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Estimates of the Bartnik mass

Pengzi Miao
∗
and Annachiara Piubello

Given a metric γ of nonnegative Gauss curvature and a positive
function H on a 2-sphere Σ, we estimate the Bartnik quasi-local
mass of (Σ, γ,H) in terms of the area, the total mean curvature,
and a quantity depending only on γ, measuring the roundness of
the metric. If γ has positive Gauss curvature, the roundness of γ
in the estimate is controlled by the ratio κ between the maximum
and the minimum of the Gauss curvature. As κ → 1, the estimate
approaches a sharp estimate for round spheres with arbitrary, pos-
itive mean curvature functions.

Enroute we observe an estimate of the supremum of the total
mean curvature among nonnegative scalar curvature fill-ins of a
closed manifold with positive scalar curvature.
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1. Introduction

Given a two-sphere Σ, a Riemannian metric γ and a function H on Σ, the
Bartnik quasi-local mass [4, 5] of the triple (Σ, γ,H) is given by
(1.1)
m

B
(Σ, γ,H)= inf {m(M, g) | (M, g) is an admissible extension of (Σ, γ,H)}.

Here m(·) denotes the ADM mass functional [2] and (M, g), an asymp-
totically flat 3-manifold with boundary ∂M , is an admissible extension of
(Σ, γ,H) if

(i) g is a C2 metric of nonnegative scalar curvature;

(ii) ∂M with the induced metric is isometric to (Σ, γ) and, under the
isometry, the mean curvature of ∂M in (M, g) equals H; and

(iii) (M, g) satisfies certain non-degeneracy condition that preventsm(M, g)
from being arbitrarily small; for instance, it is often required that
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(M, g) contains no closed minimal surfaces (enclosing ∂M), or ∂M is
area outer-minimizing in (M, g).

We refer interested readers to [1, 17, 22, 35] and references therein for other
variations in the definition of m

B
(·).

For an arbitrary pair (γ,H), it is an interesting problem to construct and
parametrize admissible extensions of (Σ, γ,H) (see Problems 1 – 3 in [5]). In
the horizon boundary case, i.e.H = 0, under an assumption λ1(−Δγ+Kγ) >
0, where Δγ is the Laplacian on (Σ, γ),Kγ is the Gauss curvature of γ, and λ1

is the first eigenvalue of −Δγ+Kγ , Mantoulidis and Schoen [21] constructed
admissible extensions of (Σ, γ, 0), whose ADM mass can be made arbitrarily

close to

√
|Σ|γ
16π , where |Σ|γ is the area of (Σ, γ). As a result, Mantoulidis and

Schoen [21] showed

(1.2) m
B
(Σ, γ, 0) ≤

√
|Σ|γ
16π

.

Combined with the Riemannian Penrose inequality [6, 15], (1.2) determined

(1.3) m
B
(Σ, γ, 0) =

√
|Σ|γ
16π

.

Such a result was later extended by Chau and Martens [10, 11] to metrics
γ satisfying λ1(−Δγ +Kγ) = 0.

In the CMC boundary case, i.e.H = Ho is a positive constant, there have
been a sequence of works that adapted Mantoulidis-Schoen’s methodology
to derive upper bounds for m

B
(Σ, γ,Ho), see [7, 27, 11]. Also in the CMC

case, an earlier work of Lin and Sormani [18] gave estimates of m
B
(Σ, γ,Ho)

by using Ricci flow to construct admissible extensions of (Σ, γ,Ho). In all
these mentioned works, the metric γ is assumed to have either positive or
nonnegative Gauss curvature.

If γ has positive Gauss curvature and the mean curvature function H is
positive, Shi and Tam [31] constructed an admissible extension of (Σ, γ,H)
based on earlier quasi-spherical metric constructions of Bartnik [3]. For such
a pair (γ,H), Shi-Tam’s result [31] yields

(1.4) m
B
(Σ, γ,H) ≤ 1

8π

∫
Σ
(H0 −H) dμγ ,

where H0 is the mean curvature of the isometric embedding of (Σ, γ) in the
Euclidean space R

3 and dμγ denotes the area form on (Σ, γ).
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In the special case γ = σo, a round metric on Σ, adapting the construc-

tion of Shi-Tam [31], the first author [24, 25] derived a sharp upper bound

of m
B
(Σ, σo, H) with H being an arbitrary, positive function:

(1.5) m
B
(Σ, σo, H) ≤

√
|Σ|γ
16π

[
1− 1

16π|Σ|γ

(∫
Σ
H dμγ

)2
]
.

Equality in (1.5) holds if and only if the data (σo, H) arises from CMC round

spheres in spatial Schwarzschild manifolds.

In this work, we extend estimate (1.5) to allow arbitrary metrics γ with

nonnegative Gauss curvature. Our main result is the following.

Theorem 1.1. Let γ be a metric of nonnegative Gauss curvature on the

two-sphere Σ. Let H be a positive function on Σ. Then the Bartnik mass

m
B
(Σ, γ,H) satisfies

(1.6)

m
B
(Σ, γ,H) ≤

√
|Σ|γ
16π

[(
1 +

ζ(γ)

8πrγ

∫
Σ
H dμγ

)2

−
(

1

8πrγ

∫
Σ
H dμγ

)2
]
.

Here rγ =
(
|Σ|γ
4π

) 1

2

, ζ(γ) ≥ 0 is a constant depending only on γ, and is

invariant under scaling of γ. If γ has positive Gauss curvature, then ζ(γ) ≤
C(κ) for some constant C(κ) depending only on κ =

maxΣKγ

minΣKγ
. Moreover,

there exists a small ε > 0, such that, if κ < 1 + ε, then

(1.7) ζ(γ) ≤ C|κ− 1|,

where C is some absolute constant.

Remark 1.1. The extension (M, g) of (Σ, γ,H) in the proof of Theorem 1.1

(see Section 2) is foliated by closed surfaces with positive mean curvature.

Consequently, (M, g) contains no closed minimal surfaces enclosing Σ = ∂M ,

and Σ is area outer-minimizing in (M, g). Therefore, (M, g) satisfies either

non-degeneracy condition mentioned in (iii).

Remark 1.2. If γ has positive Gauss curvature, (Σ, γ) isometrically embeds

in R
3 as a convex surface Σ0 ([29, 30]). Let H0 be the mean curvature of Σ0

in R
3. The Riemannian positive mass theorem ([36, 37]) shows

m
B
(Σ0, γ,H0) = 0.
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Applying Theorem 1.1 to (Σ0, γ,H0), we then have

0 ≤
√

|Σ|γ
16π

[(
1 +

ζ(γ)

8πrγ

∫
Σ
H0 dμγ

)2

−
(

1

8πrγ

∫
Σ
H0 dμγ

)2
]
,

which translates into the following lower bound of ζ(γ):

(1.8) ζ(γ) ≥ 1− 8πrγ∫
Σ0

H0 dμγ
.

By the classic Minkowski inequality, the right side of (1.8) is ≥ 0 and is zero
if and only Σ0 is a round sphere. We think (1.8) is an interesting lower bound
on ζ(γ) because ζ(γ) is defined as the infimum over a family of quantities
measuring the roundness of γ, see the definition (2.32). It follows from (1.8)
and (2.32) that ζ(γ) = 0 if and only if γ is a round metric.

Remark 1.3. If we denote the right side of (1.6) by m̃(Σ, γ,H), it can be
shown, along large coordinate spheres, m̃(Σ, γ,H) approaches the mass of
an asymptotically Schwarzschild manifold. More precisely, suppose (M, g)
is a 3-manifold such that, outside a compact set, M is diffeomorphic to R

3

minus a ball and the metric coefficients gij satisfies

gij = (1 + 2mr−1)δij +O(|x|−2), as x → ∞,

where m is a constant and equals the mass of (M, g). Let Sr = {|x| = r}, and
let σr, Hr denote the induced metric, the mean curvature of Sr in (M, g).
Then, direct calculation gives∫

Sr

Hr dμσr
= 8πr +O(r−1),

Kσr
= r−2(1 + 2mr−1)−1 +O(r−4),

(for instance, see (5.10) and (5.14) in [31]). The equation on Kσr
implies

the curvature ratio κ, associated to σr, satisfies κ = 1 + O(r−2). Hence,
ζ(σr) = O(r−2) by (1.7). These, together with the fact |Sr|σr

= 4πr2(1 +
2mr−1)(1 +O(r−2)), readily implies

(1.9) m̃(Sr, σr, Hr) → m, as r → ∞.

In [28], Xie and the first author found the Mantoulidis-Schoen esti-
mate (1.2), in the case of metrics γ with positive Gauss curvature, can be
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reproduced by combing the methods in [31] and [24]. Moreover, in [28] it

was shown

(1.10) m
B
(Σ, γ,H) ≤

√
|Σ|γ
16π

for any positive function H.

Our derivation of Theorem 1.1 is motivated by the work in [28]. Briefly

speaking, one starts with a special path of metrics {γ(t)}t∈[0,1], constructed
by Mantoulidis-Schoen, which connects the given metric γ to a round metric
σo. Upon reparameterizing and suitably scaling {γ(t)}, one obtains a path of

metrics {γ̄s}s∈[1,∞). On the product manifold Σ× [1,∞) with a background

metric ḡ = ds2+ γ̄s, one then performs a Bartnik-Shi-Tam type construction

to build an admissible extension of (Σ, γ,H). Carefully tracing how the total
mean curvature evolves along the foliation in the extension, one can relate

the mass of the extension to the total mean curvature at the initial surface

as well as the “expense” paid by connecting γ to a round metric. The area

radius appears in the estimate as a normalization factor.

Besides (1.6), estimates in this paper also give an extension of (1.10) to

metrics γ with nonnegative Gauss curvature, see Corollary 2.4.

In a suitable sense, a dual problem of estimating the Bartnik mass is a

problem of estimating the supremum of the total mean curvature of nonneg-
ative scalar curvature (NNSC) fill-ins of a given closed manifold. Interested

readers are referred to [16, 19, 13, 14, 33, 32, 26] for results and questions

related to NNSC fill-ins. As a byproduct in this work, we observe a lower
bound of the supremum of the total mean curvature of NNSC fill-ins of a

given manifold with positive scalar curvature, see Theorem 4.1.

2. Extensions and mass estimates

Let Σ denote an (n− 1)-dimensional sphere, n ≥ 3. Let γ be a Riemannian
metric with nonnegative scalar curvature on Σ. Let rγ be the volume radius

of (Σ, γ), i.e. |Σ|γ = ωn−1r
n−1
γ , where ωn−1 is the volume of a round sphere

of radius one in R
n.

Suppose {γ(t)}t∈[0,1] is a smooth path of metrics on Σ satisfying the
following properties:

i) γ(0) = γ, γ(1) is a round metric with the same volume as γ;
ii) γ(t) has positive scalar curvature for t > 0;

iii) trγ(t) γ
′(t) = 0 for t ≥ 0, where γ′(t) = d

dtγ(t).
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We will comment on condition iii) in Section 3. For the moment, fix such a
path and define

(2.1) α(t) =
maxΣ

∣∣1
2γ

′(t)
∣∣2
γ(t)

n− 1
, β(t) =

r2γ minΣRγ(t)

(n− 1)(n− 2)
.

Here Rγ(t) denotes the scalar curvature of γ(t). Note that α(t) and β(t) are
scaling invariant in the sense, if {γ(t)} is replaced by {c2γ(t)} for a constant
c > 0, α(t) and β(t) will remain unchanged.

Next, we adopt a construction from [28]. Given a constant b > 1, consider
a smooth function

(2.2) t(·) : [1,∞) → [0, 1], with t(1) = 0 and t(s) = 1, ∀ s ≥ b.

For each s ∈ [1,∞), define

γs = r−2
γ γ(t(s)).

{γs}s≥1 satisfies γ1 = r−2
γ γ and γs = σo, s ≥ b, where σo is a round metric

on Σ with volume ωn−1. Let M = [1,∞) × Σ and Σs = {s} × Σ. On M ,
consider a background metric

ḡ = ds2 + γ̄s, where γ̄s = s2γs.

This metric ḡ has the following features:

a) the induced metric γ̄s on Σs has positive scalar curvature for s > 1;
b) the second fundamental form Ās and the mean curvature H̄s of Σs in

(M, ḡ) satisfy

(2.3) Ās =
γ̄s
s

+
1

2
s2γ′s and H̄s =

n− 1

s
, ∀ s ≥ 1.

Here γ′s =
d
dsγs and condition iii) is used in obtaining H̄s =

n−1
s .

c) ḡ = ds2 + s2σo is a Euclidean metric on (b,∞)× Σ.

The following lemma follows directly from results in [31, 12].

Lemma 2.1. Given any positive function H > 0 on Σ, there exists a positive
function u on M so that

1) g = u2ds2 + γ̄s has zero scalar curvature;
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2) the mean curvature H1 of Σ1 = ∂M in (M, g) equals rγH;

3) u → 1 as s → ∞ and (M, g) is asymptotically flat, foliated by {Σs}s≥1

with positive mean curvature.

Proof. Let Δs denote the Laplacian on (Σs, γ̄s). The equation on u corre-

sponding to conditions 1) and 2) is

(2.4)

⎧⎪⎪⎨
⎪⎪⎩

∂

∂s
u =

1

H̄s
u2Δsu+

u

2H̄s

(
H̄2

s + |Ās|2 + 2∂sH̄s

)
− u3

Kγ̄s

H̄s
, s ≥ 1,

u|s=1 =
1

rγH
H̄1

(see equation (5) in [12] for instance). Since H̄s > 0, (2.4) has a positive

solution on some small interval [1, 1 + δ), δ > 0. Since Kγ̄s
> 0 for s > 0,

the solution exists on [1,∞) by [12, Proposition 2]. Since ḡ is the Euclidean

metric on (b,∞) × Σ, the claim that u satisfies 3) follows [31, Theorem

2.1].

Let g be the metric given in Lemma 2.1 and let m(g) denote its mass.

Let Hs be the mean curvature of Σs in (M, g). Define

Hs =
1

(n− 1)ωn−1

∫
Σs

Hs dμs,

where dμs is the volume form on (Σs, γ̄s). As ḡ is a Euclidean metric on

(b,∞)× Σ, we apply [31, Theorem 2.1] to deduce

(2.5)

∫
Σs

H̄s dμs −
∫
Σs

Hs dμs = (n− 1)ωn−1m(g) + o(1), as s → ∞.

Since Σs is a round sphere of radius s in ((b,∞)× Σ, ḡ),∫
Σs

H̄s dμs = (n− 1)ωn−1s
n−2, ∀ s > b.

Thus,

(2.6) Hs = sn−2 −m(g) + o(1), as s → ∞.

We analyze how Hs evolves along {Σs}. The next proposition was in-

spired by a computation of Shi-Wang-Wei-Zhu [33, page 249].
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Proposition 2.1. The total mean curvature Hs satisfies

(2.7)
dH2

s

ds
≥
(
n− 2

s
− αs|t′(s)|2s

)
H2

s + (n− 2)s2n−5βs, ∀ s ≥ 1.

Here αs = α(t(s)) and βs = β(t(s)).

Proof. By the second variation of volume and the Gauss equation,

∂

∂s
Hs =

1

2
Rγ̄s

u−Δsu− 1

2

(
|Ās|2γ̄s

+ H̄2
s

)
u−1.

Thus,

(2.8)
d

ds

∫
Σs

Hs dμs =
1

2

∫
(H̄2

s − |Ās|2γ̄s
)u−1 dμs +

1

2

∫
Rγ̄s

u dμs.

By (2.3) and (2.1),

(2.9)
∣∣∣Ās −

γ̄s
s

∣∣∣2
γ̄s

=

∣∣∣∣12 dγ(t)dt
t′(s)

∣∣∣∣
2

γ(t)

≤ (n− 1)αs |t′(s)|2 = αs |t′(s)|2sH̄s.

It follows from (2.8) and (2.9) that

d

ds

∫
Σs

Hsdμs =
1

2

∫
Σs

(
n− 2

s
H̄s −

∣∣∣Ās −
γ̄s
s

∣∣∣2
γ̄s

)
u−1 dμs +

1

2

∫
Σs

Rγ̄s
u dμs

≥ 1

2

(
n− 2

s
− αs|t′(s)|2s

)∫
Σs

H̄s u
−1 dμs

+
(n− 1)(n− 2)βs

2s2

∫
Σs

u dμs.

(2.10)

By Hölder’s inequality,∫
Σs

u dμs ≥
|Σs|2γ̄s∫

Σs
u−1 dμs

=
(sn−1ωn−1)

2∫
Σs

u−1 dμs
.

Hence, (2.10) and (2.3) imply

d

ds

∫
Σs

Hs dμs ≥
1

2

(
n− 2

s
− αs|t′(s)|2s

)∫
Σs

Hs dμs

+
(n− 1)(n− 2)βs

2s2
s2n−2ω2

n−1(n− 1)

s
∫
Σs

Hs dμs
,

(2.11)
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which proves (2.7).

Remark 2.1. If γ is a round metric on Σ, one can take {γ(t)}t∈[0,1] to be a

constant path of metrics. In this case, α(t) = 0, β(t) = 1, and (2.7) becomes

dH2
s

ds
≥ n− 2

s
H2

s + (n− 2)s2n−5,

or equivalently

(2.12)
d

ds

{(
|Σs|γ̄s

ωn−1

)n−2

n−1

[
1−
(
|Σs|γ̄s

ωn−1

) 2(2−n)

n−1

H2
s

]}
≤ 0.

This monotone property gives another insight into [24, Theorem 1].

Remark 2.2. In deriving (2.7), one does not need γ(1) to be a round metric;

neither does Σ need to be a sphere. We will explore this fact in Section 4.

In the rest of this section, we focus on the dimension n = 3. In this case,

γ is a metric with nonnegative Gauss curvature Kγ on the 2-sphere Σ. By

Gauss-Bonnet theorem,

β(t) ≤ 1.

For convenience, we normalize γ so that |Σ|γ = 4π, i.e. rγ = 1.

Choosing n = 3 in Proposition 2.1, we have

(2.13)
dH2

s

ds
−
(
1

s
− αs|t′(s)|2s

)
H2

s ≥ sβs,

which implies

(2.14)
d

ds

(
s−1e

∫ s

1
αs|t′(s)|2s dsH2

s

)
≥ βs e

∫ s

1
αs|t′(s)|2s ds.

Integrating (2.14) from 1 to s > b, we have

e
∫ b

1
αs|t′(s)|2sds

s
H2

s −H2
1

≥
∫ b

1
βse

∫ s

1
αs|t′(s)|2s ds ds+ (s− b)e

∫ b

1
αs|t′(s)|2s ds.

(2.15)

Here we used the fact γs = σo, hence αs = 0 and βs = 1, ∀ s ≥ b.
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Re-writing (2.15) as

(2.16)
H2

s

s
− e−

∫ b

1
αs|t′(s)|2s dsH2

1 ≥ (s− b) +

∫ b

1
βse

−
∫ b

s
αs|t′(s)|2s ds ds,

letting s → ∞ and applying (2.6), we obtain

(2.17) 2m(g) ≤ b−
∫ b

1
βse

−
∫ b

s
αs|t′(s)|2s ds ds− e−

∫ b

1
αs|t′(s)|2s dsH2

1.

By Lemma 2.1, (M, g) is an asymptotically flat extension of (Σ, γ,H),
(M, g) has zero scalar curvature and is foliated by positive mean curvature
surfaces {Σs}. Hence, by (2.17) and the definition of the Bartnik mass,

m
B
(Σ, γ,H) ≤ m(g)

≤ 1

2

[
b−
∫ b

1
βse

−
∫ b

s
αs|t′(s)|2s ds ds− e−

∫ b

1
αs|t′(s)|2s dsH2

1

]
.

(2.18)

In general, when (Σ, γ) does not necessarily have area 4π, it is easily checked

(2.19) m(Σ, γ,H) = rγ m(Σ, r−2
γ γ, rγH).

The following proposition follows from (2.18) and (2.19).

Proposition 2.2. Let γ be a metric with nonnegative Gauss curvature on
the two-sphere Σ. Let H be a positive function on Σ. Suppose {γ(t)}t∈[0,1]
is a path of metrics satisfying i), ii) and iii). Given any constant b > 1 and
any C1 function

(2.20) t(·) : [1, b] → [0, 1] with t(1) = 0 and t(b) = 1,

the Bartnik mass m
B
(Σ, γ,H) satisfies

(2.21)

m
B
(Σ, γ,H) ≤ rγ

2

[
b−
∫ b

1
βse

−
∫ b

s
αs|t′(s)|2s ds ds− e−

∫ b

1
αs|t′(s)|2s dsH2

]
.

where rγ =

√
|Σ|γ
4π and H = 1

8πrγ

∫
ΣH dμγ.

Remark 2.3. We comment on the C1 assumption on the function t(s) in
(2.21). The argument preceding (2.18) readily shows (2.21) holds for any
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s
1 b

1

t
T (s)

s
1 1+ε b−ε b

1

t

φε1∗ Tε

Tε(s)

Figure 1: On the left is the graph of T (s), with a corner at b. On the right
in blue is the compression Tε(s) of T (s) and in red its smoothing using a
mollifier φε1 that preserves the endpoints.

t(·) : [1, b] → [0, 1] which is the restriction of a smooth function t(·) :

[1,∞) → [0, 1] satisfying (2.2). Now if t(·) is merely C1 on [0, 1] satisfy-

ing (2.20), one can consider a function T (s) on [1,∞) so that T (s) = t(s)

on [1, b] and T (s) = 1 for s > b. T (s) may not be smooth on [1,∞), but

one can mollify it. For instance, one can first compress the graph of T (s)

horizontally by a small factor ε > 0 and denote such a function by Tε(s).

Then one can smooth Tε out via a usual mollifier φε1 > 0, with ε1 > 0 small

enough so that Tε ∗ φε1 = Tε near the points 1 and b (see Figure 1). As the

right side of (2.18) depends on t(·) only via t′(s) on [1, b], letting ε1 and ε

tend to 0, one obtains Proposition 2.2.

In Proposition 2.2, the function t(s) does not need to be monotone. If

t(s) is chosen to be monotone, (2.21) can be reformulated in terms of the

inverse function s = s(t). More precisely, Proposition 2.2 shows

Proposition 2.3. Let γ be a metric with nonnegative Gauss curvature on

the two-sphere Σ. Let H be a positive function on Σ. Suppose {γ(t)}t∈[0,1] is
a path of metrics satisfying i), ii) and iii). Given any C1 function

(2.22) s = s(t), t ∈ [0, 1], with s(0) = 1 and s′(t) > 0,
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the Bartnik mass m
B
(Σ, γ,H) satisfies

m
B
(Σ, γ,H) ≤ rγ

2

[
s(1)−

∫ 1

0

β(t)s′(t)

e
∫ 1

t
α(t) s(t)

s′(t) dt
dt− 1

e
∫ 1

0
α(t) s(t)

s′(t) dt
H2

]
,(2.23)

where rγ =

√
|Σ|γ
4π and H = 1

8πrγ

∫
ΣH dμγ.

Given any C0 function φ(t) > 0 on [0, 1] and any constant k > 0, plug-
ging in (2.23) a choice of

s(t) = 1 + k

∫ t

0
φ(t)dt,

one has

m
B
(Σ, γ,H) ≤ rγ

2

⎡
⎣1 + k

∫ 1

0

⎛
⎝1− β(t)

e

∫ 1

t
α(t)

(
1

kφ(t)
+

∫ t
0 φ(t)dt

φ(t)

)
dt

⎞
⎠φ(t) dt

− 1

e

∫ 1

0
α(t)

(
1

kφ(t)
+

∫ t
0 φ(t)dt

φ(t)

)
dt

H2

⎤
⎦ .

(2.24)

Letting k → 0+ in (2.24) gives the following corollary:

Corollary 2.4. Let γ be a metric of nonnegative Gauss curvature on the
2-sphere Σ. Let H be a positive function on Σ. Then

(2.25) m
B
(Σ, γ,H) ≤ rγ

2
.

For a fixed path {γ(t)}t∈[0,1], an optimal estimate on m
B
(·) from Propo-

sition 2.3 would be obtained by minimizing the right side of (2.23) over all
C1 functions s(t) satisfying (2.22). At the moment, we do not know a for-
mula of such an infimum. Below, we proceed using an ad hoc ODE method
to pick a choice of s(t).

Suggested by(
e
−

∫ 1

t
α(t) s(t)

s′(t) dt
)′

= e
−

∫ 1

t
α(t) s(t)

s′(t) dt α(t)s(t)s′(t)−1,

we choose s(t) so that

(2.26) β(t)s′(t) = k2α(t)s(t)s′(t)−1,
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where k > 0 is an arbitrary constant. Clearly, (2.26) and s(0) = 1 shows

(2.27) s(t) =

(
1 + k

∫ t

0

√
α(t)

4β(t)
dt

)2

, if

∫ 1

0

√
α(t)

β(t)
< ∞.

With this choice of s(t), we have

s(1)−
∫ 1

0

β(t)s′(t)

e
∫ 1

t
α(t) s(t)

s′(t) dt
dt− 1

e
∫ 1

0
α(t) s(t)

s′(t) dt

(∫
ΣH dμγ

)2
16π|Σ|γ

=

(
1 + k

∫ 1

0

√
α(t)

4β(t)
dt

)2

− k2 + e
−

∫ 1

0
α(t) s(t)

s′(t) dt

[
k2 −

(∫
ΣH dμγ

)2
16π|Σ|γ

]
.

(2.28)

To simplify the above quantity, we may choose k so that

(2.29) k =
1

8πrγ

∫
Σ
H dμγ .

Thus, the following corollary follows from Proposition 2.3 and a choice

of

(2.30) s(t) =

⎛
⎝1 +

∫ t
0

√
α(t)
4β(t) dt

8πrγ

∫
Σ
H dμγ

⎞
⎠

2

.

Corollary 2.5. Let γ be a metric with nonnegative Gauss curvature on the

two-sphere Σ. Let H be a positive function on Σ. Suppose {γ(t)}t∈[0,1] is a

path of metrics satisfying i), ii) and iii). Then the Bartnik mass m
B
(Σ, γ,H)

satisfies

(2.31)

m
B
(Σ, γ,H) ≤

√
|Σ|γ
16π

[(
1 +

ζ(γ)

8πrγ

∫
Σ
H dμγ

)2

−
(

1

8πrγ

∫
Σ
H dμγ

)2
]
.

Here ζ(γ) ≥ 0 is a scaling invariant quantity of γ, given by

(2.32) ζ(γ) = inf
{γ(t)}t∈[0,1]

∫ 1

0

√
α(t)

4β(t)
dt.
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3. Estimates of ζ(γ)

Given a metric γ on a two-sphere Σ, by the uniformization theorem, there
exists a function ϕ such that

(3.1) r−2
γ γ = e2ϕσo.

Here σo is a round metric on Σ with area |Σ|σ0
= 4π and rγ is the area

radius of γ. Let dμo denote the area form of σo. Then
∫
Σ e2ϕdμ0 = 4π. In

particular, ϕ satisfies

(3.2) min
Σ

e2ϕ ≤ 1 and min
Σ

e−2ϕ ≤ 1.

As a result, there exists some point p ∈ Σ so that ϕ(p) = 0. Consequently,

(3.3) ‖ϕ‖0 ≤ C1 ‖dϕ‖0 ,

where C1 is an absolute constant and ‖·‖0 denotes the C0-norm of tensors on
(Σ, σo). Similarly, given any α ∈ (0, 1), if �ϕ�α denotes a Hölder semi-norm
of ϕ given by

�ϕ�α = sup
x,y∈Σ, x �=y

|ϕ(x)− ϕ(y)|
d(x, y)α

,

where d(x, y) is the distance on (Σ, σo), then

(3.4) �ϕ�α ≤ C2 ‖dϕ‖0 ,

for some absolute constant C2.
The next proposition gives an estimate of ζ(γ) in terms of ϕ.

Proposition 3.1. Let γ be a metric with nonnegative Gauss curvature on a
2-sphere Σ. Let ζ(γ) be given in (2.32). Let ϕ be a conformal factor in (3.1).
Then

(3.5) ζ(γ) ≤ Ce6‖ϕ‖0 ‖ϕ‖0,α
(
1 + ‖ϕ‖0,α

)
(1 + ‖dϕ‖0) .

Here C is some constant depending on α.

Proof. As in [29, 21], a smooth path of metrics {σ(t)}t∈[0,1] with constant
area 4π, connecting r−2

γ γ to σo, can be given by

(3.6) σ(t) = c(t)−1e2(1−t)ϕσo.
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Here c(t) is a normalization function satisfying

c(t) =
1

4π

∫
Σ
e2(1−t)ϕ dμo ≥

(
min
Σ

e2ϕ
)1−t

.(3.7)

The Gauss curvature Kσ(t) of σ(t) satisfies

c(t)−1e2(1−t)ϕKσ(t) = Kσ0
− (1− t)Δσo

ϕ

= 1− (1− t)Δσo
ϕ,

(3.8)

where Δσo
is the Laplacian on (Σ, σo). At t = 0,

(3.9) e2ϕr2γKγ = 1−Δσo
ϕ.

It follows that

Kσ(t) = c(t)e−2(1−t)ϕ
[
t+ (1− t)e2ϕ r2γ Kγ

]
.(3.10)

In what follows, suppose Kγ ≥ 0. By (3.7) and (3.10),

Kσ(t) ≥
(
minΣ e2ϕ

maxΣ e2ϕ

)1−t [
t+ (1− t)K−min

Σ
e2ϕ
]
.(3.11)

Here K− = r2γ minΣKγ ≥ 0. In particular, (3.11) shows Kσ(t) > 0, ∀ t ∈
(0, 1].

Next, we apply Mantoulidis-Schoen construction [21] to revise
{σ(t)}t∈[0,1] into a new path of metrics satisfying property iii) in Section 2.
More precisely, consider a 1-parameter family of diffeomorphisms {φt}t∈[0,1]
on Σ, generated by a smooth t-dependent vector field Xt which is to be
chosen later. Let γ(t) = φ∗

t (σ(t)). Then

(3.12) γ′(t) = φ∗
t (σ

′(t)) + φ∗
t (LXt

σ(t)),

where L denotes taking the Lie derivative. Hence,

(3.13) trγ(t) γ
′(t) = φ∗

t (trσ(t) σ
′(t) + 2 divσ(t)Xt).

Let ψt(x) = ψ(t, x) to be a smooth function on [0, 1]×Σ which is a solution
to

(3.14) Δσ(t)ψt = −1

2
trσ(t) σ

′(t),
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for each t. Such a ψt exists since {σ(t)}t∈[0,1] has constant volume which
guarantees ∫

Σ

1

2
trσ(t) σ

′(t) dμσ(t) = 0.

Fix such a ψt, let Xt = ∇σ(t)ψt where ∇σ(t) is the gradient with respect to
σ(t), then

(3.15) trγ(t) γ
′(t) = 0

by (3.13) and (3.14). Note that γ(0) = φ∗
0(σ(0)) is isometric to σ(0) = r−2

γ γ.

By abusing notation, we denote
(
φ−1
0

)∗
(γ(t)) still by γ(t). Then {γ(t)}t∈[0,1]

connects r−2
γ γ to a round metric, has positive Gauss curvature for 0 < t ≤ 1,

and satisfies (3.15).

Let α(t) and β(t) be the function associated to {γ(t)}t∈[0,1], given in (2.1).
By (3.11),

β(t) ≥ e−4(1−t)‖ϕ‖0

[
t+ (1− t)K−e

−2‖ϕ‖0

]
.(3.16)

Next we estimate α(t). For the purpose of obtaining the elliptic estimate
(3.25), we normalize ψt so that

(3.17)

∫
Σ
ψt dμσo

= 0, ∀ t ∈ [0, 1].

This can be arranged as ψt is unique up to adding a constant for each t.

By the definition of α(t) and (3.12),

α(t) =
1

8
max
Σ

|σ′(t) + LXt
σ(t)|2σ(t)

=
1

8
max
Σ

[
|σ′(t)|2σ(t) + 2〈σ′(t),LXt

σ(t)〉σ(t) + |LXt
σ(t)|2σ(t)

]
.

(3.18)

Let ct = ln c(t). By (3.6), σ(t) = e2(1−t)ϕ−ctσo. Hence, σ′(t) = (−2ϕ−c′t)σ(t)
and

(3.19) |σ′(t)|2σ(t) = 2(2ϕ+ c′t)
2.

By (3.14) and the fact Xt = ∇σ(t)ψt,

(3.20) 〈σ′(t),LXt
σ(t)〉σ(t) = −2

(
2ϕ+ c′t

)2
.
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The term LXt
σ(t) satisfies

(3.21) LXt
σ(t) = 2Hessσ(t) ψt.

Here Hessσ(t) denotes the Hessian on (Σ, σ(t)). Since σ(t) is conformal to
σo, the following relation between Hessσo

ψt and Hessσ(t) ψt can be checked
directly:
(3.22)
Hessσ(t) ψt = Hessσo

ψt − (1− t) [dψt ⊗ dϕ+ dϕ⊗ dψt − 〈dϕ, dψt〉σo
σo] .

Therefore,

|Hessσ(t) ψt|σo
≤ |Hessσo

ψt|σo
+ (1− t)

(
2|dψt|σo

|dϕ|σo
+
√
2 |〈dϕ, dψt〉σo

|
)

≤ C||ψt||C2(Σ) (1 + (1− t) ‖dϕ‖0) ,

(3.23)

where C is some constant depending only on σo. By (3.14), (3.6) and (3.17),
ψt on (Σ, σo) satisfies

(3.24) Δσo
ψt = e2(1−t)ϕ−ct

(
2ϕ+ c′t

)
and

∫
Σ
ψt dμσo

= 0.

By the standard elliptic theory, for any fixed α ∈ (0, 1),

(3.25) ||ψt||C2,α(Σ) ≤ C||Δσo
ψt||C0,α(Σ),

where C only depends on σo and α. The Hölder norm of Δσo
ψt can be

estimated as follows:

�e2(1−t)ϕ(2ϕ+ c′t)�α ≤
∥∥∥e2(1−t)ϕ

∥∥∥
0
2�ϕ�α + �e2(1−t)ϕ�α

∥∥2ϕ+ c′t
∥∥
0
.(3.26)

By the mean value theorem, given any x, y ∈ Σ,

(3.27) |e2(1−t)ϕ(x) − e2(1−t)ϕ(y)| = 2(1− t)|ϕ(x)− ϕ(y)|e2(1−t)ξ,

for some ξ lying between ϕ(x) and ϕ(y). Thus,

(3.28) �e2(1−t)ϕ�α ≤ 2(1− t)
∥∥∥e2(1−t)ϕ

∥∥∥
0
�ϕ�α.

Therefore,

�e2(1−t)ϕ(2ϕ+ c′t)�α ≤ 2�ϕ�α

∥∥∥e2(1−t)ϕ
∥∥∥
0

(
1 + (1− t)

∥∥2ϕ+ c′t
∥∥
0

)
.(3.29)
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Consequently,

∥∥∥e2(1−t)ϕ(2ϕ+ c′t)
∥∥∥
C0,α(Σ)

=
∥∥∥e2(1−t)ϕ(2ϕ+ c′t)

∥∥∥
0
+ �e2(1−t)ϕ(2ϕ+ c′t)�α

≤
∥∥∥e2(1−t)ϕ

∥∥∥
0

[∥∥2ϕ+ c′t
∥∥
0
+ 2�ϕ�α

(
1 + (1− t)

∥∥2ϕ+ c′t
∥∥
0

)]
≤ e2(1−t)‖ϕ‖0

[
4 ‖ϕ‖0 + 2�ϕ�α

(
1 + (1− t)4 ‖ϕ‖0

)]
,

(3.30)

where we also used the fact ct = ln c(t) and

(3.31) |c′t| =
∣∣∣∣∣
∫
−2ϕe2(1−t)ϕdμ0∫

e2(1−t)ϕdμ0

∣∣∣∣∣ ≤ 2 ‖ϕ‖0 .

It follows from (3.23) – (3.25) and (3.30) that

|Hessσ(t) ψt|σ(t) = e−2(1−t)ϕ+ct |Hessσ(t) ψt|σo

≤ e−2(1−t)ϕ+ctC1||Δσo
ψt||C2,α(Σ) (1 + (1− t) ‖dϕ‖0)

≤ C2e
4(1−t)‖ϕ‖0

(
‖ϕ‖0 + �ϕ�α + (1− t) ‖ϕ‖0 �ϕ�α

)
(1 + (1− t) ‖dϕ‖0) .

(3.32)

Here Ci, i = 1, 2, . . ., are constants only depending on σo and α. It follows
from (3.18) – (3.21) and (3.32) that
(3.33)

α(t) ≤ C3e
8(1−t)‖ϕ‖

0 ‖ϕ‖20,α
(
1 + (1− t) ‖ϕ‖0,α

)2
(1 + (1− t) ‖dϕ‖0)

2 ,

where ||ϕ||0,α = ‖ϕ‖0+ �ϕ�α. Equality in (3.33) holds if ϕ = 0 in which case
γ is a round metric.

By (3.16) and (3.33),

√
α(t)

β(t)
≤ C3

e6(1−t)‖ϕ‖
0 ‖ϕ‖0,α

(
1 + (1− t) ‖ϕ‖0,α

)
(1 + (1− t) ‖dϕ‖0)√

t+ (1− t)e−2‖ϕ‖
0 K−

.

(3.34)

Note that

2 ≥
∫ 1

0

1√
t+ (1− t)e−2‖ϕ‖

0K−

dt =
2

1 +
√

e−2‖ϕ‖0K−
≥ 1,
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where we used 0 ≤ K− ≤ 1. Therefore,

(3.35)

∫ 1

0

√
α(t)

β(t)
dt ≤ C4e

6‖ϕ‖
0 ‖ϕ‖0,α

(
1 + ‖ϕ‖0,α

)
(1 + ‖dϕ‖0) .

This proves (3.5) by the definition of ζ(γ).

In the rest of this section, we assume Kγ > 0. Applying results on the
problem of prescribing Gauss curvature on a sphere from the literature (for
instance [8, 9]), one can estimate ζ(γ) by the ratio between maxΣKγ and
minΣKγ .

Proposition 3.2. Let γ be a metric with positive Gauss curvature on a
2-sphere Σ. Let ζ(γ) be given in (2.32). Then

ζ(γ) ≤ C(κ),

where C(κ) is a constant depending only on κ =
maxΣKγ

minΣKγ
≥ 1. Moreover,

there exists a small ε > 0, such that, if κ < 1 + ε, then

ζ(γ) ≤ C|κ− 1|,

where C is some absolute constant.

Proof. Let γ̃ = r−2
γ γ. Then

maxΣKγ̃

minΣKγ̃
= κ.

By the Gauss-Bonnet theorem, Kγ̃ = 1 somewhere on Σ. Thus,

(3.36) κ−1 ≤ Kγ̃ ≤ κ.

The function ϕ in (3.1) satisfies

(3.37) Δσo
ϕ+Kγ̃e

2ϕ = 1.

Replacing γ by Φ∗(γ) if necessary, where Φ is a conformal diffeomorphism
on (Σ, σo), one may assume ϕ satisfies a balancing condition

(3.38)

∫
Σ
xie

2ϕ dμo = 0, i = 1, 2, 3,
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where xi denotes the coordinate function on Σ if Σ is identified with the unit
sphere {|x| = 1} in R

3 (see [8] for instance). By (3.36) and [9, Lemma 3.1]
(also see (a)’ of Chapter 7 in [8]), there exists a constant C(κ), depending
on κ, so that

(3.39) ||ϕ||0 ≤ C(κ).

It follows from (3.36), (3.37), (3.39) and Lp elliptic estimates that ||ϕ||W 2,p

is bounded by some constant depending only on κ and any chosen p > 2.
By Sobolev embedding theorems, this implies

(3.40) ||dϕ||0 ≤ C(κ, p),

where the constant depends only on κ and p. The claim ζ(γ) ≤ C(κ) follows
from (3.5), (3.39) and (3.40).

Next, suppose κ is close to 1. Then ||Kγ̃ − 1||0 is small by (3.36). In this
setting, it was shown on page 433-434 in [34] that there exists a constant
δ > 0 such that

||Kγ̃ − 1||0 ≤ δ =⇒ ||ϕ||W 2,2 ≤ C||Kγ̃ − 1||0,
hence ||ϕ||0,α ≤ C||Kγ̃ − 1||0

(3.41)

for some α ∈ (0, 1) and C is a constant depending only on α. Let α in Propo-
sition 3.1 be given by the α in (3.41), the rest of the claim in Proposition 3.2
now follows from (3.5), (3.39), (3.40) and (3.41).

Theorem 1.1 follows from Corollary 2.5 and Proposition 3.2.

4. Discussion on NNSC fill-ins

Let Σ be a closed (n−1) dimensional manifold, n ≥ 3. Let γ be a metric with
positive scalar curvature on Σ. Let F(Σ, γ) denote the set of nonnegative
scalar curvature (NNSC) fill-ins of (Σ, γ), i.e. F(Σ, γ) consists of n dimen-
sional, compact, connected Riemannian manifolds (Ω, g

Ω
) with boundary

such that its boundary ∂Ω, with the induced metric, is isometric to (Σ, γ),
and the scalar curvature of g is nonnegative. We are interested in an NNSC
fill-in with mean convex boundary. Let

F+(Σ, γ) = {(Ω, g
Ω
) ∈ F(Σ, γ) |H > 0},

where H is the mean curvature of ∂Ω in (Ω, g
Ω
).
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Following [19] (also see [33, 32]), we let

Λ(Σ, γ) = sup

{
1

(n− 1)ωn−1

∫
∂Ω

H dμ
∣∣ (Ω, g

Ω
) ∈ F+(Σ, γ)

}
.

Clearly, for any constant c > 0,

(4.1) Λ(Σ, c2γ) = cn−2Λ(Σ, γ).

Theorem 4.1. Let γ be a metric with positive scalar curvature on Σ. If
F+(Σ, γ) �= ∅, then

(4.2) Λ(Σ, γ) ≥ rn−1
γ

(
minΣRγ

(n− 1)(n− 2)

) 1

2

.

Here rγ is the volume radius of (Σ, γ), i.e. |Σ|γ = ωn−1r
n−1
γ .

Proof. For simplicity, we may assume rγ = 1. Take (Ω, g
Ω
) ∈ F+(Σ, γ).

Choose γ(t) = γ, 0 ≤ t ≤ 1, and use {γ(t)}t∈[0,1] and the function H,
determined by (Ω, g

Ω
), in Proposition 2.1, we have

(4.3)
dH2

s

ds
≥ n− 2

s
H2

s + (n− 2)s2n−5β0, ∀ s ≥ 1.

where β0 =
1

(n−1)(n−2) minΣRγ . Fix any s > 1, (4.3) implies

(4.4) s2−nH2
s ≥ H2

1 + β0(s
n−2 − 1).

To proceed, note that if (Σ×[1, s], g) is attached to (Ω, g
Ω
) by identifying

Σ1 with ∂Ω, we would get an NNSC fill-in of (Σs, s
2γ), except the resulting

fill-in may not be smooth across Σ1 = ∂Ω. For the moment, suppose this
fill-in were smooth. Then, by (4.4) and the definition of Λ(Σ, s2γ),

(4.5) s2−nΛ(Σ, s2γ)2 ≥ H2
1 + β0(s

n−2 − 1).

Taking the supremum of the right side of (4.5) over (Ω, g
Ω
) ∈ F+(Σ, γ), we

obtain

(4.6) s2−nΛ(Σ, s2γ)2 ≥ Λ(Σ, γ)2 + β0(s
n−2 − 1).

By (4.1), the above becomes

(4.7) sn−2Λ(Σ, γ)2 ≥ Λ(Σ, γ)2 + β0(s
n−2 − 1),
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which yields

Λ(Σ, γ)2 ≥ β0,

giving the estimate in (4.2). To finish the proof, we note by applying the
mollification construction in [23], the above mentioned “singular” fill-ins can
be approximated by smooth fill-ins whose normalized total mean curvature
approaches Hs (see [20, 32, 33] for instance). This completes the proof.

If n = 3, (4.2) becomes Λ(Σ, γ) ≥ r2γ (minΣKγ)
1

2 . This can be alterna-
tively derived by isometrically embedding (Σ, γ) in R

3, making use of the
classic Minkowski inequality and the Gauss-Bonnet theorem.
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