
Beijing J. of Pure and Appl. Math.

Volume 1, Number 2, 455–487, 2024

An overview of Bartnik’s quasi-local mass
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This article provides a concise introduction to Bartnik’s quasi-local
mass, and surveys a selection of results pertaining to the under-
standing of it. The aim is to serve as both an entry point to the
topic, and a quick reference of results for those already familiar
with it.
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1. Introduction

In 1982, Roger Penrose published a list of unsolved problems in classical
general relativity [65], emphasising that important mathematical works in
classical general relativity – as opposed to some more speculative theories
– would have a permanent place in physics. The first of fourteen on this
list of open problems is to “find a suitable quasi-local definition of energy-
momentum in general relativity”. The problem remains open and under ac-
tive investigation, with a few candidates still under consideration for a good
definition. The subject of this article one such definition, namely that given
by Robert Bartnik [11]. The purpose of this article is not only to concisely
survey a selection of results on the Bartnik mass, but also to provide an
introduction or entry point to the topic.

To understand the problem of quasi-local mass, we begin with two basic
facts of general relativity. First, the total mass of an asymptotically flat
initial data set satisfying the dominant energy condition is well-defined, and
given by a surface integral at infinity known as the ADM mass. Second,
there cannot exist a local mass density for the gravitational field, which is
essentially a consequence of the equivalence principle. The problem of quasi-
local mass can be viewed as a compromise in a sense, asking for a suitable
definition of the mass within a bounded domain Ω in an initial data set,
rather than at a point.

In order to be a suitable measure of mass in general relativity, it should
of course correspond to the physical notion of mass in some sense. However,
understanding what this means is highly non-trivial. However, motivated by
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this, one may expect that a good quasi-local mass definition should satisfy
certain properties. For example, it is generally agreed upon that a good
definition should at the very least satisfy:

(I) Positivity. The mass should always be non-negative.
(II) Compatibility with the ADM mass. The limit of the mass over an ap-

propriate exhaustion of an asymptotically flat manifold should yield
the ADM mass.

There are also other natural criteria that one may insist that a good
definition of quasi-local mass should satisfy. However, the community is not
in full agreement of exactly what these should be. Some of the most common
conditions, and the ones we will look more closely at, are as follows.

(III) Monotonicity. Given Ω1 ⊂ Ω2, the mass of Ω1 should be no more than
the mass of Ω2.

(IV) Small sphere limit. The limit of the mass taken over small spheres, di-
vided by the volume of a small sphere, should recover the mass density
of the matter. There are also expectations on the next order terms,
which we will elaborate on in Section 4.

(V) Rigidity. If the mass of some domain satisfying the dominant energy
condition is zero, then it should be flat space.

We will reserve discussion of how the Bartnik mass measures up to these
properties until Section 4, after some background and definitions are given.

Over the years there has been an abundance of different definitions of
quasi-local mass, with most eventually falling out of favour for a variety
of reasons. While this article focuses only on the definition of Bartnik, the
reader is directed to the “living review” of Szabados [70] for a comprehensive
survey of the different quasi-local mass definitions.

We give a precise definition of the Bartnik mass in Section 3, however
Bartnik’s idea is essentially the following. Let Ω ⊂ M be a bounded domain
in some initial data set (M,γ,K), and consider a set Â of asymptotically flat
initial data sets (Mo, γo,Ko) each containing a copy of (Ω, γΩ,KΩ), defined
in an appropriate sense. The Bartnik mass is taken to be the infimum of
the ADM mass over all such (Mo, γo,Ko) satisfying physically motivated
conditions. The idea is that the Bartnik mass localises the ADM mass, in the
sense that it is the ADM mass of an initial data set whose only contribution
to the total mass comes from Ω.

As the Bartnik mass is given in terms of this infimum, there is no direct
way to compute it. This is a major challenge for the Bartnik mass that has
driven a good deal of research since it was first given, as we only can compute
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the value in a few special cases. When Bartnik first posed this definition,

he conjectured that the infimum would be realised by initial data that is

stationary in the region exterior to Ω. There is a great deal of evidence to

support this conjecture in a broad sense, and it is even further conjectured

that this stationary extension is unique. This gives hope that the Bartnik

mass can be computed by solving for this unique extension and finding the

mass of that. However, in the broadest sense this conjecture is now known

to be false due to work of Anderson and Jauregui [8], which we will discuss

in more detail below.

Note that an initial data set realising the infimum is not expected to be

smooth across ∂Ω in general, and the best we can expect is Lipschitz here.

This motivates a modification to the definition of Bartnik mass to allow

the extensions of a domain Ω to share this low regularity there. That is,

to take the infimum over a larger set of manifolds that are not required to

be smooth across ∂Ω. By doing so, one can then consider the stationary

extension problem as a boundary value problem, which we discuss in more

detail in Section 5 (see, in particular, Section 5.3). Throughout this article we

will avoid any discussion of the regularity required for the results presented

and all objects should be considered smooth, unless otherwise specified.

2. Asymptotically flat manifolds and the ADM mass

For the sake of completeness, we give some background on the ADM mass.

Note that the dimension n is taken to be no less than 3 throughout.

Definition 2.1. A Riemannian n-manifold (M,γ) (possibly with boundary)

is said to be asymptotically flat if there is a compact set K ⊂ M and a

diffeomorphism ϕ : Rn \B → M \K, where B is a closed ball, satisfying

ϕ∗γ − γ̊ = O(|x|−τ ), ∇̊(ϕ∗γ) = O(|x|−τ−1), ∇̊2(ϕ∗γ) = O(|x|−τ−2),

where γ̊ and ∇̊ are the standard metric and connection on R
n, and τ > n−2

2 .

Note that our definition of an asymptotically flat manifold only permits

one asymptotic end, that is, one copy of ϕ : R
n \ B. This is purely for

simplicity and convenience.

On an asymptotically flat manifold, we can define a quantity known as

the ADM mass, which is viewed as the total mass of a system from the

perspective of general relativity.
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Definition 2.2. The ADM mass mADM of an asymptotically flat manifold
(M,γ) is given by

mADM (M,γ) =
1

2(n− 1)ωn−1
lim

R→∞

∫
SR

∇̊i(ϕ∗γik)− ∇̊k (̊γ
ijϕ∗γij) ν

k dS,

(1)

where SR ⊂ R
n \B is a sphere of radius R, ν is the outer unit normal and

ωn−1 is the volume of the unit (n− 1)-sphere.

By the work of Bartnik [10] and Chruściel [26] it is now well-known that
the ADM mass is well-defined and independent of the diffeomorphism ϕ
used to define it. For this reason we simply write, by an abuse of notation, γ
to denote the original metric and its pullback under such a diffeomorphism.
Note that asymptotic flatness alone is not sufficient to ensure that the ADM
mass is in fact finite, however with the additional assumption that scalar
curvature is integrable it turns out to be the case.

In fact, the ADM mass is closely related to scalar curvature, so we briefly
note some properties. First note that the linearisation of the scalar curvature
operator at γ acting on a symmetric two-tensor h, is given by

(2) DγR(h) = ∇i∇j(hij)−Δ(γijhij)− Ricijhij .

We can use this expression, the divergence theorem and a Taylor expansion
about γ̊ to write the ADM mass as

(3) mADM (M,γ) =
1

2(n− 1)ωn−1

∫
M\BR0

R(γ) dVγ̊ + C,

where BR0
is some fixed large ball and C denotes some collection of terms

that are finite on an asymptotically flat manifold. This is an easy way to see
that the ADM mass is finite if and only if the scalar curvature is in L1. One
can also obtain (3) by expressing scalar curvature in terms of the metric and
its derivatives, and noting that the highest order term is a divergence whose
integral agrees with the ADM mass. We will come back to the linearisation
of scalar curvature (2) in Section 5.

We now state the well-known and celebrated positive mass theorem (see
Remark 2.2 below for some historical comments).

Theorem 2.1. Let (M,γ) be a complete asymptotically flat manifold (with-
out boundary) satisfying R(γ) ≥ 0 and R(γ) ∈ L1(M) then mADM (M,γ) ≥ 0
with equality if and only if (M,γ) is isometric to Euclidean space.
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Remark 2.1. An asymptotically flat manifold may be viewed as initial data
for general relativity that is time-symmetric. In this case, the scalar curva-
ture is proportional to the local energy density of matter fields, motivating
the non-negativity assumption.

General initial data for the Einstein equations is given by a Rieman-
nian manifold (M,γ) equipped with a symmetric two-tensor K. The time-
symmetric condition is the condition that K is identically zero.

Definition 2.3. We say (M,γ,K) is asymptotically flat initial data if (M,γ)
is an asymptotically flat manifold as given by Definition 2.1, and Kij is a

symmetric two-tensor satisfying K = O(|x|−τ−1) and ∇̊K = O(|x|−τ−2).

Definition 2.4. The ADM mass of an asymptotically flat initial data set
(M,γ,K) is given by mADM (M,γ,K) = E2−|p|2 where E is given exactly by
the expression (1) for the ADM mass in the time-symmetric case – here it is
often called the ADM energy – and p ∈ R

n is the ADM (linear) momentum
given by

(4) pi =
1

(n− 1)ωn−1
lim

R→∞

∫
SR

(Kij − trγ(K)γij)ν
j dV.

Definition 2.5. The constraint map, Φ is given by

Φ0(γ,K) = R(γ) + (trγK)2 − |K|2

Φi(γ,K) = 2(∇jKij −∇i(trγK)),
(5)

and we write ρ = Φ0(γ,K) and Ji = Φi(γ,K). We say initial data (M,γ,K)
satisfies the dominant energy condition (DEC) if ρ ≥

√
γijJiJj. This is

equivalent to non-negative scalar curvature in the time-symmetric case.

Theorem 2.2. Let (M,γ,K) be complete asymptotically flat initial data
(without boundary) satisfying the DEC and with R(γ) ∈ L1(M), then the
ADM mass satisfies mADM (M,γ,K) ≥ 0 with equality if and only if (M,γ,
K) corresponds to a hypersurface in (n+ 1)-dimensional Minkowski space.

Remark 2.2. The Positive Mass Theorem was first proven by Schoen and
Yau [66, 67], and independently by Witten [73], both in dimension 3 and us-
ing entirely different techniques. Both proofs have been since generalised to
higher dimensions, the former up to n = 7 [34] and the latter for all dimen-
sions provided the manifold is spin [10]. The remaining cases are somewhat
more delicate and have since been treated by Lohkamp [50, 51], and inde-
pendently by Shoen and Yau [68]. The rigidity statement was also recently
addressed for non-spin manifolds by Huang and Lee [43, 44].
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Remark 2.3. The linearisation of the constraint map plays an analogous
role to the linearisation of scalar curvature, in understanding the ADM mass
outside of time-symmetry.

Although the background and definitions in this section are given for
arbitrary dimension, we will focus on the special case of n = 3 for the
remainder of this article as most of the work on the topic focuses on this
case. Nevertheless, most of the results discussed should also hold in higher
dimensions. Some attempt will be made to remark where higher dimensions
have been explicitly considered, or where dimension 3 is used in an essential
way.

We take this opportunity to mention that throughout we will predomi-
nantly use γ to denote a metric on a 3 manifold M , and g to denote a metric
on a closed surface Σ.

3. Defining the Bartnik mass

3.1. A first definition

We review the various definitions of Bartnik mass and how they relate to
each other, as several subtly different variations exist throughout the liter-
ature. We begin with the first definition given by Bartnik [11], and focus on
the time-symmetric case. In fact, we will focus predominantly on the time-
symmetric case in this review – not as a matter of preference, but simply
because very little is understood outside of time-symmetry. Time-symmetric
initial data is simply a Riemannian manifold (M,γ), which we usually as-
sume has non-negative scalar curvature.

Given a domain Ω with connected boundary ∂Ω in an asymptotically
flat manifold (M,γ), we define the set Ao(Ω, γΩ) of admissible extensions
to Ω to be the set of all asymptotically flat manifolds with non-negative
scalar curvature in which (Ω, γΩ) isometrically embeds, with no stable closed
minimal surfaces outside of the image of Ω. When there is no potential for
ambiguity, we will abuse notation slightly to write Ω to indicate both the
original subset of M and its isometric embedding in other manifolds. The
first definition of Bartnik mass, mo, in the time-symmetric case is then

(6) m1(Ω, γΩ) = inf{mADM (M,γ) : (M,γ) ∈ A1(Ω, γΩ)},

where mADM (M,γ) is the ADM mass of (M,γ). The exclusion of closed
minimal surfaces is often referred to as a non-degeneracy condition, and while
this was the original formulation given by Bartnik, other non-degeneracy
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conditions are frequently considered. Such a condition is required to exclude
extensions wherein Ω is shielded from infinity by a horizon. Without such
a condition, the Bartnik mass of any domain would be zero, as one can
construct an extension that contains an arbitrarily small minimal surface
enclosing Ω, and then simply glue a small mass Schwarzschild manifold to the
minimal surface. We discuss the subtleties of the non-degeneracy conditions
later.

3.2. Definition from Bartnik boundary data

As mentioned in the introduction, we cannot expect that the infimum, if it
is realised, be smooth across ∂Ω. It is therefore reasonable to expand A1

to a larger set of extensions that are only Lipschitz across ∂Ω. In this case
the scalar curvature must be taken to be non-negative in the distributional
sense, which can be understood via the Gauss equation as follows. Consider a
small neighbourhood of Σ0 = ∂Ω foliated by level sets of the signed distance
to Σ0, and assume for now that the metric is in fact smooth. By the Gauss
equation and the second variation of area formula, the scalar curvature of
(Ω, γ) near Σ0 is given by

R(γ) = R(Σt)− |Πt|2 −H2
t − 2∇νt

(Ht),

where R(Σt), Πt and Ht are the scalar curvature, second fundamental form
and mean curvature of Σt respectively, and νt is the unit normal vector
with orientation consistent with Ht. From this we can see that if γ were
only Lipschitz along Σ0, then in order to avoid a Dirac delta-type spike in
scalar curvature, we must have that the mean curvature on each side of Σ0

be equal. Alternatively, we could simply impose that the mean curvature
can only decrease across Σ0 to ensure the distributional spike contributes
positively to the scalar curvature.

That is, we ask that the (outward-pointing) mean curvature of ∂Ω with
respect to the interior and exterior of ∂Ω, which we denote by H− and
H+ respectively, satisfy H− ≥ H+. This allows us to consider extensions
of Ω to be asymptotically flat manifolds M with boundary ∂M , such that
the induced metric on the boundary agrees with the induced metric g on
∂Ω. One is able to glue such an M to Ω by identifying ∂M with ∂Ω to
obtain an asymptotically flat Lipschitz manifold M̂ without boundary (see
[59] for details). This leads one to then consider another space of admissible
extensions A2(Σ, g,H) to be the set of asymptotically flat manifolds with
non-negative scalar curvature, inward-pointing (that is, towards the asymp-
totic end) boundary mean curvature H, and boundary isometric to (Σ, g),
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satisfying a non-degeneracy condition like the one mentioned above. This
leads to a definition of (time-symmetric) Bartnik mass in terms of Bartnik
data (Σ, g,H) related to the previous definition by considering the closed
manifold Σ to be ∂Ω with g and H the induced metric on Σ = ∂Ω and
the outward-pointing mean curvature respectively. Namely, we define the
Bartnik mass in terms of Bartnik data by

(7) m2(Σ, g,H) = inf{mADM (M,γ) : (M,γ) ∈ A2(Σ, g,H)}.

Note that this is defined for an arbitrary closed manifold (Σ, g) equipped
with a function H, however if this Bartnik data does not come from a do-
main Ω in an asymptotically flat manifold then we can not be sure that A1

is non-empty, nor can we ensure the Bartnik mass is non-negative. However,
this definition has several advantages over the original definition, as it allows
us to view the construction of extensions as a kind of boundary value prob-
lem. Most notably is that considering extensions in the sense of A2 allows
one to approach the static metric extension conjecture as a boundary value
problem for the static initial data equations. This is discussed in more detail
in Section 5.

Note that in the above, the condition that scalar curvature be non-
negative distributionally implies that one should only ask that the exten-
sions considered have boundary mean curvature bounded above by the given
H from the Bartnik data. That is, we could define A3(Σ, g,H) similarly to
A2(Σ, g,H) except we allow (M,γ) ∈ A3(Σ, g,H) to have (inward-pointing)
boundary mean curvature H+ ≤ H. Then m3(Σ, g,H) is defined in terms
of this. This is a less useful definition from the perspective of the bound-
ary value problem, although it is closer in spirit to the original definition.
Nevertheless, it is well-understood that positive scalar curvature contributes
positively to the ADM mass, so one should expect that m3 = m2 generically,
and indeed this appears to be the case (see Section 3.5 below).

3.3. Non-degeneracy conditions

Although the original definition required that extensions exclude stable
closed minimal surfaces, other non-degeneracy conditions often replace this
throughout the literature. Generally this is because other conditions can
be equally well-motivated, but may exhibit certain useful properties for the
problem at hand. For example, one could rule out all minimal surfaces in-
stead of only stable ones, since if an extension contains a minimal surface
that is not stable one should be able construct an extension with arbitrarily
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close ADM mass and without the minimal surface via a perturbation argu-
ment. In fact, although the stability property better illustrates the motiva-
tion for the non-degeneracy condition, it is often omitted in the literature.
We will call the condition that an extension contains no closed minimal
surfaces enclosing the Bartnik data (or domain Ω) non-degeneracy condi-
tion (A).

Another non-degeneracy condition that often appears in the literature
is that ∂M ∼= ∂Ω be outer-minimising in the extension. That is, there
cannot contain any surface homologous to ∂M with less area. We will refer
to this as non-degeneracy condition (B). A key advantage this condition
has over condition (A) is that the Hawking mass of a closed area outer-
minimising hypersurface bounds the ADM mass by below. This turns out to
be very useful in establishing many properties of the Bartnik mass, which
we elaborate on in Section 4. For this reason, it appears condition (B) is
more common in the modern literature.

For a detailed discussion of all the different non-degeneracy conditions
that are used throughout the literature, the reader is referred to Section 5 of
[48]. In light of the definitions m1,m2,m3 and the different non-degeneracy
conditions, it is important to understand when these different definitions
agree with each other. This is discussed in more detail in Section 3.5.

3.4. The spacetime Bartnik mass

As noted above, the Bartnik mass is frequently only considered in the time-
symmetric case. In fact, it is has become common in the literature that one
simply says “Bartnik mass” to refer to the time-symmetric version and ex-
plicitly refers to the general case as the spacetime Bartnik mass. The space-
time Bartnik mass is again formulated in terms of minimising the ADM
mass of admissible extensions, however one wishes now to extend a region
Ω in initial data set (Mo, γo,Ko), rather than just a Riemannian manifold.

We define a set of admissible extensions Â1 now as the set of all asymp-
totically flat initial data sets (M,γ,K) such that Ω can be isometrically
embedded into (M,γ) with Ko agreeing with the pullback of K on Ω under

this isometry. We also ask that each (M,γ) ∈ Â1 satisfies the dominant
energy condition and satisfies an appropriate non-degeneracy condition in
the sense of the preceding section. It should be remarked however, that the
appropriate non-degeneracy condition for this case is far less clear. However,
the condition Bartnik suggested in [13] is that the extensions should contain
no apparent horizon, which generalises the notion of minimal surfaces to
initial data sets.
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The Bartnik mass m̂1 of Ω is then defined as the infimum of the ADM
mass taken over Â1. However, to the best of the author’s knowledge there is
essentially nothing known about this definition directly. That is, the handful
of results that are available focus on the boundary data formulation of the
space-time Bartnik mass. That is, analogously to the time-symmetric case,
one can consider extensions that fail to be smooth across ∂Ω and then with
appropriate boundary conditions consider extensions to be manifolds with
boundary instead.

To see what the boundary data should be, we follow a similar reasoning
as in the time-symmetric case. Note that this follows closely Bartnik’s ex-
position given in [13]. In order to do this, we recall the constraint map, Φ,
given by Definition 2.5 and the dominant energy condition that we would
like to impose.

Let Σ0 denote a 2-surface enclosing a domain Ω in a given initial data
set (M̂, ĝ, K̂), and we again assume a smooth foliation by level sets of the
signed distance to Σ0, as above. From the second variation of area and Gauss
equation again, we have

(8) 16πρ = Φ0(g,K) = R(Σt)− |Πt|2 −H2
t − 2∇νt

Ht + (trΣt
K)2 − |K|2.

We see that to avoid a distributional spike in ρ we still need only to ensure H
matches on each side of Σ0. The remaining geometric boundary conditions
arise from the momentum constraint. For clarity we drop reference to t and
it should be understood that we continue to work on this foliation. It will
be helpful to work with coordinates adapted to the foliation, so let ∂A with
A = 1, 2 be a frame on Σ.

From the momentum constraint, we have

8πJν = ∇A(KAν)−∇ν(trΣK);

a tangential derivative that is bounded, and a normal derivative of trΣK.
This implies that we must ask that trΣK matches on both sides of Σ to
avoid a distributional spike in Jν . The tangential components of momentum
constraint give

8πJA = ∇B
ΣKAB +KνBΠ

B
A +KνAH +∇νKAν −∇A(trΣK)−∇Σ

AKνν .

As above, due to the term ∇ν(KνA), we must ask that ω⊥
A := KνA match

on either side of Σ to avoid a distributional spike in JA.
This motivates the definition of an admissible extension of Σ to be an

initial data set (M, g,K) with boundary, such that on ∂M the quantities
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(g∂M , H, ω⊥
A , tr∂MK) are prescribed by the corresponding quantities on Σ

in (M̂, ĝ, K̂). In a similar spirit to m3 above, one could instead impose an
inequality on the Bartnik data rather than an equality, however this is gen-
erally not considered for the same reasons m3 is generally not considered.

With that said, the space-time Bartnik mass m̂2(Σ, g,H, ω⊥, trΣK) is

given as the infimum of the ADM mass over the space Â2(Σ, g,H, ω⊥, trΣK)
of extensions described above.

3.5. The equivalence of definitions

It is an important question to ask when and if each of the subtly different
definitions of Bartnik mass are in fact equivalent to each other. However,
even in the time-symmetric situation, it is far from clear that each different
definition m1, m2 and m3 with respect to each different non-degeneracy con-
dition are in fact equivalent. In fact, not only is it clear that some Bartnik
data (Σ, g,H) do not correspond to any Ω coming from an asymptotically
flat manifold with non-negative scalar curvature, we cannot even determine
in general if given Bartnik data (Σ, g,H) can be realised as the boundary of
a compact manifold with non-negative scalar curvature. So to even begin to
compare the definitions, we should assume that we have some domain Ω in
an asymptotically flat manifold (M,γ) with non-negative scalar curvature
inducing some Bartnik data (Σ, g,H) on the boundary.

It is clear that, for a given non-degeneracy condition, we havem1(Ω, γΩ) ≥
m2(Σ, g,H) ≥ m3(Σ, g,H) as the sets of admissible extensions are nested
subsets of each other. However, it is not clear when these inequalities are in
fact equalities, or when different non-degeneracy conditions yield the same
mass. Equality between m2 and m3 seems heuristically most obvious because
one should expect that it is always possible to decrease the ADM mass of a
manifold with compact boundary by increasing the boundary mean curva-
ture. However even in this case it does not appear to be fully resolved. We
do however have the following recent result due to Jauregui [48].

Theorem 3.1 (Jauregui). Suppose Ω is a connected compact subset of
an asymptotically flat manifold (M,γ) with non-negative scalar curvature,
such that the boundary ∂Ω has positive mean curvature (with respect to the
outward-pointing normal). If the non-degeneracy condition is taken to be
that Σ ∼= ∂Ω is strictly area outer-minimising in the extensions, then all
three definitions of Bartnik mass given above yield the same value. That is,

m1(Ω, γΩ) = m2(Σ, g,H) = m3(Σ, g,H),

where g is the induced metric on ∂Ω.



An overview of Bartnik’s quasi-local mass 467

Remark 3.1. Note that the non-degeneracy condition is not exactly condi-
tion (B), but rather requires that the outer-minimising condition be strict.
The key property of this choice of non-degeneracy condition is that it is
an open condition, in the sense that it is stable to small perturbation. This
makes it possible to deform extensions without violating the non-degeneracy
condition.

Remark 3.2. Independently, equivalence of definitions was shown in [55]
where the non-degeneracy condition was taken to be the usual condition (B),
however additional much stronger convexity conditions were imposed.

In light of this, in what follows we will regularly use mB to denote the
Bartnik mass, and only distinguish between the definitions where it is of
significance.

It should be remarked though, that outside of time-symmetry, it is still
an open question whether the boundary data formulation is in fact equivalent
to the definition in terms of isometric embeddings. However, it seems likely
to be the case, at least with a reasonable non-degeneracy condition imposed.

Remark 3.3. Although dimension 3 is motivated by physics and the focus
here, we remark that the Bartnik mass can be easily formulated in higher
dimensions, and one expects that most results on the topic can be gener-
alised to higher dimensions. Comments will be made throughout regarding
obstructions or complications in the case of higher dimensional analogues.

4. Properties of a good quasi-local mass

As mentioned above, there is a relationship between the Hawking mass and
the ADM mass that one can exploit to establish several properties of the
Bartnik mass. Namely, if (M,γ) is an asymptotically flat 3-manifold with
non-negative scalar curvature and Σ is an outer-minimising surface in M ,
then Huisken and Ilmanen’s proof of the Riemannian Penrose inequality [45]
implies mH(Σ) ≤ mADM (M,γ). Recall the Hawking mass is given by

mH(Σ) =

(
|Σ|
16π

)(
1− 1

16π

∫
Σ
H2 dΣ

)
,

where |Σ| is the area of Σ. Assuming non-degeneracy condition (B), this
immediately implies that the Bartnik mass is bounded below by the Hawking
mass. It is important to note that the proof of this relationship between
the Hawking mass and ADM mass (therefore also Bartnik mass) heavily
relies on the dimension being 3, as it employs the Gauss–Bonnet theorem
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on hypersurfaces. We are now in a position to relate the Bartnik mass to
the properties (I) – (V) given in the introduction.
(I) Positivity.

Since the Bartnik mass is defined via the ADM mass, which satisfies
the positive mass theorem, every admissible extension in the sense discussed
above must have non-negative mass if the Bartnik data comes from a domain
in an asymptotically flat initial data set satisfying the dominant energy
condition. This property is satisfied for the most commonly discussed quasi-
local mass definitions with one notable exception. The Hawking mass, which
is straightforward to calculate and an incredible tool in geometric analysis,
fails this condition spectacularly for surfaces that are far from round spheres.
(II) Compatibility with the ADM mass.

This was established in the time-symmetric case for the Bartnik mass by
Huisken and Ilmanen [45], as a consequence of the inequality they obtained
between the Hawking mass and the Bartnik mass, mentioned above. The
idea is that for any given exhaustion {Ωi} of a manifold (M,γ), for suffi-
ciently large i there is a sequence of spheres Si ⊂ Ωi with the Hawking mass
of Si converging to the ADM mass. Assuming non-degeneracy condition (B)
to ensure that the Bartnik mass is bounded below by the Hawking mass and
above by the ADM mass, the conclusion follows. Although the relationship
between the Hawking mass and the ADM mass is only known in dimension
3, a lower bound for the ADM mass due to Miao and the author [58] (see
Theorem 7.1 below) can be used in place of the Hawking mass to establish
the large sphere limit in asymptotically Schwarzschild manifolds in dimen-
sions 4 ≤ n ≤ 7, following similar arguments to those used by Jauregui in
[47]. The question remains open outside of time-symmetry.
(III) Monotonicity.

This is almost in some sense baked into the definition of the Bartnik
mass for free, since if Ω1 ⊂ Ω2 ⊂ M then every extension of Ω2 gives an
extension of Ω1. However, there is a subtle problem here coming from the
non-degeneracy condition. It can be seen from the definition that in the
time-symmetric case, and with non-degeneracy condition (B), then we do
have monotonicity under the assumption that Ω1 is outer-minimising in Ω2.
However, for non-degeneracy condition (A), and outside of time-symmetry,
this remains a subtle issue to be considered.
(IV) Small sphere limit.

There is a good expectation for what quasi-local mass should recover in
the limit when calculated on small spheres, such as to highest order recover-
ing the energy density of any matter fields. While there are some subtleties
surrounding how to define this small sphere limit, for our purposes we will
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mean the limit of the quasi-local mass computed on geodesic spheres Sr in

an initial data set, of radius r as r tends to zero. We will again only discuss

the time-symmetric case, as there are no small sphere results for the Bart-

nik mass in the more general case. It is quite standard that one expects the

small sphere limit of quasi-local mass to give an expression like

mQL(Sr) =
4

3
πr3T00 +O(r5) =

R

12
r3 +O(r5),

where T00 = R
16π is the local energy density of the matter fields and R is

the scalar curvature of the metric. The O(r5) comes from the Bel–Robinson

Tensor, which originates from an attempt to construct a local stress-energy

density for the gravitational field analogously to the stress-energy tensor of

electromagnetism [16]. Most of the quasi-local mass definitions considered in

the literature successfully recover the matter energy density with the r3 term

(see, for example, [35, 39, 70]), however there is less certainty surrounding

the exact form of the O(r5) term and there appears to be some disagreement

in the literature on this. Most definitions do recover something related to

the Bel–Robinson tensor, however this term appears to be more sensitive to

how the limit is taken.

In the case considered here, the Bartnik mass in time-symmetry, Wiygul

was the first to examine this limit [74]. Using the small sphere limit of

the Hawking mass [35, 39] as a lower bound for the Bartnik mass and by

constructing static extensions with controlled mass for an upper bound, he

obtains

mB(Sr) =
R

12
r3 +O(r4).

Note that Wiygul considers non-degeneracy condition (B) and takes the

mass to be m2, however it appears that the non-degeneracy condition could

easily be replaced by a strictly outer-minimising condition so that Jauregui’s

work on the equivalence of definitions would then apply here (Theorem 3.1).

In a subsequent paper Wiygul [75] improved the upper bound to better

control the higher order terms, which combined with a lower bound from

the known small sphere limit on the Hawking mass gives(
1

120
ΔR− R2

144

)
r5 +O(r6) ≤ mB(Sr)−

R

12
r3

≤
(

1

120
ΔR− 5R2

432
+

1

72
|Ric|2

)
r5O(r6),

(9)
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where Ric is the Ricci curvature. Harvie and Wang [37] have since confirmed
this upper bound using different techniques. Since the upper bound comes
from a static extension, which one expects to realise the Bartnik mass in
some generality (see Section 5), is seems likely that the upper bound from (9)
is in fact an equality. In fact, it also seems reasonable that the small sphere
limit for the Hawking mass could in fact agree with this upper bound when
a different limiting process is used.

The Hawking mass lower bound again presents an issue for generalising
this to higher dimensions, however it is likely that the analogous inequality
obtained in [58] can again be used in place of the Hawking mass lower bound,
under certain hypotheses on the point around which the spheres are centred.
(V) Rigidity.

In the time-symmetric case, this property also follows from the work
of Huisken and Ilmanen [45], both relating the Hawking mass to the ADM
mass and directly making use of inverse mean curvature flow. As above, this
requires that one uses non-degeneracy condition (B) in the definition. In
particular, Huisken and Ilmanen show that if some domain Ω contains any
point x where the manifold is not flat, there exists an inverse mean curvature
flow from x out to infinity such that the Hawking mass is strictly positive
along the flow. Then by showing there exists a leaf of the flow close to x
that is outer-minimising, positivity of the mass in any extension follows.

Interestingly, the result is not that the domain Ω must be a domain in
Euclidean space, only that it is locally isometric to it. It turns out, by the
work of Anderson and Jauregui [8], this can be shown to be the best one can
hope for. Specifically, they show the existence of a domain with zero Bartnik
mass such that it cannot be isometrically embedded in R

3. Note that by the
rigidity of the positive mass theorem (with corners [59]), this implies that
the infimum is not realised by any admissible extension. We will revisit this
point below.

5. Stationary and static extensions

Although the Bartnik mass seems impossible to compute in general, there is
some hope that this will not always be the case. In particular, if we knew the
mass was realised by a particular extension that can be uniquely determined
from the boundary data, and it’s mass computed from there, we would be
able to compute the Bartnik mass directly.

In this direction, Bartnik conjectured [13] that, at least under reason-
able hypotheses, that the Bartnik mass is realised as the ADM mass of a
stationary extension to the domain/Bartnik data. That is, initial data that
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generates a spacetime with a Killing field that is timelike at infinity. Again we
begin with the time-symmetric case, which is more well-understood. There
the conjecture is that the metric extension be static rather than stationary,
which one can formulate at the initial data level as follows. An asymptot-
ically flat Riemannian manifold (M,γ) is said to be static if there exists a
positive solution N to the system

ΔN = 0

∇i∇jN = NRic(γ)ij
(10)

on (M,γ). In this case, we say N is a static potential. Note that if a solution
N does vanish somewhere, then the zero set is a totally geodesic hypersurface
([29, Prop. 2.6]). Additionally, it is often required that N be asymptotically
constant and scaled to equal 1 at infinity for physical reasons. Note that
by work of Beig and Chruściel [15] (see also, Miao and Tam [62, Prop.
3.1]) a bounded static potential on an asymptotically flat manifold is always
asymptotically constant.

Partially due to the subtleties of different mass definitions, and partially
because it is unclear what conditions the conjecture should require, we avoid
stating the conjecture here in a more precise form and simply summarise
some partial results that are known. In fact, The most optimistic version of
this conjecture is already known to be false by the work of Anderson and
Jauregui, mentioned in the preceding section. There, they demonstrate the
existence of domains with zero Bartnik mass where the infimum is not re-
alised [8] (see also the very recent work on this by Anderson [7]). In light of
this example it seems reasonable to believe one could construct similar ex-
amples of domains with non-zero Bartnik mass coming from non-embedded
hypersurfaces in static manifolds, however to the best of the author’s knowl-
edge this remains a problem to be checked.

5.1. Static metrics as mass minimisers

In the time-symmetric case, where the conjecture is that the mass be min-
imised by a static metric, the problem is quite well understood and closely
related to scalar curvature deformation. To see this, recall the linearised
scalar curvature given by (2). One can check that, on an asymptotically flat
manifold, (10) is equivalent to the equation DγR

∗(N) = 0, where DγR
∗ is

the formal adjoint of DγR. The implication (10) =⇒ DγR
∗(N) = 0 is

straightforward to check, however the other implication first requires show-
ing that DγR

∗(N) = 0 implies that R must be constant [36, Theorem 1]
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(see also [29, Proposition 2.3]), then asymptotic flatness implies that con-
stant must be zero. It was shown by Corvino [29] that an asymptotically
flat manifold that is not static can be deformed locally increasing scalar
curvature which after a conformal change to bring it back down leads to
a decrease in the ADM mass. Later he showed that this can be done on a
manifold with boundary while preserving a neighbourhood of the boundary
[30], which therefore proves that an admissible asymptotically flat extension
that is not static can always have its mass reduced by a small amount. This
was also established independently and by different methods by Anderson
and Jauregui [8]. The precise statement given by Corvino is the following.

Theorem 5.1. Suppose (M,γ) is a smooth connected Riemannian n-
manifold with compact boundary Σ = ∂M , and the scalar curvature R(γ) ∈
L1(M) is non-negative. Further suppose DγR

∗ has trivial kernel on M .
Then there is an ε0 > 0, an open set Ω containing Σ, and a family γε,

with ε ∈ (0, ε0), of asymptotically flat metrics on M satisfying:

• γε = γ on Ω,
• R(γε) = R(γ),
• as ε → 0, γε converges γ in Ck on compact subsets (for any positive
integer k), and

• the ADM mass of γε is strictly less than the ADM mass of γ.

Note that this result holds in all dimensions n ≥ 3. As noted by Anderson
and Jauregui [8], this in itself is not quite sufficient to prove that a mass
minimising extension must be static, if it exists. This is because one must
take care to ensure the non-degeneracy condition is preserved. However, if
one assumes a non-degeneracy condition that is stable to perturbations –
for example, the strict version of condition (B) discussed above – then this
suffices to prove that mass-minimising extensions must be static.

As mentioned above, independently of Corvino’s work, Anderson and
Jauregui [8] established this by other methods. Essentially they completed
the approach put forward initially by Bartnik [14], which equates critical
points of the ADM mass along a manifold of scalar flat metrics with static
solutions (see also [54, 56]). Morally the argument is a Lagrange multipliers
argument based on the functional 16πmADM−

∫
M NR(γ) dVγ , whereN plays

the role of a Lagrange multiplier yielding a static potential. They prove that
an extension of given Bartnik data (Σ, g,H) that is a critical point of the
ADM mass, over a space of admissible extensions modelled on weighted
Hölder spaces, must be static. Furthermore, that the converse is true. In
higher dimensions, some work in this direction was recently carried out by
Delay [33].
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5.2. Stationary metrics as mass minimisers

More recently it has been shown that both of the approaches mentioned
above can be adapted to prove that outside of time-symmetry, a mass-
minimising vacuum extension must be stationary. To better understand
this, we must reformulate the constraint map in terms of the momentum
πij = Kij − trγ(K)γij . That is, we consider the map

Φ̂(γ, π) =

[
Φ0(γ,K)
Φi(γ,K)

]
.

It is now well-known that vacuum initial data (γ, π) for which there exists
a non-trivial solution (N,X i) to

(11) D(γ,π)Φ̂
∗(N,X i) = 0

generates a stationary solution to the Einstein equations [64]. Corvino showed
[31], analogous to the time-symmetric case, that if (11) has no non-trivial
solutions then the mass of an extension can be perturbed smaller. That is,
again assuming the non-degeneracy condition is stable to perturbations, a
mass-minimising extension must admit a non-trivial solution to (11). This
follows from his joint work with Huang [32] where they show that the non-
existence of solutions to (11) allows for local deformations of the initial data
so that the dominant energy condition is strictly satisfied in a region anal-
ogous to Corvino’s earlier work on scalar curvature deformation [29]. Once
strictness in the dominant energy condition is achieved, this is used to push
the mass down by a small amount.

Independently, An [3] established the same result using a similar strat-
egy to Anderson and Jauregui in the time-symmetric case. Namely that if
the Bartnik mass is realised by an admissible vacuum extension then that
extension must be stationary.

Remark 5.1. In this case, there is a subtlety that is easy to overlook.
Namely the appearance of the word “vacuum” in the above discussion. In
the time-symmetric case, the existence of a non-trivial solution to (10) im-
plies vanishing scalar curvature, that is, vacuum. For non-trivial solutions
to (11), no such result is available. However, recently Huang and Lee [42]
proved that an extension realising the Bartnik mass must satisfy several re-
lated properties. In particular, it corresponds to an initial data slice of a null
dust spacetime that admits a global Killing field.
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5.3. Existence and uniqueness of static and stationary extensions

Given that the Bartnik mass – if realised by an admissible extension – must

be static (resp. stationary), it is important to understand when such static

(resp. stationary) extensions exist, and if they are unique. An important

feature of the boundary value definition of Bartnik mass is that is that

the problem of existence and uniqueness of static (resp. stationary) exten-

sions becomes a boundary value problem. That is, in the time-symmetric

case, we can view (10) as a boundary value problem for (γ,N) on some

manifold M , where the Bartnik data (Σ, g,H) provides the boundary condi-

tions, and g is an asymptotically flat metric inducing g and H on ∂M = Σ.

Outside of time symmetry, the problem would then be viewing (11) as a

boundary value problem for (γ,K,N,X) where the spacetime Bartnik data

(Σ, g,H, ω⊥, trΣK) is prescribed. One then would like to know, when are

these boundary value problems actually well-posed? We first discuss the

time-symmetric case. Work of Miao [60] shows the existence of static ex-

tensions for Bartnik data sufficiently close to that of a sphere in R
3 under

an additional symmetry assumption. Anderson and Khuri [9] later proved

that the boundary value problem is elliptic and of Fredholm index zero.

Furthermore, Anderson [5] proved existence and uniqueness of static exten-

sions for Bartnik data close to that of the round sphere in R
3 without the

symmetry assumption of Miao. More recently, An and Huang [4] proved

existence and local uniqueness for the Bartnik data close to that of more

general data coming from R
3. The precise statement of the result requires

some additional terminology so the reader is directed to [4] for more details.

Uniqueness of static extensions to round CMC data under an additional

strict stability-type condition was very recently addressed by Harvie and

Wang [38]. Outside of time-symmetry, as usual quite little is known. How-

ever, recent work of An [2] has established ellipticity of the boundary value

problem.

The reader is directed to the survey of recent progress on the Bartnik

mass given by Anderson [6], wherein this approach is discussed in more

detail.

6. Estimates and constructions of extensions

Under non-degeneracy condition (B), the inequality between the Hawking

mass and the Bartnik mass is the main lower bound available. Furthermore,

for round spheres in R
3 or Schwarzschild manifolds, the Hawking mass is
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equal to the ADMmass, so it therefore is also an upper bound for the Bartnik
mass (by virtue of the fact that these provide admissible extensions).

On the other hand, as the Hawking mass is negative for surfaces in
R
3 that are not round – and more negative the further from round the

surface is – one expects this inequality to be strict in general. Once again
in higher dimensions where the relationship between the Hawking mass and
Bartnik mass is not available, the inequality established in [58] can be used
instead to conclude equality of the Hawking and Bartnik mass for spheres
in Schwarzschild manifolds.

Since the Bartnik mass is taken to be the infimum of the ADM mass over
a space of asymptotically flat extensions, one can estimate the Bartnik mass
from above by simply constructing one such extension with known ADM
mass. To this end, Mantoulidis and Schoen [52] constructed extensions of
Bartnik data corresponding to stable minimal surfaces, whose mass is arbi-
trarily close to the lower bound given by the Riemannian Penrose inequality.
Their result is stated below including a slight generalisation due to Chau
and Martens [23], who relax the hypothesis on the eigenvalue from strict
positivity to non-negativity.

Theorem 6.1 (Mantoulidis–Schoen, Chau–Martens). Let g be a metric on
the 2-sphere S

2 such that the first eigenvalue of −Δg+K(g) is non-negative,
where K(g) is the Gauss curvature of g. Then for any ε > 0 there exists an
asymptotically flat manifold (M,γ) with minimal surface boundary isometric
to (S2, g) and ADM mass m = mADM (g) <

(
A
16π

)
+ε, where A is the area of

(S2, g). Furthermore, (M,γ) is foliated by mean convex spheres and isometric
to a mass m Schwarzschild manifold outside a compact set.

Dimension plays a role here in two ways. First, the lower bound from the
Riemannian Penrose inequality is only established up to dimension 7. More
seriously though, the construction requires a path of metrics on a sphere
connecting the given metric to a round metric, satisfying certain proper-
ties. And while such a path is always possible to construct on 2 dimensional
spheres (for use in constructing 3-dimensional extensions), in higher dimen-
sions this does not appear to be the case. This higher dimensional version
was considered explicitly by Cabrera Pacheco and Miao [22], who give details
on when this construction can be adapted to higher dimensions.

For Bartnik data with non-zero mean curvature, extensions have also
been constructed to provide upper bounds on the Bartnik mass. There are
essentially two different approaches that have been used recently to con-
struct such extensions. One is an adaptation of the Mantoulidis and Schoen
work mentioned above, while the other employs Ricci flow to construct the
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extensions. As all of the estimates are similar in qualitative properties, we
avoid stating each of them precisely and instead refer the reader to relevant
references. The Ricci flow approach was used by Lin and Sormani [49], while
the approach following [52] was first used by Cabrera Pacheco, Cederbaum,
Miao and the author [21]. The latter was also refined by several authors
[24, 61, 63] (see [19] for an overview and survey of the different applications
of this technique). In both approaches, the Bartnik data was assumed to
have constant mean curvature (CMC) and the upper bound approaches the
Hawking mass as the Bartnik data becomes closer to round in some sense.
Both approaches also share the unfortunate feature that the upper bounds
are not explicitly computable from the Bartnik data itself – it remains an
interesting problem to obtain more explicit upper bounds on the Bartnik
mass. Note that when the definitions m2 and m3 of Bartnik mass are indeed
equivalent (see Section 3.5), estimates for CMC Bartnik data provide esti-
mates for non-CMC Bartnik data simply by constructing CMC extensions
of (Σ, HCMC) with HCMC = minΣ(H) for non-constant H.

It should be remarked that an early approach to constructing admissible
extensions for the Bartnik mass is the quasi-spherical construction due to
Bartnik himself [12]. This construction is the basis for the later work of
Shi and Tam [69] establishing the positivity of the Brown–York mass. In
fact, Shi and Tam construct asymptotically flat extensions with prescribed
Bartnik data on the boundary and prove that the Brown–York quasi-local
mass is bounded below by the ADM mass of the extension. From this, it
follows that the Brown–York mass provides an upper bound for the Bartnik
mass.

7. Related quasi-local mass quantities

7.1. Bray’s inner mass

In [17] (see also [18]), Bray remarks that the Riemannian Penrose inequal-
ity suggests a new definition of quasi-local mass in a very similar spirit to
the Bartnik mass. In the time-symmetric picture, the Bartnik–Bray inner
mass of given Bartnik data (Σ, g,H) is defined as follows. Consider a set of
admissible fill-ins, which we take to be asymptotically flat manifolds with
non-negative scalar curvature and boundary isometric to (Σ, g) with outward
mean curvature H. Note, that H taken to be the outward mean curvature
– instead of the mean curvature in the direction of the asymptotic end – is
the reason this is a fill-in, rather than an extension. The inner mass minner

of given Bartnik data is then taken to be the supremum of the quantity
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1
2(

A
4π )

1/2 over this space of admissible fill-ins, where A is area of the surface
of least area in the fill-in that is homologous to Σ. Outside of time-symmetry,
the definition is similar, however we omit a precise definition here, as it does
not appear to have been examined in the literature in any detail.

When the standard time-symmetric Bartnik mass is defined with non-
degeneracy condition (B), then we have from the Riemannian Penrose in-
equality that

(12) minner(Σ) ≤ mB(Σ).

For round spheres in a Schwarzschild manifold, equality in (12) holds where
both quantities are equal to the ADM mass of the Schwarzschild manifold.
One can also obtain a strict inequality in (12) by taking Bartnik data cor-
responding to a closed surface Σ in a Schwarzschild manifold that does not
enclose the horizon. In this case, there cannot exist a fill-in with another
asymptotically flat end as this would violate the Riemannian Penrose in-
equality, so minner = 0. On the other hand, the mB > 0 because by [45]
if it were zero the interior must be locally flat, and of course an m 
= 0
Schwarzschild manifold is not. The reader is directed to Jauregui’s work on
fill-ins [46] for some discussion of the inner mass in relation to the construc-
tion of fill-ins.

For essentially the same reason that an extension realising the Bartnik
mass must be stationary (or static in the time-symmetric case), a fill-in
realising the inner mass also must be stationary (or static, respectively). This
follows from the work of Chruściel, Isenberg, and Pollack [28, Theorem 5.1],
who therein attributed the observation to Bartnik.

In the same way that the Bartnik mass can be estimated from above
by constructing examples of asymptotically flat extensions with controlled
mass, the inner mass can be estimated by below by constructing appropriate
fill-ins. Motivated by this, Miao and the author proved a “Penrose-like” like
equality by way of first constructing such a fill-in [58]. Although the fill-ins
constructed there contain a minimal surface boundary rather than another
asymptotically flat end, such an end can be easily constructed by a reflection,
giving the following lower bound on the inner mass.

Theorem 7.1. Let (Σ, g,H) be given Bartnik data satisfying 4minΣKg >
maxΣH2, where Kg is the Gauss curvature of (Σ, g). Then

(13) minner ≥
1

2

(
|Σ|
4π

) 1

2
(
1− maxΣH2

4minΣKg

)
,

where |Σ| is the area of Σ.
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Although we state the result in dimension 3 here, this and another closely
related estimate was established for dimensions up to and included 7.

Remark 7.1. Sometimes in the literature the definition of the inner mass
the definition simply asks that the fill-ins be manifolds with a second bound-
ary component corresponding to a minimal surface, and ask that this be the
only closed minimal surface in the fill-in. Then take A to be the area of this
minimal surface boundary component, with the same reflection as above in
mind.

It was noted by Wang [71] that this definition is essentially the same
as the definition of “outer entropy” that appears in the AdS/CFT litera-
ture. Although in this case, one would consider an asymptotically hyperbolic
analogue of the quantity (an analogue of Theorem 7.1 for this case is given
in [57]).

7.2. Asymptotically hyperbolic analogue

When the Einstein equations include a cosmological constant Λ, the Hamil-
tonian constraint is simply augmented to

Φo(γ,K) = 16πρ+ 2Λ,

and the model initial data for isolated systems is hyperbolic space. In this
setting, one considers asymptotically hyperbolic manifolds instead of asymp-
totically flat manifolds, where there exists another appropriate notion of to-
tal mass in place of the ADM mass [27, 72]. It should be remarked that the
mass of such manifolds is somewhat more subtle than the ADM mass, so for
the save of exposition we avoid giving a precise definition here. Nevertheless,
one can define a notion of mass and then can define a Bartnik mass analo-
gously as the usual definition. That is, the Bartnik mass of a given domain
or Bartnik data is taken as the infimum of a hyperbolic total mass over a set
of admissible asymptotically hyperbolic extensions. Although the definition
is a natural one, it has only recently been considered in the literature.

Some of the known results about the usual Bartnik mass have recently
been established for this asymptotically hyperbolic analogue, and it is likely
that many other results also have natural analogues to be explored. The
reader is directed to [20, 40, 41, 53, 63] for some results on this quantity.

7.3. A mass for the Einstein–Maxwell system

Many problems pertaining to mass in general relativity have also been stud-
ied in the coupled Einstein–Maxwell system, which includes electromagnetic
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fields additionally. In this case initial data is supplemented with vector fields

E and B, representing the electric and magnetic fields, and the constraint
equations are supplemented accordingly, including the addition of the Gauss

constraint. We avoid too much of a digression into the Einstein–Maxwell sys-
tem, however make a few remarks in the case of the Bartnik mass in this

case.

Given a domain Ω (or appropriate Bartnik data) in an initial data set
for the Einstein–Maxwell equations, one can approach the Bartnik mass in

two ways. On one hand, the electromagnetic fields should play no role in
the construction, so one can still define the Bartnik mass in the usual way.

On the other hand, doing so would mean introducing discontinuities in the
electric and magnetic fields that correspond to initial data containing a thin

massless shell of electric (or magnetic) charge, which cancel out any electro-

magnetic fields (and therefore electromagnetic field energy) in the extension.
With an alternate “charged Bartnik mass” in mind, Alaee, Cabrera Pacheco

and Cederbaum [1] study the problem of constructing extensions with con-
trolled mass similar to [52, 21]. A precise formulation of such a charged

Bartnik mass was not required there, however a straightforward definition
would follow along the lines of Section 3.2 smoothing out the electromagnetic

contributions in such a way to avoid these charged shells – see, for example,
[25], where another “charged” quasi-local mass was considered. Although

it is not clear that such charged quasi-local mass quantities are of physical
significance, it was shown in [25] that such a charged quasi-local mass is the

correct quantity for a quasi-local Penrose inequality and therefore at least
these quantities are interesting from a geometric perspective.

8. Open problems

Throughout this article, several open questions have been mentioned. We

conclude by presenting a selection of them here.

8.1. Equivalence of definitions

As mentioned above, it has been established in the time-symmetric case

that under a suitable non-degeneracy condition, the boundary value formu-

lation of the Bartnik mass is equivalent to the definition involving smooth
extensions. However, it remains to be understood if (or how) the different

non-degeneracy conditions alter the definition. In particular, is the outer-
minimising condition equivalent to the strictly outer-minimising condition?
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And are these equivalent to the condition that the extensions contain no
closed minimal surfaces enclosing the Bartnik data?

In addition to this, it remains entirely open to understand when and
if any of the subtly different definitions agree with each other outside of
time-symmetry. It would be of particular value to determine that – at least
under some good choice of non-degeneracy condition – the boundary data
formulation of Bartnik mass agrees with the smooth extension formulation
outside of time-symmetry.

8.2. Estimates outside of time-symmetry

Following on from above, there is still a considerable amount to understand
about the Bartnik mass outside of time-symmetry. No attempt is made to
list all of open problems outside of time-symmetry, however one direction
that seem interesting is to establish some estimates for the Bartnik mass in
this case. For example:

• Is there an analogue of the lower bound given by the Hawking mass in
time-symmetry? It seems natural to expect that the spacetime Hawk-
ing mass should give a similar lower bound, however in light of the fact
that Penrose inequality outside of time-symmetry remains an open
problem, such a lower bound on the Bartnik mass feels currently far
out of reach. Nevertheless, even a crude lower bound would be valu-
able.

• Related to the above, perhaps more optimistically one could hope to
find such a lower bound in the case of Bartnik data coming from sur-
faces far out in the asymptotic end of an asymptotically flat initial
data set. Such an estimate would be valuable in proving the large
sphere limit of the Bartnik mass outside of time-symmetry – that is,
compatibility with the ADM mass – which surprisingly remains open.

• Can the construction of Mantoulidis and Schoen [52] giving an up-
per bound for the Bartnik mass of a horizon be extended outside of
time-symmetry? That is, given Bartnik data corresponding to a gen-
eral apparent horizon, can an extension be constructed with ADM
mass arbitrarily close to the conjectured lower bound coming from the
Riemannian Penrose inequality?

• Following [21], it should be possible to construct some crude estimates
for the Bartnik mass outside of time-symmetry. However, at the time
of writing this no such estimates have been obtained. It would be
interesting to find extensions that give estimates for the Bartnik mass
tending to the expected value in limiting cases.
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8.3. Counterexamples to realising the infimum

In [8], an example of a domain whose Bartnik mass is not realised by any
admissible extension was given. This example has zero Bartnik mass, so one
may naturally wonder if this is a unique property of the zero mass case –
that is, an exceptional case – or if similar counterexamples exist when the
mass is non-zero. It does not seem unreasonable that a similar construction
could be performed for deformations of domains in a Schwarzschild manifold
to construct domains with Bartnik mass of any positive m.

8.4. Explicit upper bounds

As discussed in Section 6 the known upper bounds for the Bartnik mass
cannot currently be explicitly computed in terms of the Bartnik data. It
would be useful to obtain upper bounds for the Bartnik mass that are ex-
plicitly given in terms of the Bartnik data and reduce to the known values
for round spheres and minimal surfaces. The estimates outlined in Section 6
all involve quantities that are defined abstractly, so one method to obtain
explicit estimates would be to estimate these abstract quantities concretely.
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