Estimates of the Bartnik mass

Pengzi Miao[∗](#page-0-0) and Annachiara Piubello

Given a metric γ of nonnegative Gauss curvature and a positive function H on a 2-sphere Σ , we estimate the Bartnik quasi-local mass of (Σ, γ, H) in terms of the area, the total mean curvature, and a quantity depending only on γ , measuring the roundness of the metric. If γ has positive Gauss curvature, the roundness of γ in the estimate is controlled by the ratio κ between the maximum and the minimum of the Gauss curvature. As $\kappa \to 1$, the estimate approaches a sharp estimate for round spheres with arbitrary, positive mean curvature functions.

Enroute we observe an estimate of the supremum of the total mean curvature among nonnegative scalar curvature fill-ins of a closed manifold with positive scalar curvature.

MSC 2020 subject classifications: Primary 58J32; secondary 53C20. Keywords and phrases: Quasi-local mass, scalar curvature.

1. Introduction

Given a two-sphere Σ , a Riemannian metric γ and a function H on Σ , the Bartnik quasi-local mass [\[4](#page-21-0), [5](#page-21-1)] of the triple (Σ, γ, H) is given by (1.1)

 $\mathfrak{m}_{B}(\Sigma, \gamma, H)$ = inf { $\mathfrak{m}(M,g) | (M,g)$ is an admissible extension of (Σ, γ, H) }.

Here $\mathfrak{m}(\cdot)$ denotes the ADM mass functional [\[2](#page-21-2)] and (M,g) , an asymptotically flat 3-manifold with boundary ∂M , is an admissible extension of (Σ, γ, H) if

- (i) q is a C^2 metric of nonnegative scalar curvature;
- (ii) ∂M with the induced metric is isometric to (Σ, γ) and, under the isometry, the mean curvature of ∂M in (M, g) equals H; and
- (iii) (M,g) satisfies certain non-degeneracy condition that prevents $m(M,g)$ from being arbitrarily small; for instance, it is often required that

arXiv: [2303.13633](http://arxiv.org/abs/2303.13633)

[∗]Research partially supported by NSF grant DMS-1906423.

 (M,g) contains no closed minimal surfaces (enclosing ∂M), or ∂M is area outer-minimizing in (M, q) .

We refer interested readers to $\left[1, 17, 22, 35\right]$ and references therein for other variations in the definition of $\mathfrak{m}_B(\cdot)$.

For an arbitrary pair (γ, H) , it is an interesting problem to construct and parametrize admissible extensions of (Σ, γ, H) (see Problems 1 – 3 in [\[5\]](#page-21-1)). In the horizon boundary case, i.e. $H = 0$, under an assumption $\lambda_1(-\Delta_{\gamma}+K_{\gamma}) >$ 0, where Δ_{γ} is the Laplacian on (Σ, γ) , K_{γ} is the Gauss curvature of γ , and λ_1 is the first eigenvalue of $-\Delta_{\gamma} + K_{\gamma}$, Mantoulidis and Schoen [\[21](#page-23-1)] constructed admissible extensions of $(\Sigma, \gamma, 0)$, whose ADM mass can be made arbitrarily close to $\sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}}$, where $|\Sigma|_{\gamma}$ is the area of (Σ, γ) . As a result, Mantoulidis and Schoen [\[21\]](#page-23-1) showed

(1.2)
$$
\mathfrak{m}_{B}(\Sigma, \gamma, 0) \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}}.
$$

Combined with the Riemannian Penrose inequality [\[6,](#page-21-4) [15](#page-22-1)], [\(1.2\)](#page-1-0) determined

(1.3)
$$
\mathfrak{m}_{B}(\Sigma, \gamma, 0) = \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}}.
$$

Such a result was later extended by Chau and Martens [\[10,](#page-22-2) [11\]](#page-22-3) to metrics γ satisfying $\lambda_1(-\Delta_{\gamma} + K_{\gamma}) = 0$.

In the CMC boundary case, i.e. $H = H_0$ is a positive constant, there have been a sequence of works that adapted Mantoulidis-Schoen's methodology to derive upper bounds for $\mathfrak{m}_{B}(\Sigma, \gamma, H_o)$, see [\[7](#page-21-5), [27](#page-23-2), [11\]](#page-22-3). Also in the CMC case, an earlier work of Lin and Sormani [\[18\]](#page-22-4) gave estimates of $\mathfrak{m}_B(\Sigma, \gamma, H_o)$ by using Ricci flow to construct admissible extensions of (Σ, γ, H_o) . In all these mentioned works, the metric γ is assumed to have either positive or nonnegative Gauss curvature.

If γ has positive Gauss curvature and the mean curvature function H is positive, Shi and Tam [\[31\]](#page-23-3) constructed an admissible extension of (Σ, γ, H) based on earlier quasi-spherical metric constructions of Bartnik [\[3](#page-21-6)]. For such a pair (γ, H) , Shi-Tam's result [\[31\]](#page-23-3) yields

(1.4)
$$
\mathfrak{m}_{B}(\Sigma,\gamma,H) \leq \frac{1}{8\pi} \int_{\Sigma} (H_0 - H) d\mu_{\gamma},
$$

where H_0 is the mean curvature of the isometric embedding of (Σ, γ) in the Euclidean space \mathbb{R}^3 and $d\mu_\gamma$ denotes the area form on (Σ, γ) .

In the special case $\gamma = \sigma_o$, a round metric on Σ , adapting the construction of Shi-Tam $[31]$ $[31]$, the first author $[24, 25]$ $[24, 25]$ $[24, 25]$ $[24, 25]$ derived a sharp upper bound of $\mathfrak{m}_{B}(\Sigma, \sigma_{o}, H)$ with H being an arbitrary, positive function:

(1.5)
$$
\mathfrak{m}_{B}(\Sigma, \sigma_{o}, H) \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}} \left[1 - \frac{1}{16\pi |\Sigma|_{\gamma}} \left(\int_{\Sigma} H \, d\mu_{\gamma}\right)^{2}\right].
$$

Equality in [\(1.5\)](#page-2-0) holds if and only if the data (σ_o, H) arises from CMC round spheres in spatial Schwarzschild manifolds.

In this work, we extend estimate [\(1.5\)](#page-2-0) to allow arbitrary metrics γ with nonnegative Gauss curvature. Our main result is the following.

Theorem 1.1. Let γ be a metric of nonnegative Gauss curvature on the two-sphere Σ . Let H be a positive function on Σ . Then the Bartnik mass $\mathfrak{m}_{B}(\Sigma, \gamma, H)$ satisfies (1.6)

$$
\mathfrak{m}_B(\Sigma,\gamma,H) \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}} \left[\left(1 + \frac{\zeta(\gamma)}{8\pi r_{\gamma}} \int_{\Sigma} H \, d\mu_{\gamma} \right)^2 - \left(\frac{1}{8\pi r_{\gamma}} \int_{\Sigma} H \, d\mu_{\gamma} \right)^2 \right].
$$

Here $r_{\gamma} = \left(\frac{|\Sigma|_{\gamma}}{4\pi}\right)^{\frac{1}{2}}$, $\zeta(\gamma) \geq 0$ is a constant depending only on γ , and is invariant under scaling of γ . If γ has positive Gauss curvature, then $\zeta(\gamma) \leq$ $C(\kappa)$ for some constant $C(\kappa)$ depending only on $\kappa = \frac{\max_{\Sigma} K_{\gamma}}{K}$ $\frac{\max_{\mathcal{I}} \mathbf{R}_{\gamma}}{\min_{\mathcal{I}} K_{\gamma}}$. Moreover, there exists a small $\epsilon > 0$, such that, if $\kappa < 1 + \epsilon$, then

$$
(1.7) \t\t \zeta(\gamma) \le C|\kappa - 1|,
$$

where C is some absolute constant.

Remark [1.1](#page-2-1). The extension (M, g) of (Σ, γ, H) in the proof of Theorem 1.1 (see Section [2\)](#page-4-0) is foliated by closed surfaces with positive mean curvature. Consequently, (M, g) contains no closed minimal surfaces enclosing $\Sigma = \partial M$, and Σ is area outer-minimizing in (M,g) . Therefore, (M,g) satisfies either non-degeneracy condition mentioned in (iii).

Remark 1.2. If γ has positive Gauss curvature, (Σ, γ) isometrically embeds in \mathbb{R}^3 as a convex surface Σ_0 ([\[29](#page-23-6), [30](#page-23-7)]). Let H_0 be the mean curvature of Σ_0 in \mathbb{R}^3 . The Riemannian positive mass theorem ([\[36,](#page-24-1) [37](#page-24-2)]) shows

$$
\mathfrak{m}_{B}(\Sigma_{0}, \gamma, H_{0}) = 0.
$$

Applying Theorem [1.1](#page-2-1) to (Σ_0, γ, H_0) , we then have

$$
0 \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}} \left[\left(1 + \frac{\zeta(\gamma)}{8\pi r_{\gamma}} \int_{\Sigma} H_0 \, d\mu_{\gamma} \right)^2 - \left(\frac{1}{8\pi r_{\gamma}} \int_{\Sigma} H_0 \, d\mu_{\gamma} \right)^2 \right],
$$

which translates into the following lower bound of $\zeta(\gamma)$:

(1.8)
$$
\zeta(\gamma) \ge 1 - \frac{8\pi r_{\gamma}}{\int_{\Sigma_{0}} H_{0} d\mu_{\gamma}}.
$$

By the classic Minkowski inequality, the right side of (1.8) is ≥ 0 and is zero if and only Σ_0 is a round sphere. We think (1.8) is an interesting lower bound on $\zeta(\gamma)$ because $\zeta(\gamma)$ is defined as the infimum over a family of quantities measuring the roundness of γ , see the definition [\(2.32\)](#page-12-0). It follows from [\(1.8\)](#page-3-0) and (2.32) that $\zeta(\gamma) = 0$ if and only if γ is a round metric.

Remark 1.3. If we denote the right side of [\(1.6\)](#page-2-2) by $\tilde{m}(\Sigma, \gamma, H)$, it can be shown, along large coordinate spheres, $\tilde{\mathfrak{m}}(\Sigma, \gamma, H)$ approaches the mass of an asymptotically Schwarzschild manifold. More precisely, suppose (M, g) is a 3-manifold such that, outside a compact set, M is diffeomorphic to \mathbb{R}^3 minus a ball and the metric coefficients g_{ij} satisfies

$$
g_{ij} = (1 + 2mr^{-1})\delta_{ij} + O(|x|^{-2}), \text{ as } x \to \infty,
$$

where m is a constant and equals the mass of (M, g) . Let $S_r = \{ |x| = r \}$, and let σ_r , H_r denote the induced metric, the mean curvature of S_r in (M, g) . Then, direct calculation gives

$$
\int_{S_r} H_r d\mu_{\sigma_r} = 8\pi r + O(r^{-1}),
$$

$$
K_{\sigma_r} = r^{-2} (1 + 2mr^{-1})^{-1} + O(r^{-4}),
$$

(for instance, see (5.10) and (5.14) in [\[31\]](#page-23-3)). The equation on K_{σ_r} implies the curvature ratio κ , associated to σ_r , satisfies $\kappa = 1 + O(r^{-2})$. Hence, $\zeta(\sigma_r) = O(r^{-2})$ by [\(1.7\)](#page-2-3). These, together with the fact $|S_r|_{\sigma_r} = 4\pi r^2(1 +$ $2mr^{-1}(1+O(r^{-2}))$, readily implies

(1.9)
$$
\tilde{m}(S_r, \sigma_r, H_r) \to m, \text{ as } r \to \infty.
$$

In [\[28](#page-23-8)], Xie and the first author found the Mantoulidis-Schoen esti-mate [\(1.2\)](#page-1-0), in the case of metrics γ with positive Gauss curvature, can be reproduced by combing the methods in [\[31\]](#page-23-3) and [\[24\]](#page-23-4). Moreover, in [\[28\]](#page-23-8) it was shown

(1.10)
$$
\mathfrak{m}_{B}(\Sigma, \gamma, H) \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}}
$$

for any positive function H .

Our derivation of Theorem [1.1](#page-2-1) is motivated by the work in [\[28](#page-23-8)]. Briefly speaking, one starts with a special path of metrics $\{\gamma(t)\}_{t\in[0,1]}$, constructed by Mantoulidis-Schoen, which connects the given metric γ to a round metric σ_o . Upon reparameterizing and suitably scaling $\{\gamma(t)\}\,$, one obtains a path of metrics $\{\bar{\gamma}_s\}_{s\in[1,\infty)}$. On the product manifold $\Sigma\times[1,\infty)$ with a background metric $\bar{g} = ds^2 + \bar{\gamma}_s$, one then performs a Bartnik-Shi-Tam type construction to build an admissible extension of (Σ, γ, H) . Carefully tracing how the total mean curvature evolves along the foliation in the extension, one can relate the mass of the extension to the total mean curvature at the initial surface as well as the "expense" paid by connecting γ to a round metric. The area radius appears in the estimate as a normalization factor.

Besides (1.6) , estimates in this paper also give an extension of (1.10) to metrics γ with nonnegative Gauss curvature, see Corollary [2.4.](#page-11-0)

In a suitable sense, a dual problem of estimating the Bartnik mass is a problem of estimating the supremum of the total mean curvature of nonnegative scalar curvature (NNSC) fill-ins of a given closed manifold. Interested readers are referred to $\left[16, 19, 13, 14, 33, 32, 26\right]$ for results and questions related to NNSC fill-ins. As a byproduct in this work, we observe a lower bound of the supremum of the total mean curvature of NNSC fill-ins of a given manifold with positive scalar curvature, see Theorem [4.1.](#page-20-0)

2. Extensions and mass estimates

Let Σ denote an $(n-1)$ -dimensional sphere, $n \geq 3$. Let γ be a Riemannian metric with nonnegative scalar curvature on Σ . Let r_{γ} be the volume radius of (Σ, γ) , i.e. $|\Sigma|_{\gamma} = \omega_{n-1} r_{\gamma}^{n-1}$, where ω_{n-1} is the volume of a round sphere of radius one in \mathbb{R}^n .

Suppose $\{\gamma(t)\}_{t\in[0,1]}$ is a smooth path of metrics on Σ satisfying the following properties:

- i) $\gamma(0) = \gamma$, $\gamma(1)$ is a round metric with the same volume as γ ;
- ii) $\gamma(t)$ has positive scalar curvature for $t > 0$;
- iii) $\text{tr}_{\gamma(t)} \gamma'(t) = 0 \text{ for } t \geq 0$, where $\gamma'(t) = \frac{d}{dt} \gamma(t)$.

We will comment on condition iii) in Section [3.](#page-13-0) For the moment, fix such a path and define

(2.1)
$$
\alpha(t) = \frac{\max_{\Sigma} \left| \frac{1}{2} \gamma'(t) \right|_{\gamma(t)}^2}{n-1}, \quad \beta(t) = \frac{r_\gamma^2 \min_{\Sigma} R_{\gamma(t)}}{(n-1)(n-2)}.
$$

Here $R_{\gamma(t)}$ denotes the scalar curvature of $\gamma(t)$. Note that $\alpha(t)$ and $\beta(t)$ are scaling invariant in the sense, if $\{\gamma(t)\}$ is replaced by $\{c^2\gamma(t)\}$ for a constant $c > 0$, $\alpha(t)$ and $\beta(t)$ will remain unchanged.

Next, we adopt a construction from [\[28](#page-23-8)]. Given a constant $b > 1$, consider a smooth function

(2.2)
$$
t(\cdot) : [1, \infty) \to [0, 1],
$$
 with $t(1) = 0$ and $t(s) = 1, \forall s \ge b$.

For each $s \in [1,\infty)$, define

$$
\gamma_s = r_\gamma^{-2} \gamma(t(s)).
$$

 $\{\gamma_s\}_{s\geq 1}$ satisfies $\gamma_1 = r_\gamma^{-2}\gamma$ and $\gamma_s = \sigma_o$, $s \geq b$, where σ_o is a round metric on Σ with volume ω_{n-1} . Let $M = [1, \infty) \times \Sigma$ and $\Sigma_s = \{s\} \times \Sigma$. On M, consider a background metric

$$
\bar{g} = ds^2 + \bar{\gamma}_s
$$
, where $\bar{\gamma}_s = s^2 \gamma_s$.

This metric \bar{g} has the following features:

- a) the induced metric $\bar{\gamma}_s$ on Σ_s has positive scalar curvature for $s > 1$;
- b) the second fundamental form \overline{A}_s and the mean curvature \overline{H}_s of Σ_s in (M, \bar{q}) satisfy

(2.3)
$$
\bar{A}_s = \frac{\bar{\gamma}_s}{s} + \frac{1}{2} s^2 \gamma'_s
$$
 and $\bar{H}_s = \frac{n-1}{s}, \ \forall s \ge 1.$

Here $\gamma'_s = \frac{d}{ds}\gamma_s$ and condition iii) is used in obtaining $\bar{H}_s = \frac{n-1}{s}$. c) $\bar{g} = ds^2 + s^2 \sigma_o$ is a Euclidean metric on $(b, \infty) \times \Sigma$.

The following lemma follows directly from results in [\[31,](#page-23-3) [12](#page-22-9)].

Lemma 2.1. Given any positive function $H > 0$ on Σ , there exists a positive function u on M so that

1) $q = u^2 ds^2 + \bar{\gamma}_s$ has zero scalar curvature;

- 2) the mean curvature H_1 of $\Sigma_1 = \partial M$ in (M,g) equals $r_\gamma H$;
- 3) $u \to 1$ as $s \to \infty$ and (M, g) is asymptotically flat, foliated by $\{\Sigma_s\}_{s\geq 1}$ with positive mean curvature.

Proof. Let Δ_s denote the Laplacian on $(\Sigma_s, \bar{\gamma}_s)$. The equation on u corresponding to conditions 1) and 2) is

$$
(2.4) \begin{cases} \frac{\partial}{\partial s}u = \frac{1}{\bar{H}_s}u^2\Delta_s u + \frac{u}{2\bar{H}_s}(\bar{H}_s^2 + |\bar{A}_s|^2 + 2\partial_s \bar{H}_s) - u^3\frac{K_{\bar{\gamma}_s}}{\bar{H}_s}, & s \ge 1, \\ u|_{s=1} = \frac{1}{r_{\gamma}H}\bar{H}_1 \end{cases}
$$

(see equation (5) in [\[12](#page-22-9)] for instance). Since $\bar{H}_s > 0$, [\(2.4\)](#page-6-0) has a positive solution on some small interval $[1, 1 + \delta)$, $\delta > 0$. Since $K_{\bar{\gamma}_s} > 0$ for $s > 0$, the solution exists on $(1,\infty)$ by $[12,$ $[12,$ Proposition 2. Since \bar{g} is the Euclidean metric on $(b, \infty) \times \Sigma$, the claim that u satisfies 3) follows [\[31,](#page-23-3) Theorem 2.1]. \Box

Let g be the metric given in Lemma [2.1](#page-5-0) and let $\mathfrak{m}(g)$ denote its mass. Let H_s be the mean curvature of Σ_s in (M, g) . Define

$$
\mathcal{H}_s = \frac{1}{(n-1)\omega_{n-1}} \int_{\Sigma_s} H_s d\mu_s,
$$

where $d\mu_s$ is the volume form on $(\Sigma_s, \bar{\gamma}_s)$. As \bar{g} is a Euclidean metric on $(b, \infty) \times \Sigma$, we apply [\[31,](#page-23-3) Theorem 2.1] to deduce

(2.5)
$$
\int_{\Sigma_s} \bar{H}_s d\mu_s - \int_{\Sigma_s} H_s d\mu_s = (n-1)\omega_{n-1}\mathfrak{m}(g) + o(1), \text{ as } s \to \infty.
$$

Since Σ_s is a round sphere of radius s in $((b,\infty) \times \Sigma, \bar{g})$,

$$
\int_{\Sigma_s} \bar{H}_s d\mu_s = (n-1)\omega_{n-1}s^{n-2}, \ \forall s > b.
$$

Thus,

(2.6)
$$
\mathcal{H}_s = s^{n-2} - \mathfrak{m}(g) + o(1), \text{ as } s \to \infty.
$$

We analyze how \mathcal{H}_s evolves along $\{\Sigma_s\}$. The next proposition was in-spired by a computation of Shi-Wang-Wei-Zhu [\[33,](#page-24-3) page 249].

Proposition 2.1. The total mean curvature \mathcal{H}_s satisfies

$$
(2.7) \qquad \frac{d\mathcal{H}_s^2}{ds} \ge \left(\frac{n-2}{s} - \alpha_s |t'(s)|^2 s\right) \mathcal{H}_s^2 + (n-2)s^{2n-5}\beta_s, \quad \forall s \ge 1.
$$

Here $\alpha_s = \alpha(t(s))$ and $\beta_s = \beta(t(s)).$

Proof. By the second variation of volume and the Gauss equation,

$$
\frac{\partial}{\partial s}H_s = \frac{1}{2}R_{\bar{\gamma}_s}u - \Delta_s u - \frac{1}{2}\left(|\bar{A}_s|^2_{\bar{\gamma}_s} + \bar{H}_s^2\right)u^{-1}.
$$

Thus,

(2.8)
$$
\frac{d}{ds} \int_{\Sigma_s} H_s \, d\mu_s = \frac{1}{2} \int (\bar{H}_s^2 - |\bar{A}_s|^2_{\bar{\gamma}_s}) u^{-1} \, d\mu_s + \frac{1}{2} \int R_{\bar{\gamma}_s} u \, d\mu_s.
$$

By (2.3) and (2.1) ,

$$
(2.9) \quad \left| \bar{A}_s - \frac{\bar{\gamma}_s}{s} \right|^2_{\bar{\gamma}_s} = \left| \frac{1}{2} \frac{d\gamma(t)}{dt} t'(s) \right|^2_{\gamma(t)} \le (n-1)\alpha_s |t'(s)|^2 = \alpha_s |t'(s)|^2 s\bar{H}_s.
$$

It follows from (2.8) and (2.9) that

$$
(2.10)
$$
\n
$$
\frac{d}{ds} \int_{\Sigma_s} H_s d\mu_s = \frac{1}{2} \int_{\Sigma_s} \left(\frac{n-2}{s} \bar{H}_s - \left| \bar{A}_s - \frac{\bar{\gamma}_s}{s} \right|_{\bar{\gamma}_s}^2 \right) u^{-1} d\mu_s + \frac{1}{2} \int_{\Sigma_s} R_{\bar{\gamma}_s} u d\mu_s
$$
\n
$$
\geq \frac{1}{2} \left(\frac{n-2}{s} - \alpha_s |t'(s)|^2 s \right) \int_{\Sigma_s} \bar{H}_s u^{-1} d\mu_s
$$
\n
$$
+ \frac{(n-1)(n-2)\beta_s}{2s^2} \int_{\Sigma_s} u d\mu_s.
$$

By Hölder's inequality,

$$
\int_{\Sigma_s} u \, d\mu_s \ge \frac{|\Sigma_s|_{\tilde{\gamma}_s}^2}{\int_{\Sigma_s} u^{-1} \, d\mu_s} = \frac{(s^{n-1}\omega_{n-1})^2}{\int_{\Sigma_s} u^{-1} \, d\mu_s}.
$$

Hence, (2.10) and (2.3) imply

(2.11)
$$
\frac{d}{ds} \int_{\Sigma_s} H_s d\mu_s \geq \frac{1}{2} \left(\frac{n-2}{s} - \alpha_s |t'(s)|^2 s \right) \int_{\Sigma_s} H_s d\mu_s + \frac{(n-1)(n-2)\beta_s}{2s^2} \frac{s^{2n-2}\omega_{n-1}^2(n-1)}{s \int_{\Sigma_s} H_s d\mu_s},
$$

which proves (2.7) .

Remark 2.1. If γ is a round metric on Σ , one can take $\{\gamma(t)\}_{t\in[0,1]}$ to be a constant path of metrics. In this case, $\alpha(t) = 0$, $\beta(t) = 1$, and (2.7) becomes

$$
\frac{d\mathcal{H}_s^2}{ds} \ge \frac{n-2}{s}\mathcal{H}_s^2 + (n-2)s^{2n-5},
$$

or equivalently

$$
(2.12) \qquad \frac{d}{ds}\left\{\left(\frac{|\Sigma_s|_{\bar{\gamma}_s}}{\omega_{n-1}}\right)^{\frac{n-2}{n-1}}\left[1-\left(\frac{|\Sigma_s|_{\bar{\gamma}_s}}{\omega_{n-1}}\right)^{\frac{2(2-n)}{n-1}}\mathcal{H}_s^2\right]\right\}\leq 0.
$$

This monotone property gives another insight into [\[24,](#page-23-4) Theorem 1].

Remark 2.2. In deriving [\(2.7\)](#page-7-3), one does not need $\gamma(1)$ to be a round metric; neither does Σ need to be a sphere. We will explore this fact in Section [4.](#page-19-0)

In the rest of this section, we focus on the dimension $n = 3$. In this case, $γ$ is a metric with nonnegative Gauss curvature $K_γ$ on the 2-sphere Σ. By Gauss-Bonnet theorem,

$$
\beta(t) \leq 1.
$$

For convenience, we normalize γ so that $|\Sigma|_{\gamma} = 4\pi$, i.e. $r_{\gamma} = 1$.

Choosing $n = 3$ in Proposition [2.1,](#page-7-4) we have

(2.13)
$$
\frac{d\mathcal{H}_s^2}{ds} - \left(\frac{1}{s} - \alpha_s |t'(s)|^2 s\right) \mathcal{H}_s^2 \ge s\beta_s,
$$

which implies

$$
(2.14) \qquad \qquad \frac{d}{ds}\left(s^{-1}e^{\int_1^s \alpha_s |t'(s)|^2 s \, ds} \, \mathcal{H}_s^2\right) \geq \beta_s \, e^{\int_1^s \alpha_s |t'(s)|^2 s \, ds}.
$$

Integrating (2.14) from 1 to $s > b$, we have

(2.15)
\n
$$
\frac{e^{\int_1^b \alpha_s |t'(s)|^2 s ds}}{s} \mathcal{H}_s^2 - \mathcal{H}_1^2
$$
\n
$$
\geq \int_1^b \beta_s e^{\int_1^s \alpha_s |t'(s)|^2 s ds} ds + (s-b)e^{\int_1^b \alpha_s |t'(s)|^2 s ds}.
$$

Here we used the fact $\gamma_s = \sigma_o$, hence $\alpha_s = 0$ and $\beta_s = 1, \forall s \ge b$.

 \Box

Re-writing (2.15) as

$$
(2.16) \qquad \frac{\mathcal{H}_s^2}{s} - e^{-\int_1^b \alpha_s |t'(s)|^2 s \, ds} \, \mathcal{H}_1^2 \ge (s-b) + \int_1^b \beta_s e^{-\int_s^b \alpha_s |t'(s)|^2 s \, ds} \, ds,
$$

letting $s \to \infty$ and applying (2.6) , we obtain

$$
(2.17) \t 2m(g) \leq b - \int_1^b \beta_s e^{-\int_s^b \alpha_s |t'(s)|^2 s ds} ds - e^{-\int_1^b \alpha_s |t'(s)|^2 s ds} \mathcal{H}_1^2.
$$

By Lemma [2.1,](#page-5-0) (M, g) is an asymptotically flat extension of (Σ, γ, H) , (M,g) has zero scalar curvature and is foliated by positive mean curvature surfaces $\{\Sigma_s\}$. Hence, by [\(2.17\)](#page-9-0) and the definition of the Bartnik mass,

$$
(2.18)
$$

\n
$$
\mathfrak{m}_{B}(\Sigma,\gamma,H) \leq \mathfrak{m}(g)
$$

\n
$$
\leq \frac{1}{2} \left[b - \int_{1}^{b} \beta_{s} e^{-\int_{s}^{b} \alpha_{s} |t'(s)|^{2} s ds} ds - e^{-\int_{1}^{b} \alpha_{s} |t'(s)|^{2} s ds} \mathcal{H}_{1}^{2} \right].
$$

In general, when (Σ, γ) does not necessarily have area 4π , it is easily checked

(2.19)
$$
\mathfrak{m}(\Sigma, \gamma, H) = r_{\gamma} \mathfrak{m}(\Sigma, r_{\gamma}^{-2} \gamma, r_{\gamma} H).
$$

The following proposition follows from [\(2.18\)](#page-9-1) and [\(2.19\)](#page-9-2).

Proposition 2.2. Let γ be a metric with nonnegative Gauss curvature on the two-sphere Σ . Let H be a positive function on Σ . Suppose $\{\gamma(t)\}_{t\in[0,1]}$ is a path of metrics satisfying i), ii) and iii). Given any constant $b > 1$ and any C^1 function

$$
(2.20) \t t(\cdot) : [1, b] \to [0, 1] \t with t(1) = 0 \t and t(b) = 1,
$$

the Bartnik mass $\mathfrak{m}_{B}(\Sigma, \gamma, H)$ satisfies (2.21)

$$
\mathfrak{m}_B(\Sigma,\gamma,H) \leq \frac{r_\gamma}{2} \left[b - \int_1^b \beta_s e^{-\int_s^b \alpha_s |t'(s)|^2 s ds} ds - e^{-\int_1^b \alpha_s |t'(s)|^2 s ds} \mathcal{H}^2 \right]
$$

.

where $r_{\gamma} = \sqrt{\frac{|\Sigma|_{\gamma}}{4\pi}}$ and $\mathcal{H} = \frac{1}{8\pi r_{\gamma}} \int_{\Sigma} H d\mu_{\gamma}$.

Remark 2.3. We comment on the C^1 assumption on the function $t(s)$ in (2.21) . The argument preceding (2.18) readily shows (2.21) holds for any

Figure 1: On the left is the graph of $T(s)$, with a corner at b. On the right in blue is the compression $T_{\epsilon}(s)$ of $T(s)$ and in red its smoothing using a mollifier ϕ_{ϵ_1} that preserves the endpoints.

 $t(\cdot)$: $[1, b] \rightarrow [0, 1]$ which is the restriction of a smooth function $t(\cdot)$: $[1,\infty) \rightarrow [0,1]$ satisfying (2.2) . Now if $t(\cdot)$ is merely C^1 on $[0,1]$ satisfy-ing [\(2.20\)](#page-9-4), one can consider a function $T(s)$ on $[1,\infty)$ so that $T(s) = t(s)$ on [1, b] and $T(s) = 1$ for $s > b$. $T(s)$ may not be smooth on [1, ∞), but one can mollify it. For instance, one can first compress the graph of $T(s)$ horizontally by a small factor $\epsilon > 0$ and denote such a function by $T_{\epsilon}(s)$. Then one can smooth T_{ϵ} out via a usual mollifier $\phi_{\epsilon_1} > 0$, with $\epsilon_1 > 0$ small enough so that $T_{\epsilon} * \phi_{\epsilon_1} = T_{\epsilon}$ near the points 1 and b (see Figure 1). As the right side of [\(2.18\)](#page-9-1) depends on $t(\cdot)$ only via $t'(s)$ on [1, b], letting ϵ_1 and ϵ tend to 0, one obtains Proposition [2.2.](#page-9-5)

In Proposition [2.2,](#page-9-5) the function $t(s)$ does not need to be monotone. If $t(s)$ is chosen to be monotone, (2.21) can be reformulated in terms of the inverse function $s = s(t)$. More precisely, Proposition [2.2](#page-9-5) shows

Proposition 2.3. Let γ be a metric with nonnegative Gauss curvature on the two-sphere Σ . Let H be a positive function on Σ . Suppose $\{\gamma(t)\}_{t\in[0,1]}$ is a path of metrics satisfying i), ii) and iii). Given any C^1 function

(2.22)
$$
s = s(t), t \in [0, 1], with s(0) = 1 and s'(t) > 0,
$$

the Bartnik mass $\mathfrak{m}_{B}(\Sigma, \gamma, H)$ satisfies

$$
(2.23) \mathfrak{m}_B(\Sigma, \gamma, H) \le \frac{r_\gamma}{2} \left[s(1) - \int_0^1 \frac{\beta(t)s'(t)}{e^{\int_t^1 \alpha(t) \frac{s(t)}{s'(t)} dt}} dt - \frac{1}{e^{\int_0^1 \alpha(t) \frac{s(t)}{s'(t)} dt}} \mathcal{H}^2 \right],
$$

where $r_\gamma = \sqrt{\frac{|\Sigma|_\gamma}{4\pi}}$ and $\mathcal{H} = \frac{1}{8\pi r_\gamma} \int_{\Sigma} H d\mu_\gamma.$

Given any C^0 function $\phi(t) > 0$ on [0, 1] and any constant $k > 0$, plugging in (2.23) a choice of

$$
s(t) = 1 + k \int_0^t \phi(t) dt,
$$

one has

$$
\mathfrak{m}_{\scriptscriptstyle B}(\Sigma,\gamma,H) \leq \frac{r_{\gamma}}{2} \left[1 + k \int_0^1 \left(1 - \frac{\beta(t)}{e^{\int_t^1 \alpha(t) \left(\frac{1}{k\phi(t)} + \frac{\int_0^t \phi(t)dt}{\phi(t)} \right) dt}} \right) \phi(t) dt - \frac{1}{e^{\int_0^1 \alpha(t) \left(\frac{1}{k\phi(t)} + \frac{\int_0^t \phi(t)dt}{\phi(t)} \right) dt}} \right) + \frac{1}{e^{\int_0^1 \alpha(t) \left(\frac{1}{k\phi(t)} + \frac{\int_0^t \phi(t)dt}{\phi(t)} \right) dt}} \mathcal{H}^2 \right].
$$

Letting $k \to 0^+$ in [\(2.24\)](#page-11-2) gives the following corollary:

Corollary 2.4. Let γ be a metric of nonnegative Gauss curvature on the 2-sphere Σ . Let H be a positive function on Σ . Then

(2.25)
$$
\mathfrak{m}_{B}(\Sigma,\gamma,H) \leq \frac{r_{\gamma}}{2}.
$$

For a fixed path $\{\gamma(t)\}_{t\in[0,1]},$ an optimal estimate on $\mathfrak{m}_B(\cdot)$ from Proposition 2.3 would be obtained by minimizing the right side of (2.23) over all $C¹$ functions $s(t)$ satisfying [\(2.22\)](#page-10-1). At the moment, we do not know a formula of such an infimum. Below, we proceed using an ad hoc ODE method to pick a choice of $s(t)$.

Suggested by

$$
\left(e^{-\int_t^1 \alpha(t) \frac{s(t)}{s'(t)} dt}\right)' = e^{-\int_t^1 \alpha(t) \frac{s(t)}{s'(t)} dt} \alpha(t) s(t) s'(t)^{-1},
$$

we choose $s(t)$ so that

(2.26)
$$
\beta(t)s'(t) = k^2 \alpha(t)s(t)s'(t)^{-1},
$$

where $k > 0$ is an arbitrary constant. Clearly, (2.26) and $s(0) = 1$ shows

(2.27)
$$
s(t) = \left(1 + k \int_0^t \sqrt{\frac{\alpha(t)}{4\beta(t)}} dt\right)^2, \text{ if } \int_0^1 \sqrt{\frac{\alpha(t)}{\beta(t)}} < \infty.
$$

With this choice of $s(t)$, we have

(2.28)

$$
s(1) - \int_0^1 \frac{\beta(t)s'(t)}{e^{\int_t^1 \alpha(t) \frac{s(t)}{s'(t)} dt}} dt - \frac{1}{e^{\int_0^1 \alpha(t) \frac{s(t)}{s'(t)} dt}} \frac{\left(\int_{\Sigma} H d\mu_{\gamma}\right)^2}{16\pi |\Sigma|_{\gamma}}
$$

= $\left(1 + k \int_0^1 \sqrt{\frac{\alpha(t)}{4\beta(t)}} dt\right)^2 - k^2 + e^{-\int_0^1 \alpha(t) \frac{s(t)}{s'(t)} dt} \left[k^2 - \frac{\left(\int_{\Sigma} H d\mu_{\gamma}\right)^2}{16\pi |\Sigma|_{\gamma}}\right].$

To simplify the above quantity, we may choose k so that

(2.29)
$$
k = \frac{1}{8\pi r_\gamma} \int_{\Sigma} H \, d\mu_\gamma.
$$

Thus, the following corollary follows from Proposition [2.3](#page-10-0) and a choice of

(2.30)
$$
s(t) = \left(1 + \frac{\int_0^t \sqrt{\frac{\alpha(t)}{4\beta(t)}} dt}{8\pi r_\gamma} \int_\Sigma H d\mu_\gamma\right)^2.
$$

Corollary 2.5. Let γ be a metric with nonnegative Gauss curvature on the two-sphere Σ . Let H be a positive function on Σ . Suppose $\{\gamma(t)\}_{t\in[0,1]}$ is a path of metrics satisfying i), ii) and iii). Then the Bartnik mass $\mathfrak{m}_B(\Sigma, \gamma, H)$ satisfies

(2.31)

$$
\mathfrak{m}_{\scriptscriptstyle B}\left(\Sigma, \gamma, H\right) \leq \sqrt{\frac{|\Sigma|_{\gamma}}{16\pi}}\left[\left(1+\frac{\zeta(\gamma)}{8\pi r_{\gamma}}\int_{\Sigma}H \,d\mu_{\gamma}\right)^2-\left(\frac{1}{8\pi r_{\gamma}}\int_{\Sigma}H \,d\mu_{\gamma}\right)^2\right].
$$

Here $\zeta(\gamma) \geq 0$ is a scaling invariant quantity of γ , given by

(2.32)
$$
\zeta(\gamma) = \inf_{\{\gamma(t)\}_{t \in [0,1]}} \int_0^1 \sqrt{\frac{\alpha(t)}{4\beta(t)}} dt.
$$

3. Estimates of $\zeta(\gamma)$

Given a metric γ on a two-sphere Σ , by the uniformization theorem, there exists a function φ such that

(3.1) r−² ^γ γ = e2ϕσo.

Here σ_o is a round metric on Σ with area $|\Sigma|_{\sigma_o} = 4\pi$ and r_γ is the area radius of γ . Let $d\mu_o$ denote the area form of σ_o . Then $\int_{\Sigma} e^{2\varphi} d\mu_0 = 4\pi$. In particular, φ satisfies

(3.2)
$$
\min_{\Sigma} e^{2\varphi} \le 1 \text{ and } \min_{\Sigma} e^{-2\varphi} \le 1.
$$

As a result, there exists some point $p \in \Sigma$ so that $\varphi(p) = 0$. Consequently,

(3.3)
$$
\|\varphi\|_0 \le C_1 \|d\varphi\|_0,
$$

where C_1 is an absolute constant and $\|\cdot\|_0$ denotes the C^0 -norm of tensors on (Σ, σ_o) . Similarly, given any $\alpha \in (0, 1)$, if $[\![\varphi]\!]_{\alpha}$ denotes a Hölder semi-norm of φ given by

$$
[\![\varphi]\!]_{\alpha} = \sup_{x,y \in \Sigma, x \neq y} \frac{|\varphi(x) - \varphi(y)|}{d(x,y)^{\alpha}},
$$

where $d(x, y)$ is the distance on (Σ, σ_o) , then

$$
\llbracket \varphi \rrbracket_{\alpha} \le C_2 \, \|d\varphi\|_0 \,,
$$

for some absolute constant C_2 .

The next proposition gives an estimate of $\zeta(\gamma)$ in terms of φ .

Proposition 3.1. Let γ be a metric with nonnegative Gauss curvature on a 2-sphere Σ . Let $\zeta(\gamma)$ be given in [\(2.32\)](#page-12-0). Let φ be a conformal factor in [\(3.1\)](#page-13-1). Then

(3.5)
$$
\zeta(\gamma) \leq Ce^{6\|\varphi\|_0} \|\varphi\|_{0,\alpha} \left(1 + \|\varphi\|_{0,\alpha}\right) \left(1 + \|d\varphi\|_0\right).
$$

Here C is some constant depending on α .

Proof. As in [\[29,](#page-23-6) [21](#page-23-1)], a smooth path of metrics $\{\sigma(t)\}_{t\in[0,1]}$ with constant area 4π , connecting $r_{\gamma}^{-2}\gamma$ to σ_o , can be given by

(3.6)
$$
\sigma(t) = c(t)^{-1} e^{2(1-t)\varphi} \sigma_o.
$$

Here $c(t)$ is a normalization function satisfying

(3.7)
$$
c(t) = \frac{1}{4\pi} \int_{\Sigma} e^{2(1-t)\varphi} d\mu_o \ge \left(\min_{\Sigma} e^{2\varphi}\right)^{1-t}.
$$

The Gauss curvature $K_{\sigma(t)}$ of $\sigma(t)$ satisfies

(3.8)
$$
c(t)^{-1}e^{2(1-t)\varphi}K_{\sigma(t)} = K_{\sigma_0} - (1-t)\Delta_{\sigma_o}\varphi = 1 - (1-t)\Delta_{\sigma_o}\varphi,
$$

where Δ_{σ_o} is the Laplacian on (Σ, σ_o) . At $t = 0$,

(3.9)
$$
e^{2\varphi}r_{\gamma}^2K_{\gamma} = 1 - \Delta_{\sigma_o}\varphi.
$$

It follows that

(3.10)
$$
K_{\sigma(t)} = c(t)e^{-2(1-t)\varphi} \left[t + (1-t)e^{2\varphi} r_{\gamma}^2 K_{\gamma} \right].
$$

In what follows, suppose $K_{\gamma} \geq 0$. By [\(3.7\)](#page-14-0) and [\(3.10\)](#page-14-1),

(3.11)
$$
K_{\sigma(t)} \geq \left(\frac{\min_{\Sigma} e^{2\varphi}}{\max_{\Sigma} e^{2\varphi}}\right)^{1-t} \left[t + (1-t)K_{-} \min_{\Sigma} e^{2\varphi}\right].
$$

Here $K_{-} = r_{\gamma}^{2} \min_{\Sigma} K_{\gamma} \geq 0$. In particular, [\(3.11\)](#page-14-2) shows $K_{\sigma(t)} > 0$, $\forall t \in$ $(0, 1].$

Next, we apply Mantoulidis-Schoen construction [\[21\]](#page-23-1) to revise ${\{\sigma(t)\}}_{t\in[0,1]}$ into a new path of metrics satisfying property iii) in Section [2.](#page-4-0) More precisely, consider a 1-parameter family of diffeomorphisms $\{\phi_t\}_{t\in[0,1]}$ on Σ , generated by a smooth t-dependent vector field X_t which is to be chosen later. Let $\gamma(t) = \phi_t^*(\sigma(t))$. Then

(3.12)
$$
\gamma'(t) = \phi_t^*(\sigma'(t)) + \phi_t^*(\mathcal{L}_{X_t}\sigma(t)),
$$

where $\mathcal L$ denotes taking the Lie derivative. Hence,

(3.13)
$$
\operatorname{tr}_{\gamma(t)} \gamma'(t) = \phi_t^* (\operatorname{tr}_{\sigma(t)} \sigma'(t) + 2 \operatorname{div}_{\sigma(t)} X_t).
$$

Let $\psi_t(x) = \psi(t, x)$ to be a smooth function on $[0, 1] \times \Sigma$ which is a solution to

(3.14)
$$
\Delta_{\sigma(t)} \psi_t = -\frac{1}{2} \operatorname{tr}_{\sigma(t)} \sigma'(t),
$$

for each t. Such a ψ_t exists since $\{\sigma(t)\}_{t\in[0,1]}$ has constant volume which guarantees

$$
\int_{\Sigma} \frac{1}{2} \operatorname{tr}_{\sigma(t)} \sigma'(t) \, d\mu_{\sigma(t)} = 0.
$$

Fix such a ψ_t , let $X_t = \nabla_{\sigma(t)} \psi_t$ where $\nabla_{\sigma(t)}$ is the gradient with respect to $\sigma(t)$, then

(3.15) trγ(t) γ (t)=0

by [\(3.13\)](#page-14-3) and [\(3.14\)](#page-14-4). Note that $\gamma(0) = \phi_0^*(\sigma(0))$ is isometric to $\sigma(0) = r_\gamma^{-2}\gamma$. By abusing notation, we denote $(\phi_0^{-1})^* (\gamma(t))$ still by $\gamma(t)$. Then $\{\gamma(t)\}_{t\in[0,1]}$ connects $r_{\gamma}^{-2}\gamma$ to a round metric, has positive Gauss curvature for $0 < t \leq 1$, and satisfies [\(3.15\)](#page-15-0).

Let $\alpha(t)$ and $\beta(t)$ be the function associated to $\{\gamma(t)\}_{t\in[0,1]},$ given in [\(2.1\)](#page-5-2). By [\(3.11\)](#page-14-2),

(3.16)
$$
\beta(t) \ge e^{-4(1-t)\|\varphi\|_0} \left[t + (1-t)K_-e^{-2\|\varphi\|_0} \right].
$$

Next we estimate $\alpha(t)$. For the purpose of obtaining the elliptic estimate (3.25) , we normalize ψ_t so that

(3.17)
$$
\int_{\Sigma} \psi_t d\mu_{\sigma_o} = 0, \ \forall t \in [0,1].
$$

This can be arranged as ψ_t is unique up to adding a constant for each t.

By the definition of $\alpha(t)$ and (3.12) ,

(3.18)
$$
\alpha(t) = \frac{1}{8} \max_{\Sigma} |\sigma'(t) + \mathcal{L}_{X_t} \sigma(t)|_{\sigma(t)}^2
$$

$$
= \frac{1}{8} \max_{\Sigma} [|\sigma'(t)|_{\sigma(t)}^2 + 2\langle \sigma'(t), \mathcal{L}_{X_t} \sigma(t) \rangle_{\sigma(t)} + |\mathcal{L}_{X_t} \sigma(t)|_{\sigma(t)}^2].
$$

Let $c_t = \ln c(t)$. By [\(3.6\)](#page-13-2), $\sigma(t) = e^{2(1-t)\varphi - c_t}\sigma_o$. Hence, $\sigma'(t) = (-2\varphi - c'_t)\sigma(t)$ and

(3.19)
$$
|\sigma'(t)|_{\sigma(t)}^2 = 2(2\varphi + c'_t)^2.
$$

By [\(3.14\)](#page-14-4) and the fact $X_t = \nabla_{\sigma(t)} \psi_t$,

(3.20)
$$
\langle \sigma'(t), \mathcal{L}_{X_t} \sigma(t) \rangle_{\sigma(t)} = -2 (2\varphi + c'_t)^2.
$$

The term $\mathcal{L}_{X_t}\sigma(t)$ satisfies

(3.21)
$$
\mathcal{L}_{X_t} \sigma(t) = 2 \operatorname{Hess}_{\sigma(t)} \psi_t.
$$

Here Hess_{$\sigma(t)$} denotes the Hessian on $(\Sigma, \sigma(t))$. Since $\sigma(t)$ is conformal to σ_o , the following relation between $Hess_{\sigma_o} \psi_t$ and $Hess_{\sigma(t)} \psi_t$ can be checked directly:

(3.22)

$$
\operatorname{Hess}_{\sigma(t)} \psi_t = \operatorname{Hess}_{\sigma_o} \psi_t - (1-t) \left[d\psi_t \otimes d\varphi + d\varphi \otimes d\psi_t - \langle d\varphi, d\psi_t \rangle_{\sigma_o} \sigma_o \right].
$$

Therefore,

(3.23)

$$
|\operatorname{Hess}_{\sigma(t)} \psi_t|_{\sigma_o} \leq |\operatorname{Hess}_{\sigma_o} \psi_t|_{\sigma_o} + (1-t) \left(2|d\psi_t|_{\sigma_o} |d\varphi|_{\sigma_o} + \sqrt{2} |\langle d\varphi, d\psi_t \rangle_{\sigma_o}| \right)
$$

$$
\leq C ||\psi_t||_{C^2(\Sigma)} (1 + (1-t) ||d\varphi||_0),
$$

where C is some constant depending only on σ_o . By [\(3.14\)](#page-14-4), [\(3.6\)](#page-13-2) and [\(3.17\)](#page-15-1), ψ_t on (Σ, σ_o) satisfies

(3.24)
$$
\Delta_{\sigma_o} \psi_t = e^{2(1-t)\varphi - c_t} \left(2\varphi + c'_t \right) \text{ and } \int_{\Sigma} \psi_t d\mu_{\sigma_o} = 0.
$$

By the standard elliptic theory, for any fixed $\alpha \in (0,1)$,

(3.25)
$$
||\psi_t||_{C^{2,\alpha}(\Sigma)} \leq C||\Delta_{\sigma_o}\psi_t||_{C^{0,\alpha}(\Sigma)},
$$

where C only depends on σ_o and α . The Hölder norm of $\Delta_{\sigma_o}\psi_t$ can be estimated as follows:

$$
(3.26) \quad [e^{2(1-t)\varphi}(2\varphi + c'_t)]_{\alpha} \leq ||e^{2(1-t)\varphi}||_0 \ 2[\varphi]_{\alpha} + [e^{2(1-t)\varphi}]_{\alpha} ||2\varphi + c'_t||_0.
$$

By the mean value theorem, given any $x, y \in \Sigma$,

(3.27)
$$
|e^{2(1-t)\varphi(x)} - e^{2(1-t)\varphi(y)}| = 2(1-t)|\varphi(x) - \varphi(y)|e^{2(1-t)\xi},
$$

for some ξ lying between $\varphi(x)$ and $\varphi(y)$. Thus,

(3.28)
$$
\left\|e^{2(1-t)\varphi}\right\|_{\alpha} \leq 2(1-t)\left\|e^{2(1-t)\varphi}\right\|_{0}\left\|\varphi\right\|_{\alpha}.
$$

Therefore,

$$
(3.29) \quad [e^{2(1-t)\varphi}(2\varphi + c'_t)]_{\alpha} \le 2[\varphi]_{\alpha} \|e^{2(1-t)\varphi}\|_{0} \left(1 + (1-t) \|2\varphi + c'_t\|_{0}\right).
$$

Consequently,

$$
(3.30)
$$
\n
$$
\left\|e^{2(1-t)\varphi}(2\varphi + c'_t)\right\|_{C^{0,\alpha}(\Sigma)} = \left\|e^{2(1-t)\varphi}(2\varphi + c'_t)\right\|_0 + \left\|e^{2(1-t)\varphi}(2\varphi + c'_t)\right\|_{\alpha}
$$
\n
$$
\leq \left\|e^{2(1-t)\varphi}\right\|_0 \left[\left\|2\varphi + c'_t\right\|_0 + 2\left\|\varphi\right\|_{\alpha}\left(1 + (1-t)\left\|2\varphi + c'_t\right\|_0\right)\right]
$$
\n
$$
\leq e^{2(1-t)\|\varphi\|_0} \left[4\left\|\varphi\right\|_0 + 2\left\|\varphi\right\|_{\alpha}\left(1 + (1-t)4\left\|\varphi\right\|_0\right)\right],
$$

where we also used the fact $c_t = \ln c(t)$ and

(3.31)
$$
|c'_{t}| = \left| \frac{\int -2\varphi \, e^{2(1-t)\varphi} d\mu_0}{\int e^{2(1-t)\varphi} d\mu_0} \right| \leq 2 \left\| \varphi \right\|_0.
$$

It follows from $(3.23) - (3.25)$ $(3.23) - (3.25)$ $(3.23) - (3.25)$ and (3.30) that

$$
(3.32)
$$

\n
$$
|\text{Hess}_{\sigma(t)} \psi_t|_{\sigma(t)} = e^{-2(1-t)\varphi + c_t} |\text{Hess}_{\sigma(t)} \psi_t|_{\sigma}
$$

\n
$$
\leq e^{-2(1-t)\varphi + c_t} C_1 ||\Delta_{\sigma_o} \psi_t||_{C^{2,\alpha}(\Sigma)} (1 + (1-t) ||d\varphi||_0)
$$

\n
$$
\leq C_2 e^{4(1-t) ||\varphi||_0} \left(||\varphi||_0 + ||\varphi||_{\alpha} + (1-t) ||\varphi||_0 ||\varphi||_{\alpha} \right) (1 + (1-t) ||d\varphi||_0).
$$

Here C_i , $i = 1, 2, \ldots$, are constants only depending on σ_o and α . It follows from $(3.18) - (3.21)$ $(3.18) - (3.21)$ $(3.18) - (3.21)$ and (3.32) that (3.33)

$$
\alpha(t) \leq C_3 e^{8(1-t)\|\varphi\|_0} \|\varphi\|_{0,\alpha}^2 \left(1 + (1-t) \|\varphi\|_{0,\alpha}\right)^2 (1 + (1-t) \|d\varphi\|_0)^2,
$$

where $\|\varphi\|_{0,\alpha} = \|\varphi\|_0 + \|\varphi\|_\alpha$. Equality in [\(3.33\)](#page-17-2) holds if $\varphi = 0$ in which case γ is a round metric.

By [\(3.16\)](#page-15-3) and [\(3.33\)](#page-17-2),

$$
(3.34) \ \ \sqrt{\frac{\alpha(t)}{\beta(t)}} \leq C_3 \frac{e^{6(1-t)\|\varphi\|_0} \ \|\varphi\|_{0,\alpha} \left(1+(1-t)\ \|\varphi\|_{0,\alpha}\right) (1+(1-t)\ \|d\varphi\|_0)}{\sqrt{t+(1-t)e^{-2\|\varphi\|_0} \ K_-}}.
$$

Note that

$$
2 \ge \int_0^1 \frac{1}{\sqrt{t + (1 - t)e^{-2\|\varphi\|_0} K_-}} dt = \frac{2}{1 + \sqrt{e^{-2\|\varphi\|_0} K_-}} \ge 1,
$$

where we used $0 \leq K_{-} \leq 1$. Therefore,

(3.35)
$$
\int_0^1 \sqrt{\frac{\alpha(t)}{\beta(t)}} dt \leq C_4 e^{6\|\varphi\|_0} \|\varphi\|_{0,\alpha} \left(1 + \|\varphi\|_{0,\alpha}\right) \left(1 + \|d\varphi\|_0\right).
$$

This proves [\(3.5\)](#page-13-3) by the definition of $\zeta(\gamma)$.

In the rest of this section, we assume $K_{\gamma} > 0$. Applying results on the problem of prescribing Gauss curvature on a sphere from the literature (for instance [\[8](#page-22-10), [9](#page-22-11)]), one can estimate $\zeta(\gamma)$ by the ratio between max_Σ K_γ and $\min_{\Sigma} K_{\gamma}$.

Proposition 3.2. Let γ be a metric with positive Gauss curvature on a 2-sphere Σ . Let $\zeta(\gamma)$ be given in [\(2.32\)](#page-12-0). Then

$$
\zeta(\gamma) \le C(\kappa),
$$

where $C(\kappa)$ is a constant depending only on $\kappa = \frac{\max_{\Sigma} K_{\gamma}}{K}$ $\frac{\max_{\mathcal{L}} \max_{\gamma}}{\min_{\mathcal{L}} K_{\gamma}} \geq 1$. Moreover, there exists a small $\epsilon > 0$, such that, if $\kappa < 1 + \epsilon$, then

$$
\zeta(\gamma) \le C|\kappa - 1|,
$$

where C is some absolute constant.

Proof. Let $\tilde{\gamma} = r_{\gamma}^{-2} \gamma$. Then

$$
\frac{\max_{\Sigma} K_{\tilde{\gamma}}}{\min_{\Sigma} K_{\tilde{\gamma}}} = \kappa.
$$

By the Gauss-Bonnet theorem, $K_{\tilde{\gamma}} = 1$ somewhere on Σ . Thus,

(3.36) κ−¹ ≤ Kγ˜ ≤ κ.

The function φ in (3.1) satisfies

(3.37)
$$
\Delta_{\sigma_o} \varphi + K_{\tilde{\gamma}} e^{2\varphi} = 1.
$$

Replacing γ by $\Phi^*(\gamma)$ if necessary, where Φ is a conformal diffeomorphism on (Σ, σ_o) , one may assume φ satisfies a balancing condition

(3.38)
$$
\int_{\Sigma} x_i e^{2\varphi} d\mu_o = 0, \ i = 1, 2, 3,
$$

 \Box

where x_i denotes the coordinate function on Σ if Σ is identified with the unit sphere $\{|x|=1\}$ in \mathbb{R}^3 (see [\[8](#page-22-10)] for instance). By (3.36) and [\[9](#page-22-11), Lemma 3.1] (also see (a)' of Chapter 7 in [\[8](#page-22-10)]), there exists a constant $C(\kappa)$, depending on κ , so that

$$
||\varphi||_0 \le C(\kappa).
$$

It follows from [\(3.36\)](#page-18-0), [\(3.37\)](#page-18-1), [\(3.39\)](#page-19-1) and L^p elliptic estimates that $\|\varphi\|_{W^{2,p}}$ is bounded by some constant depending only on κ and any chosen $p > 2$. By Sobolev embedding theorems, this implies

$$
(3.40) \t\t | |d\varphi||_0 \le C(\kappa, p),
$$

where the constant depends only on κ and p. The claim $\zeta(\gamma) \leq C(\kappa)$ follows from (3.5) , (3.39) and (3.40) .

Next, suppose κ is close to 1. Then $||K_{\tilde{\gamma}}-1||_0$ is small by [\(3.36\)](#page-18-0). In this setting, it was shown on page 433-434 in [\[34\]](#page-24-4) that there exists a constant $\delta > 0$ such that

(3.41)
$$
||K_{\tilde{\gamma}} - 1||_0 \le \delta \implies ||\varphi||_{W^{2,2}} \le C||K_{\tilde{\gamma}} - 1||_0, \\
\text{hence } ||\varphi||_{0,\alpha} \le C||K_{\tilde{\gamma}} - 1||_0
$$

for some $\alpha \in (0,1)$ and C is a constant depending only on α . Let α in Propo-sition [3.1](#page-13-4) be given by the α in [\(3.41\)](#page-19-3), the rest of the claim in Proposition [3.2](#page-18-2) now follows from [\(3.5\)](#page-13-3), [\(3.39\)](#page-19-1), [\(3.40\)](#page-19-2) and [\(3.41\)](#page-19-3). \Box

Theorem [1.1](#page-2-1) follows from Corollary [2.5](#page-12-1) and Proposition [3.2.](#page-18-2)

4. Discussion on NNSC fill-ins

Let Σ be a closed $(n-1)$ dimensional manifold, $n \geq 3$. Let γ be a metric with positive scalar curvature on Σ . Let $\mathcal{F}(\Sigma, \gamma)$ denote the set of nonnegative scalar curvature (NNSC) fill-ins of (Σ, γ) , i.e. $\mathcal{F}(\Sigma, \gamma)$ consists of n dimensional, compact, connected Riemannian manifolds (Ω, g_{Ω}) with boundary such that its boundary $\partial\Omega$, with the induced metric, is isometric to (Σ, γ) , and the scalar curvature of g is nonnegative. We are interested in an NNSC fill-in with mean convex boundary. Let

$$
\mathcal{F}_{+}(\Sigma, \gamma) = \{ (\Omega, g_{\Omega}) \in \mathcal{F}(\Sigma, \gamma) \, | \, H > 0 \},
$$

where H is the mean curvature of $\partial\Omega$ in $(\Omega, g_{\Omega}).$

Following $[19]$ (also see $[33, 32]$ $[33, 32]$ $[33, 32]$), we let

$$
\Lambda(\Sigma,\gamma) = \sup \left\{ \frac{1}{(n-1)\omega_{n-1}} \int_{\partial\Omega} H \, d\mu \, \left| (\Omega, g_{\Omega}) \in \mathcal{F}_+(\Sigma,\gamma) \right| \right\}.
$$

Clearly, for any constant $c > 0$,

(4.1)
$$
\Lambda(\Sigma, c^2 \gamma) = c^{n-2} \Lambda(\Sigma, \gamma).
$$

Theorem 4.1. Let γ be a metric with positive scalar curvature on Σ . If $\mathcal{F}_+(\Sigma,\gamma) \neq \emptyset$, then

(4.2)
$$
\Lambda(\Sigma, \gamma) \ge r_\gamma^{n-1} \left(\frac{\min_{\Sigma} R_\gamma}{(n-1)(n-2)} \right)^{\frac{1}{2}}.
$$

Here r_{γ} is the volume radius of (Σ, γ) , i.e. $|\Sigma|_{\gamma} = \omega_{n-1} r_{\gamma}^{n-1}$.

Proof. For simplicity, we may assume $r_{\gamma} = 1$. Take $(\Omega, g_{\Omega}) \in \mathcal{F}_+(\Sigma, \gamma)$. Choose $\gamma(t) = \gamma$, $0 \le t \le 1$, and use $\{\gamma(t)\}_{t\in[0,1]}$ and the function H, determined by (Ω, g_{Ω}) , in Proposition [2.1,](#page-7-4) we have

(4.3)
$$
\frac{d\mathcal{H}_s^2}{ds} \ge \frac{n-2}{s} \mathcal{H}_s^2 + (n-2)s^{2n-5}\beta_0, \ \ \forall \ s \ge 1.
$$

where $\beta_0 = \frac{1}{(n-1)(n-2)} \min_{\Sigma} R_{\gamma}$. Fix any $s > 1$, [\(4.3\)](#page-20-1) implies

(4.4)
$$
s^{2-n}\mathcal{H}_s^2 \geq \mathcal{H}_1^2 + \beta_0(s^{n-2} - 1).
$$

To proceed, note that if $(\Sigma \times [1, s], g)$ is attached to (Ω, g_0) by identifying Σ_1 with $\partial\Omega$, we would get an NNSC fill-in of $(\Sigma_s, s^2\gamma)$, except the resulting fill-in may not be smooth across $\Sigma_1 = \partial \Omega$. For the moment, suppose this fill-in were smooth. Then, by [\(4.4\)](#page-20-2) and the definition of $\Lambda(\Sigma, s^2\gamma)$,

(4.5)
$$
s^{2-n}\Lambda(\Sigma, s^2\gamma)^2 \ge \mathcal{H}_1^2 + \beta_0(s^{n-2} - 1).
$$

Taking the supremum of the right side of (4.5) over $(\Omega, g_0) \in \mathcal{F}_+(\Sigma, \gamma)$, we obtain

(4.6)
$$
s^{2-n} \Lambda(\Sigma, s^2 \gamma)^2 \ge \Lambda(\Sigma, \gamma)^2 + \beta_0 (s^{n-2} - 1).
$$

By [\(4.1\)](#page-20-4), the above becomes

(4.7)
$$
s^{n-2}\Lambda(\Sigma,\gamma)^2 \geq \Lambda(\Sigma,\gamma)^2 + \beta_0(s^{n-2}-1),
$$

which yields

$$
\Lambda(\Sigma,\gamma)^2 \ge \beta_0,
$$

giving the estimate in (4.2) . To finish the proof, we note by applying the mollification construction in [\[23\]](#page-23-11), the above mentioned "singular" fill-ins can be approximated by smooth fill-ins whose normalized total mean curvature approaches \mathcal{H}_s (see [\[20,](#page-23-12) [32](#page-23-9), [33\]](#page-24-3) for instance). This completes the proof. \Box

If $n = 3$, [\(4.2\)](#page-20-5) becomes $\Lambda(\Sigma, \gamma) \geq r_{\gamma}^2 (\min_{\Sigma} K_{\gamma})^{\frac{1}{2}}$. This can be alternatively derived by isometrically embedding (Σ, γ) in \mathbb{R}^3 , making use of the classic Minkowski inequality and the Gauss-Bonnet theorem.

Acknowledgements

The authors thank the anonymous referee for thoroughly reviewing the manuscript and providing helpful comments and suggestions.

References

- [1] M. Anderson and J. Jauregui, Embeddings, immersions and the Bartnik quasi-local mass conjectures, Ann. Henri Poincaré, 20 (2019), no. 5, 1651–1698. [MR3942233](https://mathscinet.ams.org/mathscinet-getitem?mr=3942233)
- [2] Arnowitt, R., Deser, S., and Misner, C. W., Coordinate invariance and energy expressions in general relativity, Phys. Rev., **122** (1961), no. 3, 997–1006. [MR0127946](https://mathscinet.ams.org/mathscinet-getitem?mr=0127946)
- [3] R. Bartnik, Quasi-spherical metrics and prescribed scalar curvature, J. Differential Geom., **37** (1993), no. 1, 31–71. [MR1198599](https://mathscinet.ams.org/mathscinet-getitem?mr=1198599)
- [4] R. Bartnik, New definition of quasilocal mass, Phys. Rev. Lett., **62** (1989), 2346–2348. [MR0996396](https://mathscinet.ams.org/mathscinet-getitem?mr=0996396)
- [5] R. Bartnik, Energy in General Relativity, Tsing Hua Lectures on Geometry and Analysis, International Press of Boston, Cambridge, MA, (1997), 5–27. [MR1482027](https://mathscinet.ams.org/mathscinet-getitem?mr=1482027)
- [6] H. L. Bray, Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom., **59** (2001), no. 2, 177– 267. [MR1908823](https://mathscinet.ams.org/mathscinet-getitem?mr=1908823)
- [7] A.J. Cabrera Pacheco, C. Cederbaum, S. McCormick, and P. Miao, Asymptotically flat extensions of CMC Bartnik data, Class. Quantum Grav., **34** (2017), no. 10, 105001 (15 pp). [MR3649699](https://mathscinet.ams.org/mathscinet-getitem?mr=3649699)

- [8] S.Y. A. Chang, The Moser-Trudinger inequality and applications to some problems in conformal geometry. In: Hardt, R., Wolf, M. (eds.) Nonlinear Partial Differential Equations in Differential Geometry. Park City, Utah 1992. IAS/Park City Mathematics Series, Vol. 2, pp. 65–125. American Mathematical Society, Providence (1996) [MR1369587](https://mathscinet.ams.org/mathscinet-getitem?mr=1369587)
- [9] S.Y. A. Chang, M.J. Gursky and P. C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differential Equations, **1** (1993), 205–229. [MR1261723](https://mathscinet.ams.org/mathscinet-getitem?mr=1261723)
- [10] A. Chau and A. Martens, Exterior Schwarzschild initial data for degenerate apparent horizons, [arXiv:2004.09060.](http://arxiv.org/abs/2004.09060)
- [11] A. Chau and A. Martens, Bartnik mass of non-negatively curved CMC spheres and degenerate apparent horizons, DOI: [https://doi.org/](https://doi.org/10.1090/proc/16021) [10.1090/proc/16021](https://doi.org/10.1090/proc/16021)
- [12] M. Eichmair, P. Miao, X. Wang, Extension of a theorem of Shi and Tam, Calc. Var. Partial Differential Equations, **43** (2012), no. 1–2, 45– 56. [MR2860402](https://mathscinet.ams.org/mathscinet-getitem?mr=2860402)
- [13] M. Gromov, Scalar curvature of manifolds with boundaries: natural questions and artificial constructions, α ^xiv:1811.04311.
- [14] M. Gromov, Four lectures on scalar curvature, [arXiv:1908.10612.](http://arxiv.org/abs/1908.10612) [MR4577903](https://mathscinet.ams.org/mathscinet-getitem?mr=4577903)
- [15] G. Huisken and T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom., **59** (2001), no. 3, 353–437. [MR1916951](https://mathscinet.ams.org/mathscinet-getitem?mr=1916951)
- [16] J. L. Jauregui, Fill-ins of nonnegative scalar curvature, static metrics and quasi-local mass, Pacific J. Math., **261** (2013), no. 2, 417– 446. [MR3037574](https://mathscinet.ams.org/mathscinet-getitem?mr=3037574)
- [17] J.L. Jauregui, Smoothing the Bartnik boundary conditions and other results on Bartnik's quasi-local mass, J. Geom. Phys., **136** (2019), 228– 243. [MR3885243](https://mathscinet.ams.org/mathscinet-getitem?mr=3885243)
- [18] C.-Y. Lin and C. Sormani, Bartnik's mass and Hamilton's mod*ified Ricci flow*, Ann. Henri Poincaré, 17 (2016), no. 10, 2783– 2800. [MR3546987](https://mathscinet.ams.org/mathscinet-getitem?mr=3546987)
- [19] C. Mantoulidis and P. Miao, Total mean curvature, scalar curvature, and a variational analog of Brown-York mass, Commun. Math. Phys., **352** (2): 703–718, 2017. [MR3627410](https://mathscinet.ams.org/mathscinet-getitem?mr=3627410)
- [20] C. Mantoulidis, P. Miao and L.-F. Tam, Capacity, quasi-local mass, and singular fill-ins, J. Reine Angew. Math., **768**: 55–92, 2020. [MR4168687](https://mathscinet.ams.org/mathscinet-getitem?mr=4168687)
- [21] C. Mantoulidis and R. Schoen, On the Bartnik mass of apparent horizons, Classical Quantum Gravity, **32** (2015), no. 20, 205002, 16 pp. [MR3406373](https://mathscinet.ams.org/mathscinet-getitem?mr=3406373)
- [22] McCormick, S., Gluing Bartnik extensions, continuity of the Bartnik mass, and the equivalence of definitions, Pacific J. Math. **304** (2020), no. 2, 629–653. [MR4062784](https://mathscinet.ams.org/mathscinet-getitem?mr=4062784)
- [23] P. Miao, Positive Mass Theorem on Manifolds admitting Corners along a Hypersurface. Adv. Theor. Math. Phys., **6** (2002), 1163– 1182. [MR1982695](https://mathscinet.ams.org/mathscinet-getitem?mr=1982695)
- [24] P. Miao, On a localized Riemannian Penrose inequality, Commun. Math. Phys., **292** (2009), 271–284. [MR2540078](https://mathscinet.ams.org/mathscinet-getitem?mr=2540078)
- [25] P. Miao, Some recent developments of the Bartnik mass, Proceedings of the Fourth International Congress of Chinese Mathematicians, Volume III (2007): 331–340, High Educational Press, Beijing.
- [26] P. Miao, Nonexistence of NNSC fill-ins with large mean curvature, Proc. Amer. Math. Soc., **149** (2021), 2705–2709. [MR4246819](https://mathscinet.ams.org/mathscinet-getitem?mr=4246819)
- [27] P. Miao, Y. Wang and N.Q. Xie, On Hawking mass and Bartnik mass of CMC surfaces, Math. Res. Lett., **27** (2020), no. 3, 855–885. [MR4216572](https://mathscinet.ams.org/mathscinet-getitem?mr=4216572)
- [28] P. Miao and N.Q. Xie, Bartnik Mass via Vacuum Extension, Internat. J. Math., **30** (13): 1940006, 11 pp, 2019, a special issue dedicated to the mathematical contribution of Luen-Fai Tam. [MR4044002](https://mathscinet.ams.org/mathscinet-getitem?mr=4044002)
- [29] Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large, Commun. Pure App. Math., **6** (1953), no. 3, 337– 394. [MR0058265](https://mathscinet.ams.org/mathscinet-getitem?mr=0058265)
- [30] Pogorelov, A. V., Regularity of a convex surface with given Gaussian curvature, (Russian) Mat. Sbornik N.S., **31(73)** (1952), no. 1, 88– 103. [MR0052807](https://mathscinet.ams.org/mathscinet-getitem?mr=0052807)
- [31] Y.-G. Shi, L.-F. Tam, Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. **62** (2002), 79–125 [MR1987378](https://mathscinet.ams.org/mathscinet-getitem?mr=1987378)
- [32] Y.-G. Shi, W. Wang and G. Wei, Total mean curvature of the boundary and nonnegative scalar curvature fill-ins, J. Reine Angew. Math., 2022, no. 784, 215–250. [MR4388336](https://mathscinet.ams.org/mathscinet-getitem?mr=4388336)
- [33] Y.-G. Shi, W. Wang, G. Wei and J. Zhu, On the Fill-in of Nonnegative Scalar Curvature Metrics, Math. Ann. **379**, 235–270 (2021). [MR4211087](https://mathscinet.ams.org/mathscinet-getitem?mr=4211087)
- [34] Y.-G. Shi, G. Wang and J. Wu, On the behavior of quasi-local mass at the infinity along nearly round surfaces, Ann. Glob. Anal. Geom. **36** (2009), no. 4, 419–441. [MR2562923](https://mathscinet.ams.org/mathscinet-getitem?mr=2562923)
- [35] D. Wiygul, The Bartnik-Bray outer mass of small metric spheres in time-symmetric 3-slices, Commun. Math. Phys., **358** (2018), no. 1, 269– 293. [MR3772038](https://mathscinet.ams.org/mathscinet-getitem?mr=3772038)
- [36] R. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. **65** (1979), no. 1, 45– 76. [MR0526976](https://mathscinet.ams.org/mathscinet-getitem?mr=0526976)
- [37] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. **80** (1981), no. 3, 381–402. [MR0626707](https://mathscinet.ams.org/mathscinet-getitem?mr=0626707)

Pengzi Miao Department of Mathematics University of Miami Coral Gables FLORIDA 33146 USA E-mail address: pengzim@math.miami.edu

Annachiara Piubello Department of Mathematics University of Miami Coral Gables FLORIDA 33146 USA E-mail address: a.piubello@math.miami.edu

Received August 3, 2023; accepted January 12, 2024