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Past stability of FLRW solutions to the
Einstein-Euler-scalar field equations and their big

bang singularities

Florian Beyer and Todd A. Oliynyk

This work is dedicated to the memory of Robert Bartnik

We establish, in spacetime dimensions n ≥ 3, the nonlinear stabil-
ity in the contracting direction of Friedmann-Lemâıtre-Robertson-
Walker (FLRW) solutions to the Einstein-Euler-scalar field equa-
tions with linear equations of state P = c2sρ for sounds speeds cs
satisfying 1/(n − 1) < c2s < 1. We further show that nonlinear
perturbations of the FLRW solutions are asymptotically pointwise
Kasner and terminate in crushing, asymptotically velocity term
dominated (AVTD) big bang singularities characterised by curva-
ture blow-up.

1. Introduction

The mathematical definition of a cosmological spacetime was introduced by
Robert Bartnik in [7]. This definition is one of many lasting contributions
Robert made to the field of Mathematical Relativity [18], and it is particu-
larly relevant to this article in which we analyse the nonlinear stability of a
class of cosmological spacetimes containing big bang singularities. Robert,
throughout his career, touched and enriched the lives of many in the math-
ematical community. He was known for his unique creativity, profound in-
tellect, sense of curiosity and love of learning. He will be missed by many to
whom he was a friend, a colleague and a mentor. We dedicate this article to
his memory.

Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetimes and their
perturbations are the foundation of the standard model of cosmology. How-
ever, until recently, the nonlinear stability in the contracting direction of the
FLRW solutions was not well understood with the exception of perturba-
tions within the class of homogeneous solutions. In the contracting direction,
the Penrose and Hawking singularity theorems [39] guarantee that cosmo-
logical spacetimes, including nonlinear perturbations of FLRW solutions,
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will be geodesically incomplete for a large class of matter models and ini-
tial data sets, including highly anisotropic ones. The origin of the geodesics
incompleteness is widely expected to be due to the formation of curvature
singularities, and it is an outstanding problem in mathematical cosmology
to rigorously establish the conditions under which this expectation is true
and to understand the dynamical behaviour of cosmological solutions near
singularities.

The influential BKL-conjecture [9, 47] posits that cosmological singular-
ities are generically spacelike and oscillatory. While recent work on spikes
[10, 22, 48, 49, 59] and weak null singularities [24, 53] indicate that the BKL-
conjecture is incomplete, it is still expected to be true under quite general
conditions. However, it should be noted that the only rigorous arguments
supporting the BKL-conjecture are limited to the spatially homogeneous
setting [8, 15, 46, 60], while in the non-homogeneous setting, there are nu-
merical studies that support the conjecture [6, 23, 34, 35, 36, 37, 73].

Currently, there are no rigorous nonlinear stability results that apply
to inhomogenous cosmologies with oscillatory spacelike singularities. How-
ever, the situation improves considerably for cosmological spacetimes that
exhibit asymptotically velocity term dominated (AVTD) behaviour [27, 42]
near the singularity. By definition, AVTD singularities are a special type
of big bang type singularities, see Section 1.3 for details, that are spacelike
and non-oscillatory. AVTD behaviour has been shown to occur generically in
classes of vacuum spacetimes with symmetries [20, 42, 32, 61], and for infi-
nite dimensional families of cosmological spacetimes with prescribed asymp-
totics near the singularity in a variety of settings using Fuchsian methods
[1, 2, 5, 11, 16, 17, 19, 21, 25, 31, 40, 41, 43, 44, 69].

In recent years, remarkable progress has been made on rigorously es-
tablishing the past1 stability of FLRW solutions to the Einstein-scalar field
equations and their AVTD big bang singularities under generic perturba-
tions without symmetries. For these solutions, the minimally coupled scalar
field is responsible for the resulting non-oscillatory AVTD dynamics. The
first such FLRW big bang stability result was established in the semi-
nal articles [65, 66]. It is worth noting that the role of the scalar field in
[65, 66] and the subsequent stability results [30, 32, 68] is, in four space-
time dimensions and without any symmetry assumptions2, to suppress the

1We always choose our time orientation so that the contracting time direction
corresponds to the past.

2In high enough spacetime dimensions or under certain symmetry assumptions,
the oscillatory behaviour near big bang singularities of solutions to vacuum Einstein
equations is also suppressed; see [26, 32, 67] for details
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oscillatory behaviour of solutions near big bang singularities, which leads

to AVTD behaviour. It should be noted that it is the AVTD nature of

Einstein-scalar field big bang singularities that make their analysis analyti-

cally tractable in contrast to oscillatory singularities in the inhomogeneous

setting.

The FLRW big bang stability results [65, 66] have been significantly

extended in the article [32] to apply to nonlinear perturbations of the Kas-

ner family of solutions solutions in the following settings and spacetime

dimensions n: Einstein-scalar field equations (n ≥ 4), the polarized U(1)-

symmetric vacuum Einstein equations (n = 4), and the vacuum Einstein

equations (n ≥ 11). Remarkably, the big bang stability results established

in [32] hold for the full range of Kasner exponents where stable singularity

formation is expected. We note also the articles [3, 4] where related Kasner

big bang stability results are established in the polarised T2-symmetric vac-

uum setting, the general framework developed by Ringström for analysing

cosmological spacetimes with big bang singularities [62, 63, 64], and the re-

cent work [38] in which a large class of initial data is identified that greatly

extends the data considered in [32], and at the same time, leads to stable

big bang formation for the Einstein-scalar field system with non-vanishing

potentials.

One important question not answered by the big bang stability results

[30, 32, 65, 66, 68] is that of local instability, namely, do local changes of the

initial data on the initial hypersurfaces induce local changes on the big bang

singular hypersurface. This can also be rephrased as a question of existence

of particle horizons. The technical reason as to why the stability proofs from

the articles [30, 32, 65, 66, 68] cannot directly answer this question is that

they rely on foliating spacetime by spacelike hypersurfaces of constant mean

curvature (CMC). In these articles, this foliation is used to define a time

function via t = −(trK)−1 where trK is trace of the extrinsic curvature of

hypersurfaces. The importance of this time function is that the singularity

can be shown to occur uniformly along the hypersurface t = 0. In this

sense, this choice of time coordinate synchronizes the singularity. This is

important because it allows statements to be made about the behaviour of

the physical fields as the singularity is approached, i.e. in the limit t ↘ 0,

that are uniform across the whole singular surface. On the other hand, CMC

foliations, by definition, are non-local. Because of this, any stability result

that is derived using it will, a priori, be non-local in the sense that local

changes in the initial data will lead to non-local changes in the solution at a

later time. Without additional arguments, it would remain uncertain as to
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whether this non-locality is physical or pure gauge3.
To resolve the question of localisability, we introduced a new method

for analysing the stability of big bang singularities for the Einstein-scalar
field equations in the article [13] that is based on using the scalar field φ

to define a time function τ via φ =
√

n−1
2(n−2) ln(τ) and a wave gauge to

reduce the Einstein equations. The advantages of this method are twofold.
First, because the gauge is hyperbolic, the method is inherently local, i.e.
all fields propagate with a finite speed, and yields localisable results. Sec-
ond, the method yields evolution equations, at least for initial data that is
nearly FLRW on the initial hypersurface, that can be cast into a Fuchsian
form for which it is possible prove existence of solutions globally to the past
via an application of the existence theory for Fuchsian systems developed
in the articles [14, 57]. This new method was employed in [13] to estab-
lish the local (in space) past stability of nonlinear perturbations of FLRW
solutions to the Einstein-scalar field equations and their big bang singu-
larities, which of course, implies a (global in space) past stability theorem
similar to those established in [30, 65, 66, 68]. It is worth noting that the
Fuchsian approach to establishing the global existence of solutions to sys-
tems of hyperbolic equations is a very general method and has recently been
employed to establish a variety of stability results in the following articles
[12, 29, 45, 50, 51, 52, 54, 57, 55, 56, 74].

The main aim of this article is to investigate, using the approach devel-
oped in [13], the nonlinear stability of FLRW big bang singularities where
the gravitating matter includes a perfect fluid with linear equations of states
P = c2sρ in addition to a scalar field. Here, the speed of sound cs is con-
sidered a free parameter. It is expected heuristically as part of the so-called
matter does not matter hypothesis [9, 47] that the perfect fluid should be
negligible near the big bang provided the speed of sound cs is smaller than
the speed of light.

Whether this is true in general or not is an open question however. On
fixed Kasner backgrounds in spacetime dimension n = 4, the stability of
relativistic fluids with linear equations of states P = c2sρ in the contract-
ing direction was investigated by us in [12]. In that article, we established
the past nonlinear stability of a large class of solutions, which includes per-
turbations of homogeneous solutions, in the neighborhood of Kasner big
bang singularities for sound speeds satisfying qmax < c2s < 1, where the
lower bound qmax equals the largest Kasner exponent and qmax = 1/3 for

3In the sense that the non-locality is an artifact of the choice of time function
that could be remedied, i.e. made local, by a different choice of time slicing.
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the FLRW-Kasner spacetime (i.e. equality of the Kasner exponents) in four

spacetime dimensions. In this article, we show that the fluid remains non-
linearly stable toward the big bang singularity for small perturbations of

FLRW initial data in spacetime dimensions n ≥ 3 over the sound speed

range 1/(n − 1) < c2s < 1, which coincides, for n = 4, with the range from
[12] when coupling to the Einstein-scalar field equations is included.

1.1. Conformal Einstein-Euler-scalar field equations

The coupled Einstein-Euler-scalar field equations4 for a free scalar field and

a perfect fluid with a linear equation of state

P = c2sρ, cs ∈ (0, 1),

are

(1.1) Ḡij = 2(T̄ SF
ij + T̄Fl

ij ), ∇̄iT̄ SF
ij = 0, ∇̄iT̄Fl

ij = 0,

where ∇̄i and Ḡij are the covariant derivative and the Einstein tensor, re-
spectively, of the physical metric ḡij and

T̄ SF
ij =∇̄iφ∇̄jφ− 1

2
ḡij∇̄kφ∇̄kφ,

T̄Fl
ij =P0

(1 + c2s
c2s

v̄−2V̄ iV̄ j + ḡij

)
v̄−(1+c2s)/c

2
s ,

(1.2)

for P0 > 0, are the energy momentum tensors of the scalar field and the
fluid, respectively. Here, we use the Frauendiener-Walton formalism [33, 72]

to represent the fluid by a non-normalised vector field V̄ i, and we employ

the notation

(1.3) V̄ i = ḡij V̄
j , v̄2 = −V̄ iV̄

i.

The divergence free condition on each energy momentum tensor in (1.1)

implies the scalar field and fluid matter equations

�ḡφ = 0,(1.4)

āijk∇̄iV̄
k = 0,(1.5)

4See Section 2.1 for our indexing conventions.
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where �ḡ = ḡij∇̄i∇̄j is the wave operator and

(1.6) āijk =
3c2s + 1

c2s

V̄ j V̄ kV̄
i

v̄2
+ V̄ iḡjk + 2ḡi(kV̄ j).

For later use, we write the Einstein equations, see (1.1), as

(1.7) R̄ij = 2∇̄iφ∇̄jφ+ T̄ij ,

where R̄ij is the Ricci tensor of the metric ḡij and

(1.8) T̄ij = 2P0

(1 + c2s
c2s

v̄−2V̄ iV̄ j +
1− c2s

(n− 2)c2s
ḡij

)
v̄−(1+c2s)/c

2
s .

Here, the dimensionless parameter cs is the speed of sound and the positive
constant P0 > 0 has the dimension of pressure. The physical fluid pressure
P , density ρ and normalised fluid n-velocity ūi can be calculated from V̄ i

via the expressions

(1.9) P = P0v̄
− c2s+1

c2s , ρ =
P0

c2s
v̄
− c2s+1

c2s , ūi =
V̄ i

v̄
.

Before we discuss the main results, we first reformulate the Einstein-
Euler-scalar field equations in a way that will be more favorable for the
analysis carried out in this article. Following [13], we replace the physical
metric ḡij with a conformal metric gij defined by

(1.10) ḡij = e2Φgij ,

where Φ is, for now, an unspecified scalar field, and for the remainder of the
article, we assume that the spacetime dimension n satisfies n ≥ 3. Then,
under the conformal transformation (1.10), it is well known that the Ricci
tensor transforms according to

(1.11) R̄ij = Rij−(n−2)∇i∇jΦ+(n−2)∇iΦ∇jΦ−(�gΦ+(n−2)|∇Φ|2g)gij

where ∇i is the Levi-Civita connection of the conformal metric gij and as
above, �g = gij∇i∇j . For use below, we recall that the connection coeffi-
cients of the metrics ḡij and gij are related by

(1.12) Γ̄i
k
j − Γi

k
j = gkl(gil∇jΦ+ gjl∇iΦ− gij∇lΦ).



Past stability of FLRW Einstein-Euler-scalar solutions 521

Now, using (1.11), we can express the Einstein equations (1.7) as

−2Rij =− 2(n− 2)∇i∇jΦ+ 2(n− 2)∇iΦ∇jΦ

− 2(�gΦ+ (n− 2)|∇Φ|2g)gij − 4∇iφ∇jφ− 2T̄ij .
(1.13)

Also, by introducing a Lorentzian background metric gij and letting Di

and γi
k
j denote the associated Levi-Civita connection and connection coef-

ficients, we can write the scalar field equation (1.4) as

ḡijDiDjφ− ḡij(Γ̄i
k
j − Γi

k
j + Ci

k
j)Dkφ = 0,

where

(1.14) Ci
k
j := Γi

k
j − γi

k
j =

1

2
gkl
(
Digjl + Djgil − Dlgij

)
.

It is then not difficult to verify using (1.10) and (1.12) that the scalar field
equation can be expressed as

(1.15) gijDiDjφ = XkDkφ− (n− 2)gijDiΦDjφ,

where

(1.16) Xk := gijCi
k
j =

1

2
gijgkl

(
2Digjl − Dlgij

)
,

or equivalently as

(1.17) �gφ = −(n− 2)∇iΦ∇iφ.

Note that, here and below, all indices are raised and lowered using the
conformal metric, e.g. ∇kΦ = gkl∇lΦ.

We proceed by fixing the scalar field Φ in the conformal transforma-
tion (1.10) up to a constant scaling factor λ by

(1.18) Φ = λφ.

We also replace the scalar field φ with a scalar field τ defined via

(1.19) τ = e−αφ ⇐⇒ φ = − 1

α
ln(τ),

where

(1.20) α = −2− λ2(n− 2)

λ(n− 2)
.
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With this choice of Φ, we note that

e2Φ = τ−2λ/α = τ
2λ2(n−2)

2−λ2(n−2) ,

and, by (1.17), that Φ satisfies the wave equation

(1.21) �gΦ+ (n− 2)∇iΦ∇iΦ = 0.

Using (1.18)–(1.20) to replace Φ and φ with τ in (1.13) and (1.17), we see,
with the help of (1.21), that

(1.22) Rij =
(
1− 2− λ2(n− 2)(n− 1)

2− λ2(n− 2)

)
τ−1∇i∇jτ+T̄ij

and

(1.23) �gτ =
2− λ2(n− 2)(n− 1)

2− λ2(n− 2)
τ−1∇iτ∇iτ .

Choosing now

(1.24) λ =

√
2

(n− 2)(n− 1)

and defining conformal fluid variables V i and v2 via

(1.25) V i = V̄ i and v2 = −ViV
i,

respectively, we find, with our convention of using the conformal metric
to raise and lower indices of conformal quantities while using the physical
metric to raise and lower indices of physical variables, that

V̄ i = ḡij V̄
j = e2ΦgijV

j = e2ΦVi and v̄2 = −V̄ iV̄
i = e2Φv2,

and note that the relations

(1.26)
2− λ2(n− 2)(n− 1)

2− λ2(n− 2)
= 0, α = −λ(n− 2) and e2Φ = τ

2

n−2

hold. Using these relations and the conformal variables {gij , V i, τ}, a short
calculation shows that we can express the tensor (1.8) as

(1.27) Tij := T̄ij = 2P0

(1 + c2s
c2s

v−2ViVj +
1− c2s

(n− 2)c2s
gij

)
τ

c2s−1

c2s(n−2) v
− (1+c2s)

c2s ,
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and the conformal Einstein equations (1.22) and scalar field equation (1.23)
as

Rij = τ−1∇i∇jτ+Tij(1.28)

and

�gτ = 0,(1.29)

respectively. Furthermore, with the help of (1.12), it is not difficult to verify
that the Euler equations (1.5) can be expressed in terms of the conformal
variables {gij , V i, τ} as

(1.30) aijk∇iV
k = − 1

n− 2
τ−1aijk(δ

k
i ∇lτ + δkl ∇iτ − gkmgil∇mτ)V l

where

(1.31) aijk = τ
2

(n−2) āijk =
3c2s + 1

c2s

VjVkV
i

v2
+ V igjk + 2δi(kVj).

Noting that aijk satisfies

aijk = akij ,

we find that

aijk(δ
k
i ∇lτ + δkl ∇iτ − gkmgil∇mτ)V l =akjkV

i∇iτ + (aijk − akji)V
k∇iτ

=
c2s(n− 1)− 1

c2s
VjV

i∇iτ.

With the help of this identity, we see, after rearranging, that the equa-
tions (1.28)–(1.29) and (1.30) can be expressed as

Gij = τ−1∇i∇jτ + 2TFl
ij ,(1.32)

�gτ = 0,(1.33)

aijk∇iV
k = −c2s(n− 1)− 1

c2s(n− 2)
τ−1VjV

i∇iτ,(1.34)

where

TFl
ij = P0τ

c2s−1

c2s(n−2) v
− 1+c2s

c2s

(
1 + c2s
c2s

v−2ViVj + gij

)
.
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We will refer to these equations as the conformal Einstein-Euler-scalar field
equations. It follows from (1.10), (1.18)–(1.20) and (1.24) that each solution
{gij , τ, V i} of the conformal Einstein-scalar field equations yields a solution

(1.35)

{
ḡij = τ

2

n−2 gij , φ =

√
n− 1

2(n− 2)
ln(τ), V̄ i = V i

}

of the physical Einstein-scalar field equations (1.1). It is worth noting that
since (1.1) is invariant under the transformation φ �→ −φ, our sign conven-
tion for φ that follows from the choice of sign in (1.24) incurs no loss of
generality.

1.2. Explicit model solutions

1.2.1. Kasner-scalar field spacetimes. In our conformal picture, the
Kasner-scalar field spacetimes, which are solutions of the conformal Einstein-
scalar field equations (1.32)–(1.33) with TFl

ij = 0, are determined by the
conformal metric and scalar field

(1.36) ğ = −tr̆0dt⊗ dt+

n−1∑
Λ=1

tr̆ΛdxΛ ⊗ dxΛ and τ̆ = t,

respectively, which are defined on the spacetime manifold M (K) = R>0 ×
Tn−1; see Section 2.1 for our coordinate and indexing conventions. In the
above expressions, the constants r̆μ are called Kasner exponents and are
defined by

(1.37) r̆0 =
1

P̆

√
2(n− 1)

n− 2
− 2(n− 1)

n− 2
and r̆Λ =

1

P̆

√
2(n− 1)

n− 2
q̆Λ−

2

n− 2
,

where 0 < P̆ ≤
√

(n− 2)/(2(n− 1)) and the q̆Λ satisfy the Kasner relations

(1.38)

n−1∑
Λ=1

q̆Λ = 1 and

n−1∑
Λ=1

q̆2Λ = 1− 2P̆ 2.

Using (1.36)–(1.38) as well as (1.10) and (1.18)–(1.20) to compute the cur-
vature scalar invariants R̄μνR̄

μν and R̄ = ḡμνR̄μν of the physical metric

ḡμν = t
2

n−2 ğμν , it follows from the resulting expressions

R̄μνR̄
μν =

(
n− 1

n− 2

)2

t−4n−1

n−2
−2r̆0 and R̄ = −n− 1

n− 2
t−2n−1

n−2
−r̆0 ,
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that the Kasner big bang singularity occurs along the spacelike hypersurface
{0} × Tn−1.

Noting from (1.37) and (1.38) that

(1.39)

n−1∑
Λ=1

r̆Λ = r̆0,

we observe from a short calculation involving (1.36) that

�ğx
γ =

1√
| det(ğαβ)|

∂μ

(√
| det(ğαβ)|ğμν∂νxγ

)
= 0.

This shows the (xμ) are wave coordinates and that

(1.40) ğμν Γ̆γ
μν = 0

is satisfied, where, here, Γ̆γ
μν denotes the Christoffel symbols of the conformal

Kasner metric ğμν . We further note via a straightforward calculation that
the Kasner-scalar field solutions (1.36) satisfy

(1.41)
1

|∇̆τ̆ |2ğ
∇̆μτ̆ = δμ0 .

On the t = const-surfaces, the lapse N and the Weingarten map induced
by the conformal Kasner-scalar field metric ğμν are

(1.42) N = t
r̆0
2 and (KΛ

Ω) =
1

2
t−1− r̆0

2 diag(r̆1, . . . , r̆n−1),

respectively. The conformal mean curvature is therefore

(1.43) K =
r̆0
2
t−1− r̆0

2 ,

as a consequence of (1.39), while the physical mean curvature can be shown
to be

(1.44) K̄ =
(n− 1

n− 2
+

r̆0
2

)
t−1− 1

n−2
− r̆0

2 .

When we express a Kasner-scalar field solution with respect to the time
coordinate

t̄ =
1

n−1
n−2 + r̆0

2

t
n−1

n−2
+

r̆0
2
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and appropriately rescale all the spatial coordinates (xΛ), that the physical
solution (1.35) corresponding to the conformal metric (1.36) takes the more
conventional form

ğ = −dt̄⊗ dt̄+

n−1∑
Λ=1

t̄2q̆Λdx̄Λ ⊗ dx̄Λ,

φ̆ = P̆ ln(t̄) + P̆ ln
(n− 1

n− 2
+

r̆0
2

)
,

(1.45)

where P̆ and q̆Λ are all related to r̆0 and r̆Λ by (1.37). This shows, in
particular, that the constant P̆ can be interpreted as the asymptotic scalar
field strength. Noting that the case P̆ = 0 is excluded by (1.37), it follows that
the special case of vacuum Kasner solutions is not covered by our conformal
representation of the Kasner-scalar field solutions.

Kasner spacetimes where the constants qΛ are all the same coincide with
FLRW spacetimes. In this situation, we have by (1.38) that

q̆Λ =
1

n− 1

and that

|P̆ | =
√

n− 2

2(n− 1)
,

which we note saturates the inequality |P̆ | ≤
√

(n− 2)/(2(n− 1)). By (1.36)–
(1.37), we then deduce that r̆0 = r̆Λ = 0 and that the conformal Kasner-
scalar field solution simplifies to

ğ = −dt⊗ dt+ δΛΩdx
Λ ⊗ dxΩ and τ̆ = t.(1.46)

1.2.2. FLRW-Euler-scalar field solution. The Kasner-scalar field fam-
ily of solutions considered in the previous section do not involve a fluid. In
this section, we allow for coupling to a fluid but limit our considerations
to FLRW solutions. These solutions to the conformal Einstein-Euler-scalar
field equations (1.27)–(1.31), which we refer to as FLRW-Euler-scalar field
solutions, are defined by

ğ = −ω2(n−1)dt⊗ dt+ ω2
n−1∑
Λ=1

dxΛ ⊗ dxΛ,(1.47)

τ̆ = t,(1.48)
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V̆ = V 0
∗ ω−(1−c2s)(n−1) t−(1−(n−1)c2s)/(n−2)∂t,(1.49)

where

(1.50) ω =

(
1− n− 2

n− 1

P0

c2s
(V 0

∗ )
− 1+c2s

c2s t
n−1

n−2
(1−c2s)

)−2/((n−1)(1−c2s))

and cs, P0 and V 0
∗ are any constants satisfying cs ∈ (0, 1), P0 > 0 and

V 0
∗ > 0. Each of these solutions is well-defined for t ∈ (0, t0), where t0 > 0

depends of the choice of constants cs, P0 and V 0
∗ , and by (1.9), its fluid

density is determined via

ρ =
P0

c2s
(V 0

∗ )
− 1+c2s

c2s ω−(n−1)(1+c2s)t−
n−1

n−2
(1+c2s).

Observing that ω → 1 as t ↘ 0, we define

(1.51) ρ∗ =
P0

c2s
(V 0

∗ )
− 1+c2s

c2s ,

which allows us to express ω and ρ as

ω =

(
1− n− 2

n− 1
ρ∗t

n−1

n−2
(1−c2s)

)−2/((n−1)(1−c2s))

ρ = ρ∗ω
−(n−1)(1+c2s)t−

n−1

n−2
(1+c2s),

(1.52)

respectively.
As can be easily verified from (1.47)–(1.48), the FLRW-Euler-scalar field

solutions satisfy the wave gauge condition (1.40) and (1.41). In terminology
that will be introduced below, (1.41) implies that the coordinates (xμ) =
(t, xΛ) used to define the FLRW metric (1.46) are Lagrangian, while (1.40)
shows that these coordinates are wave coordinates, i.e. �ğx

μ = 0. Both of
these gauge conditions play a pivotal role in our stability analysis.

Irrespective of the value of the parameter V 0
∗ > 0 or equivalently ρ∗ ≥ 0,

we observe from (1.47)–(1.48) and limt↘0 ω = 1 that the metric and scalar
field have the same limit as the FLRW-scalar field solution (1.46) at t =
0. This is a manifestation of the before-mentioned matter does not matter
hypothesis.

As discussed above, the main result of this paper is to establish the past
nonlinear stability of FLRW solutions to the Einstein-Euler-scalar field equa-
tions and their big bang singularities for sound speeds satisfying 1/(n−1) <
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c2s < 1. In addition to this, we verify that the “matter does not matter” asser-
tion holds in the sense that we prove that nonlinear perturbations of FLRW
solutions are asymptotic, in a suitable sense, to solutions of the Einstein-
scalar field equations.

1.3. AVTD and asymptotic pointwise Kasner behaviour

In this article, we analyze solutions of the Einstein-Euler-scalar field sys-
tem that are close to one of the FLRW solutions from Section 1.2.2 and for
which the sound speed lies in the range 1/(n−1) < c2s < 1. Even though the
spacetimes that are generated by our stability results contain fluids and are
generically spatially inhomogeneous without any symmetries, they do retain
some of the asymptotic properties that characterize the (non-fluid) spatially
homogeneous Kasner-scalar field solutions from Section 1.2.1. For example,
we show, see Theorem 10.1.(d), that spatial derivative terms, the so-called
velocity terms [27, 42], that appear in the dynamical equations become neg-
ligible at t = 0 in comparison to time derivative terms. This behavior is
known as asymptotically velocity term dominated (AVTD) and it implies
that the dynamical equations can be approximated by ODEs close to the
big bang. In agreement with [32], we define that a solution to the conformal
Einstein-Euler-scalar field system satisfies the AVTD property provided it
satisfies the velocity term dominated (VTD) equations that are obtained,
up to an error term that is integrable in time near t = 0, from the main
evolution system by removing all spatial derivative terms and by normalis-
ing the time derivative terms. Here, by normalising the time derivatives, we
mean that the evolution equations are put into Fuchsian form as discussed
in Sections 9 and 10.2.

Given that spatial inhomogeneities of AVTD solutions become irrele-
vant at the big bang, it is, perhaps, not surprising that they behave locally
like spatially homogeneous solutions. More precisely, we show, see Theo-
rem 10.1.(d), that the solutions generated from our stability result satisfy
the following asymptotic pointwise Kasner property just as in the non-fluid
case [13].

Definition 1.1. Given a C2-solution (M = (0, t0] × U, gμν , τ, V
μ), t0 > 0,

of the conformal Einstein-Euler-scalar field equations, where U ⊂ Tn−1 is
open and (xμ) = (t, xΛ) are coordinates on M such that t ∈ (0, t0], τ = t
and the (xΛ) are periodic coordinates on Tn−1, we say that the spacetime
(M, gμν , τ, V

μ) is asymptotically pointwise Kasner on U provided there exists
a continuous orthonormal frame ei = eμi ∂μ and a continuous spatial tensor
field kI

J on U such that the following hold:
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(i) The spatial vector fields eI are tangential to the t = const-surfaces,

i.e. eI = eΛI ∂Λ, and

(1.53) lim
t↘0

∣∣2t N(t, x) KIJ(t, x)− kI
J(x)

∣∣ = 0

for each x ∈ U , where N is the lapse and KI
J is the Weingarten map

induced on the t = const-hypersurfaces by the conformal metric gμν .

(ii) The tensor field kI
J satisfies kI

I ≥ 0 and the Kasner relation

(1.54) (kI
I)2 − kI

JkJ
I + 4kI

I = 0

everywhere on U . At each point x ∈ U , the symmetry of kI
J(x) guar-

antees that kI
J(x) has n − 1 real eigenvalues, which we denote by

r1(x), . . . , rn−1(x). We refer to these functions r1, . . . , rn−1 on U as the

Kasner exponents5.

We refer the reader to [13, §1.3] for more information regarding the

motivation and consequences of Definition 1.1.

Given Kasner exponents r1, . . . , rn−1 from the above definition, we define

(1.55) r0 :=

n−1∑
Λ=1

rΛ = kI
I , qΛ := P

√
n− 2

2(n− 1)

(
rΛ +

2

n− 2

)
,

and

(1.56) P :=

√
2(n− 1)(n− 2)

2(n− 1) + (n− 2)
∑n−1

Λ=1 rΛ
,

which we note is well-defined since kI
I =

∑n−1
Λ=1 rΛ ≥ 0. From these formulas,

we deduce that the qΛ satisfy the “standard” Kasner relations

(1.57)

n−1∑
Λ=1

qΛ = 1 and

n−1∑
Λ=1

q2Λ = 1− 2P2.

As discussed in [13, §1.3], the quantity P can be interpreted as the asymptotic

scalar field strength.

5Notice that it is more customary in the literature to call the quantities
q1, . . . , qn−1 defined in (1.55) Kasner exponents and (1.57) the Kasner relations.
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Assume now that there exist continuous positive functions b and ν such
that

(1.58)
∣∣∣t− 1

2
r0(x)N(t, x)− b(x)

∣∣∣ � tν(x)

for all (t, x) ∈ (0, t0]×Tn−1. This property is clearly satisfied by the Kasner-
scalar field spacetimes with and without fluids, and we show that it con-
tinues to hold for the entire class of perturbations of the FLRW fluid solu-
tions that are generated from our past stability result; see Theorem 10.1.(b).
Given (1.58), it then follows that solutions that satisfy the asymptotically
pointwise Kasner condition (1.53) will behave pointwise in a manner that
is similar to that of the Kasner-scalar field solutions, c.f. (1.42). Thus,
the asymptotically pointwise Kasner condition provides the sense in which
the perturbed solutions behave asymptotically at each spatial point like a
Kasner-scalar field spacetime.

The second fundamental form K̄ΛΩ induced on t = const-surfaces by
the physical metric ḡμν is related to the one KΛΩ induced by the conformal
metric gμν via

K̄Λ
Ω =

1

2
t−

1

n−2 t−1N−1
(
2tNKΛ

Ω +
2

n− 2
δΛ

Ω
)
.

Because of this, (1.53) and (1.58) imply that both the mean curvatures
associated with the physical and with the conformal metric diverge pointwise
near t = 0, except in the case of FLRW where KΛ

Λ vanishes while K̄Λ
Λ

diverges. Given suitable uniform bounds over the spatial domain U , which we
prove hold for the perturbed FLRW solutions generated by our main stability
result, see Theorem 10.1.(d), asymptotically pointwise Kasner metrics will
have crushing singularities at t = 0 in the language of [28].

1.4. An informal statement of the main stability theorem

The main result of this article is that we establish the nonlinear stability
in the contracting direction of perturbations of the FLRW solution (1.47)–
(1.50) to the Einstein-Euler-scalar field equations in n ≥ 3 spacetime dimen-
sions and for sound speeds satisfying 1/(n− 1) < c2s < 1; see Theorem 10.1
for the precise statement of our stability result. We also show that the per-
turbed FLRW solutions are asymptotically pointwise Kasner in the sense
of Definition 1.1, and that they terminate in a big bang singularity, which
rigorously confirms the matter does not matter paradigm for these solutions.



Past stability of FLRW Einstein-Euler-scalar solutions 531

An informal statement of our stability result is given below in the follow-
ing theorem. However, before stating it, we first discuss synchronized initial
data. Initial data that is prescribed on the hypersurface Σt0 = {t0} × Tn−1,
t0 > 0 will be said to be synchronized if τ = t0 on Σt0 . The purpose of this
synchronization condition is to ensure that the big bang singularity occurs at
τ = 0; see the discussion in Section 5.6 for details. As noted in Remark 5.8,
no generality is lost from restricting our attention to synchronized initial
data.

Theorem 1.2 (Past global stability of the FLRW solution of the Ein-
stein-Euler-scalar field equations). Solutions {gij , τ, V i} of the conformal
Einstein-Euler-scalar field equations that are generated from sufficiently dif-
ferentiable, synchronized initial data imposed on Σt0 = {t0} × Tn−1 that
is suitably close to FLRW initial data exist on the spacetime region M ∼=
(0, t0] × Tn−1 provided c2s ∈ (1/(n − 1), 1). Moreover, these solutions are
asymptotically pointwise Kasner, the fluid is asymptotically comoving6, and
the corresponding physical solutions {ḡij , φ, V̄ i} of the Einstein-Euler-scalar
field equations are past timelike geodesically incomplete, terminate at a crush-
ing big bang singularity at τ = 0 that is characterised by curvature blow-up,
and are C2-inextendible through the τ = 0 boundary of M .

The restriction 1/(n − 1) < c2s < 1 on the sound speed has been ob-
served in earlier studies [11, 12] in the spacetime dimension n = 4. In the
terminology of [11], the condition 1/(n − 1) < c2s < 1 is referred to as the
subcritical regime and in that article solutions to the Einstein-Euler equa-
tions with a Gowdy symmetry7 are constructed by specifying asymptotic
initial data on the big bang singularity and generating solution from this
data by solving a Fuchsian singular initial value problem. The results of [11]
show that there exist families of solutions to the Einstein-Euler equations
with Gowdy symmetry that have big bang singularities. The behavior of
these solutions near the big bang singularity is similar to the solutions we
obtain in this article from our stability theorem. Interestingly in [11], fami-
lies of solutions, under additional assumptions beyond Gowdy symmetry, are
also constructed for the coupled Einstein-Euler equations and for the Eu-
ler equations on fixed Kasner backgrounds in the critical and supercritical

6That is, the spatial fluid vector vanishes at τ = 0.
7It is worth noting here that the Gowdy symmetry is responsible for the sup-

pression of the oscillatory behavior of the fields near the big bang singularity, and
explains why in this work the authors are able to establish the existence of solu-
tions with monotone behaviour near the singularity without needing to couple the
system to a scalar field.
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regimes, respectively, that correspond to the sound speeds c2s = 1/(n − 1)
and 0 < c2s < 1/(n − 1), respectively. What is strongly suggested by the
results of [11] is that the asymptotics of solutions to the Einstein-Euler-
scalar field equations for sound speeds satisfying 0 ≤ c2s < 1/(n − 1) will
be very different to that of the perturbed solutions consider in this article,
which satisfy the subcritial condition 1/(n − 1) < c2s < 1. As we explain in
more detail in Remark 9.2, it is not obvious for Einstein-Euler-scalar field
equations considered here how the dynamics might change in the critical
c2s = 1/(n − 1) or supercritical 0 ≤ c2s < 1/(n − 1) regimes. We plan to
explore this question in future work.

Remark 1.3. It is worth mentioning here that Theorem 10.1 should be inter-
preted as a past global in space stability theorem since it requires that the
initial data be specified on the entire closed hypersurface Σt0 = {t0}×Tn−1.
It is straightforward to establish a local in space version of Theorem 10.1 by
adapting the proof of Theorem 11.1 from [13]. Doing so would yield the ex-
istence of solutions to the Einstein-Euler-scalar field equations on truncated
cones domains that (i) are generated from initial data that is sufficiently
close to FLRW on an open subset of Σt0 , (ii) are asymptotically pointwise
Kasner, and (iii) terminate in a crushing AVTD big bang singularity char-
acterised by curvature blow-up. We leave the details of the proof to the
interested reader.

1.5. Overview of the proof of Theorem 10.1

The proof our main stability result, Theorem 10.1, is based on an adaptation
of the proof of Theorem 10.1 from [13]. As in [13], our proof of Theorem 10.1
relies on two different formulations of the reduced Einstein-Euler-scalar field
equations, which are used for distinct purposes.

The first formulation, given by (5.48)–(5.56) below, is used to estab-
lish the local-in-time existence and uniqueness of solutions to the reduced
conformal Einstein-scalar field equations in a Lagrangian coordinate system
(xμ), which is adapted to the vector field χμ = (|∇τ |2g)−1∇μτ , as well as a
continuation principle for these solutions. See Proposition 5.6 for the precise
statement of the local-in-time existence, uniqueness and continuation result.

Here, Lagrangian coordinates mean that in the coordinate system (xμ)
the vector field χμ is trivialized, that is, χμ = δμ0 . The precise definition
of the Lagrangian coordinates (xμ) can be found in Section 5.3. For initial
data that satisfies the gravitational and wave gauge constraints, the sys-
tem (5.48)–(5.56) propagates both of these constraints and determines so-
lutions of the conformal Einstein-scalar field equations. An important point



Past stability of FLRW Einstein-Euler-scalar solutions 533

regarding the wave gauge constraint 1
2g

γλ(2Dμgνλ − Dλgμν) = 0 is that the
covariant derivative Dμ is not determined by a fixed Minkowski metric in
the Lagrangian coordinates (xμ), and consequently, the Lagrangian coordi-
nates (xμ) are not wave coordinates, that is, generically �gx

μ �= 0. Instead,
the covariant derivative Dμ is computed with respect to the flat metric
gμν = ∂μl

αηαβ∂ν l
β where the Lagrangian map lμ(x) is determined by a so-

lution of the system (5.48)–(5.56); see Section 5.3 for details. The primary
role of the Lagrangian coordinates (xμ) is to synchronize the singularity. In
these coordinates, the scalar field τ coincides with the time coordinate, that
is, τ = t := x0; see Section 5.6 for details.

While the system (5.48)–(5.56) is useful for establishing the local-in-
time existence of solutions to the reduced conformal Einstein-scalar field
equations and the propagation of the wave gauge constraint 1

2g
γλ(2Dμgνλ−

Dλgμν) = 0, it is not useful for establishing global-in-time estimates that can
be used in conjunction with the continuation principle to show that solutions
can be continued from some starting time t0 > 0 all the way down to the big
bang singularity at t = 0. The system that we do use to establish global-in-
time estimates is formulated in terms of a frame ei = eμi ∂μ, the connection
coefficients γi

k
j of the flat background metric gμν = ∂μl

αηαβ∂ν l
β relative to

the frame ei, i.e. Deiej = γi
k
jej , and suitable combinations of the metric,

scalar and fluid fields and their derivatives:

{gijk = Digjk, gijkl = DiDjgkl, τij = DiDjτ,

τijk = DiDjDkτ,W
k, Ũk

i = DiW
k},

where gij = eμi gμνe
ν
j is the frame representation of the conformal metric,

τ = t, and W k = f−1V k with f = τ
(n−1)c2s−1

n−2 β̃c2s and β̃ = (−|∇τ |2g)−
1

2 .
The first step toward deriving the second formulation of the reduced

Einstein-Euler-scalar field equations that is used to derive global-in-time
estimates is to fix the frame eμi , which we do in Section 6, by first setting

eμ0 = (−|χ|2g)−
1

2χμ, where χμ = δμ0 since we are using Lagrangian coordinates
(xμ). The spatial frame vectors eμI are then determined by using Fermi-
Walker transport, which is defined by

∇e0eJ = −g(∇e0e0, eJ)

g(e0, e0)
e0,

to propagate initial data eμI |t=t0 = e̊μI that is chosen so that the frame is
orthonormal at t = t0. The orthonormality of the frame is preserved by
Fermi-Walker transport, which implies, in particular, that the frame metric
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satisfies gij = ηij . Once the frame is determined via Fermi-Walker trans-

port, then the back ground connection coefficients γi
k
j are determined via a

system of evolution equations derived from the vanishing of the background

curvature and identities derived from the Fermi-Walker transport equation;

see Section 6 for details. We note that our use of a Fermi-Walker transported

spatial frame was inspired by the work of [32] in which Fermi-Walker trans-

ported spatial frames played an essential role in the proof of the stability

results established there.

With the frame fixed, a first order formulation of the reduced conformal

Einstein-Euler-scalar fields equations in terms of the frame variables

k̃ = (k̃IJ) := (g0IJ − gI0J − gJ0I),

β̃ = (−|∇τ |2g)−
1

2 ,

�̃ = (�̃IjK) := (gIjK),

m̃ = (m̃I) := (g00M ),

τ = (τij),

g̃ = (g̃Ijkl) := (gIjkl),

τ̃ = (τ̃ Ijk) := (τIjk),

W = (W i),

U = (UkQ),

and

ψ̃ = (ψ̃I
k
J) := (γI

k
J)

is derived in Sections 7 and 9.2, see in particular, equations (9.24)–(9.35).

The metric combination k̃ij , which it is related to the second fundamental

form of the conformal metric for the t = const-hypersurfaces, c.f. (7.24),

plays a pivotal role in our analysis. The property that distinguishes k̃ij ,

as far as the analysis is concerned, is we have no freedom to rescale the

normalized version

kIJ = tβ̃k̃IJ

by any power of t. Our stability proof relies on showing that kIJ remains

bounded as t ↘ 0, and in fact, we show that 2kIJ converges as t ↘ 0

to a, in general, non-vanishing symmetric matrix kIJ satisfying kI
I ≥ 0 and

(kI
I)2−kI

JkJ
I+4kI

I = 0. On the other hand, there is slack in the remaining
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variables in the sense that we can rescale them by certain positive powers of
t. This freedom to rescale these variables is essential to our stability proof.

To complete the derivation of the second formulation of the reduced Ein-
stein-Euler-scalar field equations, we introduce, in Section 9.3, the rescaled
variables

k = (kIJ) := (tβ̃k̃IJ),

β = tε0 β̃,

β̌ = tε3+(1+c2s)ε0β−(1+c2s),

� = (�IjK) := (tε1 �̃IjK),

m = (mI) := (tε1m̃I),

ξ = (ξij) := (tε1−ε0τij),

ψ = (ψI
k
J) := (tε1ψ̃I

k
J),

f = (fΛ
I ) := (tε2eΛI ),

ǵ = (ǵIjkl) := (t1+ε1 β̃g̃Ijkl),

τ́ = (τ́ Ijk) := (tε0+2ε1 τ̃ Ijk),

W = (W k),

Ú = (tε4UsQ),

where the ε0, . . . , e4 are constants. Expressing the first order system (9.24)–
(9.35) in terms of these rescaled variables, see Section 9.4, yields a Fuchsian
system of equations of the form

(1.59) A0∂tu+
1

tε0+ε1
AΛ∂λu =

1

t
APu+ F,

where

u =
(
kLM ,mM , �R0M , �RLM , ξrl,β, f

Λ
I , ψI

k
J , τ́Qjl, ǵQjlm, β̌,W s, Ú

s
Q

)T
−
(
0, 0, 0, 0, 0, tε0 , tε2δΛI , 0, 0, 0, t

ε3 , V 0
∗ δ

j
0, 0
)T

and P is the projection matrix

P = diag
(
0, δM

M̃
, δR

R̃
δM
M̃
, δR

R̃
δL
L̃
δM
M̃
, δrr̃δ

l
l̃
, 1, δI

Ĩ
δΛ̃Λ , δ

I
Ĩ
δk̃kδ

J
J̃
,

δQ
Q̃
δj
j̃
δl
l̃
, δQ

Q̃
δj
j̃
δl
l̃
δmm̃ , δJ̃Jδ

J̃
j̃
δJj , δj̃jδ

Q̃Q
)
.
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The purpose of introducing the t-power weights determined by the con-
stants ε0, . . . , e4 in the variables above is to obtain a matrix A where the
eigenvalues of 1

2(A + AT)P are all non-negative. This is essential for our
existence proof. At the same time, we have to ensure that no singular terms
worse than t−1 appear in (1.59). Both of these requirements necessitates
choosing the constants ε0, . . . , e4 and the square of the sound speed c2s to
satisfy the inequalities (9.103) and 1

n−1 < c2s < 1; see Remark 9.2, Lemma 9.4
and Lemma 10.5 for details. It is also worth noting that the zero in the first
diagonal component of P, which corresponds to the zero eigenvalue block of
1
2(A + AT)P, is responsible for the convergence as t ↘ 0 of 2kIJ to a, gen-
erally non-vanishing, matrix kIJ . On the other hand, remaining eigenvalues
of 1

2(A +AT)P, which are all positive, lead to power law decay, i.e. ta with
a > 0, for the other variables where the decay rates8 are determined by the
eigenvalues.

The virtue of the Fuchsian formulation (1.59) is that we can appeal
to the existence theory developed in the articles9 [12, 14] to conclude, for
suitably small choice of initial data u0 at t = t0 > 0, that there exist a
unique solution of (1.59) that is defined all the way down to t = 0 and
satisfies u|t=t0 = u0. The Fuchsian existence theory also yields energy and
decay estimates that provide uniform control over the behaviour of solutions
in the limit t ↘ 0. The precise statement of the global existence result for
the Fuchsian equation (1.59) is given in Proposition 10.3.

On one hand, Proposition 10.3 yields the existence of a unique solution
on (0, t0]×Tn−1 to the Fuchsian equation (1.59) generated from initial data10

u|t=t0 = u0 that is sufficiently close to FLRW initial data. On the other
hand, this same initial data generates, by Proposition 5.6, a local-in-time
solution to the the system (5.48)–(5.56) that, after solving the Fermi-Walker
transport equations for the spatial frame fields, determines a solution of the
Fuchsian equation (1.59). By uniqueness, these two solutions must be the
same. The energy estimates from Proposition 10.3 then allows us to conclude
via the continuation principle from Proposition 5.6 that the solution u of
the Fuchsian equation determines a solution of the conformal Einstein-scalar
field equations on (0, t0]×Tn−1. Asymptotic properties of the solution to the

8That is the a’s where there is a different a for each of the different groups of
variables.

9The actual existence theory we apply is from [12], which a slight generalization
of the existence theory from [14].

10Here, the initial data for (1.59) is assumed to be derived from initial data for
the reduced conformal Einstein-scalar equations that satisfies the gravitational and
wave gauge constraint equations.
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conformal Einstein-scalar field equations are then deduced from the energy
and decay estimates for u from Proposition 10.3. This completes the overview
of the major steps involved in our proof of the past global nonlinear stability
of small perturbations of the FLRW solutions to the conformal Einstein-
Euler-scalar field equations. The precise statement of this result is presented
in Theorem 10.1 and the proof can be found in Section 10.3.

2. Preliminaries

2.1. Coordinates, frames and indexing conventions

In the article, we will consider n-dimensional spacetime manifolds of the
form

(2.1) Mt1,t0 = (t1, t0]× T
n−1,

where t0 > 0, 0 < t1 < t0, and Tn−1 is the (n− 1)-torus defined by

(2.2) T
n−1 = [−L,L]n−1/ ∼

with ∼ the equivalence relation obtained from identifying the sides of the
box [−L,L]n−1 ⊂ Rn−1. OnMt1,t0 , we will always employ coordinates (xμ) =
(x0, xΛ) where the (xΛ) are periodic spatial coordinates on Tn−1 and x0 is a
time coordinate on the interval (t1, t0]. Lower case Greek letters, e.g. μ, ν, γ,
will run from 0 to n − 1 and be used to label spacetime coordinate indices
while upper case Greek letters, e.g. Λ,Ω,Γ, will run from 1 to n−1 and label
spatial coordinate indices. Partial derivative with respect to the coordinates
(xμ) will be denoted by ∂μ = ∂

∂xμ . We will often use t to denote the time

coordinate x0, that is, t = x0, and use the notion ∂t = ∂0 for the partial
derivative with respect to the coordinate x0.

We will use frames ej = eμj ∂μ throughout this article. Lower case Latin
letter, e.g. i, j, k, will be used to label frame indices and they will run from
0 to n − 1 while spatial frame indices will be labelled by upper case Latin
letter, e.g. I, J,K, that run from 1 to n− 1.

2.2. Inner-products and matrices

Throughout this article, we denote the Euclidean inner-product by (ξ|ζ) =
ξTζ, ξ, ζ ∈ RN , and use |ξ| =

√
(ξ|ξ) to denote the Euclidean norm. The

set of N × N matrices is denoted by MN×N , and we use SN to denote the
subspace of symmetric N ×N -matrices.
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Given A ∈ MN×N , we define the operator norm |A|op of A via

|A|op = sup
ξ∈RN

×

|Aξ|
|ξ| ,

where RN
× = RN \ {0}. For any A,B ∈ MN×N , we will also employ the

notation

A ≤ B ⇐⇒ ξTAξ ≤ ξTBξ, ∀ ξ ∈ R
N .

2.3. Sobolev spaces and extension operators

The W k,p, k ∈ Z≥0, norm of a map u ∈ C∞(U,RN ) with U ⊂ Tn−1 open is
defined by

‖u‖W k,p(U) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∑
0≤|I|≤k

∫
U
|DIu|p dn−1x

) 1

p

if 1 ≤ p < ∞

max
0≤|I|≤k

sup
x∈U

|DIu(x)| if p = ∞
,

where I = (I1, . . . ,In−1) ∈ Z
n−1
≥0 denotes a multi-index and we write DI =

∂I1

1 ∂I2

2 · · · ∂In−1

n−1 . The Sobolev space W k,p(U,RN ) is then defined to be the
completion of C∞(U,RN ) with respect to the norm ‖·‖W k,p(U). When N = 1
or the dimension N is clear from the context, we will simplify notation and
write W k,p(U) instead of W k,p(U,RN ), and we will employ the standard
notation Hk(U,RN ) = W k,2(U,RN ) throughout.

2.4. Constants and inequalities

We use the standard notation a � b for inequalities of the form a ≤ Cb
in situations where the precise value or dependence on other quantities of
the constant C is not required. On the other hand, when the dependence of
the constant on other inequalities needs to be specified, for example if the
constant depends on the norm ‖u‖L∞ , we use the notation C = C(‖u‖L∞).
Constants of this type will always be non-negative, non-decreasing, contin-
uous functions of their argument.

We will also employ the order notation from [14, §2.4]. Since we are
working with trivial bundles, we can define this notation as follows: Given
maps

f ∈ C0
(
(0, t0], C

∞(BR(R
n)×BR(R

m),Rp)
)
,

g ∈ C0
(
(0, t0], C

∞(BR(R
m),Rq)

)
,



Past stability of FLRW Einstein-Euler-scalar solutions 539

where t0, R > 0 are positive constants, we say that

f(t, w, v) = O(g(t, v))

if there exist a R̃ ∈ (0, R) and a map

f̃ ∈ C0
(
(0, t0], C

∞(BR̃(R
n)×BR̃(R

m), L(Rq,Rp)
))

such that

f(t, w, v) = f̃(t, w, v)g(t, v), |f̃(t, w, v)| ≤ 1 and |Ds
w,vf̃(t, w, v)| � 1

for all (t, w, v) ∈ (0, t0]×BR̃(R
n)×BR̃(R

m) and s ≥ 1. For situations, where

we want to bound f(t, w, v) by g(t, v) up to an undetermined constant of

proportionality, we define

f(t, w, v) = O(g(t, v))

if there exist a R̃ ∈ (0, R) and a map

f̃ ∈ C0
(
(0, t0], C

∞(BR(R
n)×BR(R

m), L(Rq,Rp))
)

such that

f(t, w, v) = f̃(t, w, v)g(t, v) and |Ds
w,vf̃(t, w, v)| � 1

for all (t, w, v) ∈ (0, t0]×BR̃(R
n)×BR̃(R

m) and s ≥ 0.

2.5. Curvature

The curvature of tensor Rijk
l of the background metric gij is defined via

(2.3) [Di,Dj ]αk = Rijk
lαl

for arbitrary 1-forms αl. This definition along with Rik = Rijk
j for the Ricci

tensor fixes the curvature conventions that will be employed for all curvature

tensors appearing in this article.
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3. Reduced conformal field equations

In order to establish the existence of solutions to the conformal Einstein-
Euler-scalar field equations, we need to replace the conformal Einstein equa-
tions (1.32) or equivalently (1.28) with a gauge reduced version. In the fol-
lowing, we employ a (conformal) wave gauge defined by the constraint

(3.1) Xk = 0,

where Xk is given above by (1.16), and consider the wave gauge reduced
equations

−2Rij + 2∇(iXj) = −2

τ
∇i∇jτ − 2Tij

(1.14)
= − 2

τ

(
DiDjτ − Ci

k
jDkτ

)
−2Tij ,

(3.2)

which we will refer to as the reduced conformal Einstein equations. Recall
that Tij is defined by (1.27).

For the moment, we assume that the wave gauge constraint (3.1) holds.
Because we establish below in Proposition 5.2 that this wave gauge con-
straint propagates, we lose nothing by making this assumption. Now, by
(1.14), (1.16) and (3.1), we observe that the conformal scalar field equa-
tion (1.33) can be expressed as

(3.3) gijDiDjτ = 0.

Further, using (1.14), (1.25) and (1.31), we note that the conformal Euler
equations (1.34) can be expressed as

(3.4) aijkDiV
k = G̃jslV

sV l

where

G̃jsl =τ−1 (n− 1)c2s − 1

c2s(n− 2)
gj(sDl)τ

− 1

2

(3c2s + 1

c2s

V qV p

v2
+ gpq

)
gj(sDl)gpq − D(lgs)j .

(3.5)

Gathering (3.2), (3.3) and (3.4) together, we have

−2Rij + 2∇(iXj) = −2

τ

(
DiDjτ − Ci

k
jDkτ

)
−2Tij ,(3.6)
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gijDiDjτ = 0,(3.7)

aijkDiV
k = G̃jslV

sV l.(3.8)

We will refer to these equations as the reduced conformal Einstein-Euler-

scalar field equations. For use below, we recall that the reduced Ricci tensor

can be expressed as

(3.9) − 2Rij + 2∇(iXj) = gklDkDlgij +Qij + 2gklgm(iRj)kl
m

where

Qij =
1

2
gklgmn

(
DigmkDjgnl + 2DngilDkgjm − 2DlginDkgjm

− 2DlginDjgmk − 2DigmkDlgjn

)
,

(3.10)

and, as above, Rijk
l denotes the curvature tensor of the background metric

gij . By differentiating (3.7) and employing the commutator formula

DkDiDjτ − DiDjDkτ = Rkij
lDlτ,

we also note that

gijDiDjDkτ =gilgjmDkglmDiDjτ − gijRkij
lDlτ.(3.11)

4. Choice of background metric

The background metric gij is thus far arbitrary. Since the conformal FLRW

metric in (1.47)–(1.50) is flat in leading order at t = 0 and we are interested

in nonlinear perturbations of this solution, we are motivated to restrict our

attention to background metrics that are flat, which by definition, means

that the curvature tensor vanishes, that is,

(4.1) Rijk
l = 0.

By the commutator formula (2.3), the vanishing of the curvature implies

that

(4.2) [Di,Dj ] = 0.
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5. Local existence and continuation in Lagrangian
coordinates

Thus far, we have expressed the reduced conformal Einstein-Euler-scalar
field equations (3.6)–(3.8) in an arbitrary frame. We now turn to estab-
lishing a local-in-time existence and uniqueness result for solutions to these
equations along with a continuation principle. We do so following the same
approach as in [13, §5], which involves formulating the conformal Einstein-
Euler-scalar field equations as a first order system of equations in a coor-
dinate frame and then solving it in Lagrangian coordinates. Because the
modifications required to adapt the local-in-time existence and uniqueness
theory from [13, §5] for the Einstein-scalar field equations to allow for cou-
pling with the Euler equations are straightforward, most of the proofs in
this section will be omitted and we refer the interested reader to [13, §5] for
the details.

Following [13, §5], we fix the coordinate frame by introducing coordinates
(x̂μ) = (x̂0, x̂Λ) on a spacetime Mt1,t0 of the form (2.1), and we assume that
the components of the flat background metric g in this coordinate system,
denoted ĝμν , are given by

(5.1) ĝμν = ημν := −δ0μδ
0
ν + δΛμ δ

Γ
ν δΓΛ.

In this coordinate frame, the Levi-Civita connection of the background met-
ric coincides with partial differentiation with respect to the coordinates (x̂μ),
that is, D̂μ = ∂̂μ. Using this, we find, with the help of (1.14), (1.27), (3.5),
(3.9) and (4.1), that the reduced conformal Einstein-Euler-scalar field equa-
tions (3.6)–(3.8) are given in the coordinates (x̂μ) by

ĝαβ ∂̂α∂̂β ĝμν + Q̂μν = −2

τ̂

(
∂̂μ∂̂ν τ̂ − Γ̂γ

μν ∂̂γ τ̂
)
− 2T̂μν ,(5.2)

ĝαβ ∂̂α∂̂β τ̂ = 0,(5.3)

âγμν ∂̂γ V̂
ν = Ĝμνγ V̂

ν V̂ γ ,(5.4)

where τ̂ denotes the scalar field τ viewed as a function of the coordinates
(x̂μ), ĝμν are the components of the conformal metric g with respect to the

coordinates (x̂μ), Γ̂γ
μν = 1

2 ĝ
γλ
(
∂̂μĝνλ + ∂̂ν ĝμλ − ∂̂λĝμν

)
are the Christoffel

symbols of ĝμν ,

Q̂μν =
1

2
ĝαβ ĝσδ

(
∂̂μĝσα∂̂ν ĝδβ + 2∂̂δ ĝμβ ∂̂αĝνσ − 2∂̂β ĝμδ∂̂αĝνσ

− 2∂̂β ĝμδ∂̂ν ĝσα − 2∂̂μĝσα∂̂β ĝνδ
)
,

(5.5)
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T̂μν = 2P0

(1 + c2s
c2s

V̂ −2V̂ μV̂ ν +
1− c2s

(n− 2)c2s
ĝμν

)
τ̂

c2s−1

c2s(n−2) V̂
− (1+c2s)

c2s ,(5.6)

with V̂ 2 = −ĝμν V̂
μV̂ ν ,

(5.7) âγμν =
3c2s + 1

c2s

V̂ μV̂ ν V̂
γ

V̂ 2
+ V̂ γ ĝμν + 2δγ(ν V̂ μ)

and

Ĝμνγ =− τ̂−1 (n− 1)c2s − 1

c2s(n− 2)
ĝμ(ν ∂̂γ)τ̂

− 1

2

(3c2s + 1

c2s

V̂ αV̂ β

V̂ 2
+ ĝαβ

)
ĝμ(ν ∂̂γ)ĝαβ − ∂̂(γ ĝν)μ.

(5.8)

We further observe from (1.14) and (1.16) that the coordinate components

of the wave gauge vector field X, denoted X̂γ , are given by

(5.9) X̂γ = ĝμν Γ̂γ
μν .

5.1. Initial data and constraint propagation

On the initial hypersurface

Σt0 = {t0} × T
n−1,

we specify the following initial data for the reduced conformal Einstein-

Euler-scalar field equations (5.2)–(5.4):

ĝμν
∣∣
Σt0

= g̊μν ,(5.10)

∂̂0ĝμν
∣∣
Σt0

= g̀μν ,(5.11)

τ̂
∣∣
Σt0

= τ̊ ,(5.12)

∂̂0τ̂
∣∣
Σt0

= τ̀ ,(5.13)

V̂ μ
∣∣
Σt0

= V̊ μ.(5.14)

Since we want solutions of the reduced conformal Einstein-Euler-scalar field

equations (5.2)–(5.4) to also satisfy the conformal Einstein-Euler-scalar field
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equation (1.32)–(1.34), the initial data will need to be chosen so that it
satisfies the constraint equations

n̂μ

(
Ĝμν − 1

τ̂
∇̂μ∇̂ν τ̂ − 2T̂Flμν

)∣∣∣
Σt0

= 0, (gravitational constraints)

(5.15)

X̂μ
∣∣
Σt0

= 0, (wave gauge constraints)(5.16)

where Ĝμν and ∇̂μ are the Einstein tensor and Levi-Civita connection of
the conformal metric ĝμν , respectively, and n̂ = dx̂0 (i.e. n̂μ = δ0μ). As
established in Proposition 5.2 below, solutions of the reduced conformal
Einstein-Euler-scalar field equations that are generated from initial data
satisfying both of these constraint equations will also solve the conformal
Einstein-Euler-scalar field equations.

Remark 5.1. The geometric initial data on Σt0 is {g, K, τ̊ , τ̀ , V̊ } where g =
gΛΩdx̂

Λ⊗dx̂Ω is the spatial metric and K = KΛΩdx̂
Λ⊗dx̂Ω is the second funda-

mental form, which are determined from the initial data {̊gμν , g̀μν , τ̊ , τ̀ , V̊ μ}
via

(5.17) gΛΩ = g̊ΛΩ and KΛΩ =
1

2N
(g̀ΛΩ − 2D(ΛbΩ)),

respectively. Here,

bΛ = g̊0Λ and N2 = −g̊00 + bΛbΛ

define the shift b = bΛdx̂
Λ and lapse N, respectively, DΛ denotes the Levi-

Civita connection of the spatial metric gΛΩ, and we have used the inverse
metric gΛΩ of gΛΩ to raise indices, e.g. bΛ = gΛΩbΩ. The importance of the
geometric initial data is that it represents the physical part (i.e. non-gauge)
of the initial data. Moreover, the gravitational constraint equations (5.15)
can be formulated entirely in terms of the geometric initial data. On the
other hand, it is always possible for a given choice of geometric initial data
{g, K, τ̊ , τ̀ , V̊ } to choose the remaining initial data so that the wave gauge
constraints (5.16) are satisfied; see [13, Rem. 5.1] for details.

Proposition 5.2. Suppose ĝμν , τ̂ ∈ C3(Mt1,t0) and V̂ μ ∈ C1(Mt1,t0) solve
the reduced conformal Einstein-Euler-scalar field equations (5.2)–(5.4) and
the constraints (5.15)–(5.16), and let

T̂Fl
μν = P0τ̂

(c2s−1)

c2s(n−2) V̂
− 1+c2s

c2s

(
1 + c2s
c2s

V̂ −2V̂ μV̂ ν + ĝμν

)
.
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Then ĝμν , τ̂ and V̂ μ satisfy the conformal Einstein-Euler-scalar field equa-
tions

Ĝμν = τ̂−1∇̂μ∇̂ν τ̂ + 2T̂Fl
μν , �ĝ τ̂ = 0,

âγμν∇̂γ V̂
ν = −c2s(n− 1)− 1

c2s(n− 2)
τ̂−1V̂ μV̂

γ∇̂γ τ̂ ,
(5.18)

and the wave gauge constraint X̂μ = 0 in Mt1,t0.

Proof. By a straightforward calculation, we find that the divergence of the
tensor T̂Fl

μν is given by

∇̂μT̂Fl
μν =

(c2s − 1)

c2s(n− 2)
τ̂−1∇̂μτ̂ T̂Fl

μν +
1 + c2s
2c2s

P0τ̂
(c2s−1)

c2s(n−2) V̂
− 3c2s+1

c2s âγνμ∇̂γ V̂
μ.

With the help of (5.4), i.e.

(5.19) âγμν∇̂γ V̂
ν = −c2s(n− 1)− 1

c2s(n− 2)
τ−1V̂ μV̂

γ∇̂γ τ̂ ,

this becomes

∇̂μT̂Fl
μν =

(c2s − 1)

c2s(n− 2)
τ̂−1∇̂μτ̂ T̂Fl

μν

− 1 + c2s
2c2s

P0τ̂
(c2s−1)

c2s(n−2) V̂
− 3c2s+1

c2s
c2s(n− 1)− 1

c2s(n− 2)
τ̂−1V̂ ν V̂

γ∇̂γ τ̂

=− τ̂−1P0τ̂
(c2s−1)

c2s(n−2) V̂
− 1+c2s

c2s

(
1 + c2s
c2s

V̂ −2V̂ μV̂ ν +
1− c2s

c2s(n− 2)
ĝμν

)
∇̂μτ̂

(5.6)
= − 1

2
τ̂−1∇̂μτ̂ T̂μν .

From this identity and (5.3), i.e.

(5.20) �ĝ τ̂ = −X̂μ∇̂μτ̂ ,

we observe that

∇̂μ

(
τ̂−1∇̂μ∇̂ν τ̂ + 2T̂Flμν

)
(5.21)

= −τ̂−2∇̂μτ̂∇̂μ∇̂ν τ̂ + τ̂−1∇̂μ∇̂μ∇̂ν τ̂ − τ̂−1∇μτ̂ T̂
μν

= τ̂−1∇̂ν∇̂μ∇̂μτ̂ + τ̂−1R̂νμ∇̂μτ̂ − τ̂−1∇μτ̂
(
τ̂−1∇̂μ∇̂ν τ̂ + T̂μν

)
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= −τ̂−1∇̂ν(X̂μ∇̂μτ̂)− τ̂−1∇μτ̂
(
−Rμν + τ̂−1∇̂μ∇̂ν τ̂ + T̂μν

)
.(5.22)

Next, expressing (5.2) as

(5.23) − 2R̂μν + 2∇̂(μX̂ν) = −2τ̂−1∇̂μ∇̂ν τ̂ − 2T̂μν ,

we have, after rearranging, that

Ĝμν = ∇̂(μX̂ν) − 1

2
∇̂αX̂

αĝμν +
1

2
X̂α∇̂α ln(τ̂)ĝ

μν + τ̂−1∇̂μ∇̃ν τ̂ + 2T̂Flμν ,

where in deriving this we have again used (5.20). Taking the divergence
of this expression, we find with the help of the second contracted Bianchi
identity ∇̂μĜ

μν = 0 and (5.22)–(5.23), that

0 =∇̂μ∇̂(μX̂ν) − 1

2
∇̂ν∇̂μX̂

μ +
1

2
∇ν
(
X̂μ∇̂μ ln(τ̂)

)
− τ̂−1∇̂ν(X̂μ∇̂μτ̂)

− τ̂−1∇μτ̂∇̂(μX̂ν).

Re-expressing this as

0 =
1

2
�ĝX̂

ν +
1

2
R̂ν

μX̂
μ +

1

2
∇ν
(
X̂μ∇̂μ ln(τ̂)

)
− τ̂−1∇̂ν(X̂μ∇̂μτ̂)

− τ̂−1∇μτ̂∇̂(μX̂ν),

we see that X̂μ satisfies a linear wave equation on Mt0,t1 . Since the con-
straints (5.15)–(5.16) imply by a well known argument, e.g. see [71, §10.2],
that X̂μ and ∂̂0X̂

μ vanish in Σt0 , we conclude from the uniqueness of solu-
tions to linear wave equations that X̂μ must vanish inMt1,t0 . By (5.19), (5.20)

and (5.23), it then follows that the triple {ĝμν , τ̂ , V̂ μ} solves the conformal
Einstein-Euler-scalar field equations (5.18) in Mt1,t0 , which completes the
proof.

5.2. First order formulation

Following [13, §5.3], we introduce first order variables

ĥβμν = ∂̂β ĝμν , v̂μ = ∂̂μτ̂ and ŵμν = ∂̂μ∂̂ν τ̂ ,(5.24)

and define a vector field χ̂μ via

(5.25) χ̂μ =
1

|v̂|2ĝ
v̂μ,
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which we note satisfies χ̂(τ̂) = 1. We will always assume that v̂μ is timelike

(i.e. |v̂|2ĝ < 0) in order to ensure that χ̂μ remains well defined and timelike.

Carrying out the same computations as in [13, §5.3], it is straightforward
to verify that the conformal Einstein-Euler-scalar field equations (5.2)–(5.4)

can be cast in the first order form

B̂λβα∂̂αĥβμν = χ̂λ
(
Q̂μν +

2

τ̂

(
ŵ(μν) − Γ̂γ

μν v̂γ
)
+2T̂μν

)
,(5.26)

B̂λβα∂̂αŵβμ = −χ̂λĝασĝβδĥμσδŵαβ ,(5.27)

B̂λβα∂̂αẑβ = 0,(5.28)

χ̂α∂̂αĝμν = χ̂αĥαμν ,(5.29)

χ̂α∂̂αv̂μ = χ̂αŵαμ,(5.30)

χ̂α∂̂ατ̂ = χ̂αẑα,(5.31)

âγμν ∂̂γ V̂
ν = Ĝμνγ V̂

ν V̂ γ ,(5.32)

where

(5.33) B̂λβα = −χ̂λĝβα − χ̂β ĝλα + ĝλβχ̂α

and ẑμ should be interpreted as being the derivative of τ̂ , i.e.

(5.34) ẑμ = ∂̂μτ̂ .

5.3. Lagrangian coordinates

Following [13], we introduce Lagrangian coordinates (xμ) adapted to the

vector field χ̂α and consider a transformed version of the system (5.26)–

(5.32). The primary purpose of doing so is that the Lagrangian coordinates

allow us to use the scalar field τ as a time coordinate, which synchronizes

the singularity; see Section 5.6 below for details.

The Lagrangian coordinates (xμ) are defined via the map

(5.35) x̂μ = lμ(x) := G
μ
x0−t0

(t0, x
Λ), ∀ (x0, xΛ) ∈ Mt1,t0 ,

where Gs(x̂
λ) = (Gμ

s (x̂λ)) denotes the flow map of χ̂μ, i.e.

d

ds
Gμ

s (x̂
λ) = χ̂μ(Gs(x̂

λ)) and G
μ
0 (x̂

λ) = x̂μ.
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We note that the map �μ defines a diffeomorphism

l : Mt1,t0 −→ l(Mt1,t0) ⊂ M−∞,t0

that satisfies l(Σt0) = Σt0 so long as the vector field χ̂μ does not vanish
and remains sufficiently regular. In line with our coordinate conventions, we
often use t = x0 to denote the Lagrangian time coordinate.

Remark 5.3. As we show below, by formulating the reduced conformal Ein-
stein-scalar field equations in Lagrangian coordinates, the Lagrangian map
lμ becomes an additional unknown field that needs to be solved for. The
local-in-time existence theory developed in Proposition 5.6 will then guar-
antee that lμ exists and is well-defined on a spacetime region of the form
Mt1,t0 for t1 sufficiently close to t0. Moreover, the continuation principle
from Proposition 5.6 will ensure that lμ can be extended to domains of the
form Mt∗1 ,t0 with t∗1 < t1 provided the full solution to the reduced conformal
Einstein-scalar field equations in Lagrangian coordinates satisfies appropri-
ate bounds. In this way, the local-in-time existence and continuation theory
from Proposition 5.6 determines the domain of definition of the Lagrangian
map lμ.

By definition, lμ solves the IVP

∂0l
μ = χ̂μ,(5.36)

lμ(t0, x
Λ) = δμ0 t0 + δμΛx

Λ,(5.37)

where, here and below, we use the notation

(5.38) f = f ◦ l

to denote the pull-back of scalars by the Lagrangian map l. In the follow-
ing, symbols without a “hat” will denote the geometric pull-back by the
Lagrangian map l. For example,

χμ = J̌μ
ν χ̂

ν (5.36)
= J̌μ

νJν
0 = δμ0 ,(5.39)

τ = τ̂ ,(5.40)

gμν = Jα
ν Jβ

μĝαβ,(5.41)

and

(5.42) V μ = J̌μ
ν V̂

ν ,
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where

(5.43) Jμ
ν = ∂ν l

μ

is the Jacobian matrix of the map lμ and

(5.44) (J̌μ
ν ) := (Jμ

ν )
−1

is its inverse.
Recalling from [13, §5.4] that the Jacobian matrix J

μ
ν satisfies the IVP

∂0Jμ
ν = Jλ

νJ
μ
λ,(5.45)

Jμ
ν (t0, x

Λ) = δ0ν χ̂
μ(t0, x

Λ) + δΛν δ
μ
Λ,(5.46)

where

J μ
λ =

1

|v̂|2ĝ

(
ĝμσŵλσ − ĝμτ ĝσωĥλτωv̂σ

− 1

|v̂|2ĝ

(
−ĝατ ĝβωĥλτω v̂αv̂β + 2ĝαβ v̂αŵλβ

)
ĝσμv̂σ

)
,

(5.47)

we see from transforming (5.26)–(5.32) into Lagrangian coordinates and
combining it with (5.36) and (5.45) that the system

B̂λβαJ̌γ
α∂γ ĥβμν = Jλ

0

(
Q̂μν +

2

τ

(
ŵ(μν) − Γ̂γ

μν v̂γ
)
+2T̂μν

)
,(5.48)

B̂λβαJ̌γ
α∂γŵβμ, = −Jλ

0 ĝ
ασ ĝβδĥμσδŵαβ ,(5.49)

B̂λβαJ̌γ
α∂γ ẑβ = 0,(5.50)

∂0ĝμν = Jα
0 ĥαμν ,(5.51)

∂0v̂μ = Jα
0 ŵαμ,(5.52)

∂0τ = Jα
0 ẑα,(5.53)

âαμνJ̌γ
α∂γV̂

ν = Ĝμνγ V̂
ν V̂ γ ,(5.54)

∂0Jμ
ν = Jλ

νJ
μ
λ,(5.55)

∂0l
μ = χ̂μ,(5.56)

defines a first order Lagrangian formulation of the reduced conformal Ein-
stein-Euler-scalar field equations in the variables

{ĥβμν , ŵβμ, ẑβ , ĝμν , v̂μ, τ, V̂
μ,Jμ

ν , l
μ}.
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It is worth noting that compared to the Lagrangian system considered in
[13, §5.4], the differences are the additional term 2T̂μν in (5.48) and equa-

tion (5.54) for the Lagrangian fluid variable V̂ μ. As far as establishing the
local-in-time existence of solutions, the term 2T̂μν in (5.48) causes no ad-
ditional difficulties as it is a non-principal term that depends smoothly on
the Lagrangian variables. Furthermore, the evolution equations (5.54) is
straightforward to handle since it is manifestly symmetric hyperbolic as
long as the Lagrangian coordinates do not breakdown (i.e. J

μ
ν remains non-

singular) and the vector field V̂ μ remains timelike.

5.4. Lagrangian initial data

With the help of (5.24), (5.34), (5.37), (5.43) and (5.46), we observe that
the reduced conformal Einstein-Euler-scalar field initial data (5.10)–(5.14)
generates the following initial data for the Lagrangian representation (5.26)–
(5.32):

lμ
∣∣
Σt0

= l̊μ,(5.57)

Jμ
ν

∣∣
Σt0

= J̊μ
ν ,(5.58)

V̂ μ
∣∣
Σt0

= V̊ μ,(5.59)

τ
∣∣
Σt0

= τ̊ ,(5.60)

v̂μ
∣∣
Σt0

= δ0μτ̀ + δΛμ∂Λτ̊ ,(5.61)

ŵΛΩ

∣∣
Σt0

= ∂Λ∂Ωτ̊ ,(5.62)

ŵ0Ω

∣∣
Σt0

= ∂Ωτ̀ ,(5.63)

ŵΛ0

∣∣
Σt0

= ∂Λτ̀ ,(5.64)

ŵ00

∣∣
Σt0

= − 1

g̊00
(
2̊g0Λ∂Λτ̀ + g̊ΛΩ∂Λ∂Ωτ̊

)
,(5.65)

ẑμ
∣∣
Σt0

= δ0μτ̀ + δΛμ∂Λτ̊ ,(5.66)

ĝμν
∣∣
Σt0

= g̊μν ,(5.67)

ĥαμν
∣∣
Σt0

= δ0αg̀μν + δΛα∂Λg̊μν ,(5.68)

where

l̊μ = δμ0 t0 + δμΛx
Λ,(5.69)
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v̊μ = g̊μν(δ0ν τ̀ + δΛν ∂Λτ̊),(5.70)

χ̊μ =
1

|̊v|2g̊
v̊μ,(5.71)

J̊μ
ν = δ0ν χ̊

μ + δΛν δ
μ
Λ,(5.72)

and

(5.73) (J̊−1)μν =
1

χ̊0
δ0ν(δ

μ
0 − δμΛχ̊

Λ) + δΛν δ
μ
Λ.

Remark 5.4. On the initial hypersurface Σt0 = {t0} × Tn−1, our choice of
initial data implies that

V μ
∣∣
Σt0

= (J̊−1)μν V̊
ν ,(5.74)

∂0τ
∣∣
Σt0

= χ̊μv̊μ = 1,(5.75)

gμν
∣∣
Σt0

= J̊α
μ g̊αβJ̊β

ν ,(5.76)

∂0gμν
∣∣
Σt0

= J̊
γ
0J̊μ

αJ̊β
ν

(
δ0γ g̀αβ + δΛγ ∂Λg̊αβ

)
+ g̊αβ

(
J̊λ
μJ̊ α

λJ̊β
ν + J̊α

μJ̊λ
νJ̊

β
λ

)(5.77)

and

(5.78) χμ
∣∣
Σt0

(5.39)
= δμ0 ,

where J̊ μ
ν = J μ

ν |Σt0
.

Remark 5.5. By (1.40) and (1.46), it is clear that the FLRW solutions (1.47)-
(1.50) determine the initial data{

gμν
∣∣
Σt0

, ∂0gμν
∣∣
Σt0

, τ
∣∣
Σt0

, ∂0τ
∣∣
Σt0

, V μ
∣∣
Σt0

}
FLRW

=
{
ğμν(t0), ∂tğμν(t0), t0, 1, V̆

μ(t0)
}

on Σt0 and this initial data satisfies both the gravitational and wave gauge
constraints. Furthermore, since these solutions satisfy (1.41), they are al-
ready in the Lagrangian representation.

5.5. Local-in-time existence

We are now ready to state, in the following proposition, a local-in-time
existence and uniqueness result and continuation principle for solutions of
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the system (5.48)–(5.56). We omit the proof since it is essentially the same

as the proof of Proposition 5.5 from [13].

Proposition 5.6. Suppose k > (n − 1)/2 + 1, t0 > 0, and that the ini-

tial data V̊ μ ∈ Hk(Tn−1,Rn), τ̊ ∈ Hk+2(Tn−1), τ̀ ∈ Hk+1(Tn−1), g̊μν ∈
Hk+1(Tn−1,Sn) and g̀μν ∈ Hk(Tn−1,Sn) is chosen so that the inequali-

ties |V̊ |2g̊ < 0, det(̊gμν) < 0 and |̊v|2g̊ < 0 are satisfied where v̊μ is defined

by (5.70). Then there exists a t1 < t0 and a unique solution

(5.79) W ∈
k⋂

j=0

Cj
(
(t1, t0], H

k−j(Tn−1)
)
,

where

(5.80) W = (ĥβμν , ŵβν , ẑβ , ĝμν , v̂μ, τ, V̂
μ,Jμ

ν , �
μ),

on Mt1,t0, to the IVP consisting of the evolution equations (5.48)–(5.56) and

the initial conditions (5.57)–(5.68). Moreover, the following properties hold:

(a) Letting W 0 = W |Σt0
∈ Hk(Tn−1) denote the initial data, there exists

for each t∗ ∈ (t1, t0) a δ > 0 such that if W̃ 0 ∈ Hk(Tn−1) satisfies

‖W̃ 0 − W 0‖Hk(Tn−1) < δ, then there exists a unique solution W̃ ∈⋂k
j=0C

j
(
(t∗, t0], Hk−j(Tn−1)

)
of the evolution equations (5.48)–(5.56)

on Mt∗,t0 that agrees with the initial data W̃ 0 on the initial hypersurface

Σt0 .

(b) The relations

∂αĝμν = Jβ
αĥβμν , ∂αv̂μ = Jβ

αŵβμ, ∂ατ = Jβ
αẑβ,

v̂μ = ẑμ, Jμ
ν = ∂ν l

μ,
(5.81)

hold in Mt1,t0.

(c) The triple {gμν = Jα
μ ĝαβJ

β
ν , τ, V μ = J̌

μ
ν V̂ ν} determines a solution of

the reduced conformal Einstein-Euler-scalar field equations

−2Rμν + 2∇(μXν) = −2

τ
∇μ∇ντ − 2Tij , gαβDαDβτ = 0,

aijk∇iV
k = −c2s(n− 1)− 1

c2s(n− 2)
τ−1VjV

i∇iτ,
(5.82)
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on Mt1,t0 that satisfies the initial conditions (5.74), (5.60) and (5.75)–
(5.77), where

Tij = 2P0

(1 + c2s
c2s

V −2ViVj +
1− c2s

(n− 2)c2s
gij

)
τ

c2s−1

c2s(n−2)V
− (1+c2s)

c2s ,

Xγ =
1

2
gμνgγλ(2Dμgνλ − Dλgμν),

and Dμ is the Levi-Civita connection of the flat metric gμν = Jα
μηαβJ

β
ν

on Mt1,t0.
(d) The scalar field τ is given by

(5.83) τ = t− t0 + τ̊

in Mt1,t0 while the vector field

(5.84) χμ =
1

|∇τ |2g
∇μτ

satisfies

(5.85) χμ = δμ0

in Mt1,t0.

(e) If the initial data {̊gμν , g̀μν , τ̊ , τ̀ , V̊ μ} also satisfies the constraint equa-
tions (5.15)–(5.16) on Σt0, then the triple {gμν , τ, V μ} solves the con-
formal Einstein-Euler-scalar field equations

Gμν =
1

τ
∇μ∇ντ + 2TFl,μν , �gτ = 0,

aμνρ∇μV
ρ = −c2s(n− 1)− 1

c2s(n− 2)
τ−1VνV

μ∇μτ,
(5.86)

and satisfies the wave gauge constraint

(5.87) Xγ =
1

2
gμνgγλ(2Dμgνλ − Dλgμν) = 0

in Mt1,t0.
(f) If

(5.88) max

{
sup
Mt1,t0

det(gμν), sup
Mt1,t0

|∇τ |2g, sup
Mt1,t0

|V |2g
}

< 0
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and

sup
t1<t<t0

(
‖gμν(t)‖W 2,∞(Tn−1) + ‖∂tgμν(t)‖W 1,∞(Tn−1)(5.89)

+ ‖V μ(t)‖W 1,∞(Tn−1)+‖Dνχλ(t)‖W2,∞(Tn−1)

+ ‖∂t(Dνχ
λ)(t)‖W 1,∞(Tn−1)

)
< ∞,

then there exists a t∗1 < t1 such that the solution W can be uniquely
continued to the time interval (t∗1, t0].

5.6. Temporal synchronization of the singularity

The temporal synchronization of a big bang singularity requires the intro-
duction of a time coordinate whose level set at a particular time, say 0, co-
incides with the spacelike singular hypersurface that defines the singularity.
In [13], the scalar field τ was employed as a time coordinate to synchronize
the big bang singularity at τ = 0 for the Einstein-scalar field equations.
Here, we again use the scalar field as a time coordinate τ to synchronize
the singularity at τ = 0, and it is this use of τ as time that is the main
motivation for the use of Lagrangian coordinates in the previous section. As
is clear from Proposition 5.6.(d), τ will coincide with the Lagrangian time t
if and only if the initial data τ̊ = t0 on the initial hypersurface t = t0. Now,
in general, we cannot assume that τ̊ is constant on the initial hypersurface
if we want our results to apply to an open set of geometric initial data. To
remedy this, we proceed as in [13]; namely, if τ is not constant on the initial
hypersurface Σt0 , but is close to constant, say τ = t0+ ρ̊ in Σt0 with ρ̊ a suffi-
ciently small function, then we evolve τ for a short amount of time to obtain
a solution {gμν , τ, V μ} of the conformal Einstein-Euler-scalar field equations
on Mt1,t0 for some t1 < t0 with t1 close to t0. We then find a level surface
of τ−1(t∗0) for some t∗0 ∈ (t1, t0) that satisfies τ−1(t∗0) ⊂ (t1, t0) × Tn−1 and
τ−1(t∗0)

∼= Tn−1. By replacing Σt0 with τ−1(t∗0), we obtain a hypersurface
τ−1(t∗0)

∼= Tn−1 on which τ is constant as desired. This construction is made
precise in the following proposition. We omit the proof since it follows from
a straightforward modification of the proof of Proposition 5.6 from [13].

Proposition 5.7. Suppose k > (n − 1)/2 + 1, t0 > 0, the initial data
τ̊ = t0 + ρ̊, ρ̊ ∈ Hk+2(Tn−1), τ̀ ∈ Hk+1(Tn−1), V̊ μ ∈ Hk(Tn−1,Rn),
g̊μν ∈ Hk+1(Tn−1,Sn) and g̀μν ∈ Hk(Tn−1,Sn) is chosen so that the in-

equalities det(̊gμν) < 0, |V̊ |2g̊ < 0 and |̊v|2g̊ < 0 hold and the constraint

equations (5.15)–(5.16) are satisfied, and let {gΛΓ, KΛΓ, τ̊ , τ̀ , V̊ μ} denote the
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geometric initial data on Σt0 = {t0}×Tn−1 that is determined from the ini-
tial data {̊gμν , g̀μν , τ̊ = t0 + ρ̊, τ̀ , V̊ μ} via (5.17). Then for any δ̃ > 0, there
exists a δ > 0 and times t∗1 < t∗0 < t0 such that if ‖ρ̊‖Hk+2(Tn−1) < δ, then:

(a) The solution W from Proposition 5.6 to the IVP consisting of the evo-
lution equations (5.48)–(5.56) and the initial conditions (5.57)–(5.68)
exists on Mt∗1 ,t0 .

(b) The triple {gμν = Jα
μ ĝαβJ

β
ν , τ, V μ = J̌

μ
ν V̂ ν} determined from the solu-

tion W via (5.80) defines a solution to the conformal Einstein-Euler-
scalar field equations (5.86).

(c) The map

Ψ : (t∗1, t0)× T
n−1 −→ R× T

n−1 : (t, x) �−→ (t̃, x̃) = (t+ ρ̊(x), x)

defines a diffeomorphism onto its image and the push-forward {g̃μν =
(Ψ∗g)μν , τ̃ = Ψ∗τ, Ṽ μ = (Ψ∗V )μ} of the solution {gμν , τ, V μ} by this

map determines geometric initial data {g̃ΛΣ, K̃ΛΣ,˚̃τ, `̃τ, ˚̃V μ} on the hy-
persurface Σt∗0 = {t∗0} × Tn−1 satisfying ˚̃τ = t∗0 and

‖g̃ΛΣ − gΛΣ‖Hk+1(Tn−1) + ‖K̃ΛΣ − KΛΣ‖Hk(Tn−1)

+ ‖t∗0 − τ̊‖Hk+2(Tn−1) + ‖`̃τ − τ̀‖Hk+1(Tn−1) + ‖˚̃V μ − V̊ μ‖Hk(Tn−1) < δ̃.

Remark 5.8. Given the geometric initial data {g̃ΛΣ, K̃ΛΣ,˚̃τ, `̃τ, ˚̃V μ} on Σt∗0
from Proposition 5.7, we can always solve the wave gauge constraint on Σt∗0

by an appropriate choice of the free initial data11 {Ñ, b̃Λ, ˙̃N, ˙̃bΛ}. Because of
this, we lose no generality, as far as our stability results are concerned, by
assuming that the initial data (5.10)–(5.14) satisfies the gravitational and
wave gauge constraint equations (5.15)–(5.16) along with the synchroniza-
tion condition τ̊ = t0 on the initial hypersurface Σt0 , which by (5.83) implies
that

(5.90) τ = t in Mt1,t0 .

6. A Fermi-Walker transported frame

In the calculations carried out in this section, we will assume that {gμν , τ, V μ}
is a solution, which is guaranteed to exist by Proposition 5.6, of the con-
formal Einstein-scalar field equations (5.86) in the Lagragian coordinates

11It is worthwhile noting that this choice of free initial data will, in general, be
different from the lapse-shift pair computed from restricting the conformal Einstein-
Euler-scalar field solution {g̃μν , τ̃ , Ṽ μ} from Proposition 5.7 to Σt∗0

.
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(xμ) that satisfies the wave gauge constraint (5.87) along with the slicing
condition (5.90). A difficulty with the Lagrangian coordinate representation
is that it is not suitable for obtaining estimates that are well behaved near
the big bang singularity, which is located at t = 0 in these coordinates. In
order to obtain estimates that are well behaved in the limit t ↘ 0, we will
instead use a frame representation of the conformal metric given by

gij = eμi gμνe
ν
j ,

where ei = eμi ∂μ is a frame that is to be determined following the same
approach as in [13, §6], which, in turn, was inspired by [32]. In the following,
we take all frame indices as being expressed relative to this frame, and so in
particular, the frame components eji of the frame vector fields ei are

(6.1) eji = δji .

To proceed, we need to fix the frame. We do this by first fixing e0 via

(6.2) e0 = (−|χ|2g)−
1

2χ
(5.84)
= − β̃∇τ

where β̃ is defined by

(6.3) β̃ = (−|∇τ |2g)−
1

2 ,

which means that the coordinate components satisfy

(6.4) eμ0 = β̃−1χμ = β̃−1δμ0 .

It follows that e0 is normalized according to

g00 = g(e0, e0) = −1.

We then complete e0 to a frame by propagating the spatial vector fields eJ
using Fermi-Walker transport, which is defined by

(6.5) ∇e0eJ = −g(∇e0e0, eJ)

g(e0, e0)
e0.

As demonstrated in [13], this, after an appropriate choice of the spatial frame
on the initial hypersurface, yields a frame that is orthonormal with respect
to the conformal metric, that is,

(6.6) gij = g(ei, ej) = ηij := −δ0i δ
0
j + δIi δ

J
j δIJ .
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By definition, the connection coefficients Γi
k
j of the metric gij and γi

k
j

of the metric gij are determined by

(6.7) ∇eiej = Γi
k
jek and Deiej = γi

k
jek,

respectively. These connection coefficients are related by (1.14), and is was
established in [13] that the connection coefficients γ0

k
j , γI

0
0 and γI

K
0 can

be expressed as

γ0
k
j = −β̃δi0

(
δ0j g

lk + δljδ
k
0

)
(DiDlτ − Ci

p
lDpτ)− C0

k
j ,(6.8)

(6.9) γI
0
0 =

1

2
δiIδ

j
0δ

k
0Digjk and γI

K
0 = −δKlδiIδ

j
0Digjl + ηKLγI

0
L,

respectively.

In the following, we view (6.8) and (6.9) as determining the background
connection coefficients γ0

k
j , γI

0
0 and γI

K
0. The remaining background con-

nection coefficients γI
k
J will be determined by a transport equation. To

derive the transport equation, we recall that the background curvature is
determined via

Rijk
l = ej(γi

l
k)−ei(γj

l
k)+γi

m
kγj

l
m−γj

m
kγi

l
m− (γj

m
i−γi

m
j)γm

l
k

(4.1)
= 0,

which yields, see [13] for details,

(6.10) ∂tγI
k
J = β̃

(
eI(γ0

k
J)− γI

l
Jγ0

k
l + γ0

l
JγI

k
l + (γ0

l
I − γI

l
0)γl

k
J

)
.

From (6.4) and

(6.11) e0I = eI(t) = eI(τ) = g(eI ,∇τ) = β̃−1g(e0, eI) = 0,

we observe that the evolution of the spatial frame eI is governed by

(6.12) ∂te
Λ
I = β̃(γ0

J
I − γI

J
0)e

Λ
J .

Finally, for use below, we note that the derivative of (6.3) is given by

(6.13) ei(β̃) = ∇iβ̃ = β̃3∇kτ∇i∇kτ = −β̃2δk0 (DiDkτ − Ci
l
kDlτ)

where in deriving the third equality we used (1.14), (6.1) and (6.2).
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7. First order form

We now turn to the construction of a frame representation for the reduced
conformal Einstein-Euler-scalar field equations in first order form. Our ul-
timate goal is to derive a Fuchsian formulation of the evolution equations,
which can be used to establish the existence of solutions up to the big bang
singularity at t = 0. The derivations presented in this section follow closely
those from [13, §7].

7.1. Primary fields

Following [13, §7], we begin by deriving a set of first order evolution equations
for the primary fields

(7.1) gijk = Digjk, τij = DiDjτ and W k =
1

f
V k,

where

(7.2) f = τ
(n−1)c2s−1

n−2 β̃c2s .

Once that is done, we then derive evolution equations for the differentiated
fields

(7.3) gijkl = Digjkl, τijk = Diτjk and Usq = DqW
s.

The above choice for f turns out to be the optimal choice for our analysis
and is also consistent with the explicit model solution (1.47)–(1.49) for which
β̃ = an−1 and ∂t = β̃e0 and therefore W 0 = V 0

∗ = const and W I = 0.
In terms of the variables (7.1) the tensor Tij defined by (1.27) becomes

(7.4) Tij = 2P0

(1 + c2s
c2s

WiWj

w2
+

1− c2s
(n− 2)c2s

gij

)
τ−

(n−3)+(n−1)c2s
n−2 β̃−(1+c2s)w

− 1+c2s
c2s

where

(7.5) w2 = −WiW
i = f−2v2.

Using (3.9) and (5.90), we express (3.2) as

(7.6) gkjDkDjglm = −2

t

(
DlDmτ − Cl

p
mDpτ

)
−Qlm−2Tlm,
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where by (1.14), (6.1), (6.2) and (6.6), we note that

(7.7) Diτ = −β̃−1gije
j
0 = β̃−1δ0i

and

(7.8) Cl
p
mDpτ = −1

2
β̃−1ej0

(
Dlgjm + Dmgjl − Djglm

)
.

Multiplying (7.6) by −ei0 yields

(7.9) − ei0g
kjDkDjglm =

2

t
ei0
(
DlDmτ − Cl

p
mDpτ

)
+ ei0Qlm+2ei0Tlm.

But −gikej0DkDjglm + gijek0DkDjglm = 0 by (4.2), and so, adding this
to (7.9) yields with the help of (6.1), (6.6) and (7.8), the first order formu-
lation of the frame formulation of the reduced conformal Einstein equations
given by

BijkDkgjlm =
1

t
β̃−1δi0δ

j
0(gljm + gmjl − gjlm)

+
2

t
δi0τlm + δi0Qlm+2δi0Tlm

(7.10)

where

Bijk = −δi0η
jk − δj0η

ik + ηijδk0 .(7.11)

Using similar arguments, it is not difficult to verify that the conformal scalar
field equation (3.11) can be written in first order form as

BijkDkτjl =− δi0η
prηqsglrsτpq.(7.12)

To proceed, we view (7.10) and (7.12) as transport equations for gjlm
and τjl by expressing them as

∂tgrlm =
1

t
δ0rδ

j
0(gljm + gmjl − gjlm) +

2

t
δ0r β̃τlm

− δriB
ijK β̃gKjlm + δriβ̃Q

i
lm+2δriδ

i
0β̃Tlm

(7.13)

and

(7.14) ∂tτrl = δriβ̃J
i
l − δriB

ijK β̃τKjl,
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respectively, where in deriving these expression we have employed (6.4), (7.3)
and (7.11) and set

Qi
lm = δi0Qlm + δij

(
γ0

p
jgplm + γ0

p
lgjpm + γ0

p
mgjlp

)
(7.15)

and

J i
l = −δi0η

kpηjqglpqτkj + δij
(
γ0

p
jτpl + γ0

p
lτjp
)
.(7.16)

Remark 7.1. As in [13], we do not employ equation (7.13) with l = m = 0 in
any of our subsequent arguments. This is possible because the wave gauge
condition (3.1) allows us to express gi00 in terms of the other metric variables
gilM . To see why this is the case, we can use (1.16), (6.6), and (7.1) to rewrite
the wave gauge constraint (3.1) as

2X0 = −g000 + δJK(2gJK0 − g0JK) = 0,

2XI = −(2g00I − gI00) + δJK(2gJKI − gIJK) = 0.

After rearranging and utilizing the symmetry gIJ0 = gI0J , this can be ex-
pressed as

g000 = −δJK(g0JK − 2gJ0K),

gI00 = 2g00I − δJK(2gJKI − gIJK),
(7.17)

which confirms the assertion.

Separating (7.13) into the components (r, l,m) = (0, 0,M) and (r, l,m) =
(R, 0,M), (r, l,m) = (0, L,M) and (r, l,m) = (R,L,M), we obtain, with the
help of (7.17), the equations

∂tg00M =
1

t

(
2g00M − δIJ(2gIJM − gMIJ)

)
+

2

t
β̃τ0M −B0jK β̃gKj0M(7.18)

+ β̃Q0
0M+2β̃T0M ,

∂tgR0M =− δRI β̃B
IjKgKj0M + δRI β̃Q

I
0M ,(7.19)

∂tg0LM =
1

t
(gL0M + gM0L − g0LM ) +

2

t
β̃τLM(7.20)

−B0jK β̃gKjLM + β̃Q0
LM+2β̃TLM

and

∂tgRLM =− δRI β̃B
IjKgKjLM + δRI β̃Q

I
LM .

(7.21)
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Rather than using (7.20), we follow [13] and use (7.19) to rewrite it as

∂t(g0LM − gL0M − gM0L) =− 1

t
(g0LM − gL0M − gM0L)(7.22)

+
2

t
β̃τLM + SLM+2β̃TLM

where

SLM =− β̃B0jKgKjLM + β̃Q0
LM + δMI β̃B

IjKgKj0L − δMI β̃Q
I
0L(7.23)

+ δLI β̃B
IjKgKj0M − δLI β̃Q

I
0M .

The metric combination g0LM−gL0M−gM0L, which appears above in (7.22),
plays a dominant role in our analysis, and it is related to the second funda-
mental form KIJ associated to the t = const-hypersurfaces and the conformal
metric g via the formula

(7.24) KIJ = ∇Kn(Jδ
K
I)=

1

2
(g0IJ − gI0J − gJ0I) + γ(I

0
J).

Here, ni = −(−|∇t|2g)−
1

2 ei(t) is the conormal to the t = const-hypersurfaces
and in deriving the second equality in the above formula, we employed (1.14)
and the identity ∇InJ = g(∇eIe0, eJ) = −g(e0,∇eIeJ) = ΓI

0
J , which holds

by (6.3), (6.4) and (6.6).
For use below, we observe by (6.13), (7.8) and (7.17) that Dqβ̃ can be

expressed as

Dqβ̃ =− δ0q

(
β̃2τ00 −

1

2
β̃δJK(g0JK − 2gJ0K)

)
(7.25)

− δPq

(
β̃2τP0 +

1

2
β̃
(
2g00P − δJK(2gJKP − gPJK)

))
.

Now, in terms of the variables W s defined in (7.1), the conformal Euler
equations (3.8) take the form

(7.26) aijkDiW
k = GjslW

sW l

where

aijk :=
1

f
aijk =

3c2s + 1

c2s

WjWkW
i

w2
+W igjk + 2δi(kWj),(7.27)

Gjsl := G̃jsl +
(c2s + 1

c2s
δp(lgs)j − δpj gsl

)Dpf

f
(7.28)
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=β̃−1t−1 (n− 1)c2s − 1

n− 2

(
δ0(lηs)j − δ0j ηsl

)
− 1

2

(3c2s + 1

c2s

W qW p

w2
+ ηpq

)
ηj(sgl)pq − g(ls)j

+ β̃−1
(c2s + 1

c2s
δ0(lηs)j − δ0j ηsl

)(c2s
2
β̃δJK(g0JK − 2gJ0K)− c2sβ̃

2τ00

)

− c2s

(c2s + 1

c2s
δP(l ηs)j − δPj ηsl

)
β̃τP0

− c2s

(c2s + 1

c2s
δP(l ηs)j − δPj ηsl

)1
2

(
2g00P − δJK(2gJKP − gPJK)

)
,

and in deriving the above formulas for aijk andGjsl, we employed (1.31), (3.5),
(6.6), (7.1), (7.7), (7.25) and

Dif

f

(7.2)
=

(n− 1)c2s − 1

n− 2

Diτ

τ
+ c2s

Diβ̃

β̃
.

Setting i = 0 in (7.27), we observe that

a0jk =δ0j δ
0
k

( 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
W 0(7.29)

+ 2δ0(jδ
K
k)

(
−2c2s + 1

c2s
− 3c2s + 1

c2s

W IWI

w2

)
WK

+ δJj δ
K
k

(
δJK +

3c2s + 1

c2s

WJWK

w2

)
W 0,

where in deriving this we have used

(7.30)
(W 0)2

w2
= 1 +

δIJW
IW J

w2
= 1 +

W IWI

w2
,

which is a consequence of (6.6) and (7.5). Similarly, setting i = I in (7.27)
yields

aI jk =δ0j δ
0
k

(2c2s + 1

c2s
+

3c2s + 1

c2s

WLWL

w2

)
W I(7.31)

− 2δ0(jδ
K
k)

(
δIK +

3c2s + 1

c2s

W IWK

w2

)
W 0

+ δJ jδ
K

k

(
δLIδJK + 2δI (KδLJ) +

3c2s + 1

c2s

WJWK

w2
δLI
)
WL.
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7.2. Differentiated fields

We now turn to deriving evolution equations for the differentiated fields (7.3).

Here again, we closely follow the approach taken in [13]. Applying Dq

to (7.6), we find with the help of (4.2), (5.90), (6.1), (6.6), (7.1)–(7.3)

and (7.7)–(7.8) that

gkjDkDqDjglm =− 1

t
β̃−1ej0(DqDlgjm + DqDmgjl − DqDjglm)(7.32)

− 2

t
DqDlDmτ − Pqlm−2DqTlm,

where

Pqlm =
1

t

(
Dq(β̃

−1)δj0 + β̃−1γq
j
0

)
(gljm + gmjl − gjlm)− ηkrηjsgqrsgkjlm

(7.33)

+ DqQlm +

(
− 1

t2
β̃−1δj0(gljm + gmjl − gjlm)− 2

t2
τlm

)
β̃−1δ0q

and in deriving (7.33) we have used

(7.34) Dqe
j
0 = Dqδ

j
0 = γq

j
0.

In (7.33), Dq(β̃
−1) = −β̃−2Dq(β̃) is to be computed using (7.25).

Next, by (4.2), we have

−gikej0DkDqDjglm + gijek0DkDqDjglm = 0,

and so adding this to (7.32) yields the first order equation

Bijkβ̃Dkgqjlm =
1

t
δi0δ

j
0(gqljm + gqmjl − gqjlm)(7.35)

+
2

t
δi0β̃τqlm + δi0β̃Pqlm+2δi0β̃DqTlm,

for the differentiated fields gqjlm, where Bijk is as defined above by (7.11).

Similarly, applying Dq to the scalar field equation (3.11) yields the first order

equation

Bijkβ̃Dkτqjl =β̃Ki
ql(7.36)
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where

Ki
ql =δi0

(
−ηjrηksgqrsτkjl −

(
ηjrηksgqlrs − 2ηjmηrnηksgqmnglrs

)
τjk(7.37)

− ηjrηksglrsτqjk
)
.

Remark 7.2. As in [13], we do not use the q = 0 component of the equa-
tions (7.35) and (7.36). Instead, we obtain g0jlm and τ0jl from the equa-
tions (7.10) and (7.12). Indeed, a straightforward calculation reveals that

g0rlm =
1

t
β̃−1δ0rδ

j
0(gljm + gmjl − gjlm) +

2

t
δ0rτlm − δriB

ijKgKjlm(7.38)

+ δ0rQlm + 2δ0rTlm

and

τ0rl =− δriB
ijKτKjl − δ0rη

jpηkqglpqτkj .(7.39)

To complete the derivation of evolution equations for the differentiated
fields, we apply Dq to the conformal Euler equations (7.26) to get

(7.40) aijkDiDqW
k = Dq(GjslW

sW l)− Dqa
i
jkDiW

k,

where in deriving this we have employed (4.2). From the definition (7.3) of
U s
q and the conformal Euler equations (7.26), we observe that

(7.41) Um0 = D0W
m = −(a0)−1mjaI jkU

k
I + (a0)−1mjGjslW

sW l

where (a0)−1mj is the inverse of the matrix a0jk, that is,

(7.42) (a0)−1mja0jk = δmk .

This inverse is well-defined and depends smoothly on W s provided w2 =
−WsW

s > 0. Due to the relation (7.41), we only need to consider the dif-
ferentiated fluid variables U s

Q. Setting q = Q in (7.40) and exploiting the
relations (6.1), (6.7) and (7.41), we arrive at the following evolution equa-
tions for the differentiataed fluid variables Uk

Q:

aijkDiU
k
Q =DQ(GjslW

sW l)− (DQa
p
jk − aijkγi

p
Q)U

k
p(7.43)

=DQ(GjslW
sW l) +

(
DQa

0
jm − a0jmγ0

0
Q

− aI jmγI
0
Q

)
(a0)−1mn

(
aInkU

k
I −GnslW

sW l
)
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−
(
DQa

P
jk − a0jkγ0

P
Q − aI jkγI

P
Q

)
UkP .

The quantity DQ(GjslW
sW l) in (7.40) is understood as

(7.44) DQ(GjslW
sW l) = DQGjslW

sW l +GjslU
s
QW

l +GjslW
sUlQ.

We note that DQGjsl can be expressed in terms of the variables (7.1)
and (7.3) by differentiating (7.28). Similarly, DQa

i
jk can be expressed in

terms of the variables (7.1) and (7.3) by differentiating (7.28).

7.3. Frame and connection coefficient transport equations

As observed in [13, §7], β̃ satisfies the evolution equation

(7.45) ∂tβ̃ = −β̃3τ00 +
1

2
β̃2δJK(g0JK − 2gJ0K),

which is be obtained from setting q = 0 in (7.25) and using (6.4). We
also observe from (1.14), (6.1), (6.6), (6.8), (7.1)–(7.3) and (7.8) that the
connection coefficients γ0

k
j can be expressed as

(7.46) γ0
k
j = −(δ0j η

kl + δljδ
k
0 )
(
β̃τ0l +

1

2
gl00

)
− 1

2
ηkl(g0jl + gj0l − gl0j).

Setting (k, j) = (0, 0), (k, j) = (K, j), (k, j) = (0, J) and (k, j) = (K,J) in
the above formula for γ0

k
j gives

γ0
0
0 =

1

2
g000

(7.17)
= − 1

2
gPQ(g0PQ − 2gP0Q),(7.47)

γ0
K

0 =− δKL(β̃τ0L + g00L),(7.48)

γ0
0
J =− β̃τ0J ,(7.49)

and

γ0
K

J =− 1

2
δKL(g0JL + gJ0L − gL0J).(7.50)

We further observe from (6.9), (7.1) and (7.17) that the connection coeffi-
cients γI

0
0 and γI

J
0 can be expressed as

γI
0
0 = g00I −

1

2
δJK(2gJKI − gIJK)(7.51)
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and

γI
J
0 = −δJKgI0K + δJKγI

0
K ,(7.52)

respectively. We note here that the above expressions for the connection coef-
ficients allows us to write the differentiated conformal Euler equations (7.43)
as

aijkDiU
k
Q

(7.53)

=DQ(GjslW
sW l)

+
(
DQa

0
jm + a0jmβ̃τ0Q − aI jmγI

0
Q

)
(a0)−1mn

(
aInkU

k
I −GnslW

sW l
)

−
(
DQa

P
jk +

1

2
a0jkδ

PL(g0QL + gQ0L − gL0Q)− aI jkγI
P
Q

)
UkP .

Next, applying eI to (7.46), we note that

eI(γ0
k
j) =− (δ0j η

kl + δljδ
k
0 )
(
eI(β̃)τ0l + β̃eI(τ0l) +

1

2
eI(gl00)

)
(7.54)

− 1

2
ηkl(eI(g0jl) + eI(gj0l)− eI(gl0j)).

With the help of (7.25), (7.47)–(7.54), it then follows from (6.10) and (6.12)
that frame components eΛI and the connection coefficients γI

k
J satisfy the

evolution equations

∂te
Λ
I =− β̃

(1
2
δJK(g0IK − gI0K − gK0I) + δJKγI

0
K

)
eΛJ(7.55)

and

∂tγI
k
J = −β̃

(
δk0

(
β̃eI(τ0J) +

1

2
eI(gJ00)

)
(7.56)

+
1

2
ηkl
(
eI(g0Jl) + eI(gJ0l)− eI(gl0J)

))
+ LI

k
J ,

respectively, where

LI
k
J = β̃

(
δk0

(
β̃2τI0 +

1

2
β̃
(
2g00I − δKL(2gKLI − gIKL)

))
τ0J(7.57)

− γI
l
Jγ0

k
l + γ0

l
JγI

k
l + (γ0

l
I − γI

l
0)γl

k
J

)
.
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8. Nonlinear decompositions

In this section, we state and prove a number of lemmas that characterize
the structure of the nonlinear terms appearing in the first order equations
that were derived in the previous section. In order to state the lemmas, we
first make the following definitions:

k̃ = (k̃IJ) := (g0IJ − gI0J − gJ0I),(8.1)

�̃ = (�̃IjK) := (gIjK),(8.2)

m̃ = (m̃I) := (g00M ),(8.3)

τ = (τij),(8.4)

g̃ = (g̃Ijkl) := (gIjkl),(8.5)

τ̃ = (τ̃ Ijk) := (τIjk),(8.6)

W = (W i),(8.7)

T = (Tij)(8.8)

and

ψ̃ = (ψ̃I
k
J) := (γI

k
J).(8.9)

Even though we are using τ in (8.4) to denote the collection of derivatives
τij = DiDjτ , no ambiguities will arise due to the slicing condition (5.90)
that allows us to use the coordinate time t to denote the scalar field τ .

We employ the ∗-notation from [13, §8] for multilinear maps. This no-
tation is useful for analyzing multilinear maps where it is not necessary to
keep track of the constant coefficients that define the maps. For example,
k̃ ∗ �̃ denotes tensor fields of the form

[k̃ ∗ �̃]ij = CKLMpQ
ij k̃KL�̃MpQ

where the coefficients CKLMpQ
ij are constants. We also use the notation

(1 + β̃)k̃ ∗ �̃ = k̃ ∗ �̃+ β̃(k̃ ∗ �̃)

where on the right hand side the two k̃ ∗ �̃ terms correspond, in general, to
distinct bilinear maps, e.g.

[(1 + β̃)k̃ ∗ �̃]ij := CKLMpQ
ij k̃KL�̃MpQ + β̃C̃KLMpQ

ij k̃KL�̃MpQ.
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More generally, the ∗ will function as a product that distributes over sums
of terms where the terms λk̃ ∗ �̃, λ ∈ R \ {0}, and �̃ ∗ k̃ are identified. For
example,

�̃ ∗ (k̃ + m̃) = (k̃ + m̃) ∗ �̃ = �̃ ∗ k̃ + �̃ ∗ m̃,

(m̃+ ψ̃) ∗ (�̃+ k̃) = m̃ ∗ �̃+ m̃ ∗ k̃ + ψ̃ ∗ �̃+ ψ̃ ∗ k̃

and

(k̃ + �̃) ∗ (k̃ + �̃) = k̃ ∗ k̃ + k̃ ∗ �̃+ �̃ ∗ �̃.

8.1. Structure lemmas

The proofs of the first four lemmas, Lemmas 8.1, 8.2, 8.3 and 8.4, can be
found in [13, §8]. The final lemma, Lemma 8.5, is a slight extension of [13,
Lemma 8.4] that accounts for the additional terms that appear due to fluid
coupling.

Lemma 8.1.

Q00 = −3

2

(
δRS k̃RS

)2
+

1

2
δPQδRS k̃PRk̃QS +Q, Q0M = QM ,

QLM = δRS k̃LRk̃MS +QLM

(8.10)

where Q = (k̃ + �̃+ m̃) ∗ (�̃+ m̃).

Lemma 8.2.

Q0
0M = Q̃M , QI

0M = Q̃I
M , QI

LM = Q̃I
LM ,

Q0
LM = −1

2
δRS k̃RS k̃LM + Q̃0

LM

(8.11)

where Q̃ = β̃(k̃ + �̃+ m̃) ∗ τ + (k̃ + �̃+ m̃) ∗ (�̃+ m̃).

Lemma 8.3.

eI(τjk) = τIjk + tIjk,(8.12)

eI(gjkl) = gIjkl + gIjkl,(8.13)

and

LI
k
J = β̃LI

k
J(8.14)
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where

(8.15) t = (ψ̃ + �̃+ m̃) ∗ τ, g = (ψ̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃)

and

(8.16) L = (β̃τ + ψ̃ + k̃ + �̃+ m̃) ∗ (β̃τ + ψ̃ + �̃+ m̃).

We note that (8.12)–(8.13) allows us to express the evolution equa-
tion (7.56) for the background connection coefficients γI

k
J as

∂tγI
k
J =− δk0

(
β̃2τI0J +

1

2
β̃gIJ00

)
− 1

2
ηkl
(
β̃gI0Jl + β̃gIJ0l − β̃gIl0J

)
(8.17)

+ β̃LI
k
J ,

where L is of the form (8.16). Using (8.1) and (8.9), we also note that the
transport equations (7.45) and (7.55) can be written as

∂tβ̃ = −β̃3τ00 +
1

2
δJK β̃2k̃JK(8.18)

and

∂te
Λ
I = −

(1
2
δJLβ̃k̃IL + δJK β̃ψ̃I

0
K

)
eΛJ ,(8.19)

respectively. For use below, we record that eI(β̃) can, using (7.25) and (8.2)–
(8.3), be expressed as

(8.20) eI(β̃) = −β̃2τI0 −
1

2
β̃
(
2m̃I − δJK(2�̃JKI − �̃IJK)

)
.

Lemma 8.4.

β̃J j
l =

[
(β̃2τ + β̃k̃ + β̃�̃+ β̃m̃) ∗ τ

]j
l
, β̃Ki

Ql = Ki
Ql,

where

K = (β̃k̃ + β̃�̃+ β̃m̃) ∗ τ̃ + β̃g̃ ∗ τ + (�̃+ m̃) ∗ (β̃k̃ + β̃�̃+ β̃m̃) ∗ τ.

Lemma 8.5.

β̃PQlm =PQlm+
[
β̃(�̃+ m̃) ∗ T

]
Qlm

,(8.21)
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δqQβ̃Dkgqjlm =δ0k∂tgQjlm + δKk β̃eK(gQjlm) +GQkjlm(8.22)

+
[
β̃(β̃τ + ψ̃) ∗ T

]
Qkjlm

,

and

δqQβ̃Dkτqjl =δ0k∂tτQjl + δKk β̃eK(τQjl) + TQkjl(8.23)

where

P =
1

t
(β̃τ + ψ̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃)(8.24)

+ β̃(k̃ + �̃+ m̃) ∗
(
g̃ + (�̃+ m̃) ∗ (k̃ + �̃+ m̃)

)
,

G =(β̃τ + ψ̃) ∗
(1
t

(
β̃τ + k̃ + �̃+ m̃) + β̃(k̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃)

)
(8.25)

+ β̃
(
β̃τ + ψ̃ + k̃ + �̃+ m̃) ∗ g̃

and

T =β̃(β̃τ + ψ̃ + k̃ + �̃+ m̃) ∗ τ̃(8.26)

+ β̃(β̃τ + ψ̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃) ∗ τ.

Proof. Differentiating (3.10), we find, by (6.6) and (7.1)–(7.3), that

(8.27) DqQij = Q1qij + Q2qij

where

Q1qij =
1

2
ηklηmn

(
gqimkgjnl + gimkgqjnl + 2gqnilgkjm + 2gnilgqkjm

− 2gqlingkjm − 2glingqkjm − 2gqlingjmk − 2glingqjmk

− 2gqimkgljn − 2gimkgqljn

)
and

Q2qij = −1

2
(ηkrηlsgmn+ηklηmrηns

)
gqrs

(
gimkgjnl + 2gnilgkjm

− 2glingkjm − 2glingjmk − 2gimkgljn

)
.
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Setting q = Q in (8.27) gives

(8.28) δqQDqQij =
[
(k̃ + �̃+ m̃) ∗

(
g̃ + (�̃+ m̃) ∗ (k̃ + �̃+ m̃)

)]
Qij

,

where in deriving this we have employed (7.17) and (8.1)–(8.5).
To proceed, we let

PQlm =
1

t

(
eQ(β̃

−1)δj0 + β̃−1γQ
j
0

)
(gljm + gmjl − gjlm)− ηkrηjsgQrsgkjlm,

which we note, using (7.17) and (8.2)–(8.3), can be expressed as

PQlm =
1

t

(
eQ(β̃

−1) + β̃−1γQ
0
0

)
(gl0m + gm0l − g0lm)(8.29)

+
1

t
β̃−1γQ

J
0(glJm + gmJl − gJlm)

−
(
2m̃Q − δRS(2�̃RSQ − �̃QRS)

)
g00lm + ηJS �̃Q0Sg0Jlm

− δKRηjs�̃QsRgKjlm.

Now, by (7.17), (7.51)–(7.52), (8.1)–(8.3), (8.9) and (8.20), we have

1

t

(
eQ(β̃

−1) + β̃−1γQ
0
0

)
(gl0m + gm0l − g0lm)(8.30)

+
1

t
β̃−1γQ

J
0(glJm + gmJl − gJlm)

=
1

t
β̃−1[(β̃τ + ψ̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃)]Qlm,

while it is clear from (7.38) and (8.10) that

g0rlm =
1

t
β̃−1δ0r (gl0m + gm0l − g0lm) +

2

t
δ0rτlm − δriB

ijKgKjlm(8.31)

+ [(k̃ + �̃+ m̃) ∗ (k̃ + �̃+ m̃)]rlm+2δ0rTlm.

By (8.28)–(8.31), we then, with the help of the definitions (8.1)–(8.3), deduce
from (7.33) the validity of the expansion (8.21).

Next, by the definition of the covariant derivative Dq, we have

δqQβ̃Dkgqjlm =β̃ek(gQjlm)− β̃γk
p
Qgpjlm − β̃γk

p
jgQplm

− β̃γk
p
lgQjpm − β̃γk

p
mgQjlp

=δ0k∂tgQjlm + δKk β̃eK(gQjlm)− β̃γk
0
Qg0jlm
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−
(
β̃γk

P
QgPjlm + β̃γk

p
jgQplm + β̃γk

p
lgQjpm + β̃γk

p
mgQjlp

)
,

where in deriving the second equality we used (6.4). The expansion (8.22)

is then a straightforward consequence of (7.47)–(7.50), (8.31) and the defi-

nitions (8.1)–(8.9). Furthermore, by employing similar arguments, it is not

difficult, with the help of (7.39), to verify that the expansion (8.23) also

holds.

9. Fuchsian form

We collect together the following evolution equations from Section 7:

∂tg00M =
1

t

(
2g00M − δIJ(2gIJM − gMIJ)

)
+

2

t
β̃τ0M(9.1)

−B0jK β̃gKj0M + β̃Q0
0M + 2β̃T0M ,

∂tgR0M =− δRIB
IjK β̃gKj0M + δRI β̃Q

I
0M ,(9.2)

∂t(g0LM − gL0M − gM0L) =− 1

t
(g0LM − gL0M − gM0L) +

2

t
β̃τ(LM)

(9.3)

+ S(LM)+2β̃T(LM),

∂tgRLM =− δRIB
IjK β̃gKjLM + δRI β̃Q

I
LM ,(9.4)

∂tτrl =δriβ̃J
i
l −BijK β̃τKj(lδr)i,(9.5)

Bijkβ̃Dkgqjlm =
1

t
δi0δ

j
0(gqljm + gqmjl − gqjlm)(9.6)

+
2

t
δi0β̃τq(lm) + δi0β̃Pq(lm)+2δi0β̃DqTlm,

Bijkβ̃Dkτqjl =β̃Ki
ql,(9.7)

∂tβ̃ =− β̃3τ00 +
1

2
β̃2δJK(g0JK − 2gJ0K),(9.8)

∂te
Λ
I =− β̃

(1
2
δJK(g0IK − gI0K − gK0I)(9.9)

+ δJKγI
0
K

)
eΛJ ,

∂tγI
k
J =− β̃

(
δk0

(
β̃eI(τ0J) +

1

2
eI(gJ00)

)
(9.10)

+
1

2
ηkl
(
eI(g0Jl) + eI(gJ0l)− eI(gl0J)

))
+ LI

k
J ,
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aijkβ̃DiW
k =β̃GjslW

sW l,(9.11)

aijkβ̃DiU
k
Q =β̃DQ(GjslW

sW l)(9.12)

+ β̃
(
DQa

0
jm + a0jmβ̃τ0Q

− aI jmγI
0
Q

)
(a0)−1mn

(
aInkU

k
I −GnslW

sW l
)

− β̃
(

DQa
P
jk +

1

2
a0jkδ

PL(g0QL + gQ0L − gL0Q)

− aI jkγI
P
Q

)
UkP ,

where

Bijk = −δi0η
jk − δj0η

ik + ηijδk0 ,(9.13)

Qi
lm is determined by (3.10) and (7.15), SLM and J i

l are given by (7.23)

and (7.16), respectively, g000 and gI00 are determined by (7.17), τi = −β̃−1g0i
according to (6.2), Pqlm is determined by (7.33) and (7.25), Ki

ql is given

by (7.37), g0rlm and τ0rl are determined by (7.38)–(7.39), LI
k
J is given

by (7.57), the background connection coefficients γ0
0
0, γ0

K
0, γ0

0
J , γ0

K
J ,

γI
0
0 and γI

J
0 are determined by (7.47)–(7.52), aijk is defined by (7.27),

(a0)−1mp is determined by (7.42), Gjsl is defined by (7.28), Tij in given

by (7.4), and DQ(GjslW
sW l) and DQa

i
jk are the maps that are to be un-

derstood as per the discussion below (7.44).

Together, the equations (9.1)–(9.12) comprise our first order formulation

of the frame representation of the reduced conformal Einstein-Euler-scalar

field equations. In this section, we transform these equations into a Fuchsian

form that is suitable for establishing the existence of solutions all the way

to the singularity.

Remark 9.1. We will not always assume that solutions of the system (9.1)–

(9.12) arise from solutions of the conformal Einstein-Euler-scalar field equa-

tions. We will also consider general solutions of this system. For these general

solutions, we will require that g0LM − gL0M − gM0L and gqjlm are symmet-

ric in L,M and l,m, respectively. This condition would naturally hold for

solutions derived from the conformal Einstein-Euler-scalar field equations.

To ensure this symmetry holds for general solutions, we have symmetrized

equations (9.3) and (9.6) in the indices L,M and l,m, respectively. This

symmetrization guarantees that the solutions to (9.1)–(9.12) will exhibit

the desired symmetry provided the initial data also satisfies this condition.
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9.1. Initial data

Before continuing on with transforming the system (9.1)–(9.12) into Fuch-
sian form, we will, in this section, describe how initial data {̊gμν , g̀μν , τ̊ =

t0, τ̀ , V̊
μ} for the reduced conformal Einstein-Euler-scalar field equations,

see (5.10)–(5.14), along with a choice of spatial frame initial data

(9.14) eμI
∣∣
Σt0

= e̊μI

determines initial data for the first order system (9.1)–(9.12). In the follow-
ing, we will not, a priori, assume that the initial data {̊gμν , g̀μν , τ̊ = t0, τ̀ , V̊

μ}
satisfies either the gravitational or wave gauge constraints, but it will, or
course, be necessary to do so in order to formulate and prove the main past
stability result.

We know from Remark 5.4 that the initial data set {̊gμν , g̀μν , τ̊ = t0, τ̀ ,

V̊ μ} determines a corresponding Lagrangian initial data set

(9.15)
{
gμν
∣∣
Σt0

, ∂0gμν
∣∣
Σt0

, τ
∣∣
Σt0

= t0, ∂0τ
∣∣
Σt0

= 1, V μ
∣∣
Σt0

}
via (5.57)–(5.78). This initial data, with the help of the reduced confor-
mal Einstein-Euler-scalar field equations (5.82) and first derivatives thereof
evaluated on Σt0 , uniquely determines the following higher order partial
derivatives on the initial hypersurface:{

∂βgμν
∣∣
Σt0

, ∂α∂βgμν
∣∣
Σt0

, ∂ατ
∣∣
Σt0

= δ0α, ∂α∂βτ
∣∣
Σt0

,

∂α∂β∂γτ
∣∣
Σt0

, ∂αV
μ
∣∣
Σt0

}
.

(9.16)

We further observe that the flat metric gμν = ∂μl
αηαβ∂ν l

β and its first and
second order partial derivatives on the initial hypersurface, that is,

(9.17)
{

gμν

∣∣
Σt0

, ∂αgμν

∣∣
Σt0

, ∂α∂βgμν

∣∣
Σt0

}
,

are uniquely determined from the initial data set {̊gμν , g̀μν , τ̊ = t0, τ̀} by
(5.1), (5.43), (5.70)–(5.72) and the reduced conformal Einstein-scalar field
equations, especially (5.45), and first derivatives thereof. Taken together,
(9.15)–(9.17) determine the following geometric fields on Σt0 :{

gμν
∣∣
Σt0

,Dβgμν
∣∣
Σt0

,DαDβgμν
∣∣
Σt0

, τ
∣∣
Σt0

= t0,Dατ
∣∣
Σt0

= δ0α,

DαDβτ
∣∣
Σt0

,DαDβDγτ
∣∣
Σt0

, V μ
∣∣
Σt0

,DαV
μ
∣∣
Σt0

}
.

(9.18)
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Next, by (5.78) and (6.2), the coordinate components of the frame vector

e0 on the initial hypersurface are given by

(9.19) eμ0
∣∣
Σt0

= (−g00|Σt0
)−

1

2 δμ0 ,

while by (6.2) we have

(9.20) β̃
∣∣
Σt0

= (−g00
∣∣
Σt0

)−
1

2 .

Using (9.19), we can employ a Gram-Schmidt algorithm to select (non-

unique) spatial frame initial data (9.14) so that that the frame metric

gij = eμi gμνe
ν
j satisfies

gij
∣∣
Σt0

= ηij

on Σt0 . We note also that the initial data ωj
ν

∣∣
Σt0

for the coordinate compo-

nents of the dual frame ωj is determined by

ωj
ν

∣∣
Σt0

eνi
∣∣
Σt0

= δji .

Then, with the help of the relations

Digjk = eβi e
μ
j e

ν
kDβgμν , DiDjgkl = eαi e

β
j e

μ
ke

ν
l DαDβgμν ,

DiDjτ = eβi e
β
j DβDβgμν , DiDjDkτ = eαi e

β
j e

γ
kDαDβDγτ,

V i = ωi
μV

μ, DiV
j = ωj

βe
α
i DαV

β ,

it follows from the definitions (7.1)–(7.2) that (9.14) and (9.18) determine

the fields gijk, gijkl, τij , τijk, W
i and Usq on the initial hypersurface, that is,

(9.21)
{
gijk
∣∣
Σt0

, gijkl
∣∣
Σt0

, τij
∣∣
Σt0

, τijk
∣∣
Σt0

,W i
∣∣
Σt0

, Usq
∣∣
Σt0

}
.

Using the fact that the frame eμj is orthonormal with respect to the metric

gμν , it follows from a straightforward calculation that ΓI
0
J |Σ|t0 = KΛΩe̊

Λ
I e̊

Ω
J ,

where K = KΛΩdx
Λ ⊗ dxΩ is the second fundamental form, c.f. (5.17), de-

termined from the initial data {gμν |Σt0
, ∂0gμν |Σt0

}. From this expression

and (1.14), we deduce that

(9.22) γI
0
J

∣∣
Σt0

= KΛΩe̊
Λ
I e̊

Ω
J +

1

2
(gIJ0 + gJI0 − g0IJ)

∣∣
Σt0

.
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We also note that the connection coefficients ΓI
K

J

∣∣
Σt0

on the initial hy-

persurface are determined completely by the spatial orthonormal frame
eI = e̊ΛI ∂Λ and the spatial metric g = g̊ΛΩdx

Λ ⊗ dxΩ, c.f. (5.17), on Σt0

according to ΓI
K

J |Σt0
= δKLg(DeI

eJ , eL), where D is the Levi-Civita con-

nection of g. We can then use this to determine γI
K

J

∣∣
Σt0

via (1.14) to get

(9.23) γI
K

J

∣∣
Σt0

= δKLg(DeI
eJ , eL)−

1

2
δKL(gIJL + gJIL − gLIJ)

∣∣
Σt0

.

Together, (9.14), (9.20), (9.21), (9.22) and (9.23) determine initial data on
Σt0 for the system (9.1)–(9.12).

9.2. Change of variables

Using the variable definitions (8.1)–(8.9) along with (7.23) and (7.47)–(7.52),
we can express the first order system (9.1)–(9.12) as

∂tm̃M =
1

t

(
2m̃M − δIJ(2�̃IJM − �̃MIJ)

)
(9.24)

+
2

t
β̃τ0M −B0jK β̃g̃Kj0M + β̃Q̃M + 2β̃T0M ,

∂t�̃R0M =− δRIB
IjK β̃g̃Kj0M + δRI β̃Q̃

I
M ,(9.25)

∂tk̃LM =− 1

t
k̃LM +

2

t
β̃τ(LM) −B0jK β̃g̃Kj(LM) −

1

2
δRS β̃k̃RS k̃LM(9.26)

+ β̃Q̃0
(LM) + 2BIjK β̃gKj0(MδL)I − 2β̃Q̃I

(LδM)I+2β̃T(LM),

∂t�̃RLM =− δRIB
IjK β̃g̃KjLM + δRI β̃Q̃

I
LM ,(9.27)

∂tτrl =δriβ̃J
i
l −BijK β̃τ̃Kj(lδr)i,(9.28)

δij∂tg̃Qjlm +BijK β̃eΛK∂Λg̃Qjlm =
1

t
δi0δ

j
0(g̃Qljm + g̃Qmjl − g̃Qjlm)

(9.29)

+
2

t
δi0β̃τ̃Q(lm) + δi0PQ(lm) −BijkGQkj(lm)

+ 2δi0β̃DQTlm −Bijk
[
β̃(β̃τ + ψ̃) ∗ T

]
Qkjlm

+ δi0

[
β̃(�̃+ m̃) ∗ T

]
Qlm

,

δij∂tτ̃Qjl +BijK β̃eΛK∂Λτ̃Qjl =β̃Ki
Ql −BijkTQkjl(9.30)
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∂tβ̃ =− β̃3τ00 +
1

2
δJK β̃2k̃JK ,(9.31)

∂te
Λ
I =−

(1
2
δJLβ̃k̃IL + δJK β̃ψ̃I

0
K

)
eΛJ ,(9.32)

∂tψ̃I
k
J =− δk0

(
β̃2τ̃ I0J +

1

2
β̃g̃IJ00

)
(9.33)

− 1

2
ηkl
(
β̃g̃I0Jl + β̃g̃IJ0l − β̃g̃Il0J

)
+ β̃LI

k
J ,

a0jk∂tW
k + aI jkβ̃e

Λ
I ∂ΛW

k =β̃GjslW
sW l − β̃aijkγi

k
lW

l,(9.34)

a0jk∂tU
k
Q + aI jkβ̃e

Λ
I ∂ΛU

k
Q =DQ(β̃GjslW

sW l)− DQβ̃GjslW
sW l(9.35)

+ β̃(a0)−1mn
(
DQa

0
jm + 2a0jmβ̃τ0Q

− 2aI jmψ̃I
0
Q

)(
aInkU

k
I −GnslW

sW l
)

− β̃
(
DQa

P
jk +

1

2
a0jkδ

PLk̃QL

+ a0jkδ
PL�̃Q0L − aI jkψ̃I

P
Q

)
UkP

− β̃aijkγi
k
lU

l
Q + β̃aijkγi

L
QU

k
L.

Here, LI
k
J is given by (8.14), PQlm, GQkjlm, and TQkjl are given by (8.21)–

(8.23), and Q̃M , Q̃I
M , Q̃0

LM and Q̃I
LM are determined by (8.11), and we note

by (9.13) that

Bij0 = δij , BijK = −δi0η
jK − δj0η

iK .

In deriving these equations, we have employed (7.27), (7.28) and (7.42), and
have repeatedly used (7.41) to express Uk0 in terms of the other variables and
thereby remove it from the system of equations.

Expressing Gjsl in (9.34) in terms of the variables in (8.1)–(8.9), we find,
using (7.17), (7.28) and (7.30) while retaining some of the original variable
definitions in order to prevent the expression from becoming too lengthy,
that

Gjsl =β̃−1t−1 (n− 1)c2s − 1

n− 2

(
δ0(lηs)j − δ0j ηsl

)(9.36)

+
1

2

(c4s + 2c2s + 1

c2s
δ0(lηs)j − c2sδ

0
j ηsl + 2δ0sδ

0
j δ

0
l

)
δJK k̃JK

− δ0(lδ
S
s)δ

J
j k̃SJ +

1

2

3c2s + 1

c2s

WSWS

w2
ηj(sδ

0
l)δ

JK k̃JK
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− 1

2

3c2s + 1

c2s

WQWP

w2
k̃PQδ

0
(lηs)j − δ0(lδ

S
s)δ

J
j (�̃S0J + �̃J0S)

−
(3c2s + 1

c2s

WQWP

w2
+ gPQ

)
�̃P0Qδ

0
(lηs)j −

1

2

(3c2s + 1

c2s

WQWP

w2

+ gPQ
)
�̃LPQδ

L
(lηs)j − 2δ0l δ

0
(sδ

J
j)m̃J − δL(lδ

s′

s)δ
j′

j gLs′j′

− 1

2

(3c2s + 1

c2s

(W 0)2

w2
− 1
)
gL00δ

L
(lηs)j −

3c2s + 1

c2s

W 0WP

w2
ηj(sgl)0P

− c2s

(c2s + 1

c2s
δ0(lηs)j − δ0j ηsl

)
β̃τ00 − c2s

(c2s + 1

c2s
δP(l ηs)j − δPj ηsl

)(
β̃τP0

+
1

2

(
2m̃P − δJK(2�̃JKP − �̃PJK)

))
.

Additionally, we can use (7.47)–(7.52), (8.1)–(8.9) and (7.29) to show that

aijkγi
k
l =− 1

2
δ0j

( 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
W 0δPQk̃PQδ

0
l

(9.37)

+
1

2
δKj

(2c2s + 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
WKδPQk̃PQδ

0
l

+
1

2
δ0j

(2c2s + 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
WKδKP k̃LP δ

L
l

− 1

2
δJj

(
δJK +

3c2s + 1

c2s

WJWK

w2

)
W 0δKP k̃LP δ

L
l

− a0jKδKP �̃P0Lδ
L
l − a0j0β̃τ0Lδ

L
l − a0jKδKP (β̃τ0P + m̃P )δ

0
l

+ aI j0(m̃I −
1

2
δJK(2�̃JKI − �̃IJK))δ0l + aI j0ψ̃I

0
Lδ

L
l

− aI jK(δKP �̃I0P − δKP ψ̃I
0
P )δ

0
l + aI jKψ̃I

K
Lδ

L
l ,

and

aijkγi
L
Q = −1

2
δ0j δ

0
k

( 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
W 0δLP k̃QP(9.38)

+ δ0(jδ
K
k)

(2c2s + 1

c2s
+

3c2s + 1

c2s

W IWI

w2

)
WKδLP k̃QP

− 1

2
δJj δ

K
k

(
δJK +

3c2s + 1

c2s

WJWK

w2

)
W 0δLP k̃QP

− a0jkδ
LP �̃Q0P + aI jkψ̃I

L
Q.
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Remark 9.2. Inspecting (9.36) reveals that it is unlikely that our results
can be extended to values of c2s outside the regime (1/(n − 1), 1) includ-
ing the interesting borderline case c2s = 1/(n − 1). The reason for this as
follows. As we will see below, the first three lines of (9.36) together with
certain terms from (9.37) and (9.38) constitute the main singular time-non-
integrable terms that govern the dynamics of the fluid near t = 0. If c2s is
lies in the interval (1/(n − 1), 1), then the first term in (9.36) is strictly
positive and therefore dominates the terms in lines two and three, which,
being proportional to k̃JK , are small near the FLRW solution. This will be
critical for our past stability proof. Since the latter terms have no definite
signs, however, this will not work if c2s = 1/(n − 1), in which case the first
term in (9.36) vanishes and therefore cannot be used to control the other
terms, and the problem becomes even worse if c2s < 1/(n− 1).

As observed in [13], it is necessary to weight the second derivatives of
the metric, i.e. g̃Qjlm, with β̃. Using (7.25) and (9.31), it is not difficult to
see that we can write the evolution equation (9.29) in terms of the weighted
derivatives β̃g̃Qjlm as

(9.39) δij∂t(β̃g̃Qjlm) +BijK β̃eΛK∂Λ(β̃g̃Qjlm)

=
1

t
δi0δ

j
0(β̃g̃Qljm + β̃g̃Qmjl − β̃g̃Qjlm) +

1

2
δijδJK β̃k̃JK β̃g̃Qjlm

+ Hi
Qlm+2δi0β̃

2DQTlm +
[
β̃2(β̃τ + ψ̃ + �̃+ m̃) ∗ T

]i
Qlm

where we have set

Hi
Qlm =− δij β̃2τ00β̃g̃Qjlm +BijK

(
−β̃2τK0 −

1

2
β̃
(
2m̃K(9.40)

− δJI(2�̃JIK − �̃KJI)
))

β̃g̃Qjlm

+
2

t
δi0β̃

2τ̃Q(lm) + δi0β̃PQ(lm) −Bijkβ̃GQkj(lm).

As we note in [13], we will also need to replace k̃LM with the β̃ weighted
variables β̃k̃LM . With the help of (9.31), we can write the evolution equa-
tion (9.26) in terms of β̃k̃LM as

∂t(β̃k̃LM ) =− 1

t
β̃k̃LM − β̃2τ00β̃k̃LM +

2

t
β̃2τ(LM) − β̃B0jK β̃g̃Kj(LM)

(9.41)

+ 2β̃BIjK β̃g̃Kj0(LδM)I +MLM+2β̃2T(LM)
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where

MLM =β̃2Q̃0
(LM) − 2β̃2Q̃I

(LδM)I .(9.42)

For use below, we note from Lemmas 8.2 and 8.5 that (9.40) and (9.42) can
be expressed using the ∗-notation as

H =(β̃2τ + β̃ψ̃ + β̃k̃ + β̃�̃+ β̃m̃) ∗ β̃g̃ + 1

t
β̃2τ̃

+ (β̃τ + ψ̃ + �̃+ m̃) ∗ (β̃k̃ + β̃�̃+ β̃m̃) ∗ (β̃k̃ + β̃�̃+ β̃m̃)

+
1

t
(β̃τ + ψ̃ + �̃+ m̃) ∗ (β̃k̃ + β̃�̃+ β̃m̃) +

1

t
(β̃τ + ψ̃) ∗ β̃2τ

and

M = (β̃k̃ + β̃�̃+ β̃m̃) ∗ (β̃2τ + β̃�̃+ β̃m̃),

respectively.

9.3. Rescaled variables

The next step in the transformation to Fuchsian form involves the introduc-
tion of the following rescaled variables:

k = (kIJ) := (tβ̃k̃IJ)(9.43)

β = tε0 β̃,(9.44)

� = (�IjK) := (tε1 �̃IjK),(9.45)

m = (mI) := (tε1m̃I),(9.46)

ξ = (ξij) := (tε1−ε0τij),(9.47)

ψ = (ψI
k
J) := (tε1ψ̃I

k
J),(9.48)

f = (fΛ
I ) := (tε2eΛI ),(9.49)

ǵ = (ǵIjkl) := (t1+ε1 β̃g̃Ijkl),(9.50)

τ́ = (τ́ Ijk) := (tε0+2ε1 τ̃ Ijk),(9.51)

Ú = (tε4UsQ),(9.52)

while we continue to use the non-rescaled variable W , see (8.7) and (7.1). At
this point, the constants ε0, ε1, ε2, ε4 > 0 are arbitrary numbers satisfying

(9.53) 0 < ε0 < ε1, 3ε0 + ε1 < 1, 0 < ε2, ε0 + ε2 < 1, ε4 > 0,
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which we note imply that ε0 + ε1 < 3ε0 + ε1 < 1. For reasons that become
evident in the proof of Lemma 9.4 below, we now also define

(9.54) β̌ = tε3+(1+c2s)ε0β−(1+c2s)

for ε3 > 0 and add β̌ to the list of variables, which, together with (9.43)–
(9.52) and W , then takes the form12

(9.55) U =
(
kLM ,mM , �R0M , �RLM , ξrl, β,

fΛ
I , ψI

k
J , τ́Qjl, ǵQjlm, β̌,W s, Ú

s
Q

)T
.

The new quantity β̌ satisfies the evolution equation

∂tβ̌ =(ε3 + (1 + c2s)ε0)t
−1β̌ − (1 + c2s)β

−1β̌∂tβ(9.56)

=t−1
(
ε3 −

1

2
(1 + c2s)δ

JKkJK

)
β̌ + (1 + c2s)t

−ε0−ε1β2ξ00β̌.

In all appearances of the undifferentiated energy momentum tensor Tij
in the equations (9.24)–(9.35), we replace β̃−(1+c2s), which appears in Tij ,
see (7.4), with t−ε3 β̌. Similarly, in the derivatives DQT̃ ij of the energy mo-
mentum tensor appearing in (9.24)–(9.35), we replace DQ(β̃

−(1+c2s)) with
−(1 + c2s)t

−ε3 β̌β̃−1DQβ̃ by exploiting (7.25) and we replace any remaining
β̃−(1+c2s) terms with t−ε3 β̌.

As discussed in the introduction, the purpose of using t-powers with so
far unspecified exponents ε1, . . . , ε4 to rescale the variables as in (9.43)–
(9.52) and (9.54) is to generate positivity among the t−1-terms in the result-
ing evolution equations below. This turns out to be crucial for the Fuchsian
analysis at the core of the proof of our main result.

9.4. Fuchsian formulation

It is now straightforward to verify from the first order equations (9.24)–
(9.35), (9.39), (9.41) and (9.56) that U satisfies the following symmetric
hyperbolic Fuchsian equation:

(9.57) A0∂tU +
1

tε0+ε2
AΛ∂ΛU =

1

t
APU + F

12In line with Remark 9.1, we always assume that U is defined with kLM = k(LM)

and ǵQjlm = ǵQj(lm).
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where

A0 = diag
(
A0

G, A
0
F

)
,(9.58)

A0
G = diag

(
δL̃LδM̃M , δM̃M , δR̃RδM̃M , δR̃RδL̃LδM̃M ,(9.59)

δr̃rδ l̃l, 1, δĨIδΛ̃Λ, δ
ĨIδk̃kδ

J̃J , δQ̃Qδj̃jδ l̃l, δQ̃Qδj̃jδ l̃lδm̃m
)
,

A0
F = diag

(
1, a0

j̃j
, a0

j̃j
δQ̃Q
)
,(9.60)

AΛ = diag
(
AΛ

G, A
Λ
F

)
,(9.61)

AΛ
G = diag

(
0, 0, 0, 0, 0, 0, 0, 0, δQ̃Qδ l̃lB j̃jKβfΛ

K ,(9.62)

δQ̃Qδ l̃lδm̃mB j̃jKβfΛ
K

)
,

AΛ
F = diag

(
0, aI j̃jβf

Λ
I , a

I
j̃jβf

Λ
I δ

Q̃Q
)
,(9.63)

P = diag
(
0, δM

M̃
, δR

R̃
δM
M̃
, δR

R̃
δL
L̃
δM
M̃
, δrr̃δ

l
l̃
, 1, δI

Ĩ
δΛ̃Λ ,(9.64)

δI
Ĩ
δk̃kδ

J
J̃
, δQ

Q̃
δj
j̃
δl
l̃
, δQ

Q̃
δj
j̃
δl
l̃
δmm̃ , δJ̃Jδ

J̃
j̃
δJj , δj̃jδ

Q̃Q
)
,

A = diag
(
AG,AF

)
,(9.65)

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 1 0 0 0 0 0 0 0 0 0
0 A2 2 0 A2 4 0 0 0 0 0 A2 10

0 0 A3 3 0 0 0 0 0 0 A3 10

0 0 0 A4 4 0 0 0 0 0 A4 10

0 0 0 0 A5 5 0 0 0 0 0
0 0 0 0 0 A6 6 0 0 0 0
0 0 0 0 0 0 A7 7 0 0 0
0 0 0 0 0 0 0 A8 8 0 A8 10

0 0 0 0 0 0 0 0 A9 9 0
0 0 0 0 0 0 0 0 0 A10 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(9.66)

AF = diag
(
A11 11,A12 12,A13 13

)
,(9.67)

the non-zero diagonal and off-diagonal blocks of A are given by

A1 1 = δL̃LδM̃M , A2 2 = (2 + ε1)δ
M̃M , A3 3 = ε1δ

R̃RδM̃M ,

(9.68)

A4 4 = ε1δ
R̃RδL̃LδM̃M , A5 5 = (ε1 − ε0)δ

r̃rδ l̃l, A6 6 = ε0,

(9.69)
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A7 7 = ε2δ
ĨIδΛ̃Λ, A8 8 = ε1δ

ĨIδk̃kδ
J̃J , A9 9 = (ε0 + 2ε1)δ

Q̃Qδj̃jδ l̃l,

(9.70)

(9.71) A10 10 = (1 + ε1)δ
Q̃Qδj̃jδ l̃lδm̃m

+ δQ̃Qδj̃0
(
δl0δ

l̃jδm̃m + δl0δ
l̃mδm̃j − δj0δ

l̃lδm̃m
)
, A11 11 = ε3,

A12 12 =
(n− 1)c2s − 1

n− 2
W 0
(
c−2
s δ0

j̃
δ0j + δJ̃Jδ

J̃
j̃
δJj
)
,(9.72)

A13 13 =
(
ε4a

0
sj̃
+W 0 (n− 1)c2s − 1

n− 2

(
ηsj̃ + δ0sδ

0
j̃

))
δQ̃Q,(9.73)

and

A2 4 = δM̃RδLM − 2δRLδM̃M , A2 10 = −B0jQδl0δ
M̃m,(9.74)

A3 10 = −BR̃jQδl0δ
M̃m, A4 10 = −BR̃jQδL̃lδM̃m,(9.75)

A8 10 =
1

2
δĨQ
(
−δ0

k̃
δJ̃jδl0δ

m
0 − δk̃k

(
δj0η

kmδJ̃ l + ηkmδJ̃jδl0 − ηkjδJ̃mδl0
))
,

(9.76)

respectively, and

(9.77) F =
(
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13

)T
with

F1 =δL̃LδM̃M
(
t−1RkLM − t−ε0−ε1β2ξ00kLM(9.78)

+ 2t−ε0−ε1β2ξ(LM) − t−ε0−ε1βB0jK ǵKj(LM)

+ t−ε0−ε12βBIjK ǵKj0(LδM)I + tMLM+2t1−2ε0β2T(LM)

)
,

F2 =t−12δM̃Mβξ0M + δM̃M (tε1 β̃Q̃M+2tε1−ε0βT0M ),(9.79)

F3 =δM̃M tε1 β̃Q̃R̃
M ,(9.80)

F4 =δL̃LδM̃M tε1 β̃Q̃R̃
LM ,(9.81)

F5 =δ l̃ltε1−ε0 β̃J r̃
l − t−ε1−3ε0δ l̃lδr̃rBijKβτ́Kj(lδr)i,(9.82)

F6 =t−1 1

2
δJKkJKβ − t−ε0−ε1β3ξ00,(9.83)
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F7 =t−1δĨIδΛ̃Λ

(
−1

2
δJLkIL − δJKt1−ε0−ε1βψI

0
K

)
fΛ
J ,(9.84)

F8 =− δĨIδ0
k̃
δJ̃J t−ε1−3ε0β2τ́ I0J + δĨIδk̃kδ

J̃J tε1 β̃LI
k
J ,(9.85)

F9 =δQ̃Qδ l̃l
(
tε0+2ε1 β̃K j̃

Ql −B j̃jktε0+2ε1TQkjl

)
(9.86)

F10 =δQ̃Qδ l̃lδm̃mt1+ε1H
j̃
Qlm +

1

2t
δjj̃δQ̃Qδ l̃lδm̃mδJKkJK ǵQjlm(9.87)

+ 2δQ̃Qδ l̃lδm̃mt1+ε1−2ε0δi0β
2DQTlm

+ δQ̃Qδ l̃lδm̃mt1−2ε0
[
β2(βξ + ψ + l +m) ∗ T

]i
Qlm

,

F11 =t−1
(
−1 + c2s

2
δJKkJK + (1 + c2s)β̃

2tτ00

)
β̂,(9.88)

F12 =δj
j̃

(
β̃GjslW

sW l − β̃aijkγi
k
lW

l
)

(9.89)

− t−1 (n− 1)c2s − 1

n− 2
W 0δJ̃

j̃
δJl δJ̃JW

l,

F13 =δj
j̃
δQ̃Q
(
tε4DQ(β̃GjslW

sW l)− t−1 (n− 1)c2s − 1

n− 2

(
ηsj + δ0sδ

0
j

)
Ú
s
QW 0

(9.90)

− tε4 β̃−1DQβ̃β̃GjslW
sW l +

(
DQa

0
jm + 2t−ε1a0jmβξ0Q

− 2t−ε1aI jmψI
0
Q

)
(a0)−1mn

(
t−ε0βaInkÚ

k
I − tε4 β̃GnslW

sW l
)

−
(
t−ε0βDQa

P
jk +

1

2
t−1a0jkδ

PLkQL + t−ε0−ε1βa0jkδ
PL�Q0L

− t−ε0−ε1βaI jkψI
P
Q

)
Ú
k
P − β̃aijkγi

k
lÚ

l
Q + β̃aijkγi

L
QÚ

k
L

)
.

In the above expressions, we recall the Gjsl, a
i
jkγi

k
l and aijkγi

L
Q are de-

termined by (9.36), (9.37) and (9.38), respectively. We also point out that
the kernel of the matrix P in (9.64) is spanned by the variables kIJ and W 0;
this property of P will play a decisive role in our past stability proof.

9.5. FLRW background solution

In this article, we are interested in nonlinear perturbations of the FLRW
solution (1.47)–(1.50) of the conformal Einstein-Euler-scalar field system
that are parameterised by (P0, c

2
s, V

0
∗ ) ∈ (0,∞) × (0, 1) × (0,∞). For this

family of solutions, the variables (9.43)–(9.52) take the form

k̆IJ = 2
tω′

ω
, β̆ = tε0ωn−1, �̆IjK = 0, m̆I = 0,(9.91)
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ξ̆ij = (n− 1)2
tε1−ε0ω′

ω
ω−2(n−1)δ0i δ

0
j ,(9.92)

ψ̆I
k
J = 0, f̆Λ

I = tε2ω−1δΛI ,
˘́gIjkl = 0,(9.93)

˘́τIjk = 0, W̆ s = V 0
∗ δ

s
0,

˘́UsQ = 0,(9.94)

where ε0, . . . , ε4, are constants, which for now may be chosen arbitrarily, ω is
defined by (1.50), and ω′ = dω

dt . It can be verified that the corresponding vec-

tor Ŭ defined by (9.55) constitutes a solution of the Fuchsian system (9.57)
for any t > 0 for which the function ω is well-defined.

Lemma 9.3. Suppose P0 > 0, V 0
∗ > 0, c2s ∈ (0, 1), ε0, . . . , ε4 satisfy

0 < ε0 <
1− ε1

3
, 1− n− 1

2(n− 2)
(1− c2s) < ε1 < 1,

0 < ε2, 0 < ε3, 0 < ε4,

(9.95)

and let Ŭ be the solution of the Fuchsian system (9.57) that is defined
by (9.91)–(9.94) and (9.55), which corresponds to the FLRW solution of
the conformal Einstein-Euler-scalar field system. Then there exists a posi-
tive constant c > 0 such that

(9.96) Ů(t) =
(
0, 0, 0, 0, 0, tε0 , tε2δΛI , 0, 0, 0, t

ε3 , V 0
∗ δ

j
0, 0
)

satisfies

(9.97) Ŭ(t)− Ů(t) = O(tc)

as t ↘ 0.

The significance of this lemma is that it will allow us to interpret

(9.98) u = U − Ů

as a nonlinear perturbation of a FLRW solution (1.47)–(1.50) near t = 0;
this property will play an important role in our stability proof. The proof
of the above lemma is straightforward and is easily seen to follow from the
inequalities

(n− 1)(1− c2s)

n− 2
− 1 + ε1 − ε0 >

(n− 1)(1− c2s)

n− 2
− 1 + ε1 −

1− ε1
3

=
(n− 1)(1− c2s)

n− 2
− 4

3
+

4

3
ε1 >

(n− 1)(1− c2s)

n− 2
− 4

3
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+
4

3

(
1− n− 1

2(n− 2)
(1− c2s)

)
=

(n− 1)(1− c2s)

3(n− 2)
> 0,

which hold by (9.95), the expressions (9.91)–(9.94), and (see (1.50)) the
expansions

(9.99) ω = 1 + O
(
t

n−1

n−2
(1−c2s)

)
and ω′ = O

(
t

n−1

n−2
(1−c2s)−1).

In the following arguments, the positive constants V 0
∗ and P0 that appear

in the FLRW solution (1.47)–(1.50) can be chosen arbitrarily, but will be
considered as fixed to some particular value throughout. We will also use

m = n4 + 2n3 − 3n2 + 2n+ 2

to denote the dimension of the vector u.
Now, it is not difficult, using the definitions (9.58)–(9.90) and (9.96)–

(9.98), to verify that the system (9.57) can be expressed as

(9.100) A0(u)∂tu+
1

tε0+ε2
AΛ(t, u)∂Λu =

1

t
A(u)Pu+ F̃(t) + F(t, u)

where A0(u) and A(u) denote A0(Ů(t)+u) and A(Ů(t)+u), respectively13,
AΛ(t, u) denotes AΛ(Ů(t) + u), and the source terms F(t, u) and F̃(t) are
defined by

(9.101) F(t, u) = F (t, Ů(t) + u)− F (t, Ů(t))

and

(9.102) F̃(t) =

⎛
⎜⎜⎜⎜⎝
2δL̃LδM̃MP0

1−c2s
(n−2)c2s

t−1+
(n−1)(1−c2s)

n−2 (V 0
∗ )

−(1+c2s)/c
2
sδLM

0
...
0

⎞
⎟⎟⎟⎟⎠ ,

respectively. In obtaining (9.102), we have employed (7.4), (9.36)–(9.37)
and (9.96). It is important to note that the approximate solution Ů , de-
fined above by (9.96), satisfies

A0(Ů(t) + u)∂tŮ(t)− 1

t
A(Ů(t) + u)PŮ(t) = 0.

13This notation makes sense because A0(Ů(t)+u) and A(Ů(t)+u) do not depend
on t as can be easily verified from (9.58)–(9.65) and (9.96).
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The system (9.100) is the Fuchsian formulation of the reduced conformal

Einstein-Euler-scalar field that we will use below to establish the past sta-

bility of the FLRW solutions (1.47)–(1.50) and their big-bang singularities.

9.6. Source term expansion

In this section, we establish a number of properties of the source term maps

F and F̃ defined above by (9.101)–(9.102) that will be needed below in the

proof of Theorem 10.1.

Lemma 9.4. Suppose V 0
∗ > 0, P0 > 0, T0 > 0, c2s ∈ (0, 1), and ε0, . . . , ε4, ε̃

are constants that satisfy the inequalities

1− n− 1

2(n− 2)
(1− c2s) < ε1 < 1,

ε1 < ε4 < 1,

0 < ε0 < min{1− ε4, (1− ε1)/3},
0 < ε2 < 1− ε0,

0 < ε3 <
n− 1

3(n− 2)
(1− c2s),

(9.103)

and

(9.104) max

{
1−
(n− 1

n− 2
(1− c2s)− ε3 + ε1 − ε0 − 1

)
, 3ε0 + ε1,

1− ε0, 1− ε2, 1− (ε4 − ε1), ε0 + ε4

}
≤ ε̃ < 1.

Then there exists a constant R > 0 and maps

H ∈ C0
(
[0, T0], C

∞(BR(R
m),Rm

))
,(9.105)

H ∈ C∞(BR(R
m),Mm×m

)
,(9.106)

Ĥ ∈ C∞(BR(R
m),Rm

))
,(9.107)

satisfying

H(0) = 0, H(t, 0) = 0,(9.108)

[H,P] = 0 and Ĥ = O(Pu⊗ Pu),(9.109)
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for all u ∈ BR(R
m) and t ∈ (0, T0], such that F(t, u) can be expressed as

(9.110) F(t, u) =
1

t
H(u)Pu+

1

t
P
⊥Ĥ(u) +

1

tε̃
H(t, u).

Before considering the proof of the above lemma, we first make some
observations that are easily verified and will provide a strategy for proving
the lemma. We begin by noting that the conditions (9.103) on the constants
c2s and ε0, . . . , ε4 imply that ε0, . . . , ε4 satisfy (9.53) and that there exists
a constant ε̃ satisfying (9.104). In particular, it is straightforward to verify
that the following choice of constants

(9.111) ε0 =
A

8
, ε1 = 1− A

2
+σ, ε2 =

1

2
− A

16
, ε3 =

A

8
, ε4 = 1− 5A

16
,

where

(9.112) A =
n− 1

n− 2
(1− c2s)

and σ > 0 is chosen sufficiently small, satisfies (9.103) for any n ≥ 3 and
c2s ∈ (0, 1). Indeed, this is the choice we employ in the proof of Theorem 10.1
as discussed in Section 10.3, and we note, with this choice, that (9.104)
simplifies to

1− A

8
< ε̃ < 1.

In order to prove Lemma 9.4, it is useful to observe that any component
of the map F , see (9.77) and (9.78)–(9.90), can be expanded in the schematic
form

f =

N (0)∑
�=1

t−1f
(0)
�

(
U,w−1, (W 0)−1, w

− 1+c2s
c2s , (det(a0ij))

−1
)

+

N (1)∑
�=1

t−σ�f
(1)
�

(
U,w−1, (W 0)−1, w

− 1+c2s
c2s , (det a0ij)

−1
)
,

(9.113)

where N (0) and N (1) are positive integers, each exponent σ� depends on n, c2s
and ε1,. . . , ε4, and where each map f

(0)
� and f

(1)
� is a product of a constant,

non-negative integer powers of w−1, (W 0)−1, w
− 1+c2s

c2s , (det(a0ij))
−1, and

components of U . We will refer to terms of the form t−σ�f
(1)
� where σ� < 1

as time-integrable and terms of the form t−1f
(0)
� as time-non-integrable.
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For use below, we note from (9.55), (9.96) and (9.98) that W i can be
expressed as14

(9.114) W i = (Ů(t) + u)i12,

and from (7.29), (9.64), (9.98) and (9.96) that

(9.115) a0jk(u) = (V 0
∗ + u012)

( 1

c2s
δ0j δ

0
k + δJKδJj δ

K
k

)
+O(Pu)

and

(9.116) det(a0jk) =
1

c2s
(V 0

∗ + u012) + O(Pu).

The following lemma, which will be needed in the proof of Lemma 9.4, will
be used to analyse the time-integral component of (9.113). We omit the
proof since it is straightforward to establish using (7.5), (9.114) and (9.116).

Lemma 9.5. Suppose T0 > 0, V 0
∗ > 0, ε0, ε2, ε3 > 0 and let

f(t, U, z1, z2, z3, z4) =

N∑
�=1

t−σ�f�(U, z1, z2, z3, z4)

where N is a non-negative integer, σ� ∈ R, � = 1, . . . , N , and each map f�
is a product of non-negative integer powers of z1, . . . , z4 and components of
U . Then the exists a constant R > 0 such that the map

~f(t, u) = f
(
t, Ů(t) + u,w−1, (W 0)(−1), w

− 1+c2s
c2s , (det(a0ij))

−1
)

is well defined for (t, u) ∈ (0, T0]×BR(R
m) and can be expanded as

~f(t, u) =

Ñ∑
�=1

t−σ̃� f̃�(u)

for some positive integer Ñ , constants σ̃�, � = 1, . . . , Ñ , and maps f̃
(1)
� ,

14Here and in the following, subscripts, e.g. uλ, on any one of the vectors U , Ů
or u refer to the position in the slots/blocks of these vectors. So u13 would refer to
the last slot of u.
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� = 1, . . . , Ñ that are smooth on BR(R
m). Moreover,

max
�∈{1,...,Ñ}

σ̃� = max
�∈{1,...,N}

σ�,

and the map

h(t, u) = tε̃~f(t, u)

defines an element of C0
(
[0, T0], C

∞(BR(R
m)
))

provided

ε̃ ≥ max
�∈{1,...,N (1)}

σ�.

Before proceeding, we establish the following technical lemma that will
be employed in the proof of Lemma 9.4.

Lemma 9.6. Let η = (ηij), Ω1 be a non-empty open subset of Rm, Ω2 be an
open subset of Rn2

that contains η, and suppose that f(U, g) is map smooth
real-valued map for (U, g) ∈ Ω1 × Ω2 and is independent of (U7)

Λ
I = fΛ

I ,
(U8)I

k
J = ψI

k
J , (U9)Qjl = τ́Qjl, (U10)Qjlm = ǵQjlm and (U13)

s
Q = Ú

s
Q. Then

the derivative

fQ = DQ(f(U, g))
∣∣
g=η

= eQ(f(U, g))
∣∣
g=η

can be expanded via the chain rule as

(9.117) fQ =

13∑
S=1

f
(0)
S (U)DQUS + f(1)ij(U)gQij

where f
(0)
S ∈ C∞(Ω1,R) and f(1)ij ∈ C∞(Ω1,R). In particular, for any

T0 > 0, the map fQ can understood as a map defined on (0, T0] × Ω1 given
by

fQ = t−ε1f
(0),KL
1

(
(tε1β−1DQβ)kKL + (tε1γQ

0
0)kKL + ψQ

I
KkIL

(9.118)

+ ψQ
I
LkKI + ǵQ0KL − ǵQK0L − ǵQL0K

)
+ t−ε1f

(0),M
2

(
(tε1γQ

i
0)(t

ε1gi0M ) + (tε1γQ
0
0)mM

+ (tε1γQ
I
0)(�I0M + �M0I) + ψQ

I
MmI

)
+ t−ε1f

(0),R0M
3

(
ψQ

i
R(t

ε1gi0M )

+ (tε1γQ
0
0)mM + (tε1γQ

I
0)(�I0M + �M0I) + ψQ

I
MmI

)



Past stability of FLRW Einstein-Euler-scalar solutions 591

+ t−ε1f
(0),RLM
4

(
ψQ

i
R(t

ε1gi0M ) + ψQ
0
LmM + ψQ

I
L(�I0M + �M0I)

+ ψQ
I
MmI

)
+ t−ε1f

(0),rl
5

(
(tε1γQ

i
r)ξil + (tε1γQ

i
l)ξri

)
+ t−ε1

(
f
(0)
6 β(tε1β−1DQβ)− (1 + c2s)f

(0)
11 β̌(t

ε1β−1DQβ)

+ f
(0)
12,i(t

ε1γQ
i
j)W

j + f(1),ij(tε1gQij)
)
+ t−ε4f

(0)
12,iU

i
Q

+ t1−ε0−2ε1f
(0),KL
1 β

(
(tε1γQ

I
0)(�IKL − �KIL − �LIK)− ψQ

0
K(tε1gL00)

− ψQ
0
L(t

ε1gK00)
)
+ t−1+ε0f

(0),M
2 β−1

(
ǵQ00M − ψQ

0
MδJKkJK

+ (tε1γQ
I
0)kIM

)
+ t−1+ε0f

(0),R0M
3 β−1

(
ǵQR0M + (tε1γQ

I
0)kIM

− ψQ
0
MδJKkJK

)
+ t−1+ε0f

(0),RLM
4 β−1

(
ǵQRLM + β−1ψQ

I
L)kIM

− β−1ψQ
0
MδJKkJK

)
+ t−ε1−2ε0f

(0),rl
5 ξQrl,

where tε1gQij and tε1γQ
i
j can be replaced by a constant coefficient, linear

combination of mQ, �QiJ and ψQ
i
J , and

(9.119) tε1β−1DQβ = −βξQ0 −mQ +
1

2
δJK(2�JKQ − �QJK).

We omit the proof of this lemma since it follows directly from the re-
lations (7.1), (7.3), (7.17), (7.25), (7.51)–(7.52), (8.1)–(8.7), (8.9), (9.43)–
(9.52), (9.54) and (9.55).

Proof of Lemma 9.4. As discussed above, the map F , defined by (9.77)
and (9.78)–(9.90), can be decomposed, non-uniquely, as (9.113). Here, we
take the first sum in (9.113) to be composed of all terms in F that are
explicitly proportional to t−1, while all remaining terms, which are propor-
tional to other powers of t (in particular those depending on n, c2s, ε1,. . . ,
ε4), make up the second sum. Over the course of this proof, we will establish
that all exponents σ� in the second sum are smaller than one. It follows
from Lemma 9.5 that the second sum in (9.113) in our expansion of F can
be written as

N (1)∑
�=1

t−σ�f
(1)
�

(
U,w−1, (W 0)−1, w

− 1+c2s
c2s , det(a0ij)

−1
)

(9.120)

=

Ñ (1)∑
�=1

t−σ̃
(1)
� f̃

(1)
� (u)
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with

max
�∈{1,...,Ñ (1)}

σ̃
(1)
� = max

�∈{1,...,N (1)}
σ�

and f̃
(1)
� ∈ C∞(BR(R

m)
)
, � = 1, . . . , Ñ (1), provided R > 0 is chosen suffi-

ciently small. It is also a consequence of Lemma 9.5 together with (9.55), (9.96)
and (9.98) and the fact that ε0, . . . , ε4 and V 0

∗ are all positive that the first
sum (9.113) in our expansion of F can be expressed as

N (0)∑
�=1

t−1f
(0)
�

(
U,w−1,(W 0)−1, w

− 1+c2s
c2s , det(a0ij)

−1
)

(9.121)

=

Ñ (0)∑
�=1

t−1f̃
(0)
� (u) +

Ñ (2)∑
�=1

t−σ̃
(2)
� f̃

(2)
� (u)

where each σ̃
(2)
� is smaller than 1, and f̃

(0)
� , f̃

(2)

�̃
∈ C∞(BR(R

m)
)
for � =

1, . . . , Ñ (0) and �̃ = 1, . . . , Ñ (2), so long as R > 0 is chosen sufficiently
small. A close inspection of (9.78)–(9.90) together with (9.55), (9.96), (9.98)
and (9.116) reveals, in addition, that

f
(0)
�

(
Ů , (V 0

∗ )
−1, (V 0

∗ )
−1, (V 0

∗ )
− 1+c2s

c2s , c2s(V
0
∗ )

−1
)
= 0

from which we deduce

f̃
(0)
� (0) = f̃

(2)

�̃
(0) = 0, � = 1, . . . , Ñ (0), �̃ = 1, . . . , Ñ (2).

By (9.101), and the expansions (9.120) and (9.121) for F , we observe that
the map H defined by (9.110) can be written as

(9.122) H(t, u) =

Ñ (1)∑
�=1

tε̃−σ̃(1)
�

(
f̃
(1)
� (u)− f̃

(1)
� (0)

)
+

Ñ (2)∑
�=1

tε̃−σ̃(2)
� f̃

(2)
� (u).

Assuming for the moment that all constants σ� in (9.120) are smaller
than one, that is, that (9.122) represents the time-integrable part of F ,
we observe that it would follow from Lemma 9.5 that the map H would
statisfy (9.105) and (9.108) provided we choose

(9.123) max{ε̃(1), ε̃(2)} ≤ ε̃ < 1, ε(1) = max
�∈{1,...,N (1)}

σ�, ε(2) = max
�∈Ñ (2)

σ̃
(2)
� .
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It would also follow from (9.110) and (9.121) that

(9.124)

Ñ (0)∑
�=1

P
⊥f̃ (0)

� (u) = Ĥ(u),

and Ĥ(u) defined this way would satisfy (9.107) and (9.109) if each term of

P⊥f̃ (0)
� (u) has at least two factors involving components of Pu. Moreover, if

each term of Pf̃
(0)
� (u) has at least one factor involving a component of Pu

and one factor involving a component of u, then it is clear that there would
exist a map H(u) satisfying (9.106), (9.108),

(9.125)

Ñ (0)∑
�=1

Pf̃
(0)
� (u) = H(u)Pu and P

⊥H(u) = H(u)P⊥ = 0.

The calculation

H(u)P− PH(u) = P(H(u)P− H(u)) = −PH(u)P⊥ = 0

shows that the map H(u) would also satisfy (9.109).
To proceed, we now turn to matching the components (9.78)–(9.90) of F

to terms of the type that appear in the sums (9.120) and (9.121), and showing
that the exponents σ� that appear in (9.120) are all less than 1. We begin by
considering the components F1 to F10 of F defined by (9.78)–(9.87). Here, we
observe that these components can be decomposed into two groups of terms:
those that depend on the fluid variables and those that do not, where we
note that only F1, F2 and F10 have terms that depend on the fluid variables
via the expressions t1−2ε0β2T(LM), t

ε1−ε0βT0M , t1−2ε0β2(βξ + ψ + l+m) ∗ T
and t1+ε1−2ε0β2DQTlm. It has been established previously in [13, §9.6] that
the fluid independent terms in F1 to F10 satisfy the properties asserted by
Lemma 9.4. Consequently, to complete our analysis of the terms F1 to F10,
we need only consider the terms

t1−2ε0β2T(LM) = t−1+n−1

n−2
(1−c2s)−ε3−2ε0β2T̂(LM),(9.126)

tε1−ε0βT0M = t−1+n−1

n−2
(1−c2s)−ε3+ε1−ε0−1βT̂0M(9.127)

and

t1−2ε0β2(βξ + ψ + l +m) ∗ T(9.128)

= t−1+n−1

n−2
(1−c2s)−ε3−2ε0β2(βξ + ψ + l +m) ∗ T̂,
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where

T̂ij = t
(n−3)+(n−1)c2s

n−2
+ε3Tij(9.129)

(7.4)
= 2P0

(1 + c2s
c2s

w−2WiWj +
1− c2s

(n− 2)c2s
gij

)
β̌w

− 1+c2s
c2s ,

and the derivative

t1+ε1−2ε0β2DQTlm = t−1+n−1

n−2
(1−c2s)−ε3−2ε0+ε1β2DQT̂lm(9.130)

= t−1+n−1

n−2
(1−c2s)−ε3−2ε0+ε1β2

(
eQ(T̂lm)− γQ

i
lT̂im − γQ

i
mT̂li

)
.

Noting that the inequalities

n− 1

n− 2
(1− c2s)− ε3 − 2ε0 >

n− 1

n− 2
(1− c2s)− ε3 +

1

3
ε1 −

1

3
− ε0

>
n− 1

n− 2
(1− c2s)− ε3 + ε1 − ε0 − 1

and

n− 1

n− 2
(1− c2s)− ε3 + ε1 − ε0 − 1 >

n− 1

n− 2
(1− c2s)− ε3 + ε1 −

1

3
+

ε1
3

− 1

> 0

hold due to (9.103), it follows that each t-power to the right of the equal
signs in (9.126)–(9.128) is greater than negative one. Consequently, each of
the maps (9.126)–(9.128) will be time-integrable, and therefore part of the
expansion (9.120), which in turn, will imply that it is part of the map H
by (9.122). Moreover, since ε̃ satisfies (9.104) by assumption, it also satis-
fies (9.123) from which it follows that this part of the map H satisfies (9.105)
and (9.108).

Now, to analyse the derivative (9.130), we observe that each component
of the map T̂ij satisfies the requirements for the map f in Lemma 9.6, and
consequently the derivative (9.130) can be expressed using (9.118) where we

notice that the terms corresponding to f
[1]
S in the chain rule (9.117) vanish

for all S = 1, . . . , 13 except for S = 11 and S = 12. Given that tε1γQ
i
j can

be replaced by a constant coefficient, linear combination of mQ, �QiJ and
ψQ

i
J because of (7.51) and (7.52), the time-integrability of the map (9.130)

is then an immediate consequence of (9.103). Thus (9.130) determines a
part of the expansion (9.120) and therefore a part of the map H according
to (9.122). Again since (9.123) holds on account of ε̃ satisfying (9.104), this
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part of the H map satisfies (9.105) and (9.108). This completes the analysis
of the components F1, . . . , F10.

We now turn to analysing the components F11, F12 and F13 in (9.88)–
(9.90). We will not consider the component F11 further because it is straight-
forward to verify that it satisfies the stated properties. Moving on to F12,
we see from (7.30), (9.36), (9.37), (9.43)–(9.52) and (9.89) that all terms
proportional to t−1 in F12 can be combined into the expression

−δ0
j̃

[
(n− 1)c2s − 1

n− 2
WQWQ +

1

2
c2sδ

PQkPQWLW
L(9.131)

−
(1
2
− 3c2s + 1

c2s

W IWI

w2

)
kPQW

PWQ

]

− 1

2
δJ
j̃
W 0
[
kSJ − c2sδ

PQkPQδSJ

]
WS .

This part of F12 generates an expansion of the form (9.121) where it can
be checked using (9.55), (9.96) and (9.98) that that no contribution corre-
sponding to the second sum on the right hand side of (9.121) is generated.
Moreover, using (9.64), it can be verified that the terms in the first line
of (9.131) yield contributions only to the map Ĥ, see (9.124), which sat-
isfy (9.109) as a consequence of (9.55), (9.98), (9.96) and (9.64) on the
one hand. On the other hand, we can use the same relationships together
with (9.125) to establish that the second line of (9.131) yields well-defined
contributions only to the map H which are consistent with (9.106)–(9.109).
This covers all time-non-integrable terms of F12.

Considering now all the remaining terms from F12, which, as we will
show are time-integrable, a lengthy calculation involving (9.36) and (9.37)
reveals that these terms can be expressed as

δj
j̃
β̃
[
−δ0(lδ

S
s)δ

J
j (�̃S0J + �̃J0S)−

(3c2s + 1

c2s

WQWP

w2
+ gPQ

)
�̃P0Qδ

0
(lηs)j

− 1

2

(3c2s + 1

c2s

WQWP

w2
+ gPQ

)
�̃LPQδ

L
(lηs)j − 2δ0l δ

0
(sδ

J
j)m̃J

− δL(lδ
s′

s)δ
j′

j gLs′j′ −
1

2

(3c2s + 1

c2s

(W 0)2

w2
− 1
)
gL00δ

L
(lηs)j

− 3c2s + 1

c2s

W 0WP

w2
ηj(sgl)0P − c2s

(c2s + 1

c2s
δ0(lηs)j − δ0j ηsl

)
β̃τ00

− c2sβ̃
−1
(c2s + 1

c2s
δP(l ηs)j − δPj ηsl

)(
β̃2τP0 +

1

2
β̃
(
2m̃P − δJK(2�̃JKP
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− �̃PJK)
))]

W sW l − δj
j̃
β̃
[
−a0jKδKP �̃P0Lδ

L
l − a0j0β̃τ0Lδ

L
l

− a0jKδKP (β̃τ0P + m̃P )δ
0
l + aI j0(m̃I −

1

2
δJK(2�̃JKI − �̃IJK))δ0l

+ aI j0ψ̃I
0
Lδ

L
l − aI jK(δKP �̃I0P − δKP ψ̃I

0
P )δ

0
l + aI jK ψ̃I

K
Lδ

L
l

]
W l.

It then follows from (9.43)–(9.52), (9.55), (9.96), (9.98) and (9.103) that
these can be expanded as (9.120) where all exponents σ� are smaller than 1,
and consequently, it contributes to the map H. As above, since (9.123) holds
due to ε̃ satisfying (9.104) by assumption, this contribution to the map H
will satisfy (9.105) and (9.108).

Finally, to complete the proof, we consider F13, see (9.90), and observe
that it can be written as

F13 =δj
j̃
δQ̃Q

[(
2t−ε1a0jmβξ0Q − 2t−ε1aI jmψI

0
Q

)
(a0)−1mn

(
t−ε0βaInkÚ

k
I

(9.132)

− tε4−ε0βGnslW
sW l

)
− t−ε0−ε1βa0jkδ

PL�Q0LÚ
k
P

+ t−ε0−ε1βaI jkψI
P
QÚ

k
P − tε4(β−1DQβ)(β̃GjslW

sW l)

+ t−ε0βDQa
0
jm(a0)−1mnaInkÚ

k
I − t−ε0βDQa

P
jkÚ

k
P

− 1

2
t−1a0jkδ

PLkQLÚ
k
P − t−ε0βaijkγi

k
lÚ

l
Q + t−ε0βaijkγi

L
QÚ

k
L

− tε4−ε0DQa
0
jm(a0)−1mn(βGnslW

sW l) + tε4−ε0DQ(βGjslW
sW l)

− t−1 (n− 1)c2s − 1

n− 2

(
ηsj + δ0sδ

0
j

)
Ú
s
QW 0

]
.

Now, due to (9.103), we have that ε4 > ε1, ε0 + ε1 < 1, ε4 > ε0 and ε1 > ε0,
and so, we see from (7.29), (7.31), (9.36), (9.43)–(9.52) and (9.119) that the
terms

δj
j̃
δQ̃Q

[(
2t−ε1a0jmβξ0Q − 2t−ε1aI jmψI

0
Q

)
(a0)−1mn

(
t−ε0βaInkÚ

k
I

− tε4−ε0βGnslW
sW l

)
− t−ε0−ε1βa0jkδ

PL�Q0LÚ
k
P

+ t−ε0−ε1βaI jkψI
P
QÚ

k
P − tε4(β−1DQβ)(β̃GjslW

sW l)

+ t−ε0βDQa
0
jm(a0)−1mnaInkÚ

k
I − t−ε0βDQa

P
jkÚ

k
P

]
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from (9.132) can be expanded as (9.120) with exponents σ� that are all
smaller than 1. Consequently, this part of F13 is time-integrable, and there-
fore contributes to the map H. Again, since (9.123) holds due to ε̃ satisfy-
ing (9.104) by assumption, this contribution to the mapH will satisfy (9.105)
and (9.108).

Next, it is clear from (9.55), (9.96) and (9.98) that the term

1

2
δj
j̃
δQ̃Qt−1a0jkδ

PLkQLÚ
k
P

from (9.132) can be expanded as (9.121) without the second sum appearing
on the right hand side, and consequently it is time-non-integrable. From the
definition (9.64), it is also easy to verify that this term contributes to the map
H in consistency with (9.125) and that this contribution satisfies the prop-
erties (9.106), (9.108) and (9.109) as a consequence of (9.64), (9.55), (9.96)
and (9.98).

Inspecting (9.37) and (9.38), it is not difficult to verify using the variable
definitions (9.43)–(9.52) that the term

δj
j̃
δQ̃Q
[
−t−ε0βaijkγi

k
lÚ

l
Q + t−ε0βaijkγi

L
QÚ

k
L

]
from (9.132) contains both time-integrable and time-non-integrable terms
contributing to the map H and the map H, respectively. Furthermore, since
ε̃ satisfies (9.104) by assumption, which in turn implies that (9.123) holds,
these contribution to the maps H and H are easily seen to satisfy the prop-
erties (9.105)–(9.106). Additionally, from (9.64), (9.55), (9.96) and (9.98),
we observe that these contributions to the maps H and H satisfy (9.108)–
(9.109).

Next, we consider the term

δj
j̃
δQ̃Qtε4−ε0DQa

0
jm(a0)−1mn(βGnslW

sW l)

from (9.132). With the help of (7.29), (9.36), (9.43)–(9.52), (9.116), and
Lemma 9.6, in particular (9.118), it then follows that the above expression
can be separated in a collection of time-integrable and time-non-integrable
terms where the former contribute to the map H and the latter to H. Regard-
ing the terms that contribute to H, it can be verified as above these terms
will satisfy the properties (9.105) and (9.108) as a consequence of (9.123),
which holds since ε̃ satisfies (9.104) by assumption. On the other hand, the
terms that contribute to H are, thanks to (9.64), (9.55), (9.96) and (9.98),
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easily shown to satisfies the properties (9.106) (9.108)–(9.109) with the pos-

sible exception of the term

−t−1(a
[1]
12,p)

0
jm(a0)−1mnÚ

p
Q

(n− 1)c2s − 1

n− 2

(
δ0(lηs)n − δ0nηsl

)
W sW l,

which originates from the first term in (9.36) after being expanded us-

ing (9.118). The problem with this term is that it is not clear that its contri-

bution to the Hmaps satisfies (9.108). However, a straightforward calculation

demonstrates that this term can be expressed as

−t−1(a
[1]
12,p)

0
jm(a0)−1mnÚ

p
Q

(n− 1)c2s − 1

n− 2

(
δNn δNSW

(0WS) − δ0nW
SWS

)
.

From this expression and the definitions (9.55), (9.96) and (9.98), it is then

clear that this term is of the required form.

To complete the proof, we analyse the last term

δj
j̃
δQ̃Q
[
tε4−ε0DQ(βGjslW

sW l)(9.133)

− t−1 (n− 1)c2s − 1

n− 2

(
ηsj + δ0sδ

0
j

)
Ú
s
QW 0

]

in (9.132) starting with tε4−ε0DQ(βGjslW
sW l). Using (9.43)–(9.52), we can

express Gjsl, see (9.36), as

(9.134) Gjsl = t−1β̃−1Ĝjsl + t−ε1Ǧjsl

where Ĝjsl consists of all the time-non-integrable terms that are obtained

from the first three lines of (9.36) while all the remaining terms, which are

time-integrable, are denoted by Ǧjsl.

Differentiating (9.134), we find that

tε4DQ(β̃GjslW
sW l) = t−1+ε4eQ(Ĝjsl)W

sW l + 2t−1Ĝjsl Ú
s
QW

l

(9.135)

− t−1+ε4−ε1(tε1γQ
i
j)Ĝisl W

sW l − t−1+ε4−ε1(tε1γQ
i
s)Ĝjil W

sW l

− t−1+ε4−ε1(tε1γQ
i
l)ĜjsiW

sW l + 2t−ε1−ε0βǦjsl Ú
s
QW

l

+ tε4−ε1DQ(β̃Ǧjsl)W
sW l − tε4−2ε1(tε1γQ

i
j)(β̃Ǧisl)W

sW l

− tε4−2ε1(tε1γQ
i
s)(β̃Ǧjis)W

sW l.
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Taking into account (9.103) and the fact that tε1γQ
i
j can be replaced by a

constant coefficient, linear combination of mQ, �QiJ and ψQ
i
J as a con-

sequence of (7.51) and (7.52), it then straightforward, with the help of
Lemma 9.6, to verify that all of the terms that last three lines of (9.135) are
time-integrable and can be expanded as (9.120) with exponents σ� less than
one. In particular, these terms contribute to the map H and, for the same
reasons as noted above, will satisfy the properties (9.105) and (9.108).

Similarly, it is also straightforward to verify, again using (9.103) and
Lemma 9.6, that the terms on the first line of the right hand side of (9.135)
are time-integrable and can be expanded as (9.120) with exponents σ� less
than one except for the terms

t−1(Ĝjsl)
(0)
12,iÚ

i
QW sW l + 2t−1Ĝjsl Ú

s
QW

l = 2t−1(Ĝj0L)
(0)
12,iÚ

i
QW 0WL

(9.136)

+ t−1(ĜjSL)
(0)
12,iÚ

i
QWSWL + 2t−1ĜjsL Ú

s
QW

L

+ t−1(Ĝj00)
(0)
12,iÚ

i
Q (W 0)2 + 2t−1Ĝjs0 Ú

s
QW

0.

Moreover, the time-integrable terms contribute to H and satisfy (9.105)

and (9.108). We futher note that the map (Ĝjsl)
(0)
12,i that appears in (9.136)

corresponds to the map f
(0)
12 from Lemma 9.6 that is generated from the

derivative eQ(Ĝjsl) in the first term on the right hand side of (9.135).
Due to the t−1 singular terms in (9.136), this expression can be expanded

as (9.121). As can be readily verified using (9.55), (9.96) and (9.98), the ex-
pansion only contains terms of the type that appear in the first sum on the
right hand side of (9.121), that is, the second sum is absent. In order to
verify that this yields a contribution to the map H, c.f. (9.125), that satis-
fies (9.106), (9.108) and (9.109) we must establish that each term in (9.136)
has one factor of Pu (which is obvious by (9.55), (9.64), (9.96) and (9.98)) in
addition to a factor of u. This is, by (9.55), (9.96) and (9.98), obvious for the
first three terms on the right side of (9.136), but not for the last two terms.
Indeed, a direct calculation involving (9.36), (9.43)–(9.52), (9.96) and (9.98)
reveals that these two terms yield precisely one term of the form that does
not involve a product of Pu and u, given by

t−1 (n− 1)c2s − 1

n− 2

(
ηsj + δ0sδ

0
j

)
Ú
s
QW 0.

However, this term precisely cancels the second term in (9.133). So in to-
tal, (9.136) results in a contribution to the map H that satisfies all the re-
quired properties. This completes the proof of Lemma 9.4.
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10. Past global FLRW stability

In this section, we turn to establishing the past stability of the FLRW so-

lutions (1.47)–(1.50) and their big bang singularities. The precise statement

of our past stability result is given below in Theorem 10.1. The proof of

this theorem is carried out in two steps. The first step, detailed in Sec-

tion 10.2, involves establishing the stability of the solution ŭ = Ŭ − Ů of the

Fuchsian equation (9.100), where Ŭ , defined by (9.91)–(9.94), corresponds

to the FLRW solution (1.47)–(1.50) and Ů is defined by (9.96). By (9.97),

we can choose t0 > 0 small enough to ensure that ŭ(t) remains arbitrarily

close to u ≡ 0 on the time interval (0, t0]. The stability of the trivial u ≡ 0

to the Fuchsian equation (9.100) therefore implies the stability of ŭ, which

we note, in turn, implies the stability of Ŭ . Section 10.2 contains both the

statement of the Fuchsian stability result for the trivial solution u ≡ 0, see

Proposition 10.3, as well as its proof. In the second step, which is carried

out in Section 10.3, we use the stability result from Proposition 10.3 in

conjunction with the local-in-time existence and continuation theory from

Proposition 5.6 to complete the proof of Theorem 10.1.

10.1. The past global stability theorem

Theorem 10.1 below establishes the nonlinear stability of the Einstein-Euler-

scalar field FLRW solutions (1.47)–(1.50) on M0,t0 = (0, t0]×Tn−1 for some

t0 > 0 by guaranteeing that sufficiently small perturbations of FLRW initial

data, see Remark 5.5, which also satisfies the gravitational and wave gauge

constraints as well as the synchronization condition τ |Σt0
= t0, will generate

solutions of conformal Einstein-Euler-scalar field equations on M0,t0 that

are asymptotically Kasner in the sense of Definition 1.1 provided the speed

of sound parameter c2s is bounded by 1/(n − 1) < c2s < 1. As discussed in

Section 5.6, if the initial data does not satisfy the synchronization condition

τ |Σt0
= t0, then it can be evolved for short amount of time so that it does,

and consequently, we lose no generality by assuming that the initial data is

synchronized.

Theorem 10.1 (Past global stability of the FLRW solution of the Ein-

stein-Euler-scalar field system). Suppose that n ∈ Z≥3, k ∈ Z>(n+3)/2,

P0 > 0, V 0
∗ > 0, c2s ∈ (1/(n − 1), 1), σ > 0, and let {ğμν , τ̆ , V̆ μ} denote

the FLRW solution (1.47)–(1.50) determined by the constants n, P0, V 0
∗

and c2s. Then there exist constants δ0, t0 > 0 such that for every δ ∈ (0, δ0],
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g̊μν ∈ Hk+2(Tn−1,Sn), g̀μν ∈ Hk+1(Tn−1,Sn), τ̊ = t0, τ̀ ∈ Hk+2(Tn−1) and

V̊ μ ∈ Hk+1(Tn−1) satisfying

‖̊gμν − ğμν(t0)‖Hk+2(Tn−1) + ‖g̀μν − ∂tğμν(t0)‖Hk+2(Tn−1)(10.1)

+ ‖τ̀ − 1‖Hk+2(Tn−1) + ‖V̊ μ − V̆ μ(t0)‖Hk+1(Tn−1) < δ

and the gravitational and wave gauge constraints (5.15)–(5.16), there exists
a unique classical solution W ∈ C1(M0,t0), see (5.80), of the system of
evolution equations (5.48)–(5.56) on M0,t0 = (0, t0]× Tn−1 with regularity

(10.2) W ∈
k⋂

j=0

Cj
(
(0, t0], H

k−j(Tn−1)
)

that satisfies the corresponding initial conditions (5.57)–(5.68) on Σt0 =
{t0} × Tn−1 and the constraints (5.81) in M0,t0 .

Moreover, the triple {gμν = ∂μl
αĝαβ∂ν l

β, τ = t, V μ = J̌
μ
ν V̂ ν}, which

is uniquely determined by W , defines a solution of the conformal Einstein-
Euler-scalar field equations (5.86) on M0,t0 that satisfies the wave gauge
constraint (5.87) and the following properties:

(a) Let eμ0 = β̃−1δμ0 with β̃ = (−g(dx0, dx0))−
1

2 , and eμI be the unique solu-
tion of the Fermi-Walker transport equations (6.5) with initial conditions
eμI |Σt0

= δμΛe̊
Λ
I where the functions e̊ΛI ∈ Hk(Tn−1) are chosen to satisfy

‖̊eΛI − (ω|t=t0)
−1δΛI ‖Hk(Tn−1) < δ and make the frame eμi orthonormal on

Σt0 . Then eμi is a well defined frame in M0,t0 that satisfies e0I = 0 and
gij = ηij where gij = eμi gμνe

ν
j .

(b) There exists a tensor field kIJ in Hk−1(Tn−1,Sn−1) satisfying

‖kIJ‖Hk−1(Tn−1) � δ + t
n−1

n−2
(1−c2s)

0

such that

‖tβ̃D0g00 + δJKkJK‖Hk−1(Tn−1) � t
1

8

n−1

n−2
(1−c2s)−σ(10.3)

+ t2
(

(n−1)c2s−1

n−2
−σ
)
,

‖tβ̃D0gJK − kJK‖Hk−1(Tn−1) � t
1

8

n−1

n−2
(1−c2s)−σ(10.4)

+ t2
(

(n−1)c2s−1

n−2
−σ
)
,
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‖DIg00‖Hk−1(Tn−1) + ‖D0gJ0‖Hk−1(Tn−1)

(10.5)

+‖DIgJ0‖Hk−1(Tn−1) + ‖DIgJK‖Hk−1(Tn−1) � t−1+ 5

8

n−1

n−2
(1−c2s)−2σ

+ t−
1

2

n−1

n−2
(1−c2s)−σ,

‖tβ̃DIDjgkl‖Hk−1(Tn−1) � t−1+ 5

8

n−1

n−2
(1−c2s)−2σ(10.6)

+ t−
1

2

n−1

n−2
(1−c2s)−σ,

‖DiDjτ‖Hk−1(Tn−1) � t−1+ 3

4

n−1

n−2
(1−c2s)−2σ(10.7)

+ t−
3

8

n−1

n−2
(1−c2s)−σ,

‖DIDjDkτ‖Hk−1(Tn−1) � t−2+n−1

n−2
(1−c2s)−3σ(10.8)

+t−1− 1

8

n−1

n−2
(1−c2s)−2σ,

for all t ∈ (0, t0], where all the fields in these estimates are expressed in
terms of the frame eμi and the Levi-Civita connection D of the flat back-
ground metric gμν = ∂μl

αηαβ∂ν l
β. In addition, there exist a strictly pos-

itive function b ∈ Hk−1(Tn−1), a matrix eΛJ ∈ Hk−1(Tn−1,Mn−1×n−1),
and a constant C > 0 such that∥∥∥t−kJ

J/2β̃ − b

∥∥∥
Hk−1(Tn−1)

� t
1

8

n−1

n−2
(1−c2s)−σ(10.9)

+ t2
(

(n−1)c2s−1

n−2
−σ
)

and

∥∥∥exp(1
2
ln(t)kJ

I
)
eΛI − eΛJ

∥∥∥
Hk−1(Tn−1)

� t
1

8

n−1

n−2
(1−c2s)−σ−Cδ(10.10)

+ t2
(

(n−1)c2s−1

n−2
−σ
)
−Cδ

for all t ∈ (0, t0], where kL
J = kLMδMJ .

(c) The second fundamental form KΛΩ induced on the constant time surface
Σt = {t} × Tn−1 by gμν satisfies

(10.11)
∥∥∥2tβ̃KLJ − kLJ

∥∥∥
Hk−1(Tn−1)

� t
1

8

n−1

n−2
(1−c2s)−σ + t2

(
(n−1)c2s−1

n−2
−σ
)

for all t ∈ (0, t0], while the lapse, shift and the spatial metric on Σt are
determined by N = β̃, bΛ = 0, and gΛΩ = gΛΩ, respectively.
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(d) The triple
{
ḡμν = t

2

n−2 gμν , φ =
√

n−1
2(n−2) ln(t), V̄

μ = V μ
}

defines a

solution of the physical Einstein-Euler-scalar field equations (1.7)–(1.5)

on M0,t0 that exhibits AVTD behaviour and is asymptotically pointwise

Kasner on Tn−1 with Kasner exponents r1(x), . . . , rn−1(x) determined

by the eigenvalues of kL
J(x) for each x ∈ Tn−1. In particular, kL

L(x) ≥ 0

for all x ∈ Tn−1, and kL
L(x) = 0 for some x ∈ Tn−1 if and only if

r1(x) = . . . = rn−1(x) = 0. The time t = 0 represents a crushing

singularity in the sense of [28]. Furthermore, the function

P =

√
2(n− 1)(n− 2)

2(n− 1) + (n− 2)kLL

can be interpreted as the asymptotic scalar field strength in the sense of

Section 1.3.

(e) The physical solution
{
ḡμν , φ, V̄

μ
}
is past C2 inextendible at t = 0 and

past timelike geodesically incomplete. The scalar curvature R̄ = R̄μν ḡ
μν

of the physical metric ḡμν satisfies

∥∥∥t2n−1

n−2
+kJ

J

R̄+
n− 1

n− 2
b−2
∥∥∥
Hk−1(Tn−1)

�t
1

8

n−1

n−2
(1−c2s)−σ−Cδ(10.12)

+ t2
(

(n−1)c2s−1

n−2
−σ
)
−Cδ,

and consequently, it blows up pointwise everywhere on the hypersurface

t = 0.

(f) The fluid variables V̄ μ of the physical solution
{
ḡμν , φ, V̄

μ
}
can be ex-

pressed as

(10.13) V̄ μ = t
n−1

n−2
c2s β̃c2s

(
W 0ēμ0 +W I ēμI

)

in terms of the physical orthonormal frame ēμi = t−1/(n−2)eμi where

W 0,W I ∈
k⋂

j=0

Cj
(
(0, t0], H

k−j(Tn−1)
)

and there exists a positive function W0 ∈ Hk−1(Tn−1) bounded by

‖W0‖Hk−1(Tn−1) � δ + t
n−1

n−2
(1−c2s)

0
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such that W 0,W I satisfy

‖W 0(t)− (V 0
∗ +W0)‖Hk−1(Tn−1) � t

1

8

n−1

n−2
(1−c2s)−σ(10.14)

+t2
(

(n−1)c2s−1

n−2
−σ
)
,

‖W I(t)‖Hk−1(Tn−1) � t
1

8

n−1

n−2
(1−c2s)−σ(10.15)

+ t
(n−1)c2s−1

n−2 ,

‖DQW
0(t)‖Hk−1(Tn−1) + ‖DQW

I(t)‖Hk−1(Tn−1) � t−1+ 7

16

n−1

n−2
(1−c2s)−σ

(10.16)

+t−
11

16

n−1

n−2
(1−c2s)−σ

for all t ∈ (0, t0]. The fluid density ρ satisfies

∥∥∥tn−1

n−2
(1+c2s)+

kJ
J (1+c2s)

2 ρ(t)−P0

c2s
b−(1+c2s)(V 0

∗ +W0)
− 1+c2s

c2s

∥∥∥
Hk−1(Tn−1)

(10.17)

� t
1

8

n−1

n−2
(1−c2s)−σ + t2

(
(n−1)c2s−1

n−2
−σ
)

for all t ∈ (0, t0]. The physical normalised fluid n-velocity is

(10.18) ūμ =
W 0

w
ēμ0 +

W I

w
ēμI , w =

√
(W 0)2 −W IWI ,

where ∥∥∥∥W 0(t)

w(t)
− 1

∥∥∥∥
Hk−1(Tn−1)

+

∥∥∥∥W I(t)

w(t)

∥∥∥∥
Hk−1(Tn−1)

(10.19)

� t
1

8

n−1

n−2
(1−c2s)−σ + t

(n−1)c2s−1

n−2 ,

for all t ∈ (0, t0], and therefore ūμ agrees with ēμ0 asymptotically at t = 0.

The implicit and explicit constants in the above estimates are all inde-
pendent of the choice of δ ∈ (0, δ0].

Before considering the proof of this theorem, we make some observations.

Remark 10.2.

(i) The constants t0, δ0 that appear in the theorem depend on the con-
stants V 0

∗ , P0 from the FLRW solution (1.47)–(1.50). Since we do not
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track the explicit dependence of t0, δ0 on the choice of these constants,
all we know from Theorem 10.1 is that for a particular choice of V 0

∗ , P0

there exist sufficiently small positive constants t0, δ0 that guarantee
the past stability of the FLRW solutions. While this may seem to be
a restriction on the choice of the time interval (0, t0], it is easy to see
with the help of a Cauchy stability argument, see Proposition 5.6.(a),
that we can take t0 > 0 as large as we like in Theorem 10.1 as long as
the initial data satisfies (10.1) for a suitably small choice of δ0 > 0.

(ii) The decay rates, i.e., the t-exponents in the estimates from Theo-
rem 10.1, are most likely not optimal. Improved decay rates can be
obtained through an adaptive choice of the parameters ε0, . . . , ε4 as
was carried out in [13], but we have decided against doing this here
because is would significantly increase the complexity of the proof and
to achieve optimal results would require additional arguments along
the lines of those employed in [12].

(iii) It is worth noticing that the estimate (10.17) can be used to distinguish
the blow-up of the FLRW background fluid from that of a generic
perturbation. The relations (1.52) and (9.99) yield

ρbg(t) = ρ∗t
−n−1

n−2
(1+c2s) +O

(
t−2n−1

n−2
c2s
)

for the FLRW background, where ρ∗ can be interpreted as the back-
ground fluid density parameter determined by V 0

∗ via (1.51). Now
by (10.17), the density of a generic perturbation behaves like

ρ(t) = ρ̃∗t
−n−1

n−2
(1+c2s)−

kJ
J (1+c2s)

2 +O
(
t

1

8

n−1

n−2
(1−c2s)−σ + t2

(
(n−1)c2s−1

n−2
−σ
))

,

with ρ̃∗ close to ρ∗. By Theorem 10.1.(d), the trace kJ
J(x) is a non-

negative function which is zero at a point x if and only if the full
matrix kI

J(x) is zero, and since we expect that this matrix is non-zero
at least somewhere for a generic perturbation of the FLRW solution,
it follows that the blow-up profile of the perturbed fluid density must
differ significantly from that of the FLRW density.

(iv) Given that the vector field e0, see Theorem 10.1.(a), and therefore
ē0, see Theorem 10.1.(f), is orthogonal to the scalar-field synchronised
t = const surfaces, the formula (10.18) and the estimate (10.19) imply,
in particular, that the spatial fluid velocity approaches zero relative
to observers that are at rest with respect to t = const foliation (i.e.
whose wordlines are integral curves of ē0). The perturbed solutions of
the Einstein-Euler-scalar field system can therefore be interpreted as
asymptotically co-moving.
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10.2. Fuchsian stability

As discussed above, the first step in the proof Theorem 10.1 is to establish
stability of the trivial solution u ≡ 0 to the Fuchsian equation (9.100). Thus,
we need to solve the Fuchsian global initial value problem (GIVP)

A0(u)∂tu+
1

tε0+ε2
AΛ(t, u)∂Λu =

1

t
APu+

1

tε̃
H̃(t) +

1

t
H(u)Pu(10.20)

+
1

t
P
⊥Ĥ(u) +

1

tε̃
H(t, u) in M0,t0 ,

u = u0 in Σt0 ,(10.21)

for initial data u0 that is sufficiently small. Existence of solutions to this
GIVP is obtained in the following proposition. Its proof follows from an
application of the Fuchsian global existence theory established in [14]. The
actual existence result we employ is Theorem A.2 from [12] together with
Remark A.3 from that same article, which, together, amount to a slight
generalization of the Fuchsian global existence theory from [14].

Proposition 10.3. Suppose that n ∈ Z≥3, k ∈ Z>(n+1)/2, σ > 0, T0 > 0,
V 0
∗ > 0, c2s ∈ (1/(n − 1), 1), P0 > 0 and that ε0, ε1, ε2, ε3 and ε4 sat-

isfy (9.103). Then there exists a δ0 > 0 such that for every t0 ∈ (0, T0] and
δ ∈ (0, δ0], if u0 ∈ Hk(Tn−1) and F̃(t), see (9.102), satisfy

(10.22) ‖u0‖Hk(Tn−1) < δ and

∫ t0

0
‖F̃(s)‖Hk(Tn−1)ds < δ0,

respectively, then the Fuchsian GIVP (10.20)–(10.21) admits a unique solu-
tion

u ∈ C0
b

(
(0, t0], H

k(Tn−1)
)
∩ C1

(
(0, t0], H

k−1(Tn−1)
)

such that limt↘0 P
⊥u(t), denoted P⊥u(0), exists in Hk−1(Tn−1). Moreover,

the solution u satisfies the energy estimate

‖u(t)‖2Hk(Tn−1)+

∫ t0

t

1

s
‖Pu(s)‖2Hk(Tn−1) ds(10.23)

� ‖u0‖2Hk(Tn−1) +

(∫ t0

t
‖F̃(s)‖Hk(Tn−1)ds

)2

and decay estimates

‖Pu(t)‖Hk−1(Tn−1) � tp + tκ̃−σ,(10.24)
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‖P⊥u(t)− P
⊥u(0)‖Hk−1(Tn−1) � tp + t2(κ̃−σ),(10.25)

for all t ∈ (0, t0], where

p = min

{
1− 3ε0 − ε1, 1− ε0 − ε2, ε0, ε2,(10.26)

n− 1

n− 2
(1− c2s)− ε3 + ε1 − ε0 − 1, ε4 − ε1, 1− ε0 − ε4

}
,

κ̃ = min

{
ε0, ε2, ε3,

(n− 1)c2s − 1

n− 2
, ε1 −

1

1 +
√
3

}
,(10.27)

and P⊥ = 1− P.

The implicit constants in the energy and decay estimates are all inde-
pendent of the choice of t0 ∈ (0, T0] and δ ∈ (0, δ0].

The proof of Proposition 10.3 makes use of two technical lemmas, Lem-
mas 10.4 and 10.5 below, that we will present first. The first lemma is a
restatement of Lemma 3.4 from [13], and we refer the reader to that article
for its proof.

Lemma 10.4. Suppose ε1 > 0 and let

Nǵ = ǵPqrsδ
PQδrlδsm

(
(1 + ε1)δ

qj ǵQjlm(10.28)

+ δq0δ
j
0(ǵQljm + ǵQmjl − ǵQjlm)

)
.

Then

(10.29) Nǵ ≥
(
ε1 −

1

1 +
√
3

)
|ǵ|2

for all ǵQmjl ∈ R(n−1)n3

satisfying ǵQjlm = ǵQjml where

|ǵ|2 = δPQδqjδrlδsmǵPqrsǵQjlm

is the Euclidean norm.

It is important to note that (10.29) yields an effective bound on the
norm |ǵ|2 because ε1 − 1

1+
√
3
> 0 due to (9.103).

Before we state the second technical lemma, Lemma 10.5, we first define
an alternative formulation of the Fuchsian equation (10.20) that will be
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employed in our subsequent analysis. To this end, we consider so far arbitrary

positive constants σ1, . . . , σ10 > 0 and set

A = diag
(
A G,A F

)
,(10.30)

A G = diag
(
σ1δ

L̃LδM̃M , σ2δ
M̃M , σ3δ

R̃RδM̃M ,

σ4δ
R̃RδL̃LδM̃Mσ5δ

r̃rδ l̃l, σ6, σ7δ
ĨIδΛ̃Λ,

σ8δ
ĨIδk̃kδ

J̃J , σ9δ
Q̃Qδj̃jδ l̃l, σ10δ

Q̃Qδj̃jδ l̃lδm̃m
)
,

(10.31)

A F = diag
(
1, δj̃j , δj̃jδ

Q̃Q)
.(10.32)

Then we let

B0(u) =A A0(u),(10.33)

BΛ(t, u) =
1

tε0+ε2
A AΛ(t, u),(10.34)

B(u) =A A(u) + A H(u)(10.35)

and

H (t, u) =
1

tε̃
A H(t, u)(10.36)

for any ε̃ satisfying (9.104). Using these definitions, a short calculation shows

that (10.20) can be expressed as

(10.37) B0(u)∂tu+BΛ(t, u)∂Λu =
1

t
B(u)Pu+

1

t
P
⊥Ĥ(u)+σ1F̃(t)+H (t, u),

where in deriving this we have used (9.100)–(9.102) and (9.110).

Lemma 10.5. Suppose that V 0
∗ > 0, P0 > 0, c2s ∈ (1/(n − 1), 1), ε0, . . . , ε4

satisfy (9.103) and κ̃ is given by (10.27). Then there exist a b > 0 and for

each η > 0, constants σi = σi(η), 1 ≤ i ≤ 10, and R0 = R0(κ̃, b, η) > 0 such

that

A A(u) ≥ (κ̃− bη)B0(u),

for all u ∈ BR(R
m) and R ∈ (0, R0).

Remark 10.6. The lower bound c2s > 1/(n−1) on the sound speed is needed

to ensure that κ̃ > 0; see (9.103) and (10.27).
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Proof. The proof is to a large part a straightforward consequence of [13,
Lemma A.1]. To see why this is the case, we identify the matrix A in [13,
Lemma A.1] with the matrix AG in (9.66). This matrix is then partitioned
by choosing N = 10 and by identifying its diagonal blocks with the blocks
A1 1, . . . , A10 10 from [13, Lemma A.1] and similarly for the off-diagonal
blocks. Noticing that A0

G in (9.59) is the identity matrix, the inequality

A GAG ≥ (κ̃G − bη)A GA
0
G,

where

A G = diag
(
σ11, σ21, . . . , σ101

)
and σ1,. . . , σ10 are positive constants that depend on the choice of η > 0,
is then a direct consequence of that lemma, (9.68)–(9.76) and Lemma 10.4
provided κ̃G is defined by

κ̃G = min

{
1, 2 + ε1, ε1, ε1 − ε0, ε0, ε2, ε0 + 2ε1, ε1 −

1

1 +
√
3

}
.

Note here that b > 0 should be considered as a fixed positive constant while
η > 0 can be chosen arbitrarily small. We also observe that κ̃G simplifies to

κ̃G = min

{
ε0, ε2, ε1 −

1

1 +
√
3

}

because of

ε1 − ε0 −
(
ε1 −

1

1 +
√
3

)
=

1

1 +
√
3
− ε0 =

(
1

1 +
√
3
− 1

3

)
+

(
1

3
− ε0

)
> 0

where the final inequality is due to (9.103).
In the same way we have from (9.71)–(9.73) and (9.115) that

A F AF (u)

=diag

{
ε3,

(n− 1)c2s − 1

n− 2
W 0
(
c−2
s δ0

j̃
δ0j + δJ̃Jδ

J̃
j̃
δJj
)
,

(
ε4a

0
sj̃
+W 0 (n− 1)c2s − 1

n− 2
δJKδJs δ

K
j̃

)
δQ̃Q

}

=diag

{
ε3,

(n− 1)c2s − 1

n− 2
W 0
(
c−2
s δ0

j̃
δ0j + δJ̃Jδ

J̃
j̃
δJj
)
,

W 0
( ε4
c2s
δ0sδ

0
j̃
+

ε4(n− 2) + (n− 1)c2s − 1

n− 2
δJKδJs δ

K
j̃

)
δQ̃Q

}
+O(Pu),
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and from (9.60) with (9.115) that

A FA
0
F (u)

=diag
{
1, a0

j̃j
, a0

j̃j
δQ̃Q
}

=diag

{
1,W 0

( 1

c2s
δ0
j̃
δ0j + δJKδJ

j̃
δKj

)
,W 0

( 1

c2s
δ0
j̃
δ0j + δJKδJ

j̃
δKj

)
δQ̃Q

}
+O(Pu).

Hence, by decreasing the size of R if necessary, it follows that

A F AF (u) ≥ (κ̃F − bη)A FA
0
F (u)

holds for all u ∈ BR(R
m) for the same b and η as before provided

κ̃F = min

{
ε3,

(n− 1)c2s − 1

n− 2
, ε4

}
.

The quantity κ̃ in (10.27) is then determined from min{κ̃G, κ̃F } given that

ε4 > ε1 as a consequence of (9.103).

We now turn to the proof of Proposition 10.3. As will become appar-

ent, the proof of this proposition will follow from an application of [12,

Theorem A.2], which requires us to verify that (10.37) satisfies the coeffi-

cient assumptions from [12, Section A.1]. The proof of the proposition then

amounts to verifying these coefficient assumptions.

Proof of Proposition 10.3. Suppose n, k, σ, T0, V
0
∗ , cs, ε0, ε1, ε2, ε3, ε4, p

and κ̃ are chosen as in the statement of Proposition 10.3. Then by (9.64),

we observe that the projection matrix P satisfies

P
2 = P, P

T = P, ∂tP = 0 and ∂ΛP = 0

while we note from (9.55), (9.96) and (9.98) that kernel of P is spanned by the

variables u1,IJ = kIJ and u012 = W 0 − V 0
∗ . By (7.29), (9.58)–(9.60), (10.33),

it is clear that the matrix-valued map B0(u) from the Fuchsian equa-

tion (10.37) depends smoothly on u near u = 0, i.e. B0 ∈ C∞(BR(R
m),Mm×m)

for R > 0 sufficiently small, is positive, symmetric and satisfies

PB0(u)P⊥ = P
⊥B0(u)P = O(Pu).
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In addition, we note from (9.64), (9.110)–(9.109), (10.30)–(10.32) and (10.35)

that the matrix-valued map B(u) has the property B ∈ C∞(BR(R
m),Mm×m)

for R > 0 sufficiently small, and satisfies

(10.38) [P,B] = 0 and B(0) = A A(0).

The matrix A(0) can be constructed from (9.65)–(9.76) by observing that

the only u-dependent blocks of A are A12 12 and A13 13, which when eval-

uated at u = 0, take the form

A12 12(0) =
(n− 1)c2s − 1

n− 2
V 0
∗
(
c−2
s δ0

j̃
δ0j + δJ̃Jδ

J̃
j̃
δJj
)
,

A13 13(0) =
(ε4V 0

∗
c2s

δ0
j̃
δ0s + V 0

∗
ε4(n− 2) + (n− 1)c2s − 1

n− 2
δJ̃Jδ

J̃
j̃
δJs

)
δQ̃Q,

as consequence of (9.115).

Now, from (10.38) and the smooth dependence of B(u) on u, we have

that

(10.39) B(u) = A A(0) + O(u),

and for similar reasons, that

(10.40) B0(u) = A A0(0) + O(u),

where, as a consequence of (9.58), (9.59), (9.60) and (9.115), we have

A0(0) = diag

(
δL̃LδM̃M , δM̃M , δR̃RδM̃M , δR̃RδL̃LδM̃M , δr̃rδ l̃l, 1, δĨIδΛ̃Λ,

δĨIδk̃kδ
J̃J , δQ̃Qδj̃jδ l̃l, δQ̃Qδj̃jδ l̃lδm̃m, 1,

V 0
∗

( 1

c2s
δ0j δ

0
j̃
+ δJKδJj δ

K
j̃

)
, V 0

∗

( 1

c2s
δ0j δ

0
j̃
+ δJKδJj δ

K
j̃

)
δQ̃Q

)
.

Then fixing κ ∈ (0, κ̃) and choosing η sufficiently small, we deduce from

the expansions (10.39)–(10.40) and Lemma 10.5 the existence of constants

γ1, γ2, R, σ1, . . . , σ10 > 0 such that

1

γ1
1 ≤ B0(u) ≤ 1

κ
B(u) ≤ γ21
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for all u ∈ BR(R
m).

Next, due to (9.55), (9.61)–(9.63), (9.96)–(9.98), (10.30) and (10.34), we
note that

t1−pBΛ ∈ C0
(
[0, T0], C

∞(Rm)
)

since

(10.41) p ≤ min{1− ε0 − ε2, 1− ε̃}

as a consequence of (9.103)–(9.104) and (10.26). Further, it is clear from
(10.36), (10.41), (9.102) and Lemma 9.4 that

t1−pH ∈ C0
(
[0, T0], C

∞(BR(R
m),Rm)

)
, t1−pH (t, 0) = 0,

t1−pF̃ ∈ C∞((0, T0],R
m
)
∩ C0

(
[0, T0],R

m
)
,

P
⊥Ĥ ∈ C0

(
[0, T0], C

∞(BR(R
m),Rm)

)
and P

⊥Ĥ(u) = O

(
λ

R
Pu⊗ Pu

)
,

where the constant λ > 0 can be chosen arbitrarily small by further shrinking
R > 0 if necessary.

Thus far, we have verified that the coefficients of the Fuchsian equa-
tion (10.37) satisfy all of the assumptions from [12, Section A.1] except for
the assumptions regarding the divergence map divB(t, u, w), which we now
consider. According to item (4) of Definition 2.1 from [12], the divergence
map divB(t, u, w) is defined by first computing

∂t(B
0(u)) + ∂Λ(B

Λ(t, u)) = DW sB0(u)∂tW
s(10.42)

+ t−ε0−ε2DβBΛ(t, u)∂Λβ + t−ε0−ε2DfΩ
I
BΛ(t, u)∂Λf

Ω
I

+ t−ε0−ε2DW sBΛ(t, u)∂ΛW
s,

where in deriving this we have used (9.55), (9.58)–(9.63), (9.96)–(9.98),
(10.30)–(10.34) and the definitions for A0(u) and AΛ(t, u) that were in-
troduced directly after (9.100). The variable w is taken to be the spatial
derivative of u, that is,

(10.43) w = (wΛ) = (∂Λu).

The divergence map divB(t, u, w) is then defined as the right hand side
of (10.42) where the time derivative ∂tW

s is replaced using its evolution
equation, see (10.49) below, and after that replacing all remaining spatial
derivatives ∂Λu with wΛ.
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To verify the coefficient assumption for divB(t, u, w), we need to show,

for some R > 0, that divB(t, u, w) depends continuously on t and smoothly

on (u,w) for (t, u, w) ∈ (0, T0]×BR(R
m)×BR(R

(n−1)m) and that there exist

positive constants θ, β1, β2 and β3 such that15

P divB(t, u, w)P = O
(
t−(1−p)θ + t−1β1

)
,(10.44)

P divB(t, u, w)P⊥ = P
⊥ divB(t, u, w)P(10.45)

= O

(
t−(1−p)θ +

t−1β2
R

Pu

)

and

P
⊥ divB(t, u, w)P⊥ = O

(
t−(1−p)θ +

t−1β3
R2

Pu⊗ Pu

)
.(10.46)

To this end, we note, since p satisfies (10.41), that the second line of (10.42),

that is,

t−ε0−ε2DβBΛ(t, u)∂Λβ + t−ε0−ε2DfΩ
I
BΛ(t, u)∂Λf

Ω
I

+t−ε0−ε2DW sBΛ(t, u)∂ΛW
s,

defines, for R > 0 small enough, a map C (t, u, w) satisfying

(10.47) t1−pC ∈ C0
(
[0, T0], C

∞(BR(R
m)×BR(R

(n−1)m),Rm
))
.

Considering now the first line of (10.42), we observe, with the help of (7.29),

(9.34) and (9.89), that

DW sB0(u)∂tW
s

(10.48)

=DW sB0(u)(a0)−1sj
(
β̃Gjs′lW

s′W l − β̃aijkγi
k
lW

l − aI jkβ̃e
Λ
I ∂ΛW

k
)

=A DW sA0(u)(a0)−1sj̃
(
F12j̃ + t−1 (n− 1)c2s − 1

n− 2
W 0δJ̃

j̃
δJj δJ̃JW

j

− t−ε0−ε2aI jkβf
Λ
I ∂ΛW

k
)
,

15The order notation O(·) and O(·) is defined in Section 2.
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which we express more compactly as

(10.49) DW sB0(u)∂tW
s = Ms(u)(a

0)−1sj̃(u)Ij̃(t, u, w)

where

(10.50) Ms(u) = A DW sA0(u)

and Ij̃(t, u, w) is defined by

F12j̃ + t−1 (n− 1)c2s − 1

n− 2
W 0δJ̃

j̃
δJj δJ̃JW

j − t−ε0−ε2aI jkβf
Λ
I ∂ΛW

k.

With the help of (7.31), (9.55), (9.96)–(9.98), (10.43) and Lemma 9.4, it is
then not difficult to verify that Ij̃ can be decomposed as

(10.51) Ij̃(t, u, w) = t−1I
(0)

j̃
(u) + t−1+pI

(1)

j̃
(t, u, w)

where
(10.52)

I
(0)

j̃
∈ C∞(BR(R

m),Rm) and I
(1)

j̃
∈ C0

(
[0, T0], C

∞(BR(R
m),Rm)

)
.

We further observe from (7.29) and (9.59)–(9.60) that Ms, defined above
by (10.50), satisfies

PM0(u)P = O(1), P
⊥M0(u)P = PM0(u)P

⊥ = O(Pv ⊗ Pv ⊗ Pv),(10.53)

P
⊥M0(u)P

⊥ = O(1),

PMQ(u)P = O(Pu), P
⊥MQ(u)P = PMQ(u)P

⊥ = O(1)(10.54)

and P
⊥MQ(u)P

⊥ = O(Pu),

and note from (9.115) that (a0)−1 can be expanded as

(10.55) (a0)−1 jk(u) =
1

W 0

(
c2sδ

j
0δ

k
0 + δJKδjJδ

k
K

)
+O(Pu).

From the analysis of F12 in the proof of Lemma 9.4, we deduce that I(0),
defined above by (10.51), satisfies

(10.56) I
(0)
0 (u) = O(Pu⊗ Pu) and I

(0)
Q (u) = O(Pu).
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Taken together, the expansions (10.47), (10.51)–(10.54) and (10.56) along
with the fact that A , defined by (10.30)–(10.32), and P, defined by (9.64),
commute, imply the existence of the constants θ, β1, β2 and β3 such that
(10.44)–(10.46) hold. Moreover, because the constants σ1,. . . , σ10 used to
define A , see (10.30)–(10.32), can be chosen independently of R > 0 for R
sufficiently small, see Lemma 10.5, we can arrange that the constants β1, β2
and β3 are as small as we like by choosing R small enough. This completes
the verification of the coefficient assumptions from [12, Section A.1].

Given that the Fuchsian equation (10.37) satisfies all of the coefficient
assumption from [12, Section A.1], we conclude directly from Theorem A.2
and Remark A.3 of [12] the existence of a constant δ0 > 0 such that if
t0 ∈ (0, T0],

∫ t0
0 ‖F̃(s)‖ds < δ0 and u0 ∈ Hk(Tn−1) satisfies ‖u0‖Hk(Tn−1) < δ

for any δ ∈ (0, δ0], then there exists a unique solution

u ∈ C0
b

(
(0, t0], H

k(Tn−1)
)
∩ C1

(
(0, t0], H

k−1(Tn−1)
)

of the initial value problem

B0(u)∂tu+ BΛ(t, u)∂Λu =
1

t
B(u)Pu+

1

t
P
⊥Ĥ(u) + σ1F̃(t) + H (t, u)

in M0,t0 = (0, t0]× T
n−1,

u = u0

in Σt0 = {t0} × T
n−1,

such that the limit lim↘0 P
⊥u(t), denoted P⊥u(0), exists in Hk−1(Tn−1) and

u satisfies the energy and decay estimates given by (10.23) and (10.24)–
(10.25), respectively. Since the above initial value problem is equivalent
to (10.20)–(10.21), the proof of the proposition is complete.

10.3. Proof of Theorem 10.1

Equipped with Proposition 10.3, we are now in a position to prove Theo-
rem 10.1. We begin by fixing n ∈ Z≥3, k ∈ Z>(n+3)/2, V

0
∗ , P∗ > 0, c2s ∈

(1/(n − 1), 1), T0 > 0, σ > 0 and choosing constants ε0, . . . , ε4 that sat-
isfy (9.103).

Small Fuchsian initial data: Denoting the constant δ0 > 0 from Propo-
sition 10.3 as δ̃0, we assume that t0 ∈ (0, T0] and use Ŭ(t0) to denote the
FLRW background solution at t = t0 defined by (9.91)–(9.94). We also set

ŭ0 = Ŭ(t0)− Ů(t0),
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where Ů(t0) is defined above by (9.96). Then, due to (9.97) from Lemma 9.3,
we can, by choosing t0 ∈ (0, T0] sufficiently small, arrange that

(10.57) ‖ŭ0‖Hk(Tn−1) <
δ̃0
2
.

Additionally, by (9.102), we can, by shrinking t0 further if necessary, ensure
that

(10.58)

∫ t0

0
‖F̃(s)‖Hk(Tn−1)ds � t

(n−1)(1−c2s)

n−2

0 < δ̃0.

Next, we suppose δ0 > 0 and choose δ ∈ (0, δ0] and initial data g̊μν ∈
Hk+2(Tn−1,Sn), g̀μν ∈ Hk+1(Tn−1,Sn), τ̊ = t0, τ̀ ∈ Hk+2(Tn−1) and V̊ μ ∈
Hk+1(Tn−1) that satisfies (10.1) as well as the constraint equations (5.15)–
(5.16). We then construct an orthonormal frame on the initial hypersurface
Σt0 = {t0} × Tn−1 as follows: recalling that {̊gμν , g̀μν , τ̊ = t0, τ̀ , V̊

μ} deter-
mines initial data {gμν |Σt0

, ∂0gμν |Σt0
, τ = t0, ∂0τ = 1, V μ|Σt0

} for the metric
gμν , the scalar field τ and the fluid vector V μ in Lagrangian coordinates on
Σt0 via (5.74)–(5.77), we set

eμ0 = (−|χ|2g)−
1

2χμ

and note that it can be computed from the Lagrangian initial data on Σt0

by (5.78). We further fix spatial frame initial data eμI |Σt0
= δμI e̊

Λ
μ where the

functions e̊ΛI ∈ Hk(Tn−1) are chosen to satisfy

‖̊eΛI − (ω|t=t0)δ
Λ
I ‖Hk(Tn−1) < δ,

with ω defined by (1.50), and make the frame eμi orthonormal on Σt0 with
respect to the metric gμν given there, see (5.76).

Then we use the prescription outlined in Section 9.1, see also (9.43)–
(9.52), (9.96) and (9.98), to construct of complete set of initial data u0 ∈
Hk(Tn−1) for the Fuchsian system (10.20). It is straightforward to ver-
ify, with the help of the Sobolev and Moser inequalities (see Propositions
2.4., 3.7. and 3.9. from [70, Ch. 13]), that this initial data satisfies ‖u0 −
ŭ0‖Hk(Tn−1) ≤ C0δ where C0 = C0(t0, t

−1
0 , δ) > 0, which allows us, by (10.57),

to conclude that

(10.59) ‖u0‖Hk(Tn−1) ≤ ‖ŭ0‖Hk(Tn−1) + C0δ ≤ δ̃0
2

+ C0δ.
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Given the value of t0 found above by imposing (10.57) and (10.58), we can
now adjust the value δ0 to ensure that δ < δ̃0/(2C0) for all δ ∈ (0, δ0].
This guarantees that the hypotheses of Proposition 10.3 are satisfied for
appropriate choices of δ0 and t0, and all δ ∈ (0, δ0].

Fuchsian stability: By (10.58) and (10.59), we obtain from
Proposition 10.3 a unique solution

(10.60) u ∈ C0
b

(
(0, t0], H

k(Tn−1)
)
∩ C1

(
(0, t0], H

k−1(Tn−1)
)

to the Fuchsian GIVP (10.20)–(10.21) that extends continuously to t = 0 in
Hk−1(Tn−1) and satisfies the energy and decay estimates given by (10.23)
and (10.24)–(10.25), respectively, for all t ∈ (0, t0].

By definition P⊥ = 1− P, and so we have by (9.64) that

(10.61) P
⊥ = diag

(
δL
L̃
δM
M̃
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δj̃0, 0

)
.

Using this, we can label the components of P⊥u(0) ∈ Hk−1(Tn−1) as

(10.62) P
⊥u(0) =

(
kIJ , 0, 0, 0, 0, 0, 0, 0, 0, 0,W

0δj̃0, 0
)

where kIJ ∈ Hk−1(Tn−1,Sn−1) and W0 ∈ Hk−1(Tn−1). Noting, by the tri-
angle inequality, that

‖P⊥u(0)‖Hk−1(Tn−1) ≤ ‖u(t)− P
⊥u(0)‖Hk−1(Tn−1) + ‖u(t)‖Hk−1(Tn−1),

we conclude from the initial data bound ‖u0‖Hk(Tn−1) < δ, the energy and
decay estimates (10.23) and (10.24)–(10.25), and the estimate (10.58) that

‖P⊥u(0)‖Hk−1(Tn−1) � tp + tκ̃−σ + δ + t
(n−1)(1−c2s)

n−2

0 .

Choosing σ so that 0 < σ < κ̃ and letting t ↘ 0 in the above expression
yields

(10.63) ‖kIJ‖Hk−1(Tn−1) + ‖W0‖Hk−1(Tn−1) � δ + t
(n−1)(1−c2s)

n−2

0 .

Limits of the frame variables: The frame eμi is obtained from the com-
ponents of u via (9.44), (9.49), (9.55), (9.96)–(9.98) and the relations

(10.64) eμ0 = β̃−1δμ0 and e0I = 0,
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which hold by (6.4) and (6.11). Since β̃ is initially positive at t = t0 and the
evolution equation (9.31) for β̃ implies that β̃ cannot cross zero, we conclude
that β̃ is positive on M0,t0 . While (10.24), which we showed above that u
satisfies, yields a decay estimate for β̃, a stronger result can be obtained
from noting that (9.31) can be expressed as

∂t
(
t−

1

2
kJ

J

β̃
)
=
(
−β2t−ε0−ε1ξ00 +

1

2
t−1(kJ

J − kJ
J)
)
t−

1

2
kJ

J

β̃.

Since β̃ > 0, we can integrate this in time to get

ln
(
t−

1

2
kJ

J

β̃(t)
)
− ln

(
t̃−

1

2
kJ

J

β̃(t̃)
)

=

∫ t

t̃

(
−s−ε0−ε1β2ξ00(s) +

1

2
s−1(kJ

J(s)− kJ
J)
)
ds,

which holds for all t, t̃ ∈ (0, t0]. From the Sobolev and Moser inequalities
(see Propositions 2.4., 3.7. and 3.9. from [70, Ch. 13]), we have

∥∥ln(t− 1

2
kJ

J

β̃(t)
)
− ln

(
t̃−

1

2
kJ

J

β̃(t̃)
)∥∥

Hk−1(Tn−1)

≤
∫ t

t̃

(
s−ε0−ε1‖β(s)‖2Hk−1(Tn−1)‖ξ00(s)‖Hk−1(Tn−1)

+
1

2
s−1‖kJJ(s)− kJ

J‖Hk−1(Tn−1)

)
ds

provided 0 < t̃ ≤ t ≤ t0. From the decay estimates (10.24)–(10.25) and (10.63),
the positivity of the constants p and κ̃, and the fact that σ > 0 can be cho-
sen arbitrarily small, we deduce from the above estimate that ln(t−

1

2
kJ

J

β̃(t))
converges in Hk−1(Tn−1) as t ↘ 0 to a limit, denoted b̃, and that

∥∥ln(t− 1

2
kJ

J

β̃(t)
)
− b̃
∥∥
Hk−1(Tn−1)

� t1−ε0−ε1(tp + tκ̃−σ)3 + tp + t2(κ̃−σ)

for 0 < t ≤ t0. From this inequality, it follows that the limit b̃ is a strictly
positive function in Hk−1(Tn−1), which we express as b̃ = ln(b) where b ∈
Hk−1(Tn−1). Using b̃ = ln(b) and noting that 1 − ε0 − ε1 > 0, we observe
that the above estimate simplifies to

(10.65)
∥∥ln(t− 1

2
kJ

J

β̃(t)
)
− ln(b)

∥∥
Hk−1(Tn−1)

� tp + t2(κ̃−σ).

Estimate (10.9) is then a direct consequence of (9.103), (10.26), (10.27) and
the above estimate.
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Considering now the spatial frame components eΛI , we see, with the help
of (9.43), (9.44) and (9.48), that the evolution equation (9.32) for the spatial
frame components can be expressed in matrix form as

∂te
Λ =

1

t
(K + tL )eΛ

where

eΛ = (eΛI ), K =
(
−1

2
δJLkIL(0)

)
,(10.66)

and

L = −
(1
2
t−1δJL(kIL − kIL(0)) + t−ε1+kJ

J(0)/2δJL(t−kJ
J(0)/2β̃)ψI

0
L

)
.

(10.67)

Letting16

(10.68) eΛ = (eΛμ ) := t−K eΛ,

a short calculation then shows that eΛ satisfies

(10.69) ∂te
Λ = M eΛ

where

M = t−K L tK .

By differentiating (10.69) repeatedly in space, we obtain from standard L2-
energy estimates and the Sobolev and Moser inequalities the differential
energy inequality

∂t‖eΛ(t)‖2Hk−1(Tn−1) � ‖M (t)‖Hk−1(Tn−1)‖eΛ(t)‖2Hk−1(Tn−1),

which in turn, yields

∂t‖eΛ(t)‖Hk−1(Tn−1) � ‖M (t)‖Hk−1(Tn−1)‖eΛ(t)‖Hk−1(Tn−1).

Applying Grönwall’s lemma to this differential inequality gives

‖eΛ(t)‖Hk−1(Tn−1) � ‖eΛ(t0)‖Hk−1(Tn−1)e
− 1

2

∫ t

t0
‖M (s)‖Hk−1(Tn−1)ds, 0 < t ≤ t0.

16Given a square matrix A, we frequently use the notation tA instead of
exp(ln(t)A).
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Integrating (10.69) in time, we see, with the help of the above inequality,
that

‖eΛ(t)− eΛ(t̃)‖Hk−1(Tn−1)(10.70)

�‖eΛ(t0)‖Hk−1(Tn−1)e
1

2

∫ 0

t0
‖M (s)‖Hk−1(Tn−1)ds

∫ t

t̃
‖M (s)‖Hk−1(Tn−1)ds

for all 0 < t̃ ≤ t ≤ t0.
Next, by (10.24), (10.25) and (10.67), we observe that the matrix L is

bounded by

‖L (t)‖Hk−1(Tn−1)(10.71)

� t−1(tp + t2(κ̃−σ)) + t−ε1(tp + tκ̃−σ)

for all 0 < t ≤ t0. Also, since t±K = e± ln(t)K , the estimate

(10.72) ‖t±K ‖Hk−1(Tn−1) ≤ CeC‖ ln(t)K ‖Hk−1(Tn−1) � t−C‖kIJ‖Hk−1(Tn−1) ,

0 < t ≤ t0, is a direct consequence of the analyticity of the exponential
eX , the definition (10.66) of K , and the fact that Hk−1(Tn−1) is a Banach
algebra by virtue of the assumption that k−1 > (n−1)/2. By (10.3), (10.71),
and (10.72), we can then bound the matrix M by

‖M (t)‖Hk−1(Tn−1)

�
(
t−1(tp + t2(κ̃−σ)) + t−ε1(tp + tκ̃−σ)

)
t−C‖kIJ‖Hk−1(Tn−1)(10.73)

for all 0 < t ≤ t0. By choosing δ and σ sufficiently small, it follows from
(9.103), (10.27) and (10.73) that M is Hk−1(Tn−1)-integrable in time, that
is,
∫ t0
0 ‖M (s)‖Hk−1(Tn−1) ds < ∞. We then deduce from this integrability

and the inequality (10.70) that eΛ(t) converges as t ↘ 0 in Hk−1(Tn−1) to a
limit, which we will denote by eΛI (0). In order to derive the estimate (10.10),
we let t̃ ↘ 0 in (10.70). Doing so, we see, with the help of (10.68) and (10.73),
that, for δ and σ chosen sufficiently small, that the estimate

‖e− ln(t)K eΛ(t)− eΛ(0)‖Hk−1(Tn−1)

�
(
tp + t2(κ̃−σ) + t1−ε1(tp + tκ̃−σ)

)
t−C‖kJM‖Hk−1(Tn−1) ,

holds for all 0 < t ≤ t0. Choosing ε0,. . . , ε4 according to (9.111) then yields
the estimate (10.10).
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Conformal Einstein-Euler-scalar field past stability: Proposition 5.6 im-
plies, for some t1 ∈ (0, t0], the existence of a unique solution W with regular-
ity (5.79) on Mt1,t0 = (t1, t0]×Tn−1 of the system (5.48)–(5.55) that satisfies
the initial conditions (5.57)–(5.68). Moreover, since the conformal Einstein-
Euler-scalar field initial data is assumed to satisfy the gravitational and wave
gauge constraint equations, it follows from Proposition 5.6 that this solu-
tion satisfies the constraints (5.81), and determines a solution {gμν , τ, V μ}
of the conformal Einstein-Euler-scalar field equations (5.86) in Lagrangian
coordinates that satisfies the wave gauge constraint (5.87) and where τ is
given by

(10.74) τ = t.

By construction of the Fuchsian system (10.20), the solution W determines
a solution ũ on Mt1,t0 of the Fuchsian IVP (10.20)–(10.21) with the same
initial data u0 as above. By the uniqueness statement of Proposition 10.3,
we conclude that

(10.75) ũ = u|Mt1,t0

provided the parameters ε0, ε1, ε2, ε3 and ε4 are chosen to be the same for
both solutions.

From the equality (10.75), it follows that the energy estimate (10.23)
together with the Sobolev inequality yields the bound

sup
t1<t<t0

‖ũ(t)‖W 2,∞(Tn−1) < ∞.

From this bound on ũ, we see, with the help of (7.1), (7.17), (8.1)–(8.4), (8.9),
(9.43)–(9.52), (9.96)–(9.98) and (10.64), that

sup
t1<t<t0

(
‖eμj (t)‖W 2,∞(Tn−1) + ‖Digjk(t)‖W 2,∞(Tn−1) + ‖β̃(t)‖W 2,∞(Tn−1)

(10.76)

+ ‖k̃IJ(t)‖W 2,∞(Tn−1) + ‖ψ̃I
k
J(t)‖W 2,∞(Tn−1)

+ ‖γIkJ(t)‖W 2,∞(Tn−1) + ‖DiDjτ‖W 2,∞(Tn−1)

+ ‖W s‖W 2,∞(Tn−1)

)
< ∞.

With the help of this bound, it then follows from the evolution equations
(9.31)–(9.32) for β̃ and eΛI , and [13, Lemma A.2] that

(10.77) inf
Mt1,t0

{
β̃, det(eΛI )

}
> 0,
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which in turn, implies via (10.64) that

(10.78) inf
Mt1,t0

det(eμj ) > 0 and sup
Mt1,t0

det(gμν) < 0.

In addition to this, we observe from (7.1), (7.2), (7.5), (9.43)–(9.52), (9.96)

and (9.98) that

sup
Mt1,t0

‖V μ(t)‖W 1,∞(Tn−1) = sup
Mt1,t0

‖V i(t)eμi (t)‖W 1,∞(Tn−1)

(10.79)

� sup
Mt1,t0

t
(n−1)c2s−1

n−2
−ε2‖β̃(t)c2s‖Hk(Tn−1)‖W i(t)‖Hk(Tn−1)‖fμ

i (t)‖Hk(Tn−1)

< ∞,

sup
Mt1,t0

|V |2g
(10.80)

= sup
Mt1,t0

(−f2w2) = − inf
Mt1,t0

t2
(n−1)c2s−1

n−2

(
β̃2c2s((V 0

∗ )
2 +O(u))

)
< 0,

where in deriving the above inequalities we have used the fact that V 0
∗ > 0,

the bounds (10.9), (10.23), and (10.77), and the Sobolev and the Moser

inequalities.

Since the frame eμi is orthonormal by construction, the components of

the conformal metric in the Lagrangian coordinates are determined by

(10.81) gμν = eiμηije
j
ν ,

and so by (10.76), we have

(10.82) sup
t1<t<t0

‖gμν(t)‖W 2,∞(Tn−1) < ∞.

From the calculation

eμi e
ν
j ∂tgμν = L∂t

gij
(10.64)
= Lβ̃e0gij

= β̃ek0Dkgij + Di(β̃e
k
0)ηkj + Dj(β̃e

k
0)ηjk

= β̃δk0Dkgij + ei(β̃)η0j + β̃γi
k
0ηkj + ej(β̃)η0i + β̃γj

k
0ηik,
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we also observe that the bound

(10.83) sup
t1<t<t0

‖∂tgμν(t)‖W 1,∞(Tn−1) < ∞

is a direct consequence of (10.76)–(10.78), the relations (7.1), (7.47)–(7.48),
(7.51)–(7.52) and (10.64), and the evolution equation (9.31). Moreover, by
employing similar arguments, it is also not difficult to verify that Dνχ

μ,
where χμ is defined by (5.84), satisfies

(10.84) sup
t1<t<t0

(
‖Dνχ

μ(t)‖W 2,∞(Tn−1) + ‖∂t(Dνχ
μ)(t)‖W 1,∞(Tn−1)

)
< ∞.

We conclude from (6.3) and the bounds (10.76), (10.78), (10.79), (10.80),
(10.82), (10.83) and (10.84) that the solution W satisfies the continuation
criteria (5.88)–(5.89). Hence, by Proposition 5.6 the solution W can be con-
tinued beyond t1, and consequently, the solution W exists on M0,t0 . This
solution continues to satisfy the constraints (5.81) and determine a solution
{gμν , τ, V μ} of the conformal Einstein-Euler-scalar field equations (5.86) in
Lagrangian coordinates that verifies the wave gauge constraint (5.87).

Second fundamental form estimate: Using (6.3), (10.64) and (10.74), it
follows easily from the formula (10.81) for the conformal metric that on the
t = const-surfaces the lapse N is given by

(10.85) N = β̃,

the shift vanishes, and the induced spatial metric is gΛΩ = gΛΩ. Furthermore,
by (1.14), (7.52), (9.43), (9.48) and (10.74), the second fundamental form
induced on the t = const-surfaces by the conformal metric is

KLJ=
1

2
k̃LJ + γ(L

0
J) =

1

2
t−1β̃−1kLJ + t−ε1ψ(L

0
J),

which using (9.44), we note can be expressed as

2tβ̃KLJ = kLJ + 2t1−ε1−ε0βψ(L
0
J).

The bound

‖2tβ̃KLJ(t)− kLJ‖Hk−1(Tn−1) � tp + t2(κ̃−σ) + t1−ε0−ε1(tp + tκ̃−σ)2

� tp + t2(κ̃−σ)
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is then a direct consequence of the above expression, the energy and decay

estimates (10.23)–(10.25), and the positivity of the constants p, κ̃ − σ and

1− ε0 − ε1. Since the right hand side here equals that of (10.65), the same

choice (9.111) of the parameters ε0, . . . , ε4 yields the estimate (10.11).

Fluid estimates: We begin by observing that the estimate (10.14) follows

from (9.55), (9.96), (9.98), (10.61)–(10.62) and the decay estimates (10.25)

using the choice (9.111) for the parameters ε0, . . . , ε4 while (10.15) follows

from (9.64) and the decay estimate (10.24) in a similar fashion. Also, we

note that (10.16) is a direct consequence of (7.3), (9.52), (9.64) and (10.24).

We further observe from (7.5) and the fact that Hk−1(Tn−1) is a Banach

algebra (since k − 1 > (n− 1)/2) that

‖w2 − (V 0
∗ +W0)2‖Hk−1(Tn−1)

(10.86)

=‖(W 0)2 − δIJW
IW J − (V 0

∗ +W0)2‖Hk−1(Tn−1)

�‖W 0 − (V 0
∗ +W0)‖Hk−1(Tn−1)(V

0
∗ + ‖W0‖Hk−1(Tn−1) + ‖W 0‖Hk−1(Tn−1))

+ ‖W I‖2Hk−1(Tn−1)

�t
1

8

n−1

n−2
(1−c2s)−σ + t2

(
(n−1)c2s−1

n−2
−σ
)
,

where the last inequality holds by (10.14) and (10.15).

To proceed, we define, for any γ ∈ R, a function Φγ(x, y) via

(10.87) Φγ : I1 × I2 −→ R : (x, y) �−→ (x+ y)γ − yγ ,

where I2 ⊂⊂ (0,∞) is an open interval and I1 is an open interval around 0

that is sufficiently small to ensure that Φγ is well-defined and smooth. Since

Φγ(0, y) = 0 for all y ∈ I2, we deduce from Moser’s inequality that

(10.88) ‖Φγ(v1, v2)‖H�(Tn−1) ≤ C(‖v1‖H�(Tn−1), ‖v2‖H�(Tn−1))‖v1‖H�(Tn−1)

for any v1, v2 ∈ H�(Tn−1) satisfying v1(x) ∈ I1 and v2(x) ∈ I2 for all x ∈
Tn−1 provided that � > (n− 1)/2. Next, we use Φγ along with (1.9), (1.25),

(1.26), (7.2) and (7.5) to express the fluid density as

ρ =
P0

c2s
v̄
− c2s+1

c2s =
P0

c2s
t−

n−1

n−2
(1+c2s)−kJ

J(1+c2s)/2(t−kJ
J/2β̃)−(1+c2s)(w2)

− 1+c2s
2c2s
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=
P0

c2s
t−

n−1

n−2
(1+c2s)−kJ

J(1+c2s)/2
(
Φ−(1+c2s)

(
t−kJ

J/2β̃ − b, b
)
+ b−(1+c2s)

)

×
(
Φ− 1+c2s

2c2s

(
w2 − (V 0

∗ +W0)2, (V 0
∗ +W0)2

)
+ (V 0

∗ +W0)
− 1+c2s

c2s

)
.

From this expression and the estimates (10.9), (10.86), (10.88), and the pos-
itivity of b and V∗+W0, we see that estimate (10.17) holds provided δ0 and
t0 are chosen sufficiently small. We also observe that the fluid variable V̄ μ

can be represented as (10.13) due to (1.25), (7.1) and (7.2) where ēμi is the ḡ-
orthonormal frame ēμi = t−1/(n−2)eμi , and, with the help of (1.3), (1.9), (1.25),
(1.26) and (7.5), that the physical normalised fluid n-velocity field is given
by (10.18). Finally, as b and V 0

∗ + W0 are strictly positive on Tn−1 for
δ0 and t0 chosen sufficiently small, the estimates (10.14), (10.15), (10.86)
and (10.88) imply that (10.19) holds.

Asymptotic pointwise Kasner property: Since {gμν , τ, V μ} is a solution
of the conformal Einstein-Euler-scalar field equations, it follows from (1.35)
and (10.74) that the triple

(10.89)

{
ḡij = t

2

n−2 gij , φ =

√
n− 1

2(n− 2)
ln(t), V̄ μ = V μ

}

determines a solution of the physical Einstein-Euler-scalar field system (1.1)–
(1.6). As a consequence, the spatial metric

(10.90) ḡΛΩ = t
2

n−2gΛΩ

and second fundamental form

(10.91) K̄ΛΩ = t
1

n−2

(
KΛΩ +

1

n− 2
t−1β̃−1gΛΩ

)
induced by the physical metric ḡμν on the τ = t = const-surfaces must
satisfy the Hamiltonian constraint, which we write in the rescaled form

(10.92) t
2

n−2 β̃2t2R+ t
2

n−2 β̃2t2
(
(K̄Λ

Λ)2 − K̄Λ
ΣK̄Σ

Λ
)
− T̄ = 0

where R is the scalar curvature of the spatial metric ḡΛΩ and

T̄ = −2t
2

n−2 β̃2t2
∇̄it∇̄jt

|∇̄t|2ḡ
T̄ ij
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with T̄ ij = T̄ SF
ij + T̄Fl

ij the Euler-scalar field energy momentum tensor,
see (1.2). Using (7.1)–(7.2), (7.5), (10.81), (10.89) and (10.64), we can ex-
press T̄ as

T̄ =
n− 1

n− 2
+ 2P0t

(n−1)(1−c2s)

n−2 β̃1−c2sw
− 1+c2s

c2s

(1 + c2s
c2s

W IWI

w2
+

1

c2s

)
.

Taking the pointwise limit of the above expression as t ↘ 0, we see from
(10.9), (10.15), (10.86), (10.88) and the Sobolev inequalities that

(10.93) lim
t↘0

T̄ (t, x) =
n− 1

n− 2

for each x ∈ Tn−1.

Next, since the conformal factor t
2

n−2 in (10.90) is constant on the t
=const-surfaces, it follows from (10.74) and (10.90) that

τ
2

n−2R = R,

where R is the scalar curvature of the spatial conformal metric gΛΩ. Noting
that

R =eJ(ΓI
J
K)δIK − eI(ΓJ

J
K)δIK + δIKΓI

M
KΓJ

J
M − ΓJ

M
KδIKΓI

J
M

+ 2δIKΓ[I
M

J ]ΓM
J
K ,

where the ΓM
J
K are the spatial components of the connection coefficients of

the conformal metric gμν with respect to the frame eμi , we find from (1.14),
(7.1)–(7.3), (8.1)–(8.3), (8.5), (8.9), (9.43)–(9.46), (9.48)–(9.50), (10.64), the
formula

gIJKL =eI(gJKL)− γI
0
Jg0KL − γI

M
JgMKL − γI

0
KgJ0L − γI

M
KgJML

− γI
0
LgJK0 − γI

M
KgJKM

for the covariant derivative gIJKL = DIgJKL = DIDJgKL, and a straight-
forward calculation that

R =e ∗ ∂ψ̃ + g̃ + (�̃+ ψ̃) ∗ (k̃ + ψ̃ + �̃)

=t−ε2−ε1f ∗ ∂ψ + t−1−ε1 β̃−1ǵ

+ t−1−ε1 β̃−1(�+ ψ) ∗ (k + t1−ε1 β̃ψ + t1−ε1 β̃�),
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where e = (eΛI ), ∂ = (∂Λ) and we are employing the ∗-notation from Sec-
tion 8. Multiplying the above expression by β̃2τ2 yields

β̃2τ2R =t2−ε2−ε1−2ε0β2f ∗ ∂ψ + t1−ε1−ε0βǵ

+ t1−ε1−ε0β(�+ ψ) ∗ (k + t1−ε1−ε0βψ + t1−ε1−ε0β�)

where in deriving this we have used (9.44). It is then a straightforward
consequence of (9.103), (10.60) and the Sobolev inequalities that

(10.94) lim
t↘0

t2/(n−2)β̃(t, x)2t2R(t, x) = 0

for each x ∈ Tn−1.
Given (10.93) and (10.94), the Hamiltonian constraint (10.92) simplifies

to

lim
t↘0

t
2

n−2 β̃2t2
(
(K̄Λ

Λ)2 − K̄Λ
ΣK̄Σ

Λ
)
= 0.

It is now a straightforward consequence of the above expression, (10.85),
(10.91), and the fact that

(10.95) lim
t↘0

2t N(t, x) KI
J(t, x) = kI

J(x),

for each x ∈ Tn−1, which follows from (10.11) and the Sobolev inequality,
that
(10.96)

(K̄Λ
Λ)2 − K̄Λ

ΣK̄Σ
Λ = t−

2

n−2

(
(KI

I)2 − KI
JKJ

I + 2KI
It−1β̃−1 +

n− 1

n− 2
t−2β̃−2

)
,

and therefore that

(10.97) (kI
I)2 − kI

JkJ
I + 4kI

I = 0 in T
n−1.

Solving (10.97) for kI
I , we obtain two solutions kI

I = ±
√

4 + kI
JkJ

I − 2.
But, by (10.63) and the Sobolev inequality, we can choose δ and t0 small
enough to ensure that ‖kI I‖L∞(Tn−1) < 4. Doing so, we conclude that kI

I

must satisfy kI
I =

√
4 + kI

JkJ
I − 2, which in particular, implies that

(10.98) kI
I ≥ 0 in T

n−1.

Taken together, (10.95)–(10.98) imply that the solution {gμν , τ, V μ} verifies
all the conditions of Definition 1.1, and hence, is asymptotically pointwise
Kasner.
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Crushing singularity: Taking the trace of (10.91) with respect to the
physical metric (10.90), we observe that the physical mean curvature can be
expressed as

(10.99) K̄Λ
Λ =

1

2β̃t−
n−1

n−2

(
2tβ̃KI

I +
2(n− 1)

n− 2

)
.

Recalling that β̃ > 0, we deduce from (10.9), (10.11), (10.98) and Sobolev’s
inequality the existence of a constant C > 0 such that the pointwise esti-
mates

0 < β̃(t, x) ≤ 1

C
and 2tβ̃KI

I +
2(n− 1)

n− 2
≥ n− 1

n− 2

hold for all (t, x) ∈ M0,t0 = (0, t0] × Tn−1 provided t0 is chosen sufficiently
small. These inequalities together with (10.99) imply the pointwise lower
bound

K̄Λ
Λ ≥ C(n− 1)

2(n− 2)

1

t
n−1

n−2

on M0,t1 , and hence, that K̄Λ
Λ blows up uniformly as t ↘ 0. By definition,

see [28], this uniform blow up of the physical mean curvature implies that
the hypersurface t = 0 is a crushing singularity.

Geometric estimates for the conformal metric and scalar field: We now
turn to deriving the estimates (10.3)–(10.8). Before doing so, we first sum-
marise the relationships between the following geometric variables

{
tβ̃D0g00,DIg00,D0gJ0,DIgJ0, tβ̃D0gJK ,DIgJK , tβ̃DIDjgkl,DiDjτ,

DIDjDkτ
}

and the corresponding Fuchsian variables determined from the components
of u. From (7.1)–(7.3), (7.17), (8.1)–(8.9) and (9.43)–(9.51), it straightfor-
ward to check that

tβ̃D0g00 =− δJKkJK ,

DIg00 =2t−ε1mI − t−ε1δJK(2�JKI − �IJK),

D0gJ0 =t−ε1mJ ,

DIgJ0 =t−ε1�I0J ,

tβ̃D0gJK =kJK + t1−ε1+
1

2
kJ

J

(t−
1

2
kJ

J

β̃)(�K0J + �J0K),

DIgJK =t−ε1�IJK ,
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tβ̃DIDjgkl =t−ε1 ǵIjkl,

DiDjτ =tε0−ε1ξij ,

DIDjDkτ =t−ε0−2ε1 τ́ Ijk.

From these relations, it then follows via the definitions (9.55), (9.64), (10.61)

as well as the estimates (10.24)–(10.25) and (10.98) that the estimates

‖tβ̃D0g00 + δJKkJK‖Hk−1(Tn−1) � tp + t2(κ̃−σ),(10.100)

‖tβ̃D0gJK − kJK‖Hk−1(Tn−1) � tp + t2(κ̃−σ)(10.101)

+ t1−ε1(tp + tκ̃−σ),

‖DIg00‖Hk−1(Tn−1) + ‖D0gJ0‖Hk−1(Tn−1)(10.102)

+‖DIgJ0‖Hk−1(Tn−1) + ‖DIgJK‖Hk−1(Tn−1) � tp−ε1 + tκ̃−σ−ε1 ,

‖tβ̃DIDjgkl‖Hk−1(Tn−1) � tp−ε1 + tκ̃−σ−ε1 ,(10.103)

‖DiDjτ‖Hk−1(Tn−1) � tε0−ε1(tp + tκ̃−σ),(10.104)

‖DIDjDkτ‖Hk−1(Tn−1) � t−ε0−2ε1(tp + tκ̃−σ),(10.105)

hold for 0 < t ≤ t0. The estimates (10.3)–(10.8) then follow from (10.100)–

(10.105) by fixing the parameters ε0, . . . , ε4 as in (9.111) and choosing σ

sufficiently small.

AVTD property: The solution {gμν , τ, V μ} to the conformal Einstein-

Euler-scalar field equations on M0,t0 constructed above satisfies the AVTD

property in the sense of Section 1.3. To see why, we observe that the VTD

equation corresponding to the Fuchsian equation (10.20) is given by

A0∂tu =
1

t
APu+ F̃(t) +

1

t
H(u)Pu+

1

t
P
⊥Ĥ(u) +

1

tε̃
H(t, u),

and hence, any solution u of (10.20) is a solution of this VTD equation up

to the error term t−ε0−ε2AΛ(t, u)∂Λu. Given the definition (9.61), it then

follows immediately from (10.60), ε0 + ε2 < 1, see (9.103), and the Sobolev

and Moser inequalities (Propositions 2.4, 3.7 and 3.9 from [70, Ch. 13]) that

∫ t0

0

∥∥s−ε0−ε2AΛ(s, u(s))∂Λu(s)
∥∥
Hk−1(Tn−1)

ds < ∞,

which establishes the AVTD property.
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C2-inextendibility of the physical metric: We now establish the C2-in-
extendibility of the physical metric by verifying that the scalar curvature
R̄ = ḡμνR̄μν of the physical spacetime metric ḡμν blows up as t ↘ 0. To
this end, we observe from (1.7)–(1.8), (1.27), (7.4)–(7.5), (10.74), and the
properties (10.64) of the orthonormal frame eμi that the scalar curvature can
be expressed as

R̄ = 2ḡij∇̄iφ∇̄jφ+ ḡij T̄ij = 2t
−2

n−2 ηij∇iφ∇jφ+ t−
2

n−2 ηijTij

= −n− 1

n− 2
(t−

1

2
kJ

J

β̃)−2t−2n−1

n−2
−kJ

J

− 4P0
(n− 1)c2s + 1

(n− 2)c2s
t−(1+c2s)

n−1

n−2 β̃−(1+c2s)w
− 1+c2s

c2s ,

from which we get that

t2
n−1

n−2
+kJ

J

R̄+
n− 1

n− 2
b−2

=− n− 1

n− 2

(
(t−

1

2
kJ

J

β̃)−2 − b−2
)

− 4P0
(n+ 1)c2s + 1

(n− 2)c2s
t(1−c2s)

n−1

n−2
+(1−c2s)kJ

J

(t−
1

2
kJ

J

β̃)−(1+c2s)w
− 1+c2s

c2s .

Estimate (10.12) then follows from a combination of (10.9) and (10.86)–
(10.88) together with the calculus inequalities that, so long as t0 and δ0 are
sufficiently small and V 0

∗ > 0.

Past timelike geodesic incompleteness: Recalling that the physical mean

curvature K̄Λ
Λ is related to the conformal mean curvature KΛ

Λ via (10.99), we
note that when the initial data agrees with FLRW initial data (Section 1.2.2)
the conformal mean curvature KΛ

Λ can be made arbitrarily close to zero
on the inital hypersurface Σt0 = {t0} × Tn−1 by choosing t0 sufficiently

small, which in turn, implies that K̄Λ
Λ can be made close to n−1

n−2 t
− 1

n−2
−1

0

there. Thus by choosing δ > 0 sufficiently small, we can by (10.1) and the
Sobolev’s inequality ensure that K̄Λ

Λ is close, in a pointwise sense, as we like

to n−1
n−2 t

− 1

n−2
−1

0 everywhere on Σt0 for the perturbed initial data. In partic-

ular, for δ > 0 small enough, we have that KΛ
Λ > n− 12(n− 2)t

− 1

n−2
−1

0 on
Σt0 . Past timelike geodesic incompleteness is then a consequence of Hawk-
ing’s singularity theorem [58, Chapter 14, Theorem 55A], that is, all past
directed timelike geodesics starting on the Σt0 reach {0} × Tn−1 in finite
proper time.
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This concludes the proof of Theorem 10.1.
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[18] Chrúsciel, P. T., Isenberg, J. A. and Yau, S. T., eds. (2021). Selected
Works of Robert A. Bartnik. International Press, Boston. MR4362665
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