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Past stability of FLRW solutions to the
Einstein-Euler-scalar field equations and their big
bang singularities

FLORIAN BEYER AND TODD A. OLIYNYK

This work is dedicated to the memory of Robert Bartnik

We establish, in spacetime dimensions n > 3, the nonlinear stabil-
ity in the contracting direction of Friedmann-Lemaitre-Robertson-
Walker (FLRW) solutions to the Einstein-Euler-scalar field equa-
tions with linear equations of state P = ¢2p for sounds speeds c,
satisfying 1/(n — 1) < ¢2 < 1. We further show that nonlinear
perturbations of the FLRW solutions are asymptotically pointwise
Kasner and terminate in crushing, asymptotically velocity term
dominated (AVTD) big bang singularities characterised by curva-
ture blow-up.

1. Introduction

The mathematical definition of a cosmological spacetime was introduced by
Robert Bartnik in [7]. This definition is one of many lasting contributions
Robert made to the field of Mathematical Relativity [18], and it is particu-
larly relevant to this article in which we analyse the nonlinear stability of a
class of cosmological spacetimes containing big bang singularities. Robert,
throughout his career, touched and enriched the lives of many in the math-
ematical community. He was known for his unique creativity, profound in-
tellect, sense of curiosity and love of learning. He will be missed by many to
whom he was a friend, a colleague and a mentor. We dedicate this article to
his memory.

Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes and their
perturbations are the foundation of the standard model of cosmology. How-
ever, until recently, the nonlinear stability in the contracting direction of the
FLRW solutions was not well understood with the exception of perturba-
tions within the class of homogeneous solutions. In the contracting direction,
the Penrose and Hawking singularity theorems [39] guarantee that cosmo-
logical spacetimes, including nonlinear perturbations of FLRW solutions,
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will be geodesically incomplete for a large class of matter models and ini-
tial data sets, including highly anisotropic ones. The origin of the geodesics
incompleteness is widely expected to be due to the formation of curvature
singularities, and it is an outstanding problem in mathematical cosmology
to rigorously establish the conditions under which this expectation is true
and to understand the dynamical behaviour of cosmological solutions near
singularities.

The influential BKL-conjecture [9, 47] posits that cosmological singular-
ities are generically spacelike and oscillatory. While recent work on spikes
[10, 22, 48, 49, 59] and weak null singularities [24, 53] indicate that the BKL-
conjecture is incomplete, it is still expected to be true under quite general
conditions. However, it should be noted that the only rigorous arguments
supporting the BKL-conjecture are limited to the spatially homogeneous
setting [8, 15, 46, 60], while in the non-homogeneous setting, there are nu-
merical studies that support the conjecture [6, 23, 34, 35, 36, 37, 73].

Currently, there are no rigorous nonlinear stability results that apply
to inhomogenous cosmologies with oscillatory spacelike singularities. How-
ever, the situation improves considerably for cosmological spacetimes that
exhibit asymptotically velocity term dominated (AVTD) behaviour [27, 42]
near the singularity. By definition, AVTD singularities are a special type
of big bang type singularities, see Section 1.3 for details, that are spacelike
and non-oscillatory. AVTD behaviour has been shown to occur generically in
classes of vacuum spacetimes with symmetries [20, 42, 32, 61], and for infi-
nite dimensional families of cosmological spacetimes with prescribed asymp-
totics near the singularity in a variety of settings using Fuchsian methods
1, 2, 5, 11, 16, 17, 19, 21, 25, 31, 40, 41, 43, 44, 69].

In recent years, remarkable progress has been made on rigorously es-
tablishing the past! stability of FLRW solutions to the Einstein-scalar field
equations and their AVTD big bang singularities under generic perturba-
tions without symmetries. For these solutions, the minimally coupled scalar
field is responsible for the resulting non-oscillatory AVTD dynamics. The
first such FLRW big bang stability result was established in the semi-
nal articles [65, 66]. It is worth noting that the role of the scalar field in
[65, 66] and the subsequent stability results [30, 32, 68] is, in four space-
time dimensions and without any symmetry assumptions?, to suppress the

"'We always choose our time orientation so that the contracting time direction
corresponds to the past.

2In high enough spacetime dimensions or under certain symmetry assumptions,
the oscillatory behaviour near big bang singularities of solutions to vacuum Einstein
equations is also suppressed; see [26, 32, 67] for details
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oscillatory behaviour of solutions near big bang singularities, which leads
to AVTD behaviour. It should be noted that it is the AVTD nature of
Einstein-scalar field big bang singularities that make their analysis analyti-
cally tractable in contrast to oscillatory singularities in the inhomogeneous
setting.

The FLRW big bang stability results [65, 66] have been significantly
extended in the article [32] to apply to nonlinear perturbations of the Kas-
ner family of solutions solutions in the following settings and spacetime
dimensions n: Einstein-scalar field equations (n > 4), the polarized U(1)-
symmetric vacuum Einstein equations (n = 4), and the vacuum Einstein
equations (n > 11). Remarkably, the big bang stability results established
in [32] hold for the full range of Kasner exponents where stable singularity
formation is expected. We note also the articles [3, 4] where related Kasner
big bang stability results are established in the polarised T?-symmetric vac-
uum setting, the general framework developed by Ringstrom for analysing
cosmological spacetimes with big bang singularities [62, 63, 64], and the re-
cent work [38] in which a large class of initial data is identified that greatly
extends the data considered in [32], and at the same time, leads to stable
big bang formation for the Einstein-scalar field system with non-vanishing
potentials.

One important question not answered by the big bang stability results
[30, 32, 65, 66, 68] is that of local instability, namely, do local changes of the
initial data on the initial hypersurfaces induce local changes on the big bang
singular hypersurface. This can also be rephrased as a question of existence
of particle horizons. The technical reason as to why the stability proofs from
the articles [30, 32, 65, 66, 68] cannot directly answer this question is that
they rely on foliating spacetime by spacelike hypersurfaces of constant mean
curvature (CMC). In these articles, this foliation is used to define a time
function via t = —(trK)~! where trK is trace of the extrinsic curvature of
hypersurfaces. The importance of this time function is that the singularity
can be shown to occur uniformly along the hypersurface ¢ = 0. In this
sense, this choice of time coordinate synchronizes the singularity. This is
important because it allows statements to be made about the behaviour of
the physical fields as the singularity is approached, i.e. in the limit ¢ \, 0,
that are uniform across the whole singular surface. On the other hand, CMC
foliations, by definition, are non-local. Because of this, any stability result
that is derived using it will, a priori, be non-local in the sense that local
changes in the initial data will lead to non-local changes in the solution at a
later time. Without additional arguments, it would remain uncertain as to
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whether this non-locality is physical or pure gauge®.

To resolve the question of localisability, we introduced a new method
for analysing the stability of big bang singularities for the Einstein-scalar
field equations in the article [13] that is based on using the scalar field ¢

n—1
2(n—2)

reduce the Einstein equations. The advantages of this method are twofold.
First, because the gauge is hyperbolic, the method is inherently local, i.e.
all fields propagate with a finite speed, and yields localisable results. Sec-
ond, the method yields evolution equations, at least for initial data that is
nearly FLRW on the initial hypersurface, that can be cast into a Fuchsian
form for which it is possible prove existence of solutions globally to the past
via an application of the existence theory for Fuchsian systems developed
in the articles [14, 57]. This new method was employed in [13] to estab-
lish the local (in space) past stability of nonlinear perturbations of FLRW
solutions to the Einstein-scalar field equations and their big bang singu-
larities, which of course, implies a (global in space) past stability theorem
similar to those established in [30, 65, 66, 68]. It is worth noting that the
Fuchsian approach to establishing the global existence of solutions to sys-
tems of hyperbolic equations is a very general method and has recently been
employed to establish a variety of stability results in the following articles
[12, 29, 45, 50, 51, 52, 54, 57, 55, 56, 74].

The main aim of this article is to investigate, using the approach devel-
oped in [13], the nonlinear stability of FLRW big bang singularities where
the gravitating matter includes a perfect fluid with linear equations of states
P = ¢2p in addition to a scalar field. Here, the speed of sound cg is con-
sidered a free parameter. It is expected heuristically as part of the so-called
matter does not matter hypothesis [9, 47] that the perfect fluid should be
negligible near the big bang provided the speed of sound ¢, is smaller than
the speed of light.

Whether this is true in general or not is an open question however. On
fixed Kasner backgrounds in spacetime dimension n = 4, the stability of
relativistic fluids with linear equations of states P = c2p in the contract-
ing direction was investigated by us in [12]. In that article, we established
the past nonlinear stability of a large class of solutions, which includes per-
turbations of homogeneous solutions, in the neighborhood of Kasner big
bang singularities for sound speeds satisfying ¢mez < ¢> < 1, where the

S
lower bound ¢4, equals the largest Kasner exponent and gyq, = 1/3 for

to define a time function 7 via ¢ = In(7) and a wave gauge to

3In the sense that the non-locality is an artifact of the choice of time function
that could be remedied, i.e. made local, by a different choice of time slicing.
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the FLRW-Kasner spacetime (i.e. equality of the Kasner exponents) in four
spacetime dimensions. In this article, we show that the fluid remains non-
linearly stable toward the big bang singularity for small perturbations of
FLRW initial data in spacetime dimensions n > 3 over the sound speed
range 1/(n — 1) < ¢ < 1, which coincides, for n = 4, with the range from
[12] when coupling to the Einstein-scalar field equations is included.

1.1. Conformal Einstein-Euler-scalar field equations

The coupled Einstein-Euler-scalar field equations? for a free scalar field and
a perfect fluid with a linear equation of state

P:cip, cs € (0,1),
are
(1.1) Gy =2T5F + 1), VT =0, VT =0,

where V; and @ij are the covariant derivative and the Einstein tensor, re-
spectively, of the physical metric g;; and

_ _ 1 - _
Ty =VioVio - 535 VioV*s,
(1.2)

_ 1 2 _ 2\ /.2
T =y ( ;Cs@—mvj + gy oD,
S

for Py > 0, are the energy momentum tensors of the scalar field and the
fluid, respectively. Here, we use the Frauendiener-Walton formalism [33, 72]
to represent the fluid by a non-normalised vector field V?, and we employ
the notation

(1.3) Vi=gi,;VI, o°=-V,V.

The divergence free condition on each energy momentum tensor in (1.1)
implies the scalar field and fluid matter equations

(1.4) 036 =0,
éijk?i‘?k =0,

4See Section 2.1 for our indexing conventions.
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where [ = g" @i@j is the wave operator and

N 383 +1 V]ka/’

(1.6) 5ljk C% )

+ V'Gik + 25"V j)-
For later use, we write the Einstein equations, see (1.1), as
(1.7) R@'j = 2?@?@ + Tij,

where R;; is the Ricci tensor of the metric g;; and

. 1+¢ 5o o -} N\ 4y
(18) T = 2P0( Cg v VZVJ + mgij)v s// s,
Here, the dimensionless parameter ¢, is the speed of sound and the positive
constant Py > 0 has the dimension of pressure. The physical fluid pressure
P, density p and normalised fluid n-velocity @' can be calculated from V*

via the expressions

1.9 P =Py %, =0 %, u'=
(1.9) 00 r="2" u

241 PO 241 . "_/7,
?.

Before we discuss the main results, we first reformulate the Einstein-
Euler-scalar field equations in a way that will be more favorable for the
analysis carried out in this article. Following [13], we replace the physical
metric g;; with a conformal metric g;; defined by

(1.10) gij = 2% gi;,

where @ is, for now, an unspecified scalar field, and for the remainder of the
article, we assume that the spacetime dimension n satisfies n > 3. Then,
under the conformal transformation (1.10), it is well known that the Ricci
tensor transforms according to

(1.11) Rij = Rij—(n—2)V;V;®+(n—2)V;®V;®—(Oy@+(n—2)| V) gy

where V; is the Levi-Civita connection of the conformal metric g;; and as
above, L, = ¢g”V;V;. For use below, we recall that the connection coeffi-
cients of the metrics g;; and g;; are related by

(1.12) 0% =T = ¢ (ga Vi@ + g Vi® — g;;V,®).
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Now, using (1.11), we can express the Einstein equations (1.7) as

—2R;j =—2(n—2)V;V;® +2(n —2)V,;dV;®

(1.13) \ )
- 2(‘:’9(13 + (n - 2)|V(I>|g)glﬂ - 4VZ¢V]¢ - QTU.

Also, by introducing a Lorentzian background metric g;; and letting @,
and ;" ; denote the associated Levi-Civita connection and connection coef-
ficients, we can write the scalar field equation (1.4) as

§7DiD¢ — g7 (T — T+ Ci* Dy = 0,
where

1
(1.14) Cif; =T% — 3t = ngl (Digji + Djgi — Digij)-

It is then not difficult to verify using (1.10) and (1.12) that the scalar field
equation can be expressed as

(1.15) 99D D = X*Dpdp — (n —2)g" DD ¢,
where

ij 1
(1.16) XFi= g0 = igjgkl(zgigjl — D19ij)

or equivalently as
(1.17) Oy6 = —(n — 2)V'OV; 0.

Note that, here and below, all indices are raised and lowered using the
conformal metric, e.g. VF® = ¢F'v,®.

We proceed by fixing the scalar field ® in the conformal transforma-
tion (1.10) up to a constant scaling factor A by

(1.18) d = Ao,

We also replace the scalar field ¢ with a scalar field 7 defined via

1

(1.19) T=e% < ¢=——In(7),
(0%

where

(1.20) yo 2=N(—2)

Aln —2)
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With this choice of ®, we note that

222 (n—2)
e2<I> _ 7_—2)\/a — 7—2—)\2(71.—2)’

and, by (1.17), that ® satisfies the wave equation
(1.21) O0,® + (n — 2)V'OV,;® = 0.

Using (1.18)—(1.20) to replace ® and ¢ with 7 in (1.13) and (1.17), we see,
with the help of (1.21), that

2-N(n—-2)(n—-1)\ _ _
I
and
2-Nn-2)(n-1) _;
(1.23) Oy1 = 2= (-2 T V'TV,;T.
Choosing now
2

and defining conformal fluid variables V* and v? via
(1.25) Vi=V' and v?=-V;V'

respectively, we find, with our convention of using the conformal metric
to raise and lower indices of conformal quantities while using the physical
metric to raise and lower indices of physical variables, that

Vi=gi;VI =e*®g;;VI = 2*V; and 0% = -V, V' = %02,
and note that the relations

2—-M(n—-2)(n-1)
2—X(n—2)

2

=0, a=-An-2) and ** =77z

(1.26)

hold. Using these relations and the conformal variables {g;;, V¢ 7}, a short
calculation shows that we can express the tensor (1.8) as

1 + 62 1— 02 2-1 _(+cd)
s, —2 s 2 (n_2) 2
5 v ‘/ZV7 + 29ij>7— sy Sy

c2 (n —2)c?

(1.27) T = Tij = 2P0<
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and the conformal Einstein equations (1.22) and scalar field equation (1.23)
as

(1.28) Rij = 771V, V74T
and
(1.29) 0,7 =0,

respectively. Furthermore, with the help of (1.12), it is not difficult to verify
that the Euler equations (1.5) can be expressed in terms of the conformal
variables {g;;, V', 7} as

. 1 .
(1.30) aljkVin = — QTflaljk(éfVlT + 5{%7 — gkmgileT)Vl

where
, 2 32 +1 Vvt , ,
(1.31) aly = rDal, = 502 % +V'gjx + 20" 1V}
S
Noting that a’;), satisfies
Qijk = Akij,

we find that

aijk(@leT + 5lkvi7' — gkmgilva)Vl :akjkViViT + (al-jk - akji)VkViT
2(pn—1) -1 ,
CS

With the help of this identity, we see, after rearranging, that the equa-
tions (1.28)—(1.29) and (1.30) can be expressed as

(132) Gi]’ = T_lviVjT + 2’1—;-1;1,
(1.33) Uy =0,
2
i o Gn-1)—-1 i
(1.34) ajkViV = _—cg(n — 2) T V]V VZ'T,
where

c2-1 14c2 1 +02
Fl T T 2 —2
11] = POTCE("72) v < <C—25U V;‘/j + gw) .
s
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We will refer to these equations as the conformal Einstein-Euler-scalar field
equations. It follows from (1.10), (1.18)—(1.20) and (1.24) that each solution
{gij, 7, V"'} of the conformal Einstein-scalar field equations yields a solution

n—1

(1.35) {gij = T%gzj, ¢ = mlm(ﬂ, Vi= VZ}

of the physical Einstein-scalar field equations (1.1). It is worth noting that
since (1.1) is invariant under the transformation ¢ — —¢, our sign conven-
tion for ¢ that follows from the choice of sign in (1.24) incurs no loss of
generality.

1.2. Explicit model solutions

1.2.1. Kasner-scalar field spacetimes. In our conformal picture, the
Kasner-scalar field spacetimes, which are solutions of the conformal Einstein-
scalar field equations (1.32)—(1.33) with Tgl = 0, are determined by the
conformal metric and scalar field

n—1
(1.36) g=—thdt@dt+ Y t"da' @da® and 7 =t,
A=1

respectively, which are defined on the spacetime manifold M) = Ry x

T"~!; see Section 2.1 for our coordinate and indexing conventions. In the
above expressions, the constants 7, are called Kasner exponents and are
defined by

o 1 /2(n—1) 2(n—-1) . 1 /2(n—1), 2
1. = < — d = = —_ ,
(1.87) 7o P n—2 n_g2 A P n—2 TR

where 0 < P < /(n—2)/(2(n — 1)) and the ¢, satisfy the Kasner relations
n—1 n—1

(1.38) > ga=1 and Y g3 =1-2P
A=1 A=1

Using (1.36)-(1.38) as well as (1.10) and (1.18)—(1.20) to compute the cur-
vature scalar invariants R, RM” and R = gl R, of the physical metric

Juv = tns Juv, it follows from the resulting expressions

2
- n—1 _qn=1_ox _ n—1 _on-1_«
RMVR“V = < ) =20 gnd R= —— 47205 To.

n—2 n—2
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that the Kasner big bang singularity occurs along the spacelike hypersurface
{0} x T*1L.
Noting from (1.37) and (1.38) that

1
(1.39) rA = To,
1

3
|

=
Il

we observe from a short calculation involving (1.36) that

1 / o my
Dg.T’y = m@u< \det(gag)‘g“ 81,3}7) =0.

This shows the (z*) are wave coordinates and that
(1.40) gy, =0

is satisfied, where, here, fly denotes the Christoffel symbols of the conformal
Kasner metric g,,,. We further note via a straightforward calculation that
the Kasner-scalar field solutions (1.36) satisfy

1
|V#

(1.41) VHi = ok,

2
g

On the t = const-surfaces, the lapse N and the Weingarten map induced
by the conformal Kasner-scalar field metric g,, are

7o 1 7o
(1.42) N=tz and (Kz%)= gt—l—T diag (71, ..., n_1),
respectively. The conformal mean curvature is therefore
(1.43) K=t 1%

as a consequence of (1.39), while the physical mean curvature can be shown
to be

_ n—1 7o\, _1_1 _7
1.44 R = ( —)t =
( ) n—2 + 2

When we express a Kasner-scalar field solution with respect to the time

coordinate
1 n—1 + 7“‘70
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and appropriately rescale all the spatial coordinates (z*), that the physical
solution (1.35) corresponding to the conformal metric (1.36) takes the more
conventional form

n—1
§=—dt@di+ Y Phdz* @ dz",
(1.45) At

é = Pn(i) +151n<

’I’L—]._i_fo)
n—-2 2/

where P and ga are all related to 7p and 75 by (1.37). This shows, in
particular, that the constant P can be interpreted as the asymptotic scalar
field strength. Noting that the case P = 0 is excluded by (1.37), it follows that
the special case of vacuum Kasner solutions is not covered by our conformal
representation of the Kasner-scalar field solutions.

Kasner spacetimes where the constants gp are all the same coincide with
FLRW spacetimes. In this situation, we have by (1.38) that

co 1
qA_n—l
and that
o n—2
Pl=\|5/—>
2(n—1)

which we note saturates the inequality | P| < V/(n—2)/(2(n — 1)). By (1.36)—
(1.37), we then deduce that 79 = 74 = 0 and that the conformal Kasner-
scalar field solution simplifies to

(1.46) §=—dt ® dt + dpqdz® @ dzt and F =t

1.2.2. FLRW-Euler-scalar field solution. The Kasner-scalar field fam-
ily of solutions considered in the previous section do not involve a fluid. In
this section, we allow for coupling to a fluid but limit our considerations
to FLRW solutions. These solutions to the conformal Einstein-Euler-scalar
field equations (1.27)—(1.31), which we refer to as FLRW-FEuler-scalar field
solutions, are defined by

n—1

(1.47) §=-*"Vdt@dt+w* ) da @ da®,
A=1

(1.48)

e
Il

t,
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(1.49) V = V0 (1=e)n=1) y=(1-(n=1)c})/(n=2) 5,
where

_ _n- 2& 0 _1;«3 n1(1_e2) =2/((n—1)(1-¢2))
(1.50) w—(l n—lcg(v*) T tw

and cs, Py and V are any constants satisfying ¢, € (0,1), Py > 0 and
V9 > 0. Each of these solutions is well-defined for ¢ € (0,tg), where ¢y > 0
depends of the choice of constants cs, Py and V2, and by (1.9), its fluid
density is determined via

Py _
p= g(v*o) s

S

1+C2
c2

= () (Lhe?) — 22k (1)

Observing that w — 1 as t \, 0, we define

Py _1+ZC§
(1.51) p* — _2(‘/*0) c2 ,

S

which allows us to express w and p as

w= (1 iz 2p*tzé(1—ci)) A=)
(1.52) n—1

p= p*w—(n—l)(l—i—cf)t*%(lJrci)’

respectively.

As can be easily verified from (1.47)—(1.48), the FLRW-Euler-scalar field
solutions satisfy the wave gauge condition (1.40) and (1.41). In terminology
that will be introduced below, (1.41) implies that the coordinates (x*) =
(t,z") used to define the FLRW metric (1.46) are Lagrangian, while (1.40)
shows that these coordinates are wave coordinates, i.e. Uzx# = 0. Both of
these gauge conditions play a pivotal role in our stability analysis.

Irrespective of the value of the parameter V. > 0 or equivalently p, > 0,
we observe from (1.47)—(1.48) and lim;\ ow = 1 that the metric and scalar
field have the same limit as the FLRW-scalar field solution (1.46) at t =
0. This is a manifestation of the before-mentioned matter does not matter
hypothesis.

As discussed above, the main result of this paper is to establish the past
nonlinear stability of FLRW solutions to the Einstein-Euler-scalar field equa-

tions and their big bang singularities for sound speeds satisfying 1/(n—1) <



528 Florian Beyer and Todd A. Oliynyk

¢ < 1. In addition to this, we verify that the “matter does not matter” asser-
tion holds in the sense that we prove that nonlinear perturbations of FLRW
solutions are asymptotic, in a suitable sense, to solutions of the Einstein-
scalar field equations.

1.3. AVTD and asymptotic pointwise Kasner behaviour

In this article, we analyze solutions of the Einstein-Euler-scalar field sys-
tem that are close to one of the FLRW solutions from Section 1.2.2 and for
which the sound speed lies in the range 1/(n—1) < ¢2 < 1. Even though the
spacetimes that are generated by our stability results contain fluids and are
generically spatially inhomogeneous without any symmetries, they do retain
some of the asymptotic properties that characterize the (non-fluid) spatially
homogeneous Kasner-scalar field solutions from Section 1.2.1. For example,
we show, see Theorem 10.1.(d), that spatial derivative terms, the so-called
velocity terms [27, 42], that appear in the dynamical equations become neg-
ligible at ¢ = 0 in comparison to time derivative terms. This behavior is
known as asymptotically velocity term dominated (AVTD) and it implies
that the dynamical equations can be approximated by ODEs close to the
big bang. In agreement with [32], we define that a solution to the conformal
Einstein-Euler-scalar field system satisfies the AVTD property provided it
satisfies the welocity term dominated (VID) equations that are obtained,
up to an error term that is integrable in time near ¢ = 0, from the main
evolution system by removing all spatial derivative terms and by normalis-
ing the time derivative terms. Here, by normalising the time derivatives, we
mean that the evolution equations are put into Fuchsian form as discussed
in Sections 9 and 10.2.

Given that spatial inhomogeneities of AVTD solutions become irrele-
vant at the big bang, it is, perhaps, not surprising that they behave locally
like spatially homogeneous solutions. More precisely, we show, see Theo-
rem 10.1.(d), that the solutions generated from our stability result satisfy
the following asymptotic pointwise Kasner property just as in the non-fluid
case [13].

Definition 1.1. Given a C2-solution (M = (0,t] x U, G, T, V), tg > 0,
of the conformal Einstein-Euler-scalar field equations, where U C T"~! is
open and (z#) = (t,2") are coordinates on M such that t € (0,to], 7 = ¢
and the (z) are periodic coordinates on T"!, we say that the spacetime
(M, g, 7, V) is asymptotically pointwise Kasner on U provided there exists
a continuous orthonormal frame e; = €/'d,, and a continuous spatial tensor
field €7 on U such that the following hold:
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(i) The spatial vector fields ey are tangential to the ¢ = const-surfaces,
le e = e’}@A, and

(1.53) li{l{l)!QtN(t,x) K/ (t, ) — &7 (2)| = 0

for each & € U, where N is the lapse and K;” is the Weingarten map
induced on the ¢ = const-hypersurfaces by the conformal metric g, .
(ii) The tensor field €;7 satisfies £, > 0 and the Kasner relation

(1.54) (") —er7e, 146, =0

everywhere on U. At each point z € U, the symmetry of &7/ (x) guar-
antees that £;7(z) has n — 1 real eigenvalues, which we denote by
ri(z),...,rn—1(x). We refer to these functions r1,...,r,—1 on U as the
Kasner exponents®.

We refer the reader to [13, §1.3] for more information regarding the
motivation and consequences of Definition 1.1.

Given Kasner exponents r1, ..., 7,_1 from the above definition, we define
n—1
n—2 2
1.55 = ::EI7 =P _______( ____)’
(1.55) o ZTA I's 4gA 2(n—1) 7“A+n_2
A=1
and

V2(n—1)(n—2)

(1.56) P:= —
2(n—1)+(n—2)> \_;7A
which we note is well-defined since ¢;/ = X;ll ra > 0. From these formulas,

we deduce that the g satisfy the “standard” Kasner relations
n—1 n—1

(1.57) Z gr =1 and Z @3 =1-2pr%
A=1 A=1

As discussed in [13, §1.3], the quantity P can be interpreted as the asymptotic
scalar field strength.

SNotice that it is more customary in the literature to call the quantities
q1,---,qn—1 defined in (1.55) Kasner ezponents and (1.57) the Kasner relations.
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Assume now that there exist continuous positive functions b and v such
that

(1.58) 2@y z) — b(z)| < @)

for all (t,z) € (0,to] x T*~1. This property is clearly satisfied by the Kasner-
scalar field spacetimes with and without fluids, and we show that it con-
tinues to hold for the entire class of perturbations of the FLRW fluid solu-
tions that are generated from our past stability result; see Theorem 10.1.(b).
Given (1.58), it then follows that solutions that satisfy the asymptotically
pointwise Kasner condition (1.53) will behave pointwise in a manner that
is similar to that of the Kasner-scalar field solutions, c.f. (1.42). Thus,
the asymptotically pointwise Kasner condition provides the sense in which
the perturbed solutions behave asymptotically at each spatial point like a
Kasner-scalar field spacetime.

The second fundamental form Kpq induced on ¢t = const-surfaces by
the physical metric g, is related to the one Kxq induced by the conformal
metric g, via

R\ = 175‘ﬁ1t—1N—1(2tm<A9 2 5AQ).
2 n—2

Because of this, (1.53) and (1.58) imply that both the mean curvatures
associated with the physical and with the conformal metric diverge pointwise
near ¢t = 0, except in the case of FLRW where Kx® vanishes while K%
diverges. Given suitable uniform bounds over the spatial domain U, which we
prove hold for the perturbed FLRW solutions generated by our main stability
result, see Theorem 10.1.(d), asymptotically pointwise Kasner metrics will
have crushing singularities at t = 0 in the language of [28].

1.4. An informal statement of the main stability theorem

The main result of this article is that we establish the nonlinear stability
in the contracting direction of perturbations of the FLRW solution (1.47)-
(1.50) to the Einstein-Euler-scalar field equations in n > 3 spacetime dimen-
sions and for sound speeds satisfying 1/(n — 1) < ¢2 < 1; see Theorem 10.1
for the precise statement of our stability result. We also show that the per-
turbed FLRW solutions are asymptotically pointwise Kasner in the sense
of Definition 1.1, and that they terminate in a big bang singularity, which
rigorously confirms the matter does not matter paradigm for these solutions.
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An informal statement of our stability result is given below in the follow-
ing theorem. However, before stating it, we first discuss synchronized initial
data. Initial data that is prescribed on the hypersurface ¥, = {to} x T"!,
to > 0 will be said to be synchronized if T = tg on Xy,. The purpose of this
synchronization condition is to ensure that the big bang singularity occurs at
7 = 0; see the discussion in Section 5.6 for details. As noted in Remark 5.8,
no generality is lost from restricting our attention to synchronized initial
data.

Theorem 1.2 (Past global stability of the FLRW solution of the Ein-
stein-Euler-scalar field equations). Solutions {g;j, 7,V'} of the conformal
Einstein-Euler-scalar field equations that are generated from sufficiently dif-
ferentiable, synchronized initial data imposed on Yy, = {to} x T ! that
1s suitably close to FLRW initial data exist on the spacetime region M =
(0,t0) x T provided ¢ € (1/(n — 1),1). Moreover, these solutions are
asymptotically pointwise Kasner, the fluid is asymptotically comoving®, and
the corresponding physical solutions {g;j, ¢, V) of the Einstein-Euler-scalar
field equations are past timelike geodesically incomplete, terminate at a crush-
ing big bang singularity at T = 0 that is characterised by curvature blow-up,
and are C?-inextendible through the T = 0 boundary of M.

The restriction 1/(n — 1) < ¢ < 1 on the sound speed has been ob-
served in earlier studies [11, 12] in the spacetime dimension n = 4. In the
terminology of [11], the condition 1/(n — 1) < ¢? < 1 is referred to as the
subcritical regime and in that article solutions to the Einstein-Euler equa-
tions with a Gowdy symmetry’ are constructed by specifying asymptotic
initial data on the big bang singularity and generating solution from this
data by solving a Fuchsian singular initial value problem. The results of [11]
show that there exist families of solutions to the Einstein-Euler equations
with Gowdy symmetry that have big bang singularities. The behavior of
these solutions near the big bang singularity is similar to the solutions we
obtain in this article from our stability theorem. Interestingly in [11], fami-
lies of solutions, under additional assumptions beyond Gowdy symmetry, are
also constructed for the coupled Einstein-Euler equations and for the Eu-
ler equations on fixed Kasner backgrounds in the critical and supercritical

6That is, the spatial fluid vector vanishes at 7 = 0.

It is worth noting here that the Gowdy symmetry is responsible for the sup-
pression of the oscillatory behavior of the fields near the big bang singularity, and
explains why in this work the authors are able to establish the existence of solu-
tions with monotone behaviour near the singularity without needing to couple the
system to a scalar field.
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regimes, respectively, that correspond to the sound speeds ¢ = 1/(n — 1)
and 0 < ¢2 < 1/(n — 1), respectively. What is strongly suggested by the
results of [11] is that the asymptotics of solutions to the Einstein-Euler-
scalar field equations for sound speeds satisfying 0 < ¢ < 1/(n — 1) will
be very different to that of the perturbed solutions consider in this article,
which satisfy the subcritial condition 1/(n — 1) < ¢2 < 1. As we explain in
more detail in Remark 9.2, it is not obvious for Einstein-Euler-scalar field
equations considered here how the dynamics might change in the critical
2 = 1/(n — 1) or supercritical 0 < ¢2 < 1/(n — 1) regimes. We plan to
explore this question in future work.

Remark 1.3. It is worth mentioning here that Theorem 10.1 should be inter-
preted as a past global in space stability theorem since it requires that the
initial data be specified on the entire closed hypersurface ¥;, = {to} x T"~L.
It is straightforward to establish a local in space version of Theorem 10.1 by
adapting the proof of Theorem 11.1 from [13]. Doing so would yield the ex-
istence of solutions to the Einstein-Euler-scalar field equations on truncated
cones domains that (i) are generated from initial data that is sufficiently
close to FLRW on an open subset of ¥ , (ii) are asymptotically pointwise
Kasner, and (iii) terminate in a crushing AVTD big bang singularity char-
acterised by curvature blow-up. We leave the details of the proof to the
interested reader.

1.5. Overview of the proof of Theorem 10.1

The proof our main stability result, Theorem 10.1, is based on an adaptation
of the proof of Theorem 10.1 from [13]. As in [13], our proof of Theorem 10.1
relies on two different formulations of the reduced Einstein-Euler-scalar field
equations, which are used for distinct purposes.

The first formulation, given by (5.48)—(5.56) below, is used to estab-
lish the local-in-time existence and uniqueness of solutions to the reduced
conformal Einstein-scalar field equations in a Lagrangian coordinate system
(z*), which is adapted to the vector field x* = (]VT@)_IV”T, as well as a
continuation principle for these solutions. See Proposition 5.6 for the precise
statement of the local-in-time existence, uniqueness and continuation result.

Here, Lagrangian coordinates mean that in the coordinate system (z*)
the vector field x* is trivialized, that is, x* = 4. The precise definition
of the Lagrangian coordinates (z*) can be found in Section 5.3. For initial
data that satisfies the gravitational and wave gauge constraints, the sys-
tem (5.48)—(5.56) propagates both of these constraints and determines so-
lutions of the conformal Einstein-scalar field equations. An important point
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regarding the wave gauge constraint % g 2D p9vx — Drgu) = 0 is that the
covariant derivative @, is not determined by a fixed Minkowski metric in
the Lagrangian coordinates (z*), and consequently, the Lagrangian coordi-
nates (z#) are not wave coordinates, that is, generically gzt # 0. Instead,
the covariant derivative @, is computed with respect to the flat metric
Qv = 8Hlanaﬁ(9yl5 where the Lagrangian map [#(z) is determined by a so-
lution of the system (5.48)—(5.56); see Section 5.3 for details. The primary
role of the Lagrangian coordinates (z*) is to synchronize the singularity. In
these coordinates, the scalar field 7 coincides with the time coordinate, that
is, 7 =t := 2; see Section 5.6 for details.

While the system (5.48)—(5.56) is useful for establishing the local-in-
time existence of solutions to the reduced conformal Einstein-scalar field
equations and the propagation of the wave gauge constraint % g 2D wor —
Drguv) = 0, it is not useful for establishing global-in-time estimates that can
be used in conjunction with the continuation principle to show that solutions
can be continued from some starting time ¢g > 0 all the way down to the big
bang singularity at ¢ = 0. The system that we do use to establish global-in-
time estimates is formulated in terms of a frame e; = €£'d,,, the connection
coefficients ~;* ; of the flat background metric g, = (‘)ulo‘naﬂ@,,lﬂ relative to
the frame e;, i.e. De,ej = ’yikjej, and suitable combinations of the metric,
scalar and fluid fields and their derivatives:

{9ijk = Digijk, Gijer = DiDjgri, Tij = DiD;T,
Tijk = DiD DT, Wr UF = 0, Wk},

where g;; = el guwvey is the frame representation of the conformal metric,

(n—1)c?

r=t,and WF = £ Wk withf =7 =2 3% and 8 = (_NT@_%-
The first step toward deriving the second formulation of the reduced
Einstein-Euler-scalar field equations that is used to derive global-in-time

estimates is to fix the frame e!’, which we do in Section 6, by first setting

7

el = (- X’Z)_%X“a where x* = &} since we are using Lagrangian coordinates
(z*). The spatial frame vectors ef are then determined by using Fermi-

Walker transport, which is defined by

9(Veyeo,¢5)

Ve,€7 = —
“ g(e()aeo)

to propagate initial data ef|i—, = €} that is chosen so that the frame is
orthonormal at ¢t = tg. The orthonormality of the frame is preserved by
Fermi-Walker transport, which implies, in particular, that the frame metric
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satisfies g;; = 7;;. Once the frame is determined via Fermi-Walker trans-
port, then the back ground connection coefficients ~;* ;j are determined via a
system of evolution equations derived from the vanishing of the background
curvature and identities derived from the Fermi-Walker transport equation;
see Section 6 for details. We note that our use of a Fermi-Walker transported
spatial frame was inspired by the work of [32] in which Fermi-Walker trans-
ported spatial frames played an essential role in the proof of the stability
results established there.

With the frame fixed, a first order formulation of the reduced conformal
Einstein-Euler-scalar fields equations in terms of the frame variables

and

b= (0r*) = (")

is derived in Sections 7 and 9.2, see in particular, equations (9.24)-(9.35).
The metric combination l::ij, which it is related to the second fundamental
form of the conformal metric for the ¢ = const-hypersurfaces, c.f. (7.24),
plays a pivotal role in our analysis. The property that distinguishes I::ij,
as far as the analysis is concerned, is we have no freedom to rescale the
normalized version

kry = tBkry

by any power of t. Our stability proof relies on showing that k;; remains
bounded as t N\, 0, and in fact, we show that 2k;; converges as t \, 0
to a, in general, non-vanishing symmetric matrix €7 satisfying €;/ > 0 and
(er1)2 — €778, + 487 = 0. On the other hand, there is slack in the remaining
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variables in the sense that we can rescale them by certain positive powers of
t. This freedom to rescale these variables is essential to our stability proof.

To complete the derivation of the second formulation of the reduced Ein-
stein-Euler-scalar field equations, we introduce, in Section 9.3, the rescaled
variables

k= (kry) = (tBkr)),
B - tegB’

B _ teg—i—(l—l—cg)egﬁ—(l—l—cg)’

m = (my) := (t“my),
§ = (&ij) := (17 my5),
)= (") = ("),
f=(f1) = (t2ep),
9= (drjm) = (" Barm),
= (1) = (4T ),
W= (W"),
U= (t“Ug),
where the €, ..., e4 are constants. Expressing the first order system (9.24)—

(9.35) in terms of these rescaled variables, see Section 9.4, yields a Fuchsian
system of equations of the form

(1.59) A%dpu + APoyu = —JZIPu + F,

te€o ot+e€r

where

, P pat z T
w = (kpa, mar, Lron, Crint, €13, ot 1, F 040 GQjim, By WS,UZ))
—(0,0,0,0,0, ¢, t5%,0,0,0,, V.5, 0) "

and P is the projection matrix

T M RsM <RsLcM srsl I IcksJ
]P’_dlag(o,éM,éR(SM,é 0% 5M’5T5171 0% 5A,6f5k6j,

Qsisl Qcislem JsJ QQ
686351, 02610l0m, 05,657,536 )
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The purpose of introducing the t-power weights determined by the con-
stants €, ...,eq4 in the variables above is to obtain a matrix A where the
eigenvalues of %(ﬂ + AP are all non-negative. This is essential for our
existence proof. At the same time, we have to ensure that no singular terms
worse than ¢~! appear in (1.59). Both of these requirements necessitates
choosing the constants g, ...,es and the square of the sound speed c? to
satisfy the inequalities (9.103) and —L- < ¢ < 1; see Remark 9.2, Lemma 9.4
and Lemma 10.5 for details. It is also worth noting that the zero in the first
diagonal component of P, which corresponds to the zero eigenvalue block of
%(ﬂ + AT)P, is responsible for the convergence as t \, 0 of 2kr; to a, gen-
erally non-vanishing, matrix €;;. On the other hand, remaining eigenvalues
of %(ﬂ + AP, which are all positive, lead to power law decay, i.e. t* with
a > 0, for the other variables where the decay rates® are determined by the
eigenvalues.

The virtue of the Fuchsian formulation (1.59) is that we can appeal
to the existence theory developed in the articles” [12, 14] to conclude, for
suitably small choice of initial data ug at t = ty > 0, that there exist a
unique solution of (1.59) that is defined all the way down to t = 0 and
satisfies u|;—¢, = uo. The Fuchsian existence theory also yields energy and
decay estimates that provide uniform control over the behaviour of solutions
in the limit ¢ N\, 0. The precise statement of the global existence result for
the Fuchsian equation (1.59) is given in Proposition 10.3.

On one hand, Proposition 10.3 yields the existence of a unique solution
on (0, o] xT" ! to the Fuchsian equation (1.59) generated from initial data'®
uli=t, = up that is sufficiently close to FLRW initial data. On the other
hand, this same initial data generates, by Proposition 5.6, a local-in-time
solution to the the system (5.48)—(5.56) that, after solving the Fermi-Walker
transport equations for the spatial frame fields, determines a solution of the
Fuchsian equation (1.59). By uniqueness, these two solutions must be the
same. The energy estimates from Proposition 10.3 then allows us to conclude
via the continuation principle from Proposition 5.6 that the solution u of
the Fuchsian equation determines a solution of the conformal Einstein-scalar
field equations on (0,#p] x T"~!. Asymptotic properties of the solution to the

8That is the a’s where there is a different a for each of the different groups of
variables.

9The actual existence theory we apply is from [12], which a slight generalization
of the existence theory from [14].

0Here, the initial data for (1.59) is assumed to be derived from initial data for
the reduced conformal Einstein-scalar equations that satisfies the gravitational and
wave gauge constraint equations.
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conformal Einstein-scalar field equations are then deduced from the energy
and decay estimates for u from Proposition 10.3. This completes the overview
of the major steps involved in our proof of the past global nonlinear stability
of small perturbations of the FLRW solutions to the conformal Einstein-
Euler-scalar field equations. The precise statement of this result is presented
in Theorem 10.1 and the proof can be found in Section 10.3.

2. Preliminaries
2.1. Coordinates, frames and indexing conventions

In the article, we will consider n-dimensional spacetime manifolds of the
form

(2.1) My, 1, = (t1,t0] X T,
where tg > 0, 0 < t; < tg, and T" ! is the (n — 1)-torus defined by
(2.2) T ' = [-L, L") ~

with ~ the equivalence relation obtained from identifying the sides of the
box [-L, L]"~! C R*1. On My, 4,, we will always employ coordinates (z#) =
(20, z%) where the (2) are periodic spatial coordinates on T"~! and z° is a
time coordinate on the interval (1, tg]. Lower case Greek letters, e.g. u, v, 7,
will run from 0 to n — 1 and be used to label spacetime coordinate indices
while upper case Greek letters, e.g. A, Q, T', will run from 1 to n—1 and label
spatial coordinate indices. Partial derivative with respect to the coordinates
() will be denoted by 9, = %. We will often use ¢ to denote the time
coordinate 2z, that is, t = x°, and use the notion 9; = Jy for the partial
derivative with respect to the coordinate z°.

We will use frames e; = eg 0y throughout this article. Lower case Latin
letter, e.g. i, 7, k, will be used to label frame indices and they will run from
0 to n — 1 while spatial frame indices will be labelled by upper case Latin
letter, e.g. I, J, K, that run from 1 to n — 1.

2.2. Inner-products and matrices

Throughout this article, we denote the Euclidean inner-product by (£|¢) =
€1¢, €,¢ € RN, and use [¢] = /(£]€) to denote the Euclidean norm. The
set of N x N matrices is denoted by My« n, and we use Sy to denote the
subspace of symmetric N x N-matrices.
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Given A € My« n, we define the operator norm |A|y, of A via

|Alop = sup @,
EERY |§|

where RY = RY \ {0}. For any A,B € Myyxy, we will also employ the
notation

A<B <« ¢rac<etBe, veeRY.
2.3. Sobolev spaces and extension operators

The WHP k € Z>o, norm of a map u € C°(U,RY) with U C T""! open is
defined by

< Z | D% ulP d”_1x> Tif1< p < 00

lullwres@y = § So<g)<k?V ’
max sup |D/u(z)| if p=o0
0<|9|<k zcU
where § = (91,...,9,-1) € Z%;" denotes a multi-index and we write D’ =

851852 X -85211. The Sobolev space W*P(U, RY) is then defined to be the
completion of C*° (U, R™V) with respect to the norm ||- lw.r @) When N =1
or the dimension N is clear from the context, we will simplify notation and
write W*P(U) instead of WHP(U,RY), and we will employ the standard
notation H*(U,RY) = Wk2(U,RY) throughout.

2.4. Constants and inequalities

We use the standard notation a < b for inequalities of the form a < Cb
in situations where the precise value or dependence on other quantities of
the constant C' is not required. On the other hand, when the dependence of
the constant on other inequalities needs to be specified, for example if the
constant depends on the norm ||u|z~, we use the notation C' = C(||ul|z=).
Constants of this type will always be non-negative, non-decreasing, contin-
uous functions of their argument.

We will also employ the order notation from [14, §2.4]. Since we are
working with trivial bundles, we can define this notation as follows: Given
maps

f€C°((0,t0], C*(Br(R™) x Br(R™),RP)),
g e CO(((): tO]v COO(BR(Rm)qu))7
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where tg, R > 0 are positive constants, we say that
ft,w,v) = O(g(t,v))
if there exist a R € (0, R) and a map
f € C%((0,t0], C*°(Bx(R") x Ba(R™), L(R?, RP)))
such that
ftwv) = ftw,v)g(t,v0), [f(tw,w)| <1 and  |D},, f(t,w,0)] S 1
for all (t,w,v) € (0,t0] x B5(R") x Bz(R™) and s > 1. For situations, where

we want to bound f(¢,w,v) by ¢(t,v) up to an undetermined constant of
proportionality, we define

f(t,w,v) = O(g(t, v))
if there exist a R € (0, R) and a map
fe CO((O,tO], C*®(Br(R"™) x BR(Rm),L(Rq,Rp)))
such that
flt,w,w) = f(t,w,v)g(t,v) and |D5, ft,w,v)] <1

for all (t,w,v) € (0,tg] x Bs(R™) x B5(R™) and s > 0.
2.5. Curvature

The curvature of tensor g{ijkl of the background metric g;; is defined via
(2.3) (D, @j]ak = mijklal
for arbitrary 1-forms «;. This definition along with R, = ﬂ%ijkj for the Ricci

tensor fixes the curvature conventions that will be employed for all curvature
tensors appearing in this article.
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3. Reduced conformal field equations

In order to establish the existence of solutions to the conformal Einstein-
FEuler-scalar field equations, we need to replace the conformal Einstein equa-
tions (1.32) or equivalently (1.28) with a gauge reduced version. In the fol-
lowing, we employ a (conformal) wave gauge defined by the constraint

(3.1) X*=o,

where X* is given above by (1.16), and consider the wave gauge reduced
equations

2
—2R;; + QV(in) = —;VZ‘VJ‘T — 2Ty

(1.14)

(3.2) ,
= — ; (@i@ﬂ' — Gikj@kT)*QTij,

which we will refer to as the reduced conformal Finstein equations. Recall
that T;; is defined by (1.27).

For the moment, we assume that the wave gauge constraint (3.1) holds.
Because we establish below in Proposition 5.2 that this wave gauge con-
straint propagates, we lose nothing by making this assumption. Now, by
(1.14), (1.16) and (3.1), we observe that the conformal scalar field equa-
tion (1.33) can be expressed as

(3.3) 979 D;D T = 0.

Further, using (1.14), (1.25) and (1.31), we note that the conformal Euler
equations (1.34) can be expressed as

(3.4) a DV = Gig VoV
J J
where
5 Si(n—1)g 1
(3 5) stl =T cg(n — 2) gj(sgl)T

2

1 (363 +1Vvaeyer

= 2 + gpq)gj(s@l)gpq — D (19s);-

Gathering (3.2), (3.3) and (3.4) together, we have

2
(3.6) —2Rij + ZV(Z-X]-) = —; (@i@jT — Gikj@kT)—QTij,
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(3.7) 97 DD T =0,
al D VP = Qg VeV
We will refer to these equations as the reduced conformal FEinstein-FEuler-

scalar field equations. For use below, we recall that the reduced Ricci tensor
can be expressed as

(3.9) —2R;j + 2V ;X = ¢" Dk Digij + Qij + 29" g Ry ™
where

1
Qij = =g"g™" (Cbigmk@jgnl + 2D190DrGjm — 2D19inDrGjm

(3.10) 2
— 2D19inD j Gmk — 2@igmk@lgjn)v

and, as above, ﬂ%ijkl denotes the curvature tensor of the background metric
9i;. By differentiating (3.7) and employing the commutator formula

Dy DiD ;T — DD ;DT = Ry Dy,
we also note that
(3.11) 99D D ;DT =4" " D GimDiD T — g Ry Dy
4. Choice of background metric

The background metric g;; is thus far arbitrary. Since the conformal FLRW
metric in (1.47)—(1.50) is flat in leading order at ¢t = 0 and we are interested
in nonlinear perturbations of this solution, we are motivated to restrict our
attention to background metrics that are flat, which by definition, means
that the curvature tensor vanishes, that is,

(4.1) Rl = 0.

By the commutator formula (2.3), the vanishing of the curvature implies
that

(4.2) D;,®,] = 0.
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5. Local existence and continuation in Lagrangian
coordinates

Thus far, we have expressed the reduced conformal Einstein-Euler-scalar
field equations (3.6)—(3.8) in an arbitrary frame. We now turn to estab-
lishing a local-in-time existence and uniqueness result for solutions to these
equations along with a continuation principle. We do so following the same
approach as in [13, §5], which involves formulating the conformal Einstein-
Euler-scalar field equations as a first order system of equations in a coor-
dinate frame and then solving it in Lagrangian coordinates. Because the
modifications required to adapt the local-in-time existence and uniqueness
theory from [13, §5] for the Einstein-scalar field equations to allow for cou-
pling with the Fuler equations are straightforward, most of the proofs in
this section will be omitted and we refer the interested reader to [13, §5] for
the details.

Following [13, §5], we fix the coordinate frame by introducing coordinates
(#) = (2%, #1) on a spacetime M;, 4, of the form (2.1), and we assume that
the components of the flat background metric ¢ in this coordinate system,
denoted g,,,, are given by

(5.1) duv = N 1= —0460 + 6501 dra.

In this coordinate frame, the Levi-Civita connection of the background met-
ric coincides with partial differentiation with respect to the coordinates (z#),
that is, Cbu = éu' Using this, we find, with the help of (1.14), (1.27), (3.5),
(3.9) and (4.1), that the reduced conformal Einstein-Euler-scalar field equa-
tions (3.6)—(3.8) are given in the coordinates (*) by

0B A 5 2 A A AL .
(52) g Baaaﬁg/u/ + Quy == _; (8uay7' - ]._‘7“,877') - 2TNV’
5.3 §°%9,057 = 0,
5
(5.4) 87,,0,V" = G, V'V,

where 7 denotes the scalar field 7 viewed as a function of the coordinates
("), guv are the components of the conformal metric g with respect to the
coordinates (&*), T, = A (5“@/)\ + &,QW\ - é,\gw,) are the Christoffel
symbols of g,

A~

Qw/ = gaﬁgaé (éugaaéugdﬁ =+ 2&5?]“630191/0 - 2(§Bguééagua

| =

(5.5) R ) k )
- 26ﬁguéaugoa - Qa,ugoaaﬁgué)a
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~ 1—|—C2 PPN 1—62 . . 2c§:12 A_(1+2(‘.§)
(5.6) Ty = 2P0( Cg sy V.V, + mglw)ﬂ:s(n I A

with V2 = —gu,,f/“f/%

3241V, VY

(5.7) T =

+ V’yguy + 26FY(VV;,L)

and

- =D -1 5 .
Guw/:_T C%(n—?) gu(lﬁ )7‘

5
132 +1VeVFh N A -
( 2 72 +9 B)gu(vav)gaﬁ_a(vng'

(5.8)

2

We further observe from (1.14) and (1.16) that the coordinate components
of the wave gauge vector field X, denoted X7, are given by

(5.9) X7 = g1,
5.1. Initial data and constraint propagation
On the initial hypersurface
Sty = {to} x T" 1,

we specify the following initial data for the reduced conformal Einstein-
Euler-scalar field equations (5.2)—(5.4):

(5.10) Guvls, = Guos
(5.11) Doduvls,, = Jus
(5.12) g, =7
(5.13) o)y, =7,
(5.14) v 5, = VH

Since we want solutions of the reduced conformal Einstein-Euler-scalar field
equations (5.2)—(5.4) to also satisfy the conformal Einstein-Euler-scalar field
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equation (1.32)—(1.34), the initial data will need to be chosen so that it
satisfies the constraint equations

(5.15)
A 1~ - -
Ty (G‘“’ — - VAVYT — 2TF1“”> . = 0, (gravitational constraints)
7 ‘0
(5.16) XH S 0, (wave gauge constraints)

where G* and ﬁu are the Einstein tensor and Levi-Civita connection of
the conformal metric §,,, respectively, and 7 = di° (i.e. f, = 62). As
established in Proposition 5.2 below, solutions of the reduced conformal
Einstein-Euler-scalar field equations that are generated from initial data
satisfying both of these constraint equations will also solve the conformal
Einstein-Euler-scalar field equations.

Remark 5.1. The geometric initial data on %y, is {g,X,#,+, V} where g =
gAQd.%A@)d:i"Q is the spatial metric and K = Kprodit@dz® is the second fuqda-
mental form, which are determined from the initial data {g,., g, 7,7, V*}
via

. 1.
(5.17) gra =gdaq and Kpq = ﬁ(g/‘g — 2D(abg)),

respectively. Here,
o 2 A
by =gon and N7 = —ggp + b by

define the shift b = bydi® and lapse N, respectively, Dy denotes the Levi-
Civita connection of the spatial metric gpq, and we have used the inverse
metric gh*? of grg to raise indices, e.g. b* = g"%bg. The importance of the
geometric initial data is that it represents the physical part (i.e. non-gauge)
of the initial data. Moreover, the gravitational constraint equations (5.15)
can be formulated entirely in terms of the geometric initial data. On the
other hand, it is always possible for a given choice of geometric initial data
{g,K, 7,7, V} to choose the remaining initial data so that the wave gauge
constraints (5.16) are satisfied; see [13, Rem. 5.1] for details.

Proposition 5.2. Suppose §,,,7 € C3(My, 4,) and V* € CY( My, 4,) solve
the reduced conformal Einstein-Euler-scalar field equations (5.2)—(5.4) and
the constraints (5.15)—(5.16), and let

(cg—l) 1+c§ 1 + C2
AFl_ ~e2(n— A_cz. s1/—2¢ Y P
T = P ( TV VMVV"‘QMV)'
S
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Then g, T and G satisfy the conformal Finstein-Fuler-scalar field equa-
tions

Gu =771V, Vi + 210 Oy =0,

p
(5.18) sy A1) -1

. y 1t s
&7,V V" = 2= 9) TV, VIV,

and the wave gauge constraint X* =0 in My, 4.

Proof. By a straightforward calculation, we find that the divergence of the
tensor TE,} is given by

C (2-1) . 3241 .
SPO72L2(,L 2)V c2 é’)’yuv’yvﬂ'

2
- AFI_(C_l) G puaEl 1
V”THV = —Cg(sn — 2)7' V'MTTALV + 5 g

With the help of (5.4), i.e
(5.19) &7, V., VY

this becomes

2
& Fl (c5=1) . 1eumrl
VHT, ——2(‘9”_2)7' VI,

1+Cs (c2-1) | 3c241 2(n_1)_1
P cg(n— 2)V 7 s—
9c2 10T c2(n—2)

A

(c2-1)  14c2 1+ 02 R R 1— C2 R
-1 2 (n_2 2 —2 ~ A
— T POT 5 ( ) ‘/ 2 < S ‘} ‘IM‘/'V Cg(ﬂ _52) g;u/> ‘7“7‘

From this identity and (5.3), i.e
(5.20) Oy7 = —XHV 7,

we observe that

(5.21) V(77 IVHVYE 4 27T
T2V FVIVYE + IV, VRV R — 2TV 2T

A~ ~

= #7IVYV VHE + 7+ RN 7 — 771V, 7 (FTIVAVY R 4+ T
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: = —FTIVY(XIV,7) — 271V, 7 (=R + 2 TIVIVY R 4 T,

5.22 FIVI(XIY, 'Vt (—RM 4 IV R 4 TR
Next, expressing (5.2) as

(5.23) — 2R, + 2V, X,y = =277V, V, 7 - 2T,

we have, after rearranging, that
N A \ 1. - 1~ A A~ o
G = VUXY) — SV X + S XOVa In(R)gh + 77 VIVYE o+ 27T,

where in deriving this we have again used (5.20). Taking the divergence
of this expression, we find with the help of the second contracted Bianchi
identity V,G* = 0 and (5.22)—(5.23), that

NP 1. ~ 4 1 N N
0=V, VHEX") — 5 VIVXE 4 SV (XY, In(7)) — FIVY(XAV 1)
AVl )

Re-expressing this as

1 o, 1. . 1 o C
0 :§DQX” + §R”MX“ + va (XFV,In(7)) — 77V (XHV,7)
—#IV, VXY,

we see that X* satisfies a linear wave equation on My, ;. Since the con-
straints (5.15)—(5.16) imply by a well known argument, e.g. see [71, §10.2],
that X# and 50X # vanish in 3,, we conclude from the uniqueness of solu-
tions to linear wave equations that X* must vanish in M, 4,. By (5.19), (5.20)
and (5.23), it then follows that the triple {g,,,7, V*} solves the conformal
Einstein-Euler-scalar field equations (5.18) in My, 4, which completes the

proof. O
5.2. First order formulation

Following [13, §5.3], we introduce first order variables

(5.24) houws = Opfuw,  Dp =0, and 1y, = 9,07,

and define a vector field x* via

. I
(5.25) X' = Wvﬂv
g
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which we note satisfies x(7) = 1. We will always assume that o* is timelike
(i.e. |@|§ < 0) in order to ensure that y* remains well defined and timelike.

Carrying out the same computations as in [13, §5.3], it is straightforward
to verify that the conformal Einstein-Euler-scalar field equations (5.2)—(5.4)
can be cast in the first order form

(5.26) BN Oahgy = X <QW t3 (@) =T 85) +2TW>’
(5'27) B/\ﬁaéawﬂp = _XAgaggﬁgiluaéwaﬁa

(5.28) BM9,25 =0,

(5 29) Xaéocgul/ = )A(ailoeuua

(5.30) X% 0ay = X Wap,

(5.31) X0 = X"2a,

(5.32) 37,0, VY = Gl VIV,

where

(533) B/\,Ba _ _X)\g/o’a _ Xﬁg/\a + A)\,B)A(a

and 2, should be interpreted as being the derivative of 7, i.e.
(5.34) 2, = 0,7
5.3. Lagrangian coordinates

Following [13], we introduce Lagrangian coordinates (z*) adapted to the
vector field x® and consider a transformed version of the system (5.26)—
(5.32). The primary purpose of doing so is that the Lagrangian coordinates
allow us to use the scalar field 7 as a time coordinate, which synchronizes
the singularity; see Section 5.6 below for details.

The Lagrangian coordinates (x*) are defined via the map

(5.35) ot = lu(l‘) = ggo,to (t0>$A)a V(wo,xA) € Mt17t07

where Gs(2*) = (G4 (21)) denotes the flow map of ¢, i.e.

%Q?(i’)‘) = X“(gs(;ﬁk)) and g/ol(ik) s
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We note that the map ¢# defines a diffeomorphism
[ Mt17t0 — Z(Mthtﬂ) C M—OO,to

that satisfies 1(X;,) = X4, so long as the vector field x* does not vanish
and remains sufficiently regular. In line with our coordinate conventions, we
often use t = 2 to denote the Lagrangian time coordinate.

Remark 5.3. As we show below, by formulating the reduced conformal Ein-
stein-scalar field equations in Lagrangian coordinates, the Lagrangian map
[ becomes an additional unknown field that needs to be solved for. The
local-in-time existence theory developed in Proposition 5.6 will then guar-
antee that [* exists and is well-defined on a spacetime region of the form
My, 4, for tq sufficiently close to ty. Moreover, the continuation principle
from Proposition 5.6 will ensure that I# can be extended to domains of the
form M. ;, with ¢] <t provided the full solution to the reduced conformal
Finstein-scalar field equations in Lagrangian coordinates satisfies appropri-
ate bounds. In this way, the local-in-time existence and continuation theory
from Proposition 5.6 determines the domain of definition of the Lagrangian
map [*.

By definition, I* solves the IVP

(5.36) Aol = X,
(5.37) 1M (to, 2™) = dhto + oha™,

where, here and below, we use the notation

(5.38) f=fol

to denote the pull-back of scalars by the Lagrangian map [. In the follow-
ing, symbols without a “hat” will denote the geometric pull-back by the
Lagrangian map [. For example,

AV (5.36) ~ v
(5.39) X =9guR"="9096 = o,
(5.40) T=1,
(541) Guv = gggﬁg(Jéﬁ’

and

(5.42) vi= gLy,
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where
(5.43) gt =0,"
is the Jacobian matrix of the map I* and

(5.44) (9) = (g5~

is its inverse.
Recalling from [13, §5.4] that the Jacobian matrix 4 satisfies the IVP

(5.45) a9k =9, 7%,
(5.46) GH(tg, ™) = 00%" (tg, ™) + 6261,
where
1 P AUT A0 A
j)\_’mg g Wx—9 g harwlo
—'g
5.47 =
( ) 1 ~aT ABw N A ~afla oA AL
W(—g G harwbalp + 2§ 0atdrg) §7 s |,
Ylg

we see from transforming (5.26)—(5.32) into Lagrangian coordinates and
combining it with (5.36) and (5.45) that the system

~ \Ba A N 2, A .
(548)  BG30,ho = 93 (Qu + = () — Luty) 428 ),
(549) BABaggawwAB,ua = _gégaagﬁﬁﬁmyé@aﬁ?
(5.50) BN G10,25 =0,
(5'51) 30@”/ = 8ﬁauw
(5'52) aﬂﬁu = gg@am
(5.53) A7 = 95 2a;
(554) éﬁygg&yzy = QAWVZVKV,
(5.55) w9l =975,
(5.56) ol = X+,

defines a first order Lagrangian formulation of the reduced conformal Ein-
stein-Euler-scalar field equations in the variables

{ﬁ,@uw@,@uaéﬁaguw@m T, K“? gl;? lﬂ}'
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It is worth noting that compared to the Lagrangian system considered in
[13, §5.4], the differences are the additional term 2T,, in (5.48) and equa-
tion (5.54) for the Lagrangian fluid variable VH. As far as establishing the
local-in-time existence of solutions, the term 2T, in (5.48) causes no ad-
ditional difficulties as it is a non-principal term that depends smoothly on
the Lagrangian variables. Furthermore, the evolution equations (5.54) is
straightforward to handle since it is manifestly symmetric hyperbolic as
long as the Lagrangian coordinates do not breakdown (i.e. ¢, remains non-
singular) and the vector field V* remains timelike.

5.4. Lagrangian initial data

With the help of (5.24), (5.34), (5.37), (5.43) and (5.46), we observe that
the reduced conformal Einstein-Euler-scalar field initial data (5.10)—(5.14)
generates the following initial data for the Lagrangian representation (5.26)—
(5.32):

(5.57) "y, =",

(5.58) 9ils, = 9%,

(5.59) % 5. = VH,

(5.60) Tl =7

(5.61) Uuly, =0T + 5,007,
(5.62) waaly, = Oadaf,
(5.63) ooy, = Oat,

(5.64) @AO‘Z% = OAT,

R L. C. .
Woo|y, = g0 (26°20a7 + §0r0at),

(5.65) Sy

(5.66) Zuly, =0T + 5,007,
(5.67) duls, = Guu

(5.68) hojwls, = 083w + 0500G .

(5.69) " = okt + oha,
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(5.70) o = G (693 + 620nF),
. 1,
(571) XM = W@“,
g

(5.72) b = §oxH + ook,
and

° 1
(5.73) (g = @6%55‘ — ShX™) + o k.

Remark 5.4. On the initial hypersurface ¥y, = {t¢o} x T""!, our choice of
initial data implies that

5.74

) VHg, = (v,

5.75) Qotly, = XM0u =1,
to

5.76) 5, = gggaﬁgf,

5.77)
gy ly,, = 959890 (839ap + 8302Gas) + das (97590 + 9590 75)

Gpv

(
(
(
(

and

(5.39)

(5.78) Xy =700,

S

where gl = I, -
Remark 5.5. By (1.40) and (1.46), it is clear that the FLRW solutions (1.47)-
(1.50) determine the initial data

; 807—

m
{9y S T IS, s Vs, Y rLRW

:{guu(t0)7 atguv(t0)> to, 17 ‘u/“(to)}

DI aog,w/

on ¥, and this initial data satisfies both the gravitational and wave gauge
constraints. Furthermore, since these solutions satisfy (1.41), they are al-
ready in the Lagrangian representation.

5.5. Local-in-time existence

We are now ready to state, in the following proposition, a local-in-time
existence and uniqueness result and continuation principle for solutions of
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the system (5.48)—(5.56). We omit the proof since it is essentially the same
as the proof of Proposition 5.5 from [13].

Proposition 5.6. Suppose k > (n —1)/2 + 1, to > 0, and that the ini-
tial data V* € H¥(T""1R"), + € H¥2(T* ), + € HFY(T* ), g, €
HMY T LS,) and g, € H¥(T"L,S,) is chosen so that the inequali-
ties |V|§ < 0, det(guw) < 0 and |1f')|§ < 0 are satisfied where v is defined
by (5.70). Then there exists a t1 < to and a unique solution

k
(5.79) W e () C9((t, to], HY (T 1)),
=0
where
(580) W = (ﬁﬁuu»@ﬁy,éﬁ»ﬁuuv@ua'r, Kuvglyt?gu%

on My, +,, to the IVP consisting of the evolution equations (5.48)—(5.56) and
the initial conditions (5.57)—(5.68). Moreover, the following properties hold:

(a) Letting Wo = Wls,, € HF(T"Y) denote the initial data, there exists
for each t. € (t1,to) a & > 0 such that if #o € H*(T" ') satisfies
|# o — Wollgr -1y < 6, then there exists a unique solution W e
ﬂ?:o CI((ts, to), H*I(T™ 1)) of the evolution equations (5.48)(5.56)
on My, 1, that agrees with the initial data W on the initial hypersurface
Eto-

(b) The relations

(5 81) 8ag;w = gg&ﬂuw 8&@# = gg@ﬁua OaT = ggéﬁa
ﬁ,u = z/ﬂ gﬁ = al/luv
hold in Mthto'
(c) The triple {gu = gggaggf,r, VE = gﬁﬁ”} determines a solution of
the reduced conformal Einstein-Euler-scalar field equations

2

~2Ry + 2V (X, = ==V, VT = 2Ty, g™ DeDpT =0,

(5.82) 2
. -1)—-1

aljkvivk — _M

Cs

-1 i
iV il
cg(n—Q) T V;V'VT



(d)

(¢)

()
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on My, 1, that satisfies the initial conditions (5.74), (5.60) and (5.75)—
(5.77), where

14+ C2 B _ 62 2-1 _ (+e2)
. ER Ve QVZVJ 4 —5292.].)7%3(7172)‘/ o2 ,
2 (n —2)c?

1
X7 = 59””9'”(2@“91,)\ - @)\guu)’

Tyj = 2Ry

and D, is the Levi-Civita connection of the flat metric g,, = ggnaﬁg,[f
on Mthto .
The scalar field T is given by

(5.83) T=t—tg+7+

in My, 1, while the vector field

(5.84) Xt = N Hr
satisfies

(5.85) X" =6b

in My, -

If the initial data {éw,i]w,f’,%,f/“} also satisfies the constraint equa-
tions (5.15)~(5.16) on ¥, then the triple {g,.,T,V*} solves the con-
formal Finstein-Euler-scalar field equations

1
G = —VIV ' + 207" Oy =0,
T

(5.86) 2
cs(n—1)—1 _,
at,,V,VFf = _—scg(n Y TV, VIV, T,
and satisfies the wave gauge constraint
1
(5.87) X7 = 5gﬁ“fg“(z@ugyx — Drguw) =0
m Mt1,to'
If
(5.88) max{ sup det(gu,), sup ]V7'|3, sup |V\3} <0
Mtl,to tq,tg t1,tg
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and

(5.89) sup (HQW(t)HWM(TH) + 110G (D) [ wrr.oe (Tn 1)

t1<t<to

FNVEE lwroe (20 1)+ 1D x> 02,00 o1,

+ 10D Ol o)) < 0,

then there exists a t] < ti such that the solution W can be uniquely
continued to the time interval (t7,%o].

5.6. Temporal synchronization of the singularity

The temporal synchronization of a big bang singularity requires the intro-
duction of a time coordinate whose level set at a particular time, say 0, co-
incides with the spacelike singular hypersurface that defines the singularity.
In [13], the scalar field 7 was employed as a time coordinate to synchronize
the big bang singularity at 7 = 0 for the Einstein-scalar field equations.
Here, we again use the scalar field as a time coordinate 7 to synchronize
the singularity at 7 = 0, and it is this use of 7 as time that is the main
motivation for the use of Lagrangian coordinates in the previous section. As
is clear from Proposition 5.6.(d), 7 will coincide with the Lagrangian time ¢
if and only if the initial data 7 = tg on the initial hypersurface ¢t = ty. Now,
in general, we cannot assume that 7 is constant on the initial hypersurface
if we want our results to apply to an open set of geometric initial data. To
remedy this, we proceed as in [13]; namely, if 7 is not constant on the initial
hypersurface ¥;,, but is close to constant, say 7 = to+p in ¥, with p a sufhi-
ciently small function, then we evolve 7 for a short amount of time to obtain
a solution {g,,, 7, V#} of the conformal Einstein-Euler-scalar field equations
on My, 4, for some t; <ty with t1 close to ty. We then find a level surface
of 771(t}) for some t} € (t1,to) that satisfies 771(¢}) C (t1,t0) x T*! and
77 1(ty) = T" 1. By replacing X, with 771(¢}), we obtain a hypersurface
771(t5) =2 T ! on which 7 is constant as desired. This construction is made
precise in the following proposition. We omit the proof since it follows from
a straightforward modification of the proof of Proposition 5.6 from [13].

Proposition 5.7. Suppose k > (n —1)/2 +1, to > 0, the initial data
F=to+p, p € HFTY), + € HELU(T ), Vi e HY(T ! RY),
Juv € HY(T"=LS,) and Ju € HE(T™L'S,,) is chosen so that the in-
equalities det(gu,) < 0, |V]§ < 0 and 523 < 0 hold and the constraint
equations (5.15)—(5.16) are satisfied, and let {gAF,KAF,%,%,f/“} denote the

v
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geometric initial data on ¥y, = {to} x T?~! that is determined Jrom the ini-
tial data {guw, Gu, T = to + p, 7, V*} via (5.17). Then for any § > 0, there
exists a § > 0 and times 1] < t§ < to such that if ||pl| grs>(rn-1y < 0, then:

(a) The solution # from Proposition 5.6 to the IVP consisting of the evo-
lution equations (5.48)—(5.56) and the initial conditions (5.57)—(5.68)
exists on My; 4, .

(b) The triple {gu = gggaﬁgﬁ,n Vi = VY determined from the solu-
tion W wvia (5.80) defines a solution to the conformal Einstein-Euler-
scalar field equations (5.86).

(¢) The map

T (tht) x T —SRxT" ! (t,2) — (£,%) = (t + p(z), 2)
defines a diffeomorphism onto its image and the push-forward {g,, =
(V@) o, T = W, VH = (U, V)H} of the solution {g.,T,VH} by this

map determines geometric initial data {;gAg,ﬁAgﬂg’, 7 V#} on the hy-
persurface X = {t§} x T ! satisfying T =t and

18as — gasllgesi(re1) + Koz — Kas| g1y

+ 118 = Fllgrraqen-ry + 1T = FHllgpers a1y + [V* = V| gren-ry < 8.

Remark 5.8. Given the geometric initial data {gAE,f{AE,?—, 7 f/“} on X
from Proposition 5.7, we can always solve the wave gauge constraint on ¥

by an appropriate choice of the free initial data'! {N,bj,N,bs}. Because of
this, we lose no generality, as far as our stability results are concerned, by
assuming that the initial data (5.10)—(5.14) satisfies the gravitational and
wave gauge constraint equations (5.15)—(5.16) along with the synchroniza-
tion condition 7 = ¢y on the initial hypersurface ¥;,, which by (5.83) implies
that

(590) T=t in Mtl,to'
6. A Fermi-Walker transported frame

In the calculations carried out in this section, we will assume that {g,,,, 7, V#}
is a solution, which is guaranteed to exist by Proposition 5.6, of the con-
formal Einstein-scalar field equations (5.86) in the Lagragian coordinates

1Tt is worthwhile noting that this choice of free initial data will, in general, be
different from the lapse-shift pair computed from restricting the conformal Einstein-
Euler-scalar field solution {g,,,7,V*} from Proposition 5.7 to .



556 Florian Beyer and Todd A. Oliynyk

(z*) that satisfies the wave gauge constraint (5.87) along with the slicing
condition (5.90). A difficulty with the Lagrangian coordinate representation
is that it is not suitable for obtaining estimates that are well behaved near
the big bang singularity, which is located at ¢ = 0 in these coordinates. In
order to obtain estimates that are well behaved in the limit ¢ \, 0, we will
instead use a frame representation of the conformal metric given by

_ M v
Gij = €; 9w,

where ¢; = €!'d,, is a frame that is to be determined following the same
approach as in [13, §6], which, in turn, was inspired by [32]. In the following,
we take all frame indices as being expressed relative to this frame, and so in
particular, the frame components e! of the frame vector fields e; are

(6.1) el =4l

)

To proceed, we need to fix the frame. We do this by first fixing e via

_1 (5.84) ~
(6.2) co=(=Ixlz)"2x = —pBVr
where 3 is defined by
(6.3) B=(=|Vr]})e,

which means that the coordinate components satisfy
(6.4) el = Byt = 5_158.
It follows that eg is normalized according to

900 = g(eo,e0) = —1.

We then complete ey to a frame by propagating the spatial vector fields e
using Fermi-Walker transport, which is defined by

9Veye0,¢5)

6.5 Ve€J = —
(6:3) / g(eo, ep)

As demonstrated in [13], this, after an appropriate choice of the spatial frame
on the initial hypersurface, yields a frame that is orthonormal with respect
to the conformal metric, that is,

(6.6) 9ij = glei e5) = mij = —6,07 +6{63 1.
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By definition, the connection coefficients I';*; of the metric g;; and ~;*;
of the metric g;; are determined by

(6.7) Veej=Ti"er and Dee; =i"ex,

respectively. These connection coefficients are related by (1.14), and is was

established in [13] that the connection coefficients oF 1 1% and 7% can

be expressed as

(6.8) 10" = =B84 (899" + 8566) (DD — CF1D,T) — CoPy,

1y y
(6.9) v = 50700 Digjr and "o = —6"1678Digy + 0" L,

respectively.

In the following, we view (6.8) and (6.9) as determining the background
connection coefficients 0¥ s v1% and 7% (. The remaining background con-
nection coefficients v;*; will be determined by a transport equation. To
derive the transport equation, we recall that the background curvature is
determined via

(4.1)
Rijit = e;(i'k) — ei(v'e) + ™1Vt — 4 "k m — (™ — %) Ym e = 0,

which yields, see [13] for details,

(6.10)  0vi®s = B(er(*5) — vt skt + 10 viF + (o't — vto) vk ).
From (6.4) and

(6.11) e =es(t) = es () = gler, V) = B Lg(eo, e1) = 0,

we observe that the evolution of the spatial frame e; is governed by
(6.12) et = Bvo” 1 —v’0)ed.

Finally, for use below, we note that the derivative of (6.3) is given by
(6.13) ei(B) = Vi = BBVFTV,Vir = =828 (DD — Cilv D7)

where in deriving the third equality we used (1.14), (6.1) and (6.2).
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7. First order form

We now turn to the construction of a frame representation for the reduced
conformal Einstein-Euler-scalar field equations in first order form. Our ul-
timate goal is to derive a Fuchsian formulation of the evolution equations,
which can be used to establish the existence of solutions up to the big bang
singularity at ¢ = 0. The derivations presented in this section follow closely
those from [13, §7].

7.1. Primary fields

Following [13, §7], we begin by deriving a set of first order evolution equations
for the primary fields

1
(7.1) 9ijk = CDigjk, Tij = @i@jT and Wk = ¥Vk,
where
(n=1)c2-1 . 4
(7.2) f = T n—2 Bcs‘

Once that is done, we then derive evolution equations for the differentiated
fields

(7.3) Gijkl = Digjkt,  Tijk = DiTjr. and  Ug = D W*.

The above choice for £ turns out to be the optimal choice for our analysis
and is also consistent with the explicit model solution (1.47)—(1.49) for which
B =a""! and 9, = Bey and therefore WO = V9 = const and W! = 0.

In terms of the variables (7.1) the tensor T;; defined by (1.27) becomes

2 M/ . M/ . 2 — n—1)c? 2
s YViVVy s —————= 7 _(14c¢ - Hz
1 + C + 1 — C - (n—3)+(n—1)c B E s

7.4) T;; = 2P, ( y
(7.4) Ty 0 c? w2 (n— 2)039” v
where
(7.5) w? = —W,W = £722,

Using (3.9) and (5.90), we express (3.2) as

. 2
(7.6) DD j g = _Z(@l@mT — CPrmDpT) — Qi —2Tim,



Past stability of FLRW Einstein-Euler-scalar solutions 559

where by (1.14), (6.1), (6.2) and (6.6), we note that

(7.7) Dyt = —B gijel = B6Y
and
]_ ~ .
(7.8) Clm Dyt = =2 B0 (Digjm + Dmgjt = Digim)-

Multiplying (7.6) by —e} yields

A 2 . ,
(7.9) = e0d" DD jgim = €0 (DD T — CIP D7) + € Qum+2€Tim.
But —g“"e%@k@jglm + gijelg@k@jglm = 0 by (4.2), and so, adding this
to (7.9) yields with the help of (6.1), (6.6) and (7.8), the first order formu-

lation of the frame formulation of the reduced conformal Einstein equations
given by

g 1~ 4.
BUkCDkgjlm :gﬂ 15656(gljm + Imjl — gjlm)

(7.10) - . '

+ Z(S(Z)Tlm + 56le+256Tlm
where
(7.11) Bk = —§ink — §n'* 4 sk

Using similar arguments, it is not difficult to verify that the conformal scalar
field equation (3.11) can be written in first order form as

(7.12) Bijk@ijz = 5877PT77qsglrsqu-

To proceed, we view (7.10) and (7.12) as transport equations for gj,
and 7; by expressing them as

1 ; 2 0=
0t Grim =¥595é(gljm + Gmj1 — gjlm) + ;62/87—1771
— 6, B Bgrc it + 801 BQi, +261158 BT 1m

(7.13)

and

(7.14) Bt = 6riBJ] — 6, BN Bric,
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respectively, where in deriving these expression we have employed (6.4), (7.3)
and (7.11) and set

(7.15) Qhm = 56Qum + 67 (%" jgptm + 107 1950m + V0" miip)
and
(7.16) T} = =85 PP gy + 07 (Y0P 7o + Y0PTjp) -

Remark 7.1. As in [13], we do not employ equation (7.13) with { =m = 0 in
any of our subsequent arguments. This is possible because the wave gauge
condition (3.1) allows us to express g;op in terms of the other metric variables
ginr- To see why this is the case, we can use (1.16), (6.6), and (7.1) to rewrite
the wave gauge constraint (3.1) as

2X0 = —gooo + 5JK(2gJKo — gosk) =0,
2X1 = — (29001 — gr00) + 6"%(295K1 — 915K) = 0.

After rearranging and utilizing the symmetry grj0 = gros, this can be ex-
pressed as

(717) gooo = —0" % (gosr — 290K ),

gr00 = 29001 — 675 (297x1 — 917K),

which confirms the assertion.

Separating (7.13) into the components (r, 1, m) = (0,0, M) and (r,1,m) =
(R,0,M), (r,l,m) = (0,L, M) and (r,l,m) = (R, L, M), we obtain, with the
help of (7.17), the equations

(7.18) Orgoom :% (2g00nr — 6™ (2g10m — griry)) + %BTOM — BYE Bgreion
+ BQY+2BTonr,

(7.19) Srgrom = — Sr1BBX grcjors + SriBQYs,

(7.20) Orgorm :%(QLOM + gmoL — gorLm) + %BTLM
— BYRBgreirar + BQY 28T

and

(7.21)
Ogrim = — OriBBYE grcin + OriBQY A
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Rather than using (7.20), we follow [13] and use (7.19) to rewrite it as

—_

(7.22) O(gor.m — grom — gmor) = — —(goLm — grom — gmor)

DN o+

+ ZBTLM + Spnm+2BTL
where

(7.23)  Spam = — BB gicinn + BQYus + a1 BB grcjor, — S BQY
+001BBE greions — 01.18Qb -

The metric combination gorar — grom — 9amor, which appears above in (7.22),
plays a dominant role in our analysis, and it is related to the second funda-
mental form K;; associated to the t = const-hypersurfaces and the conformal
metric g via the formula

1
(7.24) Krj = VKH(JCng:i(gou — 9107 — gJor) + 7(10.])-

Here, n; = —(—|Vt|3)_%ei(t) is the conormal to the ¢ = const-hypersurfaces
and in deriving the second equality in the above formula, we employed (1.14)
and the identity Vny = g(Ve,eo,es) = —g(eo, Ve,e) = 1%, which holds
by (6.3), (6.4) and (6.6).

For use below, we observe by (6.13), (7.8) and (7.17) that @, can be
expressed as

. s 1-
(7.25) D3 =— 6] (52700 - 555JK(90JK - 29J0K))
. 1-
— oy <ﬁ2TPo + 55(290013 — 075 (2g1xp — QPJK)))-

Now, in terms of the variables W* defined in (7.1), the conformal Euler
equations (3.8) take the form

(7.26) a'j DW= G WW!

where

(7.27) d'ji = 2= J 3 + Wgjk + 20" Wy,
- 2 +1 D, f

(7.28) Gjg :=Gja+ <ST5ZQS)J' - 5593[) Tp

S
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e 2
_/8 ' 1%(5(1773) 5?778l)

1/3c+1WawPp
(= 3 1) 0 — 90

2

2
cs w

Rl ¢ ~
+ ’8 ( 2 5(1773) 530'7731) (5,85‘”((90][{ —29J0K) — czﬁQTOO)

c+1
_cs<

51105 — 85 nt) Breo

—I— 1 1
(C 5(1 s 5fnsl) 3 (2g00p — 65 (295K P — gPJK))a

b

and in deriving the above formulas for a’;;, and G, we employed (1.31), (3.5),
(6.6), (7.1), (7.7), (7.25) and

S

f n—2 T * B

i (7. —1)c; - 1D; i
Dif (1.2) (n—1)c CDT+CQCDﬁ

Setting ¢ = 0 in (7.27), we observe that

1 3+ 1wiwg
0 _ 5050 s 0
(7.29) a5 _5j5k<é T yw
2¢2+1 32+ 1wl
+ 200,085 (- o Wi
1W;W
+ 676K (5JK+3C i "QK)WO,
5 w
where in deriving this we have used
W0)2 S wIw’ wiw
(7.30) ( 2) =1+ T 1 T
w w w

which is a consequence of (6.6) and (7.5). Similarly, setting ¢ = I in (7.27)
yields

2c2+1 32 +1wWhwy
(7.31) alj =000 ( 5= + =)W
S S

3¢ +1WIWg
0 oK (I s Wwo
B 25(j5k) (5 K+ c? w? )

3C + ]. WJWK(SLI>W

07505 (8101 + 267 0% gy +
c2 w?
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7.2. Differentiated fields

We now turn to deriving evolution equations for the differentiated fields (7.3).
Here again, we closely follow the approach taken in [13]. Applying @,
to (7.6), we find with the help of (4.2), (5.90), (6.1), (6.6), (7.1)—(7.3)
and (7.7)—(7.8) that

. 1~ 4
(7.32) DD (D igim = — 2/3 Lel (DD 1gjm + DD mgii — DD ;Gim)

2
— Z@q@lgbm’r — qum—QCDqum,

where

(7.33)

1 o o
Pyim =7 (Dg(B™H + B 67 0) (1m + Gmjt — Gjim) — 1717 Ggrs Gijim

1 - . 2 ~_
+ CDqum + (t_Qﬁ 1g%(Qljm + 9mjl — gjlm) - t—QTlm)B 152

and in deriving (7.33) we have used
(7.34) Dyely = Db = 7g0-

In (7.33), D, (") = —572D4(B) is to be computed using (7.25).
Next, by (4.2), we have

~g" GDDD jgim + 97 6 DRD D jgum = 0,
and so adding this to (7.32) yields the first order equation
(7.35) B BD1gqjim 2%5358 (Gatjm + Gamit = Gajtm)
+ %53,qulm + 0By +265BD ¢ Tim,
for the differentiated fields gy, where BY¥ is as defined above by (7.11).
Similarly, applying @, to the scalar field equation (3.11) yields the first order

equation

(7.36) B* 3D 75 =BKY
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where
(7'37) Kél :56(_77jrnksgqrs7—k‘jl - (njrnksgqlrs - 27]jm77rnnksgqmnglrs)7_jk
- njrnksngqujk) .

Remark 7.2. As in [13], we do not use the ¢ = 0 component of the equa-
tions (7.35) and (7.36). Instead, we obtain ggjim and 7pj from the equa-
tions (7.10) and (7.12). Indeed, a straightforward calculation reveals that

1> 105 20 i K
(7'38) gorim :Zﬂ 5r50(gljm + Gmji — gjlm) + ZfsrTlm — 0, B 9K jlm

+ 57(»)le + 2579Tlm

and
(7.39)  7on = — 6. B K1y — 8007Pn gy,

To complete the derivation of evolution equations for the differentiated
fields, we apply D, to the conformal Euler equations (7.26) to get

(7.40) a' 1 DD = Dy (GjaW W — D yal D, WF,

where in deriving this we have employed (4.2). From the definition (7.3) of
U, and the conformal Euler equations (7.26), we observe that

(7.41) m=DeW™ = —(a”) '™l Uk 4 (o) TG W
where (a)7!™J is the inverse of the matrix a’j, that is,
(7.42) (a%) 1m0 = &

This inverse is well-defined and depends smoothly on W* provided w? =
—W,W#* > 0. Due to the relation (7.41), we only need to consider the dif-
ferentiated fluid variables Ug. Setting ¢ = @ in (7.40) and exploiting the
relations (6.1), (6.7) and (7.41), we arrive at the following evolution equa-
tions for the differentiataed fluid variables Ug:

(743) aiijiU’g) :QQ(G]'SIWSWZ) - (®Qapjk — aijkq/in)U’;
:@Q(stlWSWl) + (@anjm — aojm")/gOQ
- aljmeIOQ) (aO)—lmn (CL[nkU]jC - GnleSWl>
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= (Dqa” ji — a’ 170" — a’ iy Q) Up-
The quantity D (G jgW*W') in (7.40) is understood as
(7.44)  DQ(GjaW* W) = DoGjaW W + G Uy W' + G WU,

We note that DgGje can be expressed in terms of the variables (7.1)
and (7.3) by differentiating (7.28). Similarly, Dga’j, can be expressed in
terms of the variables (7.1) and (7.3) by differentiating (7.28).

7.3. Frame and connection coefficient transport equations

As observed in [13, §7], j3 satisfies the evolution equation

N . 1~
(7.45) OB = —B100 + §BQ5JK(90JK —2950K),

which is be obtained from setting ¢ = 0 in (7.25) and using (6.4). We
also observe from (1.14), (6.1), (6.6), (6.8), (7.1)—(7.3) and (7.8) that the
connection coefficients ~o* ; can be expressed as

~ 1 1
(7.46) Wij = —(5]0‘77kl + 55'5]5) (5701 + 59100) - 577kl(90jl + gjor — Gi05)-

Setting (k, 7) = (0,0), (k, ) = (K, ), (k,5) = (0,J) and (k, ) = (K, J) in
the above formula for ~o* j gives

1 7.17 1
(7.47) 700 =59000 SR §9PQ(QOPQ —29P0Q)-
(7.48) Y00 = — "L (Bror + goor),
(7.49) Y%7 = — B0y,
and
1
(7.50) YE s =— §5KL(90JL + gJ0L — 9L0J)-

We further observe from (6.9), (7.1) and (7.17) that the connection coeffi-
cients 77% and 477 can be expressed as

1
(7.51) v1% = goor — §5JK(29JKI — 91JK)
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and

(7.52) 1’0 = =67 grox + 0754k,

respectively. We note here that the above expressions for the connection coef-
ficients allows us to write the differentiated conformal Euler equations (7.43)
as

(7.53)
aijkCDiUg
Do (G VW
+ (@anjm + aoijToQ - aljm’}/po) (aO)—lmn (alnkUlIC — GnleSWl)

1
— (Dga” i + §a0jk5PL(QOQL + 900z — 9100) — a’ kit Q) Up.

Next, applying e; to (7.46), we note that

(7.54)  er(vo*y) = — (651" + 8565) (61(5)701 + Ber(tor) + %@(9100))

1
o _nkl(

5 er(goji) + er(gjor) — er(gioy))-

With the help of (7.25), (7.47)—(7.54), it then follows from (6.10) and (6.12)

that frame components e}\ and the connection coefficients v7*; satisfy the

evolution equations

~71
(7.55) Ope = — 5(55‘][{(901}( — 910K — 9KoI) + 5JK'VIOK>€{}
and

(156) Aty = ~B(05 (Ber(ros) + 5er(amo))

+ %Ukl(el(ng) +er(go) — 61(910J))> + Ly,
respectively, where
(7.57) Li*; = 3(518 <B2TIO + %B(ZGOOI — 6" 29k s — gIKL))>7'OJ

- ’YIZJ’Yokz + ’YolJ’Ylkz + (’Yoll — ’Yllo)’YlkJ)-
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8. Nonlinear decompositions

In this section, we state and prove a number of lemmas that characterize
the structure of the nonlinear terms appearing in the first order equations
that were derived in the previous section. In order to state the lemmas, we
first make the following definitions:

(8.1) k= (k1) == (gors — gros — gJor),
(8.2) 0= (lrx) = (91jK);

(8-3) m = (mr) = (goom ),

(8.4) T = (Ti5),

(8.5) g = (Grjrt) = (9rjk1),

(8.6) 7= (Trjk) = (T1j1),

(8.7) W= (W),

(8.9) T = (Ty))

and

(8.9) b= (") = (v*s).

Even though we are using 7 in (8.4) to denote the collection of derivatives
7;j = D;®D;7, no ambiguities will arise due to the slicing condition (5.90)
that allows us to use the coordinate time ¢ to denote the scalar field 7.

We employ the x-notation from [13, §8] for multilinear maps. This no-
tation is useful for analyzing multilinear maps where it is not necessary to
keep track of the constant coefficients that define the maps. For example,
k % ¢ denotes tensor fields of the form

[k + 05 = CL Pk e plarng

KLMpQ

where the coefficients C are constants. We also use the notation

(14 B)kxl=kxl+ B(kx10)

where on the right hand side the two k * ¢ terms correspond, in general, to
distinct bilinear maps, e.g.

(1 + B)k = 0]; CKL kaKLfMpQ + BC@(LMPQ/%KLgMpQ-



568 Florian Beyer and Todd A. Oliynyk

More generally, the * will function as a product that distributes over sums
of terms where the terms Ak ¢, A € R\ {0}, and /¢ % k are identified. For
example,

O (k+m) = (k+7
(7 + )  (

and

8.1. Structure lemmas

The proofs of the first four lemmas, Lemmas 8.1, 8.2, 8.3 and 8.4, can be
found in [13, §8]. The final lemma, Lemma 8.5, is a slight extension of [13,
Lemma 8.4] that accounts for the additional terms that appear due to fluid
coupling.

Lemma 8.1.
3 ~ 1 F 7
Qoo = —5(613”51633)2 + §5PQ5RSI€PR/€QS +9, Qom =,

Qryv = 6%k rkys + Qru

(8.10)

where Q = (k4 £ + ) * ({ + m).

Lemma 8.2.

( ) Q8M :ﬁM7 QéM :él ) QiM :éin
8.11 1o ~
Q) = —§5RSI<3RS/€LM + 99

where Q = Bk +0+m) « 7 + (k+ {4+ m) * ({ +m).

Lemma 8.3.

(8.12) er(Tjk) = Trjk + trjk,
(8.13) er(gjkl) = 9rjr + 81kl
and

(8.14) Li*;=pg/*,



Past stability of FLRW Einstein-Euler-scalar solutions 569

where

(8.15) t=@W+l+m)x1, g= D+ L4+m)x*(k+L4m)
and

(8.16) L=Br+0+k+{+m)x BT+ +0+m).

We note that (8.12)—(8.13) allows us to express the evolution equa-
tion (7.56) for the background connection coefficients v7* ; as

~ 1~ 1 ~ ~ ~
(8.17) Oy s =— 54 (52710J + 55ng00> - Eﬁkl (Bgroi + Barso — Bynos)
+ BQIkJa

where £ is of the form (8.16). Using (8.1) and (8.9), we also note that the
transport equations (7.45) and (7.55) can be written as

_ _ 1 o
(8.18) 0B = =B o0 + 5075 FPhux
and
A 1 JL 37, JK 5.7 0 A
(8.19) oue = — (507 Bhir + 875310k ) e

respectively. For use below, we record that er(5) can, using (7.25) and (8.2)—
(8.3), be expressed as

6200 () = —Frio - 352 — 7 2lyics — I
Lemma 8.4.

BJ) = [(Br + Bk + BI+ i)« 7)), By = Sy,
where

R:(5’124—@!7—1—57%)*%—1—5@*7—%(!7—%7%)*(Bk‘—i—ﬁf—l—ﬂrh)*r
Lemma 8.5.

(8.21) BPGim =Boim+ [B(EﬂL m) * T} otm’
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(8:22) 08 BD kGqjim =070:9Qjm + OF Bex (9qjim) + B Qhjim
B+ adyeT|

7lm

and

(8.23) 0 BD kT4 =000imqi1 + Of Bex (Tq1) + Torji
where

(8.24) P :%(mem ) % (F+ 7+ m)
+ Bk + L) (§+ (04 m)  (k + L+ 7)),
(8.25) & =(Br + ) * (%(Br+l%+é+m)+ﬁ~(l%+i+m) s (k4 +m)
+BBr+P+k+l+m)*g
and
(8.26) T=B(Br+ o +k+l+m)x7
BB+ b+l +m)* (k+1+m)*T.
Proof. Differentiating (3.10), we find, by (6.6) and (7.1)—(7.3), that
(8.27) DqQij = Qéij + ngj
where

1
Qéij = 577kl77mn (gqimkgjnl + GimkGgjnl T 29qnilGkjm + 29nit9qkim

= 294inIkjm — 291in9gkjm — 29qlinGjmk — 291in9gjmk

- 29qimk.gljn - 2gimk9qun>
and

1
Qgij - _5(nkrnlsgmn_‘_nklnmrnns)qus (gimkgjnl + 2gm'lgkjm

= 2G1inGkjm — 291ingjmk — 29imkgljn)-
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Setting ¢ = @ in (8.27) gives

(828) 55D Qij = [(k+ L +1i) * (§+ (L4 m) x (k+ L +m))] o0

where in deriving this we have employed (7.17) and (8.1)—(8.5).
To proceed, we let

1 o .
Ple = ? (eQ(B 1)5(]) + B 17QJ0)(gljm + Imjl — gjlm) - nkrn]SgQngkjlma

which we note, using (7.17) and (8.2)—(8.3), can be expressed as

—_

(829)  Pgim :;(GQ(BA) + B790%) (gi0m + Gmor — Goum)

1~
+ Eﬁ Yo7 o(grrm + gmat — 9aim)
— (2 — 675 (2lrsq — L 759,

(2mq (2Crsq — LoRrs)) Jooum + 17 €Qosgosim
— 5 IS0 s RgK jim.-

Now, by (7.17), (7.51)—(7.52), (8.1)—(8.3), (8.9) and (8.20), we have

(8.30)

~ | =

(eQ (/B_l) + B_IVQOO) (glOm + gmot — gOlm)
1~
E’B Yo o(guim + Gmat — gim)

Nfl[(BT+z§+lZ+ﬁ1)* (/;:4—24— m)]lea

| = +

while it is clear from (7.38) and (8.10) that

1-~_ 2 .
(831) gorim :gﬁ 152(9l0m + gmoi — gOlm) + ;527%1 - 51‘Z‘B2]K9Kjlm

+ [(k + €+ m) * (k + €+ )]t +20.Tim.
By (8.28)—(8.31), we then, with the help of the definitions (8.1)-(8.3), deduce
from (7.33) the validity of the expansion (8.21).

Next, by the definition of the covariant derivative ,, we have
08 BD kgqjim =Ber(9Qiim) — B QGpjm — BV 19Gpim
= B 19Qipm — B mIQiwp
=00019qjtm + O Bex (9Qjum) — Bk’ QY0jtm
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— (kap Q9Piim + B j90pim + BYKF19Qjpm + ka”mgc,gjzp),

where in deriving the second equality we used (6.4). The expansion (8.22)
is then a straightforward consequence of (7.47)—(7.50), (8.31) and the defi-
nitions (8.1)—(8.9). Furthermore, by employing similar arguments, it is not
difficult, with the help of (7.39), to verify that the expansion (8.23) also
holds. O

9. Fuchsian form

We collect together the following evolution equations from Section 7:

1 2.
(9.1) Osgoons =7 (290001 — 6" (2910M — grirs)) + gﬂTOM

— BYE Bgreionr + BQYy + 28Tour,
(9.2) Ogrom = — Srr B Bgrcjonr + Or1BQYN,
(9.3)

1 2~

Oe(goLy — grom — gnror) = = 5 (gorar — groms — gnmor) + 5 BT(rar)

+ S 28T (1any,
(9.4) Ogrim = — SriBY 5 Bgxc i + 0r1BQY 1y,

Oy =6,iBJ] — BIX Brici6,):,
ijk B Lo

(9.6) BY*BDgqjim =005 (9aijm + Ggmjt = Gajim)

2 . . .
+ ;(S(Z)BTq(lm) + 565Pq(lm)+2565@qum,

(9.7) B*3D e =BKL,
(9.8) 0B = — Bro0 + %B25JK(QOJK —29.J0K),
(9.9) Oref = — 5(35‘”{(9011( — 910K — 9KoI)
4 5JK,YIOK>61}7
(9.10) Oty =— 5(5]5 (BGI(TOJ) + %GI(QJOO))

+ %nkl (er(gos) + er(gsor) — 61(910J))>

+LIkJ7
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(9.11) aijkBCDiW’“ Z,BGJ'SZWSWZ,
(9.12) a'jkBDUG =BDo(GiaW* W)
+ B(Dgad° jim + a° jmBog
- aljm’yIOQ) (GO)—lmn (alnkUI; - GnleSWl>

- B<@Qapjk + %aojk5PL(90QL + 9oL — 9roQ)
- anWIPQ)U?,
where
(9.13) BY* = 55 — 5in™ + 0o,

¢ is determined by (3.10) and (7.15), Spa and J; are given by (7.23)

and (7.16), respectively, gooo and groo are determined by (7.17), 7; = — B3~ L go;
according to (6.2), Py, is determined by (7.33) and (7.25), Kél is given
by (7.37), gortm and 7o, are determined by (7.38)-(7.39), L;*; is given
by (7.57), the background connection coefficients 7%, v0®0, 70°7, Y% s,
7% and ;7 are determined by (7.47)—(7.52), a'jy is defined by (7.27),
(a®)~1™P is determined by (7.42), Gjq is defined by (7.28), T;; in given
by (7.4), and @Q(GjSlWSWZ) and DQaijk are the maps that are to be un-
derstood as per the discussion below (7.44).

Together, the equations (9.1)—(9.12) comprise our first order formulation
of the frame representation of the reduced conformal Einstein-Euler-scalar
field equations. In this section, we transform these equations into a Fuchsian
form that is suitable for establishing the existence of solutions all the way
to the singularity.

Remark 9.1. We will not always assume that solutions of the system (9.1)—
(9.12) arise from solutions of the conformal Einstein-Euler-scalar field equa-
tions. We will also consider general solutions of this system. For these general
solutions, we will require that gorar — grom — gmor and ggjim are symmet-
ric in L, M and [, m, respectively. This condition would naturally hold for
solutions derived from the conformal Einstein-Euler-scalar field equations.
To ensure this symmetry holds for general solutions, we have symmetrized
equations (9.3) and (9.6) in the indices L, M and I, m, respectively. This
symmetrization guarantees that the solutions to (9.1)—(9.12) will exhibit
the desired symmetry provided the initial data also satisfies this condition.
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9.1. Initial data

Before continuing on with transforming the system (9.1)—(9.12) into Fuch-
sian form, we will, in this section, describe how initial data {g.., guw,7 =
to, T, V“} for the reduced conformal Einstein-Euler-scalar field equations,
see (5.10)—(5.14), along with a choice of spatial frame initial data

Sht

(9.14) elf 5, = 6

determines initial data for the first order system (9.1)—(9.12). In the follow-
ing, we will not, a priori, assume that the initial data {g,., g, 7 = to, 7, V“}
satisfies either the gravitational or wave gauge constraints, but it will, or
course, be necessary to do so in order to formulate and prove the main past
stability result.

We know from Remark 5.4 that the initial data set {g.u, g, T = to, 7,
f/“} determines a corresponding Lagrangian initial data set

S

via (5.57)—(5.78). This initial data, with the help of the reduced confor-
mal Einstein-Euler-scalar field equations (5.82) and first derivatives thereof
evaluated on X , uniquely determines the following higher order partial
derivatives on the initial hypersurface:

(9.15) {9

— _ I
Eto’aogﬂ”‘zto’T‘Zto_ to,aoT\EtU— LV

{aﬁgw/‘gto ) aaaﬁgw/‘zto ) aaT’Eto = 537 aaaﬁT}Ztoy
Dadsdi 7]y 0aVH]g ).

We further observe that the flat metric g,, = 5Ml0‘77a58,,l6 and its first and
second order partial derivatives on the initial hypersurface, that is,

(9.16)

7‘2%7

(917) {g/,u/‘ztoa8agull‘ztoaaaaﬁg#l/}zto}7

are uniquely determined from the initial data set {§..,guw,7 = to, 7} by
(5.1), (5.43), (5.70)—(5.72) and the reduced conformal Einstein-scalar field
equations, especially (5.45), and first derivatives thereof. Taken together,
(9.15)—(9.17) determine the following geometric fields on %, :

{guu‘ztoagbﬁguv‘ztoaga@ﬂguu‘zto,ﬂzto: to,@aT‘Zm: 52,

(9.18) i .
DaDstly, s DaDDyr]y, VH],  DaV*]y, }.
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Next, by (5.78) and (6.2), the coordinate components of the frame vector
eg on the initial hypersurface are given by

(9.19) el = (~gools.,) 5%,

while by (6.2) we have

(9.20) 3 0, )7

to

Et(): (_g

Using (9.19), we can employ a Gram-Schmidt algorithm to select (non-
unique) spatial frame initial data (9.14) so that that the frame metric
9ij = € g€ satisfies

S i

on X¢,. We note also that the initial data wi for the coordinate compo-

s,
nents of the dual frame w’ is determined by

Then, with the help of the relations

@zgjk = 6 ekgﬂguua @igjgkl = 6? ﬁege;/@agﬁgum
DD = €} DsDpgu, DiD;DyT = elele] DD Do,
V‘ =w,V*, DV =Wl €D Vﬁ

it follows from the definitions (7.1)—(7.2) that (9.14) and (9.18) determine
the fields g;jk, gijris Tij, Tijks W' and U; on the initial hypersurface, that is,

als,, I

Using the fact that the frame e? is orthonormal with respect to the metric

(9.21) {9ik|s

Wi, U

to

9w, it follows from a straightforward calculation that I' ° J\E|t0 = KAQé?éS},

where K = Kpodr® @ dz® is the second fundamental form, c.f. (5.17), de-
termined from the initial data {gu|s, ,009uwls,, }. From this expression
and (1.14), we deduce that

1
(9150 + 9710 — gor17) |52

(922) ’)/IOJ’EMZ KAQé?éS} + 9
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We also note that the connection coefficients I'/% J}E on the initial hy-

persurface are determined completely by the spatial orthonormal frame
e; = é’}@A and the spatial metric g = grodr® @ dzf, c.f. (5.17), on X4,
according to I't* j|z, = 6%Lg(De,es,er), where D is the Levi-Civita con-
nection of g. We can then use this to determine "}/]KJ‘EtO via (1.14) to get

1
(9.23) WKJ‘&OZ 6KLg(DeIeJ, er) — §5KL(91JL +gJIL — gLIJ)’EtO-

Together, (9.14), (9.20), (9.21), (9.22) and (9.23) determine initial data on
¥, for the system (9.1)—(9.12).

9.2. Change of variables

Using the variable definitions (8.1)—(8.9) along with (7.23) and (7.47)—(7.52),
we can express the first order system (9.1)-(9.12) as

(9.24) Oy :% (2 — 67 (2010 — Carrg))
+ %BTOM — BYK Bgxcion + BQur + 26Tour,

(9.25) 8ilrorr = — Sr1 B Bgrcjonr + dr1BQL,

(9.26)  Opkpa = — %];LM + %BT(LM) — BY% Bggeicoany — %5RSB];RS];‘LM
+ BQ?LM) + 2B By oy — QBQ{L(SM)I"i'QBT(LM)v

(9.27) athLM = — 5RIBIjKB§KjLM + 5RIBQ£M3
(928)  Oym =0,4BJ] — BYX B ;16

(9.29)

o e~ . Lo~ ~ 5
5U8thjlm + Bleﬂell\(aAnglm = zdédé(gQ[]m + 9gQmjl — nglm)
2 = : i
+ 20087 Qum) + 0B q(m) — BV Gqrjm)
+ 265 8D QT — BYF [5(37 + 1)) * T}
Qkjlm

+0y By«

(9.30) 5907 g1 + BinBfi%aA%le :BK(Z;)[ - Bijszkﬂ
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_ _ 1 o
(9.31) OB = — B*100 + §5JK527€JK,
1 .
(9.32) Bt = — (ia%m + 5JKWIOK)€9,
_ o 1~
(9.33) Or" s = — 6% (/BzTIOJ + 5591J00>

1 - . . _
- anl (Bgron + Barso — Banos) + BLi* s,
(9.34) %10, W* + al jpBef oW =G ;W W! — Bal ™ W,
(9.35)  a°j,0,U + a’ jxBetONUY =D (BGjaW W' — DoBG W W

+ ﬁ(ao)_lmn (@anjm + 2a0jm6T0Q

- 2aljm1z)IOQ) (alnlfUlI€ - GnleSWl)

_ 1 _

— 5(@@&13]']@ + iaojk(sPLkQL

+ a0 lqor — al b’ Q) Up

- Baijk%szlQ + Baijk%LQU’Z-
Here, £;%; is glven by (8 14), ‘Ble, BQrjim, and Tgopj are given by (8.21)-

(8.23), and Qyy, Q4. QY,, and QL ,, are determined by (8.11), and we note
by (9.13) that

B0 — 5ii pUK — —5éan _ 5{)',,7@'1(.

In deriving these equations, we have employed (7.27), (7.28) and (7.42), and
have repeatedly used (7.41) to express U](‘j in terms of the other variables and
thereby remove it from the system of equations.

Expressing Gs in (9.34) in terms of the variables in (8.1)—(8.9), we find,
using (7.17), (7.28) and (7.30) while retaining some of the original variable
definitions in order to prevent the expression from becoming too lengthy,
that

(9.36)

)
Gjs =P 't 1T<5(ms) 5?%1)
L 1 (c + 20 +1

2
2 cz

8msy; — 26%na + 2008057 )5«”% Ik

13c2 +1WSW,
0008 K ki

— 600567 ks +

J 2 2 w?



078

B (3c§ +1Wew?r

—c (%5(1773)] 5?7731)5700 - 62<
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132 +1WeW?r. . N
T2 w2 kpqd(ns; — 046557 (Lsos + Lios)

_(30 +1Wew?r

2 w2 +g” )EPOQ(S(ZHS)J 2 w2

+97) ELpadfing — 20000,y — 85507 gy
B 1(3c§ + 1 (W92
2

3 +1Wowr
2

5 1>9L005(ﬂ75) Nj(s9gnop

c? w c2

c+1

w
5(1 Ns)j 5537731) <5~7'P0

+ = (2imp — 0K (205 cp — ZPJK)))-

Ml'—‘

Additionally, we can use (7.47)—(7.52), (8.1)—(8.9) and (7.29) to show that

(9.37)

1 (1 32 +1Whw,

0sPQ7. 0
)W ]

15K(2c§+1+3c +1WIW1

- JWics™hepqdf

Cs

+150(2c ;—1+3c ;—IWIWI
CS CS

2
1
——(5-J(5JK+ 303; WiWgk
CS

) Wid5Pkp pot

WO i

—a jK(sKng()L(SlL — anOBTOLcle — anK(SKP(BT()P + ﬁLp)(SlO
I T -

+al jo(rmr — §5JK(2€JKI —lryK))o) +al o Lof

—aljx (5P l1op — 65010 p)o + al j b K Lot

SC + 1 WIWI)WO(SLP]{;

2
Cs

. 1 1
L 00
22 +1 32 +1WIW1
0 oK S
+ o005 ( i
— 5070 (o + =25 :

S

— a5 0" lgop + a j1abrto.

YWt kgp

V) 0 g
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Remark 9.2. Inspecting (9.36) reveals that it is unlikely that our results
can be extended to values of c? outside the regime (1/(n — 1),1) includ-
ing the interesting borderline case ¢2 = 1/(n — 1). The reason for this as
follows. As we will see below, the first three lines of (9.36) together with
certain terms from (9.37) and (9.38) constitute the main singular time-non-
integrable terms that govern the dynamics of the fluid near ¢t = 0. If ¢2 is
lies in the interval (1/(n — 1),1), then the first term in (9.36) is strictly
positive and therefore dominates the terms in lines two and three, which,
being proportional to k JK, are small near the FLRW solution. This will be
critical for our past stability proof. Since the latter terms have no definite
signs, however, this will not work if ¢2 = 1/(n — 1), in which case the first
term in (9.36) vanishes and therefore cannot be used to control the other
terms, and the problem becomes even worse if ¢2 < 1/(n — 1).

As observed in [13], it is necessary to weight the second derivatives of
the metric, i.e. §Qjim, with 8. Using (7.25) and (9.31), it is not difficult to
see that we can write the evolution equation (9.29) in terms of the weighted
derivatives 3gqjim as
(939)  904(Bgqjim) + BV Bei0r(B3qim)

| R s - 1 T
= ;%%(ﬁgmjm + BIQmit — BIQjim) + 55”5‘]K5/€JK59lem
. . = - i
D205 32D o Ty + [52(57 O * T} o
where we have set
. o~ . - 1~
(9.40) Sigtm = = 8100 Bgsum + B (=70 — 5B (2
— 67 (2 1 — ZKJI)))BngZm
2 . o
+ ;56527Q(lm) + 30BBQ(um) — B7*BS opjim)-
As we note in [13], we will also need to replace kry with the 5 weighted

variables Bk . With the help of (9.31), we can write the evolution equa-
tion (9.26) in terms of Skrys as

(9.41)
. 1~ s 2. o
0y(Bkra) = — gﬁk’LM — B*700BkLy + ¥B2T(LM) — BBY% Bician
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where
(9.42) Mo =6°Qap) — 26°Q( 01

For use below, we note from Lemmas 8.2 and 8.5 that (9.40) and (9.42) can
be expressed using the x-notation as

(B + B+ B+ BT+ By « By + 15
+ (BT + ) + £+ 1) % (Bk + Bl + i) * (Bk + BL + Brn)
¥ 2B bt T m) = (B + B+ B + 1 (B + ) » o
and
M = (Bk + Bl + Brn) = (B> + Bl + ),
respectively.
9.3. Rescaled variables

The next step in the transformation to Fuchsian form involves the introduc-
tion of the following rescaled variables:

(9.43) = (krs) == (tBk1y)
(9.44) B=1tvp,

(9.45) 0= (brjx) == (trjx),
(9.46) m = (my) := (t%my),

(9.47) £ = (&j) == (t77m5),
(9.48) )= (") = (P )),
(9.49) f=1) = (t2ep),

(9.50) 9= (drjm) == " Barm),
(9.51) T = (Trk) == (t60+2€1713k)
(9.52) U= (t“Ug),

while we continue to use the non-rescaled variable W, see (8.7) and (7.1). At
this point, the constants €g, €1, €2, €4 > 0 are arbitrary numbers satisfying

(9.53) O<e<er, 3e+er <1, 0<e, et+e<1l, €>0,
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which we note imply that ey + €; < 3¢9 + €1 < 1. For reasons that become
evident in the proof of Lemma 9.4 below, we now also define

(954) B _ t63+(1+cf)60ﬂf(1+6§)

for e5 > 0 and add f to the list of variables, which, together with (9.43)—
(9.52) and W, then takes the form!?

(9.55) U = (krn, mar, Cronss LR, vt B,
, . % s S\ T
f;\7 wIkJa TQjl, 9Qjlm /87 w 7UQ) .
The new quantity § satisfies the evolution equation
(9.56) OB =(e3+ (14 Aeo)t '8 — (1+c2)B~Bo3

1 o .
:t_l (63 — 5(1 + Cg)(SJKk‘JK)B + (1 + Cg)t_eo_ﬁBQgOQB.

In all appearances of the undifferentiated energy momentum tensor T;;
in the equations (9.24)—(9.35), we replace B~(+€)  which appears in Tij,
see (7.4), with t~¢ 3. Similarly, in the derivatives @inj of the energy mo-
mentum tensor appearing in (9.24)-(9.35), we replace Dg(8~(1+%)) with
—(1+ c?)t‘eSBﬁ_liDQﬁ by exploiting (7.25) and we replace any remaining
B=(1+e2) terms with ¢~ 3.

As discussed in the introduction, the purpose of using t-powers with so
far unspecified exponents €1, ..., €4 to rescale the variables as in (9.43)—
(9.52) and (9.54) is to generate positivity among the ¢~ !-terms in the result-
ing evolution equations below. This turns out to be crucial for the Fuchsian
analysis at the core of the proof of our main result.

9.4. Fuchsian formulation

It is now straightforward to verify from the first order equations (9.24)—
(9.35), (9.39), (9.41) and (9.56) that U satisfies the following symmetric
hyperbolic Fuchsian equation:

1

0
(9.57) A0 +

1
AMONU = Zﬂ]P’U +F

2In line with Remark 9.1, we always assume that U is defined with kra = ke
and §Qjim = 9Qj(im)-
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where
(9.58) A = diag(Ag, AY),

(959) A% — dlag((SLL(SMM,(SMM,(SRR(;MM,(SRR(SiL(SMM,

5?7’5”’ 1751152\1\’ (S]I(s’;_k(SJJ,(;QQ(Sjj(S”, 6QQ5]jélldr~nm)’

(9.60) A% = diag(1,a2,,a2 699),

(9.61)  A* = diag(A%, AR),

(9.62) A% = diag(0,0,0,0,0,0,0,0,5995" BIiK g .
5994l 5mm BIIK g ),

(9.63) A} = diag(0, a5, 11, al5,811699),

(9.64) P = diag (0, oM ESM SESLSM srst 1, 5L5h,
615507, 020351, 02510157 65,6767 65,699),

(9.65) A = diag(Ag, Ar),

(9.66)
A11 0 0 0 0 0 0 0 0

0 Aoo 0 Agqy 0 0 0 0 0
0 0 Ass 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0

A = 0 0 0 0 Ass 0 0 0 0
0 0 0 0 0 Ags 0 0 0
0 0 0 0 0 0 Ay 0 0
0 0 0 0 0 0 0 Agg 0
0 0 0 0 0 0 0 0 Agog
0 0 0 0 0 0 0 0 0

(9.67) A = diag(A1111, A1212, A1313),

the non-zero diagonal and off-diagonal blocks of A are given by

(9.68)

A1 = SLLEMM - g0 = (24 €)0MM | Ay = ¢ 5RRGMM
(9.69)

Agg = e6TRGELGNM - 700 — (e — €)6™ 0, Age = co,

A210
A310
A 410

Ag10

A1010
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(9.70)

ﬂ77 = 625i15AA, ﬂgg = 615i15’~€k5j‘], ﬂgg = (60 + 261)5QQ55j5l~l,

(9.71)  A1010 = (1 + €1)59Q57 sl gmm
+ 59967 (846 5mm 4+ shatmem — §ISIET™Y A4y 1y = e,

—1c? -1 7

(9.72) Ai1212 = %WO (65_25?5? + 5JJ5§']5}'])’

_ 0 o(n=1)cf —1 1 5050 5QQ
(973) A13 13 —(64@83 + W W (773]' + (55(53)>5 s
and
(9.74) Ay = SMBGIM _ogRLGMM - 71,4 — — BYQglsMm,
(9.75) Asz10 = —BRIQsLsMm 7, = —BRiQgligm
(9.76)

Ao = 569 (=0387 6005 — 0p (55067 + 067 8 — 067 y) )
respectively, and
(977) F= (F].aFQ,F37F4,F57FﬁvF77F85F9aF105F117F127F13)T
with
9.78)  Fy =oLLsMM (flakLM — 77 B0k
+ 27O BE any — t O BBY R Greionan
+ ¢ 28B K g0 danr + tmLM+2t1_2€oﬁ2T(LM))a
(9.79) Py =t7126MM Beg s + 5MM (19 B0 4264 BTonr),
(9.80)  Fy =5"Mta pQk,.
(9.81)  Fy =oLLgMMpe QR
( ) F5 :6l~ltelfeo/5>(]lf _ @ —3€0 5l~l57~‘rBz]Kﬁ7f_Kj(l5T)”
(9.83)

11 e
Fg =t 1§5JKkJK/8—t = B3¢0,
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9.84) B =t5ll5; A(—%&’Lm - 5JKt1—60—615¢10K> A,
(9.85)  Fy=— &80 13052 1, 4 6115y, 6774 Be gk,
(9.86) Py —g@Qgl (teo+2elﬁ~Kg2l _ Bijktmﬂel%kﬂ)

(9.87)  Fio =09Q8!gmmilreagyl, %5ﬁ55@95515mm5JKkJKg'lem

+ 28QQlt gmm ite—2a0g] 527 Ty,
+ 5QQ5l~l5ﬁzmtl—26o [/82(65 +p+1+ m) * T]i

Qim
14 ¢2
5 2" ke + (1 +c )52“'00)57

(9.89) F12 :55 (BGJ‘SZWSWZ - Baijk%lel)

(9.88) Fu :t_l(

— 1)e?
- t—1¥w%l’5{ 5, W',

-2
(9.90)
. 5 < — e -1
i3 :5§5QQ (f@Q(ﬁstlWSWl) — t‘l%< + 5050) U W

— 4B Do BBG W W' + (Do’ jim + 2t a% 1800
—€ —1Imn{ 1—eo -k €10 s
= 270l ) (a) T (17 Bal i Uf — 4 BG W W)
1
—(t_EOBCDQank—l——t Ya0 3.6 kgr + 707 Ba® ;16" b gor,

“o~ Bal by Q) — Ba’ i zUQ—i-ﬁa kY QUL>

In the above expressions, we recall the G, aijk’yikl and aijk%LQ are de-
termined by (9.36), (9.37) and (9.38), respectively. We also point out that
the kernel of the matrix P in (9.64) is spanned by the variables k;; and WY;
this property of P will play a decisive role in our past stability proof.

9.5. FLRW background solution

In this article, we are interested in nonlinear perturbations of the FLRW
solution (1.47)—(1.50) of the conformal Einstein-Euler-scalar field system
that are parameterised by (FPy,c2,V,?) € (0,00) x (0,1) x (0,00). For this
family of solutions, the variables (9.43)— (9.52) take the form

/

y + y y
(99]_) kIJZZ%, ﬁ:téown—l’ f]jKZO, ’I’?L]:O,
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v €1=€o,)/
(9.92) Eij = (n—1)> w27 15052,
(9.93) Oty =0, fr=t2wter,  drim =0,
(9.94) Fur =0, W=V, Uh=0,
where €, ..., €4, are constants, which for now may be chosen arbitrarily, w is

defined by (1.50), and w’ = ‘3—‘;’. It can be verified that the corresponding vec-

tor U defined by (9.55) constitutes a solution of the Fuchsian system (9.57)
for any t > 0 for which the function w is well-defined.

Lemma 9.3. Suppose Py >0, V) >0, ¢2 € (0,1), e, ..., €4 satisfy

1-—¢ n—1 9
0<e<—rb, 1-——(1-F) <e <1,
(9.95) 3 ﬂn—%( )

0<e, 0<e3, 0<ey,

and let U be the solution of the Fuchsian system (9.57) that is defined
by (9.91)-(9.94) and (9.55), which corresponds to the FLRW solution of
the conformal Einstein-Fuler-scalar field system. Then there exists a posi-
tive constant ¢ > 0 such that

(9.96) U(t) = (0,0,0,0,0,¢,t262,0,0,0,t, V25),0)
satisfies

(9.97) Ut) — U(t) = O(t°)

as t N\ 0.

The significance of this lemma is that it will allow us to interpret
(9.98) u=U-U

as a nonlinear perturbation of a FLRW solution (1.47)—(1.50) near ¢t = 0;
this property will play an important role in our stability proof. The proof
of the above lemma is straightforward and is easily seen to follow from the
inequalities

—1)(1— 2 —1)(1—¢ 1-—
(n=1=c) —14€ —€ > (n=Hl-c) —14e — “
_=D-d) 44 (n-D-e) 4

n—2 3 3 n—2 3
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4 n—1 9 (n—1)(1-c?)
" (1- _ N N s
(1 ( )> 3(n—2) >0,

which hold by (9.95), the expressions (9.91)-(9.94), and (see (1.50)) the
expansions

(9.99) w=1+0(t"=1"%) and o =O(ta=7),

In the following arguments, the positive constants V. and P, that appear
in the FLRW solution (1.47)—(1.50) can be chosen arbitrarily, but will be
considered as fixed to some particular value throughout. We will also use

m=n*+2n%—3n2+2n+2

to denote the dimension of the vector w.
Now, it is not difficult, using the definitions (9.58)—(9.90) and (9.96)—
(9.98), to verify that the system (9.57) can be expressed as

1
{eote

(9100)  A%(w)dpu + —— ANt w)Oru = %ﬂ(u)]}”u +E(t) + F(t,u)

where A°(u) and A (u) denote A°(U(t)+u) and A (U(t)+u), respectively'3,

o

AM(t,u) denotes AMU(t) + u), and the source terms F(t,u) and F(t) are
defined by

(9.101) F(t,u) = F(t,U(t) +u) — F(t,U(t))

and

(9.102)  F(t) = 9 ,
0

respectively. In obtaining (9.102), we have employed (7.4), (9.36)—(9.37)
and (9.96). It is important to note that the approximate solution U, de-
fined above by (9.96), satisfies

AT () + u)d (1) — %ﬂ((of(t) +WPU() = 0.

13 This notation makes sense because A°(U(t)+u) and A (U (t)+w) do not depend
on t as can be easily verified from (9.58)—(9.65) and (9.96).
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The system (9.100) is the Fuchsian formulation of the reduced conformal
Einstein-Euler-scalar field that we will use below to establish the past sta-
bility of the FLRW solutions (1.47)—(1.50) and their big-bang singularities.

9.6. Source term expansion

In this section, we establish a number of properties of the source term maps
F and F defined above by (9.101)-(9.102) that will be needed below in the
proof of Theorem 10.1.

Lemma 9.4. Suppose V) >0, Py >0, Ty >0, ¢2 € (0,1), and €, ..., €4,¢
are constants that satisfy the inequalities

n—1

1—-———  1-A<eg<1
sy <a<l
€1 < €4 <1,
(9.103) 0 < e <min{l —eq, (1 —€1)/3},
0<€2<1—60,
n— 2
0 (1
<e3 < 3(n_2)( Cs)a

and

n—1

n_Q(l—Cg)—63+€1—60—1),360+61,

(9.104) max{l - (
1—60,1—62,1—(64—61),60+64} <e< 1.

Then there exists a constant R > 0 and maps

(9.105) H € C°([0, Ty}, C>® (Br(R™),R™)),
(9.106) He C®(Br(R™), Myxm),
(9.107) He C™(Br(R™),R™)),
satisfying

(9.108) H(0) =0, H(t,0)=0,

(9.109) H,P]=0 and H=O(Pu® Pu),
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for all u € Br(R™) and t € (0,To], such that F(t,u) can be expressed as
1 1. 1
(9.110) F(t,u) = zH(u)Pu + ZP H(u) + FH(t’ u).

Before considering the proof of the above lemma, we first make some
observations that are easily verified and will provide a strategy for proving
the lemma. We begin by noting that the conditions (9.103) on the constants
c? and €, ...,eq imply that eg,...,eq satisfy (9.53) and that there exists
a constant € satisfying (9.104). In particular, it is straightforward to verify
that the following choice of constants

A 1 A A 5A
( ) €0 8’ €1 2+07 €2 9 16) €3 87 €4 167
where
-1
(9.112) A= Z_ S1-¢)

and o > 0 is chosen sufficiently small, satisfies (9.103) for any n > 3 and
¢ € (0,1). Indeed, this is the choice we employ in the proof of Theorem 10.1
as discussed in Section 10.3, and we note, with this choice, that (9.104)
simplifies to

1 A<~<1
—_ = € .
8

In order to prove Lemma 9.4, it is useful to observe that any component
of the map F', see (9.77) and (9.78)—(9.90), can be expanded in the schematic
form

0
N© 14

£=Y t71f" <U, w (W) w 7(det(a0z‘j))*1>
/=1

(9.113) o

142
+ 3 (U W) e T (deva®;) ),
/=1

where N and N are positive integers, each exponent o, depends on n, cg
and €1,. .., €4, and where each map fg(o) and fg(l) is a product of a constant,
1+c2

non-negative integer powers of w=!, (W9)~1, w E (det(a%;))~!, and

)

components of U. We will refer to terms of the form ¢~ fé(1 where oy < 1

as time-integrable and terms of the form ¢! fe(o) as time-non-integrable.



Past stability of FLRW Einstein-Euler-scalar solutions 589

For use below, we note from (9.55), (9.96) and (9.98) that W can be
expressed as'?

(9.114) W' = (U(t) +u)ia,

and from (7.29), (9.64), (9.98) and (9.96) that

1
(9.115) () = (V2 +1uly) (0900 + ,xc6/6f ) + O(Bu)
and

1
(9.116) det(a’;;,) = 6—2(1/*0 + udy) + O(Pu).

The following lemma, which will be needed in the proof of Lemma 9.4, will
be used to analyse the time-integral component of (9.113). We omit the
proof since it is straightforward to establish using (7.5), (9.114) and (9.116).

Lemma 9.5. Suppose Ty > 0, V2 > 0, €y, €2,€e3 > 0 and let

N
£(t,U, 21, 22,23, 21) = D _t 7 fo(U, 21, 22, 23, 2)
(=1
where N is a non-negative integer, op € R, £ =1,..., N, and each map f;
s a product of non-negative integer powers of z1,...,z4 and components of

U. Then the exists a constant R > 0 such that the map

14c2

£(t,u) = £ (£, U(0) + w0, (W), 0”7 (det(a”;)) ™)

is well defined for (t,u) € (0,Tp] x Br(R™) and can be expanded as

N
f(t, u) = Ztié’ffg(u)
/=1
for some positive integer N, constants G4, £ = 1,...,N, and maps fz(l),

4Here and in the following, subscripts, e.g. uy, on any one of the vectors U, U
or u refer to the position in the slots/blocks of these vectors. So w3 would refer to
the last slot of w.



590 Florian Beyer and Todd A. Oliynyk

¢=1,...,N that are smooth on Bgr(R™). Moreover,

max o0y = max oy,
2e{1,...,N} Le{1,...,N}

and the map
h(t,u) = tE(t, u)
defines an element of C°([0,Ty], C*°(Br(R™))) provided

€> max  oy.
¢e{1,.., NV}

Before proceeding, we establish the following technical lemma that will
be employed in the proof of Lemma 9.4.

Lemma 9.6. Let n = (n;5), 11 be a non-empty open subset of R, Qs be an
open subset of R™ that contains n, and suppose that £(U, g) is map smooth
real-valued map for (U,g) € Q1 x Qo and is independent of (U7)’} = ff\,

(Us)r"s = v1* 1, (Us)qsi = *qit» (U10)Qjim = 9Qjim and (Un3)3) = Ug. Then
the derivative

fo =Do(£(U, gmg:n: eQ(f(U’g))‘gﬂl

can be expanded via the chain rule as

13
(9.117) fo =Y 13 (U)DUs + £V (U)gq
S=1

where fg)) e C®(Q,R) and MY ¢ C®(Q,R). In particular, for any
Ty > 0, the map £g can understood as a map defined on (0,Tp] x Q1 given
by

(9.118)

e o (0).KL ey o .
fo=1 g0 ((156 B DBk + (t 70 ) kL + Yo' kkirL
+ o Lkt + doorxr — doror — éQLOK)
—e1 £(0),M €1 ) €1 €1
+ M (90'0) (1 gioar) + (#9790 0)mas
(0),ROM

+ (v 0) (Lroas + Laror) + "lPQIMmI) +t 1, (inR(telgiOM)

+ (70 %)mar + (tvo o) (ronr + €aror) + wQIMmI)
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+ felfio)’RLM <¢QiR(t€19i0M) + 9o Lmar + vo! L(Cron + Laror)

+ ¢Q1Mm1> +g )" <(t61'y@ir)5¢z + (t“mil)ém)

+ 179 (£78(t7 57 Do) — (1+ )21 Bt 87 D)

+ £t )W + £ )’j(tengij)) ) U

il 2ag (K Lﬁ((tEWQIo)(flKL — lgrr —Crik) — ¥Q k(1" groo)
- ¢Q0L(t6191(00)> + fl““féo)’Mﬁ*l <QQO0M — 0" o K kyk

+ (tel’YQIO)k'IM> + t_HeOf;(J,O)’ROMﬁ_l <§QROM + (v 0) ki

- ¢Q0M5JKI€JK> + t_Heoin)’RLMﬁ_l (gQRLM + B o L)k

— e — ,rl
_B lq,l}QOM(SJKkJK) 4t € 260fé0)T€er,

where t gg;; and tﬁlnyij can be replaced by a constant coefficient, linear
combination of mq, Loy and Yg'y, and

1
(9.119) "8~ DB = —Bqo — mq + §5JK(2€JKQ —lQJK)-

We omit the proof of this lemma since it follows directly from the re-
lations (7.1), (7.3), (7.17), (7.25), (7.51)—(7.52), (8.1)—(8.7), (8.9), (9.43)—
(9.52), (9.54) and (9.55).

Proof of Lemma 9.4. As discussed above, the map F, defined by (9.77)
and (9.78)—(9.90), can be decomposed, non-uniquely, as (9.113). Here, we
take the first sum in (9.113) to be composed of all terms in F' that are
explicitly proportional to ¢!, while all remaining terms, which are propor-
tional to other powers of ¢ (in particular those depending on n, c2, €i,. ..,
€4), make up the second sum. Over the course of this proof, we will establish
that all exponents o, in the second sum are smaller than one. It follows
from Lemma 9.5 that the second sum in (9.113) in our expansion of F' can
be written as

N@ 12

(9.120) Zf"%é”(U,w”,(Wo)*l, 2 det(a%;)” 1)
=1
N

_Zt 5§1)f
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with
~(1
max aé )= max o
ee{1,..,.N} ee{1,...,.ND}

and fél) e C>® (BR(R’")), ¢=1,...,ND, provided R > 0 is chosen suffi-
ciently small. It is also a consequence of Lemma 9.5 together with (9.55), (9.96)
and (9.98) and the fact that eg,...,es and V2 are all positive that the first
sum (9.113) in our expansion of F' can be expressed as

NO©

1+c
(9.121) S (U W) T det(al) )
=1
N© N®
Zt—lf(o) +Zt—ae i (4
=1

where each &éz) is smaller than 1, and fe(o),fé(?) € C*(Bgr(R™)) for £ =
1,...,N© and ! = 1,...,N® so long as R > 0 is chosen sufficiently
small. A close inspection of (9.78)—(9.90) together with (9.55), (9.96), (9.98)

and (9.116) reveals, in addition, that

O) (7 100 —1 (1r0N—1 (10— 9 ov_1)
fg Uv(‘/*) a(‘/*) a(‘/*) s 765(‘/*) =0
from which we deduce
o) =fP0) =0, ¢=1,... .89 =1 N

By (9.101), and the expansions (9.120) and (9.121) for F', we observe that
the map H defined by (9.110) can be written as

NW N@

(9.122) H(t,u):Ztg‘f’fg”(f (w) - fM(0 )) + 3607 P ().

(=1 (=1

Assuming for the moment that all constants o, in (9.120) are smaller
than one, that is, that (9.122) represents the time-integrable part of F,
we observe that it would follow from Lemma 9.5 that the map H would
statisfy (9.105) and (9.108) provided we choose

(9.123) max{éD, @@} <é<1, W= max o = max 5.
e{1,..., N} LeN(2)



Past stability of FLRW Einstein-Euler-scalar solutions 593

It would also follow from (9.110) and (9.121) that

N©

(9.124) SO () = A(u),

/=1

and H(u) defined this way would satisfy (9.107) and (9.109) if each term of
Pt féo) (u) has at least two factors involving components of Pu. Moreover, if

each term of P féo) (u) has at least one factor involving a component of Pu
and one factor involving a component of u, then it is clear that there would
exist a map H(u) satisfying (9.106), (9.108),

N©
(9.125) ST PAO(u) = Hw)Pu and PLH(u) = H(u)Pt = 0.
/=1

The calculation
H(u)P — PH(u) = P(H(u)P — H(u)) = —PH(u)P+ =0

shows that the map H(u) would also satisfy (9.109).

To proceed, we now turn to matching the components (9.78)—(9.90) of F’
to terms of the type that appear in the sums (9.120) and (9.121), and showing
that the exponents o, that appear in (9.120) are all less than 1. We begin by
considering the components F to Fig of F' defined by (9.78)—(9.87). Here, we
observe that these components can be decomposed into two groups of terms:
those that depend on the fluid variables and those that do not, where we
note that only Fi, Fy and Fig have terms that depend on the fluid variables
via the expressions t1_250ﬂ2T(LM), ta= BTops, t1720B2(BE+ 9 +1+m) * T
and t'Te2¢ 329 (T;,,. It has been established previously in [13, §9.6] that
the fluid independent terms in F} to Fig satisfy the properties asserted by
Lemma 9.4. Consequently, to complete our analysis of the terms F} to Fig,
we need only consider the terms

(9126) t1726°ﬂ2T(LM) _ t—1+::2(l—cﬁ)—es—Qeo/BQT(LM)’

(9127) tEI_eoﬁTOM — t-l‘i‘z:;(1—C§)—63+€1—60—1BT0M
and
(9.128) 1720 B2(BE +p + 1 +m) * T

_ t71+:—:;(17c§)*63*26052(ﬁ,5 ++1+m)*T,
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where
(9.129) G e e
. 1) 1)
(7.4) 1+c; 1-¢ 5 -
= 2P0< Cg w W W; + (n— 2)0292‘]‘),810 N

and the derivative

(9130) t1+€17260/82@QTlm _ t—l-l—z—_;(l—cg)—63—250+5152@QTlm
_ t*1+z%2(1fcs)*€3*2€0+61 62 (eQ(Tlm) _ WQllTlm _ I)/sz'fll)

Noting that the inequalities

n—1 n—1 1 1
n_2(1—c§)—63—260>m(l—cg)—@,—}—gel—g—eo
n—1
n_2(1—cg)—63+61—60—1
and
n—1 n—1 1 ¢
n—2(1_c‘2)_63+61_60_1>n—2(1_c§)_63+61_§+§_1

>0

hold due to (9.103), it follows that each ¢-power to the right of the equal
signs in (9.126)—(9.128) is greater than negative one. Consequently, each of
the maps (9.126)—(9.128) will be time-integrable, and therefore part of the
expansion (9.120), which in turn, will imply that it is part of the map H
by (9.122). Moreover, since € satisfies (9.104) by assumption, it also satis-
fies (9.123) from which it follows that this part of the map H satisfies (9.105)
and (9.108).

Now, to analyse the derivative (9.130), we observe that each component
of the map Tij satisfies the requirements for the map f in Lemma 9.6, and
consequently the derivative (9.130) can be expressed using (9.118) where we

notice that the terms corresponding to f[Yl l'in the chain rule (9.117) vanish
forall & =1,...,13 except for & = 11 and & = 12. Given that t“'yQij can
be replaced by a constant coefficient, linear combination of mg, fg;; and
10"y because of (7.51) and (7.52), the time-integrability of the map (9.130)
is then an immediate consequence of (9.103). Thus (9.130) determines a
part of the expansion (9.120) and therefore a part of the map H according
to (9.122). Again since (9.123) holds on account of € satisfying (9.104), this
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part of the H map satisfies (9.105) and (9.108). This completes the analysis
of the components Fi, ..., Fip.

We now turn to analysing the components Fi1, Fi2 and Fjs in (9.88)—
(9.90). We will not consider the component Fj; further because it is straight-
forward to verify that it satisfies the stated properties. Moving on to Fis,
we see from (7.30), (9.36), (9.37), (9.43)—(9.52) and (9.89) that all terms
proportional to 1 in Fjs can be combined into the expression

-1 —1 1
(9.131) —o0 [%WQWQ + 50" Uepo WL W
1 32+ 1wWiw; P
_ (- s = N\ Q
(2 c? w? ) pQW" W

1
— 50IW sy — 267 Uhpqdss | W,

This part of Fja generates an expansion of the form (9.121) where it can
be checked using (9.55), (9.96) and (9.98) that that no contribution corre-
sponding to the second sum on the right hand side of (9.121) is generated.
Moreover, using (9.64), it can be verified that the terms in the first line
of (9.131) yield contributions only to the map H, see (9.124), which sat-
isfy (9.109) as a consequence of (9.55), (9.98), (9.96) and (9.64) on the
one hand. On the other hand, we can use the same relationships together
with (9.125) to establish that the second line of (9.131) yields well-defined
contributions only to the map H which are consistent with (9.106)—(9.109).
This covers all time-non-integrable terms of Fis.

Considering now all the remaining terms from Fje, which, as we will
show are time-integrable, a lengthy calculation involving (9.36) and (9.37)
reveals that these terms can be expressed as

32 +1wewr
c? w?

53 [—5?1(553)(53](25'0J +Lj05) — (

p + gPQ>gPQQ(5?l773)j

L3 +1Wewr  oo\- 1 050 o ~
_ §< Cg w2 —+ g Q>£LPQ5(Z778)] — 26[ (S(S(SJ)mJ

L 1/3c2+1 (W)

2 cs w
32 +1Wowr 241 N
- 2 i(sgnopr — Cg (—s 2 5?1775)3' - 5?7751)5700
Cs w Cs

s/t +1 ~ 1~, -
— 2B 1( SCQ 55%);’ — 531‘)773l> (527'130 + 55(277113 — 67K (20K p
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- gp][{)))] WSWI - (555 —anK(sKngQL(le - aojoﬁNTOL(le
~ B B 1 ~ ~
— aojK(sKP(ﬁToP + mp)élo + ano(m[ — 55‘”{(2@]}([ — KIJK))(S?
+al jotbr°LoF — al i (%P lrop — 65 P 0p) 5P + anKifKL(EL] wi.

It then follows from (9.43)—(9.52), (9.55), (9.96), (9.98) and (9.103) that
these can be expanded as (9.120) where all exponents oy are smaller than 1,
and consequently, it contributes to the map H. As above, since (9.123) holds
due to € satisfying (9.104) by assumption, this contribution to the map H
will satisfy (9.105) and (9.108).

Finally, to complete the proof, we consider Fi3, see (9.90), and observe
that it can be written as

(9.132)
i <O —€1 —€1 —1mn{ 1—eo -k
Fi3 :5§5QQ [(275 anmIB&)Q — 2t aljmszOQ)(ao) ! (t ﬁalnkUI

— 9T BC g WOW!) — 707 Bal 8" oL T

+ 79 Bal QU — 14 (B D) (BG W WY

+ t_€OB@Qa0jm(ao)_lm“alnkf}l; — t_eoﬁ@Qankﬁl;

— %t_laojkékaQLﬁ]; — t_eoﬂaijkwklﬁlc) + t_eoﬁaijk%LQfI’Z

— 197D Qa%jm (a”) T (BCLaW W) + 197D (BGjaWEWT)

(n— 1) -

1 .
—1 0 ¢0 S 0

n—2
Now, due to (9.103), we have that €4 > €1, g + €1 < 1, €4 > €y and €; > €,
and so, we see from (7.29), (7.31), (9.36), (9.43)—(9.52) and (9.119) that the

terms
. _ B _ B ke
5§5QQ [(21& elaojmﬂfoQ—Qt Elaljml/J[OQ)(ao) 1mn<t EoﬁalnkUI
o t647€0/8GnleSWl> _ 4 C—€ ﬁaojk(;PLgQOLﬁ];’
—€0—€1 ok €1(R— 2
+ 707 Bal P gUp — t4 (B Do B) (G W WY

_ _ -k _ k
+t eﬂﬂ@anjm(ao) lmnalnkU]—t eoﬁ@QankUp]
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from (9.132) can be expanded as (9.120) with exponents oy that are all
smaller than 1. Consequently, this part of Fi3 is time-integrable, and there-
fore contributes to the map H. Again, since (9.123) holds due to € satisfy-
ing (9.104) by assumption, this contribution to the map H will satisfy (9.105)
and (9.108).

Next, it is clear from (9.55), (9.96) and (9.98) that the term

16 ,
5820997 a 15" kgL U

from (9.132) can be expanded as (9.121) without the second sum appearing
on the right hand side, and consequently it is time-non-integrable. From the
definition (9.64), it is also easy to verify that this term contributes to the map
H in consistency with (9.125) and that this contribution satisfies the prop-
erties (9.106), (9.108) and (9.109) as a consequence of (9.64), (9.55), (9.96)
and (9.98).

Inspecting (9.37) and (9.38), it is not difficult to verify using the variable
definitions (9.43)—(9.52) that the term

. = _ . .l . . k
5§5QQ —t7%Ba’ jvi" g +t éoﬁaljk’}’iLQUL]

from (9.132) contains both time-integrable and time-non-integrable terms
contributing to the map H and the map H, respectively. Furthermore, since
€ satisfies (9.104) by assumption, which in turn implies that (9.123) holds,
these contribution to the maps H and H are easily seen to satisfy the prop-
erties (9.105)—(9.106). Additionally, from (9.64), (9.55), (9.96) and (9.98),
we observe that these contributions to the maps H and H satisfy (9.108)—
(9.109).
Next, we consider the term

5592440 D g0 s (a) 1 (BG W)

from (9.132). With the help of (7.29), (9.36), (9.43)—(9.52), (9.116), and
Lemma 9.6, in particular (9.118), it then follows that the above expression
can be separated in a collection of time-integrable and time-non-integrable
terms where the former contribute to the map H and the latter to H. Regard-
ing the terms that contribute to H, it can be verified as above these terms
will satisfy the properties (9.105) and (9.108) as a consequence of (9.123),
which holds since € satisfies (9.104) by assumption. On the other hand, the
terms that contribute to H are, thanks to (9.64), (9.55), (9.96) and (9.98),
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easily shown to satisfies the properties (9.106) (9.108)—(9.109) with the pos-
sible exception of the term

1,1 e (M —1)c2 =1 s
—t 1<a[12],p)?m(a0) ! U%T((S?lns)n - 527731)W w,

which originates from the first term in (9.36) after being expanded us-
ing (9.118). The problem with this term is that it is not clear that its contri-
bution to the H maps satisfies (9.108). However, a straightforward calculation
demonstrates that this term can be expressed as

1,1 e (M —1)c2 =1
—t 1(a[12]7p)?m(a0) 1 U%T ((5ibv(SNSW(OWS) — 62WSWS) .
From this expression and the definitions (9.55), (9.96) and (9.98), it is then
clear that this term is of the required form.

To complete the proof, we analyse the last term

(9.133) 52590 [tereo@Q(BstlWSWl)

e

-

in (9.132) starting with =D (BG4 WW). Using (9.43)—(9.52), we can
express Gjg, see (9.36), as

(9.134) Gia =t B G+t Gl

where stl consists of all the time-non-integrable terms that are obtained
from the first three lines of (9.36) while all the remaining terms, which are
time-integrable, are denoted by stl.

Differentiating (9.134), we find that

9.135

( t“C)DQ(BGJ'SlWSWl) = e (Ga) WOW! 4 201G G W
— A (1 ) G WEW! — I (190 T ) Gy WEW!
— AT (10T Gy WO 267979 BG4 U W
D G(BG ) WIW! — 14972 (1040 7)) (BCist) WEW!
— 172199 ) (BGis) WEW,
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Taking into account (9.103) and the fact that t“'7g?; can be replaced by a
constant coefficient, linear combination of mq, fg;; and in J as a con-
sequence of (7.51) and (7.52), it then straightforward, with the help of
Lemma 9.6, to verify that all of the terms that last three lines of (9.135) are
time-integrable and can be expanded as (9.120) with exponents o, less than
one. In particular, these terms contribute to the map H and, for the same
reasons as noted above, will satisfy the properties (9.105) and (9.108).

Similarly, it is also straightforward to verify, again using (9.103) and
Lemma 9.6, that the terms on the first line of the right hand side of (9.135)
are time-integrable and can be expanded as (9.120) with exponents oy less
than one except for the terms

(9.136)
tH(Ga) Q00 WoW! 4 261G U W = 2671 (Gor) (5,0 WOWE
+ t_l(éj,g[,)g%iﬁi@ WSWL + 2t_1ést Ijz?WL
+ t_l(éjoo)g%%iﬁzQ (W0)2 + Qt_léjso GSQWO

Moreover, the time-integrable terms contribute to H and satisfy (9.105)

and (9.108). We futher note that the map (stl)gg),i that appears in (9.136)

corresponds to the map f&%) from Lemma 9.6 that is generated from the
derivative eQ(stl) in the first term on the right hand side of (9.135).

Due to the t~! singular terms in (9.136), this expression can be expanded
as (9.121). As can be readily verified using (9.55), (9.96) and (9.98), the ex-
pansion only contains terms of the type that appear in the first sum on the
right hand side of (9.121), that is, the second sum is absent. In order to
verify that this yields a contribution to the map H, c.f. (9.125), that satis-
fies (9.106), (9.108) and (9.109) we must establish that each term in (9.136)
has one factor of Pu (which is obvious by (9.55), (9.64), (9.96) and (9.98)) in
addition to a factor of u. This is, by (9.55), (9.96) and (9.98), obvious for the
first three terms on the right side of (9.136), but not for the last two terms.
Indeed, a direct calculation involving (9.36), (9.43)—(9.52), (9.96) and (9.98)
reveals that these two terms yield precisely one term of the form that does
not involve a product of Pu and u, given by

(n—1)c2 -1 ‘s
—_— <175j + (525?) Up wo.

t_l
n—2

However, this term precisely cancels the second term in (9.133). So in to-
tal, (9.136) results in a contribution to the map H that satisfies all the re-
quired properties. This completes the proof of Lemma 9.4. ]
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10. Past global FLRW stability

In this section, we turn to establishing the past stability of the FLRW so-
lutions (1.47)—(1.50) and their big bang singularities. The precise statement
of our past stability result is given below in Theorem 10.1. The proof of
this theorem is carried out in two steps. The first step, detailed in Sec-
tion 10.2, involves establishing the stablhty of the solution @ = U — U of the
Fuchsian equation (9.100), where U, defined by (9.91)~(9.94), corresponds
to the FLRW solution (1.47)~(1.50) and U is defined by (9.96). By (9.97),
we can choose ¢ty > 0 small enough to ensure that @(t) remains arbitrarily
close to uw = 0 on the time interval (0, ¢o]. The stability of the trivial u = 0
to the Fuchsian equation (9.100) therefore implies the stability of @, which
we note, in turn, implies the stability of U. Section 10.2 contains both the
statement of the Fuchsian stability result for the trivial solution u = 0, see
Proposition 10.3, as well as its proof. In the second step, which is carried
out in Section 10.3, we use the stability result from Proposition 10.3 in
conjunction with the local-in-time existence and continuation theory from
Proposition 5.6 to complete the proof of Theorem 10.1.

10.1. The past global stability theorem

Theorem 10.1 below establishes the nonlinear stability of the Einstein-Euler-
scalar field FLRW solutions (1.47)—(1.50) on Mg, = (0,to] x T"~* for some
to > 0 by guaranteeing that sufficiently small perturbations of FLRW initial
data, see Remark 5.5, which also satisfies the gravitational and wave gauge
constraints as well as the synchronization condition 7|y, = to, will generate
solutions of conformal Einstein-Euler-scalar field equations on Mg, that
are asymptotically Kasner in the sense of Definition 1.1 provided the speed
of sound parameter ¢2 is bounded by 1/(n — 1) < ¢2 < 1. As discussed in
Section 5.6, if the initial data does not satisfy the synchronization condition
7|s,, = to, then it can be evolved for short amount of time so that it does,
and consequently, we lose no generality by assuming that the initial data is
synchronized.

Theorem 10.1 (Past global stability of the FLRW solution of the Ein-
stein-Euler-scalar field system). Suppose that n € Zs3, k € L (n43) /25
Py >0,V?>0,c¢e(1/(n—1),1), 0 >0, and let {gu,,ﬁ',f/“} denote
the FLRW solution (1.47)—(1.50) determined by the constants n, Py, V.
and c2. Then there exist constants 0o, ty > 0 such that for every § € (0, &y,
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G € HM2(TLS,), g € HFMYTLS,), 7 =to, 7 € HF2(T™ ) and
VH# e HFY(TY) satisfying

(10‘1) Héuu - guu(tO)HH’““(T"*l) + Hg;w - 8t§,uu(t0)HH’ﬂ+2(Tn*1)
{17 = Ul gesa ey + [V* = VE (o) || e (rory < 8

and the gravitational and wave gauge constraints (5.15)—(5.16), there exists
a unique classical solution W € CY(Myy,), see (5.80), of the system of
evolution equations (5.48)—(5.56) on My, = (0,to] x T with regularity

k
(10.2) W e () C7((0,t0), H*I(T"1))
=0

that satisfies the corresponding initial conditions (5.57)—(5.68) on X; =
{to} x T"! and the constraints (5.81) in Mo, .

Moreover, the triple {gu, = 8ul°‘§a/38,,l5,7' = t,VHF = gﬁﬁ”}, which
is uniquely determined by W, defines a solution of the conformal Einstein-
Euler-scalar field equations (5.86) on Mo, that satisfies the wave gauge
constraint (5.87) and the following properties:

(a) Let eff = 87164 with B = (—g(da®,dz®))"z, and el be the unique solu-
tion of the Fermi- Walker transport equations (6.5) with initial conditions
efls,, = SheéX where the functions é € HX(T"™1) are chosen to satisfy
|6} — (W’t:to)_lé?HHk('H‘n—l) < 0 and make the frame e!' orthonormal on
Yt,. Then el is a well defined frame in Moy, that satisfies €9 = 0 and
9ij = nij where gi; = e} guyey.

(b) There exists a tensor field €1y in H*1(T""1,S,_1) satisfying

2=y (1=ed)
7. mre-snry S 0 + 26

such that
(10.3) [tBDogoo + 675 €k || -1 o1y < i ns(l=c)—o
(55 )
(10.4) [t6Dog sk — Errcll ey S tsnoa(1=c)—0o
=
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(c)
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(10.5)
1D rgooll = (ro—1) + [|Dog.rol o= (ra-)
D rgsoll -2 (rn-1y + 1D rgsxc || e (rn-1) S it a2
I = (A
(10’6) ||t/§@[@jgkz||m—1(w_1) g t_1+§n—:;(1_02)—20
I e
(10.7) DD 57| v (pe ) S I ()20
+ t_gz:;(l—ci)—U’
(10.8) H@ICDJ'@kTHH‘C*I(Tn—l) < t*2+5(1fc§)73a
+t—1—§:—:;(1—c§)—207

for all t € (0,tp], where all the fields in these estimates are expressed in
terms of the frame !’ and the Levi-Civita connection D of the flat back-
ground metric 9,, = 8ula77ag&,lf8. In addition, there exist a strictly pos-
itive function b € HF=Y(T"™1), a matriz 69 € H1(T" 1 M, _1xn_1),
and a constant C > 0 such that

10.9 Hffﬂﬂ i [,H < Ao
( ) ﬁ Hk—l(']rn—l) ~

= .

and

1 1n—1 2
(10.10) Hexp 5 n(t)e;" ey — e s gy S

(n—1)c2—1 -~

+ t2( — U)—C5
for all t € (0,to], where €17 = €pp6M7.

The second fundamental form Kaq induced on the constant time surface
Y= {t} x T" ! by g, satisfies

~ 1n—1 2 (n—l)cg—l
10.11 H2t Ky — & H < prmee)-o | 2(tg o)
( ) BKLs —tLs RS +
for all t € (0,t0], while the lapse, shift and the spatial metric on ¥y are
determined by N = 8, by = 0, and gaq = gaq, respectively.



(d)

(¢)
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The triple { G = to- 2gW,q5 1/2(7;—112)ln(t),‘_/” = V”} defines a
solution of the physical Einstein-Euler-scalar field equations (1.7)—(1.5)
on Mo, that exhibits AVTD behaviour and is asymptotically pointwise
Kasner on T ! with Kasner exponents r1(x),...,m_1(x) determined
by the eigenvalues of €1,/ () for each x € T"~1. In particular, €1 *(z) > 0
for all x € T" !, and €% (x) = 0 for some x € T if and only if
ri(x) = ... = rp_1(x) = 0. The time t = 0 represents a crushing
singularity in the sense of [28]. Furthermore, the function

V2(n—1)(n—2)

P )+ -2tk

can be interpreted as the asymptotic scalar field strength in the sense of
Section 1.3.

The physical solution {g,w, o, V“} is past C? inextendible at t = 0 and
past timelike geodesically incomplete. The scalar curvature R = R, g""
of the physical metric g,, satisfies

-1

(10.12) Ht Tty R+ b_2H Stéz 2(1=c?)—0-C9
n—2 Hk=1(Tn-1)
n t2((n—nl)_c2§—1 _0) —6’67

and consequently, it blows up pointwise everywhere on the hypersurface
t=0.

The fluid variables V* of the physical solution {gu,,,q[), T_/“} can be ex-
pressed as

(10.13) V= i (Wheh + wlel)

in terms of the physical orthonormal frame e’ = ¢~ 1/(n— 2)6 where

k
WO, Wl e () C/((0,to), H*(1T77))
=0

and there exists a positive function ° € H*1(T"~1) bounded by

n=1(1—c?)
10° pra—s o1y S 6+ 1§
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such that WO, W1 satisfy

(10.14) IWO(t) — (V2 4+ 20%) || i o1y S 3210
L5 ),
(10.15) W ()| s gy S t5n 200
L
(10.16)

||®QW0(t)HHk*1(T"*1) =+ ||@le(t)”Hk*1(T"*1) S t_1+ﬁ ::2 (l_cs)_a

_ 11 ﬂ(l—ci)—o‘

=
for all t € (0,t9]. The fluid density p satisfies
(10.17)

S

—1

1n (n—1)c2 -1
< pana (7)o 4 ,4?( Destg)

for allt € (0,tp]. The physical normalised fluid n-velocity is

wo wi
T AR AR _ 0\2 _ i1
(10.18) ut = - ¢ + o e W= \/(W )2 — Wiwry,
where
WOt Wit
(10.19) ‘ ) _ H +H ”‘
w(t) HbF=1(Tn-1) w(t) HbE=1(Tn-1)

for allt € (0,tg], and therefore u* agrees with e asymptotically att = 0.
0

The implicit and explicit constants in the above estimates are all inde-
pendent of the choice of § € (0, dp].

Before considering the proof of this theorem, we make some observations.
Remark 10.2.

(i) The constants g, dy that appear in the theorem depend on the con-
stants V0, Py from the FLRW solution (1.47)-(1.50). Since we do not



(iii)
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track the explicit dependence of tg, g on the choice of these constants,
all we know from Theorem 10.1 is that for a particular choice of V,?, Py
there exist sufficiently small positive constants tg,dy that guarantee
the past stability of the FLRW solutions. While this may seem to be
a restriction on the choice of the time interval (0, %], it is easy to see
with the help of a Cauchy stability argument, see Proposition 5.6.(a),
that we can take ty > 0 as large as we like in Theorem 10.1 as long as
the initial data satisfies (10.1) for a suitably small choice of 9 > 0.
The decay rates, i.e., the t-exponents in the estimates from Theo-
rem 10.1, are most likely not optimal. Improved decay rates can be
obtained through an adaptive choice of the parameters €g,..., €4 as
was carried out in [13], but we have decided against doing this here
because is would significantly increase the complexity of the proof and
to achieve optimal results would require additional arguments along
the lines of those employed in [12].

It is worth noticing that the estimate (10.17) can be used to distinguish
the blow-up of the FLRW background fluid from that of a generic
perturbation. The relations (1.52) and (9.99) yield

pbg(t) = p*t75(1+cg) + O(t72gcg>

for the FLRW background, where p, can be interpreted as the back-
ground fluid density parameter determined by V! via (1.51). Now
by (10.17), the density of a generic perturbation behaves like

(n—1)e2—1

o) = put— )= ED o(téz:;u—c@—o EC 0)),

with p, close to ps. By Theorem 10.1.(d), the trace £;7(z) is a non-
negative function which is zero at a point x if and only if the full
matrix €77 (z) is zero, and since we expect that this matrix is non-zero
at least somewhere for a generic perturbation of the FLRW solution,
it follows that the blow-up profile of the perturbed fluid density must
differ significantly from that of the FLRW density.

Given that the vector field ep, see Theorem 10.1.(a), and therefore
€o, see Theorem 10.1.(f), is orthogonal to the scalar-field synchronised
t = const surfaces, the formula (10.18) and the estimate (10.19) imply,
in particular, that the spatial fluid velocity approaches zero relative
to observers that are at rest with respect to ¢ = const foliation (i.e.
whose wordlines are integral curves of ). The perturbed solutions of
the Einstein-Euler-scalar field system can therefore be interpreted as
asymptotically co-moving.
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10.2. Fuchsian stability

As discussed above, the first step in the proof Theorem 10.1 is to establish
stability of the trivial solution u = 0 to the Fuchsian equation (9.100). Thus,
we need to solve the Fuchsian global initial value problem (GIVP)

1 1 - 1
(10.20) A°(w)dpu + ANt u)ohu = Zﬂ]P’u + EH(t) + gH(u)Pu

{€ote
1, 1 .
+ ;P H(u) + FH(t,u) in Mo,
(10.21) u = U in 3,

for initial data wugo that is sufficiently small. Existence of solutions to this
GIVP is obtained in the following proposition. Its proof follows from an
application of the Fuchsian global existence theory established in [14]. The
actual existence result we employ is Theorem A.2 from [12] together with
Remark A.3 from that same article, which, together, amount to a slight
generalization of the Fuchsian global existence theory from [14].

Proposition 10.3. Suppose that n € Z>3, k € Zx(n11)/2, 0 > 0, Tp > 0,
VY >0, c2 € (1/(n—1),1), Py > 0 and that o, €1, €2, €3 and €4 sat-
isfy (9.103). Then there exists a 6o > 0 such that for every ty € (0,Ty] and
§ € (0,60], if ugp € H*(T™ 1) and F(t), see (9.102), satisfy

to _
(10.22) luollgeqnsy < 6 and /0 B ()| s (en-yds < o,

respectively, then the Fuchsian GIVP (10.20)—(10.21) admits a unique solu-
tion
u € Gy ((0,t], HY(T"1) N CH((0, 8], H*H(T"1))

such that limpy o PHu(t), denoted PLu(0), exists in H*=1(T"~1). Moreover,
the solution u satisfies the energy estimate

tgl
(1023)  JulOlponot [ 5 IPuE) s

to B
Sl + ([ Il ncreys)

2

and decay estimates

10.24 Pu(t)|| e pn1y < P+ tF7C
( 1T S :
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(1025) [P u(t) ~ Bru(0) ooy S 04 26,
for all t € (0,to], where

(10.26) p:min{l—360—61,1—60—62,60,62,

n—1
n—2

(1—c§)—63—|—61—60—1,64—61,1—60—64},

(n—1)c2 -1 1 }
y €1 — )
n—2 ! 1+\/§

(10.27) K= min{eo, €92, €3,

and P+ =1 —P.
The implicit constants in the energy and decay estimates are all inde-
pendent of the choice of to € (0,Tp] and & € (0, do].

The proof of Proposition 10.3 makes use of two technical lemmas, Lem-
mas 10.4 and 10.5 below, that we will present first. The first lemma is a
restatement of Lemma 3.4 from [13], and we refer the reader to that article
for its proof.

Lemma 10.4. Suppose €1 > 0 and let
(10.28) Ny = Gpgrsd” @6 5™ ((1 +€1)0Y dgjum
+ 0303 (dQujm + dQmit — nglm))'

Then

1
10.29 n/>( _ |2
(10.29) 02 (o= 7 5)ll

(n—1)n®

for all gomji € R satisfying §Qjim = 9qQjmi where

|G]? = 67959 ™ 65 ™ G pyrsGojim
is the Euclidean norm.

It is important to note that (10.29) yields an effective bound on the
norm |g|? because €; — 1+1\/§ > 0 due to (9.103).
Before we state the second technical lemma, Lemma 10.5, we first define

an alternative formulation of the Fuchsian equation (10.20) that will be
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employed in our subsequent analysis. To this end, we consider so far arbitrary
positive constants o1, ...,019 > 0 and set

(10.30) o = diag(o/ g, o r),
o = diag (alaLLaMM, oo MM 5o sRESMM
(10.31) 46 FPRGLLEMM 57§ o 767165

0501167, 677 596951151 10599571 5215%) :

(10.32) o p = diag(1, 65, 55,699).
Then we let
(10.33) B (u) =7 A%(u),

A _ 1 A
(10.34) B (t,u) =rata o A% (t,u),
(10.35) B(u) =/ A (u) + F/H(u)
and

1

(10.36) JE(t,u) :EdH(t’ u)

for any € satisfying (9.104). Using these definitions, a short calculation shows
that (10.20) can be expressed as

(10.37) B°(u)rut B (t, u)dnu — %@(U)Pw%PLﬁ(uHalﬁ(tH%(t,u),

where in deriving this we have used (9.100)—(9.102) and (9.110).

Lemma 10.5. Suppose that V2 >0, Py >0, ¢2 € (1/(n —1),1), €o,..., €
satisfy (9.103) and & is given by (10.27). Then there exist a 6 > 0 and for
each n > 0, constants o; = 04(n), 1 <i <10, and Ry = Ry(k,6,m) > 0 such
that

A A(u) > (k — 61)B°(u),
for all u € BR(R™) and R € (0, Ry).

Remark 10.6. The lower bound ¢2 > 1/(n — 1) on the sound speed is needed
to ensure that £ > 0; see (9.103) and (10.27).
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Proof. The proof is to a large part a straightforward consequence of [13,
Lemma A.1]. To see why this is the case, we identify the matrix A4 in [13,
Lemma A.1] with the matrix A in (9.66). This matrix is then partitioned
by choosing N = 10 and by identifying its diagonal blocks with the blocks
Ai1y -y A1p10 from [13, Lemma A.1] and similarly for the off-diagonal
blocks. Noticing that A% in (9.59) is the identity matrix, the inequality

g Aq > (RG — 57])%@A%,
where

%G = diag(aﬂl,ag]l, - .,0’10]1)

and o1,..., 010 are positive constants that depend on the choice of n > 0,
is then a direct consequence of that lemma, (9.68)-(9.76) and Lemma 10.4
provided kg is defined by

1
Kg =minq 1,2 + €1,€1,€1 — €, €9, €2, €9 + 2€1, €1 — }
{ 1, €1, €1 — €, €0, €2, €0 1, €1 113

Note here that 6 > 0 should be considered as a fixed positive constant while
1 > 0 can be chosen arbitrarily small. We also observe that kg simplifies to

- . 1
kg = min< €g, €2,6] — ————
“ {0 2 1+x/§}
because of
() "o (1) *(5-9) >0
et—e—lej—m—— | =——— = —— — = ¢
b 1B 1+v3 0 \1+v3 3 3

where the final inequality is due to (9.103).
In the same way we have from (9.71)—(9.73) and (9.115) that

(n—1)c; -1 - JsJ
:d1ag{€3,TWO(CS 25?(5?+5jJ53 5])7
0 0("‘1)03—1 JsK\ s0Q

<€4CL85 +W T(SJK(SS 53 )(5

—d (n_l)cg_l 0 —25050 5 5J~5J
= diag €5, —————W"(¢; %075} +6,0507),

_ _ 2 ~
W°<6—45059+€4(” )+ =l 15JK5;’5§<)5QQ}+0(PU),

2% n—2



610 Florian Beyer and Todd A. Oliynyk

and from (9.60) with (9.115) that

sz/FAOF(u)
: 0 0 sQ
:dlag{l,aij,ajjéQQ}

_ diag{ LW (éaga;? + 855870, WO (é(sgag +b51c8708) 5@9}
+ O(Pu).
Hence, by decreasing the size of R if necessary, it follows that
o pAp(u) 2 (Rp — 6n)e p AR (u)
holds for all u € Br(R™) for the same 6 and 7 as before provided

—1)cz -1
INﬁ)F = min{63, u, 64}.
n—2
The quantity & in (10.27) is then determined from min{<¢g, Ar} given that
€4 > € as a consequence of (9.103). O

We now turn to the proof of Proposition 10.3. As will become appar-
ent, the proof of this proposition will follow from an application of [12,
Theorem A.2], which requires us to verify that (10.37) satisfies the coeffi-
cient assumptions from [12, Section A.1]. The proof of the proposition then
amounts to verifying these coefficient assumptions.

Proof of Proposition 10.3. Suppose n, k, o, Ty, V0, cs, €0, €1, €2, €3, €4, p
and K are chosen as in the statement of Proposition 10.3. Then by (9.64),
we observe that the projection matrix P satisfies

P2=P, PT=P, 9P=0 and OrP=0

while we note from (9.55), (9.96) and (9.98) that kernel of P is spanned by the
variables u1 1y = kry and uf, = W0 — V0. By (7.29), (9.58)-(9.60), (10.33),
it is clear that the matrix-valued map %°(u) from the Fuchsian equa-
tion (10.37) depends smoothly on v near u = 0, i.e. B € C*®°(Br(R™), M%)
for R > 0 sufficiently small, is positive, symmetric and satisfies

PA° (u)Pt = PLA° (u)P = O(Pu).
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In addition, we note from (9.64), (9.110)—(9.109), (10.30)—(10.32) and (10.35)
that the matrix-valued map B(u) has the property B € C*°(Bgr(R™), M,,,x)
for R > 0 sufficiently small, and satisfies

(10.38) [P,8] =0 and ®B(0)=.«A(0).

The matrix A (0) can be constructed from (9.65)—(9.76) by observing that
the only u-dependent blocks of A are A 1212 and A 1313, which when eval-
uated at u = 0, take the form

n—1)c2 -1
A1212(0) = %VB(CS_%%Q + (5jJ6J ),
V —1De2 -1 - -

S

as consequence of (9.115).
Now, from (10.38) and the smooth dependence of B(u) on u, we have
that

(10.39) B(u) = o A(0) + O(u),
and for similar reasons, that
(10.40) B (u) = o A°(0) + O(u),

where, as a consequence of (9.58), (9.59), (9.60) and (9.115), we have

AO(O) :dlag<5LL5MM 5MM 5RR5MM 5RR6LL6MM 67’7'6” 1 5115/\/\’
51157, 677, 59Q51 51t §QQ g7 gl gmm 1,

1 1 ?
0 0450 J§K) v 06° jor

Then fixing x € (0,%) and choosing 7 sufficiently small, we deduce from
the expansions (10.39)—(10.40) and Lemma 10.5 the existence of constants
Y1,Y2, R, 01, ...,010 > 0 such that

1 1
—1 < A°u) < =B(u) < 1
Ba! K
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for all u € Br(R™).
Next, due to (9.55), (9.61)—(9.63), (9.96)—(9.98), (10.30) and (10.34), we
note that

Pt € C0([0, Tp], C=(R™))

since
(10.41) p <min{l — ¢y — €2,1 — €}

as a consequence of (9.103)-(9.104) and (10.26). Further, it is clear from
(10.36), (10.41), (9.102) and Lemma 9.4 that

=P € C°([0, Tp], C°(Br(R™),R™)),  t'7P5#(t,0) = 0,
t1PF € C™((0, Ty}, R™) N C°([0, Tp], R™),

PLa € C°([0, Ty, C*°(Br(R™),R™)) and PYH(u)= @(%]P’u ® ]P’u>,

where the constant A > 0 can be chosen arbitrarily small by further shrinking
R > 0 if necessary.

Thus far, we have verified that the coefficients of the Fuchsian equa-
tion (10.37) satisfy all of the assumptions from [12, Section A.1] except for
the assumptions regarding the divergence map div #(t, u, w), which we now
consider. According to item (4) of Definition 2.1 from [12], the divergence
map div A(t, u,w) is defined by first computing

(10.42) D1 (AB° (1)) + Or (B (t,u)) = Dy B°(u)d,W*

02D BNt u)OAB +t O D pa B (¢, u)On f1

4+ t7072 Dyys r%’A(t, u)OAW?,
where in deriving this we have used (9.55), (9.58)—(9.63), (9.96)—(9.98),
(10.30)-(10.34) and the definitions for A%(u) and A*(t,u) that were in-

troduced directly after (9.100). The variable w is taken to be the spatial
derivative of u, that is,

(10.43) w = (wp) = (Oru).

The divergence map div Z(t,u,w) is then defined as the right hand side
of (10.42) where the time derivative 9;W*° is replaced using its evolution
equation, see (10.49) below, and after that replacing all remaining spatial
derivatives Opu with wy.
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To verify the coefficient assumption for div (¢, u, w), we need to show,
for some R > 0, that div #(t, u, w) depends continuously on ¢ and smoothly
on (u,w) for (t,u,w) € (0,Ty] x Br(R™) x Br(R"~D™) and that there exist

positive constants 6, 81, B2 and (3 such that'®
(10.44) P div B(t,u, w)P = O (=19 +1713)),
(10.45) Pdiv B(t,u, w)P+ = Pt div B(t, u, w)P
— Ot 1-Pg 4 @pu
R
and
t~'53
(10.46) P+ div Z(t,u, w)P+ = © <t<1p>9 + 7 Pu® ]P’u>.

To this end, we note, since p satisfies (10.41), that the second line of (10.42),
that is,

"2 DBt )OS + =D pa BNt w)On [T
+t760762DWS<@A(t7 u)aAWS,

defines, for R > 0 small enough, a map %(¢,u, w) satisfying
(10.47) t'77¢ € C°([0, Ty}, O (Br(R™) x Br(R™™1m) R™)).

Considering now the first line of (10.42), we observe, with the help of (7.29),
(9.34) and (9.89), that

(10.48)
Dyy- B° (u)0,W*
=Dy B°(u)(a®) 1% (BGjS,lWS,Wl - Baijk'yilel — aljkﬁe?aAWk>
~ —1e2 -1 . A
—of Dy A% (w) (a®) 159 (Fm + t—l%woaf 5755, W9

— e al B owh),

15The order notation O(-) and O(-) is defined in Section 2.
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which we express more compactly as

(10.49) Dy 2° ()W = My (u)(a®) ™% (u) I;(t, u, w)
where
(10.50) M(u) = o Dy A (u)

and I5(t, u, w) is defined by

— D2 -1 z .
(Tl )Cs W05{5j]5jJW] N t_EO_Ezank,Bf}\aAWk.

B -1
F12j+t n—2

With the help of (7.31), (9.55), (9.96)—(9.98), (10.43) and Lemma 9.4, it is
then not difficult to verify that Ij can be decomposed as

(10.51) I(t,u,w) = t‘llj@ (u) + t—lﬂ’J;”(t, u,w)

where
(10.52)

15(0) c Coo (BR(RTIZ)’ an) and Ij(l) c OO ([O, TO]a COO(BR(RM), an)) )

We further observe from (7.29) and (9.59)—(9.60) that M, defined above
by (10.50), satisfies

(10.53) PMo(u)P = O(1), P+My(u)P = PMy(u)P+ = O(Pv @ Pv @ Pv),
P My (u)P = O(1),
(10.54) PMg(u)P = O(Pu), P+Mg(u)P = PMg(u)P+ = O(1)
and P Mg (u)P+ = O(Pu),

and note from (9.115) that (a°)~! can be expanded as

1

(10.55) (a®) 71k (y) = =

(25)0K + 67K 67,6%) + O(Pu).

From the analysis of Fl in the proof of Lemma 9.4, we deduce that (%),
defined above by (10.51), satisfies

(10.56) 1§ (u) = O(Pu®@Pu) and 13 (u) = O(Pu).
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Taken together, the expansions (10.47), (10.51)—(10.54) and (10.56) along
with the fact that <, defined by (10.30)—(10.32), and P, defined by (9.64),
commute, imply the existence of the constants 6, 81, S2 and (3 such that
(10.44)—(10.46) hold. Moreover, because the constants oy,..., 019 used to
define o7, see (10.30)—(10.32), can be chosen independently of R > 0 for R
sufficiently small, see Lemma 10.5, we can arrange that the constants 1, B2
and (3 are as small as we like by choosing R small enough. This completes
the verification of the coefficient assumptions from [12, Section A.1].

Given that the Fuchsian equation (10.37) satisfies all of the coefficient
assumption from [12, Section A.1], we conclude directly from Theorem A.2
and Remark A.3 of [12] the existence of a constant §y > 0 such that if
to € (0,Tp), fgo |F(s)||ds < dp and ug € H*(T""1) satisfies l|uoll rx(rn-1) <&
for any ¢ € (0, dp], then there exists a unique solution

u € CP((0,to], HX(T"1)) N CH((0, 1o, H*H(T" 1)

of the initial value problem

1 1 .4 ~
B (w)Opu + B (t,u)Opu = ZB(u)Pu+ ZPLH(u) + 01 F(t) + A (t, u)
in My, = (0,t9] x T"7,

U = ug
in %y, = {to} x T" 1

such that the limit lim« o PLu(t), denoted P+u(0), exists in H*~1(T""1) and
u satisfies the energy and decay estimates given by (10.23) and (10.24)—
(10.25), respectively. Since the above initial value problem is equivalent
to (10.20)—(10.21), the proof of the proposition is complete. O

10.3. Proof of Theorem 10.1

Equipped with Proposition 10.3, we are now in a position to prove Theo-
rem 10.1. We begin by fixing n € Z>3, k € Z(n43)/2, VO P, >0, ¢ ¢
(1/(n—1),1), Ty > 0, ¢ > 0 and choosing constants ey, ...,€s that sat-

isfy (9.103).

Small Fuchsian initial data: Denoting the constant (20 > 0 from Propo-
sition 10.3 as dg, we assume that tg € (0,7p] and use U(tp) to denote the
FLRW background solution at ¢ = ¢¢ defined by (9.91)-(9.94). We also set

QjO = (?(t(]) - [o](t(])a
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where U(to) is defined above by (9.96). Then, due to (9.97) from Lemma 9.3,
we can, by choosing tg € (0, Tp] sufficiently small, arrange that

y 0o
(1057) ||'LLO||Hk(’]I‘n—1) < E
Additionally, by (9.102), we can, by shrinking ¢ further if necessary, ensure
that

to (n—1)(1-c2) B
(10.58) / IF(s) | e yds Sty "2 <.
0

Next, we suppose dp > 0 and choose ¢ € (0,dg] and initial data g,, €
HM2(TLS,), g € HEPY(TLS,), 7 = to, + € HF2(T" 1) and Vi e
H*+1(T?~1) that satisfies (10.1) as well as the constraint equations (5.15)—
(5.16). We then construct an orthonormal frame on the initial hypersurface
i, = {to} x T"! as follows: recalling that {g,u, Juw,T = to, 7, VHY deter-
mines initial data {g,w|s, , O0guwls,, T = to, 0o = 1,V*#|g, } for the metric
9uv, the scalar field 7 and the fluid vector V# in Lagrangian coordinates on
Y4, via (5.74)—(5.77), we set

1
ef = (~Ixlg)7=x"

and note that it can be computed from the Lagrangian initial data on 3,
by (5.78). We further fix spatial frame initial data €y[s, = o} éﬁ where the
functions ¢} € H¥(T™!) are chosen to satisfy

168 — (Wli=te) O} e (pn-1) < 8,

with w defined by (1.50), and make the frame e/ orthonormal on ¥;, with
respect to the metric g, given there, see (5.76).

Then we use the prescription outlined in Section 9.1, see also (9.43)—
(9.52), (9.96) and (9.98), to construct of complete set of initial data ug €
HF(T™1) for the Fuchsian system (10.20). It is straightforward to ver-
ify, with the help of the Sobolev and Moser inequalities (see Propositions
2.4., 3.7. and 3.9. from [70, Ch. 13]), that this initial data satisfies ||ug —
Uo | g+ (rn—1) < Cod where Cy = Co(to, tal, 0) > 0, which allows us, by (10.57),
to conclude that

) 5
(10.59) ol g (pe-1y < Ilito]| gz (zn-1) + Cod < 50 + Cos.
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Given the value of ¢ found above by imposing (10.57) and (10.58), we can
now adjust the value dy to ensure that § < &y/(2Cp) for all § € (0,d).
This guarantees that the hypotheses of Proposition 10.3 are satisfied for
appropriate choices of §y and tg, and all 4 € (0, dg].

Fuchsian stability: By (10.58) and (10.59), we obtain from
Proposition 10.3 a unique solution

(10.60) u € Cy ((0,t), H*(T™ 1)) nC((0, to], H* (T 1))

to the Fuchsian GIVP (10.20)-(10.21) that extends continuously to t = 0 in
HF=1(T™~1) and satisfies the energy and decay estimates given by (10.23)
and (10.24)—(10.25), respectively, for all ¢ € (0, to.

By definition P+ = 1 — P, and so we have by (9.64) that

T LsM j
(10.61) P —dlag<5i5]\7[,0,0,0,0,0,0,0,0,0,0,50,()).

Using this, we can label the components of P+ (0) € H*=1(T""1) as

(10.62) PLu(0) = (£2,,0,0,0,0,0,0,0,0,0,20°5, 0)

where €£7; € HF1(T""1,S,_1) and 2° € H*~1(T"~!). Noting, by the tri-
angle inequality, that

1P~ (O) gy (rn-1y < [ua(t) = PLu(0) | s pn-sy + ()| pro-s(ro-),

we conclude from the initial data bound |lug || g pn-1) < 6, the energy and
decay estimates (10.23) and (10.24)—(10.25), and the estimate (10.58) that

(n—1)(1—c?)

P w(0) | o gy S+ 577 45+, "

Choosing ¢ so that 0 < ¢ < K and letting ¢ N\, 0 in the above expression
yields

(n—1)(1—c2)

(10.63) ”EIJHkal('H‘nfl) + ||wOHHk—1(’]I‘n—1) S o+ tO no?

Limits of the frame variables: The frame ef is obtained from the com-

ponents of u via (9.44), (9.49), (9.55), (9.96)—(9.98) and the relations

(10.64) el = 3_156‘ and e(} =0,
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which hold by (6.4) and (6.11). Since B is initially positive at ¢ = to and the
evolution equation (9.31) for /3 implies that 3 cannot cross zero, we conclude
that f is positive on Mg ,. While (10.24), which we showed above that u
satisfies, yields a decay estimate for B, a stronger result can be obtained
from noting that (9.31) can be expressed as

d, (t’%fﬂﬁ) _ (_5215750751500 i %fl(kJJ _ Eﬂ))tﬁ“‘]ﬁ_
Since B > 0, we can integrate this in time to get
n(t=2%" B(t)) — In(i2%" 3(F))
-/ (e BPeom(e) + 57y (6) ) ) ds.

which holds for all ¢, € (0,]. From the Sobolev and Moser inequalities
(see Propositions 2.4., 3.7. and 3.9. from [70, Ch. 13]), we have

Hln(tiéé']‘]ﬁ(t)) ln(t 2t 5 )HHk 1(Tn-1)
< [ (7 186 s e e
b 557k (8) — £ sy ) s
provided 0 < t < t < t(. From the decay estimates (10.24)—(10.25) and (10.63),
the positivity of the constants p and &, and the fact that ¢ > 0 can be cho-

sen arbitrarily small, we deduce from the above estimate that In(¢™~ 2t B (1))
converges in H*~ 1("]I‘” 1) as t \, 0 to a limit, denoted b, and that

(=287 B(t)) — b s sy ST 1770)? P 4 4200

for 0 < t < tg. From this inequality, it follows that the limit bisa strictly
positive function in H*~1(T"1), which we express as b = In(b) where b €
H*=1(T"1). Using b = In(b) and noting that 1 — ey — €; > 0, we observe
that the above estimate simplifies to

1065) (e B0) 100 sy S 2

Estimate (10.9) is then a direct consequence of (9.103), (10.26), (10.27) and
the above estimate.
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Considering now the spatial frame components e?, we see, with the help
of (9.43), (9.44) and (9.48), that the evolution equation (9.32) for the spatial
frame components can be expressed in matrix form as

1
ot = g(e%/ +tL)er
where

(10.66) A (ed), = (—%5JL1<IL(0)),

and

(10.67)
1 J J ~
7 (Et—l(SJL(kIL ~ krr(0)) + pertky (0)/25JL(t—kJ (0)/25)%%)'

Letting'®

(10.68) et = () =t"" e,

a short calculation then shows that e® satisfies
(10.69) O = et

where
M=t Lt* .

By differentiating (10.69) repeatedly in space, we obtain from standard L?-
energy estimates and the Sobolev and Moser inequalities the differential
energy inequality

Oelle™ Ol Fr(zn-ry S N @)l s oy le (O s n-as

which in turn, yields

Dl Ol e (o) S 1l )| ggss ¢zl (0 L2

Applying Gronwall’s lemma to this differential inequality gives

e ()]s mery S [le™ (to) | prums prorye™ 2 o 1 lrraannyds g < g,

16Given a square matrix A, we frequently use the notation t4 instead of
exp(In(t)A).



620 Florian Beyer and Todd A. Oliynyk

Integrating (10.69) in time, we see, with the help of the above inequality,
that

(10.70) ™ (¢) = @)l o)

t
Lo 1//8 k—1mn—1 dS
S‘|6A(t0)||H‘“*1(T"*1)62 fto A 1 on /{ H%(S)HH/C*I(Tn—l)dS

fora110<f§t§t0.
Next, by (10.24), (10.25) and (10.67), we observe that the matrix .2 is
bounded by

(10.71) 1L (Ol e (Tn)
ST 4 2FT)) T (1P 4 RO

for all 0 < t < to. Also, since tT% = eX0()F the estimate

(1072) Htil/”H’“—l(Tn—l) S Cecnln(t)%”}rk—lmm—l) 5 t_C”EIJHHk—l(T[‘"—l)’

0 < t < 1o, is a direct consequence of the analyticity of the exponential
eX, the definition (10.66) of .#, and the fact that H¥~1(T"~!) is a Banach
algebra by virtue of the assumption that k—1 > (n—1)/2. By (10.3), (10.71),
and (10.72), we can then bound the matrix .# by

WO
(10.73) ,<V(t*1(tp + tz(’%*‘j)) + t*ﬁl(tp + tg:*o')>t_CHEIJ”Hk—l(Tn—])

for all 0 < t < tp. By choosing § and ¢ sufficiently small, it follows from
(9.103), (10.27) and (10.73) that .# is H*~(T"!)-integrable in time, that
is, Oto |4 (3)|| grx-1(rn-1yds < oo. We then deduce from this integrability
and the inequality (10.70) that ¢*(t) converges as t \, 0 in H*~(T"1) to a
limit, which we will denote by ¢4 (0). In order to derive the estimate (10.10),
we let £\, 0 in (10.70). Doing so, we see, with the help of (10.68) and (10.73),
that, for § and o chosen sufficiently small, that the estimate

”67 ln(t)(%/e/\(t) _ eA(O)HHk_l(T"_l)

< (tl) + 12(F—0) 4le (P + tk—0)>t*C”?JM”kalarnfl)’

holds for all 0 < ¢ < ty. Choosing «,. .., €4 according to (9.111) then yields
the estimate (10.10).
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Conformal Einstein-FEuler-scalar field past stability: Proposition 5.6 im-
plies, for some t; € (0, o], the existence of a unique solution % with regular-
ity (5.79) on My, 1, = (t1,to] x T" ! of the system (5.48)—(5.55) that satisfies
the initial conditions (5.57)—(5.68). Moreover, since the conformal Einstein-
Euler-scalar field initial data is assumed to satisfy the gravitational and wave
gauge constraint equations, it follows from Proposition 5.6 that this solu-
tion satisfies the constraints (5.81), and determines a solution {g,,, 7, V#*}
of the conformal Einstein-Euler-scalar field equations (5.86) in Lagrangian
coordinates that satisfies the wave gauge constraint (5.87) and where 7 is
given by

(10.74) =t

By construction of the Fuchsian system (10.20), the solution % determines
a solution @ on M, 4, of the Fuchsian IVP (10.20)-(10.21) with the same
initial data ug as above. By the uniqueness statement of Proposition 10.3,
we conclude that

(10.75) = uln,, .,

provided the parameters ¢y, €1, €2, €3 and €4 are chosen to be the same for
both solutions.

From the equality (10.75), it follows that the energy estimate (10.23)
together with the Sobolev inequality yields the bound

sup ||a(t)|y2.00 (pn-1) < 00.
t1<t<to

From this bound on @, we see, with the help of (7.1), (7.17), (8.1)—(8.4), (8.9),
(9.43)-(9.52), (9.96)—(9.98) and (10.64), that

(10.76)

5w ([ Ollwareron) + [Digsi®)llwsoerosy + 1BOlwarmrory

+ |k rs (8)llwoe (ory + 1[91° 7 () w.oe (o)
+ [l 1 (@) e (n-1) + [|D D7 [l yrz.oe (-1
+ ||W8HW2,DO(T’IL71)> < Q0.

With the help of this bound, it then follows from the evolution equations
(9.31)-(9.32) for 3 and €4, and [13, Lemma A.2] that

(10.77) inf {3, det(ef)}> 0,

tq.tg
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which in turn, implies via (10.64) that

(10.78) inf det(ef) >0 and sup det(gu) <O.

t1,tg Mtl,to

In addition to this, we observe from (7.1), (7.2), (7.5), (9.43)-(9.52), (9.96)
and (9.98) that

(10.79)

sup ||V (t)|lwroe(pn-1y = sup [V (£)el (£) [y (o1

n—1)c2—1

( L, .
Sz\jup t = 2B g oy W N e on ) L () L (1)
< 00,
(10.80)
sup |V
t1,to
(n=1)c2-1 __
= sup (—f2w?) = —J‘}nf 2 (ﬁZCS((KO)2+O(u))) <0,
My e t1,to

where in deriving the above inequalities we have used the fact that V? > 0,
the bounds (10.9), (10.23), and (10.77), and the Sobolev and the Moser
inequalities.

" is orthonormal by construction, the components of

the conformal metric in the Lagrangian coordinates are determined by

Since the frame e

(10.81) Guw = €l
and so by (10.76), we have

(10.82) sup |G (t) |2, (pn-1) < 00.

L <t<to
From the calculation

(10.64)
6562{8%]#1/ =Lo.gij = Léeogij

= BefDrgi; + Di(Bef)mj + D;j(Bel)njx
= B§Drgi; + ei(B)noj + Briomk; + € (B)noi + B omik,
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we also observe that the bound

(1083) Supt ||atg}“/(t)HW1,oo(Tn—l) < 00

t1<

is a direct consequence of (10.76)—(10.78), the relations (7.1), (7.47)—(7.48),
(7.51)—(7.52) and (10.64), and the evolution equation (9.31). Moreover, by
employing similar arguments, it is also not difficult to verify that @, x*,
where x* is defined by (5.84), satisfies

(1084)  sup (IDuxOllws < (orr) + [9Dox™) (1) w221y ) < 0.
t1<t<to

We conclude from (6.3) and the bounds (10.76), (10.78), (10.79), (10.80),
(10.82), (10.83) and (10.84) that the solution #  satisfies the continuation
criteria (5.88)—(5.89). Hence, by Proposition 5.6 the solution #  can be con-
tinued beyond t1, and consequently, the solution %" exists on My ,. This
solution continues to satisfy the constraints (5.81) and determine a solution
{9, 7, V#} of the conformal Einstein-Euler-scalar field equations (5.86) in
Lagrangian coordinates that verifies the wave gauge constraint (5.87).

Second fundamental form estimate: Using (6.3), (10.64) and (10.74), it
follows easily from the formula (10.81) for the conformal metric that on the
t = const-surfaces the lapse N is given by

(10.85) N =3,

the shift vanishes, and the induced spatial metric is gag = gaq. Furthermore,
by (1.14), (7.52), (9.43), (9.48) and (10.74), the second fundamental form
induced on the t = const-surfaces by the conformal metric is

KLJ:%];LJ +yv1’y) = %flf;}*lkw +t 0 g,
which using (9.44), we note can be expressed as
2tBKLy = kg + 2t 7By 0 ).
The bound

12¢BK Ly () — || sty S 17+ 12F7) g mcomer(gp 4 gFmoy2
< 4P 4 t2(/%70)
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is then a direct consequence of the above expression, the energy and decay
estimates (10.23)—(10.25), and the positivity of the constants p, & — o and
1 — €9 — €1. Since the right hand side here equals that of (10.65), the same
choice (9.111) of the parameters €, ..., €4 yields the estimate (10.11).

Fluid estimates: We begin by observing that the estimate (10.14) follows
from (9.55), (9.96), (9.98), (10.61)—(10.62) and the decay estimates (10.25)
using the choice (9.111) for the parameters €, ..., €4 while (10.15) follows
from (9.64) and the decay estimate (10.24) in a similar fashion. Also, we
note that (10.16) is a direct consequence of (7.3), (9.52), (9.64) and (10.24).
We further observe from (7.5) and the fact that H*~1(T"~1) is a Banach
algebra (since k —1 > (n —1)/2) that

(10.86)
w? — (V2 +20°)2] s ooy
=[(W)2 ~ 8 WIW — (VO 4+ 25 g s oy
SIWO — (V2 20%) g1 21y (V2 120 s ey + (WOl o))
W s oy

1 (nfl)cgflio_)

5‘[:8%(170?)70’ +t2( n—2

i

where the last inequality holds by (10.14) and (10.15).
To proceed, we define, for any v € R, a function ®,(z,y) via

(10.87) O L x I —R: (2,y) — (@+1) —y7,

where Iy CC (0,00) is an open interval and I; is an open interval around 0
that is sufficiently small to ensure that @, is well-defined and smooth. Since
®.,(0,y) =0 for all y € I, we deduce from Moser’s inequality that

(10.88)  [|+(v1, v2) | e (rery < Cllloall ey, o2l ecre-) il zecre-ry

for any vi,ve € HY(T™ 1) satisfying vy (x) € I; and vo(x) € I, for all = €
T~ ! provided that £ > (n —1)/2. Next, we use ®., along with (1.9), (1.25),
(1.26), (7.2) and (7.5) to express the fluid density as

c2, 1 1 62,
—Pof;_ E @t—z—:i(lﬂi)—kﬂ(lﬂ?)/?(tfé.z"/ZB)*(lJrC.f)(w2)—%{

2 2
c cs
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Py, _noii4e2y—e,7 (14¢2) /2 —e,7 /275 (142
:Et g (1e?) k7 (1+¢2)/ (q)_(mz)(t /25 _6,b) + b <+cb>)

) (B sias (0 — (VO 0P, (V2 4+ 20°)2) + (V0 4 ) )

2c2

From this expression and the estimates (10.9), (10.86), (10.88), and the pos-
itivity of b and V, +20°, we see that estimate (10.17) holds provided &y and
to are chosen sufficiently small. We also observe that the fluid variable V#
can be represented as (10.13) due to (1.25), (7.1) and (7.2) where €' is the g-
orthonormal frame &' = t=1/("=2)el' and, with the help of (1.3), (1.9), (1.25),
(1.26) and (7.5), that the physmal normahsed fluid n-velocity field is given
by (10.18). Finally, as b and V? + 20° are strictly positive on T"! for
dp and to chosen sufficiently small, the estimates (10.14), (10.15), (10.86)
and (10.88) imply that (10.19) holds.

Asymptotic pointwise Kasner property: Since {g,., 7, V*} is a solution
of the conformal Einstein-Euler-scalar field equations, it follows from (1.35)
and (10.74) that the triple

n—1

(10.89) {gw = trigy, ¢ = 2n—2) In(t), V" = V“}

determines a solution of the physical Einstein-Euler-scalar field system (1.1)—
(1.6). As a consequence, the spatial metric

and second fundamental form
7 o L1z
(10.91) Krg =tn-2 (KAQ to 5t B gAQ)

induced by the physical metric g, on the 7 = t = const-surfaces must
satisfy the Hamiltonian constraint, which we write in the rescaled form

(10.92) 77 PR+ 177 3242 (Ra2)? — Ra"Re?) = T =0

where R is the scalar curvature of the spatial metric g, and

2VitVst

232
—2r=f V2

T L I
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with T4 = TZ.S].F + TZ-FJ.I the Euler-scalar field energy momentum tensor,
see (1.2). Using (7.1)—(7.2), (7.5), (10.81), (10.89) and (10.64), we can ex-
press T as

n—1 (n—1)(1—c2) . 14c?

SH2pt e B (

T =

L+ Wiwy 1)

2 2 2
cs w cs

Taking the pointwise limit of the above expression as t \, 0, we see from
(10.9), (10.15), (10.86), (10.88) and the Sobolev inequalities that

n—1

10. lm T (t,x) =
(10.93) Hn (t,z) —

for each x € T 1,

Next, since the conformal factor tre in (10.90) is constant on the ¢
=const-surfaces, it follows from (10.74) and (10.90) that

2

Tn—2R =R,

where R is the scalar curvature of the spatial conformal metric gpg. Noting
that

R :eJ(F[JK)5IK o GI(FJJK)5IK +51KPIMKFJJM o FJMK5IKPIJM
+ 26" M T

where the I3,/ i are the spatial components of the connection coefficients of

the conformal metric g,,, with respect to the frame e/, we find from (1.14),

(7.1)~(7.3), (8.1)~(8.3), (8.5), (8.9), (9.43)—(9.46), (9.48)~(9.50), (10.64), the

formula

JIJKL ZGI(QJKL) - 7IOJQOKL - ’YIMJQMKL - VIOKQJOL - ’YIMKQJML
0 M
— Y1 LI9JKO — VI K9JKM

for the covariant derivative grjxr, = Drg9ixr = D1D 59k 1, and a straight-
forward calculation that

R=e*x O+ g+ (L +v)*(k++70)
=t f kIO
4 t*lffléfl(g + w) % (k + t176151/} + t176136)7
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where e = (6?% 0 = (9a) and we are employing the *-notation from Sec-
tion 8. Multiplying the above expression by 5272 yields
527_2R :t2—62—61—26062f * 877/) + t1—€1—€oﬁg
AL ) x (kA ETUTOBY 10

where in deriving this we have used (9.44). It is then a straightforward
consequence of (9.103), (10.60) and the Sobolev inequalities that

(10.94) }{(1(1) tY =23t )2 %R(t, ) = 0

for each z € T L.
Given (10.93) and (10.94), the Hamiltonian constraint (10.92) simplifies
to

lim ¢7-2 522 ((Rp™)? — Ra"Ks?) = 0.
fim Bt (Ka™) A"Ks™)

It is now a straightforward consequence of the above expression, (10.85),
(10.91), and the fact that

(10.95) %{% AN(t, z) K7 (t, ) = &7 (2),

for each z € T"~!, which follows from (10.11) and the Sobolev inequality,
that
(10.96)

_ _ _ 2 ~ —1 ~
(KaM)? —Kp"Kg =t 72 ((KII)Q — kK kA 2t_25_2),
n —
and therefore that
(10.97) N2 —e7e, 4 =0 in T L

Solving (10.97) for £;/, we obtain two solutions £/ = 4+/4 + £;7€;1 — 2.
But, by (10.63) and the Sobolev inequality, we can choose ¢ and ty small
enough to ensure that HE[IHLOC(Tnfl) < 4. Doing so, we conclude that &7

must satisfy €7 = /4 + €;7¢;1 — 2, which in particular, implies that
(10.98) e/ >0 in T

Taken together, (10.95)—(10.98) imply that the solution {g,., 7, V*} verifies
all the conditions of Definition 1.1, and hence, is asymptotically pointwise
Kasner.
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Crushing singularity: Taking the trace of (10.91) with respect to the
physical metric (10.90), we observe that the physical mean curvature can be
expressed as

n—1

B 2(n—1)
= )

_ 1 ~
(10.99) Ra2 7(%51(/ +
n—2
Recalling that § > 0, we deduce from (10.9), (10.11), (10.98) and Sobolev’s
inequality the existence of a constant C' > 0 such that the pointwise esti-

mates
- 1 ~ 2n—1) _ n—1
0 t,z) < = and 2tGK;! >
<Blte)< 7 and 20Ky +——0r > g
hold for all (t,x) € Moy, = (0,t0] x T"~* provided tg is chosen sufficiently
small. These inequalities together with (10.99) imply the pointwise lower
bound

KAA > M il
2(77, - 2) tn_Q

on My4,, and hence, that Ko™ blows up uniformly as ¢ \, 0. By definition,
see [28], this uniform blow up of the physical mean curvature implies that
the hypersurface t = 0 is a crushing singularity.

Geometric estimates for the conformal metric and scalar field: We now
turn to deriving the estimates (10.3)—(10.8). Before doing so, we first sum-
marise the relationships between the following geometric variables

{t5@09007 D 1900, D09.70, D170, tBDogsrc, D195 tBD 1D Grr, DiD i,
DD D7}

and the corresponding Fuchsian variables determined from the components
of u. From (7.1)—(7.3), (7.17), (8.1)—(8.9) and (9.43)—(9.51), it straightfor-
ward to check that

tBDogoo = — 6" Xk,
Drgoo =2t “my —t 675 (2 i — LK),
Dogjo =t~ “"my,
Drggo =t~ Lo,
tBDogsr =ksi + 7 (1737 B) (Ukos + Liok),
Drgix =t U1K,



Past stability of FLRW Einstein-Euler-scalar solutions 629

tBD 1D i =t~ drjm,
DD ;T =107,

DD ;D =t~ 2 F .

From these relations, it then follows via the definitions (9.55), (9.64), (10.61)
as well as the estimates (10.24)—(10.25) and (10.98) that the estimates

(10.100) [t8Dogoo + 075 € k|| s gpn-1y S 7+ 2577,
(10.101) HtBCD()gJK — EJKHkal('H‘nfl) <tP+ t2(R—0)
T+ 177,
(10.102) D 1gooll -1 (1n-1y + 1Dogsoll gx—1(rn—1)
H|D rgsoll rr-s o1y + 1D 19k |- (pn-ry S~ + 85777,

(10103) ”tﬁN@I@jgkl HH’C”(T”*) S e tfifcrfel,
(10104) ||®i®jTHH7€*1('H‘"*1) 5 teo—€ (tp + tfﬁfo’)’
(10105) ”CDI@jCDkT”kal(Tn—l) S t—60—2€1 (tp + tﬂ'—o’)’

hold for 0 < ¢t < ty. The estimates (10.3)—(10.8) then follow from (10.100)—
(10.105) by fixing the parameters €p,...,€e4 as in (9.111) and choosing o
sufficiently small.

AVTD property: The solution {g,.,7,V#} to the conformal Einstein-
Euler-scalar field equations on My, constructed above satisfies the AVTD
property in the sense of Section 1.3. To see why, we observe that the VTD

equation corresponding to the Fuchsian equation (10.20) is given by
0 1 ~ 1 1 - 1
A O = ;ﬂPu +F(t) + ZH(u)IF’u + Z]P’ H(u) + FH(t7“)7

and hence, any solution u of (10.20) is a solution of this VITD equation up
to the error term ¢t~ AN (t,u)d u. Given the definition (9.61), it then
follows immediately from (10.60), €y + €2 < 1, see (9.103), and the Sobolev
and Moser inequalities (Propositions 2.4, 3.7 and 3.9 from [70, Ch. 13]) that

to
/0 Hs—eo—ezAA(s,u(s))GAu(s)HH,C,I(T,L,I) ds < o0,

which establishes the AVTD property.
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C?-inextendibility of the physical metric: We now establish the C?-in-
extendibility of the physical metric by verifying that the scalar curvature
R = g™ RW of the physical spacetime metric g, blows up as ¢ \, 0. To
this end, we observe from (1.7)-(1.8), (1.27), (7.4)—(7.5), (10.74), and the
properties (10.64) of the orthonormal frame e/’ that the scalar curvature can
be expressed as

R=2g"V¢V;p+ g'T;; = 2t";’2277ijV1¢Vj¢ + fﬁ??ijTij
n— 1

= I T e
Ay
(n —1)cg +1 (1+e2) 2= 3—(14c? +c§
—4Py—— 35—t~ ( +c)
0 (n—2)cg 237
from which we get that
120 i, R+ 1[372
n—2
n—1, 1,7~ _ -
:—m«t S
n—2Z)cg

Estimate (10.12) then follows from a combination of (10.9) and (10.86)-
(10.88) together with the calculus inequalities that, so long as ¢y and Jp are
sufficiently small and V,? > 0.

Past timelike geodesic incompleteness: Recalling that the physical mean

curvature Ky is related to the conformal mean curvature K™ via (10.99), we
note that when the initial data agrees with FLRW initial data (Section 1.2.2)
the conformal mean curvature Kpa® can be made arbitrarily close to zero

on the inital hypersurface ¥;, = {to} x T" ! by choosing tg sufﬁciently

_ -1
small, which in turn, implies that Ko* can be made close to n—t n2

there. Thus by choosing J > 0 sufficiently small, we can by (10.1) and the
Sobolev’s inequality ensure that Kx? is close, in a pointwise sense, as we like
1

L
to Z—:;to "~* = everywhere on ¥, for the perturbed initial data. In partic-

1
ular, for § > 0 small enough, we have that Ka® > n — 12(n — 2)755@_1 on
34, Past timelike geodesic incompleteness is then a consequence of Hawk-
ing’s singularity theorem [58, Chapter 14, Theorem 55A], that is, all past
directed timelike geodesics starting on the ¥, reach {0} x T"~! in finite
proper time.
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This concludes the proof of Theorem 10.1.
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