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The Riemannian Penrose inequality with matter
density

Hubert Bray and Yiyue Zhang

Riemannian Penrose Inequalities are precise geometric statements
that imply that the total mass of a zero second fundamental form
slice of a spacetime is at least the mass contributed by the black
holes, assuming that the spacetime has nonnegative matter density
everywhere. In this paper, we remove this last assumption, and
prove stronger statements that the total mass is at least the mass
contributed by the black holes, plus a contribution coming from
the matter density along the slice.

We use the first author’s conformal flow to achieve this, com-
bined with Stern’s harmonic level set techniques in the first case,
and spinors in the second case. We then compare these new results
to results previously known from Huisken-Ilmanen’s inverse mean
curvature flow techniques.
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1. Introduction

The Penrose conjecture is one of the most important open problems in math-

ematical relativity. A comprehensive survey about the Penrose conjecture

for spacelike slices of spacetimes can be found in [18]. When the slice is as-

sumed to have zero second fundamental form in the spacetime, the Penrose

conjecture is known as the Riemannian Penrose inequality, resolved by two

different approaches: inverse mean curvature flow (IMCF) [11] which works

for a single black hole, and the first author’s conformal flow [2] which works

for any number of black holes, and in space-like dimensions up to 7 [5].

The latter approach is also used to prove the charged Riemannian Penrose

inequality in [17].

In dimension 3, which will be the focus of this paper, the Riemannian

Penrose inequality asserts that the total mass m is greater than
√

A/16π,

where A is the area of the outermost minimal surface of the slice M3. In
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this paper, we will prove stronger inequalities of the form

(1) m ≥
√

A

16π
+

1

16π

∫
M3

(RQ(x) + P (x)) dV,

where R is the scalar curvature of M3 and Q(x) and P (x) are nonnegative
functions which vanish inside the outermost minimal surface (representing
the black holes). Hence, R ≥ 0 implies the usual Riemannian Penrose in-
equality. Also note that R/16π is matter density, so integrating it is quite
natural, especially since the Q(x) we discuss all go to one at infinity. The fact
that Q(x) is typically less than one represents a negative potential energy
contribution, which is also expected. Understanding the physical interpre-
tation of these inequalities is a good reason to study them.

An even more exciting reason is this: Every inequality of the form of
(1) defines a system of PDE’s which, when solutions with certain properties
exist, imply the Penrose Conjecture [20, page 40]. Hence, every inequality
of the form of (1) gives a plan of attack for the Penrose conjecture.

The easiest way to prove an inequality of the form of (1) is to use in-
verse mean curvature flow [11], as demonstrated in [20, Theorem 7]. How-
ever, there are two main limitations with the resulting formula. First, the
inequality is only proven when the outermost minimal surface is connected,
or if A is defined to be the area of the largest connected component of the
outermost minimal surface. Second, while Q(x) ≥ 0, Q(x) = 0 in the jump
regions of inverse mean curvature flow, which destroys the ellipticity of the
system of PDE’s defined above. Hence, while the achieved formulas are very
nice, there are good reasons to look for more formulas of this form.

In this paper, we will present two more inequalities of the form of (1)
above using the conformal flow. A key advantage of these inequalities arising
from the conformal flow is that they guarantee Q(x) to be positive almost
everywhere outside the outermost minimal surface. Additionally, the con-
formal flow approach works for any number of black holes.

For convenience, we only study harmonically flat manifolds which is a
representative case of asymptotically flat manifolds introduced in [2], since
every asymtotically flat metric is a harmonically flat metric up to a C0

perturbation.

Definition 1.1. An smooth complete manifold Mn is harmonically flat if
there exists a compact set K such that Mn\K is a disjoint union of multiple
ends and each end Ek is diffeomorphic to R

n \B1(0). Moreover, on each end
Ek, there exists a harmonic function u asymptotic to a constant such that

gij = u
4

n−2 δij .
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Figure 1: An asymptotically flat manifold with a disconnected outermost
minimal hypersurface Σ0.

Note that a harmonically flat end has zero scalar curvature and u satisfies

u(x) = a+ b|x|2−n +O(|x|1−n),

where a and b are some constants. Then the ADM mass of the end Ek is
2ab.

Here is the definition of the conformal flow in dimension 3.

Definition 1.2. Let (M3, g) be a harmonically flat manifold. (M3, gt,Σ(t))
is a solution to the conformal flow if it satisfies

• (M3, gt) is a smooth harmonically flat manifold outside Σt.
• Σ(t) is an outermost minimal surface in (M3, gt).
• gt = u4t g, where

(2) ut(x) = 1 +

∫ t

0
vs(x)dt

and vt(x) satisfies

(3)

⎧⎪⎨⎪⎩
Δgvt(x) ≡ 0 outside Σ(t)

vt(x) = 0 on and inside Σ(t)

limx→∞ vt(x) = −e−t

Let A be the area of the outermost minimal surface of (M3, g). Let M3
Σ(t)

be the connected component of M3 \ Σ(t) containing the chosen end and
t(x) := inf{t|x /∈ M3

Σ(t)}. Here t(x) is continuous except the times when Σ(t)

jumps. By definition, ut is harmonic on M3
Σ(t).
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The theorem presented below establishes inequality (1) with new P (x)

and Q(x). This theorem is obtained by using the conformal flow [2] and

Stern’s harmonic level set method [6, 10].

Theorem 1.3. Let (M3, g) be a 3-dimensional smooth complete harmoni-

cally flat manifold. Define m as the ADM mass of a chosen end and let R be

the scalar curvature of (M3, g). Suppose the outermost minimal surface of

(M3, g) is nonempty and connected. Let pt and qt be two harmonic functions

on (M3, g) satisfying

Δpt = 0, pt → e−3tx1 at ∞ and νt(pt) = ptνt(log ut) at Σ(t)(4)

Δqt = 0, qt → e−3tx1 at ∞ and qt = 0 at Σ(t)(5)

where ut and Σ(t) are defined in Definition 1.2, νt is the unit normal vector

on Σ(t) pointing towards to the chosen end with respect to g, x1 is the first

component of x in the asymptotically flat coordinate on the chosen end.

Let φt be the harmonic function satisfying

(6) Δφt = 0; lim
x→∞

φt = e−t; φt =
ut
2

on Σt,

and denote Ut,1 = φ−1
t (pt + qt), Ut,2 = (ut − φt)

−1(pt − qt), then

Q(x) :=

∫ t(x)

0
(|∇Ut,1|+ |∇Ut,2|)dt,

P (x) :=

2∑
j=1

∫ t(x)

0
|∇Ut,j |−1

∣∣∣∣∣∇2Ut,j − 2φ−1
t ∇φt ⊗∇Ut,j

− 2φ−1
t ∇Ut,j ⊗∇φt + 2φ−1

t 〈∇φt,∇Ut,j〉g
∣∣∣∣∣
2

dt,

(7)

and

(8) m ≥
√

A

16π
+

1

16π

∫
M3

(RQ(x) + P (x)) dV.

Remark 1.4. We need to assume the outermost minimal surface is con-

nected so that we can apply the integral formula using harmonic level method.

This assumption is necessary as the harmonic level method relies on the

Gauss-Bonnet theorem.
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In particular, we compute Q(x) in Example 3.2 under the Schwarzschild
metric. Similarly, IMCF also gives the same answer [20].

Example 1.5. Let (M3, g) be the spatial Schwarzschild manifold, i.e., gij =
(1 + m

2r )
4δij . Under IMCF [20, Page 38], the mean curvature of the hyper-

surface Σr := {|x| = r} is H = (1 + m
2r )

−3(2r − m
r2 ), |Σr| = 4πr2(1 + m

2r )
4,

then Q = H

√
|Σt|
16π = (1 + m

2r )
−1(1− m

2r ).
Since the Schwarzschild metric is the rigidity case of the Riemannian

Penrose inequality, we have P (x) = 0.

Spinors can also be used to prove the Positive Mass theorem and provide
a mass formula [9, 12]. A second version of P (x) and Q(x) are defined by
spinors in the following theorem, which produces an equality in (12). A
similar formula is established in [15, Equation (3.2) and (3.3)].

In the following theorem, we will use a chiral boundary condition for the
Dirac equation (9). For detailed discussions about the boundary conditions
of spinors, we refer to [1, Example 3.2].

Theorem 1.6. Let (M3, g) be a 3-dimensional complete harmonically flat
manifold with nonnegative scalar curvature R. Let t(x) be the minimal time
such that x does not belong to M3

Σ(t(x)). Let pt and qt be the harmonic
spinors satsifying

D(pt) = 0, iνt · pt = pt on Σ(t) and lim
x→∞

pt = e−2tψ0;

D(qt) = 0, iνt · qt = −qt on Σ(t) and lim
x→∞

qt = e−2tψ0,
(9)

where ψ0 is the unit length constant spinor at ∞. Denote ψl
t := 1

2(pt +
(−1)lqt), l = 0, 1; and φt,l are harmonic functions satisfying

(10) Δφt,l = 0, lim
x→∞

φt,l =
1 + (−1)l

2et
and φt,l =

ut
2

on Σt,

where ut is defined in Equation (2). Then

Q(x) :=2

∫ t(x)

0
(φ−2

t,0 |ψ0
t |2 + φ−2

t,1 |ψ1
t |2)dt,

P (x) :=8

∫ t(x)

0

1∑
l=0

φ2
t,l

3∑
j=1

∣∣∣∣∣∇ej (φ
−2
t,l ψ

l
t)−

[∇ej log φt,l + ej · ∇ log φt,l](φ
−2
t,l ψ

l
t)

∣∣∣∣∣
2

dt,

(11)
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Figure 2

and

(12) m =

√
A

16π
+

1

16π

∫
M3

(RQ(x) + P (x)) dV.

Remark 1.7. We presume the scalar curvature to be nonnegative to ensure
the existence of harmonic spinors. It remains uncertain whether a harmonic
spinor exists on asymptotically flat manifolds without the assumption of non-
negative scalar curvature. However, for the purpose of proposing a proof for
the Penrose Conjecture in [20], the scalar curvature could be potentially neg-
ative, but the existence theory for the harmonic spinors would have to be
established, perhaps using the dominant energy condition somehow.

2. The conformal flow

For a clear visualization of the conformal flow, refer to Figures 1 and 2 in
[2]. We use the notations | · |, ∇, Δ for norm, connection and Laplacian with
respect to the original metric g, while ∇̄, ∇̃, Δ̄ and Δ̃ are the connections
and Laplacians with respect to ḡt and g̃t. Here are some properties about
the conformal flow from [2, Theorem 2 and 4], also see [5, Theorem 2.2].

Theorem 2.1. 1. For t2 > t1 ≥ 0, Σ(t2) encloses Σ(t1) without touching
it.

2. The area of Σ(t) does not change under the conformal flow: |Σ(t)|gt =
|Σ(0)|g0.

3. If the scalar curvature is nonnegative, the mass of (M3, gt) is decreas-
ing.

4. If (M3, g0) is harmonically flat, then for sufficiently large t, there exists
a diffeomorphism φt between (M3, gt,Σ(t)) and a fixed Schwarzschild
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metric (R3 \ {0}, s) such that |gt − φ∗
t (s)|gt → 0 and |m(t)−ms| → 0,

when t → ∞.

Proof. Statement 1 and 2 follows from [2, Theorem 2 and 3].
3. We give a short scratch of the proof of Statement 3 for further purpose,

and the detail proof is given in [2, Theorem 3]. Let m(t) be the ADM mass
with respect to (M3, gt). Then −1

2m
′(t) can be interpreted as the ADM mass

of an asymptotically flat manifold (M̃3
Σ(t), g̃t): m̃(t) (also in [5, Lemma 2.7]),

where (M̃3
Σ(t), g̃t) is obtained by the following procedures. We glue two copies

of M3
Σ(t) to get an asymptotically flat manifold (M̄3

Σ(t), ḡt) with two ends,

see the Figure 2b. The mean curvature matches on both sides of Σ(t) as it is
a minimal surface. Then we conformally deform the metric to close an end
with a harmonic conformal factor φ̄ to obtain (M̃3

Σ(t), g̃t), where g̃t = φ̄4
t ḡt

and φ̄t is a harmonic function on (M̄3
Σ(t), ḡt) defined in [2, Equation (76)]:

(13) Δḡt φ̄t = 0, lim
x→∞

φ̄t = 1 and lim
x→−∞

φ̄t = 0,

here ∞ is the chosen end and −∞ is the other end of (M̄3
Σ(t), ḡt). By symme-

try, φ̄t =
1
2 on Σt. Since the original metric is harmonically flat, the −∞ end

in (M̄3
Σ(t), ḡt) becomes a removable singularity in (M̃3

Σ(t), g̃t), see Figure 2c.

Let φt = utφ̄t and let R̃t be the scalar curvature of (M̃3
Σ(t), g̃t). Thus,

denote φt = utφ̄t and φt satisfies

(14) Δφt = 0; lim
x→∞

φt = e−t; φt =
ut
2

on Σt.

If the scalar curvature of (M3, g0) is nonnegative, then the scalar curvature
of (M̃3

Σt
, g̃t) is also nonnegative, which is due to the formula below,

(15) R̃t = φ−4
t R0.

Although the manifold is only Lipschitz along the surface Σ(t), we apply the
positive mass theorem with corners [19, 13, 7] to prove that m̃t is positive.
Hence, the mass of (M3, gt) is decreasing.

4. In this statement, we do not assume nonnegative scalar curvature.
However, since (M3, g0) is harmonically flat, there exists a compact set K
such that the scalar curvature is zero outside K. Note that for sufficiently
large t > 0, Σ(t) would enclose K which was proven in [2, Theorem13]. In
the proof of Theorem 13, the only place where the nonnegativity of scalar
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curvature is used is in Theorem 11, which states that the expression in the
left side of Equation (17) is bounded by 16π. However, we only need this
expression to be bounded, as shown in Equation (17), to ensure the validity
of the proof. We can modify the statement and proof of Theorem 11 as
follows

Let Σi(t) be a connected component of Σ(t), then Σ(t) is a strictly outer
minimizing surface in (M3, gt) implies the second variation of the area is
nonnegative. Hence, it follows

(16)

∫
Σi(t)

−1

2
R+

1

2
RΣ − 1

4
(λ1 − λ2)

2 ≥ 0,

where 1
2R

Σ is the Gauss curvature of Σi(t), λ1 and λ2 are the principal
curvature of Σi(t). Therefore, using Gauss-Bonnet formula and |Σi(t)|gt ≤
|Σ(t)|gt = A, we have

(17)

∫
Σi(t)

(λ1 − λ2)
2 ≤ 16π −

∫
Σi(t)

2R ≤ 16π + 2Amax
K

|R| < ∞,

then the proof of Theorem 13 still works without assuming nonnegative
scalar curvature. Hence, Theorem 4 in [2] implies statement 4.

3. The harmonic level set formula

The harmonic level set method, developed by Stern in [10], was subsequently
utilized to establish the Positive Mass Theorem by Bray, Kazaras, Khuri,
and Stern in [6]. Hirsch, Miao, and Tsang later extended the mass formula
to include manifolds with corners in [13]. The Positive Mass Theorem with
corners was initially proven in [19, 7]. The following theorem provides a
lower bound for the mass in dimension 3 using a harmonic function which
is a weaker version of [13, Theorem 1.2].

Theorem 3.1. ([6, 13]) Let (M3
out, g) be a complete asymptotically flat man-

ifold with boundary Σ. Suppose (Ω, gΩ) is a fill-in of Σ such that gΩ|Σ = g|Σ
and the mean curvatures, with respect to the normal vector pointing outward
of Ω, equal from both sides. Let M3 = M3

out ∪ Ω. If H2(M
3) = 0, then

(18) m ≥ 1

16π

∫
M3

|∇2U |2g
|∇U |g

+Rg|∇U |gdVg,

where U is a harmonic function which is asymtotic to one of the asymtot-
ically flat coordinate, m is the ADM mass of (M3, g) and Rg is the scalar
curvature of (M3, g).
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Now we apply Equation (18) to (M̃3
Σt
, g̃t). To satisfy the topological

assumption H2(M
3) = 0 in Theorem 3.1, we assume the manifold (M3, g)

only has one single connected outermost minimal surface. Therefore, the

outermost minimal surface of (M3
Σt
, gt) is connected, then M̃3

Σt
has trivial

topology.

Proof of Theorem 1.3. We use the notations in Theorem 2.1. According to

Theorem 2.1,

(19) m′(t) = −2m̃(t) and lim
t→∞

m(t) =

√
A

16π
,

then

(20) m = m(0) = lim
t→∞

m(t)−
∫ t

0
m′(t)dt =

√
A

16π
+

∫ ∞

0
2m̃(t)dt.

Since φt → e−t at ∞, g̃t = φ4
t g is asymptotic to e−4tδ at ∞. Therefore,

without loss of generality, a harmonic function Ũt on (M̃3
Σ(t), g̃t) asymptotic

to a linear function with unit length gradient should satisfy

(21) Ũt → e−2tx1 at ∞,

where we choose x1 to be the first component of the asymptotic coordinate

of x.

Applying Theorem 3.1 to Equation (20), we have

(22) m ≥
√

A

16π
+

1

8π

∫ ∞

0

∫
˜M3

Σt

|∇̃2Ũt|2g̃t
|∇̃Ũt|g̃t

+ R̃t|∇̃Ũt|g̃tdVg̃tdt,

where ∇̃ and R̃t are the connection and the scalar curvature on (M̃3
Σ(t), g̃t).

We need to express the inequality (22) under the original metric g.

Note that on (M̄3
Σ(t), ḡt), due to Lemma A.3, we have U t := φ̄tŨt satis-

fying ΔḡtU t = 0. Using the asymptotic of φ̄t given in Equation (13), the

asymptotics of U t are U t → e−2tx1 at ∞ and U t → 0 at −∞.

Let σt be the reflection map along Σ(t) on (M̄3
Σ(t), ḡt), then we define

two harmonic functions:

(23) p̄t(x) := U t(x) + U t(σt(x)) and q̄t(x) := U t(x)− U t(σt(x)).
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Hence, U t =
1
2(p̄t + q̄t), p̄t(x) = p̄t(σt(x)) and q̄t(x) = −q̄t(σt(x)). Moreover,

the asymptotics of p̄t and q̄t are

p̄t → e−2tx1 at ±∞; q̄t → ±e−2tx1 at ±∞.(24)

On Σt, let ν̄t is a unit normal vector pointing towards to the chosen end
with respect to ḡt. By the definition of p̄t and q̄t in (23), we have

(25) ν̄t(p̄t) = 0 and q̄t = 0.

On (M3
Σ(t), g), let pt := utp̄t and qt := utq̄t be the harmonic functions

and let νt := u2t ν̄t be a unit vector, we have

(26) νt(pt) = u2t ν̄t(utp̄t) = u2t p̄tν̄t(ut) = ptu
−1
t νt(ut).

Hence, from the definition of pt, qt and Lemma A.3, it follows that

Δpt = 0, pt = e−3tx1 at ∞ and νt(pt) = ptνt(log ut) at Σt;

Δqt = 0, qt = e−3tx1 at ∞ and qt = 0 at Σt.
(27)

Furthermore, we can use φt, pt and qt to express Ũt:

Ũt = φ̄−1
t U t =

1

2
φ̄−1
t (p̄t + q̄t) =

1

2
φ−1
t (pt + qt) =

1

2
Ut,1, on M3

Σ(t);

Ũt =
1

2
φ̄−1
t (p̄t + q̄t) =

1

2
φ−1
t (pt − qt) ◦ σt =

1

2
Ut,2 ◦ σt, on M̃3

Σ(t) \M3
Σ(t),

(28)

where Ut,1 and Ut,2 are defined in this theorem.
Note that the formula for the Hessian under the conformal change g →

g̃t = φ4
t g is

∇̃2
ijf =∂2

ijf − Γ̃l
ij∂lf

=∇2
ijf − 2φ−1

t ∂jφt∂if − 2φ−1
t ∂iφt∂jf + 2φ−1

t gkl∂kφt∂lfgij .
(29)

Then

|∇̃2Ũt|2g̃t =φ−8
t

∣∣∣∣∇2Ũt − 2φ−1
t ∇φt ⊗∇Ũt

− 2φ−1
t ∇Ũt ⊗∇φt + 2φ−1

t 〈∇φt,∇Ũt〉g
∣∣∣∣2.(30)
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Therefore, using formulae under the conformal metric R̃t = φ̄−4
t R̄t = φ−4

t R,

dVg̃t = φ6
tdV and |∇̃Ũt|g̃t = φ−2

t |∇Ũt|, then∫
˜M3

Σ(t)

R̃t|∇̃Ũt|g̃tdVg̃t =

∫
M̄3

Σ(t)

R̄t|∇̄Ũt|ḡtdVḡt

=

∫
M3

Σ(t)

R̄t|∇̄Ũt|ḡt + R̄t|∇̄Ũt(σt(x))|ḡtdVḡt

=
1

2

∫
M3

Σ(t)

R(|∇Ut,1|+ |∇Ut,2|)dV.

(31)

Combining (20), (28) and (30), we obtain

m ≥
√

A

16π
+

1

8π

∫ ∞

0

∫
˜M3

Σ(t)

R̃t|∇Ũt|dVg̃tdt+
1

8π

∫ ∞

0

∫
M̄3

Σ(t)

|∇2Ũt|2g̃t
|∇Ũt|g̃t

dVg̃tdt

=

√
A

16π
+

∫ ∞

0

1

16π

(∫
MΣ(t)

R(|∇Ut,1|+ |∇Ut,2|)dV
)
dt+

1

16π

2∑
j=1

∫ ∞

0

∫
M3

Σ(t)

|∇Ut,j |−1

∣∣∣∣∇2Ut,j − 2φ−1
t ∇φt ⊗∇Ut,j

− 2φ−1
t ∇Ut,j ⊗∇φt + 2φ−1

t 〈∇φt,∇Ut,j〉g
∣∣∣∣2dV dt.

(32)

Since R ∈ L1(M3) and |∇Ut,i| are bounded, we can switch the order of
integration of the second term in the second line of (32) which leads to the
final inequality.

In the following example, we compute Q in Schwarzschild metric.

Example 3.2. Let gij = (1+ m
2r )

4δij , then (M̃3
Σ(t), g̃t) is flat and g̃t = e−4tδ.

Since Ũt is the harmonic function under the metric g̃t asymptotic to e−2tx1,
we have Ũt = e−2tx1 and |∇̃Ũt|g̃t = 1. According to [2, Equation (248)],
ut = (1 + m

2r )
−1(e−t + m

2re
t), when r ≥ m

2 e
2t, then t(x) = 1

2 log
2r
m . In the

rigidity case, the conformal flow is a reparametrization of the Schwarzschild
metric outside the minimal surface.

Note that φ̄t is the harmonic function on (M̄3
Σ(t), u

4
t g) and φ̄t → 1 at

∞, then using Lemma A.3, we have φ̄t is a multiple of the inverse of the
conformal factor (1+m

2r )ut, therefore, φ̄t = (1+m
2re

2t)−1 and φt = utφ̄t = (1+
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m
2r )

−1e−t. Since ḡt = u4t g = (e−t + m
2re

t)4δ, it follows σt : x → (m2 e
2t)2r−2x,

then Ut,1 = 2Ũt = 2e−2tx1 implies

(33) Ut,2 = Ut,1 ◦ σt = 2(
m

2
e2t)2r−2e−2tx1 =

m2

2
e2tr−2x1.

Hence, let ∇̊ be the connection under δ, we have

Q =

∫ 1

2
log 2r

m

0

2∑
j=1

|∇Ut,j |dt

=

∫ 1

2
log 2r

m

0

(
1 +

m

2r

)−2
2∑

j=1

|∇̊Ut,j |dt

=

∫ 1

2
log 2r

m

0

(
1 +

m

2r

)−2
(
2e−2t +

m2

2
e2tr−2

)
dt

=
(
1 +

m

2r

)−1 (
1− m

2r

)
.

(34)

We obtain the same answer for Q(x) as Example 1.5.

4. Mass formula using spinors

Here is the mass formula with spinors in the Riemannian case.

Theorem 4.1. ([9, 12]) Let Mn be a spin asymptotically flat manifold with

nonnegative scalar curvature R and total mass m for a chosen end. Then

there exists a harmonic spinor ψ satisfying Dψ = 0 and asymtotic to a unit

constant spinor at the chosen end. Moreover,

(35) m =
1

16π

∫
Mn

4|∇ψ|2 +R|ψ|2dV.

The conformal change of metric will induce an isometry between spinor

bundles. By an abuse of notation, we use S to represent the spinor bundle

on M3 or on M3
Σ(t). Since we have two types of conformal changes:

Φt : (M
3
Σ(t), g) → (M̄3

Σ(t), ḡt = u4t g)

Φ̄t : (M̄
3
Σ(t), ḡt) → (M̃3

Σ(t), g̃t = φ̄4
t ḡt)
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Φt, Φ̄t would induce two maps between the spinor bundles, and we still
denote as Φt, Φ̄t:

(36) Φt : (M
3
Σ(t),S) → (M̄3

Σ(t),S) and Φ̄t : (M̄
3
Σ(t),S) → (M̃3

Σ(t),S).

These maps Φt, Φ̄t between spinor bundles are almost identical maps, while
the actions of the vector fields on the spinor bundles are different. Let X be
a vector field on M3

Σt
, then for ψ ∈ (M3

Σ(t),S) and ψ̄ ∈ (M̄3
Σ(t),S), we have

(37) Φt(X · ψ) = u−2
t X · Φt(ψ) and Φ̄t(X · ψ̄) = φ̄−2

t X · Φ̄t(ψ̄).

Before we prove the main theorem in this section, let us first identify
the action induced by the reflection on the spinor bundle of Σ(t).

Lemma 4.2. Let M̄3
Σ be the asymptotically flat manifold with two ends with

an outermost minimal surface Σ. Suppose there exists a reflection map σ
along Σ, i.e., M̄3

Σ is symmetric along Σ (see Figure 2b). Then for a spinor
ψ on M̄3

Σ,

(38) σ∗ψ|Σ = iν · ψ|Σ or − iν · ψ|Σ,

where ν is the unit normal vector on Σ and σ∗ is the isomorphism of the
spinor bundle on Σ induced by σ.

Proof. To restrict a spinor on a hypersurface, we follow the presentation in
[14, Page 6]. The Clifford algebra Cl(Rn) can be split into even and odd
part: Cl(Rn) = Cl0(Rn) ⊕ Cl1(Rn). Then there is an algebra isomorphism
Cl(Rn−1) → Cl0(Rn) induced by ei → ei · en, where {e1, . . . , en} is an or-
thonormal frame on R

n.
In this lemma, n = 3 is odd. Let {e1, e2, e3} be a orthonormal frame on

M3. In particular, e3 = ν on Σ. Let SM and SΣ be the spinor bundle on M̄3
Σ

and Σ, then there is a isomorphism between the spinor bundles SM |Σ and
SΣ. Since iν is an automorphism on SΣ and (iν)2 = 1, we may decompose
SΣ into the eigenspace S+

Σ and S−
Σ with respect to the eigenvalue 1 and −1.

As iν anticommutes with e1ν, e2ν and commutes with e1e2, then the action
of iν on SΣ is ie1e2 or −ie1e2.

Next, we study the action of ie1e2 on the spinor bundle of Σ. Since on
SΣ, the complex spinor bundle can be identified as SpanC{1, η := 1√

2
(e1e3−

ie2e3)}, see [16, Page 79], the actions of e1e3 and e2e3 are

(39) (e1e3) · 1 = η, (e1e3) · η = −1, (e2e3) · 1 = iη, (e2e3) · η = i1.
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Note that ie1e2 = ie1e3e2e3, then

(40) (ie1e2) · 1 = 1 and (ie1e2) · η = −η

Finally, we have σ∗(e1) = e1, σ
∗(e2) = e2 and σ∗(e3) = −e3, then σ∗(1) = 1

and σ∗(η) = −η. Hence, the action of σ∗ on SΣ is the same as ie1e2.

Remark 4.3. The ± sign depends on the choice of the spin group action
on the spinor bundle.

Proof of Theorem 1.6. We use Equation (35) to express m̃(t), then we apply

Equation (20) to achieve a type of inequality (1). Let ψ̃t be the harmonic

spinor on (M̃3
Σ(t), g̃t) which asymptotic to a unit constant spinor at ∞. We

need to rewrite the integral formula of ψ̃t under the original metric (M3, g).

For simplicity, we denote D̄ and D̃ to be the Dirac operator on (M̄3
Σ(t), ḡt)

and (M̃3
Σ(t), g̃t). Since g̃t = φ̄4

t g, we have the conformal formula for Dirac
operator

(41) Φ̄tD̄(φ̄2
tΦ

−1
t (ψ̃t)) = φ̄4

t D̃(ψ̃t).

Let ψ̄t = φ̄2
t Φ̄

−1
t (ψ̃t) and ψt = u2tΦ

−1
t (ψ̄t), then ψ̄t and ψt are harmonic

spinors with respect to ḡt and gt. Moreover, because of the asymptotic of φt

in Equation (13), it follows that the asymptotics of ψ̄t and ψt are

(42) lim
x→∞

ψt = e−2tψ0; lim
x→∞

ψ̄t = ψ̄0 and lim
x→−∞

ψ̄t = 0,

where ψ0, ψ̄0 are unit constant spinors and 0 is the zero spinor. Since ψt is
only defined on (M3

Σ(t), g), we need to analyze the boundary behavior of ψt

on Σ(t) below.

Let σt be the reflection map M̄3
Σ(t) → M̄3

Σ(t), then σt induces a map σ∗
t

on the spinor bundle on M̄3
Σ(t). Let p̄t and q̄t be two harmonic spinors on

(M̄3
Σ(t), ḡt) defined as follow

(43) p̄t = ψ̄t + σ∗
t ψ̄t, q̄t = ψ̄t − σ∗

t ψ̄t.

Hence,

(44)

{
ψ̄(x) = 1

2(p̄t + q̄t)(x), if x ∈ M3
Σ(t);

ψ̄(x) = 1
2(σ

∗
t )

−1(p̄t − q̄t)(σt(x)), if x ∈ M̄3
Σ(t) \M3

Σ(t).
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Without loss of generality, according to Lemma 4.2, we assume the action

of σ∗
t on the spinor bundle of Σt is iν̄t·, then the restriction of p̄t and q̄t on

Σ are

(45) p̄t = ψ̄t + iν̄t · ψ̄t, q̄t = ψ̄t − iν̄t · ψ̄t.

Hence, on Σ(t), we have the Lopatinsky-Shapiro type boundary conditions

for p̄t and q̄t

(46) iν̄t · p̄t = p̄t, iν̄t · q̄t = −q̄t.

Recall that ḡt = u4t g, we set pt = u2tΦ
−1(p̄t) and qt = u2tΦ

−1(q̄t), according

to Remark A.2, we have pt and qt are harmonic spinors on (M3
Σ(t), g) with

boundary conditions

(47) iνt · pt = pt, iνt · qt = −qt, on Σ(t),

and

(48)

lim
x→∞

pt = lim
x→∞

u2tΦ
−1(p̄t) = u2tΦ

−1(ψ̄0) = e−2tψ0, lim
x→∞

qt = e−2tψ0.

Now we can use pt and qt to express ψ̃t. Since φ̄t(σ(x)) = 1− φ̄t(x) and

φt(x) = ut(x)φ̄t(x), when x ∈ M3
Σ(t), according to (44) and Remark A.2,

ψ̃t(x) =
1

2
φ−2
t (Φ̄t ◦ Φt)(pt + qt)(x), if x ∈ M3

Σ(t);

ψ̃t(x) =
1

2
(Φ̄t ◦ (σ∗

t )
−1 ◦ Φt)[(ut − φt)

−2(pt−qt)](σt(x)), if x ∈ M̃3
Σ(t) \M3

Σ(t).

(49)

Let {e1, e2, e3} be an orthonormal tangent frame for (M3, g) and let

ẽj = φ−2
t ej . From Equation (57),

|∇̃ψ̃t|g̃t =
3∑

j=1

φ−2
t |∇ej (φ

−2
t ψt)− [∇ej log(φt)

+ ej · ∇ log φt](φ
−2
t ψt)| on M3

Σ(t).

(50)

On M̃3
Σ(t) \ M3

Σ(t), for simplicity, let φt,1 := ut − φt, ψ
1
t := 1

2(pt − qt),
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then combining the second equation in (49) and (50), we have

|ψ̃t|g̃t = φ−2
t,1 |ψ1

t |,

|∇̃ψ̃t|g̃t(x) =
3∑

j=1

φ−2
t,1

∣∣∣∇ej (φ
−2
t,1ψ

1
t )− [∇ej log(φt,1) + ej · ∇ log φt,1](φ

−2
t,1ψ

1
t )
∣∣∣ .

(51)

Let ψ0
t := 1

2(pt + qt) = ψt and φt,0 := φt. Applying the conformal

formulae dVg̃t = φ6
tdVg0 , R̃t = φ−4

t R, then plugging Equation (50) and (51)
in (35), we have

m̃t =
1

16π

∫
˜M3

Σt

4|∇ψ̃t|2g̃t + R̃t|ψ̃t|2g̃tdVg̃t

=

1∑
l=0

1

16π

∫
MΣt

4φ2
t,l

3∑
j=1

∣∣∣∣∣∇ej (φ
−2
t,l ψ

l
t)−

[∇ej log φt,l + ej · ∇ log φt,l](φ
−2
t,l ψ

l
t)

∣∣∣∣∣
2

+Rφ−2
t,l |ψ

l
t|2dV.

(52)

Hence, using Equation (20), we integrate (52) to obtain the final Equa-
tion (12) with P (x) and Q(x) given in (11).

This paper was written for a special issue in memory of Robert Bartnik
(1956-2022). The first author had the pleasure of calling Robert Bartnik his
friend and role model. I met Robert the first time when I was 27, fresh out
of graduate school. Robert was a legend in the field; it was quite an honor
to meet him, which I got to do for two weeks in Australia. Robert went
out of his way to help me achieve my goals, however he could. He was very
generous with his time and suggested important papers for me to read. He
was friendly, hilarious at times, and fun to be around, both mathematically
and as a human being. Robert Bartnik’s mathematical contributions are very
important, but the example he set as a person on how to build community
is one of the reasons geometric relativity is thriving today.

Appendix A. Formulae under conformal change of metrics

We list some formulae for spinors and harmonic functions under conformal
change of metrics on an n-dimensional manifold Mn.
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Suppose g′ = e2ug on Mn. Let E = {e1, ..., en} be an orthonormal tan-
gent frame which associate with the orthonormal tangent frame {e′1..., e′n}
and e′i = e−uei. The map Ψ can be lifted to a map between principal Spinn
bundles which we denote Φ. See [3, Page 133] and [4, Page 308], Φ is an
isometry.

Lemma A.1. Suppose ϕ′ is a spinor on (Mn, g′), then

(53) D′ϕ′ = e−
n+1

2
uΦ

[
D(e

n−1

2
uΦ−1ϕ′)

]
.

Proof. Suppose ϕ′ = Φ(ϕ), according to [3, Lemma 5.27],

(54) ∇′
V ϕ

′ = Φ

[
∇V ϕ− 1

2
(∇V u+ V · ∇u)ϕ

]
.

Hence,

D′ϕ′ =
n∑

j=1

Φ

{
ej · [∇e′jϕ− 1

2
(∇e′ju+ e′j · ∇u)ϕ]

}

=Φ

{
e−u[Dϕ+

n− 1

2
(∇w) · ϕ]

}
=e−

n+1

2
uΦ

[
D(e

n−1

2
uϕ)

]
(55)

Remark A.2. In dimension 3, suppose g̃t = φ4
t g, let Φt(ψt) = φ2

t ψ̃t, if

D̃(ψ̃t) = 0, then D(ψt) = 0.

Let {e1, e2, e3} be a orthonormal tangent frame for (M3, g). We denote
ẽj = φ−2

t ej . From Equation (54),
(56)

∇̃ẽj ψ̃t = Φt

{
∇ẽj (φ

−2
t ψt)−

1

2
[∇ẽj2 log(φt) + ẽj · ∇2 log(φt)](φ

−2
t ψt)

}
,

then we have the norm of the gradient:

(57) |∇̃ψ̃t|g̃t =
3∑

j=1

φ−2
t

∣∣∇ej (φ
−2
t ψt)− [∇ej log(φt) + ej · ∇ log φt](φ

−2
t ψt)

∣∣ .
In addition, we also use the property of harmonic functions under con-

formal metrics. Here is the lemma from [2, Page 69].
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Lemma A.3. Let g2 and g1 be two conformal metrics on an n-dimensional

manifold Mn, n ≥ 3. Suppose g2 = u
4

n−2 g1, then for any smooth function φ,

(58) Δg1(uφ) = u
n+2

n−2Δg2φ+ φΔg1u.

In particular, if Δg1u = 0 and Δg2φ = 0, then Δg1(uφ) = 0.
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