Advances in Theoretical and Mathematical Physics

Volume 25 (2021)

Number 2

Quaternionic analysis, representation theory and physics II

Pages: 379 – 505

DOI: https://dx.doi.org/10.4310/ATMP.2021.v25.n2.a4

Authors

Igor Frenkel (Department of Mathematics, Yale University, New Haven, Connecticut, U.S.A.)

Matvei Libine (Department of Mathematics, Indiana University, Bloomington, In., U.S.A.)

Abstract

We develop further quaternionic analysis introducing left and right doubly regular functions. We derive Cauchy–Fueter type formulas for these doubly regular functions that can be regarded as another counterpart of Cauchy’s integral formula for the second order pole, in addition to the one studied in the first paper with the same title. We also realize the doubly regular functions as a subspace of the quaternionic-valued functions satisfying a Euclidean version of Maxwell’s equations for the electromagnetic field.

Then we return to the study of the original quaternionic analogue of Cauchy’s second order pole formula and its relation to the polarization of vacuum. We find the decomposition of the space of quaternionic-valued functions into irreducible components that include the spaces of doubly left and right regular functions. Using this decomposition, we show that a regularization of the vacuum polarization diagram is achieved by subtracting the component corresponding to the one-dimensional subrepresentation of the conformal group. After the regularization, the vacuum polarization diagram is identified with a certain second order differential operator which yields a quaternionic version of Maxwell equations.

Next, we introduce two types of quaternionic algebras consisting of spaces of scalar-valued and quaternionic-valued functions. We emphasize that these algebra structures are invariant under the action of the conformal Lie algebra. This is done using techniques that appear in the study of the vacuum polarization diagram. These algebras are not associative, but we can define an infinite family of $n$‑multiplications, and we conjecture that they have the structures of weak cyclic $A_\infty$‑algebras. We also conjecture the relation between the multiplication operations of the scalar and non-scalar quaternionic algebras with the $n$‑photon Feynman diagrams in the scalar and ordinary conformal QED.

We conclude the article with a discussion of relations between quaternionic analysis, representation theory of the conformal group, massless quantum electrodynamics and perspectives of further development of these subjects.

The full text of this article is unavailable through your IP address: 18.226.166.207

Published 17 February 2022