so that the adjacent faces are identified with ∂X × R

+).
We will work with Banach spaces (of real-valued functions, or tensors)

of the form Ck,α(X); the length of a tensor being measured with respect to
a background metric that we shall specify at due course. Furthermore, for
given t0 > 0 and � ≥ 0 we will also deal with the “parabolic” counterpart,
namely with the spaces C�([0, t0], C

k,α(X)) under the same caveat as above;
the corresponding norm will be denoted by

‖ · ‖C�(t;Ck,α(X))

with the interval [0, t0] specified once and for all. Given a smooth map J �
t �→ ht ∈ R(X) the first (respectively: second) derivatives with respect to the
variable t will be denoted by ḣt (respectively: ḧt); similarly, for u = u(x, t)
we write u̇t and üt for the first and second derivatives in t.

That being said, by Lemma 2.1 the second fundamental form and the
mean curvature of a slice {t = constant}, taken with respect to the unit
normal −u−1∂t, are given by

IIt = −(2u)−1ḣt, Ht = −(2u)−1 trht
ḣt.

Thus,

Ḣt = − d

dt

(
1

2u
trht

ḣt

)

=

(
u̇t
2u2

)
trht

ḣt −
1

2u
|ḣt|2 −

1

2u
trht

ḧt,

and (note here that the term involving the derivative of mean curvature
changes sign compared to Lemma 2.1, where one works with respect to ∂t)

Rg = Rht
− 2Δht

u

u
+

2Ḣt

u
−H2

t − | IIt |2

= Rht
− 2Δht

u

u
+

u̇t
u3

trht
ḣt −

5

4u2
|ḣt|2 −

1

u2
trht

ḧt −
1

4u2

(
trht

ḣt

)2
.

(3.1)

Following [5], we then recall:
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Definition 3.1. In the setting above, we say that a metric g is C-normal
near F , if it takes the form

g(x, t) = u(x, t)2dt2 + h0(x)− th1(x)− Ct2h0(x),

in an open neighborhood of F .

Here is the key statement we prove in this section:

Proposition 3.2. Given a manifold with corners M , a designated cylindri-
cal face F and a Riemannian metric g satisfying (⊥), an open neighborhood
U of F , and η > 0, there exists C0 = C0(g) such that, for every C ≥ C0

there exists a C-normal metric ĝ on M such that:

(1) ĝ = g in M \ U ;
(2) ĝ|F = g|F ;
(3) ÎI = II on F ;
(4) ĝ − g has no dt factor in the coordinates (x, t);
(5) ‖ĝ − g‖C1(M) < η;
(6) Rĝ > Rg − η.

(In item (2) we really mean the restriction of both metrics, for each point
of F , to the subspace of tangent vectors to F itself; in item (4) we mean
that in the local coordinates (x, t) the coefficient of dt2 or any dtdxi for the
tensor ĝ − g is identically equal to zero in U .)

We need the following lemma concerning the design of a suitable loga-
rithmic cutoff function.

Lemma 3.3. For any δ ∈ (0, 1/4), ε ∈ (0, 1), there exists a C∞ function
τδ,ε : R → R such that:

(1) τδ,ε = 1 when t ≤ δε.
(2) τδ,ε = 0 when t ≥ ε.
(3) 0 ≤ τδ,ε ≤ 1 for all t ∈ R.
(4) For every positive integer �, there is a constant C� > 0 such that for all

t > 0, ∣∣∣τ (�)δ,ε (t)
∣∣∣ ≤ C� · t−� · | log δ|−1.

For a detailed proof, see [4, Appendix B].

Proof of Proposition 3.2. Take the Taylor expansion of ht, seen as a C2 map
t �→ ht ∈ C2(M,h0): this reads

ht(x) = h0(x) + tḣ0(x) +
1

2
t2ḧ0(x) +Qt(x),
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where the remainder term Qt satisfies ‖Qt‖C2(M,h0) = o(t2) as t → 0+.
We then consider the following auxiliary metrics: for s ∈ [0, 1], define

g(s)(x, t) = g(x, t)− s

(
1

2
t2(ḧ0(x) + 2Ch0(x)) +Qt(x)

)
.

g(s) is not the metric we need at the end of the construction, but serves
as a good comparison for scalar curvature. For indeed, observe that for all
s ∈ [0, 1], g(s) and g have the same first order terms in t and so, in particular,
the scalar curvature formula above (equation (3.1)) implies that

Rg(s)(x, 0) = Rg(x, 0) +
s

u2
(trh0

ḧ0 + 2nC) ≥ Rg(x, 0),

where the last inequality holds provided that the constant C is taken suffi-
ciently large (depending on h0 and ḧ0).

Now let η > 0 be assigned, as in the statement. By compactness of X,
there exists ε0 > 0 such that

(3.2) Rg(s)(x, t) > Rg(x, 0)−
1

2
η, ∀s ∈ [0, 1], x ∈ X and t ∈ [0, ε0].

We define the metric ĝ as follows:

ĝ(x, t) = g(x, t)− τδ,ε(t)

(
1

2
t2(ḧ0(x) + 2Ch0(x)) +Qt(x)

)

for 0 < ε < ε0 chosen small enough to fulfill property (1), depending on the
assigned set U . Properties (2)-(3)-(4) follow immediately from the definition;
property (5) can also be accommodated by possibly taking ε even smaller,
depending on η.

Concerning (6), freeze a point (x0, t0) with 0 ≤ t0 ≤ ε (else there is
nothing to prove), and let s = τδ,ε(t0). Then we have:

2‖ĝ − g(s)‖C2((x0,t0),g)

≤ ‖(s− τδ,ε(t))(t
2(ḧ0(x) + 2Ch0(x)) + 2Qt(x))‖C2((x0,t0),g)

≤ C| log δ|−1.

Thus, by taking δ sufficiently small, it follows that

|Rĝ(x, t)−Rg(s)(x, t)| ≤ 1

2
η.
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We hence conclude, combining the previous inequality with (3.2), that there
holds indeed Rĝ(x, t) > Rg(x, 0)− η as claimed.

In particular, if the metric g satisfies that Rg > 0 and Hg = 0 (resp.
Hg ≥ 0), we may locally deform it, inside a pre-assigned neighborhood U of
the base F , to a C-normal metric ĝ such that Rĝ > 0 on M , Hĝ = 0 (resp.
Hĝ ≥ 0) on ∂M \U , and |Hg| < η (resp. Hg > −η) on (∂M \F )∩U , without
changing its induced metric and the second fundamental form on F .

4. Prescribing second fundamental form and warping factor

Keeping in mind the output of the construction given in the previous section,
we shall now assume to be given, on the manifold with corners M = X×R

+,
a smooth metric g that is C-normal and takes the form

g(x, t) = u(x, t)2dt2 + h0(x)− 2th1(x)− Ct2h0(x), x ∈ X, t ≥ 0

in an open neighborhood U of X. For purely expository convenience let us
assume that the function u is extended to X × R

+.

Proposition 4.1. Assume the setup above and that Rg > 0 in U . Given
a symmetric (0, 2)-tensor k on X satisfying trh0

k ≤ trh0
h1, there exists

C0 = C0(h0, h1, k, u) such that, for every C ≥ C0 there exist a metric ĝ on
M and an open set ∅ �= Û = Û(C) ⊂ U such that ĝ = g in M \ U ,

(4.1) ĝ = u(x, 0)2dt2 + h0(x)− 2tk(x)− Ct2h0(x)

in Û , and satisfying:

Rĝ > 0 in U, and |Hĝ −Hg| < η on (∂M \ F ) ∩ U.

We recall that ∂M denotes the topological boundary of M , and F is the
notation we employ for X × {0}. In order to prove the previous statement,
achieving the desired deformation, we will take the same cutoff function as
in [5, Lemma 25].

Lemma 4.2. There exists a constant c0 > 0 such that for each ε ∈ (0, 12),
there exists a smooth function χε : [0,∞) → R such that:

(1) χε(t) = t for 0 ≤ t ≤ ε/20, χε(t) = 0 for t ≥ √
ε, and 0 ≤ χε(t) ≤ ε/2

for all t;
(2) |χ′

ε(t)| ≤ c0;
(3) −2/ε ≤ χ′′

ε(t) ≤ 0 for all t ∈ [0, ε] and |χ′′
ε(t)| ≤ c0 for all t ∈ [ε,

√
ε].
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Proof of Proposition 4.1. Employing the test function χε(t) constructed in
Lemma 4.2, we first define an auxiliary metric g̃ as

g̃(x, t) = u(x, t)2dt2 + h0(x)− 2th1(x) + 2χε(t)(h1(x)− k(x))− Ct2h0(x),

when t ≤ √
ε, and g̃ = g when t ≥ √

ε; here ε is chosen small enough to
ensure that this interpolation occurs inside the assigned open set U . It is
clear that g̃ is C-normal and has the desired form as in (4.1), except for
the constancy of the warping factor (which will be arranged later), in the
neighborhood of F determined by the condition 0 ≤ t ≤ ε/20. We verify that
g̃ satisfies the conclusions on the scalar curvature and the mean curvature.

Indeed, writing g̃ = u(x, t)2dt2 + ht(x), we first note that the smooth
metrics on X given by {ht}t∈[0,√ε] are uniformly close in the C2 topology to
h0 as long as one imposes

√
εC ≤ 1, which we henceforth assume throughout

this proof. For later reference, let us spell out the C0 estimate: one has for
all t ∈ [0,

√
ε]

(4.2) ‖h0 − ht‖h0
≤ 2t(‖h1‖h0

+ ‖h0‖h0
) + 2|χε(t)|‖h1 − k‖h0

which can uniformly be bound from above by 4
√
ε(‖h1‖h0

+‖h0‖h0
+‖k‖h0

).

As ε → 0, we have that Rht
= O(1) and

2Δhtu
u = O(1); here and through-

out this proof O(1) represents a constant that may change line from line, but
is uniformly bound in ε, independently of C; similarly O(ε) has the meaning
of ε ·O(1).

Moreover, we have ḣt = −2h1+2χ′
ε(t)(h1−k)−2Cth0. Hence, applying a

Linear Algebra estimate like that in [5, Lemma 24], as long as ε is sufficiently
small so that ‖h0 − ht‖h0

< 1
2 we have for all t ∈ [0,

√
ε]

| trht
ḣt| ≤ | trh0

ḣt|+ 2‖ht − h0‖h0
· ‖ḣt‖h0

= O(1)

where the last bound holds thanks to the usual constraint
√
εC ≤ 1 and the

uniform bound |χ′
ε(t)| ≤ c0 from Lemma 3.3.

Next, we have that ḧt = 2χ′′
ε(t)(h1− k)− 2Ch0. Thus, in a much similar

fashion, we have that

trht
(χ′′

ε(t)(h1−k)) ≤ χ′′
ε(t)(trh0

h1− trh0
k)+2|χ′′

ε(t)|‖ht−h0‖h0
· ‖h1−k‖h0

,

which we estimate distinguishing two cases. When t ∈ [0, ε], note that χ′′
ε ≤ 0

and trh0
h1 ≥ trh0

k. Thus, we can drop the first summand and have that

trht
(χ′′

ε(t)(h1 − k)) ≤ 2|χ′′
ε(t)|‖h0 − ht‖h0

· ‖h1 − k‖h0
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≤ 4

ε
· 4ε(‖h1‖h0

+ ‖h0‖h0
+ ‖k‖h0

)‖h1 − k‖h0
= O(1)

building upon (4.2). When instead t ∈ [ε,
√
ε], we have that |χ′′

ε(t)| ≤ c0,
so | trht

(χ′′
ε(t)(h1 − k))| = O(1). Hence for all t ∈ [0,

√
ε], we have that

trht
(χ′′

ε(t)(h1 − k)) = O(1). Note that for t ∈ [0,
√
ε], we analogously have

| trht
(2Ch0)− trh0

(2Ch0)| ≤ 2C‖ht − h0‖h0
‖h0‖h0

= O(1).

Thus, exploiting the leading contribution trh0
(2Ch0) = 2Cn (where, let us

recall n is the dimension of X) we conclude that for all t ∈ [0,
√
ε],

(4.3) Rg̃ ≥ 2Cn

u2
−O(1) > 0

provided we simply choose C large enough; indeed we shall choose C first and
then ε sufficiently small based on the aforementioned constraint

√
εC ≤ 1.

(However, such choices will actually be made later for we still need to modify
the warping factor.)

Next, we verify that g̃ satisfies the mean curvature property along the
cylindrical boundary, that is ∂X × R

+. This is easily seen. By item (4) of
Lemma 2.1, we have that Hg̃ = u−1(Hhu+∂νu). Since, as noted above, ht →
h0 as t → 0 in the C2 topology, and similarly ut → u0 uniformly in the C1

topology, we have that Hg̃(x, t) → Hg(x, 0) uniformly for x ∈ X, t ∈ [0,
√
ε]

as ε → 0 (plus of course by design the metric coincide as soon as t ≥ √
ε).

To complete the construction we still need to modify the warping factor.
With that goal in mind, we construct ĝ as follows. Take a positive smooth
function λε : [0,∞) → R such that

λε(t) =

{
0 if t ≤ ε2

t if t ≥ ε
2

, 0 ≤ λ′
ε(t) ≤ 2.

Then define û(x, t) = u(x, λε(t)), and in turn

ĝ = û(x, t)2dt2 + h0(x)− 2th1(x) + 2χε(t)(h1(x)− k(x))− Ct2h0(x).

It is apparent that ĝ satisfies (4.1) in Û :=
{
(x, t) ∈ X × R

+ : 0 ≤ t < ε2
}
.

To verify the conditions on the scalar curvature and mean curvature of ĝ,
we compare ĝ and g̃ when t ≤ ε; indeed for t ≥ ε/2 one has ĝ = g̃ and so we
can just rely on the preceding part of the proof.

Regarded both û and u as differentiable mappings from t ∈ R to the
Banach space C2(X), namely considering û, u ∈ C1([0, ε];C2(X)) we have
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that ‖û−u‖C0(t;C2(X)) = O(ε), and ‖û−u‖C1(t;C2(X)) = O(1) (i.e. the differ-
ence is bounded uniformly in ε). Thus, by inspecting the various summands
of (3.1) it is easily checked that Rĝ ≥ Rg̃−O(1); in particular, let us remark
that here one has to deal with the term(

1

û2
− 1

u2

)
trht

ḧt =
(u− û)(u+ û)

(uû)2
trht

ḧt

whose boundedness (in fact: smallness) builds upon the fact that εC =√
ε(
√
εC) ≤ √

ε by virtue of the usual constraint.
As a result, it follows from the aforementioned inequality Rĝ ≥ Rg̃−O(1)

and the preceding bound (4.3) that taking C sufficiently large depending on
the input data only, we can arrange Rĝ > 0. The argument for the mean
curvature of the cylindrical boundary is similar in spirit but even simpler in
practice: just based on the fact that ‖û− u‖C0(t;C2(X)) = O(ε) we conclude
thatHĝ(x, 0) is ε-close toHg̃(x, 0) and so for suitably small ε, also depending
on the assigned η > 0, we can conclude the proof.

So, in short, the proposition above allows to push down the mean cur-
vature (by an arbitrary, not necessarily small amount) while keeping the
ambient scalar curvature positive; in the meantime one can also accomo-
date the convenient condition of making the warping factor independent of
t (namely: independently of the slice in the local foliation) near the interface.
Such features are very convenient when it comes to proving our main result
below. We also wish to add a more technical comment on the preceding
construction.

Remark 4.3. Let us consider the outcome of the construction above in the
annular domain Û where 0 ≤ t < ε2. In that region, if k = 0 there holds
ĝ = u2(x, 0)dt2 + (1 − Ct2)h0. In particular, set h = (1 − Ct2)h0 the mean
curvature of the cylindrical boundary at a point of coordinates (x, t) equals

Hh(x, t) + ∂νh
log u(x, 0).

But, just by scaling, νh(x, t) = νh(x, 0)/
√
1− Ct2 and similarly Hh(x, t) =

Hh(x, 0)/
√
1− Ct2. As a result, if Hg = 0, or respectively Hg ≥ 0, along

∂X×{0} then the same conclusion shall, respectively, hold true for ĝ in the
whole domain Û in question.

5. Statement and proof of the main result

In this section we wrap up things to prove our main result:
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Theorem 5.1. Let (M−, g−) and (M+, g+) be (smooth) compact Rieman-
nian manifolds with corners, both having dimension n + 1 ≥ 3; assume
F− ⊂ M− (respectively: F+ ⊂ M+) are cylindrical faces (as defined in the
first paragraph of Section 3) and there exists φ : M− → M+ giving an isom-
etry between [g−]|F− and [g+]|F+

. Let M := M−�φM+, with its natural atlas
of manifold with corners and let π± : M± → M be the corresponding pro-
jection maps (for either consistent choice of signs). We shall then introduce
the following notation:

• X is the codimension-one submanifold that is the common image of
F+, F− in M ;

• Y± ⊂ ∂M± is the disjoint union of all faces of M± having non-empty
intersection with F±, and Y the disjoint union of all faces of M having
non-empty intersection with X.

Suppose that Rg± > 0 on M±, that Y± ⊂ ∂M± are mean-convex, that Y±
meet F± at a right angle, and in addition there holds for the mean curvature
of the isometric faces

(5.1) Hg−,F− ≥ f(x), Hg+,F+
≥ −f(x),

where either f(x) ≥ 0 (∀x ∈ X) or f(x) ≤ 0 (∀x ∈ X).

Given an open neighborhood U of X in M , such that U ∩ ∂M ⊂ Y (thus
disjoint from sing(M)), there exist a Riemannian metric g on M and an
open set Û ⊂ U such that the restriction of g to M \ Û satisfies π∗

±g = g±
on M±, and in U the following two properties hold:

(1) (M, g) has positive scalar curvature;
(2) (M, g) has mean-convex boundary, and in fact minimal boundary if the

same is assumed to be true for Y−, Y+ respectively in (M−, g−) and
(M+, g+).

Remark 5.2. Some comments on the assumptions are appropriate:

• condition (5.1) coincides (given the different sign convention) with
the jump condition (H) in [18], together with the additional technical
requirement that at least one of the two functions Hg+,F+

, Hg−,F− does
not change sign;

• we stress the construction we present is local near the given interface,
so the singularities of M away from X do not play any role; that said,
an important special case occurs when

sing(M−) \ F− = sing(M+) \ F+ = ∅
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for in that case the output of the theorem is a smooth compact man-
ifold with positive scalar curvature and mean-convex boundary (or
minimal boundary under the same assumption on the input data); see
Corollary 6.1 for an example of that sort.

Remark 5.3. With rather minor modifications, we can in fact prove a more
general version of the statement above, enforcing in U a lower bound on the
scalar curvature of the form Rg > R0 for any assigned R0 ∈ R, provided
the same is required on the metrics g−, g+ (together with all other stand-
ing assumptions). The necessary changes to our arguments are outlined in
Remark 5.6.

Like we anticipated in the introduction, the proof of Theorem 5.1 consists
of two steps. Step 1 is, at least formally, a preparatory step, which concerns
how to best “interpolate” between two manifolds with corners having one
isometric face of cylindrical type, in the sense we explained at the beginning
of Section 3; the main issue one needs to deal with is the jump at the level
of the warping factor. In the proof of this fact we will crucially employ
the function ϕε that is the object of Lemma A.1; its construction, albeit
elementary, is fairly technical, which is why we decided to postpone it to
Appendix A.

As a preliminary note, we further remark (recalling Section 2) that there
exists a smooth (C∞) function t : M → R that allows to write both g− and
g+ in block form, in the sense of Proposition 2.3; this relies on the very
definition of the atlas on M itself. In particular, {t ≤ 0} (resp. {t ≥ 0}) is
identified with a small neighborhood of F− in M− (resp. of F+ in M+). We
emphasize that, in the manifold M , the vector ∂t restricted to X points out
of (the projection of) M−, into (the projection of) M+.

Proof. Step 1: under the assumptions of the statement, we will reach here
the following preliminary conclusions:

given δ > 0 there exist a smooth Riemannian metric ĝ on M and an
open set Û ⊂ U such that the restriction of g to M \ Û satisfies π∗

±ĝ = g±
on M±, and in addition:

(1)’ Rĝ > 0 in U , and
(2)’ Hĝ > −δ on ∂M ∩ U .

Furthermore, in the special case when that ∂M± \ F± are minimal, then
conclusion (2)’ above can be upgraded to the two-sided bound (2)′m: |Hĝ| < δ
on ∂M ∩ U .

Without loss of generality, let us assume that f ≥ 0 (the treatment of the
case f ≤ 0 only differs by the former in one point, which we will highlight at
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due course, the logical structure of the argument being identical). Applying
Proposition 3.2 and then Proposition 4.1, we may assume, without loss of
generality, that

g± = u±(x)
2dt2 + h0(x)−

2

n
tu±(x)f(x)h0(x)− Ct2h0(x),

when |t| is sufficiently small; note that, because of such preliminary defor-
mations the mean curvature of the cylindrical boundary Y will suffer of a
local error term, namely in the mean-convex (respectively: minimal) case

(5.2) Hg± > −δ/2 (respectively : |Hg± | < δ/2) if |t| < ε0 = ε0(δ),

while we still have Hg± ≥ 0 outside of such a strip (or Hg± ≡ 0 in the
special case when the input metric are assumed to have minimal boundary
along Y±). Here it is convenient to restrict to the range δ ∈ (0, δ0], for
some δ0 > 0 fixed once and for all, and choose ε0(δ0) > 0 so small that
{|t| ≤ 4ε0(δ0)} ⊂ U ; we note that it follows from the proofs of Proposition 3.2
and Proposition 4.1 that one can actually require δ �→ ε0(δ) to be non-
decreasing so that in particular there holds {|t| ≤ 4ε0(δ)} ⊂ U for any δ ∈
(0, δ0].

Observe that by suitably rescaling (cf. Remark 2.6), we may also assume,
without loss of generality, that u−(x) < u+(x) for all x ∈ X; if f ≤ 0 we
shall arrange for the reverse inequality instead.

For any ε > 0 sufficiently small, ε ∈ (0, ε0(δ)] subject to the general
constraint Cε ≤ 1 (that is henceforth enforced throughout the proof) and
t ∈ [0, ε], define ut : X → R by

log ut(x) =

(
1− ϕε(t)

ε

)
log u− +

ϕε(t)

ε
log u+,

where ϕε(t) is the interpolation function constructed in Lemma A.1 (cf.
Appendix A), and

ĝ(x, t) =

⎧⎪⎨
⎪⎩
g−(x, t) t ≤ 0;

ut(x)
2dt2 + ht 0 ≤ t ≤ ε;

g+(x, t), t ≥ ε,

where for t ∈ [0, ε] we set

(5.3) ht(x) = h0(x)−
2

n
tut(x)f(x)h0(x)− Ct2h0(x).
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By definition (relying upon the defining properties of ϕε), ĝ is a smooth Rie-
mannian metric on M , and conclusions (1)’ and (2)’ or (2)′m in the minimal
case patently hold when t ≤ 0 or t ≥ ε. We now check that it satisfies (1)’
and (2)’, or (2)′m when t ∈ [0, ε]; we will check the latter requirement first.
Observe that for all t ∈ [0, ε] ut(x) is uniformly bounded in C2(X) and has
a uniform positive lower bound; note further that ht → h0 as metrics on X
in the C2 topology.

That being said, let us consider property (2)′m. We start by noting that,
keeping in mind (5.2) and Lemma 2.1, along the interface there holds

|Hh0
(x) + ∂ν(log u±)| <

δ

2
,

where ν is – as usual – the outward unit normal vector on ∂X in metric h0.
If we then introduce the auxiliary metric

g̃(x, t) = ut(x)
2dt2 + h0(x)

we have, again for the cylindrical boundary along the interface, i.e. along
X ∩ Y

Hg̃(x, t) = Hh0
(x) +

(
1− ϕε(t)

ε

)
∂ν log u− +

ϕε(t)

ε
∂ν log u+

=

(
1− ϕε(t)

ε

)
(Hh0

+ ∂ν log u−) +
ϕε(t)

ε
(Hh0

+ ∂ν log u+),

whence convexity implies that |Hg̃| < δ/2 on the strip defined by 0 ≤ t ≤ ε.
Since the metrics ht and h0 are C2 close on X, we have that |Hĝ(x, t)| < δ
along that same strip provided ε is taken sufficiently small depending further
on δ. The verification of (2)’ follows along the same line, modulo working
(both at the level of assumption and conclusion) with one-sided inequalities,
i.e. lower bounds only.

Let us then discuss the validity of part (1)’ of the statement instead.
Appealing again to the convergence ht → h0 in C2(X), we have that

Rht
= O(1),

Δht
ut

ut
= O(1), uniformly as ε → 0.

Note that in this proof, as in that of Proposition 4.1, we use O(1) to denote
a bounded quantity that may change from line to line, but only depends on
u±, f, h0 (but not on the constant C, which plays a specific role as clarified
in Definition 3.1); similarly for O(ε) = ε ·O(1).
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To proceed further, keeping in mind (3.1), we differentiate the map t �→
ht and find

(5.4)
1

ut
ḣt = − 2

n

(
1 + t

d

dt
(log ut)

)
f(x)h0(x)−

2Ct

ut
h0.

Hence, note that

t
d

dt
(log ut) =

tϕ′
ε(t)

ε
(log u+ − log u−)

and so, by item (5) of Lemma A.1, we have that this term is O(ε), while
the other two in (5.4) are O(1). It then follows at once that the “first-order
terms”

u̇t
u3

trht
ḣt,

1

u2
|ḣt|2,

1

4u2

(
trht

ḣt

)2

are all O(1) in the sense above. Next, differentiating (5.4) once again there
holds

− d

dt

(
1

ut
ḣt

)
=

2

n

d

dt

(
t

(
d

dt
log ut

))
f(x)h0(x)

+
2C

ut
h0 − 2C

t

ut

(
d

dt
(log ut)h0(x)

)

=
2

n
(log u+ − log u−)f(x)h0(x) ·

1

ε

(
tϕ′

ε(t)
)′

+
2C

ut
h0 − 2C

t

ut

(
d

dt
(log ut)h0(x)

)
.

Recall that, because of (3.1), we need to estimate

− 1

u2
trht

ḧt = −1

u
trht

(
d

dt

(
1

ut
ḣt

)
+

u̇t
u2t

ḣt

)

and so it is clear, since by the preceding discussion we have control on the
first-order terms, that it is sufficient for our purposes to find a lower bound
on the first summand on the right-hand side, which is indeed what we have

computed above. As before (Section 4), we have the estimate trht

(
2C
ut
h0

)
=

2nC
ut

+O(1), while

trht

(
2C

t

ut

d

dt
(log ut)h0

)
= 2C ·O(ε) = O(1)
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where we have exploited twice our requirement that Cε ≤ 1. The only
remaining term we would need to estimate is

trht

(
2

n
(log u+ − log u−)f(x)h0(x) ·

1

ε
(tϕ′

ε(t))
′
)
.

Towards that goal, we have that

2 log

(
u+
u−

)
f(x) · 1

ε
(tϕ′

ε(t))
′ ≥ −4 log

u+
u−

f(x) = O(1)

which gives a lower bound on trh0

(
2
n log u+

u−
f(x)h0(x) · 1

ε (tϕ
′
ε(t))

′
)
. Here we

have used that u+ > u−, f(x) ≥ 0, and conclusion (4) of Lemma A.1. About
the resulting summand, that is

trht

(
2

n
log

u+
u−

f(x)h0(x) ·
1

ε
(tϕ′

ε(t))
′
)

− trh0

(
2

n
log

u+
u−

f(x)h0(x) ·
1

ε
(tϕ′

ε(t))
′
)

we employ the usual pointwise algebraic inequality and claim its absolute
value is bounded by

2‖ht−h0‖h0
·
∥∥∥∥ 2n log

u+
u−

f(x)h0(x) ·
1

ε
(tϕ′

ε(t))
′
∥∥∥∥
h0

≤ O(1)

∣∣∣∣ tε(tϕ′
ε(t))

′
∣∣∣∣ = O(1).

thanks to item (6) of Lemma A.1. Putting up these estimates together, we
have that, when t ∈ [0, ε],

(5.5) Rĝ ≥ 2nC

u2
−O(1) > 0,

provided that C > C∗(u±, f, h0) and, in turn, ε < min {ε∗(u±, f, h0, δ), ε0(δ)}.
Thereby, the conclusion follows.

Step 2: let ĝ be the smooth metric on M that we just constructed,
and let t : M → R the “signed distance” function that we employed. It is
appropriate to emphasize the dependence on δ so we will rather write ĝδ
throughout; from now onward, we will conveniently write σ in lieu of ε0(δ0)
as introduced in Step 1.

At this stage, we will apply a conformal deformation to the metrics ĝδ
(where, recall, δ ∈ (0, δ0]) to obtain a continuous family of metrics with the
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desired features as soon as δ ∈ (0, δ1), for a suitably chosen positive δ1 < δ0,
with Û = {(x, t) ∈ U : |t| < 2σ}. To do so properly, we will employ (with-
out renaming) a modification of the smooth cutoff function of Lemma 4.2;
in fact, all we need to require is that χμ(x) = x for x ≤ μ, χμ(x) = 0 for
x ≥ 2μ and be positive for x ∈ (0, 2μ) under the sole additional constraint
that χμ(x) ≤ x for any x. Let, further, Y be as in the statement of the theo-
rem, and let Z be the union of all other faces of M ; in particular ∂M = Y �Z
modulo the (possibly empty) singular set where they overlap.

Thanks to Step 1, we have that for any δ > 0 small enough there exists
� = �(δ) > 0 with �(δ) → 0 as δ → 0 such that the principal eigenvalue for
the problem

(5.6)

⎧⎪⎨
⎪⎩
−Δĝδw + 1

c(n)χ
(δ)(Rĝδ)w = λw on M

∂νδ
w + 2

c(n)χ
(δ)(Hĝδ)w = 0 on Y

∂νδ
w = 0 on Z

that – let us recall – has the variational characterization

(5.7) λ1 = inf
w �=0

∫
M |∇Mw|2 + 1

c(n)χ
(δ)(Rĝδ)w
2 + 2

c(n)

∫
Y χ
(δ)(Hĝδ)w

2∫
M w2

is strictly positive for δ sufficiently small (cf. Appendix A in [10]); note
that, without loss of generality, we can (and shall) require in �(δ) > δ for all
δ ∈ (0, δ0). Here and in the sequel of the proof it is set c(n) = 4(n−1)/(n−2).
Then, it also (automatically from the fact that we have chosen the cutoff
thresholds so that �(δ) → 0 as δ → 0) follows that

(5.8) ‖χ
(δ)(Rĝδ)‖L∞(M) → 0, ‖χ
(δ)(Hĝδ)‖L∞(Y ) → 0

as δ → 0. By simply taking w = 1 in (5.7) it then follows that the principal
eigenvalue in question satisfies

(5.9) λ1(δ) → 0, (δ → 0).

Thus, given such smallness conditions (5.8) and (5.9), we have that Moser’s
Harnack inequality for (5.6) then implies that the corresponding first eigen-
function uδ > 0 satisfies supU (uδ)/ infU (uδ) → 1 as δ → 0 and so, after
suitably normalizing, ‖uδ − 1‖C0(−3σ≤t≤3σ) → 0 as δ → 0; in particular by
standard elliptic regularity there holds in fact

(5.10) ‖uδ − 1‖C2(σ≤|t|≤2σ) → 0, (δ → 0).
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Now we introduce the smooth function ξ(p) := ξσ(t(p)) where ξσ ∈
C∞(R;R) is a “bump function” that equals 0 for |s| ≤ σ, equals 1 for |s| ≥ 2σ
and has a monotone transition inbetween. We then define (cf. Lemma 6.1 in
[14]) the conformally deformed metrics

(5.11) gδ = (ξ + (1− ξ)uδ)
4

n−2 ĝδ.

To check all claims in the statement of the theorem, we distinguish three
regions:

for |t| ≥ 2σ: one has ĝδ = gδ = g± and so all conclusions descend bi-
jectively from the corresponding assumptions on the given metrics g− and
g+;

for |t| ≤ σ: one has gδ = u
4

n−2

δ ĝδ and so, since (see e.g. [10, Appendix B])
in view of (5.6) one has

Rgδ = u
− n+2

n−2

δ [(Rĝδ − χ
(δ)(Rĝδ)) + c(n)λ1uδ]

we rely and the positivity of the principal eigenvalue to ensure that Rgδ > 0
for small enough δ;

for σ ≤ |t| ≤ 2σ: here we shall rather note that (because of (5.10)) the

conformal factor in (5.11) converges uniformly in C2 to 1 in the given (com-
pact) annular region, and so for any δ small enough the scalar curvature of
the metric is positive.

In the regime 0 ≤ |t| ≤ 2σ, so for the last two cases above, however we
still need to discuss the mean curvature of the boundary of M . Building
again on the standard formulae for conformal change there holds (set φ :=
ξ + (1− ξ)uδ for notational convenience)

Hgδ = φ− n

n−2

(
Hĝδφ+

c(n)

2
∂νδ

φ

)

so that Hgδ equals, modulo multiplication by a positive function,

(5.12) ξHĝδ + (1− ξ)(Hĝδ − χ
(δ)(Hĝδ))uδ

which is thus the sum (in fact: convex combination) of two non-negative
terms in the annular region, with just the second summand (that is patently
non-negative) when 0 ≤ |t| ≤ σ. This completes the proof in the mean-
convex case; in the minimal case it suffices to note that, following the same
argument, the condition δ < �δ implies that both summands in question are
actually zero.
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Remark 5.4. (The warping factors cannot possibly match) We explicitly note
that the first step in the proof above, that is “building a connecting bridge”
by interpolation, is in general unavoidable. For indeed, since one that the
faces to be attached be isometric, by virtue of Lemma 2.1 it can be u+ = u−

only if Hg+,Y+
= Hg−,Y− at each point of the interface in question, namely

only in the very special case when the mean curvature of the cylindrical
boundary is the same, when measured in metric g+, g−, along the boundary
of the interface.

Remark 5.5. It is apparent from the argument above that, if one could
engineer an interpolation function ϕε : [0, ε] → R satisfying items (1), (2),
(3), (4), (5) in Lemma A.1 and, in lieu of (6), a stronger upper bound of the
form

(5.13) (tϕ′
ε(t))

′ ≤ με, ∀t ∈ [0, ε]

for some given μ > 0 (independent of ε) then the conclusion of Step 1
would hold true under the sole assumption (H), i.e. irrespective of any sign
assumption on the separating function f . However, we note that the re-
quirement (5.13) is in fact incompatible already with the pair (2), (3). In-
deed, integrating (5.13) twice gives – because of (2) – a bound of the form
ϕε(ε) ≤ με2, which contradicts the independent assumption that ϕε(ε) = ε
as soon as ε < 1/μ.

Most importantly, we wish to outline here how to handle general lower
scalar curvature bounds.

Remark 5.6. It is possible to extend our main result, Theorem 5.1, requiring
scalar curvature lower bounds of the general form Rg > R0 provided the
same is assumed on the input metrics g−, g+ (together with all other standing
assumptions). This is quite clear from the form of equation (5.5) for Step
1 (and analogously for the two preliminary steps carried through in the
previous sections), as one is only required to choose C > C∗(u±, f, h0, R0)
and, in turn, ε < min {ε∗(u±, f, h0, δ), ε0(δ)}. In Step 2, the only changes
we need to make are to “shift” the cutoff function χμ to χR0

μ satisfying

χR0
μ (x) = x if x ≤ R0 + μ, χR0

μ (x) = R0 if x ≥ R0 + 2μ under the usual

constraint that χR0
μ (x) ≤ x for all x, and to solve for the conformal factor

considering the modified boundary value problem

(5.14)

⎧⎪⎨
⎪⎩
−Δĝδw + 1

c(n)(χ
R0


(δ)(Rĝδ)−R0)w = λw on M

∂νδ
w + 2

c(n)χ
(δ)(Hĝδ)w = 0 on Y

∂νδ
w = 0 on Z.
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6. Some direct applications

As anticipated in the introduction, we collect here some applications of the
main theorem above, and of its method of proof. To begin with, here is a
simple special instance of our smoothing result.

Corollary 6.1. Let n + 1 ≥ 3, let M+,M− be both diffeomorphic, in the
category of manifold with corners to

D
n+1
+ := D

n+1 ∩
{
xn+1 ≥ 0

}
, for D

n+1 = {(x1, . . . xn+1) : ‖x‖2 ≤ 1}

let F+, F− denote the faces associated to D
n by the diffeomorphism, and

Y+, Y− the other faces respectively in M+,M−. Assume we are given Rie-
mannian metrics g+, g− on M+,M− that make F+ isometric to F− and
such that adjacent faces meet at a right angle, the scalar curvature of both
(M+, g+) and (M−, g−) is positive, and the faces are all mean-convex. Then
there exists a Riemannian metric on the closed Euclidean ball Dn+1 that is
equal to the given ones outside any pre-assigned neighborhood of the inter-
face, has everywhere positive scalar curvature and mean-convex boundary.
Furthermore, the boundary can be made minimal in the special case when
the same is required for Y± in (M±, g±) for any consistent choice of signs.

We proceed by proving that the relations of weak PSC min-concordance
and weak PSC mc-concordance in [12] are indeed transitive, therefore equiv-
alence relations as claimed.

Corollary 6.2. Let X be a compact manifold with boundary and let us
assume that there exist PSC Riemannian metrics g0,1 and g1,2 on X × [0, 1]
such that, in both cases, ∂X × [0, 1] is minimal (respectively: mean-convex),
and the slices X × {0} and X × {1} are free boundary minimal surfaces;
furthermore, g0,1 restricts to h0 on X × {0}, and to h1 along X × {1};
similarly g1,2 restricts to h1 on X × {0}, and to h2 along X × {1}.

Then there exists a PSC Riemannian metric g0,2 on X×[0, 1] that makes
∂X × [0, 1] minimal (respectively: mean-convex), and both X ×{0} and X ×
{1} free boundary minimal surfaces, and in addition g0,2 restricts to h0 on
X × {0}, and to h2 along X × {1}.

Proof. This is a straightforward application of Theorem 5.1; we easily obtain
a metric on X× [0, 2] with the desired properties, after which it just suffices
to reparametrize the time interval.

To follow up on Remark 2.6 in [12], we then prove that the relation of
weak PSC min-concordance (or, respectively, weak PSC mc-concordance) is
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the same as its strong counterpart, if one restricts a priori to the subclass
RR>0,H=0(X) (respectively: RR>0,H≥0(X)).

Corollary 6.3. Let X be a compact manifold with boundary. If h−1, h1 ∈
RR>0,H=0(X) are weakly PSC min-concordant through a PSC metric g on
M = X × [−1, 1] (thus: a metric making the cylindrical boundary minimal,
and both faces free boundary minimal surfaces) then they are also (strongly)
PSC min-concordant through a PSC metric g (thus: making the cylindrical
boundary minimal, and being a Riemannian product in a neighborhood of
both faces).

The argument for justifying the preceding statement is quite striking
in its simplicity, which ultimately builds on the fact that (for necessity)
we developed methods to glue metrics dealing with mismatching warping
factors.

Proof. Firstly, consider on X×[1, 2] the product metric g(+1) = dt2+h1, and
similarly g(−1) = dt2 + h−1 on X × [−2,−1]. Since the interfaces X × {±1}
are both minimal on either side, we can then apply Theorem 5.1 to get the
desired conclusion, up to reparametrizing in t.

It is then clear that the very same strategy allows to prove the obvious
analogue of Corollary 6.3 for weak PSC mc-concordance, when one assumes
h−1, h1 ∈ RR>0,H≥0(X), the class of PSC metrics with mean-convex bound-
ary.

Appendix A. Designing an ad hoc interpolation function

In Step 1 of the proof of our main result, Theorem 5.1, we conveniently
employ the following auxiliary function.

Lemma A.1. For every ε ∈ (0, 1/2), there exists a smooth function ϕε :
[0, ε] → R such that the following holds:

(1) |ϕε(t)| ≤ 2ε for any t ∈ [0, ε].
(2) ϕε(t) = 0 in a neighborhood of 0.
(3) ϕε(t) = ε in a neighborhood of ε.
(4) (tϕ′

ε(t))
′ ≥ −2ε for any t ∈ [0, ε].

(5) |tϕ′
ε(t)| ≤ 2ε2 for any t ∈ [0, ε].

(6) |t(tϕ′
ε(t))

′| ≤ ε for any t ∈ [0, ε].

Proof. We construct the function ϕε in a few steps. (For the sake of read-
ability, throughout this proof we will write ϕ in lieu of ϕε, thus leaving the
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dependence of the parameter ε ∈ (0, 1/2) understood; the same convention
is also employed for the functions f, f̂1, f1, f̂2, f2 and f0 coming into play in
the sequel of the argument.)

A first key step is to construct a smooth function f : [0, ε] → R such
that:

(i) f(t) ≥ 0 in [0, ε].
(ii) f(t) = 2ε when t is in a small neighborhood of 0 and ε.
(iii)

∫ ε
0 f(s)ds = 2ε2.

(iv)
∫ ε
0 (log ε− log s)f(s)ds = ε+ 2ε2.

(v) f(t) < ε
t for all t ∈ [0, ε].

Towards that goal, let us start by considering the function

f̂1(t) =

{
2ε2e

1

ε , 0 ≤ t ≤ e−
1

ε

0, e−
1

ε < t ≤ ε.

Then we note that f̂1 satisfies properties (i), (iii) and (v); furthermore∫ ε

0
(log ε− log s)f̂1(s)ds = 2ε+ 2ε2 + 2ε2 log ε > ε+ 2ε2,

provided that ε is sufficiently small. Therefore, we may slightly modify f̂1
near the points 0, e−

1

ε , ε and obtain a smooth function f1, which satisfies all
properties except for (possibly) property (iv), and in addition∫ ε

0
(log ε− log s)f1(s)ds > ε+ 2ε2,

since this is obviously an open condition. Similarly, we then consider the
function

f̂2(t) =

{
2ε2e

1

3ε , 0 ≤ t ≤ e−
1

3ε

0, e−
1

3ε < t ≤ ε.

Then f̂2 satisfies properties (i), (iii) and (v), and∫ ε

0
(log ε− log s)f̂2(s)ds =

2ε

3
+ 2ε2 + 2ε2 log ε < ε+ 2ε2,

provided that ε is sufficiently small. Thus, we may analogously change f̂2
near 0, e−

1

3ε , ε and obtain a smooth function f2, which satisfies all properties
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except for property (iv), but instead

∫ ε

0
(log ε− log s)f2(s)ds < ε+ 2ε2.

Since all the desired properties are invariant under convex linear combina-

tions of functions, there exists a unique real number τ = τ(ε) ∈ (0, 1), such

that the corresponding function f = τf1 + (1 − τ)f2 satisfies all properties

(i) - (v).

Fix such f . We now define f0(t) = −2ε + f(s), a zero average function

by (iii), and then in turn

ϕ(t) =

∫ t

0

1

s

∫ s

0
f0(r)drds.

We verify the desired properties of ϕ. Clearly ϕ(0) = 0, and since f0(t) = 0

in a small neighborhood of 0 by (ii) conclusion (2) holds. Assertion (4) is

also clearly satisfied, as

tϕ′(t) =

∫ t

0
f0(r)dr ⇒ (tϕ′(t))′ = f0(t) = −2ε+ f(t) ≥ −2ε.

From there we also see that for any t ∈ [0, ε], by virtue of (i) and (iii)

tϕ′(t) =

∫ t

0
f0(r)dr = −2εt+

∫ t

0
f(r)dr ⇒ −2εt ≤ tϕ′(t) ≤ −2εt+2ε2,

hence conclusion (5) holds. Conclusion (6) holds, as t
ε(tϕ

′(t))′ = t
ε(−2ε +

f(t)) ≤ −2t+ 1, where the last inequality exploited the fact that f satisfies

property (v).

Now, the above identity, evaluated at t = ε, tells us that εϕ′(ε) =∫ ε
0 f0(s)ds =

∫ ε
0 (−2ε + f(s))ds = 0. Thus, ϕ′(ε) = 0. Note also that

(tϕ′(t))′ = f0(t) = −2ε + f(t) = 0 in a neighborhood of ε (again by (ii)),

so ϕ′(t) = 0 in a neighborhood of ε. This implies that ϕ is a constant in a

neighborhood of ε. To determine its actual value, we compute:

ϕ(ε) =

∫ ε

0

1

t

∫ t

0
f0(s)dsdt =

∫ ε

0
f0(s)

∫ ε

s

1

t
dtds

=

∫ ε

0
(−2ε+ f(s))(log ε− log s)ds = ε
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where the last equality relies on (iv). Consequently, ϕ = ε in a small neigh-
borhood of ε, which means that conclusion (3) is verified as well. Finally,

we have that ϕ′(t) = 1
t

∫ t
0 f0(s)ds, and since f0 ≥ −2ε, we have ϕ′ ≥ −2ε.

Thus, by integrating this inequality over either interval [0, t], [t, ε] ⊂ [0, ε]
for all t ∈ [0, ε],

ϕ(t) ≥ ϕ(0)− 2εt = −2εt, ϕ(t) ≤ ϕ(ε) + 2ε(ε− t) ≤ ε+ 2ε2.

Hence conclusion (1) holds, which completes the proof.
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