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The Bartnik quasi-local mass conjectures

Michael T. Anderson

In Memory of Robert Bartnik

This paper is a tribute to Robert Bartnik and his work and con-
jectures on quasi-local mass. We present a framework in which
to clearly analyse Bartnik’s static vacuum extension conjecture.
While we prove that this conjecture is not true in general, it re-
mains a fundamental open problem to understand the realm of its
validity.
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1. Introduction

This paper is a tribute to Robert Bartnik and his work on quasi-local mass

in General Relativity. I met Robert in person only twice, at the Newton

Institute in 2005 and then a few years later in Oberwolfach and my personal

interactions with him were sadly somewhat limited. Robert’s conjectures

on the realization of the quasi-local mass, related to the structure of the

space of static vacuum solutions of the Einstein equations have had a pro-

found impact on a significant portion of my research over the last 20 years.

Personally, I was not trained early in GR and came to the subject rather in-

directly through a study of the geometrization problem for 3-manifolds (the

Thurston conjecture). In that approach to geometrization, a surprising con-

nection arose between the degeneration of metrics of controlled scalar curva-

ture and the structure of static vacuum Einstein metrics in 3-dimensions.1

arXiv: 2308.01202
1The singularity models of such degeneration are static vacuum Einstein metrics,

much like the singularity models of Ricci flow are Ricci solitons. These two equations
are superficially somewhat similar and it would be of interest to understand any
deeper relations between them.
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I hope this paper may contribute in a small way to a deeper understanding

and appreciation of the Bartnik quasi-local mass conjectures.

The Bartnik mass of a bounded domain Ω with smooth boundary ∂Ω is

a very natural and direct localization of the global ADM mass mADM . The

original definition of Bartnik is the following, cf. [16], [17]. For simplicity, we

restrict here to the time-symmetric or Riemannian case where K = 0.2 Let

Ω be a 3-dimensional domain with smooth connected boundary ∂Ω (we will

usually assume ∂Ω � S2) and let gΩ be a smooth Riemannian metric on Ω,

smooth up to ∂Ω, with non-negative scalar curvature, sgΩ ≥ 0. Let (M, g)

be an asymptotically flat (AF) extension of (Ω, gΩ); thus ∂M = ∂Ω and

the union Ω∪M is a smooth, complete AF Riemannian manifold with non-

negative and integrable scalar curvature. Assume in addition that (M, g)

has no horizons, i.e. (M, g) has no minimal surfaces surrounding ∂M . Let

PΩ denote the set of such AF extensions (M, g). The Bartnik mass of the

smooth bounded domain (Ω, gΩ) is then defined by

(1.1) mB(Ω, gΩ) = inf{mADM (M, g) : (M, g) ∈ PΩ},

where the infimum is taken over all (M, g) ∈ PΩ.

Bartnik observed in [16], [17] that an AF extension (M, g) of ∂Ω with

M̂ = Ω ∪ M which realizes the infimum in (1.1) will in general only be

Lipschitz along the “seam” ∂Ω = ∂M . By a simple and elegant argument

using the 2nd variational formula for area, he showed that a minimizer should

obey the boundary conditions

(1.2) γ∂Ω = γ∂M , H∂Ω = H∂M ,

where γ is the induced metric on the boundary and H is the mean curvature

of ∂M with respect to the unit normal pointing into M , both with respect to

gΩ and g respectively. The relation (1.2) implies that the scalar curvature is

defined as a non-negative distribution across the seam ∂M = ∂Ω.3 Standard

minimal surface arguments show that if H∂M ≤ 0 then any extension (M, g)

has a horizon, so that it is common practice to assume

(1.3) H = H∂M > 0.

2The case of general initial data on Ω is considerably more difficult, cf. [2] for
recent progress.

3Actually this holds forH∂Ω ≥ H∂M and this condition is sometimes used instead
of (1.2), cf. [28].
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As discussed in more detail in §2, there are several further reasons why the
restriction (1.3) is essential. In the following, we will always assume (1.3),
unless explicitly noted otherwise.

The quasi-local data (γ,H) of Ω on ∂Ω = ∂M are now called Bartnik
boundary data. There are a number of modifications or variations of the
definition of the Bartnik mass mB; we refer to [28] and further references
therein for a careful and detailed discussion.

By general principles, it is to be expected that an extension (M, g) re-
alizing the infimum in (1.1) satisfies strong conditions. In [16], [17], Bartnik
presented a natural physical argument that extensions (M, g) realizing the
infimum in (1.1) should be solutions of the static vacuum Einstein equa-
tions. Briefly, any dynamical gravitational field carries energy and so mass
and so an extension of minimal mass should have no gravitational dynam-
ics, i.e. be time-independent. For similar reasons, a minimal-mass exten-
sion should have no mass coming from matter sources, and so be vacuum.
A time-independent vacuum solution which is time-symmetric (K = 0) is
static vacuum.

The static vacuum Einstein equations are the equations for a pair (g, u)
on M where u is a potential function (forming the lapse function of the
space-time M = I ×M) given by

(1.4) uRicg = D2u, Δu = 0,

where Ricg is the Ricci curvature, D2u is the Hessian of u and Δu is the
Laplacian of u, all with respect to g. These equations are equivalent to the
statement that the space-time metric

(1.5) gM = −u2dt2 + g

is Ricci-flat, i.e. a vacuum solution of the Einstein equations.4 It is important
both mathematically and physically to add the requirements that u > 0 in
M and u → 1 at infinity.

A clearer approach as to why the static vacuum equations (1.4) arise as
minimizers was suggested by Bartnik in [18], following a proposal by Brill-
Deser-Fadeev [20] regarding the positive mass theorem. Thus consider the
Regge-Teitelboim Hamiltonian (with zero shift) given by

(1.6) HRT = −
∫
M

usgdvg + 16πmADM ,

4This holds in both Lorentizian and Riemannian signature.



408 Michael T. Anderson

where sg = trgRicg is the scalar curvature. The first term corresponds to
the Einstein-Hilbert action in 4-dimensions (modulo divergence terms) while
the mass term is introduced to give a well-defined, and in particular differ-
entiable variational problem on the space of fields. The configuration space
of fields is here given by general AF static metrics as in (1.5), but not nec-
essarily vacuum, i.e. general pairs (g, u) with u > 0; the AF conditions
are described more precisely in §2. The Hamiltonian HRT is thus a smooth
function on such static pairs (g, u).

Let

C = {g : sg = 0}.
This is the vacuum constraint set (in the time-symmetric case K = 0). Let
C(γ,H) ⊂ C be the subset where the boundary data (γ,H) induced by g is
fixed. A necessary first step in the Bartnik program is to prove that C(γ,H)

is a smooth (Banach) manifold; this was proved to be the case in [13]. The
Hamiltonian HRT then restricts to be the smooth function

HRT = 16πmADM : C(γ,H) → R

on C(γ,H). Thus, critical points of the ADM mass on C(γ,H) are just the
critical points of HRT on C(γ,H). It is then straightforward to verify that
such critical points are exactly static vacuum Einstein metrics. Further, cf.
[13], one has u > 0 everywhere and u → 1 at infinity, at least for critical
points realizing the infimum of mADM on C(γ,H), i.e. the Bartnik mass.

There is a useful analogy, cf. [17], [19], [26], of the Bartnik mass with the
gravitational capacity of a body Ω ⊂ R

3 in Newtonian gravity, or a charged
body in electrostatics. Here one minimizes the Dirichlet energy,

(1.7) E(v) =

∫
M

|dv|2,

over M = R
3 \ Ω with boundary conditions v = 1 at ∂Ω and v → 0 at

infinity.5 (One could also set v′ = 1 − v with v′ → 1 at infinity). Classical
results show that the infimum of (1.7) is realized by a unique harmonic
function v0, Δv0 = 0 on M ; v0 represents the gravitational potential of the
single layer ∂Ω. The capacity of Ω, equal to the total mass or charge up to
a constant, is then given by

(1.8) E(Ω) = inf E(v) = −
∫
∂M

N(v0),

5In (1.7) and below the volume form will often be dropped from the notation
when its choice is obvious.
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where N is the unit normal into M at ∂M .
Partly based on the Newtonian analogy, Bartnik [16], [17], made the

bold conjecture that a minimizer (M, g) in (1.1) also always exists and is
unique.

Conjecture I (Bartnik Minimization Conjecture). For any given smooth
boundary data (γ,H), H > 0, of a domain Ω, ∂Ω � S2, the infimum in (1.1)
is realized by a unique (up to isometry) AF extension (M, g), i.e.

mADM (M, g) = mB.

Moreover, there is a positive potential function u > 0 on M � R
3 \ B with

u → 1 at infinity such that the triple (M, g, u) is a solution of the static
vacuum Einstein equations (1.4) with boundary data (γ,H).

The validity of this conjecture would ensure that the Bartnik mass is
well-behaved as a function of the boundary data (γ,H) coming from the
solid body (Ω, gΩ). For example, it would follow that the Bartnik mass is
a smooth function of the boundary data (γ,H); in fact the mass would be
effectively computable via the expression

mB =
1

4π

∫
∂M

N(u),

where (M, g, u) is the unique static vacuum extension of (γ,H). Let Con-
jecture I+ be the restriction of Conjecture I to boundary data (γ,H) which
are boundary data of a fill-in (Ω, gΩ) with sgΩ ≥ 0, cf. [16]. Only in this case
can one guarantee that mB ≥ 0 via the positive mass theorem.

If true, Conjecture I suggests the following conjecture [16], [17], which
thus serves as a test of the minimization conjecture but is also of independent
interest in geometric PDE theory.

Conjecture II (Bartnik Static Extension Conjecture). Given smooth bound-
ary data (γ,H), H > 0, on ∂M � S2, there exists a unique (up to isometry)
AF solution (M, g, u), M � R

3 \ B, u > 0, u → 1 at infinity, of the static
vacuum Einstein equations (1.4) which induces the data (γ,H) at ∂M .

As above, let Conjecture II+ denote the restriction of Conjecture II to
boundary data (γ,H) having a non-negative scalar curvature fill-in.

Conjecture II may be considered as a pure PDE problem: it concerns
the unique global solvability of a non-linear elliptic boundary value prob-
lem. Conjecture I (I+) does not logically imply Conjecture II (II+) since a
static vacuum solution may not minimize the Bartnik mass. Nevertheless, we
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expect that any counterexample to Conjecture I leads also to counterexam-

ples to Conjecture II. Of course counterexamples to existence in Conjecture

II are counterexamples to Conjecture I.

The static vacuum Einstein equations are seemingly among the simplest

set of geometric (diffeomorphism invariant) PDE for a general metric g, ei-

ther on a Lorentzian or Riemannian 4-manifold. In the Lorentzian or General

Relativity setting, the simplest vacuum Einstein solutions are static, i.e. time

independent with vanishing initial momentum and so have a hypersurface-

orthogonal time-like Killing field. Similarly, Einstein metrics on 4-manifolds

are of fundametal interest in Riemannian geometry and the existence of

a global non-vanishing Killing field reduces the Einstein PDE system to

the simpler system (1.4) on a 3-manifold M . While the equations (1.4) lie

at the crossroads or intersection of Lorentzian and Riemannian geometry,

gaining an understanding of the space of solutions and of Conjectures I

and II has remained very difficult. One could impose a further symmetry,

i.e. Killing field to simplify the problem further to 2 dimensions. This leads

to the class of axi-symmetric or Weyl solutions, discussed further in detail

in §4: however, even in this case, Conjectures I and II remain very challeng-

ing.

For Conjecture II, the source of these difficulties is of course the non-

linear nature of the PDE (1.4) and the boundary data (γ,H). This is also

a coupled system of PDE, adding significantly to the complexity. To gain

some general perspective, it is worth comparing the global existence and

uniqueness problem for static vacuum Einstein metrics with other natural

geometric problems. In fact, global existence and uniqueness for solutions

of nonlinear elliptic geometric PDE is rather rare and is much more the

exception than the rule. The list of examples is huge, so we mention only

the following illustrative examples:

Global existence and uniqueness:

• Kähler-Einstein metrics. Among the few situations where global ex-

istence and uniqueness hold, the most celebrated is Yau’s solution of the

Calabi problem for compact Kähler manifolds with c1 = 0 and the Aubin-

Yau theorem in the case c1 < 0, as well as the more recent work of Chen-

Donaldson-Sun in the more difficult positive case c1 > 0. These existence

proofs use a version of the continuity method, discussed briefly in §2.
• Weyl embedding problem. Any smooth metric of positive Gauss curva-

ture on S2 admits a smooth isometric embedding into R
3 as the boundary of

a convex body, unique up to rigid motion of R3. Again, the existence proof

of this result by Nirenberg uses the continuity method.
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Global existence, non-uniqueness:
• The Yamabe problem. Global existence was established by variational

methods through the combined work of Yamabe, Trudinger, Aubin and
Schoen. However, it is well-known that uniqueness, either of constant scalar
curvature metrics or of Yamabe minimizers in a conformal class, fails in
general.

• Minimal varieties. There is a large and very satisfactory theory for
existence of minimal varieties spanning a given boundary in an ambient
Riemannian manifold, using either parametric methods in low dimensions
(Plateau problem) or non-parametric methods (geometric measure theory)
in all dimensions. However, it is again well-known that uniqueness fails in
many situations.

Failure of global existence and uniqueness:
• Nirenberg problem. A very simple sounding problem is the Nirenberg

problem of determining the existence and uniqueness of metrics on S2 con-
formal to the round metric with prescribed Gauss curvature. Here, both
existence and uniqueness fail in general and the number of solutions de-
pends in a very complicated way on the structure of the Gauss curvature
function K : S2 → R.

• Vacuum Einstein constraint equations in GR. The main method of
solving these constraint equations is the conformal method of Lichnerowicz,
Choquet-Bruhat and York. Here one has full existence and uniqueness results
for constant mean curvature (CMC) data, but failure of both existence and
uniqueness for data far from CMC data.

One could easily go on and on; but the lesson is that non-linear geometric
problems usually have complicated global behavior.

We note that there is now also a large and growing literature of esti-
mates of the Bartnik mass mB(γ,H) from below and above in terms of the
boundary data (γ,H), as well as comparisons of mB with other notions of
quasi-local mass, such as the Hawking, Brown-York, or Wang-Yau masses.
These estimates and comparisons may be viewed as analogs of the exten-
sive and well-known estimates of the capacity of a domain Ω ⊂ R

3, or of
the first eigenvalue λ1 of a compact Riemannian manifold, in terms of other
geometric data.

However, the theory behind the capacity of a domain or of the first eigen-
value of the Laplacian is simple and easy to establish; they are realized by
a harmonic function or a first eigenfunction whose existence and uniqueness
is easy to establish, since the Laplacian is a single scalar, linear PDE. This
fundamental theory is still badly lacking for the definition of the Bartnik
mass and is an important motivation for Conjectures I and II. In particular,
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the Bartnik mass formally exists as a number, but one should understand
its structure and global behavior as a function of the boundary data (γ,H).

In accord with most of the examples discussed above, it turns out that
both Conjectures I and II (and their restricted versions I+ and II+) are false
in full generality. For example, we prove:

Theorem 1.1. There is no static vacuum Einstein metric (M, g, u) smooth
up to ∂M with boundary data (γ,H), where γ is any smooth metric on S2

for which the Gauss curvature Kγ is a Morse function on S2 and

0 < H < H0,

where H0 is a positive constant, sufficiently small depending on γ and an
upper bound for ||H||C∞ .

We refer to Theorem 3.5 below for a more precise statement. It is to
be expected that this non-existence result leads naturally to local non-
uniqueness for Conjecture II; this is discussed in detail in §3. Conjecture
I was previously proved to be false in certain (quite different) situations in
[13].

It remains then a fundamental challenge to identify conditions or restric-
tions on the boundary data (γ,H) which ensure the validity of the Bartnik
Conjectures.

A brief summary of the contents of this paper is as follows. In §2, we
discuss the basic framework in which to analyse Conjecture II and show that
the local structures involved are very well behaved. In §3, we turn to global
issues of existence and uniqueness and prove in particular Theorem 1.1. A
large class of relatively explicit examples of static vacuum Einstein metrics
are the Weyl metrics, discussed in detail in §4. Finally, in an Appendix, §5,
we prove a regularity result for (local) minimal surfaces in static vacuum
Einstein metrics needed for the proof of Theorem 3.5.

2. Local behavior

Let B be the set of Bartnik boundary data (γ,H) on S2 with H > 0 as
in (1.3). Let E be the set of isometry classes of static vacuum Einstein so-
lutions with H > 0 at the boundary ∂M .6 Thus E is the set of equivalence

6It is an open question whether E is connected or not. Thus E is understood to
be the component containing the standard flat exterior metric R

3 \ B3(1), with g
the Euclidean metric and u ≡ 1.
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classes of AF static vacuum Einstein metrics (M, g, u), modulo the equiva-

lence relation

(g1, u1) ∼ (g2, u2)

if there is a diffeomorphism ψ : M → M with ψ = Id on ∂M and ψ → Id at

infinity, (cf. (2.4) below), such that ψ∗g2 = ψ∗g1 and ψ∗u2 = u1. One has a

natural Bartnik boundary map

ΠB : E → B,(2.1)

(g, u) → (γ,H).

Thus the static extension Conjecture II is equivalent to the statement that

ΠB is a bijection. This means that the space of solutions (M, g, u) (up to

isometry) should be set-theoretically parametrized by its boundary data

(γ,H). However, it is natural to introduce topology at this point. Well-

posedness in PDE also typically assumes stability properties; small pertur-

bations of the data (boundary data in this situation, initial or initial +

boundary data in the case of parabolic or hyperbolic PDE) implies small

perturbations of the solution; this corresponds to continuity of the inverse

map Π−1
B in (2.1).

The set B of boundary data may be naturally topologized in several

ways. For convenience, we choose here the Hölder space topology,

B = Metm,α(S2)× Cm−1,α
+ (S2).

Here Metm,α(S2) is the space of Cm,α Riemannian metrics on S2 and

Cm−1,α
+ (S2) is the space of positive Cm−1,α functions on S2. The space B

has the structure of a Banach manifold (an open subset of a linear Banach

space)7.

Next, let Metm,α
δ (M) be the space of Cm,α Riemannian metrics g on

M � R
3 \ B which are asymptotically flat of order δ, where δ ∈ (12 , 1),

i.e. for r sufficiently large,

(2.2) |g − gEucl| ≤ cr−δ, |∂k+αg| ≤ cr−δ−k−α,

7In place of Cm,a, it is actually better to choose the so-called little Hölder spaces
cm,α, i.e. the closure of C∞ in the Cm,α Hölder norm, which has the structure
of a separable Banach space; however, this is not an essential distinction in the
discussion to follow.
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1 ≤ k ≤ m. Similarly, let Cm,α
+ (M) denote the space of positive potential

functions u on M which are asymptotically flat of order δ:

(2.3) |u− 1| ≤ cr−δ, |∂k+αu| ≤ cr−δ−k−α.

The pair (g, u) assemble to form the static or time-independent metric on
the 4-manifold M, as in (1.5). A Cm+1,α diffeomorphism ψ : M → M is AF
if

(2.4) |ψ − Id| ≤ cr−δ, |∂k+αψ| ≤ cr−δ−k−α,

for 1 ≤ k ≤ m+ 1.
The product Metm,α

δ (M) × Cm,α
+ (M) then also has the structure of a

Banach manifold. Let E ⊂ Metm,α
δ (M)×Cm,α

+ (M) be the subset of solutions
of the static vacuum Einstein equations (1.4) with H > 0 at ∂M . It is proved
in [14] that E is a smooth Banach submanifold of Metm,α

δ (M) × Cm,α
+ (M).

Moreover, the group Diffm+1,α
1 (M) of Cm+1,α AF diffeomorphisms of M

equal to the identity on the boundary ∂M and asymptotic to Id at infinity
as in (2.4), acts smoothly, freely and properly on E, with a smooth local
slice. Consequently, the quotient

(2.5) E = E/Diffm+1,α
1 (M),

representing isometry classes of solutions, is also a smooth Banach manifold.
In addition, the Bartnik boundary map ΠB in (2.1) is a smooth Fredholm

map, of Fredholm index 0, cf. again [14]. Thus the linearization or derivative
D(g,u)ΠB at any point (M, g, u) is a Fredholm map of Banach spaces. This
means that the linear map DΠB has closed range and finite dimensional
kernel and cokernel. In more detail, let K be the finite dimensional kernel of
DΠB at some point (M, g, u) ∈ E . The closed subspace K admits a closed
complement D,

T(g,u)E = D ⊕K,

and similarly the image, W = ImDΠB is a closed complemented subspace
of T(γ,H)B. Let C denote the finite dimensional complement. Then dimC =
dimK = k < ∞ since DΠB has Fredholm index 0. The restricted map

D(g,u)Π|D : D → W,

is an isomorphism.
If dimK = 0, then DΠB itself is an isomorphism and so the inverse

function theorem for Banach manifolds implies ΠB is a local diffeomorphism
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near (M, g, u). Suppose dimK = k > 0. Then the implicit function theorem
(also known as the constant rank theorem) for Banach manifolds states that
there is a local submanifold U of codimension k in E , with T(g,u)U = D and
a local submanifold V of codimension k in the boundary data space B, with
T(γ,H)V = W such that

(2.6) ΠB|U : U → V

is a diffeomorphism. Thus, near any given solution (M, g, u), one has local
existence (and local uniqueness) of solutions, parametrized by boundary
data (γ,H) in an open set of a local submanifold of codimension k in B.

We see then that the local structure of the space of solutions E and the
local behavior of the map ΠB relating solutions with boundary data are both
very well behaved. However, this structure of the mapping ΠB breaks down
at the locus H = 0 (minimal surface boundary) basically due to the black
hole uniqueness theorem. To see this, let Ē be the closure of E in the Cm,α

norm. This consists of static vacuum Einstein metrics (M, g, u) with H ≥ 0
and u ≥ 0 on ∂M .8 Similarly, let B̃ be the full space of boundary data,
without the restriction that H > 0. One still has the Bartnik boundary map

ΠB : Ē → B̃,(2.7)

(M, g, u) → (γ,H).

Proposition 2.1. Let (M, g, u) be an AF static vacuum Einstein metric
in Ē and let Σ be a minimal surface surrounding ∂M , (possibly Σ = ∂M).
Then Σ = ∂M and (M, g, u) is a Schwarzschild metric with u = 0 on the
horizon ∂M .

Proof. This is basically a consequence of the well-known black hole unique-
ness theorem [27], [35], [21] and its extension by an elegant argument of
Galloway [24]. We refer also to [31] for a different proof, (which relies how-
ever on the more difficult positive mass theorem).

To begin, without loss of generality, by standard minimal surface ar-
guments we may assume Σ is outer-minimizing, cf. (3.4) below, and so in
particular Σ is a stable minimal surface. By the 2nd variational formula for
area

(2.8)

∫
Σ
|df |2 − (|A|2 +Ric(N,N))f2 ≥ 0,

8It does not really make sense in this framework to consider metrics where “u <
0” somewhere.
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for all Lipschitz functions f with f ≥ 0; clearly (2.8) then also holds for all
Lipschitz functions f . By the static vacuum equations (1.4), we have

−Ric(N,N) = −u−1NN(u) = u−1ΔΣu,

since H = 0, cf. also the line preceding (5.3) in the Appendix. Choosing
f = u in (2.8) gives ∫

Σ
|du|2 + uΔΣu− u2|A|2 ≥ 0,

and so by the divergence theorem∫
Σ
u2|A|2 = 0.

Again, the static vacuum Einstein equations imply that A = 0 at any locus
where u = 0. Hence, it follows that

(2.9) A = 0,

on Σ. If also u = 0 on Σ, then the result follows by the black hole uniqueness
theorem, so assume u is not identically 0 on Σ. Since by the constraint
equation (5.1), (cf. the Appendix), −2Ric(N,N) = sγΣ

, (2.8) becomes∫
Σ
|df |2 +KΣf

2 ≥ 0.

Thus u is a lowest eigenfunction of the operator −Δ+KΣ and hence, (since
u is not identically 0), u > 0 on Σ.

Now consider the (so-called) optical metric ĝ = u−2g on (M, g) exterior
to Σ and the normal exponential map êxpΣ from Σ in the metric ĝ. It is
proved in [24] that one has the monotonicity formula

(2.10)
d

dt
(
H

u
) = −|A|2,

where d/dt is the ĝ-unit tangent to the flow lines of êxpΣ; all other metric
quantities in (2.10) are with respect to g. (The sign for H used here is
opposite to that in [24]). By (2.9), d

dt(
H
u ) = 0 at t = 0 and similarly d2

dt2 (
H
u ) =

0 at t = 0. Thus

(2.11)
d3

dt3
(
H

u
) = −2| d

dt
A|2.
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This corresponds to the 4th variational formula for area. By the outer-
minimizing property the left side of (2.11) must be non-negative when inte-
grated over Σ. Hence, it follows that

d

dt
A = 0,

at t = 0. By a standard computation, using the fact that A = 0,

d

dt
A = −D2u−RNu = 0,

where RN (X,Y ) = 〈R(N,X)Y,N〉. In 3 dimensions, one has −RN = Ric +
Ric(N,N)g, and so by the static vacuum equations (1.4), it follows that
Ric(N,N) = 0. In turn, by the Hamiltonian constraint (5.1), this gives
KΣ = 0, which implies ΔΣu = 0, cf. (5.3). Hence u = const on Σ. Also
N(u) = const on Σ by the divergence constraint (5.4). Thus the Cauchy data
for (M, g, u) at Σ are the trivial data (γ = flat, u = const, A = 0, N(u) =
const). It then follows from unique continuation, or more simply just an-
alyticity (static vacuum solutions with minimal boundary and u > 0 are
analytic up to the boundary), that (M, g) is flat and u is an affine function.
This again gives a contradiction; there are no compact minimal surfaces in
R
3.

Remark 2.2. Proposition 2.1 is stable in the following sense: if (M, g, u)
is a static vacuum Einstein metric with boundary data (γ,H) and H is
sufficiently small, and if the Cm,α norm, m ≥ 4, of (g, u) up to ∂M is
uniformly bounded, then (M, g, u) is close to a Schwarzschild metric gSch(m)
in Ē . The proof of this is the same as that of Proposition 2.1, by taking a
sequence of such metrics with boundary data (γi, Hi) → (γ, 0).

This statement will be significantly generalized in §3, cf. Theorem 3.5.

Proposition 2.1 implies

(2.12) (ΠB)
−1(Metm,α(S2), 0) = gSch,

i.e. the inverse image of infinite dimensional space Metm,α(S2)× {0} ⊂ B̃ is
the 1-dimensional curve of Schwarzschild metrics. The linearized version of
Proposition 2.1 implies that the image of DgSch

ΠB has infinite codimension

in T B̃ and so is not Fredholm. The Schwarzschild metrics lie at the boundary
or edge of the space E but the relation (2.12) shows this boundary is just a
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curve, not a hypersurface as one might expect. This indicates that the local

behavior of ΠB must change significantly on approach to the locus H = 0

away from round metrics; this will be explored and discussed in more detail

in §3.
Note also that the static vacuum equations (1.4) are no longer strictly

elliptic (in any gauge) at regions in the locus {u = 0}; instead the equations

become degenerate elliptic. Namely, the leading order symbol for (1.4) is

uΔgij = −2∂i∂ju, Δu = 0 in a harmonic gauge for g, which is strictly

elliptic only when u > 0. We note also that when H > 0 at the boundary

∂M , a static vacuum solution (M, g, u), C2 smooth up to ∂M cannot have

u = 0 at any point of M or ∂M . Namely, by (5.3)

Δu+HN(u) =
u

2
(|A|2 −H2 + sγ).

If u ≥ 0 on ∂M and u(p) = 0 at p ∈ ∂M , then at p, Δu ≥ 0 and N(u) > 0

by the Hopf maximum principle. However, the right side vanishes at p giving

a contradiction if H(p) > 0.

In sum, the map ΠB is Fredholm only where u > 0 up to the boundary,

and the requirement H > 0 at ∂M ensures this condition. All of the above

are reasons for enforcing (1.3).

Points (g, u) ∈ E whereDΠB is an isomorphism are called regular or non-

degenerate points of the map ΠB. Recall that boundary data (γ,H) ∈ B is

a regular value of ΠB if every point in the inverse image (ΠB)
−1(γ,H) is a

regular point of ΠB in E . By the Smale-Sard theorem [37], the regular values

are generic (of second Baire category) in the target B. (Note that, by fiat,

the empty set is a regular value). A point (g, u) is singular (for ΠB) if it is

not a regular point.

An important locus of singularities of a smooth index 0 Fredholm map

F : M → N between Banach manifolds is a fold locus. This is given by

a (local) hypersurface H ⊂ M (a codimension 1 submanifold) where H
consists of singular points of F with dimKerDF = 1 and the map F is 2-1 in

an open neighborhood ofH inM off ofH; compare with (2.6), (2.13) and the

discussion following (3.21) below. In the context of (Riemannian) Einstein

metrics, the most well-known example of such fold behavior is the Hawking-

Page phase transition for the AdS Schwarzschild metrics [25]. Similar fold

behavior holds for the the interior Dirichlet boundary map for Ricci-flat

Schwarzschild metrics [1]. Such behavior also occurs for the general interior

Bartnik boundary map [9], i.e. for the analog of (2.1) where M is replaced

by a compact (interior) manifold with boundary.
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It is natural to conjecture that generically, i.e. at least on an open dense
subset of E , the linearization DΠB is an isomorphism, i.e. the regular or non-
degenerate points in the domain E are generic. This issue has been widely
considered and analysed in many other geometric PDE (and ODE) problems.
For example, for geodesics in Riemannian manifolds, this is the statement
that the regular points of the exponential map expp are open and dense
in TpM ; generically, two points in M are not conjugate along a geodesic,
i.e. there are no Jacobi fields vanishing at the end points. Similarly for
minimal submanifolds, for a generic boundary in fixed Riemannian manifold,
(or for a generic Riemannian metric), minimal surfaces have no Jacobi fields
vanishing on the boundary.

In fact, based on an analogy with the monotonicity of the first eigenvalue
of the Laplacian on bounded domains with Dirichlet boundary condition
with respect to inclusion of domains, White [40] proved that the set of
minimal immersions with non-trivial Jacobi fields vanishing on the boundary
is of codimension 1 in the space of all minimal immersions (M,∂M) →
(N, gN ). This is of course a much stronger conclusion than generic. The
proof in [40] uses a variational approach, together with a normal interior
variation of the domain of the minimal surface and the Calderon unique
continuation theorem for elliptic systems. A similar result was proved for the
interior Bartnik problem in [9] using an analogous approach, but based on
a unique continuation property for Einstein metrics and their linearization;
this is considerably more difficult partly due to gauge issues.

Using essentially this same approach but with some modifications, An-
Huang [3], [4] have recently shown that the regular points of ΠB are indeed
generic in many cases.

As discussed above, while the spaces E , B and the boundary map ΠB are
well-behaved locally, this does not go very far towards resolving Conjecture
II, the static vacuum extension conjecture. Consider for instance a very
simple toy model. In place of E , consider the circle S = S1(r) ⊂ R

2 of radius
r about the origin. Similarly, replace B by the x-axis and the boundary ΠB

by the projection π to the x-axis:

π : S → R,(2.13)

π(x, y) = x.

For r small, the image of π in R is small; for most values in R there is no
solution. The space of boundary data realized by solutions increases as r
increases, but for any r < ∞, there is still a large space of boundary data
without solutions. Only in the limit r → ∞ where S1(r) becomes R and π
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becomes the identity (after suitable translations) does the situation improve.
In all cases of course, the local structures involved are very well-behaved.
There are only 2 singular or degenerate points, both fold points, at x = ±r;
all other points in S are regular.

In the example above, the degree of π is 0, so there are generically either 2
distinct solutions or no solutions. On the other hand, consider the following
simple modification. Let T be the graph of the function tan(x) over the
interval (−π

2 ,
π
2 ) and consider

π : T → R,(2.14)

π(x, y) = x.

Then either there is a unique solution y to π(x, y) = x or there are no
solutions. The degree of π here is not well-defined. This is because the map π
is no longer proper; the issue of properness is fundamental in understanding
the global behavior of non-linear mappings and will be discussed in more
detail for the map ΠB in §3.

One of the most effective methods of proving global existence and unique-
ness is the continuity method, as mentioned above in the works on the so-
lution to the Calabi conjecture and the solution to the Weyl embedding
problem. In the current context, this method can be described as follows.
Choose boundary data for which a static vacuum solution is known to exist;
for instance (γ0, H0) = (γ+1, 2), which is realized by the exterior flat metric
M = R

3 \ B3(1), g = gEucl is the Euclidean metric and u = 1. Given any
boundary data (γ,H) ∈ B, choose a path from (γ0, H0) to (γ,H) in B; for
instance

(2.15) (γs, Hs) = (1− s)(γ0, H0) + s(γ,H).

To prove there is a solution in E with boundary data (γ,H), one shows that
the set of s for which there is a solution gs with boundary data (2.15) is both
open and closed in [0, 1]. The openness property amounts to showing that so-
lutions (M, gs, us) with ΠB(M, gs, us) = (γs, Hs) are always non-degenerate.
In case the degeneracy locus is non-empty, for example a collection of fold
hypersurfaces in E , then a very useful replacement or generalization of the
method of continuity is the degree theory, e.g. the Leray-Schauder degree
or more generally the Smale degree [37]. This does not require the non-
degeneracy property, but to establish a well-defined degree does require the
properness of the map ΠB. The properness of ΠB is essentially equivalent
to the closedness property above.
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3. Global behavior

The key issue in understanding the global behavior of ΠB is to understand
how well the boundary data (γ,H) controls the behavior of any possible
solution (M, g, u) with such boundary data. As always with elliptic problems,
this requires apriori estimates on the geometry of solutions (M, g, u) in terms
of (γ,H). Proving such estimates is equivalent to proving that ΠB is a proper
map, i.e. the inverse image (ΠB)

−1(K) of compact sets K ⊂ B are compact
sets in the domain E . We point out that Fredholm maps are always locally
proper, cf. [37].

As a starting point of this analysis, we recall that one does have optimal
apriori estimates of solutions (M, g, u) in the interior of M , away from ∂M .
Let t(x) = distg(x, ∂M) be the distance function to the boundary ∂M and
let ν = log u. We recall that, by definition, u > 0 in M . By [5], there is a
universal constant K < ∞ such that

(3.1) |Rm|(x) ≤ K

t2(x)
, |dν(x)| ≤ K

t(x)
,

for any static vacuum solution (M, g, u); here Rm is the Riemann curvature
tensor of g. The estimates (3.1) are scale invariant and such scale-invariant
estimates also hold for all higher derivatives. It follows (from the Cheeger-
Gromov compactness theorem) that if one has weak uniform control on the
global geometry of the locus L1 = {t = 1} in (M, g), namely a lower bound
on its area and upper bound on its diameter,

(3.2) areagL1 ≥ v > 0, diamgL1 ≤ D < ∞,

then one obtains global uniform control on (M, g, u) away from ∂M . Under
the bounds (3.2), any sequence of static vacuum solutions (M, gi, ui) ∈ E
has a subsequence which converges, in C∞

δ and away from the boundary
∂M and modulo AF diffeomorphisms, to a limit AF static vacuum solution
(M, g, u), cf. [6], [14] for further details. In other words, one has good com-
pactness properties away from the boundary – irrespective of the boundary
conditions.

Thus, the issue is the behavior of solutions arbitrarily near the boundary
∂M .

The conjecture that ΠB in (2.1) is a bijection (Conjecture II) suggests
the closely related conjecture that ΠB is a diffeomorphism. However, this
turns out not to be the case. It was observed by the author in [14] that
ΠB is not a proper map, and so in particular is not a homeomorphism.
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The reason for this is simple: the structure of a manifold-with-boundary
(M,∂M) may degenerate with uniform control on the boundary data (γ,H).
In other words, the embedded boundary ∂M in M may “degenerate” from
an embedding to an immersion.

As a simple illustration, consider for instance any fixed static vacuum
metric (M, g, u) with boundary ∂M and boundary data (γ,H) ∈ B. Let Σ
be any embedded 2-sphere S2 ⊂ M homologous to the boundary ∂M with
HΣ > 0. One may then cut off M at Σ to obtain a new exterior solution
M ′ with ∂M ′ = Σ and corresponding boundary data (γΣ, HΣ) ∈ B at Σ.
Suppose however Σ is an immersed 2-sphere in (M, g) homologous to ∂M .
This again has induced “boundary” data (γΣ, HΣ) from (M, g), but Σ is not
the natural smooth boundary of an exterior manifold-with-boundary M ′. If
the immersed surface Σ is isotopic to the boundary ∂M in M with HΣ > 0,
then at least in many cases one may easily find curves of spheres Σs in (M, g)
which smoothly deform an embedded sphere to an immersed sphere, with
boundary data (γs, Hs) smoothly controlled for all s and with Hs remaining
uniformly positive. In this process, the ambient metric g and potential u
remain fixed up to ∂M ; only the domain Ms on which they are defined is
changing. Thus, control of the “boundary data” (γs, Hs) does not control
the structure of the manifold-with-boundary Ms. On the other hand, when
(M, g) is an extension of a smooth interior body (Ω, gΩ), the corresponding
interior geometry (Ωs, gΩs

) is well-controlled and does not degenerate at all.

Remark 3.1. It was proved in [13] that this type of degeneration leads
to counterexamples to the Bartnik minimization conjecture, Conjecture I.
There exists a large family of immersed spheres S2 in R

3 whose boundary
data (γ,H) ∈ B are not realized by a static vacuum extension of minimal
mass; cf. also [11] for further discussion and conjectures.

Remark 3.2. One immediate consequence of this degeneration is a kind
of symmetry breaking of the gauge group. As discussed in §2, the natural
gauge group for the Bartnik boundary value problem is the group Diff1(M)
of AF diffeomorphisms ofM equal to the identity on the boundary ∂M . This
corresponds to isometric metrics, and preserves the boundary data (γ,H).
Suppose then (γ,H) are realized as boundary data of a static vacuum solu-
tion (M, g, u), with ∂M embedded. Then clearly so are (ϕ∗γ, ϕ∗H), for any
diffeomorphism ϕ of ∂M � S2. Namely any such diffeomorphism extends
to an AF diffeomorphism, also called ϕ, of M and the triple (M,ϕ∗g, ϕ∗u)
is a solution of the static vacuum Einstein equations with boundary data
(ϕ∗γ, ϕ∗H). If however Σ is merely an immersed “boundary” in a larger
space M , then this may not be the case. It is no longer clear that if (γ,H)
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are the boundary data of Σ, then (ϕ∗γ, ϕ∗H) are realized as boundary values
of a static vacuum solution, for general diffeomorphisms ϕ of Σ � S2. Thus
the symmetry group of the problem has been reduced in the immersed case.

This breakdown of diffeomorphism invariance of the problem implies
that one must work in a suitable fixed gauge. One can no longer deal with
metrics up to isometry (i.e. moduli spaces of metrics or solutions to the
equations) but only with metrics in a fixed gauge, i.e. (local) coordinate
system. It is worth noting that the Weyl metrics, discussed in detail in §4,
do have a preferred global gauge (coordinate system).

Let (M, gi, ui) ∈ E be a sequence of static vacuum solutions for which
the boundary data (γi, Hi) ∈ B converge to a limit (γ,H), H ≥ 0 in B̃.
There are only two ways that the sequence can degenerate, i.e. fail to have
a subsequence which converges to a limit (M, g, u) ∈ Ẽ , cf. (2.7)). First the
structure of an exterior manifold with boundary may break down as above;
this occurs only if there is no uniform lower bound on the distance to the
cut locus of the gi-normal exponential map of ∂M into (M, gi). Second,
the norm of the Riemann curvature Rm of gi may tend to infinity at or
arbitrarily near ∂M ,

(3.3) |Rmgi(xi)| → ∞,

for some sequence such that t(xi) → 0, (cf. [14]). Of course it is possible
that both of these behaviors occur simultaneously. We note that a special
case of the analysis given in [14] shows that (3.3) does not occur if there are
uniform lower and upper bounds on the potential u at ∂M , i.e. constants
c, C such that

0 < c ≤ ui ≤ C < ∞ on ∂M.

There is one, seemingly natural, condition that can be used to rule out
both of these possibilities of degeneration at once. Thus, recall that the
boundary ∂M is called outer-minimizing in (M, g) if for any surface S ⊂ M
surrounding ∂M , i.e. S is homologous to ∂M in M , one has

(3.4) areag S ≥ areag ∂M.

The boundary ∂M is strictly outer-minimizing if strict inequality holds
in (3.4), for all S �= ∂M . Note that by the first variational formula for
area, (3.4) implies (1.3), H ≥ 0 at ∂M . It is obvious but important to note
that the outer-minimizing condition depends on the global structure of the
solution (M, g); it cannot be expressed only in terms of the boundary data
(γ,H).

The following result was proved by the author in [14].
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Theorem 3.3. Let (M, gi, ui) ∈ Ē be a sequence of static vacuum Einstein
metrics with boundary data (γi, Hi) with Hi ≥ 0, m ≥ 4, such that

(γi, Hi) → (γ,H),

in B̃. Suppose also that ∂M is outer-minimizing in (M, gi) for each i:

areagiS ≥ areagi∂M,

for all S surrounding ∂M . Then a subsequence converges in Ẽ to a limit
static vacuum Einstein metric (M, g, u) ∈ Ē with boundary data (γ,H).

Thus, one has good compactness properties under an outer-minimizing
condition.

In light of Theorem 3.3, it might seem beneficial to restrict to static
vacuum solutions with (strictly) outer-minimizing boundary. Let then Eout ⊂
E be the space of static vacuum solutions for which the boundary is strictly
outer-minimizing:

(3.5) areagS > areag∂M,

for S �= ∂M . This is clearly an open condition so that Eout remains a smooth
Banach manifold. The map

(3.6) ΠB : Eout → B,

is still well-defined, smooth and Fredholm, of index 0.
In fact it is not unusual in the literature to modify the definition of the

Bartnik mass by replacing the no horizon condition (no minimal surfaces
surrounding the boundary) by an outer-minimizing condition. Thus define

(3.7) mout
B (Ω, gΩ) = inf{mADM (M, g) : (M, g) ∈ Pout

Ω },

where Pout
Ω is the space of strictly outer-minimizing extensions of (Ω, gΩ) or

equivalently of the boundary data (γ,H); cf. [28] for a detailed discussion.
Similarly, the minimizing and static extension Conjectures I and II are then
rephrased to assert the existence and uniqueness of static vacuum solutions
with strictly outer-minimizing boundary. One advantage of this modified
definition is the fundamental estimate of Huisken-Illmanen [26],

mout
B (γ,H) ≥ mH(γ,H) =

√
areag∂M

16π
(1− 1

16π

∫
∂M

H2),
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comparing the outer-minimizing Bartnik mass with the Hawking mass of
the boundary.

The problem with these reformulations say of Conjecture II is that one
needs the strict inequality (3.5) to have a satisfactory manifold structure
to the space Eout of solutions. Working instead with the (weak) outer-
minimizing condition leads, at best, to the structure of a Banach manifold
with boundary; this is not suitable to try to apply general existence meth-
ods, such as the method of continuity or the more general degree theory
techniques discussed briefly in §2.

On the other hand, working with the strict outer-minimizing condition,
the map ΠB in (3.6) cannot possibly be proper. One can easily find se-
quences (M, gi, ui) ⊂ Eout with (γi, Hi) → (γ,H) ∈ B smoothly, but which
have no limit (M, g, u) in Eout. In fact it is easy to find such sequences of
boundaries in a fixed background solution (M, g, u) with limit only weakly
outer-minimizing

areag S ≥ areag ∂M.

Thus, neither the weak or strict outer-minimizing condition seems satisfac-
tory. We are not aware of any way out of this quandary.

Remark 3.4. One might raise the same objection with the no-horizon con-
dition itself; if a static vacuum solution had a horizon, (i.e. a minimal surface
surrounding ∂M), then it could not be an admissible extension and so could
not realize the Bartnik mass as in Conjecture I. One would have to con-
sider only static vacuum solutions without horizons, which would be very
awkward. Fortunately, Proposition 2.1 rules out this situation.

Of course, the main trouble here is that the outer-minimizing property
(strict or weak) cannot be phrased in terms of the boundary data (γ,H).
There has been some speculation that suitable conditions on the boundary
data (γ,H) would ensure that static vacuum solutions with such boundary
data have strict outer-minimizing boundary; a common suggestion, based
on the resolution of the Weyl embedding problem, is the condition

Kγ > 0 and H > 0.

However, the next result shows that this cannot possibly work, at least for
H small.

Using Theorem 3.3, we prove the following non-existence result. This
may be viewed as a stable version of the black hole uniqueness theorem, as
in Proposition 2.1, with H small replacing H = 0.
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Theorem 3.5. Let γ be a smooth metric on S2 such that the Gauss cur-
vature Kγ is a Morse function in the domain Kγ > 0, i.e. Kγ has only
non-degenerate critical points when Kγ > 0.

Let μ(p) = min |λi(p)|, where λi(p) �= 0 are the eigenvalues of the Hes-
sian D2Kγ at a critical point p of Kγ, Kγ(p) > 0. Let also C = ||γ||Cm,α +
||H||Cm−1,α , for some m ≥ 4.

Then there is a constant H0 > 0, depending only on an upper bound for
C and a positive lower bound for μ0 = minp μ(p) > 0, such that: for any
smooth function H satisfying

(3.8) 0 < H < H0,

pointwise, the Bartnik boundary data (γ,H) are not the boundary data of a
static vacuum Einstein metric (M, g, u) ∈ E. Thus for such (γ,H) ∈ B,

Π−1
B (γ,H) = ∅.

We note that at least a large class of boundary data satisfying (3.8) above
do have positive scalar curvature fill-ins, i.e. are boundary data of compact
domains (Ω, gΩ) with positive scalar curvature, so that Conjecture II+ does
not hold. This is the case for instance if γ has positive Gauss curvature.

Proof. The proof is by contradiction. Thus, let (γi, Hi) ∈ B, (Hi > 0), be a
sequence of boundary data converging in B̃ to (γ, 0) /∈ B and satisfying the
assumptions of Theorem 3.5. Suppose there is a sequence of static vacuum
solutions (M, gi, ui), ui > 0 with Bartnik boundary data (γi, Hi). We then
need to derive a contradiction.

In case the boundary ∂M is (weakly) outer-minimizing in (M, gi) for
i sufficiently large, Theorem 3.5 is proved in [11], based on the discus-
sion in [13]. We sketch the argument for completeness. Since ∂M is outer-
minimizing for each gi, Theorem 3.3 implies that a subsequence of (M, gi, ui)
converges in Ẽ to a limit solution (M, g, u) ∈ Ẽ of the static vacuum Einstein
equations with u ≥ 0 and u → 1 at infinity. The Bartnik boundary data of
(M, g, u) is given by

lim
i→∞

(γi, Hi) = (γ, 0).

By the black hole uniqueness theorem as in Proposition 2.1, the only
static vacuum solution (M, g, u) with u ≥ 0, u → 1 at infinity and smooth
horizon boundary H = 0 is the Schwarzschild metric with boundary data
(γ2m, 0). Since the Gauss curvature Kγ2m

≡ (2m)−2 is not a Morse function,
this gives a contradiction. Namely the smooth convergence of (M, gi, ui) up
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to the boundary implies that Ki is smoothly close to the constant (2m)−2;

however, the eigenvalues of the Hessian D2Ki are bounded away from 0, say

at maxKi.

Now in general, consider a static vacuum solution (M, g, u) (say equal

to some (M, gi, ui) above) with boundary data (γ,H) with H > 0 but close

to 0. Let Σ be the outer-minimizing hull of ∂M in M , cf. [26]. This is the

embedded surface surrounding ∂M in (M, g) of smallest area. Note first that

by Proposition 2.1, Σ ⊂ M cannot be disjoint from ∂M , so

Σ ∩ ∂M �= ∅.

Let U ⊂ ∂M be the interior of ∂M∩Σ and let V = Σ\Ū ⊂ Σ. Then (again by

Proposition 2.1), both U and V are non-empty open sets; of course, neither

U nor V is assumed to be connected. By the outer-minimizing property, one

has

H = 0 on V.

The surface Σ is C1,1 at the seam or corner ∂U ∩ ∂V , smooth away from

∂U ∩∂V and has non-negative distributional mean curvature H across ∂U ∩
∂V , cf. [26].

Now given (M, gi, ui) as above, consider the new sequence of static vac-

uum solutions (M̂i, gi, ui) where M̂i ⊂ M is the region of M exterior to Σi,

so ∂M̂i = Σi. The analysis to follow will be to show that that the same

arguments as before where ∂M i was outer-minimizing can be applied to the

new sequence (M̂i, gi, ui) to again obtain a contradiction.

Let γUi
= gi|Ui

and γVi
= g|Vi

. The metric γUi
is uniformly controlled

in Cm,α by hypothesis, since Ui ⊂ ∂M i. Now assume first, for simplicity,

that the sequence (Vi, γVi
) is uniformly bounded in C4,α (modulo diffeomor-

phisms), so that the Gauss curvature Ki of (Vi, γVi
) is uniformly bounded

in C2,α. The same then holds for the induced metric γ̂i on ∂M̂i, away from

the seam or corner ∂Vi ∩ ∂Ui ⊂ Σi. Thus away from the corners, one has

Hi → 0 in C3,α with γ̂i bounded in C4,α. One may then still apply the proof

of Theorem 3.3 in this setting to conclude that the curvature Rmgi and its

derivatives up to order 2+α are uniformly bounded in M̂i, up to the bound-

ary ∂Mi; we refer to [14] for further details here. Thus, in a subsequence,

(M̂i, ĝi, ûi) converges in C4,α away from corners to a round Schwarzschild

metric, cf. also the proof of Proposition 2.1 and Remark 2.2. In particular,

this convergence holds in Ui ⊂ ∂M i and so gives the same contradiction as

above – even if components of Ui shrink to points for instance.
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Now the surfaces (Vi, γVi
) are stable minimal surfaces in (M, gi). In the

Appendix, we prove a regularity result for such stable minimal surfaces
in static vacuum Einstein manifolds which implies that if both the scalar
curvature sVi

of (Vi, γVi
) and the full Riemann curvature Rm of (M, gi) are

uniformly bounded along Vi,

(3.9) |sVi
|+ |Rmgi | ≤ C

on Vi, then in fact (Vi, γVi
) is uniformly bounded in C∞ modulo diffeomor-

phisms. Note this statement is standard for the trivial static vacuum Einstein
metric R

3. It also follows easily in regions of Vi where ti = distgi(∂M i, ·) is
bounded away from 0, by the estimates (3.1). Thus, the proof follows just
as above if (3.9) holds, and so it suffices to prove (3.9).

We prove (3.9) by a blow-up argument. The discussion below applies to

each (M̂i, gi, ui) but we drop the index i from the notation; the estimates
below are then understood to hold uniformly, for all i large.

We begin with some basic uniform integral estimates at the boundary
Σ. First, the outer-minimizing property and 2nd variation of area gives

(3.10)

∫
Σ
(|df |2 + (N(H) +H2)f2)dvγΣ

≥ 0.

The normal variation of H is given by N(H) = −|A|2 − Ric(N,N). By the
Hamiltonian constraint (Gauss) equation (5.1), |A|2−H2+sγ = −2Ric(N,N),
so that

N(H) = −1
2(|A|2 +H2 − sγΣ

).

Choosing f = 1 in (3.10) thus gives the bound∫
Σ
|A|2 ≤

∫
Σ
sγΣ

+H2 = 4πχ(Σ) +

∫
Σ
H2.

Since H2 → 0 uniformly, it follows that one has the uniform bound

(3.11)

∫
Σ
|A|2 ≤ 8π + 1.

Note this bound is scale invariant. Next, again from the Gauss equation,
cf. (5.3), one has

|A|2 −H2 + sγ = 2u−1(Δu+HN(u)).
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Integrating over Σ and applying divergence formula gives∫
Σ
|dT ν|2 ≤ 8π −

∫
Σ
HN(ν),

where dT ν is the tangential gradient of ν on Σ. On the domain V ⊂ Σ,
H = 0 while on the locally outer-minimizing complement U ⊂ ∂M , HN(ν)
converges to a well-defined limit by Theorem 3.3, cf. [14] for details. It follows
that

(3.12)

∫
Σ
|dT ν|2 ≤ C,

for some uniform C, independent of i.
Next, for the blow-up argument, choose points pi ∈ Σi realizing the

maximum of

(3.13) Qi(x) = |sγVi
(x)|+ |Rmgi(x)|,

x ∈ Σi. Without loss of generality, assuming Qi(pi) → ∞, we rescale the
metrics gi (and correspondingly γVi

) by

ḡi = Qi(pi)gi,

so that

(3.14) Q̄i ≤ 1 and Q̄i(pi) = 1,

on Σi. Clearly one has pi ∈ Vi. We also renormalize u to ūi = ui/u(pi). Again

by (the proof of) Theorem 3.3, |Rmḡi | is uniformly bounded on (M̂i, ḡi).

To prove that a subsequence (M̂i, ḡi, pi) converges modulo diffeomor-
phisms, (i.e. in the Cheeger-Gromov sense), in C1,α, we need to rule out the
possibility of collapse of the metrics, i.e. the collapse of the volume of unit
balls at pi.

Lemma 3.6 (Non-collapse). For the rescaled sequence (M̂i, ḡi, pi), there is
a uniform lower bound

(3.15) volḡiBpi
(1) ≥ v0 > 0.

Similarly, the boundary geometry (Σi, γ̄i, pi) does not collapse:

(3.16) areaγ̄i
Dpi

(1) ≥ a0 > 0.
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Proof. First, as discussed in the Appendix, cf. (5.5), for any (M, g, u) ∈ E ,
the conformally equivalent metric g̃ = u2g has positive Ricci curvature.
The metric g̃ is AF and hence by the Bishop-Gromov volume comparison
theorem, there is a uniform scale-invariant lower bound on the volume of
r-balls in (M, g̃):

volg̃B(r)

r3
≥ v0 > 0.

Now apply this to the rescaled metrics (M̂i, ḡi, ūi) based at pi. Since ūi is
uniformly bounded above and below in (Bpi

(1), ḡi), (cf. (5.8)), the metrics
ḡi and g̃i are uniformly quasi-isometric in this region. This proves (3.15).

To see that the boundary geometry also cannot collapse, recall that
(Σi, γ̄i) has uniformly bounded (Gauss) curvature. If the geometry is col-
lapsing at pi, then the geometry of a large geodesic disc Dpi

(R) about pi in
(Σi, γ̄i) is that of a long cylinder which has a foliation by short (geodesic)
loops. Since the ambient curvature is uniformly bounded, if � denotes the
length of the short loops in (Σi, γ̄i) near pi, then |A| ∼ �−1 and hence∫

I
|A|2dvγ ∼

∫
I
��−2 ∼ �−1.

Since A is bounded in L2 by (3.11) and since (3.11) is scale-invariant, this
gives a uniform lower bound on �, proving (3.16).

The discussion above proves that, after passing to a subsequence, the
sequence (M̂i, ḡi, ūi, pi) converges in the pointed C1,α topology, modulo dif-
feomorphisms, to a complete non-compact limit (M∞, ḡ∞, ū∞, p), with com-
plete, non-compact boundary (S, γS , ū∞, p). The rest of the argument to
follow is to prove that the limit is flat, with flat boundary S. By results
in the Appendix, cf. Proposition 5.2, the convergence to the limit is in the
strong C2 topology, giving a contradiction to the continuity of Q in (3.14)
under C2 convergence. This will complete the proof of Theorem 3.5.

All the discussion to follow takes place on the limit M∞ and S so we
drop the bar and ∞ below to simplify the notation.

On the blow-up limit boundary S, we have A and dν are in L2(S, γS),
by (3.11) and (3.12). Moreover, the ambient curvature |Rm| is uniformly
bounded along S. As above,D(r) denotes a geodesic r-disc in (S, γS) about p.

Lemma 3.7. The limit (S, γS) has at most quadratic area growth, i.e.

(3.17) areaγS
D(r) ≤ V r2,

for some V < ∞.
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Proof. On (S, γS), we have

(3.18) |A|2 + sγS
= 2u−1Δu.

Let v(r) be the length of the boundary S(r) = ∂D(r). Integrating (3.18)

over D(r) and applying the Gauss-Bonnet and divergence theorems gives

4π − 2v′(r) = −
∫
D(r)

|A|2 + 2

∫
D(r)

|dT ν|2 + 2

∫
S(r)

∂rν.

By (3.11), this gives

v′(r) ≤ C +

∫
S(r)

|dT ν|.

On intervals where v′(r) ≤ C, (3.17) holds (by integration), so assume only

v′(r) ≤ C

∫
S(r)

|dT ν|.

By the Hölder inequality,
∫
S(r) |dT ν| ≤ (

∫
S(r) |dT ν|2)1/2v(r)1/2, so that

((
√

v′(r))′)2 ≤ C
∫
S(r) |dT ν|2. Let q(r) =

√
v′(r), so that via (3.12) we obtain

∫ r

0
(q′)2 ≤ C.

Then q(r) ≤
∫ r
0 q′(r) ≤ (

∫ r
0 (q

′(r)2)1/2r1/2 ≤ Cr1/2, so that again v(r) ≤ Cr.

This proves the result.

Lemma 3.8. The surface (S, γS) ⊂ (M, g) is AF in the weak sense that

Q(xk) → 0,

on any sequence xk → ∞ in S.

Proof. Let xk be any divergent sequence in S and consider the geometry

of pointed manifolds (S, γS , xk) in regions about xk. By Lemma 3.6, this

sequence does not collapse, and so has a C1,α limit (in a subsequence). Also,

A → 0 and dν → 0 in L2
loc, by (3.11) and (3.12). By the regularity esti-

mates in the Appendix, A is uniformly bounded in L∞, as is u ∈ L2,p
loc on
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the boundary S and in M , cf. (5.7), (5.8). Hence N(u) is also uniformly
bounded. By the constraint equation (5.4),

δA−A(dν) = u−1dN(u).

The term A(dν) → 0 in L2
loc, while the term δA → 0 in L−1,2

loc . It follows that

dN(u) → 0 in L−1,2
loc and hence N(u) → const weakly in L2

loc. Since N(u)
is also uniformly bounded in L∞, N(u) → const strongly in L2

loc. It follows
that on the limit (which is smooth by regularity results from Appendix),
one has the limit data

A = 0, u = const, N(u) = const.

Similarly, NN(u) = 0 on the limit, etc. Since Δgu = 0 on M , unique con-
tinuation for the Laplacian implies that D2u = 0 on (M, g) so that u is an
affine function and the metric g is flat. Since A = 0, the boundary metric γ
is also flat.

It follows that Q ≡ 0 on the limit. By the strong convergence (Proposi-
tion 5.2) in the Appendix, it follows that Q(xk) → 0, as claimed.

It follows, by repeated use of Lemma 3.8 at various blow-down scales that
all tangent cones at infinity of (S, γS) are flat, with flat ambient geometry,
i.e. (D(r), 1

r2 γS) converges to a flat metric away from the origin p and simi-
larly with gS in place of γS . Now apply the stability inequality (3.10) on the
complete (S, γS). By the well-known log-cutoff trick, (cf. [23] for example)
one has ∫

S
|A|2 − sγS

≤ 0,

so that by the Gauss-Bonnet theorem,

(3.19)

∫
S
|A|2 ≤

∫
S
sγ = 2π − lim

r→∞
v′(r).

This implies first that limr→∞
v(r)
r ≤ 2π. Suppose strict inequality holds,

limr→∞
v(r)
r < 2π. The tangent cone at infinity C is S is then a flat cone,

of cone angle α < 2π, which bounds a flat static vacuum solution. By the
scale-invariant apriori estimates (3.1), the limit static vacuum solution is
smooth away from the boundary cone C, so cannot be of the form C ×R

+,
which is singular in the interior: any singularity of the cone C cannot prop-
agate into the exterior region. On the other hand, if C is a singular cone,
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α < 2π, in an ambient smooth flat geometry, then one has
∫
C |A|2 = ∞,

again a contradiction. (Alternately, such cones are not outer-minimizing in
the ambient geometry).

It follows that

(3.20) lim
r→∞

v(r)

r
= 2π,

and hence by (3.19), ∫
S
|A|2 = 0,

so that A = 0 on S. The potential equation (3.18) then becomes

K = u−1Δu.

Integrating this over D(r) and taking the limit gives

lim
r→∞

[

∫
D(r)

|dT ν|2 +
∫
S(r)

∂rν] = 0,

since limr→∞
∫
D(r)K = 0. As in the proof of Lemma 3.7, this implies

∫
S
|dT ν|2 = 0,

so that u = const on S. Thus the Cauchy data (γ,A, u,N(u)) for the static
vacuum Einstein equations equal that of a flat solution with affine poten-
tial. By unique continuation as in the proof of Lemma 3.8, it follows that the
limit is flat, with flat boundary, so that Q = 0 on S. This again contradicts
the strong convergence to the limit, cf. Proposition 5.2.

This completes the proof of Theorem 3.5.

The condition that Kγ is a Morse function is a sufficient but we don’t
believe a necessary condition. It is natural to conjecture that Theorem 3.5
holds for all γ, with then H sufficiently small depending only on lower and
upper bounds for the distance of γ to a round metric in say C4,α, (and an
upper bound on |H|C3,α).

It follows in particular that the mass mB cannot be realized by boundary
data (γ,H) with H sufficiently small and γ not a round metric, i.e. Conjec-
ture I and Conjecture I+ also fail in this situation.
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Remark 3.9. Theorem 3.5 should be contrasted with the following result,
proved in [10]; the proof also strongly uses the outer-minimizing property:
for any given smooth boundary data (γ,H) ∈ B, there is a λ > 0 such that

(γ, λH) ∈ ImΠB,

i.e. there is a static vacuum solution (M, g, u) with boundary data (γ, λH).
Moreover, ∂M is outer-minimizing in (M, g). Thus, for any γ, if one increases
H sufficiently by a positive multiplicative factor, then there is a solution to
the static vacuum equations realising the given Bartnik boundary data.

For boundary data (γ,H) /∈ ImΠB as in Theorem 3.5, a minimizing
sequence for mB(γ,H) cannot converge, so it must degenerate. How? Con-
sider first the boundary data (γ, 0) ∈ B̃, with γ not a round metric on S2,
compare with (2.12). The black hole uniqueness theorem (Proposition 2.1)
implies that a minimizing sequence for this boundary data must degenerate.
The work of Mantoulidis-Schoen [30] indicates how this occurs – when the
first eigenvalue λ1(−Δγ +Kγ) > 0 – for minimizing sequences with respect
to the outer-minimizing mass mout

B (γ, 0) in (3.7). Briefly, one portion of the
minimizing sequence (containing the AF end) converges to a Schwarzschild
metric gSch(m) up to or arbitrarily near the horizon, where m is given by

m =

√
areaγ ∂M

16π
.

The remaining portion of the sequence forms an (arbitrarily) long cylinder
of non-negative scalar curvature, connecting the nearly round metric near
the horizon at one end to the metric γ at the other end. The cylindrical
region is’hidden behind’ the Schwarzschild horizon; since this region does not
contribute to the ADM mass, one has no effective control on the behavior of
a minimizing sequence in this region. We refer also to the work of Miao-Xie
[32] for related results.

We conjecture similar behavior occurs for minimizing sequences for
mB(γ,H) when H > 0 is sufficiently small, depending on γ as in Theo-
rem 3.5.

The non-existence region above strongly suggests there is a large region
of fold behavior for the map ΠB, which, in turn, implies a large region of non-
uniqueness for Conjecture II (compare with the discussion in and preceding
the toy model (2.13)).

We describe the situation on a concrete example. Choose a fixed
Schwarzschild metric gSch(m) and choose a round sphere S(t) at fixed dis-
tance t > 0 to the horizon. Let (γ0, H0) be the induced Bartnik boundary
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data on S(t), so γ0 is a round metric and H0 > 0 is a small constant. It
is proved in [14] that KerDΠB = 0 at the Schwarzschild metric exterior
to the horizon H = 0 (even though DΠB is not Fredholm there); hence
KerDΠB = 0 at the exterior region to S(t) for t small, i.e. this exterior
metric is a regular point of ΠB. Now choose any fixed metric γ satisfying
the hypotheses of Theorem 3.5, i.e. Kγ is a Morse function in the region
Kγ > 0. Consider the curve of boundary data

L(s) = (1− s)(γ0, H0) + s(γ,H0) ⊂ B,

for s ∈ [0, 1] and the corresponding inverse image

Π−1
B (L(s)).

By the Smale-Sard theorem [37], if necessary one may perturb L : I → E
slightly to L̃ : I → E , keeping the endpoints fixed, so that L̃ : I → E is
transverse to ΠB. The inverse image

Π−1
B (L̃),

is then a collection of 1-dimensional curves {σi(s)} in E . If there is more than
one component of Π−1

B (L̃) then of course one already has non-uniqueness

for Conjecture II, so suppose then that σ = Π−1
B (L̃) is a connected curve.

By Theorem 3.5, for H0 sufficiently small depending on γ, there is s0 < 1
(possibly close to 1) such that either

(3.21) Π−1
B (L̃[s0, 1]) = ∅ or Π−1

B (L̃(s0, 1]) = ∅.

Without loss of generality, assume Π−1
B (L̃(s)) �= ∅ for s < s0. We discuss

these two possibilities in more detail.

I. In the first case above, as s → s0 with s < s0, the curve σ(s) di-
verges to infinity in E , i.e. ΠB is not a proper map over L̃. Since at s = 0
the boundary S(t) is strictly outer-minimizing in the Schwarzschild metric,
the boundary ∂M of σ(s) remains outer-minimizing for s sufficiently small.
However, by Theorem 3.3, the boundary cannot remain outer-minimizing
for all s ∈ [0, s0). The divergence of the curve σ(s) as s → s0 is due either
to a loss of the manifold-with-boundary structure or the curvature blows up
on approach to the boundary (or both).

II. In the second case, the map ΠB is proper at least over L̃[0, s1) for
some s1 > s0. In this case, ΠB exhibits fold behavior (like x → x2) over L̃.
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Such fold points σ(s0) are critical points of ΠB and the map ΠB is locally
2-1 over L̃ near L̃(s0). This again gives non-uniqueness for Conjecture II.

The same analysis as above applies to general curves in B, which start at
data (γ0, H0) for which (ΠB)

−1(γ0, H0) �= ∅ and which end at points (γ,H)
satisfying the conditions of Theorem 3.5, for which (ΠB)

−1(γ,H) = ∅. We
conjecture that, at least for a large class of curves, Case I does not occur,
so the fold behavior of Case II holds.

4. Weyl metrics

It is of course important to have a large class of examples on which one
can test the Bartnik conjectures in various regions of boundary data. The
most interesting class of (relatively) explicit solutions are the Weyl solutions
[39], [15], which have an additional axial symmetry. These metrics have a
hypersurface-orthogonal isometric S1 action, so that the metric g = gM on
M has the form

(4.1) gM = f2dϕ2 + gV ,

where the orbit space (V, gV ) is a Riemannian surface with V � (R3 \
B)/S1 � (R2)+ \ D. Thus the Ricci flat 4-metric (M, gM) (as in (1.5))
has the form

(4.2) gM = ±u2dt2 + f2dϕ2 + gV ,

with u, f positive functions on V . This gives the 4-manifold M the structure
of a toric Einstein 4-manifold (when the t-factor is compactified to S1 in the
Riemannian setting). The static vacuum equations (1.4) are then reduced
to equations on (V, gV ).

As in (2.5), let

(4.3) Em,α
S1 = E

m,α
S1 /Diffm+1,α

1 (M),

denote the (abstract) space of isometry classes of such AF Weyl metrics
of the form (4.1), with H > 0 at ∂M . Similarly, the space of S1-invariant
boundary data is given by

Bm,α
S1 = Metm,α

S1 (S2)× Cm−1,α
S1,+ (S2).

Here Metm,α
S1 (S2) denotes the space of Cm,α metrics on S2 of the form

α2dθ2 + β2dϕ2, α = α(θ) > 0, β = β(θ) where (θ, ϕ) are standard spheri-
cal coordinates on S2(1); there is no dϕdθ cross term in (4.1). At the poles
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θ = 0, π, one has β = 0 and β′ = ±α with similar higher order conditions
on β at 0, π for Cm,α smoothness. The functions in Cm−1,α

S1,+ (S2) are positive
functions H of the form H = H(θ) with similar smoothness conditions at
the poles.

The associated Bartnik boundary map

ΠB : ES1 → BS1 ,(4.4)

(M, g, u) → (γ,H),

is still a smooth Fredholm map of Fredholm index 0. One expects or at least
hopes that it should be considerably simpler to understand the validity of
Conjectures I and II in the context of Weyl metrics compared with the
general case.

An important feature is that Weyl metrics have a canonical choice of
coordinates, Weyl cylindrical coordinates and it is useful to derive this in
some detail, cf. also, [6] [29] for background material on these metrics. First,
note that bothMu = V ×fS

1 with metric gV +f2dθ2 andMf = V ×uS
1 with

metric gV +u2dθ2 are static vacuum solutions on the respective 3-manifolds,
with potentials u and f . Thus one has a natural dual pairing u ↔ f , cf. [6]
for further discussion. On Mu,

0 = ΔMu
u = ΔV u+ 〈d log f, du〉,

while on Mf ,

0 = ΔMf
f = ΔV f + 〈d log u, df〉.

It follows that the function

(4.5) r = fu

representing the area of the toral fibers in (4.2), is harmonic on V , ΔV r = 0.
Noting that V is simply connected, let z be the harmonic conjugate of r
on V . Then (r, z) give isothermal coordinates for the metric gV . Adding
the coordinate ϕ ∈ [0, 2π] gives the Weyl canonical cylindrical coordinates
(r, z, ϕ) on M = V ×f S1. In these coordinates, the metric g on M has the
form

(4.6) g = gM = u−2[e2λ(dr2 + dz2) + r2dϕ2],

for some function λ. Let ν = log u. Further analysis using the static vacuum
equations (1.4) shows that λ satisfies

(4.7) λr = r(ν2r − ν2z ), λz = 2rνrνz,
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so that the 1-form dλ is given by dλ = r(ν2r − ν2z )dr + 2rνrνzdz. Thus, λ is
completely determined by u, up to a constant. On the z-axis A where r = 0
(so θ = 0, π) one has λ = const. The metric (4.6) is regular (i.e. smooth)
at A only when λ = 0; otherwise there is a cone singularity along A. Thus,
λ is uniquely determined by ν. Note that r in (4.5) is uniquely determined
by (M, g, u)9 while z is uniquely determined up to a constant; this constant
may be fixed by imposing the normalization condition

(4.8)

∫
∂M

z dvγ = 0.

We note that (r, z) normalized as in (4.8) vary smoothly with (g, u).
The coordinates (r, z, ϕ) represent standard cylindrical coordinates on

R
3. Most importantly, the potential function ν = log u is an axi-symmetric

(i.e. ϕ-invariant) harmonic function with respect to the Euclidean Laplacian:

(4.9) ΔEuclν = 0.

Observe that the full Weyl solution (4.6) is determined by the single potential
function ν in these coordinates.

One main point here is that given any (abstract) Weyl metric, there is a
canonical choice of coordinates, i.e. gauge, read off from the geometry of S1

fibers, compare with Remark 3.2. In this chart, the Weyl solution (M, g, u) is
completely determined by the axi-symmetric Euclidean harmonic function ν
and the location of the boundary ∂M . This is the remarkable Weyl reduction
of a non-linear system of equations to a linear equation.

Working in these coordinates, a boundary is specified by a, say Cm+1,α,
embedded curve

(4.10) σ : [0, π] → (R2)+

in (R2)+, σ(θ) = (r(θ), z(θ)) meeting the axis A smoothly and orthogonally
only at θ = 0, π. The rotation of σ about the axis A generates an embedding

F : S2 → R
3

of a sphere as a surface of revolution in R
3. The image Σ = ImF divides

R
3 into a compact interior region diffeomorphic to a 3-ball B and a non-

compact exterior region diffeomorphic to R
3 \ B. Here we focus exclusively

9Since u > 0 on M and g is smooth on M , note that (4.6) also shows that r is
a well-defined coordinate, i.e. dr �= 0 on M .
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on the exterior manifold-with-boundary M with ∂M = Σ. We will assume
that σ is oriented10 in that θ = 0 corresponds to the north pole of S2 while
θ = π corresponds to the south pole and the normal vector ∂z at σ(0) points
into the exterior region M .

The induced metric γ on the boundary is given by

(4.11) γ = F ∗g = u−2[e2λ((r′(θ))2 + (z′(θ))2)dθ2 + r2dϕ2].

By computation, one has

(4.12) eλ−νH = HEucl +NE(λ− 2ν),

where NE is the Euclidean unit normal pointing into M and HEucl is the
mean curvature of ∂M with respect to the Euclidean metric; this is given
by

HEucl =
NE(r)

r
+ κE ,

corresponding to the standard formula for the mean curvature of surfaces of
revolution in R

3; here κE is the Euclidean geodesic curvature of σ, given as
〈∇TN,T 〉 in the Euclidean metric.

Examples. A very useful and large class of examples of Weyl solutions,
closely related to Newtonian gravity, are given as follows. Let dμ be any
positive Radon measure, compactly supported on the axis A. Then the New-
tonian potential of ν, i.e.

(4.13) ν(x) = −
∫
A

1

|x− y|dμy,

gives an axisymmetric harmonic function on R
3 \ supp dμ and so generates

an AF Weyl solution. For example, taking

dμ =
1

2
d�[−m,m],

where d� is the Lebesque measure on the interval [−m,m] gives the
Schwarzschild metric of mass m. On the other hand, taking

dμ = κd�[−m,m],

10This will be dropped later.
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for any κ �= 1
2 generates a metric g which is singular, i.e. not smooth up to

the boundary supp dμ.
Taking dμ = mδ0 to be a multiple of the Dirac delta function supported

at the origin of A, gives

ν = −m

R
,

a multiple of the Green’s function on R
3, with R2 = r2 + z2. The resulting

solution, called the Curzon solution, is given explicitly as

gC(m) = e2m/R[e−m2r2/R4

(dr2 + dz2) + r2dϕ2].

This metric becomes highly singular on approach to the origin 0 ∈ R
3.

It is not difficult to see (cf. [6]) that for all solutions as in (4.13), ν → −∞,
so u → 0, on approach to at least a dense subset of supp dμ. Thus, such static
vacuum solutions are maximal, in the sense that they cannot be extended
to any larger domain.11

One may then take a boundary ∂M = ImF as above to obtain a Weyl
solution (M, g, u) with induced Bartnik boundary data (γ,H) on ∂M . These
solutions correspond to varying domains in a fixed ambient maximal Weyl
solution generated by ν in (4.13).

Not all Weyl solutions (M, g, u) are of this form however. The most
general solutions are given by solving the Dirichlet problem for ν.12

Proposition 4.1. Let σ : I → R
2 be a Cm+1,α embedding as in (4.10) and

let ν be a Cm,α function on Imσ. Then ν extends uniquely to an axisym-
metric harmonic function on the exterior domain M = R

3 \ B with ν → 0
at infinity, and generates an AF Weyl metric (M, g, u) which is Cm,α up to
∂M .

Conversely, up to isometry in Diffm+1,α
1 (M), any AF Weyl metric

(M, g, u) which is Cm,α up to ∂M is uniquely given by such a pair (σ, ν)
satisfying (4.8).

Proof. The first statement is standard from elliptic regularity theory, given
the discussion above. For the second statement, given a specific represen-
tative (M, g, u) ∈ E

m,α
S1 representing a class in Em,α

S1 , construct the Weyl

11One could also take potentials ν as in (4.13) with more general signed measures
or even distributions supported in A, generating Weyl metrics in the same way.
However, when dμ is a positive measure, boundaries have fill-ins (Ω, gΩ) with non-
negative scalar curvature and the ADM mass mg of the solution is always non-
negative.

12One could also solve the Neumann or a suitable Robin boundary value problem
instead.
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canonical coordinates (r, z, ϕ), normalized as in (4.8). These coordinates re-
strict to ∂M to give an axi-symmetric embedding F : ∂M � S2 → R

3 and
hence the embedding σ : I → (R2)+. A different representative (M ′, g′, u′)
of (M, g, u) in Em,α

S1 gives the same map F , since the diffeomorphisms in

Diffm+1,α
1 (M) fix the boundary pointwise.
To see that σ ∈ Cm+1,α(θ), by hypothesis ν, and hence λ, is Cm,α up

to ∂M , while H ∈ Cm−1,α(θ). Boundary regularity for harmonic functions
implies that N(ν) is Cm−1,α up to ∂M and hence the same for N(λ). Thus,
by (4.12),HEucl ∈ Cm−1,α(θ). This together with the fact that the Euclidean
arclength parameter

√
(r′)2 + (z′)2 ∈ Cm,α implies σ ∈ Cm+1,α(θ).

Remark 4.2. Generic boundary data ν on ∂M lead to harmonic functions
on M which do not extend to any larger region M ′ ⊃ M containing ∂M in
the interior. Thus the examples above, although simple and useful, are not
generic. Note that when the boundary data ∂M and ν are analytic, then ν
and so g does extend past ∂M to a slightly larger domain M ′.

Remark 4.3. Proposition 4.1 suggests that the simplest boundary data
for a Weyl metric are the Dirichlet boundary data. This corresponds to
the isometric embedding of a prescribed metric u2dt2 + γ on the boundary
S1×S2 into an ambient 4-dimensional Weyl metric. However, it is proved in
[7] that Dirichlet boundary data are not elliptic boundary data for (general)
Einstein metrics.

We see then that the space E
m,α
W of Cm,α AF Weyl metrics in Weyl

canonical coordinates has a very explicit (and simple) form:

E
m,α
W � [Embm+1,α(I)× Cm,α(I)]/T,

(M, g, u) ↔ (σ, ν).

where T is the action of translations along the z-axis A on the first factor.
The Bartnik boundary map is thus given by

ΠB : Em,α
W → Bm,α

S1 ,(4.14)

ΠB(ν, σ) = (F ∗g,HF,g).

The three (arbitrary) functions (σ, ν) = (r(θ), z(θ), ν(θ)) describing the
points in EW correspond to the three (arbitrary) functions (α(θ), β(θ), H(θ))
in BS1 .

However, in contrast to the (abstract) map ΠB in (4.4), the map in (4.14)
is no longer smooth; although it is C0, it is not even C1. Namely, let Fs be
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a smooth curve of Cm+1,α axi-symmetric embeddings of S2 into R
3, for

example Fs = F + sX where X is a Cm+1,α axi-symmetric vector field on
M . Then the derivative DΠB(X) in (4.14) involves the terms X(λ− ν) and
X(ν) (cf. (4.11)) which are only Cm−1,α and not Cm,α on M up to ∂M .13

Thus, the natural identification provided by Proposition 4.1

Φ : Em,α
S1 � E

m,α
W ,

is a homeomorphism, but is not a C1 identification. In other words, for a
C∞ curve of Cm+1,α diffeomorphisms ϕs : M → M with ϕs �= Id on ∂M ,
the curve (ϕ∗

sg, ϕ
∗
su) is not in general a smooth curve in the abstract space

ES1 or E . In the abstract setting, the “location” of the boundary ∂M is not
specified and the Bartnik boundary map should be viewed as a free boundary
value problem. Nevertheless, the lack of smoothness of the identification Φ
is not an essential issue for most purposes.

Despite the concrete setting of the Bartnik boundary map in (4.14),
it does not appear to be significantly easier to understand the validity of
Conjectures I and II for Weyl metrics. For instance, we are not aware of
any substantially simpler proofs of Proposition 2.1 or Theorem 3.5 in this
setting.

To make some progress, let us consider a much simpler setting. Namely,
fix the (global) potential ν as in (4.13). Then ν, λ are globally defined,
independent of the location of the boundary. Let

(4.15) E
m,α
ν ⊂ E

m,α
W

be the subspace with potential fixed in this way. Clearly, Eν is a Banach
submanifold. For the restriction of the Bartnik boundary map to Eν , it is
natural to drop the map to the mean curvature (freezing a scalar field in the
domain corresponds to freezing a scalar field in the target).14 This leads to
consideration of the Dirichlet boundary data map

ΠD : Em,α
ν → M̂et

m,α

S1 (S2),(4.16)

σ → F ∗g.

13This loss of derivative for the action of diffeomorphisms on the space of metrics
is well-known. Note that ΠB is smooth when ν is, say, C∞ up to ∂M , so that ΠB is
smooth in the context of Frechet manifolds. If (M, g, u) extends to a slightly larger
domain M ′, as in Remark 4.2, then ν is automatically as smooth as ∂M in M ′,
since static vacuum Einstein pairs (g, u) are analytic in the interior.

14Another natural choice would be to keep the mean curvature but take only the
conformal class of the metric; cf. [8] for further discussion.
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Here M̂et
m,α

S1 (S2) is the modification of Metm,α
S1 (S2) consisting of α, β as

before with α ∈ Cm,α(θ) but β ∈ Cm+1,α(θ). This modification is due to
the different levels of differentiability of α and β in (4.11).15 Also g = g(ν).
Clearly (4.16) corresponds to the isometric embedding problem: given an
axially symmetric metric on S2, does there exist a (unique) isometric em-
bedding into a Weyl metric (M, g, u) with fixed u?

We consider in detail the case u = 1 so ν = 0 and g = gEucl correspond-
ing to the Euclidean isometric embedding problem. First, it turns out that
the map ΠD is not onto, i.e. not every axi-symmetric metric on S1 is realized
by an isometric embedding or immersion as a surface of revolution in R

3.
The following is a well-known necessary condition.

Lemma 4.4. Let σ(θ) = (r(θ), z(θ)) be a Cm+1,α immersion into (R2)+

generating the surface of revolution F with induced metric α2dθ2 + β2dϕ2.
Then for all θ,

(4.17) α(θ) ≥ |β′(θ)|.

Further equality holds at the endpoints θ = 0, π, i.e. at the poles of the
surface.

Proof. For such an immersion, one clearly has

α2 = (r′)2 + (z′)2(4.18)

β = r,(4.19)

so that

(4.20) (z′)2 = α2 − (β′)2 ≥ 0.

Since necessarily α > 0, this proves (4.17). Further, as noted above, smooth-
ness at the poles implies z′ = 0, proving the second statement.

Although it is obvious, it is worth pointing out explicitly that (4.19)
shows that the function r(θ) of σ(θ) = (r(θ), z(θ)) is uniquely determined
by the metric γ. Thus we need only consider the behavior of z in terms of
the boundary data (α, β).

Let V0 ⊂ M̂et
m,α

S1 (S2) be the open set such that

(4.21) α(θ) > |β′(θ)|, ∀θ ∈ (0, π),

15The regularizing property of the mean curvature is no longer present in this
situation.
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with β′(θ) = α(θ) for θ = 0, π. Let U0 = Π−1
D (V0) ⊂ E

m,α
ν=0.

Lemma 4.5. The map

ΠD : U0 → V0

is a diffeomorphism.

Proof. By (4.20), one has

(4.22) z′ = ±
√

α2 − (β′)2.

Since by hypothesis, z′ �= 0 on (0, π), there is a unique choice of sign for z′.
As noted following (4.10), the choice of orientation of σ then gives

z′ = −
√

α2 − (β′)2,

on [0, π]. By integration, this then uniquely defines z under the normalization
condition (4.8). As noted above, the function r(θ) is already defined by β.
Clearly, the curve σ is a graph over the z-axis (except at the poles), so that
σ is an embedding.

The remarks above prove that ΠD is a bijection on U0. It is also smooth,
with derivative given by

(4.23) DΠD(ρ, ζ) = (
1

α
(r′ρ+ z′ζ), ρ).

Since z′ �= 0, KerDΠD = 0. Similarly, it is easy to see thatDΠD is surjective,
so that ΠD is a diffeomorphism.

However this result breaks down at curves where (4.21) fails. In fact, the
map DσΠD is no longer a Fredholm map at σ if

(4.24) (α− |β′|)(θ0) = 0,

i.e. z′(θ0) = 0, for some θ0 ∈ (0, π). Namely, to solve DΠD(ρ, ζ) = (q, ρ) as
in (4.23) requires r′ρ+ z′ζ = αq, so that

ζ =
αq − r′ρ

z′
,

where α, ρ, r′ and z′ are given. This is solvable only if αq − r′ρ vanishes on
the zero-set of z′, and the quotient ζ is then only Cm−1,α. Thus DΠD maps
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at most only onto a dense subset of a codimension one subspace of Cm,α so

that ΠD is not Fredholm.16

Next let V1 ⊂ M̂etS1(S2) be the subset such that

(4.25) χ(t) = α(θ)− |β′(t)| ≥ 0

with χ = 0 at only finitely many points θi ∈ [0, π], each of which is a non-

degenerate minimum of χ. As noted above, points where χ = 0 correspond

to points where z′ = 0, i.e. the tangent line to σ is horizontal. As simple

examples show, one can no longer expect that curves having points where

z′ = 0 remain embedded in general.17 For this and related reasons, we modify

the definition of Eν=0 (without changing its notation) to

E
m
ν=0 = Imm0

m+1(I)/Isom(R).

Here Imm0
m+1(I) is the space of unoriented immersions isotopic to embed-

dings relative to the endpoints. We have changed (m,α) to m (since there

are no longer any elliptic regularity issues) and taken the quotient by action

of the rotation invariant subgroup Isom(R) ⊂ Isom(R3), consisting of trans-

lations along the z-axis A and reflections in planes z = const. The group

Isom(R) is the relevant group of Euclidean congruences.

As before, we have the Dirichlet (boundary) map

ΠD : Em
ν=0 → M̂et

m

S1(S2), σ → F ∗(gEucl).

As above, set U1 = (ΠD)
−1(V1) ⊂ E

m
ν=0. It is worth noting that neither V1

nor U1 is connected; each space has many components. For instance, passing

from points in U0 to points in U1 requires passing through curves where χ(t)

has degenerate minima.

Lemma 4.6. The smooth (but not Fredholm and so not proper) map

ΠD : U1 → V1,

is a bijection. Further KerDΠD = 0 everywhere.

16To avoid this loss of derivative, one could pass to C∞ maps and so Frechet
spaces. While DσΠD would be Fredholm if σ has isolated points where (4.24) holds
to finite order, ΠD would not be a tame Fredholm map, due to the factor (z′)−1.

17Compare with the discussion at the beginning of §3.
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Proof. Let (α, β) ∈ Vm
1 be arbitrary. As with the proof of Lemma 4.5, the

issue here is the determination of the sign of z′ in terms of α, β. Once this
is determined, z and hence σ = (r, z) is determined as above.

We first note that the order of vanishing of z′ is completely determined
by α, β. Namely, by (4.20),

(4.26) z′z′′ = αα′ − β′β′′,

and

(4.27) (z′′)2 + z′z′′′ = (αα′)′ − (β′β′′)′.

Thus at θi where z
′ = 0, whether z′′ �= 0 or z′′ = 0 is completely determined

by whether the minimum of α− |β′| is a non-degenerate minimum or not.
Now starting at the pole θ = 0, we have either z′′ > 0 or z′′ < 0.

Suppose z′′ > 0. Then the sign of z′ and hence as before z and so σ, is
uniquely determined up to first zero θ1 of χ. Since z′′(θ1) �= 0, by continuity
the sign of z′ is uniquely determined slightly past θ1, so that σ is then
uniquely determined up to the second zero θ2 of χ. Proceeding in this way
uniquely determines a curve σ1 on [0, π] with ΠD(σ1) = (α, β).

If z′′(0) < 0, one may perform the same process, obtaining a curve σ2
also with ΠD(σ2) = (α, β). However, up to translations along the z-axis,
the Z2 reflection through the plane z = z(0) maps σ1 to σ2, so that σ1 and
σ2 are congruent and represent the same point in U1. This proves ΠD is a
bijection on U1. The second statement follows easily from (4.23) as above.

One may proceed inductively in this way to higher order degeneracies of
z′. Thus, let V2 ⊂ M̂et

m

S1(S2) be the subset such that the minima θi ∈ (0, π)
of χ are non-degenerate at order either 2 or 4; note that V1 ⊂ V2. As before,
set U2 = (ΠD)

−1(V2) ⊂ E
m
ν=0. Differentiating (4.27) twice gives

3(z′′′)2 + 4z′′z(4) + z′z(5) = (αα′)′′′ − (β′β′′)′′′ = 1
2((α

2)(4) − (β2)(5)).

Thus, for σ ∈ U2 (with m ≥ 4) if z′(θi) = z′′(θi) = 0 for some θi, then
z′′′(θi) �= 0.

Note that smoothness requires z′′′ = 0 at the poles 0, π. In any case,
choose a generic point θ̄ sufficiently near 0 so that (αα′ − β′β′′)(θ̄) �= 0.
By (4.26), z′(θ̄) �= 0 and z′′(θ̄) �= 0. Suppose z′′(θ̄) > 0. Then the sign of z′

is uniquely determined by α, β and so by (4.22), z is uniquely determined
by α, β near θ̄. The same arguments as above then show that (α, β) ∈ V2
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uniquely determine a curve σ1 ∈ U2. Again if z′′(θ̄) < 0, then the same
construction produces another curve σ2 ∈ U2 which is congruent in Isom(R)
to σ1.

One may construct in the same way spaces Vk ⊂ Vk+1 ⊂ · · · , where Vk

consists of metrics for which χ has isolated zeros θi each of which is non-
degenerate at some order ≤ 2k. This of course requires m ≥ 2k. In the same
way, given sufficient smoothness, one has the inclusion of ΠD-inverse images
Uk ⊂ Uk+1 · · · . The same proof of Lemmas 4.5 – 4.6 as above shows that

ΠD : Uk → Vk,

is a bijection. Similarly, KerDΠD = 0 on Uk.
Suppose however σ ∈ Uk, m ≥ 2k is a curve for which there exist zeros

θi and θj of χ (not necessarily consecutive) at which χ vanishes at all orders
≤ 2(k − 1) and is non-vanishing at order 2k. Then the derivatives z(j) = 0
for all j ≤ k at θi and θj but z(k+1) �= 0 at θi and θj . Suppose also

z(θi) = z(θj).

One may perform a Z2-reflection of σ through the plane z = z(θi) over the
interval [θi, θj ] to obtain another curve σ̃ which agrees with σ outside [θi, θj ].
These two curves differ only by a local, not global, Z2-reflection and so are
non-congruent curves. Note however that while σ ∈ E

m
ν=0, with m ≥ 2k, σ̃

is only in E
k
ν=0, so that these curves are not in the same space. This loss

of derivatives can be cured (only) by going to C∞, and when z′ vanishes to
infinite order at θi and θj . Thus there are regions where ΠD becomes (at
least) a 2− 1 map in certain regions in the C∞ context.

Finally, to conclude this discussion suppose that χ = α − |β′| on an
open θ-interval (θ0, θ1). The surface Σ = ImF is then a flat annulus in this
region. Let f be any smooth function of compact support in (θ0, θ1). Then
the deformation

σs = σ + sfN,

N = ∂z, induces an infinitesimal isometric deformation of Σ, LfNγ = 0,
Thus KerDΠD is now infinite dimensional. Also, for any s and f as above,
the surfaces Σ± generated by

σ± = σ ± sfN

are isometric but not congruent. Thus, one has here the 2− 1 fold behavior
discussed in §2 and §3.

Summarizing, the discussion above proves:
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Proposition 4.7. For any γ = (α, β) ∈ Met∞S1(S2) satisfying (4.17), there
is a C∞ axi-symmetric isometric immersion F : S2 → R

3, so that

F ∗(gEucl) = γ.

The same result holds for Cm smoothness, for any 1 ≤ m < ∞. However,
in general the map

ΠD : Imm∞
S1(S2) → Met∞S1(S2),

may be finite-to-one or ∞-to-one.

Remark 4.8. All of the results above hold for general Eν as in (4.15), when
the condition (4.17) is replaced by

eλα ≥ |β′|,

where λ is determined from ν as in (4.7).

We also note that the infinitesimal rigidity (i.e. KerDΠD = 0) on the
spaces Uk discussed above fails badly when one considers non-axisymmetric
embeddings of axi-symmetric metrics S2 → R

3.18 There is a large classical
literature on this, starting from the remarkable examples of Cohn-Vossen
[22], see also [34], [38], [36].

In conclusion, it would be interesting to understand if some of the com-
plicated behavior of the isometric embedding problem for surfaces of revo-
lution in R

3 exhibited above carries over to general Weyl metrics and the
corresponding Bartnik boundary map in (4.4) or more generally in (2.1).

5. Appendix

In this Appendix, we first collect several standard facts regarding static
vacuum Einstein metrics. Following this, we prove a regularity result for
minimal surfaces in static vacuum spaces used in the proof of Theorem 3.5.

On a Riemannian manifold (M, g) with (local) boundary (∂M, γ) the
Gauss and Gauss-Codazzi equations (also known as the Hamiltonian and
momentum constraint equations) are:

|A|2 −H2 + sγ = sg − 2Ric(N,N),(5.1)

18Thus the symmetry of the metric is not assumed apriori to extend to a sym-
metry of R3.
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δA+ dH = −Ric(N, ·),(5.2)

where N is the unit normal to ∂M and δ is the divergence operator on ∂M .
For static vacuum Einstein metrics, sg = 0 and Ric(N,N) = u−1NN(u).
Using the standard relation Δgv = NN(v) +HN(v) + Δ∂Mv, (5.1) gives

(5.3) 2u−1(Δ∂Mu+HN(u)) = |A|2 −H2 + sγ .

Similarly, the static vacuum equations give Ric(N, ·) = u−1D2u(N, ·) =
u−1(dN(u)−A(du)). It follows that

(5.4) δ(uA) + udH = −dN(u).

or equivalently

δ(uA−N(u)γ) = −udH.

Next, consider the conformally related metric g̃ = u2g. Standard for-
mulas for conformal change of metric show that the static vacuum Einstein
equations (1.4) are equivalent to the system

(5.5) Ricg̃ = 2dν · dν, Δg̃ν = 0,

where ν = log u. Two advantages of these equations are that the Ricci
curvature Ricg̃ is positive, and second, the Ricci curvature is lower order
(1st order) in ν, which is not the case for (1.4).

Next we turn to the regularity properties of local minimal surfaces (V, γ)
in static vacuum Einstein metrics (M, g, u). To begin, as in (3.9), assume a
bound on Q in (3.13), so

(5.6) |sγ |+ |Rmg| ≤ C,

on (V, γ).
We first discuss what uniform control the bound (5.6) gives on the geom-

etry of (M, g) and (V, γ). It follows from the Cheeger-Gromov compactness
theorem (or more simply from the uniformization theorem in 2 dimensions)
that γ is controlled, in harmonic coordinates, in C1,α. Similarly, g is also
controlled in C1,α, cf. also [12]. (In case the geometry is (arbitrarily) col-
lapsed, one may unwrap the collapse in universal covers and obtain the same
conclusion).

Since H = 0, it follows first from the Hamiltonian constraint (5.1) that
A is uniformly bounded in L∞,

|A| ≤ C, on V.
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Next, assume (as in §3) that u is normalized at a base point p ∈ V so that
u(p) = 1. It then follows from (5.3) and elliptic regularity for the Laplacian
on (V, γ) that u is uniformly bounded in L2,p

loc , for any p < ∞:

(5.7) |u|L2,p
loc(V ) ≤ C.

Since Δgu = 0 on (M, g), elliptic regularity for the Laplacian on (M, g)
implies that u is L2,p and so C1,α up to ∂M :

(5.8) |u|L2,p
loc(M) ≤ C,

locally near V . Hence N(u) is bounded in L1,p
loc and so in Cα on V . Finally,

it then follows from the momentum constraint (5.4) and elliptic regularity
for the (δ, tr) elliptic system on (V, γ) that A is bounded in L1,p

loc and so Cα
loc

on V :

(5.9) |A|Cα
loc(V ) ≤ C.

The main step in proving regularity is the following result. Recall g̃ =
u2g.

Lemma 5.1. The system

(5.10) Ricg̃ = 2dν · dν, Δg̃ν = 0,

on (M, g̃, ν) with boundary conditions

(5.11) (γ̃, H)

where H = uH̃ − 2N(ν) on ∂M , is an elliptic boundary value problem in
Bianchi gauge.

We note that H in (5.11) is the mean curvature of ∂M with respect to
g.

Proof. It suffices to prove the result for the linearized system and for defor-
mations h of gM satisfying the Bianchi gauge condtion β(h) = δh+ 1

2dtrh =
0, where the divergence and trace are with respect to the 4-metric gM as
in (1.5). In the interior, the leading order term is just Ric′(h) ∼ −1

2Δg̃h,
which is elliptic with principal symbol −|ξ|2I. The proof that the boundary
conditions (5.11) are elliptic is exactly the same as that given in [7], [14] for
the boundary conditions (γ̃, H̃); thus we refer to [7] or [14] for details.
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Proposition 5.2. Suppose (V, γ) is a (local) minimal surface in a static

vacuum Einstein manifold (M, g, u) satisfying the bound (5.6). Then the

geometry of (V, γ) is bounded in the C∞ norm.

Proof. The proof follows the usual bootstrap method in elliptic PDE. To

begin, by (5.8) we have uniform C1,α control on ν. By (5.10) this gives

uniform Cα control on R̃ic, and hence uniform C2,α control on g̃ in the

interior of M . Next, the Hamiltonian constraint (5.1) in the g̃ metric gives

|Ã|2 − H̃2 + sγ̃ = sg̃ − 2Ricg̃(Ñ , Ñ).

The right side is 1st order in ν, and Ã, H̃ are uniformly controlled in Cα

by (5.9) and the control on ν. Hence sγ̃ is uniformly controlled in Cα. As

above, by the uniformization theorem (or Cheeger-Gromov compacness the-

orem) it follows that γ̃ is uniformly controlled in C2,α modulo diffeomor-

phisms, i.e. in harmonic coordinates. It then follows from boundary regular-

ity for elliptic systems, cf. [12] that g̃ is uniformly controlled in C2,α up to

the boundary V . This in turn gives C1,α control on H̃ = L
˜Ndvg̃/dvg̃ and so,

since H = 0, C1,α control on N(ν). Via the elliptic equation Δ̃ν = 0, this

gives uniform C2,α control on ν up to the boundary V and hence uniform

control of g in C2,α up to the boundary V . This then also gives uniform

control of A in C1,α on V .

This shows that the initial regularity of (M, g) up to the boundary (V, γ)

has been increased by one derivative. Iterating this process then proves the

result.
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