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We sketch a construction of Legendrian Symplectic Field Theory
(SFT) for conormal tori of knots and links. Using large N dual-
ity and Witten’s connection between open Gromov–Witten invari-
ants and Chern–Simons gauge theory, we relate the SFT of a link
conormal to the colored HOMFLY-PT polynomials of the link. We
present an argument that the HOMFLY-PT wave function is de-
termined from SFT by induction on Euler characteristic, and also
show how to, more directly, extract its recursion relation by elimi-
nation theory applied to finitely many noncommutative equations.
The latter can be viewed as the higher genus counterpart of the re-
lation between the augmentation variety and Gromov–Witten disk
potentials established in [1] by Aganagic, Vafa, and the authors,
and, from this perspective, our results can be seen as an SFT ap-
proach to quantizing the augmentation variety.
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1. Introduction

We start this introduction by reviewing background material and then, in
the light of this review, discuss the new results established in the paper. Be-
fore beginning, we want to make the important disclaimer that, from a strict
mathematical rather than physical viewpoint, both some of the background
results and the main constructions in this paper are not rigorously proved
and should be considered as conjectures. We will indicate certain points
throughout the paper where it is particularly true that rigorous mathemat-
ical steps are missing.

1.1. Background

Let K ⊂ M be a link in an orientable 3-manifold M . The cotangent bundle
T ∗M is a symplectic manifold with symplectic form ω = −d(p dq), where p dq
is the Liouville 1-form naturally associated to M . The conormal LK of K is
the set of all covectors in T ∗M along K that annihilate the tangent vectors
to K at the corresponding point in M . Then LK is a Lagrangian submanifold
with one component for each component of K, each diffeomorphic to S1 ×
R2. The pair (T ∗M,LK) is non-compact but has ideal contact boundary
(ST ∗M,ΛK), where ST ∗M denotes the spherical cotangent bundle, which
can be represented as the unit conormal bundle of T ∗M with respect to some
Riemannian metric with the contact form equal to the restriction of p dq,
and where ΛK = ST ∗M ∩ LK is a Legendrian torus (i.e., outside a compact
subset, (T ∗M,LK) looks like ([0,∞) × ST ∗M, [0,∞) × ΛK)).

Seminal work of Witten [29] relates U(N) Chern–Simons gauge theory in
M , with insertion of the monodromy along the link K ⊂ M , to the colored
HOMFLY-PT polynomial of K and further to open topological string in
T ∗M with N branes along the 0-section M and one brane along LK .

Let M = S3 and K = K1 ∪ · · · ∪Kk, where Kj are the connected com-
ponents of K. In this case, Ooguri–Vafa [25] found that the topological
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string in T ∗S3 with N branes on S3 and 1 on each LKj
corresponds to

open topological string in the resolved conifold X (the total space of the
bundle O(−1)⊕2 → CP 1) with 1 brane on each LKj

only (i.e., closing off all
boundaries in the N copies of the zero section by disks, see [26]) provided
t = area(CP 1) = Ngs, where gs denotes the string coupling constant. Here
we abuse notation and use LKj

to denote a Lagrangian in X that corre-
sponds to the conormal LKj

in T ∗S3. The Lagrangian in X is obtained by
shifting the conormal in LKj

⊂ T ∗S3 off of the zero section along a closed
1-form defined in a tubular neighborhood of Kj and dual to its tangent
vector, see [21].

For the purposes of this paper the outcome of these results is a re-
lation between the colored HOMFLY-PT polynomials and open Gromov–
Witten theory of LK ⊂ X, see [21], that takes the following form. Let x =
(x1, . . . , xk) and define the colored HOMFLY-PT wave function

ΨK(x) =
∑

n=(n1,...,nk)

HK;n(q,Q)en·x

where Q = qN and HK;n(q,Q) is the n-colored HOMFLY-PT polynomial.
Here n-colored means that the component Kj is colored by the nth

j symmetric
representation of U(N).

We next consider the open Gromov–Witten potential. The relative ho-
mology H2(X,LK) is generated by classes t corresponding to the generator
of H2(X) and xj (well-defined up to adding multiples of t) corresponding to
the generator of H1(LKj

). Let

FK(x,Q, gs) =
∑

χ,r,n

CK;χ,r,n g
−χ
s Qren·x

where CK;χ,r,n counts (generalized) holomorphic curves of Euler characteris-

tic χ that represent the relative homology class rt +
∑k

j=1 njxj ∈ H2(X,LK).
Then the Ooguri–Vafa result [25] says that

ΨK(x) = eFK(x), for q = egs , Q = et = eNgs ,

where the eFK(x) can be interpreted as counting all disconnected curves.
In [1, 2] the short wave asymptotics of the wave function ΨK were re-

lated to knot contact homology. Knot contact homology is the homology of
the Chekanov–Eliashberg dg-algebra AK = CE(ΛK) of the unit conormal
ΛK of a knot or link. This is a graded algebra over C[H2(ST

∗S3,ΛK)] (in



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2070 — #4
✐

✐

✐

✐

✐

✐

2070 T. Ekholm and L. Ng

degree 0) generated by the Reeb chords c of ΛK , which in this case corre-
spond to geodesics γ in S3 with endpoints on K that are perpendicular to
K at their endpoints. One can position ΛK so that the grading |c| of each
Reeb chord c coincides with the Morse index of the corresponding geodesic
γ. Therefore, AK is supported in degrees ≥ 0. The differential d : AK → AK

counts holomorphic disks u : (D, ∂D) → (R× ST ∗S3,R× ΛK) with one pos-
itive and several negative punctures where the disk is asymptotic to Reeb
chord strips. After choosing capping disks for the Reeb chords, such disks
represent relative homology classes in H2(ST

∗S3,ΛK). We pick generators
for this homology group: xj and pj corresponding to the longitude and merid-
ian in H1(ΛKj

) and t corresponding to a generator of H2(ST
∗
ptS

3), the second
homology of the fiber. This way, AK can be viewed as an algebra over the
ring

C[e±xj , e±pj , Q±1]kj=1, where Q = et.

The differential in AK was computed explicitly from a braid presentation of
K in [8].

To describe the relation between open topological strings and knot con-
tact homology we think of Q ∈ C∗ as a deformation parameter and AK as
a family of algebras over the family of complex tori (C∗)2k × C∗, where the
coordinates in (C∗)2k correspond to e±xj and e±pj , j = 1, . . . , k. We con-
sider the locus in the coefficient space (C∗)2k × C∗ where AK admits an
augmentation; an augmentation is a unital chain map

(1) ϵ : AK → C,

where C lies in degree 0 and is equipped with the zero differential. The clo-
sure of the highest-dimensional part of this locus is a variety VK ⊂ (C∗)2n ×
C∗ called the augmentation variety.

To see how AK determines VK , note that the differentials of the degree 1
generators give a collection of polynomials {Pcr(a1, . . . , am)}|cr|=1, with coef-

ficients in C[e±xj , e±pj , Q±1]kj=1, in the degree 0 generators a1, . . . , am. The
chain map equation for ϵ reduces to ϵ ◦ d = 0, and hence VK is the locus
where the polynomials {Pcr(a1, . . . , am)}|cr|=1 have common roots, corre-
sponding to ϵ(aj), j = 1, . . . ,m. The locus VK is thus an algebraic variety
that can be determined by elimination theory.

Consider the semi-classical approximation of the count ΨK(x) of discon-
nected holomorphic curves in X with boundary on LK :

ΨK(x) = exp
(
g−1
s FK;0(x) + FK;1(x) + O(gs)

)
.
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From the open string expression for ΨK , we identify FK;0(x) = WK(x) as
the Gromov–Witten disk potential for the Lagrangian filling LK , FK;1(x)
the annulus potential, and so on for lower Euler characteristic.

In [1, Section 6.4] it was argued that

pj =
∂WK

∂xj
, j = 1, . . . , k,

gives a local parameterization of a branch of VK . Hence VK is a complex
Lagrangian variety with respect to the standard symplectic form

∑k
j=1 dxj ∧

dpj on (C∗)2k. In [1, Section 8], the quantization of the augmentation variety
VK was discussed from a physical point of view. Here VK appears as the
characteristic variety for a D-module. The D-module arises from the “D-
model”, which is the A-model topological string in (C∗)2n with a space
filling coisotropic brane and a Lagrangian brane on VK . This theory has a
unique ground state, leading to a wave function on VK that then generates
the D-module.

In this paper we discuss the quantization of VK from the point of view
of A-model topological string in X with one Lagrangian brane on LK , i.e.,
the open Gromov–Witten potential of LK . We study in particular how to
determine the corresponding wave function and D-module in terms of the
Symplectic Field Theory (SFT) of ΛK , i.e., the holomorphic curves with
boundary on LK at infinity in X.

1.2. Legendrian SFT

In [10], a framework for holomorphic curve theories in symplectic cobordisms
called Symplectic Field Theory (SFT) was introduced. Here the holomorphic
curves are asymptotic to closed Reeb orbits in the closed string case and to
Reeb chords in the open string case. For closed strings the full version of
SFT including curves of all genera was constructed, but in the open string
case the construction stopped at the most basic level of SFT, the Chekanov–
Eliashberg dg-algebra discussed above. The obstructions to a higher genus
generalization of CE for open strings are related to the codimension 1 bound-
ary in the moduli space of holomorphic curves that corresponds to so-called
boundary bubbling.

Very briefly, the algebraic structures of closed string SFT come from
identifying the boundary of a 1-dimensional moduli space of holomorphic
curves in a sympletic cobordism as two-level holomorphic curves with a 0-
dimensional curve in the cobordism and a 1-dimensional R-invariant curve
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in the symplectization either above or below, see Figure 1. Here interior
bubbling, as in Figure 2, has codimension 2 and carries no homological
information and can hence be neglected. In open string SFT one consid-
ers holomorphic curves with boundary on a Lagrangian submanifold, and
here two-level curves do not account for the whole codimension 1 bound-
ary. Boundary bubbling has codimension 1 and cannot be disregraded, see
Figure 3.

Figure 1: Two-level curves in closed string SFT. The top level is in the
symplectization, the bottom in the cobordism.

Figure 2: Interior bubbling has codimension two.

Partial generalizations of the Chekanov–Eliashberg dg-algebra are known
in the open string case. More specifically, flavors of so-called rational SFT, in-
corporating disks with several positive punctures, were considered in [6, 23].

The main tool in this paper is a higher genus generalization of knot
contact homology. More precisely, we sketch a construction of a holomorphic
curve theory that includes curves of arbitrary genus for the conormal of a
link LK ⊂ X. The structure of the theory is analogous to SFT. We call it
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Figure 3: Boundary bubbling has codimension one.

Legendrian SFT and use notation analogous to that in [10] in the closed
string case.

Complete proofs of the main SFT equation require the use of an abstract
perturbation scheme for holomorphic curves in combination with the extra
structures that we introduce here (closely related to bounding cochains in
Floer cohomology as introduced by Fukaya–Oh–Ohta–Ono [13]). Perturba-
tion schemes such as Kuransihi structures [13], polyfolds [15, 16], or algebraic
topologically defined virtual fundamental cycles [27] give a framework for
defining solution spaces, which then must have required properties with re-
spect to the extra structures. Existence of suitable perturbation schemes in
combination with geometric data related to the bounding cochains of [13]
and similar to that considered here was studied in the setting of Kuranishi
structures in a series of works by Iacovino, see [17–20]. Here we will not dis-
cuss technical details of perturbation schemes for direct calculations. Rather,
we focus on explaining how to add extra geometric data and how to define
generalized holomorphic curves that allow us to remove boundary splitting
from the moduli space boundary in such a way that the curve counts needed
to extract information from Legendrian SFT become accessible. We study
simple examples in detail computing the theory directly in a combinatorial
way from a braid presentation. After the preparation of this paper, Ekholm
and Shende gave an approach to curve counting in [9] which we expect can
be adapted to the SFT setting here, see Remark 3.6.

We next explain the structure of Legendrian SFT. The theory is defined
in terms of what we call generalized holomorphic curves, defined in terms of
ordinary holomorphic curves and additional geometric data. For details of
the definition we refer to Section 2.3. Consider R× ΛK ⊂ R× ST ∗S3. The
main object is the Hamiltonian, which counts rigid generalized holomorphic
curves with arbitrary positive and negative punctures with boundary on
R× ΛK . Here we have an R-invariant almost complex structure leading to
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an R action on the space of holomorphic curves, and “rigid” means that the
relevant moduli space is 0-dimensional once we mod out by the R action.

To organize the count in the Hamiltonian, we associate to the Reeb
chords cj of ΛK formal variables cj and dual operators ∂cj such that

∂cj (ck) = δjk,

and such that the operators satisfy the usual graded sign commutative rules.
For a word c = c1 · · · cm of Reeb chords we write ℓ(c) = m for its length, and
∂c = ∂cm · · · ∂c1 for the corresponding dual word of operators.

Write HK for the generating function of rigid holomorphic curves with
arbitrary positive and negative punctures with boundary on R× ΛK :

HK =
∑

χ,k,m,r,c+,c−

HK;χ,n,m,r,c+,c− g−χ+ℓ(c+)
s en·xem·pQr c+∂c− .

Here the sum ranges over all words of Reeb chord asymptotics such that
|c+| − |c−| = 1 and HK;χ,k,m,r,c+,c− counts the number of rigid curves with
positive asymptotics at c+ and negative asymptotics at c−, with Euler
characteristic χ, and in relative homology class n · x + m · p + rt, where
(x, p) = (x1, p1, . . . , xk, pk) is a basis in H1(ΛK) and t a generator in H2(X),
as above.

We will use only a small piece of the algebraic structure of SFT and
restrict attention to the most basic moduli spaces corresponding to a certain
part of the Hamiltonian. More precisely, if c is a Reeb chord of grading
|c| = 1, we write Hc

K for the sum of all terms in HK with

c+ = ca,

where a is a word of degree 0 chords. Note that this forces c− = a′, where
also a′ is a word of degree 0 generators.

We write FK for the SFT-potential, the generating function of rigid
curves with positive punctures and boundary on LK :

FK =
∑

χ,k,r,a+

FK;χ,k,r,a+ g−χ+ℓ(a+)
s ekxQr a+,

where the sum ranges over all Reeb chord words a with |a| = 0. The key
equation of SFT that we will be using here takes the form

(2) e−FK HK |pj=gs
∂

∂xj

eFK = 0,
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and expresses the fact that the boundary of a compact 1-manifold has alge-
braically 0 points, as follows. The exponential counts all disconnected curves
and the negative exponential removes additonal 0-dimensional curves not
connected to the 1-dimensional piece. The differential operators ∂aj

in HK

act on Reeb chords and the substitutions pj = gs
∂

∂xj
, j = 1, . . . , k have the

enumerative meaning of attaching curves along bounding chains intersecting
the boundary of the 1-dimensional curves at infinity. We point out that the
latter also gives a direct enumerative interpretation of the standard quan-
tization scheme where x̂j is a multiplication operator and p̂j = gs

∂
∂xj

. Note

also that (2) implies the simpler equation

(3) HK |pj=
∂

∂xj

eFK = 0.

We will use both forms.
Equation (3) is the quantized version of the chain map equation that

relates the knot contact homology and the Gromov–Witten potential. We
show that in basic examples, applying elimination theory in this noncom-
mutative setting, we get a quantization

ÂK;j(e
x̂, ep̂, Q) = 0, j = 1, . . . , s

of the augmentation variety (which corresponds to the commutative gs = 0
limit of the defining equations for VK discussed above) such that

ÂK;jΨK = 0, j = 1, . . . , s.

In these simple examples we also verify that ÂK;j agree with the recursion
relation for the colored HOMFLY-PT polynomial exactly as expected from
large N duality. We point out that our conjectural definition of SFT includes
also a definition of the open Gromov–Witten invariant of LK , see [17] for
similar results.

Remark 1.1. In our construction of Legendrian SFT, we focus on the
important special case of Lagrangian conormal fillings LK ⊂ X of ΛK . Our
construction utilizes the topology of the conormal LK ≈ S1 × R2. Similar
more involved constructions likely work for Lagrangian fillings of ΛK of more
complicated topology. We leave possible generalizations to future work.



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2076 — #10
✐

✐

✐

✐

✐

✐

2076 T. Ekholm and L. Ng

1.3. Recursive formulas

We also give a direct recursive calculation of the wave function ΨK , show-
ing how to compute it genus by genus from data of holomorphic curves
at infinity. In fact we further show that it is possible to choose an almost
complex structure so that all relevant holomorphic curves at infinity have
the topology of the disk. The main underlying principle of this recursion
is a calculation of the linearized Legendrian contact homology (a linearized
version of the Chekanov–Eliashberg dg-algebra) at a general point of the
augmentation variety (where the linearized homology can be identified with
the tangent space). We point out that that our recursion takes place in the
A-model only (unlike so-called topological recursion, which is a B-model
calculation). In fact, the first step of our recursion gives what is called the
annulus kernel for general knots, a central ingredient in topological recur-
sion.

1.4. Augmentation varieties for knots in more

general 3-manifolds

We also consider analogues of the relation derived for the large N dual of
knots in the 3-sphere for knots in more general 3-manifolds. We show in
particular that the expected connection between Kähler classes of the large
N dual and free homotopy classes of loops in the 3-manifold appears in knot
contact homology in the coefficient ring. Here the coefficient ring is the orbit
contact homology which in degree 0 can be shown to be generated by the
free homotopy classes.

1.5. Examples

In the last section of the paper we illustrate our results by working out a
number of examples in detail. More precisely, we study the unknot, the Hopf
link, and the trefoil in S3, and the line RP 1 in RP 3.

2. The SFT potential for conormals of links

In this section we outline a definition of the open Gromov–Witten potential,
or in the language of this paper the SFT potential, for conormals ΛK ⊂
ST ∗S3 of links, filled by Lagrangian conormals LK in the resolved conifold
X. (We get T ∗S3 as a special case when the area of the sphere in X is set



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2077 — #11
✐

✐

✐

✐

✐

✐

Higher genus knot contact homology 2077

to zero.) The construction is phrased in terms of a special Morse function
on LK and an additonal relative 4-chain CK with ∂CK = 2 · LK .

The section is organized as follows. In Section 2.1 we describe the addi-
tional data we use in our main construction. In Section 2.2 we describe how
to use the data to construct a version of bounding chains for holomorphic
curves as in [13]. In Section 2.3 we define generalized holomorphic curves
that are counted in the Gromov–Witten potential and in Section 2.4 we then
define the SFT potential.

2.1. Additional data for moduli spaces

Consider the conormal Lagrangian LK ⊂ X, of a link K = K1 ∪ · · · ∪Kk.
We view the resolved conifold as a symplectic manifold with an (asymptotic)
cylindrical end, the symplectization [0,∞) × ST ∗S3 of the unit cotangent
bundle of S3. Likewise we view the conormal as having (asymptotic) cylin-
drical end [0,∞) × ΛK ⊂ ST ∗S3.

In [1] the main relation between the augmentation variety and the
Gromov–Witten disk potential (as well as the definition of the disk potential
itself) was obtained using so-called bounding chains: non-compact 2-chains
in LK that interpolate between boundaries of holomorphic disks and a multi-
ple of a fixed longitude curve in ΛK at infinity. Here we need similar bounding
chains for curves of arbitrary Euler characteristic. The main difference from
the case of disks is the following: instances in a 1-parameter family of curves
when the boundary of the curve self-intersects can be disregarded for disks
but for higher genus curves the holomorphic curve with self-intersection can
be glued to itself creating a curve of Euler characteristic 1 below that of
the original curve. Because of this phenomenon, it is not sufficient to use
bounding chains only for rigid curves, as in the disk case. We deal with this
by constructing dynamical bounding chains that move continuously with
holomorphic curves varying in a 1-parameter family.

2.1.1. An additional Morse function on conormals. Consider a Morse
function f : LK → R of the following form:

• The critical points of f lie on Kj and are: a minimum (index 0 critical

point) κj0 and an index 1 critical point κj1 (in particular, f has no
maxima).

• The flow lines of ∇f connecting κ0j to κ1j lie in Kj .

• Outside a small neighborhood of Kj , the function f is radial and ∇f
is the radial vector field along the fiber disks in LKj

≈ Kj × R2.
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See Figure 4. Note that the unstable manifold W u(κ1j ) of κ1j is a disk that
intersects ΛKj

in the meridian cycle pj .

κ1

κ0

W u(κ1)

Figure 4: The gradient flow of the Morse function f : LK → R.

2.1.2. A 4-chain with boundary 2 · LK . The Gromov–Witten poten-
tial will be defined using holomorphic curves with boundaries in general
position with respect to the gradient vector field ∇f . In 1-parameter fam-
ilies there are isolated instances when the boundaries become tangent to
∇f . To keep curve counts invariant as we cross such instances we will use a
certain 4-chain that we describe next. Our construction here was inspired by
the study of self linking of real algebraic links (Viro’s encomplexed writhe,
[28]) from the point of view taken in [5].

We first consider the topology of X − LK . Let N(LK) denote a small
tubular neighborhood of LK and let ∂N(LK) denote its boundary. Represent
K = K1 ∪ · · · ∪Kk as a braid around the unknot and consider a point qj ,
j = 1, . . . , k on each component of the link where the tangent line does not
intersect the link except at the point of contact. Let Pj ≈ (0,∞) × R2 denote
the union of all parallel transports of the fiber of LKj

at the outer points
along the half ray tangent to the knot at qj .

Lemma 2.1. The homology group H3(X − LK) equals Zk and is gener-
ated by ∂N(LKj

)|Kj
≈ Kj × S2, j = 1, . . . , k, and Pj is a Poincaré dual of

Kj × S2.

Proof. By homotopy H3(X − LK) ≈ H3(X −N(LK)). Using excision and
the long exact sequence for H∗(X,N(LK)) one finds that the map

H3(∂N(LK)) → H3(X − LK)

induced by inclusion is an isomorphism. □
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We next construct an R-invariant 4-chain at infinity. Outside a compact
set, the gradient ∇f of the Morse function f : LK → R agrees with the radial
vector field in T ∗S3 and hence J∇f = R, where R is the Reeb vector field
in ST ∗S3. We call a smooth chain σ ⊂ ST ∗S3 regular at the boundary if
the boundary ∂σ is a smooth submanifold and if σ in a neighborhood of ∂σ
agrees with an embedding of ∂σ × [0, ϵ). For regular chains we define the
inward normal vector field along ∂σ as ∂σ

∂t |∂σ×{0}, where t is the standard
coordinate on [0, ϵ).

We define two smooth 3-chains in ST ∗S3 with regular boundary ΛK and
inward normals ±R as follows. Consider the Reeb flow lines parameterized
by [0, ϵ] starting at (q, p) ∈ ΛK . These flow lines project to geodesic arcs
of length ϵ in S3 starting at q ∈ K and perpendicular to K at the start
point. The union of the flow lines is an embedded copy Fϵ of [0, ϵ] × ΛK in
ST ∗S3. Consider its boundary component ∂ϵF corresponding to the flow line
endpoints at ϵ. The union of tori ∂ϵF consists of the union of the lifts of the
boundary circles of the geodesic disks perpendicular to K at q ∈ K. The lift
of such a boundary circle projects to a curve in the unit cotangent fiber at q
which is close to the great circle perpendicular to the tangent vector of K.
The great circle bounds two hemispheres, one containing the unit tangent
of the knot and one containing its negative. Using these hemispheres over
every point in K, we construct two unions of solid tori G± filling ∂ϵF . Define

C∞
K;± = Fϵ ∪G±.

To further explain this construction we consider the following local model
which approximates any knot up to first order. If K corresponds to the x1-
axis in a neighborhood of 0 ∈ R3 with coordinates (x1, x2, x3) then Fϵ, with
coordinates (x, y) = (x1, x2, x3, y1, y2, y3) in T ∗S3, is the subset

Fϵ = {(x, y) = (x1, s cos θ, s sin θ, 0, cos θ, sin θ)} , 0 ≤ s ≤ ϵ, 0 ≤ θ ≤ 2π.

The subsets G± are then

G± =
{

(x, y) = (x1, ρϵ cos θ, ρϵ sin θ,±
√

1 − ρ2, ρ cos θ, ρ sin θ)
}
,

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π.

Lemma 2.2. If C∞
K;± is the 3-chain constructed above then C∞

K;± is a
smooth 3-chain with regular boundary LK and inward normal ±R. Further-
more C∞

K,± meets LK along the boundary only.

Proof. Immediate from the construction. □
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Let v be the vector field defined outside the critical points of f by v(q) =
1

|∇f |∇f , q ∈ LK − {κ0j , κ1j}kj=1. Consider the subsets of N(LK) given by the
closures G±v of

G0
±v = {(q,±tJv) ∈ N(LK) : 0 ≤ t ≤ 1}.

Let G = Gv ∪G−v.

Lemma 2.3. The union G is a regular chain with boundary 2 · LK ∪G′

and inward normals ±J∇f along 2 · LK . Furthermore, if G′ denotes the
boundary component of G that does not lie in LK , then G′ is an embedding
of two copies of LK joined by two 1-handles for each component of K, and
G′ ∪ C∞

K is null homologous in X − LK .

Proof. Note that the outer boundary of G±v consists of

G±v = {(q,±Jv) ∈ N(LK)} ∪
m⋃

j=1

Dκ0
j
∪Dκ1

j
,

where Dκσ
j

denotes the fiber disk at κσj . Here the Dκσ
j
’s come with the

orientation determined by ±v and hence cancel in the boundary of the union
G = Gv ∪G−v since dim(Dκσ

j
) = 3 is odd. The statement on the boundary

of G follows. For the last statement, we simply note that both G′ and C∞
K

intersect the Poincaré duals Pj of the generator of the relavant homology
group, see Lemma 2.1, once and that the intersections cancel. □

We next define CK as follows. Fix a 4-chain C0
K in X − LK with bound-

ary

∂C0
K = G′ ∪ C∞

K

and let

CK = C∞
K × [0,∞) ∪ C0

K ∪G.

The above lemmas then show that CK is a 4-chain with regular boundary
along 2 · LK and inward normal ±J∇f , and, furthermore, that CK intersects
LK only along its boundary and is otherwise disjoint from it. See Figure 5.

2.1.3. Capping disks and general position with respect to trivial

strips. Our constructions of bounding chains below use general position.
For this reason we need to alter the function f and the 4-chain CK above
slightly. The problem is that the chains constructed are not disjoint from
Reeb chord holomorphic strips. Furthermore, as we shall see we will count
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CK

LK

CK

J∇f

∇f

−J∇f

Figure 5: The bounding chain CK near its boundary LK .

intersections of the holomorphic curves with the bounding chains and com-
bine with certain linking and self-linking numbers. For this to work, our
perturbation of the bounding chains needs to be connected to our choice of
capping paths in ΛK , which we discuss next.

Fix a base point in each component of ΛK , and for each Reeb chord
endpoint, fix a real analytic arc connecting it to the base point. In the case
where K has multiple components, we also fix a path joining all of the base
points together; for any pair of base points, some subset of this path will
join that pair.

Assume that the derivative of the path at the Reeb chord endpoint is
distinct from the local stable and unstable manifolds (i.e., the directions
corresponding to the two Kähler angles). For each Reeb chord, consider the
loop consisting of the Reeb chord, the paths between Reeb chord endpoints
and the base points, and the path joining the two base points (if the end-
points of the Reeb chord lie on different components); then fix a 2-chain
whose boundary is this loop. We take this chain to be holomorphic along
the boundary, i.e., to agree with the appropriate half of the complexification
of the real analytic arc near the boundary.

Let I be an index set enumerating all the Reeb chord endpoints. For
each i ∈ I, fix a function gi supported in a small ball around the Reeb chord
endpoint such that ∇gi = vi, where vi is a nonzero vector in the contact
plane at the endpoint. Rename the function f considered above f̃ and let

f = f̃ + ϵ
∑

I

gi.

Now let the 4-chain CK instead start out along ±J∇f .
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Lemma 2.4. Let c be a Reeb chord of ΛK ; then there is a uniform neigh-
borhood R× U of the boundary in the trivial Reeb chord strip R× c such
that the interior of R× U is disjoint from CK .

Proof. Near the Reeb chord endpoint p the strip looks like p + sR whereas
the chain looks like p + s(R + J∇gi), for small s, and ∇gi = vi ̸= 0 which
lies in the contact plane (and hence so does J∇gi). □

2.2. Bounding chains for holomorphic curves

We next associate a bounding chain to each holomorphic curve u : (Σ, ∂Σ) →
(X,LK). Note that we allow u to have positive punctures at Reeb chords.
A bounding chain in this setting is a non-compact 2-chain σu in LK such
that ∂σu equals u(∂Σ) completed by capping paths and such that the ideal
boundary of σu is a curve in ΛK that is homologous to a multiple of the
longitude, i.e. homologous to

∑
j njxj + mjpj , where mj = 0, for all j. We

define it as follows.
Consider first the case of a holomorphic curve u : (Σ, ∂Σ) → (X,LK)

without punctures. Then its boundary u(∂Σ) is a collection of closed curves
contained in a compact subset of LK . By general position, u(∂Σ) does not
intersect the stable manifold of the index 1 critical points κ1j of f . Let σ′

u

denote the set of all flow lines of ∇f starting on u(∂Σ). Then since f has no
index 2 critical points and since ∇f is vertical (except for small disks around
the Reeb chord endpoints) outside a compact set, we find that σ′

u ∩ (T × ΛK)
is a closed curve, independent of T for all sufficiently large T > 0. Write
∂∞σ′

u ⊂ ΛK for this curve.
View σ′

u as a non-compact 2-chain with ∂σ′
u = u(∂Σ) and with ∂∞σ′

u a
curve in the homology class n · x + m · p in H1(ΛK). Let W u(κ1j ) denote the

unstable manifold of κ1j . Note that W u(κ1j ) is a 2-disk, with ideal boundary
representing the meridian class pj . Define

(4) σu = σ′
u −

k∑

j=1

mjW
u(κ1j ),

where m = (m1, . . . ,mk). Then σu has the desired properties.
Consider next the general case when u : (Σ, ∂Σ) → (X,LK) has punc-

tures at Reeb chords c1, . . . , cm. Let δj denote the capping disk of cj . The
main difference in this case is that the boundary u(∂Σ) is not a closed curve.
We use the capping disks to close it up as follows. Fix a sufficiently large
T > 0 and replace u(∂Σ) in the construction of σ′

u above by the boundary
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of the chain

u(Σ) ∩
(
X − ([T,∞) × ST ∗S3)

)
∪

m⋃

j=1

δj

and then proceed as there. This means that we cap off the holomorphic curve,
keeping it holomorphic along the boundary by adding capping disks, and
construct a bounding chain of this capped disk. Here we take T sufficiently
large so that the region where the disk is altered lies in the end where the
whole family of curves in which the curve under consideration lives are close
to Reeb chords.

2.3. Generalized holomorphic curves, moduli spaces, and the

SFT-potential

In this subsection we define generalized holomorphic curves; counts of these
generalized curves will give the Gromov–Witten and SFT potentials. We
first consider the definition of certain linking numbers that will be used in
defining generalized holomorphic curves.

2.3.1. Linking numbers of holomorphic curves. Let u and v denote
two distinct holomorphic curves with bounding chains σu and σv as defined
above in Section 2.2. Then the boundaries of u and v are oriented curves ∂u
and ∂v in LK . Define the linking number lk(u, v) as the following intersection
number:

lk(u, v) := [∂u] · σv = [∂v] · σu.
To see the second equality note that σu ∩ σv is an oriented 1-chain inter-
polating between (∂u) ∩ σv, (∂v) ∩ σu, and the intersection (∂∞u) ∩ (∂∞v)
in ΛK . Since the intersection number at infinity is zero by construction, it
follows that [∂u] · σv = [∂v] · σu.

In order to define a similar self-linking number slk(u, u) between u and
itself, we pick a normal vector field ν along ∂u in general position with
respect to ∇f . Let ∂uν denote the curve ∂u shifted slightly along ν. We
then shift a neighborhood of ∂u in u along a small extension of the vector
field Jν. Then the shifted version uJν of u is a 2-chain transverse to the 4-
chain CK , and CK and uJν have disjoint boundaries. Define the self linking
number as

slk(u, u) = [∂uν ] · σu + [uJν ] · CK .

Note that slk(u, u) is independent of the choice of ν: if we change ν by a full
twist then first term on the right hand side changes by ±1 and the second
by ∓1.
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2.3.2. Moduli spaces. We define the interior of the moduli spaces that
we will use. As the curves we consider may well be multiply covered, the
actual definition of the moduli spaces requires the use of abstract perturba-
tions. As mentioned previously, we will not discuss the details of the abstract
perturbation scheme used but merely give an outline.

We build the perturbation by induction on energy and Euler character-
istic. The energy concept we use is the Hofer energy. Starting at the lowest
energy level and Euler characteristic, we make all holomorphic curves trans-
versely cut out and transvere with respect to the Morse data fixed. We also
fix appropriate shifting vector fields for the curves. As we increase the energy
level we keep the curves transverse to the Morse data as well as to curves
constructed in earlier steps of the construction. More precisely, a holomor-
phic curve in general position has tangent vector independent from ∇f along
its boundary and we take the shifting vector field ν to be everywhere inde-
pendent to the normal vector field along the boundary defined by ∇f , in
such a way that ∇f , ν, and the tangent vector of the boundary form a pos-
itively oriented frame. Finally we assume that the Jν-shifted holomorphic
curve is transverse to CK .

Elements in the moduli spaces we use consist of the following data:

• Begin with a finite oriented graph Γ with vertex set V (Γ) and edge set
E(Γ).

• To each v ∈ V (Γ) is associated a (generic) holomorphic curve uv with
boundary on LK (and possibly with positive punctures).

• To each edge e ∈ E(Γ) that has its endpoints at distinct vertices, ∂e =
v+ − v−, v+ ̸= v−, is associated an intersection point of the boundary
curve ∂uv−

and the bounding chain σuv+
.

• To each edge e ∈ E(Γ) which has its endpoints at the same vertex v0,
∂e = v0 − v0 = 0, is associated either an intersection point in ∂(uv0)ν ∩
σuv0 or an intersection point in (uv0)Jν ∩ CK .

We call such a configuration a generalized holomorphic curve over Γ and
denote it Γu, where u = {uv}v∈V (Γ) lists the curves at the vertices.

Remark 2.5. Several edges of a generalized holomorphic curve may have
the same intersection point associated to them.

Remark 2.6. Note that the convention for edges with endpoints at dis-
tinct vertices depends on the interplay between the shifting vector field for
multiple copies of a given curve and the choice of obstruction chains. Our
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choice guarantees that there are no contributions to the linking number close
to the boundary of a curve.

We define the Euler characteristic of a generalized holomorphic curve Γu

as

χ(Γu) =
∑

v∈V (Γ)

χ(uv) − #E(Γ),

where #E(Γ) denotes the number of edges of Γ, and the dimension of the
moduli space containing Γu as

dim(Γu) =
∑

v∈V (Γ)

dim(uv),

where dim(uv) is the formal dimension of uv. In particular, if dim(Γu) = 0
then uv is rigid for all v ∈ V (Γ) and if dim(Γu) = 1 then dim(uv) = 1 for
exactly one v ∈ V (Γ) and uv is rigid for all other v ∈ V (Γ).

As usual our moduli spaces are branched oriented orbifolds. In fact we
will consider only moduli spaces of dimension 0 and 1 and hence we can
think of them as branched manifolds rather than orbifolds. The weight of
the moduli space at Γu is

w(Γu) =
1

N(Γ)
2−|E(Γ)|

∏

v∈V (Γ)

w(uv),

where w(uv) is the weight of the usual moduli space at uv and where N
is a symmetry factor coming from exchanging identical edges and vertices.
We orient the moduli space using the product of the orientations over the
vertices and the intersection signs at the edges.

The relative homology class represented by Γu is the sum of the homol-
ogy classes of the curves uv at its vertices, v ∈ V (Γ).

2.4. The SFT-potential

We define the SFT-potential to be the generating function of rigid general-
ized curves (over graphs Γ) as just described:

FK =
∑

n,r,c+

FK;n,r,χ,c+ g−χ+ℓ(c+)
s en·xQr c+,



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2086 — #20
✐

✐

✐

✐

✐

✐

2086 T. Ekholm and L. Ng

where FK;n,r,χ,c+ counts the algebraic number of generalized curves Γu in
homology class n · x + rt ∈ H2(X,LK) with χ(Γu) = χ and with positive
punctures according to the Reeb chord word c+.

We will sometimes use the decomposition of FK according to the number
of positive punctures:

FK = F0
K + F1

K + . . . ,

where F
j
K counts the curves with j positive punctures. We then define the

open Gromov–Witten potential of LK to be the constant term F0
K , which

counts configurations without positive punctures. In particular, the wave
function that counts disconnected curves without positive punctures is

ΨK = eF
0
K .

For computational purposes we next note that we can rewrite the sum
for FK in the following way. Instead of the complicated oriented graphs with
many edges considered above, we look at unoriented graphs with at most
one edge connecting every pair of distinct vertices and no edge connecting
a vertex to itself. We call such graphs simple graphs.

As before we have rigid curves at the vertices of our graphs. Above we
defined the linking number between distinct holomorphic curves, lk(u0, u1),
and the self linking number of one holomorphic curve, slk(u). If e is an edge
in a simple graph ∆ with distinct endpoints v0 and v1, we define

lk(e) = lk(uv0 , uv1),

where uv0 and uv1 are the curves at the vertices at the end points of e. If v
is a vertex in a simple graph ∆ we define

slk(v) = slk(uv),

where uv is the curve at v. With these definitions, we now weight each simple
graph by a gs-dependent weight:

W (∆) =
1

N(∆)

∏

v∈V (∆)

w(uv) g−χ(uv)
s e

1
2gs slk(v)

∏

e∈E(∆)

(
egs lk(e) − 1

)
,

where N(∆) is a symmetry factor coming from exchanging identical vertices.
Furthermore, we can assign a sign to each simple graph ∆ given by the
product of the orientations of the curves at its vertices.
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We then get a simplified formula for the SFT-potential:

FK =
∑

n,k

Gn,r e
n·xQrc+,

where Gn,r is the algebraic sum of gs-dependent weights of all simple graphs
in homology class n · x + nt with positive punctures according to c+. This
follows from counting the contributions to the potential lying over a given
simple graph, where we project from a complicated graph to a simple one by
identifying all edges with the same pair of distinct endpoints and by deleting
all edges with endpoints at the same vertex.

3. Compactification of 1-dimensional moduli spaces

and the SFT-equation

The generalized holomorphic curves that we defined in Section 2.3 consti-
tute the open strata of the 1-dimensional moduli spaces that underlie the
SFT-equation. Such curves correspond to graphs Γ with a generic curve of
dimension 1 at exactly one vertex. Besides the usual holomorphic degener-
ations in 1-parameter families, there are new boundary phenomena arising
from the 1-dimensional curve becoming non-generic. In this section we study
this and argue that all degenerations, except for breaking at infinity, can-
cel out. This means that the boundary of each 1-dimensional moduli space
corresponds to two-level curves only, which then leads to the SFT-equation.

3.1. Boundary phenomena in moduli spaces of dimension one

Consider a generalized holomorphic curve Γu of dimension 1. We have the
following boundary phenomena that come from degenerations of the holo-
morphic curves uv at the vertices v ∈ V (Γ):

(1) Splitting at Reeb chords, see Figure 6.

(2) Hyperbolic boundary splitting, see Figure 7.

(3) Elliptic boundary splitting, see Figure 8.

In addition, since we require that the 1-dimensional curve in our graph is
generic with respect to the auxiliary Morse function f and the 4-chain CK ,
there are also the following degenerations:

(4) Crossing the stable manifold of κ1: the boundary of the curve intersects
the stable manifold of κ1, see Figure 9.



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2088 — #22
✐

✐

✐

✐

✐

✐

2088 T. Ekholm and L. Ng

Figure 6: Splitting at Reeb chords. The top part of the diagram is in the
symplectization, the bottom in X.

Figure 7: Hyperbolic boundary splitting.

(5) Boundary crossing: a point in the boundary mapping to a bounding
chain moves out across the boundary of a bounding chain, see Figure
10.

(6) Interior crossing: An interior marked point mapping to CK moves
across the boundary LK of CK , see Figure 11.

(7) Boundary kink: The boundary of a curve becomes tangent to ∇f at
one point, see Figure 12.

(8) Interior kink: A marked point mapping to CK moves to the boundary
in the holomorphic curve, see Figure 12.

We must also consider boundary phenomena near the Reeb chord endpoints
where we have fixed capping paths:

(9) The leading Fourier coefficient at a positive puncture vanishes.

Lemma 3.1. For generic data, (1) − (9) is the complete list of degenera-
tions in 1-parameter families of generalized curves.
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LK LK

Figure 8: Elliptic boundary splitting.

κ0

κ1

Figure 9: Crossing the stable manifold of κ1.

Figure 10: Boundary crossing.

Proof. Codimension one degenerations of holomorphic curves with boundary
in a Lagrangian are well-known and correspond to (1) − (3).

Consider the boundary of the curve. For generic data this is a 1-parameter
family in general position with respect to the gradient vector field of the
Morse function f . The corresponding degenerations are (4) and (7). Also,
the family of boundary curves is generic as a family of smooth curves in LK .
The corresponding degeneration is (5).
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CK CK

u

u
LK LK

Figure 11: Interior crossing.

∇f

u ∩ CK∂u

∂u

Figure 12: From left to right: boundary kink; from right to left: interior
kink.

Next consider the interior of the curve. We have a family of surfaces with
boundary in general position with respect to CK and its boundary LK . The
corresponding degenerations are then (6) and (8).

Finally, we must consider general position with respect to capping paths.
Near the capping path endpoint the curve admits a Fourier expansion and
in a generic 1-parameter family, degenerations correspond to transverse van-
ishing of the Fourier coefficient in the direction of leading asymptotics. The
corresponding degeneration is (9). □

3.2. Invariance in 1-parameter families

In this subsection we argue that the generating function for generalized holo-
morphic curves at generic instances is independent of the particular instant.
This also leads to invariance of the open Gromov–Witten potential. More
precisely, we aim to justify the following result (see however Remark 3.6 for
a discussion of a missing piece of the argument).

Theorem 3.2.

(a) Let c+ be a word of Reeb chords of total grading 1. Let M(c+) de-
note the moduli space of generalized holomorphic curves in X with
boundary on LK , with positive punctures at c+. Then M(c+) is a
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weighted branched oriented 1-manifold with boundary given by the mod-
uli space of two-level generalized holomorphic curves of the following
form: one R-invariant family of generalized curves in the symplectiza-
tion R× ST ∗S3, along with rigid generalized holomorphic curves in X
attached at Reeb chords and at bounding chains.

(b) Let s ∈ I be a generic 1-parameter family of perturbations for holo-
morphic curves in (X,LK). Let

FK(s) =

∞∑

j=0

F
j
K(s)

denote the generating function for generalized holomorphic curves in
(X,LK). Then FK(s) is independent of s ∈ I.

Proof. Lemma 3.1 implies that it suffices to show that the boundary degen-
erations (2) − (9) cancel out. We show this below in a sequence of lemmas
that together then establish the theorem. □

We next consider the lemmas needed to demonstrate the invariance re-
sult in Theorem 3.2. We first consider the degeneration (4):

Lemma 3.3. The moduli space of generalized holomorphic curves does not
change under degeneration (4), i.e., when the boundary of a holomorphic
curve crosses the unstable manifold of κ1j .

Proof. Recall the definition (4) of the bounding chain of a generic holomor-
phic curve u:

σu = σ′
u −m ·W u(κ1),

where σ′
u is the chain of flow lines of ∇f starting on ∂u, and where this chain

intersects the torus at infinity in a curve γ of homology class n · x + m · p.
Note that as ∂u crosses W u(κ1j ), σ

′
u changes by ±W u(κ1j ) and mj changes

by ±1. These two changes cancel out in σu, leaving the bounding chain and
hence the moduli space of generalized holomorphic curves unchanged. □

We next consider the case of hyperbolic boundary splitting (2), which
cancels with boundary crossing (5). The next two results, Lemmas 3.4
and 3.5, depend on the fine points of the perturbation scheme we use; ac-
cordingly, the arguments given here should be considered as outlines rather
than complete proofs, see Remark 3.6.
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Lemma 3.4. A curve with a boundary node in a generic 1-parameter family
appears both as a boundary splitting (2) and as a boundary crossing (5). The
moduli space of generalized holomorphic curves gives a cobordism between
the moduli spaces before and after the instant with the singular curve.

Proof. At the hyperbolic boundary splitting we find a holomorphic curve
with a double point that can be resolved in two ways, u+ and u−. Consider
the two moduli spaces corresponding to m insertions at the corresponding
intersection points between ∂u+ and σu−

and between ∂u− and σu+
.

To obtain transversality at this singular curve for any Euler characteris-
tic we must separate the intersection points. To this end, we use an abstract
perturbation scheme that time-orders the crossings. We then employ usual
gluing at the now distinct crossings.

Consider gluing at m intersection points as ∂u− crosses σu+
. This gives

a curve of Euler characteristic decreased by m and orientation sign ϵm,
ϵ = ±1. Furthermore, at the gluing, the ordering permutation acts on the
gluing strips and each intersection point is weighted by 1

2 since we count pairs
of intersections between boundaries and bounding chains twice (i.e., both
∂u ∩ σv and ∂v ∩ σu contribute). This gives a moduli space of additional
weight

ϵm
1

2mm!
gms .

The only difference between these configurations and those associated with
the opposite crossing is the orientation sign. Hence the other gluing when
∂u+ crosses σu−

gives the weight

(−1)mϵm
1

2mm!
gms .

Noting that the original moduli space is oriented towards the crossing for
one configuration and away from it for the other we find that the two gluings
cancel if m is even and give a new curve of Euler characteristic decreased by
m and of weight 2

2mm! if m is odd. The two resulting moduli spaces without
boundary are depicted in Figure 13. Counting ends of moduli spaces we find
that the curves resulting from gluing at the crossing count with a factor
e

1

2
gs − e−

1

2
gs . □

Next we consider the case of elliptic boundary splitting (3), which cancels
with boundary crossing (6).

Lemma 3.5. A curve which intersects LK in an interior point in a generic
1-parameter family appears both as an elliptic splitting (3) and as a interior
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1

1

2

1

2

m odd m even

Figure 13: 1-dimensional moduli spaces near boundary crossings/boundary
splittings.

crossing (6). The moduli space of generalized holomorphic curves gives a
cobordism between the moduli spaces before and after the instant with the
curve that intersects LK .

Proof. The proof is similar to that of Lemma 3.4. The curve with an inte-
rior point mapping to LK can be resolved in two ways, one curve u+ that
intersects CK at a point in the direction +J∇f and one u− that intersects
CK at a point in the direction −J∇f .

We also have a gluing problem: a constant disk at the intersection point
can be glued to the family of curves at the intersection. As in the hyper-
bolic case, in order to get transversality at any Euler characteristic we must
allow for this to happen many times. To that end we use an abstract per-
turbation that time orders CK and intersection points. We then apply usual
gluing. Since the intersection sign is part of the orientation data for the glu-
ing problem, the calculation of weights is exactly as in the hyperbolic case
above, where this time the 1

2 -factors come from the boundary of CK being
twice LK , ∂CK = 2[LK ]. As there, we conclude that gluing corresponds to
multiplication by e

1

2
gs − e−

1

2
gs . The same factor appears in the difference of

counts when u+ · CK is replaced with u− · CK . The lemma follows. □

Remark 3.6. Lemmas 3.4 and 3.5 use certain properties of the pertur-
bation scheme for holomorphic curves. Except for usual general position
properties we use time ordering of intersections to derive the contribution
at the gluing. To complete the argument one would need to show that there
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actually exists such a perturbation scheme that also satisfies all the usual
general position properties.

From the point of view of [9], the above treatment can be understood as
follows. In [9] curve components of symplectic area zero are left unperturbed
and only so called bare curves (curves with no components of symplectic area
zero) are counted, but in a way that takes into account contributions from
constant curves attached. The arguments above correspond to keeping con-
stants unperturbed, turning a perturbation on near the degenerate instance,
and then turning them back off.

Next we consider tangencies (7) of the boundary to the gradient vec-
tor field that cancel with an interior intersection with CK moving to the
boundary (8).

Lemma 3.7. A curve with boundary tangent to ∇f has a degenerate inter-
section with CK . The moduli space of generalized holomorphic curves gives
a cobordism between the moduli spaces before and after the tangency instant.

Proof. Here the change does not involve gluing of holomorphic curves. It is
simply exchanging an intersection in ∂uν ∩ σu with one in uJν ∩ CK . More
precisely, pick orientation so that the curve right before the tangency mo-
ment has an intersection between ∂uν and σu that disappears after the
tangency. Then there is a corresponding intersection between uJν and CK

born at the tangency moment, see Remark 3.8. The contribution of both
these configurations corresponds to multiplication by eϵ

1

2
gs , where ϵ = ±1.

The lemma follows. □

Remark 3.8. To get a local model for Lemma 3.7 consider local coordi-
nates

(z1, z2, z3) = (x1 + iy1, x2 + iy2, x3 + iy3) ∈ C3

on X with LK corresponding to R3. Assume that the gradient of f is ∇f =
∂x3

. Then CK is locally given by CK = C+
K + C−

K , where

C±
K = ±{y2 = y3 = 0}.

A generic family of holomorphic curves with a tangency with ∂x3
is given

by the map u± : H → C3 (H is the upper half plane),

u±(z) = (z2, z(z2 + s),±z).



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2095 — #29
✐

✐

✐

✐

✐

✐

Higher genus knot contact homology 2095

Leading asymptotic
direction

Capping path

Boundary of
holomorphic curve

Subleading asymptotic

direction

Figure 14: The crossings at a Reeb chord endpoint. The change or invariance
of the real crossing are compensated by the change or invariance of imaginary
crossings.

For s < 0 the projection of u|∂H to the (x1, x2) has a double point at z =
±
√
−s that contributes to linking according to the sign of u±. At s = 0 the

boundary has a tangency with ∂x3
and at s > 0, u±(H) intersects C±

K at
u(i

√
s) with the sign that agrees with the liking sign before the tangency.

We finally consider the degeneration (9) when the holomorphic curve
becomes tangent to the capping path.

Lemma 3.9. The moduli space of generalized holomorphic curves gives a
cobordism between the moduli spaces before and after an instant where the
Fourier coefficient of the leading asymptotic vanishes (corresponding to a
tangency with a capping path).

Proof. As in the proof of Lemma 3.7 there is no gluing of holomorphic disks
involved. We show that the count remains invariant by a local calculation.

At moments of type (9) there are two scenarios: either an intersection
with the capping path disappears or not, depending on which quadrant the
capping path lies in, see Figure 14.
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We have a similar boundary phenomenon for interior intersections that
cross the boundary. To see this we carry out the calculation in coordinates
adapted to the leading and sub-leading directions in Figure 14. Up to expo-
nentially small error we can write the holomorphic curve near the puncture
as follows:

s + it 7→



beβ(s+it)

σeα(s+it)

c(s + it)


 ,

where σ ∈ (−ϵ, ϵ). The imaginary part of the curve is thus given by



beβs sin t
σeαs sin t

ct


 .

The 4-chain filling R× ΛK is locally given by

R3 + iλ(ϵ1, ϵ2, 1),

where λ is real and ϵj are small. Dividing the imaginary part by t we find
that the intersection pattern between the 4-chain and the curve is exactly
as in Figure 14. □

Lemmas 3.3–3.9 show that splitting into a two-level curve is effectively
the only codimension one boundary for a 1-dimensional moduli space of
generalized holomorphic curves. Combined, these establish Theorem 3.2.

3.3. The SFT equation

The above description of the boundary of 1-dimensional moduli spaces of
generalized holomorphic curves leads to the SFT-equation (3).

We let HK denote the count of generalized rigid holomorphic curves Γu

that appear in the upper level of a two-level curve in the boundary. Such
a generalized curve lies over a graph that has a main vertex corresponding
to a curve of dimension 1, which in this case is a curve that is rigid up to
R-translation; at all other vertices there are trivial Reeb chord strips.

Consider such a generalized holomorphic curve Γu, rigid up to translation
in the symplectization. We write c+(u) and c−(u) for the monomials of
positive and negative punctures of Γu, write w(u) for the weight of Γu, n(u) ·
x + m(u) · p + r(u)t for its homology class, χ(u) for the Euler characteristic
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of the generalized curve of Γu. Define

HK =
∑

dim(Γu)=1

w(u) g−χ(u)+ℓ(c+(u))
s en(u)·x+m(u)·p+r(u)t ∂c−(u)c

+(u),

where the sum ranges over all generalized holomorphic curves. As above
this formula can be simplified to a sum over simpler graphs with more
elaborate weights on edges. For example we can rewrite it as a sum over
graphs Γ′

u without edges connecting the main vertex, corresponding to the
1-dimensional curve u that contains the positive puncture of degree 1, as
follows:

HK =
∑

dim(Γ′

u
)=1

w(u)g−χ(u)+ℓ(c+(u))
s e

1

2
slk(u)gs en(u)·x+m(u)·p+r(u)t ∂c−(u)c

+(u),

where slk(u) for the self-linking number of the curve u at the main vertex.

Remark 3.10. If we require special properties of the perturbation scheme
related to avoiding self-linking between trivial Reeb chord strips, this for-
mula can likely be further simplified. We leave such matters to future studies
and work out the relevant contributions here only in the examples we study.
This problem is related to the algebraic problem of finding out how detailed
a knowledge of the Hamiltionian is needed to extract the recursion relation.
In the examples of the trefoil knot and the Hopf link only a small piece of
the Hamiltonian is used.

Lemma 3.11. Consider a curve C at infinity in class n · x + m · p + rt.
The count of the corresponding generalized curves with insertion of bounding
cochains along C equals

e−FKen·xQrem·gs
∂

∂x eFK ,

where m · ∂
∂x =

∑k
j=1mj

∂
∂xj

.

Proof. To see this note that contributions from bounding chains of curves
inserted k times along mjpj corresponds to multiplication by

mk
j

1

k!
g−k
s

∑

k1+···+kj=k

∂k1FK

∂xk1

j

. . .
∂kjFK

∂x
kj

j

.

Here a factor ∂s
FK

∂xs
j

corresponds to attaching the bounding chain of a curve

s times. The lemma follows. □
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With this lemma established we obtain the SFT equation for conormals
LK in the resolved conifold X. More precisely we have the following.

Theorem 3.12. If K is a link and LK ⊂ X its conormal Lagrangian then
the SFT equation

(5) e−FK HK |pj=gs
∂

∂xj

eFK = 0

holds.

Proof. Theorem 3.2(a) and Lemma 3.11 show that the terms in the left hand
side of (5) count the ends of an oriented branched 1-manifold. The theorem
follows. □

Remark 3.13. We point out that counting insertions of bounding cochains
gives an enumerative geometric meaning to the standard quantization scheme
pj = gs

∂
∂xj

. See [7, Section 3.3] for a related path integral argument.

3.4. Framing and Gromov–Witten invariants

Theorem 3.2 implies that the Gromov–Witten potential is independent of
the data used to define the moduli space of generalized holomorphic curves
up to homotopy (e.g., the potential does not depend on the specific choice of
almost complex structure or perturbation). As mentioned previously, large
N duality predicts that if K is a link K = K1 ∪ · · · ∪Kk and F = F0

K(x,Q),
x = (x1, . . . , xk) denotes its Gromov–Witten potential then

ΨK(x,Q) = eF (x,Q) =
∑

n=(n1,...,nk)

HK;n(egs , Q)en·x,

where HK;n is the (unnormalized) HOMFLY-PT polynomial with the com-
ponent Kj colored by the mth

j symmetric representation. It is well-known
that the colored HOMFLY-PT polynomial depends on framing. We derive
this dependence here using our definition of generalized holomorphic curves.

Assume that ΨK above is defined for a framing (x, p) = (x1, p1, . . . , xk, pk)
of ΛK . Then other framings are given by

(x′, p′) =
(
x1 + r1p1, p1, . . . , xk + rkpk, pk

)
,

where r = (r1, . . . , rk) is a vector of integers. Let Ψr
K(x′, Q) denote the wave

function defined using the framing (x′, p′).
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Theorem 3.14. If ΨK(x,Q) is as above then

Ψr
K(x′, Q) =

∑

n=(n1,...,nk)

HK;m(egs , Q) e(
∑

k
j=1

n2
jrj)gsen·x

′

.

Proof. Note first that the actual holomorphic curves are independent of the
framing. In the perturbation scheme used, the change comes from correcting
the boundaries at infinity ∂∞σu to lie in the correct class. Following the
perturbation scheme, this means that for a curve that goes nj times around
the generator of H1(LKj

) we must correct the bounding chain by adding

njrjW
u(κj1). This means that the linking number in LKj

in this class changes

by n2
jrj which explains the factor e(

∑
k
j=1

n2
jrj)gs . □

4. Recursive calculation of the open Gromov–Witten

potential of the Lagrangian conormal

In this section we show how to use Theorem 3.2 to determine ΨK by induc-
tion on the Euler characteristic. The inductive step is closely related to the
tangent space of the augmentation variety expressed in terms of linearized
contact homology. Although this induction is not useful in practice for com-
puting the wave function, individual steps are interesting in themselves. For
example, the first step in the recursion gives the annulus amplitude along
the augmentation curve, which is the central ingredient in Eynard–Orantin
topological recursion, see [3, 11].

4.1. Regularity properties of the disk potential of the conormal

Let K be a link, ΛK ⊂ ST ∗S3 its conormal Legendrian, and LK its conormal
Lagrangian. We will think of LK either as a Lagrangian submanifold in T ∗S3

(when Q = 1) or in the resolved conifold X (when Q ̸= 1).
Write WK = WK(ex1 , . . . , exk , Q) for the disk potential of LK ⊂ X. Our

first result states that WK is an analytic function. (It is a priori not clear that
the generating function for holomorphic disks has any convergence proper-
ties.)

Lemma 4.1. The potential WK is analytic as a function of x = (x1, . . . ,
xk, Q).

Proof. The relation between the disk potential and the augmentation vari-
ety implies that pj = ∂WK

∂xj
gives a local branch of the augmentation variety.
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On the other hand the augmentation variety is an algebraic variety and
determines epj as an algebraic function of (ex1 , . . . , exk , Q). The lemma fol-
lows. □

4.2. Properties of linearized contact homology for 2-component

links

If K = K1 ∪ · · · ∪Kk is a link, ΛK its conormal Legendrian, and

ϵ : CE(ΛK) → C[e±xj , Q]j=1,...,k

an augmentation, then we define the linearized contact homology complex
at ϵ:

CElin
ϵ (K) = ker(ϵ)/ ker(ϵ)2,

with differential dlinϵ induced by the differential d on CE(ΛK). If the aug-
mentation ϵ takes all mixed Reeb chords (i.e., Reeb chords with endpoints
on distinct components of ΛK) to 0, then the linearized complex CElin

ϵ (K)
decomposes as

CElin
ϵ (K) =

⊕

i,j

CElin
ϵ (Ki,Kj),

where the summand CElin
ϵ (Ki,Kj) is generated by Reeb chords starting on

Λi and ending on Λj .
For the remainder of this subsection, we specialize to the 2-component

case. Let K1 and K2 be disjoint knots and LK1
and LK2

their conormal
Lagrangian submanifolds in T ∗S3. Let ϵ0 be the augmentation induced by
the exact Lagrangian filling LK1

∪ LK2
. Then ϵ0 acts trivially on mixed

chords. Consider CElin
ϵ0 (K1,K2). Note that on coefficients, ϵ0(e

pj ) = 1 and
ϵ0(e

xj ) = exj ; also, Q = 1 since we work in T ∗S3.
Write P (K1,K2) for the space of paths starting on K1 and ending on K2

and let C(K1,K2) denote the singular chain complex C∗(P (K1,K2)). Note
that P (K1,K2) fibers over the torus K1 ×K2 with fiber at (q1, q2) equal to
Ω(q1, q2), the space of paths connecting q1 to q2. Using this fibration, we
consider the singular chain complex C∗(P (K1,K2)) with local coefficients
in π1(K1) × π1(K2). We write the group ring variables as ex1 and ex2 since
the generators can be identified with the generators of the first homology of
LK1

and LK2
.



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2101 — #35
✐

✐

✐

✐

✐

✐

Higher genus knot contact homology 2101

+

LK1
LK2

K1 K2

S3

a

Figure 15: Holomorphic curve for Θ(a).

There is a natural chain map

Θ: CElin
ϵ0 (K1,K2) → C(K1,K2)

which maps a mixed chord a to the singular chain Θ(a) defined as follows. Let
M(a;K1,K2) denote the moduli space of holomorphic disks u : (D, ∂D) →
(T ∗S3, LK), with one positive puncture mapping to a and two Lagrangian
intersection punctures mapping to K1 and K2. Then evaluation along the
boundary segment between the two Lagrangian intersection punctures gives
a path connecting K1 to K2 and we let Θ(a) be the chain of paths carried
by the moduli space, see Figure 15.

Lemma 4.2. The map Θ is a chain map that induces an isomorphism on
homology.

Proof. The proof is similar to the proof of [4, Theorem 1.1]. By SFT com-
pactness, the terms of the chain map equation,

∂ ◦ Θ − Θ ◦ dlinϵ0 = 0

can be identified with the endpoints of the 1-dimensional moduli space of
curves with one positive puncture at a mixed Reeb chord and two Lagrangian
intersection punctures at K1 and K2, see Figure 16.

For each binormal geodesic connecting K1 to K2, we have a correspond-
ing Reeb chord from ΛK1

to ΛK2
and the R-invariant trivial strip over this

chord is a minimal action holomorphic strip. Using a Morse theoretic model
of the space P (K1,K2) and the action filtration, we find that the above
chain map is an isomorphism on the first page of the corresponding spectral
sequence and hence a quasi-isomorphism. □
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R× ΛK1
R× ΛK2

LK1
LK2

S3

a

b

Figure 16: The singular boundary ∂Θ(a) of Θ(a) corresponds to two-level
curves.

We next compute the homology of C(K1,K2).

Lemma 4.3. If x1 ̸= 0 or x2 ̸= 0 then the homology of C(K1,K2) vanishes.

Proof. Using the fibration P (K1,K2) → K1 ×K2 we compute the homology
H(C(K1,K2)) via the Leray-Serre spectral sequence with second page

E2
p,q = Hp+q(K1 ×K2;Hq(Ω(k1, k2))).

The homology of the fiber is the homology of the based loop space of S3,
which has rank 1 in even degrees 0, 2, 4, . . . and rank 0 otherwise. Thus there
can be no higher differentials and we find that the homology is computed
on this page. The chain complex is then generated by M of degree 2, s1, s2
of degree 1, and m of degree 0, with

(6)

dM = (1 − ex1)s1 + (1 − ex2)s2

ds1 = (1 − ex2)m

ds2 = −(1 − ex1)m

dm = 0.

This complex is acyclic if x1 ̸= 0 or x2 ̸= 0. □
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Consider now the transition to the resolved conifold X and the augmen-
tation variety pj = ∂WK

∂xj
, j = 1, 2. Let ϵ denote the augmentation induced

by the non-exact Lagrangian filling LK ⊂ X.

Lemma 4.4. The mixed linearized contact homology H∗(CElin
ϵ (K1,K2))

vanishes for ϵ in a Zariski open subset of the branch of the augmentation
variety corresponding to the parameterization pj = ∂WK

∂xj
, j = 1, 2.

Proof. The condition of the differentials in the complex CElin
ϵ (K1,K2) being

surjective is stable under small perturbations and hence we find that the
homology is as claimed in an open subset. The lemma follows. □

4.3. Properties of linearized contact homology for knots

We next consider the counterpart of Lemma 4.4 for a single knot. The dis-
cussion from Section 4.2 needs only small modifications.

The space P = P (K,K) of paths starting and ending on K is the ana-
logue of P (K1,K2). For K1 ̸= K2 we had local coefficients in π1(K1) ×
π1(K2). Here K1 = K2; the coefficients still sit at the endpoints of the paths
and now give a total coefficient in π1(K). Write C∗(P ) for singular chains
with these coefficients. Repeating the argument in Lemma 4.3, we find that
the homology H(C∗(P )) equals 0 for x ̸= 0.

Write P0 ⊂ P for the subspace of constant paths from K to K. The
exact sequence for relative homology (with coefficients in π1(K)) then gives

· · · −→ H∗(P ) −→ H∗(P, P0) −→ H∗(P0) −→ · · · .

Since H∗(P ) = 0, the quotient complex is isomorphic via the connecting
homomorphism to the subcomplex with degree shifted by 1.

Let ϵ0 : CE(ΛK) → C[e±x] be the augmentation induced by the exact
filling LK ⊂ T ∗S3, ϵ0(e

p) = 1. Denote the corresponding linearized chain
complex CElin

ϵ0 (K). As in the two component case, consider the map

Θ: CElin
ϵ0 (K) → C∗(P, P0),

where C∗(P, P0) denotes the quotient complex of singular chains
C∗(P )/C∗(P0) and where, in direct analogy with the two component case,
Θ(a) is the chain of paths carried by the moduli space M(a;K,K) of holo-
morphic disks with positive puncture at a, and two Lagrangian intersection
punctures of K.
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Lemma 4.5. The map Θ is a chain map and a quasi-isomorphism, induc-
ing an isomorphism

H∗(CElin
ϵ0 (K)) → H∗(P, P0) ∼= H∗+1(P0).

Proof. To see that the chain map equation holds we note that the codimen-
sion one boundary of the chain carried by the moduli space M(a;K,K) has
two parts. The first part, exactly as in the 2-component case, consists of
two-level curves with a curve of dimension 1 in the symplectization. The
second part is the locus where the component in the boundary of a map
u ∈ M(a;K,K) that maps to S3 shrinks to a constant. The second degen-
eration thus gives a chain of constant paths, and since we divide out by
chains of constant paths the desired chain map equation follows.

The quasi-isomorphism statement then follows from existence and unique-
ness of trivial Reeb chord strips and an action filtration argument exactly
as in the 2-component case. □

As in the 2-component case we will transfer Lemma 4.5 to the linearized
contact homology for other augmentations ϵ that can be viewed as small
perturbations of ϵ0 induced by the exact filling LK . To that end we need
a chain complex which is stable under small perturbation. We define it as
follows.

Add the Morse complex of K, i.e., introduce two additional generators
ξ0 of degree 0 and ξ1 of degree 1. We define the differential dtot on

Ctot
ϵ0 (K) = C lin

ϵ0 (K) ⊕ C∗(K)

as follows: dtotξj = 0, j = 0, 1, and for Reeb chords c, dtotc = dlinϵ0 c + d′ϵ0c
where dlinϵ0 is the differential on CElin

ϵ0 (K) and where

d′ϵ0 : CElin
ϵ0 (K) → C∗(K)

is the map that counts holomorphic disks with boundary in LK as follows.
The coefficient of ξ0 is the count of curves that pass through any point
in K ⊂ LK and the coefficient of ξ1 the count of curves passes through a
specific point in K. This allows us to define a new chain map

Θtot : Ctot
ϵ0 (K) → C∗(P ),

which is defined as before on Reeb chords and takes chains on K to the
corresponding chains of constant paths.
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Lemma 4.6. The map Θtot is a chain map and a quasi-isomorphism. It
follows in particular that if x ̸= 0 and if b is a generator of H1(CElin

ϵ0 (K))
then the count of holomorphic disks with positive puncture at b that pass
through K is nonzero.

Proof. To see that the chain map equation holds, we note that the map d′ϵ0
followed by the inclusion exactly accounts for the locus in the boundary
of M(a;K,K) where the part of the boundary mapping to S3 shrinks to
a constant. The chain map equation follows, and the quasi-isomorphism
statement then follows as before.

To see the last statement, note that since C∗(P ) is acyclic, so is Ctot
ϵ0 (K),

which implies that d′ϵ0b = ξ0. □

Lemma 4.6 is stable under small perturbations. We use it to prove the
following, which is the main result underlying our recursion.

Lemma 4.7. For augmentations ϵ in a Zariski open subset of the branch
of the augmentation variety corresponding to the conormal filling LK of a
knot K, we have

rank(H1(CElin
ϵ (K))) = 1 and rank(H2(CElin

ϵ (K))) = 1.

Furthermore, if we consider disks with positive puncture at a linear combi-
nation of Reeb chords that represents the generator of H1(CElin

ϵ (K)), and
if ξ is a parallel of x, then the count of these disks that pass through ξ is
generically nonzero.

Proof. Let ϵ denote the augmentation induced by LK ⊂ X for small x.
As in the proof of Lemma 4.4 we see that the differential on CEtot

ϵ (K) =
CElin

ϵ (K) ⊕ C∗(K), with d′ϵ defined by counting disks with insertions pass-
ing through K, is a small perturbation of the differential on Ctot

ϵ0 (K). Since
the condition that the differential is an isomorphism is stable, it follows that
Ctot
ϵ′ (K) is generically acyclic. For the last statement, we note that since

the knot K is homotopic in LK to a parallel γ of x, the complex Ctot′
ϵ′ (K)

obtained by replacing C∗(K) with C∗(γ) is still acyclic. If the count of R-
invariant disks with positive puncture at a generator of CElin

ϵ (K) through
γ were equal to 0, then the same would be true for disks with insertions,
and it would follow that the generator of H1(γ) survives in the homology of
Ctot′
ϵ′ (K). This contradicts vanishing homology, and it follows that the count

must be nonzero. □
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Remark 4.8. If K is a knot and if a1, . . . , ar are its Reeb chords of degree
0 then we can consider the full augmentation variety ṼK as the subset of
Cr × (C∗)3 given by

ṼK =
{

(ϵ1, . . . , ϵr, e
x0 , ep0 , Q0) :

aj 7→ ϵj , e
x 7→ ex0 , ep 7→ ep0 , Q 7→ Q0 is an augmentation

}
.

Then since there are no generators in negative degree, the degree 0 linearized
contact homology H0(CElin

ϵ (K)) is the tangent space to the subset of ṼK

lying over (ex0 , ep0 , Q0). By Lemma 4.7 and the easily checked fact that
CElin

ϵ (K) has Euler characteristic 0, H0(CElin
ϵ (K)) = 0 over a generic point

in VK . It follows that the natural projection map ṼK → VK is an immersion
over generic points in VK .

4.4. The annulus amplitude for a 2-component link

In this subsection we explain how the results in Sections 4.2 and 4.3 allow us
to compute the annulus amplitude over a generic point in the augmentation
variety. This corresponds to the first step in the recursive calculation of
the wave function that we present in Section 4.5. We choose to treat this
case separately since the curve counts at infinity involved in this case do
not need any abstract perturbations, and therefore, in combination with
Lemma 4.16, they lead to a direct combinatorial formula. See Section 6.3
for the computation of the annulus amplitude for the Hopf link.

Let K1 and K2 be two disjoint knots and let LK1
and LK2

denote their
Lagrangian conormals in X. Assume that we are at a generic point in the
augmentation variety and let c =

∑
j γjcj be a linear combination of Reeb

chords of ΛK1
, with |cj | = 1 for each j, such that c represents a generator

for H1(CElin
ϵ (K1)). Here we take γj = γj(e

x1 , Q). We consider two counts of
holomorphic disks with positive puncture at chords in c.

First, define ∆
cj
K1

to be the count of augmented disks with positive punc-
ture at cj :

∆
cj
K1

=
∑

|a|=0

|Ml,m,k(cj ,a)|elxempQkϵ(a),

where we view the augmentation ϵ as an algebraic function of (ex1 , Q). Not-
ing that ∆

cj
K1

∣∣
p1=

∂WK1

∂x1

is the constant term in the dg-algebra differential

(i.e., the differential in AK) of cj twisted by the augmentation ϵ, we find
that ∆

cj
K1

= 0 along the augmentation variety. This means that the augmen-
tation polynomial divides ∆

cj
K1

.
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If we now define

∆c
K1

=
∑

j

γj∆
cj
K1

,

then for some G, we have

∆c
K1

= G(ex1 , ep1 , Q) ·AK1
(ex1 , ep1 , Q),

where AK1
is the augmentation polynomial of K1.

Second, we define Θcj to be the count of augmented holomorphic disks
with two mixed negative punctures:

Θcj =
∑

|a|=0

|Ml,m,k(cj ,a)|elxempQkϵ(a′)∂a12
∂a21

,

where a runs over all degree 0 words with exactly two mixed negative punc-
tures a12 and a21, and a′ denotes the subset of pure punctures in a.

Finally, for mixed Reeb chords, let

B = gs
∑

a12,a21

|Ml1,12,k(a12a21)|el1x1el2x2Qka12a21

be the generating function for disks with two positive punctures at mixed
chords, and let the annulus amplitude be

RK1K2
=

∑

l1,l2,k

Rl1,l2,ke
l1x1el2x2Qk.

Similarly let

Rc
K1K2

=
∑

l1,l2,k

Rc
l1,l2,ke

l1x1el2x2Qk

denote the count of R-invariant annuli with positive puncture at c. We point
out that Lemma 4.16 below shows that we can perturb ΛK so that Rc

K1K2
=

0.

Theorem 4.9. The following equation holds:

∂

∂p
∆c

K1

∣∣∣∣
p1=

∂WK1

∂x1

· ∂

∂x1
RK1K2

+ ΘcB + Rc
K1K2

= 0.

Remark 4.10. Note that

∂

∂p
∆c

K1

∣∣∣∣
p1=

∂WK1

∂x1

= G
(
ex1 , e

∂W

∂x1 , Q
)
· ∂AK1

∂p1

(
ex1 , e

∂W

∂x1 , Q
)
.
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Remark 4.11. A similar result starting from K2 implies that


 ∂

∂p
∆c

K1

∣∣∣∣
p1=

∂WK1

∂x1




−1(
∂

∂x1
ΘcB + Rc

K1K2

)

=


 ∂

∂p
∆c′

K2

∣∣∣∣
p2=

∂WK2

∂x2




−1(
∂

∂x2
Θc′B + Rc′

K1K2

)
.

Proof of Theorem 4.9. The equation accounts for the boundary points of
the oriented manifold of annuli with one boundary component on each La-
grangian and positive puncture at c. To see this, note that after using bound-
ing chains only SFT splitting remains. The fact that c is a cycle in linearized
contact homology implies that the term with a strip in the cylindrical region
equals zero. □

We next explain how to compute B from data at infinity. Consider the
coefficient B(a12, a21) of a12a21 in B counting disks with two positive punc-
tures, at a12 and a21.

Lemma 4.12. If d denotes the differential in CElin
ϵ (K1,K2) and a12 is a

degree 0 generator, then there exists b12 such that db12 = a12, and if
B′(b12, a21) is the generating function for augmented disks in the symplecti-
zation then

B(a12, a21) = B′(b12, a21).

Proof. The first statement follows from Lemma 4.4. To establish the second,
identify the two sides as counting boundary components of the 1-dimensional
moduli space of disks with two positive punctures at b12 and a21. □

Remark 4.13. The above discussion gives the following scheme for deter-
mining the annulus amplitude. First, determine the augmentation on Reeb
chords by elimination theory. Second, find the differential for linearized ho-
mology and preimages of all mixed degree 0 chords. Next, count disks con-
tributing to Θc, ∆c, and B′(b12, a21). Together with the augmentation poly-
nomial, this gives the annulus amplitude.

4.5. A-model recursion for the full wave function.

In this subsection, we describe the nature of A-model recursion at infin-
ity, which shows how to recover counts of closed curves (i.e. curves without
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punctures) of arbitrary Euler characteristic on the conormal from rational
curves at infinity. One of the reasons for this is that it shows that the SFT-
formalism indeed recovers the wave function and thus the D-module that
gives the recursion relation. Another is that it gives an inductive scheme for
actually computing amplitudes for curves of higher negative Euler charac-
teristic.

Let K = K1 ∪ · · · ∪Kk be a k-component link. Let

FK = F (x,Q) =
∑

CK;χ,n,k g
−χ
s en·xQk

denote the holomorphic curve amplitude, so that

ΨK = Ψ(x) = exp(FK)

is the wave function, counting all disconnected curves. Note that

FK = g−1
s

(
FK;0 + gsFK;1 + g2sFK;2 + · · ·

)
,

where FK;j = Fj(x) counts curves of Euler characteristic χ = 1 − j.
The disk amplitude FK;0 determines (an irreducible component of) the

augmentation variety and can be computed from it via

pj =
∂FK;0

∂xj
,

where epj = epj(x) is a local parameterization of the augmentation variety.
Note that if LK is the conormal Lagrangian then epj = epj(xj) is a function
of xj only and consequently

FK;0(x) =

k∑

j=1

FKj ;0(xj),

where FKj ;0(xj) is the disk potential of LKj
.

We next turn to the recursion. We consider curves with several positive
and several negative punctures. Either one or none of the positive punctures
will have grading 1, and all other positive punctures have grading 0. All neg-
ative punctures have grading 0. We call a curve with one positive puncture
of grading 1 an index 1 curve and other curves under consideration index 0
curves.

We say that a curve has type (n, χ) if it has n positive grading 0 punctures
and if it has Euler characteristic χ. We say that an index 0 curve attached to
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an index 1 curve has attached type (n0, n1, χ) if it is attached via n0 bounding
chain insertions and positive punctures, has n1 auxiliary positive punctures
(not attached to any negative puncture), and has Euler characteristic χ.

We observe that an index 1 curve of type (n0, χ0) with m index 0 curves
of attached types (nj

0, n
j
1, χ

j), j = 1, . . . ,m attached gives a two-level index
1 curve of type

(n, χ) =




m∑

j=0

nj
1 ,

m∑

j=0

χj −
m∑

j=1

nj
0


 .

The key step for the inductive calculation of the amplitudes Fj is the
following result.

Lemma 4.14. The amplitudes of all index 0 curves of type (n, χ) with
−χ + n = r is determined by the amplitudes of the curves of index 1 of type
(n, χ) at infinity, together with the amplitudes of the index 0 curves of type
(n, χ) with −χ + n < r.

Remark 4.15. We show in Section 4.6 that the amplitudes of curves of
index 1 at infinity can be expressed in terms of rational curves only, after
introducing extra Reeb chords.

Proof of Lemma 4.14. Let b be the generator of H1(CElin
ϵ (K)) and consider

the moduli space of holomorphic curves of index 1 and type (0, r) which have
a positive puncture at b. The boundary of this moduli space consists of two-
level curves of type (0, r). Here there is only one type of broken configuration
that contains index 0 curves of attached type (1, 0, r): these are augmented
disks with one bounding chain insertion. If Fr is the amplitude of index 0
curves of type (0, r) then this gives

B(ex1 , Q) · Fr,

where B counts R-invariant disks with positive puncture at b. By Lemma
4.7, B is nonzero.

Furthermore there is one broken configuration that contains an attached
curve of type (0, 1, r). The upper level of such a curve is a strip with positive
puncture at b and one negative puncture. Since b is a cycle for the linearized
differential, we find that the total contribution from such two-level curves
equals 0 (since the augmented curves in the upper level of the two-level
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configurations already cancel out). Consequently, counting ends of the 1-
dimensional moduli space of curves with one positive puncture at b, we find:

B(ex1 , Q) · Fr + R2 + R∞ = 0,

where R2 is the count of two-level curves with both components of type
(n, χ) with −χ + n < r, and R∞ is the count of R-invariant curves of type
(n, χ) with −χ + n = r. Thus we can solve for Fr in terms of index 0 curves
of type (n, χ) with −χ + n < r and R-invariant curves of index 1 of type
(n, χ) with −χ + n ≤ r.

In order to complete the proof we then have to show also how to compute
the amplitudes of all other curves with χ + n = r. The argument is similar:
any such curve has a positive puncture of grading 0 and by Lemma 4.7 we
can find a linear combination b′ of degree 1 chords such that the image of b′

under the linearized differential is the positive puncture of degree 0. Studying
breakings of the moduli space of index 1 curves with positive puncture at b′

and n− 1 other positive grading 0 punctures and arguing exactly as above,
we can solve for the desired amplitude. (Note that we use also the knowledge
of FK;r in this calculation.) This finishes the proof. □

4.6. Curves at infinity

In this subsection we discuss the curves at infinity. We recall the strategy for
describing the holomorphic curves in the R-invariant region, see [8]. Repre-
sent K as a braid around the unknot. Then ΛK lies in a 1-jet neighborhood
of ΛU , where U is the unknot. Furthermore, if we shrink K toward U , holo-
morphic curves with boundary on ΛK converge to holomorphic curves on ΛU

with flow lines attached. As in the calculation of the knot contact homology
differential, we choose the almost complex structure so that the projection
of holomorphic curves into T ∗S2 remain holomorphic. Furthermore, we take
the link to lie in a small ball in S3, and we call Reeb chords contained in the
unit cotangent bundle restricted to this ball “small”. It is straightforward
to check that any non-small Reeb chord has index at least 2.

Lemma 4.16. Let K be any link. Then there exists a deformation of ΛK

such that any rigid holomorphic curve on R× ΛK is rational and such that
all small Reeb chords of ΛK have degrees 0, 1, or 2.

Proof. Since the only holomorphic curves with boundary on ΛU are disks,
it follows that holomorphic curves on ΛK must limit to these holomorphic
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Figure 17: Boundaries of big disks on the conormal of the unknot, compare
Figure 19 below. The gray lines subdivide the disk boundaries in two com-
ponents. The height function is symmetric in these components, decreases
in one, and increases in the other.

disks with flow lines attached. In particular, curves of Euler characteristic
̸= 1 must either contain a flow tree connecting such a disk to itself or contain
a flow graph which is not a tree. Note however that such a configuration lifts
to a holomorphic curve in the symplectization if and only if the lifts of the
disk and the flow tree or the flow graph close up.

We consider first the case of a flow tree connecting the big disk to itself.
In the limit the flow line is very thin and therefore nearly horizontal (in the
symplectization direction). It follows that if we find a perturbation of ΛK

such that no flow line connects points of the disks of the unknot that lift to
same height, then there are no such non-rational curves. Figure 17 shows the
points of equal heights and it is straightforward to check the representation
of the braid shown in Figure 18 has no flow lines connecting points at the
same height.

We next consider flow graphs other than trees. Here our argument uses
the specific form of braid we use. We separate the strands in the braid by
an increasing amount in each step. This means that flow graphs of n sheets
can be viewed as flow graphs of (n− 1) sheets with flow lines attached.
Furthermore, from the point of view of the lifts of curves in earlier steps,
the flow lines in the last step lift to disks in the symplectization that are
virtually constant in the symplectization direction until they go vertically
down (negative puncture) or up (positive puncture) at the Reeb chord. It
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braiding

Figure 18: Additional short Reeb chords subdivide the Morse flow so that
no points of equal height on the big disks are connected.

follows from this that there are no higher genus flow graph contributions
from flow graphs that are not trees. □

We point out that even though the rational curves of Lemma 4.16 are
disks, they may give rise to generalized curves with χ < 1 via insertion of
bounding chains which here correspond to linking. Basic rational curves
are straightforward to describe: they are as easy to find as the curves in
the contact homology differential. The exact contributions at higher genus
from curves with several positive punctures involve the nature of the actual
perturbation scheme. We next give a conjectural description of this.

We first discuss what generalized curves there are. The obvious general-
ized curves are the 1-vertex graphs with edges connecting this vertex. Here
there is a disk of dimension 1 at the vertex and the edges correspond to self
linking. As we will see in the examples below the generalized curves that
contribute to the Hamiltonian include also graphs where there are trivial
strips at the vertices that are not the main vertex.

Furthermore, at the main vertex there can be only transversely cut out
1-dimensional curves. To see this, we must discuss possible contributions
from 1-dimensional curves with branched covers of trivial Reeb chord strips
attached. Consider a branch cover of degree d. We use an obstruction bundle
argument. If we fix the location of the branch points, the linearized holomor-
phic curve equation has index −2d and zero kernel. We can find a section of
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the obstruction bundle which is nonzero over the interior of the space branch
points. When a branch point moves to the boundary, the curve breaks in two
branched covers of trivial strips. Continuing this way, we eventually break
the curve into only trivial strips, and the contribution to the moduli space
is controlled by the usual linking and intersection with CK .

Remark 4.17. We conjecture that rational curves in the R-invariant region
with m positive punctures should be counted with a factor of

±ergs(e
1

2
gs − e−

1

2
gs)m,

where r is determined by self-linking (including interior intersections with
CK) as usual, and where the other factors come from extension of the ab-
stract perturbation and limits to the original disk with constant lower Euler
characteristic curves attached.

To motivate this, we consider the construction of the perturbation scheme.
The scheme starts from indecomposable curves (minimal energy and disks
in the symplectization with only one positive puncture) and makes them
regular. These curves then appear in various configurations at the bound-
ary of curves of the next complexity. Here we pick a perturbation near the
boundary and extend in order to make curves of the next complexity reg-
ular. In this case the boundary configurations correspond to breaking at
Reeb chords, interior crossing, and boundary crossing. Near the latter two,
the gluing arguments of Lemmas 3.4 and 3.5 give a neighborhood of the
boundary in the moduli space. Consider a disk with m interior boundary
crossings. Such a disk lies at the boundary of a moduli space of disks with
m holes, which can further split into a disk with m positive punctures and
a disk with 1 positive and m negative punctures. Gluing a strip with one
positive and one negative puncture to the lower half we find a disk with m
positive punctures in the symplectization. The gluing analysis at the interior
crossing gives a count:

(e
1

2
gs − e−

1

2
gs)m,

and we claim that there exists a perturbation scheme such that these small
curves can be concentrated near positive punctures. One can study boundary
crossings in a similar spirit with the same result.

We point out that this conjecture asserts more than the mere existence
of a perturbation scheme: it says that there is such a scheme for which the
contribution from rational curves at infinity has a specific form.
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We end this section with a discussion of the 2-component link case. Here
we claim that if we choose the conormal ΛK1

∪ ΛK2
so that Lemma 4.16

holds, then there are no generalized holomorphic annuli at infinity:

Lemma 4.18. Let K = K1 ∪K2 be such that Lemma 4.16 holds. Then
Rc

K1K2
= 0 (see Theorem 4.9 for notation).

Proof. Formal annuli come from disks with a self insertion. Since the aug-
mentation equals 0 on all mixed chords, such an annulus has homotopically
trivial boundary in at least one ΛKj

and hence does not contribute to the
amplitude considered. □

5. Knot contact homology in quotients of S3

In this section we briefly turn to the study of more general ambient spaces
than S3. We use similar notation: let M be a 3-manifold, T ∗M its cotangent
bundle, and ST ∗M its unit cotangent bundle. If K ⊂ M is a knot then
denote its Lagrangian conormal LK and Legendrian conormal ΛK .

Here we consider the setting where M is a quotient of S3 by a discrete
group, which we assume is a group of isometries of S3 with the round metric.
Iit is known how to construct a large N dual to T ∗M using toric geome-
try, see e.g. [22]. In particular, the Kähler parameters in the large N dual
correspond to the free homotopy classes of loops in M . We will discuss the
augmentation variety in this setup, and show in particular how deformation
parameters associated to these Kähler parameters arise in this context from
the orbit contact homology dg-algebra.

In general, if Λ ⊂ Y is a Legendrian submanifold of a contact manifold
then the Chekanov–Eliashberg dg-algebra CE(Λ) discussed above, generated
by Reeb chords, is an algebra over the orbit contact homology dg-algebra
Q(Y ) of Y . Here the orbit contact homology algebra is the closed string
counterpart of the Chekanov–Eliashberg algebra generated by Reeb orbits
and with differential counting holomorphic spheres with one positive and
several neagtive punctures.

When the first Chern class of Y equals 0, then Q(Y ) admits a grading
and one can restrict the coefficient algebra of the Chekanov–Eliashberg al-
gebra to the degree 0 orbit contact homology. In particular, when M is a
geometric quotient of the 3-sphere and Y = ST ∗M , we have the following.
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Lemma 5.1. If M is a closed 3-manifold with constant sectional curvature
1 (universal cover S3) and Y = ST ∗M then the homology of the orbit dg-
algebra in degree 0, HQ0(Y ), is a commutative algebra generated by the free
homotopy classes of loops in M .

Proof. For the standard action from p dq as the contact form on Y = ST ∗M ,
closed Reeb orbits are lifts of geodesic loops. Consider a closed geodesic in
M that lifts to a geodesic arc of length ℓ < π in S3 with respect to the
standard metric. Then any other geodesic in its homotopy class has index
≥ 2. For geodesics of length equal to π the same argument applies after small
perturbation. This means that there is a contact form with one Reeb orbit
for each free homotopy class and all other orbits of grading ≥ 2. Thus the
contact homology orbit algebra is 0 in degrees 1 and ≤ −1, and in degree 0
it is the commutative algebra generated by free homotopy classes of loops.
The result follows. □

As a special case of Lemma 5.1, for M = S3 there is a unique homotopy
class of free loops, and so the orbit algebra is just the ground ring in degree
0, which explains why we can disregard the orbit algebra in this case.

Now let K be a link in M with Lagrangian conormal LK . Exactly as
in S3 we can use a closed form in a neighborhood of K to shift LK off
the zero section and then consider LK ⊂ XM as a Lagrangian in the large
N dual XM of T ∗M . Consider now the Chekanov–Eliashberg dg-algebra
CE(ΛK) and restrict the coefficients to the degree 0 homology HQ0(ST

∗M).
Using Lemma 5.1 we then find that the resulting knot contact homology
H∗(CE(ΛK)) in this case can be considered as an algebra over

C[ex, ep, Q,HQ0(ST
∗M)].

In particular we get the expected deformation variables for the augmentation
variety. Note also that if γ is a free homotopy class then the value on γ
corresponds to the count of curves in XM with one positive puncture at γ:

ϵ(γ) =
∑

k0,k1,...,km

CkQ
k0

0 · · ·Qkm

m .

Here Ck counts curves with one positive puncture at γ representing the class∑
j kjtj , where tj is the jth Kähler parameter.
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6. Examples

In this section, we outline some illustrative computations for a few simple
examples: the unknot and Hopf link in S3 and the line in RP 3.

Remark 6.1. Some of the details in the below calculations (signs, the
effect of choices of capping paths, etc.) are not made explicit here. It is an
interesting open question to make these choices in some systematic manner
in order to get a direct combinatorial formula for the SFT Hamiltonian in
terms of a braid presentation. We leave these details to future work and
view the examples worked out here as good indications that this is indeed
possible.

6.1. The unknot

Let U denote the unknot in S3. The Chekanov–Eliashberg dga of ΛU ,
CE(ΛU ), was worked out in [8]. In the conormal of the unknot, there is
one generator c of degree 1 and no generators of degree 0, and there are four
disks contributing to ∂c; see Figure 19. We can choose capping paths such
that (possibly after a change of variables) the Hamiltonian is

H = Hc = 1 − ex − ep + Qexep.

Setting p = gs
∂
∂x , we get the recursion relation for the unnormalized colored

HOMFLY-PT polynomial of the unknot.

c+

c+

c− c−

Figure 19: Rigid disks on the conormal of the unknot U . Here the Legendrian
torus ΛU is the depicted square with sides identified, and the curves denote
the boundaries of the four rigid disks. The labels c+, c− denote the ending
and beginning points of the Reeb chord c. Compare [8, Figure 20].
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We also illustrate how to reconstruct the wave function recursively. We
write the wave function as

ΨU = exp
(
g−1
s FU ;0 + FU ;1 + gsFU ;2 + · · ·

)
.

Since there are only disks at infinity we find that the disks with insertion
must cancel as follows: inserting FU ;m once must cancel with all possible
insertions of lower genus curves that give the same Euler characteristic.
This means that

gs
dFU ;m

dx
=

∑ 1

s1! . . . sn!

(
ds1FU ;m1

dxs1

)t1

. . .

(
dsnFU ;mn

dxsn

)tn

,

where the sum ranges over all products for which
∑

sjmjtj = m and all
mj ≥ 2. It then follows that

egs
d

dx eFU = e
dFU;0

dx eFU =
1 − ex

1 −Qex
eFU ;

to see this note that all terms in the right hand side that includes dsFU;m

dxs

where m + s > 1 cancel out. We conclude that

(
1 − ex − egs

d

dx + Qexegs
d

dx

)
eFU = 0,

as expected.

6.2. The line in RP 3

In this subsection we carry out the calculation of the knot contact homology
of a projective line ℓ ⊂ RP 3. This is a special case of the setup discussed in
Section 5. The large N dual of RP 3 is local CP 1 × CP 1, i.e., the total space
of the O(−2,−2) line bundle over CP 1 × CP 1.

We use the constant sectional curvature 1 metric on RP 3. In this metric
there is a Bott-family of closed geodesics of length π where the Bott-manifold
is G2,4, the Grassmann manifold of 2-planes in R4. Furthermore, ℓ can be
represented by a closed geodesic of length π and there is a T 2 Bott-family
of binormal geodesics of ℓ of length π (where in fact all Reeb chords are
also Reeb orbits). Morsifying this situation gives one Reeb chord of index 0,
corresponding to the minimum on G2,4, and a shortest Reeb chord of index
1, corresponding to the minimum of the T 2-family. (To see that the index of
the chord equals 1, note that we can shrink it to a constant by moving the
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x′

p′

Figure 20: Rigid disks on the conormal of the line (boundaries of these disks
are drawn in green). The generators of H1(Λℓ) are x dual to x′ and p dual
to x′ + p′.

endpoints along ℓ.) Let γ denote the index 0 Reeb orbit and c the index 1
Reeb chord.

Theorem 6.2. The contact homology differential ∂ on CE(Λℓ) satisfies

∂c = ex − e−x + ep + Qe−p + γ.

Proof. There are again four disks corresponding to the disks of the unknot
after lifting, see Figure 20. The disk with positive puncture at c and negative
at γ corresponds to shrinking a based loop to a free loop. In the Bott-Morse
picture this corresponds to holomorphic cylinder with a slit at the location
of the minimum on T 2 followed by a Morse flow line to the minimum in G2,4.
A gluing argument gives exactly one such disk for generic perturbation, see
Figure 21. □

Remark 6.3. It follows as for the unknot in S3 that the augmentation
polynomial of ℓ is simply

Aℓ(e
x, ep, Q, γ) = ex − e−x + ep + Qe−p + γ.

Note that the conic bundle

Aℓ(e
x, ep, Q, γ) = uv
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min

min

T 2

G2,4

ev+

ev−

Figure 21: The disk with interior puncture from the shortest chord to the
shortest orbit. There is a T 2-family of holomorphic disks with positive punc-
ture at the chords of Λℓ. Evaluation at the boundary puncture gives a map
ev+ into the T 2 Bott-family of chords and at the interior puncture a map
ev− into the G2,4 Bott-family of orbits. The configuration that contributes
to the differential of c corresponds to a curve in this family with ev+ re-
stricted to lie at the minimum in T 2. The map ev− at this curve then gives
a Reeb orbit in G2,4 at which a flow line starts, and the flow line ends at
the minimum in G2,4.

gives a mirror to local CP 1 × CP 1.

6.3. The annulus amplitude for the Hopf link

In this subsection we compute the annulus amplitude for the conormal of
the Hopf link in two different ways. Let us first describe with more details
what we actually compute. Let K = K1 ∪K2 denote the Hopf link. Let
Lj , j = 1, 2 denote the Lagrangian conormal of Kj in the resolved conifold
X, and let xj denote the longitude class in Lj . Let F1(e

x1 , ex2 , Q) denote
the count of generalized holomorphic annuli with boundary on L1 ∪ L2. We
compute the quantity

∂F1

∂x1∂x2
=

∑

k1,k2,r

Ck1,k2,r Q
rek1x1ek2x2 ,

where the sum ranges over k1, k2 ̸= 0.
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Remark 6.4. Note that ∂F1

∂x1∂x2
picks up contributions only from annuli

with one boundary component on L1 and one on L2. Since L1 ∩ L2 = ∅ it
then follows that there are contributions only from formal curves Γu of the
following form: the graph Γ has exactly one vertex where there is a regular
holomorphic annulus, there are disks at all other vertices, each disk vertex
is connected to the annulus vertex with exactly one edge, and there are no
other edges. This means that the count is defined with reference only to
bounding chains of the rigid disks.

We consider first the count from the perspective of topological strings.
The Hopf link consists of two linked unknots. The above calculation for the
unknot shows that there is no contribution from large annuli. Consider the
contribution to the topological string amplitude from strings stretching be-
tween two branes on the conormal of the unknot. Here only annuli contribute
and the amplitude is

∑

n=1

1

n
enx1e−nx2 = log(1 − ex1e−x2).

There are many ways to see this; consider for example a small shift along the
closed form dθ and count the annuli arising over the unique closed geodesic
in S1 × R2, see Figure 22. Alternatively, see [1, Section 2.2].

T ∗S1

Γdθ

0

Figure 22: Annuli in T ∗S1. The annulus that is an n-fold cover contributes
by 1

n .

In order to replace the second brane with the conormal of the linked
unknot we note that the shift x2 of the curve x1 is the meridian p2 of the
second component K2 in the limit K2 → K1, i.e. it is the curve x2 that is
filled in by L2. Our annulus amplitude is then expressed as

∂2

∂x1∂x2
log(1 − ex1e−p2(x2)),
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where p2(x2) =
∂WK2

∂x2
parameterizes the augmentation variety {1 − ex2 −

ep2 + Qex2ep2 = 0} determined by the disk potential. Here

ep2 =
1 − ex2

1 −Qex2

and the amplitude is

∂2

∂x1∂x2

(
log(1 − ex2 − ex1 + Qex1ex2) − log(1 − ex2)

)

=
∂2

∂x1∂x2
log(1 − ex2 − ex1 + Qex1ex2).

We consider next the recursive calculation of the same amplitude from
the SFT point of view. The Reeb chords of ΛK are

• a12 and a21 of degree 0;

• c11, c12, c21, c22, b12, and b21 of degree 1.

The generator of CElin(ΛK1
) is c11 and we depict relevant moduli spaces

and amplitudes in Figure 23; see Proposition 6.6 below for a justification of
these counts.

Moduli space Count Moduli space Count

c11

c11

a12 a21

c21 a12

c21

a21

1− ex1 − ep1 +Qex1ep1

1

(1− ex1)ep1e−p2

Qex1ep1 − ep1e−p2

Figure 23: Moduli spaces used for computing the annulus amplitude for the
Hopf link.
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From the two rightmost counts in Figure 23, the amplitude for disks
with two positive punctures at a12 and a21 equals

(1 − ex1)e−p2

Qex1 − e−p2
.

Looking now at the boundary of the 1-dimensional space of annuli with
positive puncture at c11, we find that

∂F1

∂x1
=

1

Qex1ep1 − ep1

(1 − ex1)e−p2

Qex1 − e−p2
=

e−p2

Qex1 − e−p2
=

Q−1e−x1e−p2

1 −Q−1e−x1e−p2
,

where the second equality uses the equation for the augmentation variety
of K1. Changing variables in the homology coefficients, Q−1e−x1 7→ ex1 , we
find that

∂F1

∂x1
=

ex1e−p2

1 − ex1e−p2
,

and hence the amplitude is

∂2

∂x1∂x2
log(1 − ex1e−p2) =

∂2

∂x1∂x2
log(1 − ex1 − ex2 + Qex1ex2)

in agreement with the above.

Remark 6.5. The change of variables reflect our choice of orientations, and
a natural change of lift of this change of variables to a relative homology
class, where the longitude x on the unknot is capped by a half-sphere, so
changing from x to −x gives a whole sphere with negative orientation, Q−1.

6.4. Legendrian SFT and recursion for the Hopf link

In this subsection we will use a computation of Legendrian SFT to deduce
the recursion for the Hopf link. We will find that the answer agrees with the
physics computation from [1]. Our computation can be viewed as a precursor
to the more involved computation for the trefoil that occupies Section 7. We
note that the computation we give here is a sketch and we leave out some
details; what we present is an argument for how to use Legendrian SFT to
obtain a result that agrees with the known Hopf recursion.

Let K denote the Hopf link, represented by a braid around the unknot U
with two (half) twists. Since K lies very close to U , its Legendrian conormal
ΛK lies in a small neighborhood of ΛU that can be identified with the 1-jet
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space J1(ΛU ). It is easy to check that the projection to the base in the 1-jet
space gives a degree two covering map ΛK → ΛU .

We next determine the Reeb chords of ΛK . These are of two types:
short, which are entirely contained in J1(ΛU ), and long, which are not. We
can arrange that there are only four short Reeb chords, see [8], and the long
chords are close to the chords of the unknot. This then results in the following
Reeb chords of ΛK : a12, a21 in degree 0; b12, b21, c11, c12, c21, c22 in degree 1;
and the remainder in degree 2. For our computation, as with computations
of augmentation polynomials, it suffices to calculate the Hamiltonian of the
degree 1 Reeb chords. Each of these is a differential operator acting on the
space of power series in a12, a21 with coefficients in λ1, µ1, λ2, µ2, Q, q. Here
we have

λj = exj µj = epj pj = gs
∂

∂xj
q = egs

and µjλj = qλjµj .
The following result lays out the parts of the Hamiltonian that we will

use in our computation. If c is a degree 1 Reeb chord we write

H(c) = Hc

for the portion of H corresponding to curves whose positive punctures are
c and some collection of degree 0 Reeb chords (see Section 1.2).

Proposition 6.6. We have

H(c11) = 1 − λ1 − µ1 + Qλ1µ1 + q−1∂a12
∂a21

+ O(a)

H(c22) = 1 − λ2 − µ2 + Qλ2µ2 + q−1Qλ2µ2∂a12
∂a21

+ O(a)

H(c12) = (µ2µ
−1
1 −Qλ2µ2)∂a12

+ (1 − q)(1 − λ2)a21 + O(a2)

H(c21) = (q−1Qλ1µ1 − q−1µ1µ
−1
2 )∂a21

+ (q − 1)(1 − qλ1)µ1µ
−1
2 a12

+ (q − q−1)Qλ1µ1a12∂a12
∂a21

+ O(a),

where O represents total combined order in a12 and a21.

Remark 6.7. The proof of Proposition 6.6 depends on Figure 24, which
lays out the geometry of the terms contributing to the Hamiltonian for the
Hopf link. Before we proceed to the proof, we describe what is depicted in
this figure. The two squares (with opposite sides identified) are the Leg-
endrian tori ΛK1

and ΛK2
. The green dots are the endpoints of the Reeb
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c−
∗1 c−

∗1

c+1∗

c+1∗

c+2∗

c+2∗

c−
∗2 c−

∗2

a+

12

b+12

a−

21 b−21

a−

12

b−12

a+

21 b+21

Figure 24: Flow lines and big disk boundaries for the Hopf link.
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chords cij , labeled by + and − depending on whether they are the posi-
tive or negative endpoint; for instance, c+1∗ denotes the positive endpoint of
(both) the Reeb chords c11 and c12. The blue dots are the endpoints of the
Reeb chords bij and aij , as labeled. The green curves are the boundaries of
big disks. The yellow curves are reference curves; intersection numbers with
the vertical (resp. horizontal) curves give the exponents of exi (resp. epi)
associated to each holomorphic curve.

The blue flow lines correspond to boundaries of disks with a negative
puncture at aij (stable manifold for the negative gradient flow of the positive
function difference) and the red flow lines to boundaries of disks with a
positive puncture at aij (unstable manifold for the negative gradient flow of
the positive function difference). As explained in [8], the stable manifolds
follow the vector joining the two components of the braid; since the Hopf
link consists of one full twist on two strands, the stable manifolds wind
one full time around the meridional direction of the Legendrian tori. For
the unstable manifolds, note that there are flows between the endpoints for
Reeb chords aij and bij that roughly follow the (vertical) fiber direction.

Figure 24 gives rise to generalized holomorphic curves as listed in Fig-
ures 25, 26, and 27. The curves drawn in these figures are the boundaries
of the holomorphic curves that arise from big disks along with flow lines
from Figure 24. Self intersections of the boundaries correspond to linking
numbers and contribute factors q

1

2
slk to the corresponding curve count, see

Section 2.4. Note that there are also contributions from intersections with
capping paths. In order not to clutter the pictures too much we have drawn
the capping paths (shown in magenta) only when there are such contribu-
tions and left them out otherwise.

We also recall from Remark 4.17 that we count disks with two positive
punctures in general with a factor of ±ergs(e

1

2
gs − e−1

2gs)
m. For our com-

putation here we have m = 1 (this counts the additional positive puncture
beyond the input for H) and r = 1

2 slk, and slk = ±1 for the disks that we
will consider, for an overall factor of ±(q − 1) or ±(1 − q−1).

Remark 6.8. We emphasize that the proof of Proposition 6.6 is a sketch,
with some details omitted. In particular, exact q-contributions are some-
times hard to see directly from pictures, since they depend on choices of
capping disks and how these intersect CK . Such choices affect terms in the
Hamiltonian but after basic choices are made other terms are determined.
We plan to study particular choices suitable for algorithmic computations
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∂a12
∂a21

Qλ2µ2∂a12
∂a21

Figure 25: Disks for the terms ∂a12
∂a21

in H(c11) (left) and λ2µ2∂a12
∂a21

in
H(c22) (right).

elsewhere. Also, we do not justify the overall signs of some terms; in partic-
ular, the disks with two positive punctures contribute (a power of q times)
±(q − 1) but we do not justify the individual choices of ±.

Sketch of proof of Proposition 6.6. Flow trees and big disk boundaries for
the Hopf link are depicted in Figure 24. We first note that the disks with-
out negative punctures in H(c11) and H(c22) are the disks of the unknot
components. Taking capping disks exactly as for the unknot components,
we find that these disks contribute exactly as for the unknot. We therefore
concentrate on the other disks. The subtlest point is determining the powers
of q attached to each term, and we focus on this.

For H(c11) and H(c22), there is one additional disk apiece, depicted in
Figure 25. The disk on the left corresponds to the ∂a12

∂a21
term in H(c11),

while the disk on the right corresponds to the λ2µ2∂a12
∂a21

term in H(c22).
In both cases there are two crossings with capping paths which cancel, leav-
ing no contribution to powers of q from intersections with capping paths.
However, each disk has two contributions of q−

1

2 near the endpoints of a12
and a21, compare the proof of Lemma 3.9, and this results in an overall
factor q−1 for both disks.

The disks for H(c12) are shown in Figure 26; the two disks with one
positive puncture are to the left and the two disks with two positive punc-
tures are to the right. There are no crossings with capping paths. The curves
with two positive punctures both come with the factor 1 − q. (Comparing to
the calculations of H(c11) and H(c22), the contribution q−

1

2 at the negative
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µ2µ
−1

1 ∂a12
Qλ2µ2∂a12

a21 λ2a21

Figure 26: Disks for H(c12).

puncture a12 can be considered an overall factor and the factor of the disks
with two positive punctures becomes q

1

2 (q
1

2 − q−
1

2 ), see Remark 4.17.)
Finally, consider H(c21). The 6 curves that contribute are depicted in

Figure 27. There are two disks with one positive puncture, corresponding
to terms Qλ1µ1∂a21

and µ1µ
−1
2 ∂a21

. For each of these, the crossings together
with the contribution from the negative puncture at a21 give coefficients q−1.
The remaining disks have two positive punctures. There are two disks with
degree 0 positive puncture at a12, contributing µ1µ

−1
2 a12 and λ1µ1µ

−1
2 a12.

The former comes with coefficient q − 1 as in the calculation of H(c12).
Comparing the latter disk to the former disk, we find that near the punctures
the disk boundary enters from the opposite directions, and in combination
with capping paths this adds a factor q1; thus the λ1µ1µ

−1
2 a12 disk comes

with total coefficient q(1 − q).



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2129 — #63
✐

✐

✐

✐

✐

✐

Higher genus knot contact homology 2129

Qλ1µ1∂a21 µ1µ
−1

2 ∂a21
µ1µ

−1

2 a12

λ1µ1µ
−1

2 a12 Qλ1µ1a12∂a12
∂a21

Qλ1µ1a12∂a12
∂a21

Figure 27: Disks for H(c21).

The two remaining contributions to H(c21) both correspond to terms
Qλ1µ1a12∂a12

∂a21
. Of these two, the left one in Figure 27 is a single disk

with one extra positive puncture at a12 and two negative punctures at a12
and a21, while the right one is a disk with a negative puncture at a21 linked
with a trivial strip over a12. Both disks have two crossings with capping
paths, contributing a total of q. In the first disk there are two negative
punctures and one positive with a total capping contribution q

1

2
− 1

2
− 1

2 ; overall
the first disk comes with coefficient q

1

2 (q
1

2 − q−
1

2 ) = q − 1. The second disk
is obtained by inserting a trivial strip that links the disk into which it is
inserted with linking number −1. The lower right picture in Figure 27 shows
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the boundary of the trivial strip as two dots connected by the shorter arc
in the circle; the longer arcs in the circle represent capping paths of the
trivial strip, which overall link with the capping path of the big disk once.
The total capping contribution from the trivial negative punctures is q−1,
the perturbation chosen then gives no capping contribution at the positive
puncture, and overall the total coefficient for the second disk is qq−1(1 −
q−1) = 1 − q−1. When we add the contributions from the first and second
disks, we conclude that Qλ1µ1a12∂a12

∂a21
appears with coefficient q − q−1.

□

We now use Proposition 6.6 to calculate the recursion for the Hopf link.
The recursion consists of not a single relation, as for a single-component
knot, but several relations: in this case, three relations A,B,C in λ1, µ1, λ2,
µ2, Q, q. Recall that these coefficients commute except that µ1λ1 = qλ1µ1

and µ2λ2 = qλ2µ2.
The relations are obtained by eliminating ∂a12

and ∂a21
in the relations

H(c11), H(c22), H(c12), H(c21) given by the Hamiltonian in Proposition 6.6.
For instance, a linear combination of H(c11) and H(c22) will cancel the
∂a12

∂a21
terms in each: define

A := H(c11) − qQ−1λ−1
2 µ−1

2 H(c22)

= −λ1 + qQ−1λ−1
2 − (1 −Qλ1)µ1 + (1 − qλ−1

2 )Q−1µ−1
2 + O(a).

Next note that

∂a21
H(c12) = (1 − q)(1 − λ2) + (µ2µ

−1
1 −Qλ2µ2)∂a12

∂a21
+ O(a)

and then define

B := (µ−1
1 −Qλ2)H(c22) − q−1Qλ2∂a21

H(c12)

= (µ−1
1 −Qλ2)(1 − λ2 − µ2 + Qλ2µ2) − (q−1 − 1)Qλ2(1 − λ2) + O(a)

= (1 − λ2 − µ2 + Qλ2µ2)(µ
−1
1 − q−1Qλ2) + O(a).

Similarly define

C := (qQλ1 − µ−1
2 )H(c11) − µ−1

1 ∂a12
H(c21)

= (q − qλ1 − µ1 + Qλ1µ1)(Qλ1 − µ−1
2 ) + O(a).
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We drop the O(a) terms in A,B,C to obtain the recurrence relations
for the Hopf link:

A = −λ1 + qQ−1λ−1
2 − (1 −Qλ1)µ1 + (1 − qλ−1

2 )Q−1µ−1
2

B = (1 − λ2 − µ2 + Qλ2µ2)(µ
−1
1 − q−1Qλ2)

C = (q − qλ1 − µ1 + Qλ1µ1)(Qλ1 − µ−1
2 ).

In [1, Section 4.5], the recurrence relations for the Hopf link were cal-
culated using techniques from Chern–Simons and topological string theory,
with the following result:

A1 = −λ1 + λ2 − (1 −Qλ1)µ1 + (1 −Qλ2)µ2

A2 = (1 − q−1λ2 − (1 −Qλ2)µ2)(µ1 − λ2)

A3 = (1 − q−1λ1 − (1 −Qλ1)µ1)(µ2 − λ1).

We now check that our relations agree with the ones from [1] up to a change
of coordinates. Indeed, replace

λ2 7→ Q−1λ−1
2 , µ2 7→ Q−1µ−1

2

in the expressions for A,B,C, to obtain

A = −λ1 + qλ2 − (1 −Qλ1)µ1 + (1 − qQλ2)µ2

B = −µ−1
1 λ−1

2 (1 − qλ2 − q−1µ2 + Qλ2µ2)(q
−1µ1 − λ2)

C = Q(q − qλ1 − µ1 + Qλ1µ1)(λ1 − µ2).

If we drop the units −µ−1
1 λ−1

2 , Q in front of B,C, change variables

λ1 7→ qλ1, µ1 7→ qµ1, λ2 7→ λ2, µ2 7→ qµ2, Q 7→ q−1Q,

and finally replace q by q−1, then A,B,C precisely become q−1 · A1,A2, q
−2 ·

A3 respectively. This verifies that our relations are in agreement with [1].

7. Legendrian SFT and recursion for the trefoil

In this section we present an example of a more involved computation. We
use Legendrian SFT to produce a q-deformed version of the augmentation
polynomial for the right-handed trefoil, and then check that this agrees
with the recurrence relation for the colored HOMFLY-PT polynomials for
the trefoil.
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As in Section 6.4, we need to include a disclaimer here. The formulas we
write for the Hamiltonian in Legendrian SFT depend on a putative choice
of geometric additional data—for example, choices of capping paths and
perturbations of coincident flow lines can affect formulas—and we do not
carefully justify this part of the computation leading to our formulas. In ad-
dition, we do not justify all of the signs of terms in the Hamiltonian; some of
them come directly from Legendrian contact homology and are determined
by the work in [8], but others are assigned without proof. Finally, some parts
of the calculations depend on our conjectures, see e.g. Remark 4.17. Rather
than a rigorous derivation, this section should be viewed as a first step to-
wards a combinatorial description of the Legendrian SFT Hamiltonian and
a sketch of how to use it to extract the recursion relation.

7.1. Hamiltonian for the trefoil

Let T denote the right-handed trefoil, represented by a braid around the
unknot U with three (half) twists. We view this as with the Hopf link in
Section 6.4: place ΛT in a neighborhood J1(ΛU ) of ΛU . Exactly as for the
Hopf link, ΛT has the following Reeb chords: a12, a21 in degree 0; b12, b21, c11,
c12, c21, c22 in degree 1; and the remainder in degree 2. The coefficients of
the Hamiltonian are slightly simpler than for the Hopf link since the trefoil
has a single component: they are λ, µ,Q, q, where

λ = ex µ = ep p = gs
d

dx
q = egs

and µλ = qλµ.
The following result lays out the parts of the Hamiltonian that we will use

in our computation. As for the Hopf link, we will only need the Hamiltonian
for degree 1 Reeb chords; if c is a degree 1 Reeb chord we write

H(c) = Hc.

Proposition 7.1. We have

H(b12) = λ−1∂a12
− ∂a21

+ O(a)

H(c11) = λµ− q−1λ− ((1 + q−1)Q− µ)∂a12
−Q∂2

a12
∂a21

+ O(a)

H(c21) = Q− µ + λµ∂a21
+ Q∂a12

∂a21
+ (q−1 − 1)λa12

+ (q−1 − 1)Qa12∂a12
+ O(a2)
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H(c22) = µ− 1 −Q∂a21
+ µ∂a12

∂a21
+ (q − 1)Qa12

+ (q − 1)µa12∂a12
+ O(a2),

where O represents total combined order in a12 and a21.

Sketch of proof. We prove this proposition by reducing the holomorphic
curve count to combinatorics. We use the strategy recalled in Section 4.6:
consider the limit T → U in which the braid of T approaches the unknot. In
this limit, as mentioned above, we can view ΛT as a subset of J1(ΛU ), where
a neighborhood of the 0-section in J1(ΛU ) is identified with a neighborhood
of ΛU in ST ∗S3. Since T is a 2-fold cover of U , ΛT is graphical over ΛU

with two sheets, and there is only one function difference between the two
sheets of ΛT . This function determines a Morse flow along ΛU . As explained
in Section 4.6, the generalized holomorphic curves of ΛT can then be deter-
mined from knowledge of the disks of ΛU this Morse flow determined by the
degree 2 Legendrian ΛT ⊂ J1ΛU .

To count the generalized holomorphic curves via flow trees, we refer
to Figure 28. This shows the torus ΛT (the full rectangle, with opposite
sides identified) as a 2-fold cover of ΛU (the two smaller rectangles). The
yellow curves are reference curves, where intersections with the vertical (resp.
horizontal) curve count powers of λ (resp. µ). As in the calculation for the
Hopf link (see Remark 6.7), the green and blue dots represent endpoints
of Reeb chords as labeled. Also as in Remark 6.7, the blue and red curves
are flow lines for the function difference between the two sheets, beginning
and ending at endpoints of Reeb chords a12, a21, b12, b21, which are critical
points of the function difference. Note that the long flow lines between b and
a critical points wind 3

2 times around the meridional direction, corresponding
to the 3 half twists of the trefoil T .

We now proceed to the disks that contribute to H(b12), H(c11), H(c21),
and H(c22). Most of these disks have a single positive puncture at b12 etc.,
and these can be enumerated as in the explicit calculation of knot contact
homology in [8]. It is then also straightforward to enumerate the relevant
disks with two positive punctures in a similar fashion, and we will list these
below without proof. As with the Hopf link calculation in Section 6.4, the
focus of our calculation is on the powers of q associated to all of these disks.

First consider the order a0 part of H(b12) (that is, total order 0 in a12 and
a21). This counts disks with a single positive puncture at b12. There are two
such disks, each given by Morse flow strips, one with negative puncture at
a12, and one with negative puncture at a21. These are precisely the two terms
contributing to the differential of b12 in Legendrian contact homology; their
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Figure 28: Morse flows and big disks on the conormal of the trefoil.

λµ λ

Q∂a12
Q∂a12

µ∂a12 Q∂2
a12

∂a21

Figure 29: Geometry of coefficients for H(c11).

homology classes are easily read off, and these give the desired expression
for H(b12), with no powers of q appearing.

Next we look at the order a0 part of H(c11). There are two disks with
positive puncture at c11 and no negative punctures, shown in the top row
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Figure 30: Comparing disks.

of Figure 29. There are no self-intersections of the boundary of these disks,
but the second one comes with a factor of q−1. This factor is related to
our additional geometric data. To see it we consider the two components
of the boundary of the moduli space of disks with positive puncture are
the degree 2 chord u shown in Figure 30. Recall that we need to perturb
the gradient ∇f from the vertical near the Reeb chord endpoints. The ar-
rows in the picture indicate such perturbations. Note that some of the disks
near the boundary of the moduli space have tangencies with the perturbed
vector field. We choose the perturbations so that negative tangencies give
an intersection point with the 4-chain CT and positive tangencies do not,
compare Figure 14. Since the algebraic number of points in the boundary of
a 1-dimensional moduli space equals 0, we find when gluing the strip that
the disk contributing to λ in H(c11) should have an additional q−1 factor.
Overall these two disks give the terms λµ− q−1λ in H(c11).

There are 4 more disks contributing to H(c11) to order a0, shown in
the bottom two rows of Figure 29. For the two that contribute Q∂a12

, one
(middle right in Figure 29) has no crossing and hence no linking. For the
other, we find two intersection points both contributing negatively to the
linking number, combining to give q−1: at the intersection with the capping
path, the capping path passes under the other branch, while at the other
intersection, the Morse flow line lies at the height of the point where it is
attached, which here means that it passes over the big disk line. For the
disk contributing µ∂a12

, there is no crossing and no linking. Finally, for the
disk with three negative punctures contributing Q∂2

a12
∂a21

, the boundary in
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Q µ

λµ∂a21
Q∂a12

∂a21

λa12 Qa12∂a12

λa12∂a12
λa12∂a12

Figure 31: Geometry of coefficients for H(c21).

the flow tree limit is non-generic with respect to the Reeb flow; perturbing
the flow lines, we would find two intersections and these cancel the capping
path intersections, leading to no q factor.

We next turn to H(c21) up to order a1. There are four disks with positive
puncture at c21 and no other positive puncture, shown in the top two rows
of Figure 31. For the first three, the boundaries of these disks do not self-
intersect and so none of them has a q factor. For the fourth disk contributing
to Q∂a12

∂a21
, there are three crossings; the top two cancel and the lower

crossing cancels with the contribution at the capping path at the positive
end of a21, compare Lemma 3.9, resulting in no factor of q. Calculating
orientation signs as determined in [8] gives a total contribution of Q− µ +
λµ∂a21

+ Q∂a12
∂a21

from these four disks, and this gives H(c21) to order a0.
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µ 1

Q∂a21
µ∂a12

∂a21

Qa12 µa12∂a12

Figure 32: Geometry of coefficients for H(c22).

The remaining contributions to H(c21), of order a1, come from disks with
two positive punctures, one at c21 and another at a degree 0 Reeb chord. We
refer to Remark 4.17 for the scheme to compute powers of q for these disks.
There are four such disks, shown in the bottom two rows of Figure 31, and
we treat these in order. For the first, contributing λa12, we have no crossing
and the flow line enters a12 from below, and the disk is counted with the
factor −(1 − q−1). For the second, contributing Qa12∂a12

, there are three
visible intersections, two of which cancel, and the flow line enters a12 from
above. Furthermore, the two copies of the capping path of a12 project non-
generically; after perturbation we get one extra intersection, and combined
with the non-canceled intersection this gives gives a factor q−1 and a total of
−q−1(q − 1) = q−1 − 1. The final two disks in the bottom row of Figure 31,
each of which contributes λa12∂a12, cancel: the left one, an actual disk, is
canceled by the right one, which is the formal disk given by joining a disk
in class λ with positive puncture at c21 and no negative punctures to the
trivial strip at a12. (To see the latter contribution note the linking between
the capping path of the trivial strip and the disk in class λ with positive
puncture at c21.)



✐

✐

“3-Ng” — 2021/8/18 — 16:31 — page 2138 — #72
✐

✐

✐

✐

✐

✐

2138 T. Ekholm and L. Ng

Finally, we calculate H(c22) up to order a1. There are four disks with
positive puncture at c22 and no other positive puncture, shown in the first
two rows of Figure 32. The boundaries of these disks do not self-intersect
and so none of them has a q factor, and they give a total contribution
of µ− 1 −Q∂a21

+ µ∂a12
∂a21

. The remaining contributions to H(c22) are of
order a1 and are given by disks with positive punctures at c22 and a12. There
are two of these, drawn in the bottom row of Figure 32, and they each involve
a flow line entering a12 from above and without intersection. As with the
analogous calculation for H(c21), each of these counts with a factor of q − 1,
resulting in a total contribution of (q − 1)Qa12 + (q − 1)µa12∂a12

. □

7.2. Extracting a quantized polynomial from the Hamiltonian

In this subsection, we use the Hamiltonian as given in Proposition 7.1 to
produce a q-deformed version of the augmentation polynomial of the trefoil,
which we will then compare to the known HOMFLY-PT recurrence for the
trefoil in Section 7.3. We first describe how to extract the augmentation
polynomial for the trefoil from the differential in knot contact homology;
this is the “classical limit” of our main computation in this subsection.
The relevant portion of the knot contact homology differential (which only
counts holomorphic disks with a single positive puncture) can be read off
from Proposition 7.1, by discarding all O(a) terms (these represent curves
with multiple positive punctures). Algebraically, this corresponds to letting
gs = 0 and q = egs = 1, and replacing the operators ∂a12

and ∂a21
by the

usual DGA generators that we write a12 and a21, respectively. This gives

(7)

d(b12) = λ−1a12 − a21

d(c11) = λµ− λ− (2Q− µ)a12 −Qa212a21

d(c21) = Q− µ + λµa21 + Qa12a21

d(c22) = µ− 1 −Qa21 + µa12a21.

Here for simplicity we have passed to the abelianized quotient of the usual
Legendrian DGA, in which Reeb chords commute with each other; this quo-
tient suffices for considering augmentations.

To calculate the augmentation polynomial, we want to find the set of
λ, µ,Q so that there is some choice of a12, a21 for all four polynomials in (7)
vanish. This calculation is an exercise in elimination theory. First note that

d(c11) + a12d(c21) − λd(c22) + Qλd(b12) = 0
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and so the relation given by d(c11) = 0 is redundant. Using the other differ-
entials, we define

A = µd(c21) −Qd(c22) = (Q− µ2) + (Q2 + λµ2)a21

B = Qd(c21) + λµd(c22) = (Q2 + λµ2 −Qµ− λµ) + (Q2 + λµ2)a12a21

C = a12A = (Q− µ2)a12 + (Q2 + λµ2)a12a21

D = C − λ(Q− µ2)d(b12) = λ(Q− µ2)a21 + (Q2 + λµ2)a12a21

E = D −B = −(Q2 + λµ2 −Qµ− λµ) + λ(Q− µ2)a21.

Now A,E are linear in a21 and we can eliminate a21:

λ(Q− µ2)A− (Q2 + λµ2)E = AugT (λ, µ,Q),

where AugT is the augmentation polynomial of the trefoil:

AugT (λ, µ,Q) = (µ4 − µ3)λ2

+ (µ4 −Qµ3 + 2Q2µ2 − 2Qµ2 −Q2µ + Q2)λ

+ (Q4 −Q3µ).

(Note that this is unnormalized; to obtain the augmentation polynomial for
the trefoil as given in [24], replace λ, µ,Q by λµ3U−1, µ−1, U−1 respectively.)

We now replicate this calculation non-classically. First, we have

H(c11) + ∂a12
H(c21) − λH(c22) + QλH(b12) = O(a)

and so H(c11) is redundant as before. Next, define

A = µH(c21) −QH(c22)

= (Q− µ2) + (Q2 + qλµ2)∂a21
+ O(a)

B = QH(c21) + qλµH(c22)

= Q(Q− µ) + qλµ(µ− 1) + (1 − q)Qλµ∂a21

+ (Q2 + qλµ2)∂a12
∂a21

+ O(a)

C = ∂a12
A

= (1 − q)λµ− (q − 1)Q2 + (Q + (q−1 − q)Qµ− µ2)∂a12

+ (Q2 + qλµ2)∂a12
∂a21

+ O(a).

In the expression for C, for the terms linear in ∂a12
, we replace ∂a12

by λ∂a21

by gluing to λH(b12) = ∂a12
− λ∂a21

. In doing this, we need to move the
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capping path for λ to the front of the expression, which will introduce a factor
of q−1 to certain terms in C = ∂a12

(µH(c21) −QH(c22)). More precisely, the
terms in C that are linear in ∂a12

are:

(µ(Q− µ) + (q−1 − 1)Qµ−Q(µ− 1) − (q − 1)Qµ)∂a12
,

and the terms that are multiplied by q−1 are −µ2, −Qµ, and −(q − 1)Qµ,
corresponding to the terms −µ in H(c21), µ in H(c22), and (q − 1)µa12∂a12

in H(c22), respectively. Thus gluing to λH(b12) yields

(µ(Q− q−1µ) + (q−1 − 1)Qµ−Q(q−1µ− 1) − q−1(q − 1)Qµ)λ∂a21

= (Qλ + (1 − q)Qλµ− qλµ2)∂a21

and the full relation coming from C is:

D = (1 − q)λµ− (q − 1)Q2 + (Qλ + (1 − q)Qλµ− qλµ2)∂a21

+ (Q2 + qλµ2)∂a12
∂a21

+ O(a).

Subtracting B from D gives

E = D −B = (−qQ2 + Qµ + λµ− qλµ2) + (Q− q−1µ2)λ∂a21
+ O(a).

We now want to combine A and E to eliminate the ∂a21
terms. Note

that we have the following identity, which can be verified by breaking the
left hand side into a sum of two terms, one for Q2 and one for q−1λµ2, and
then moving these monomials to the left:

(Q− q−1µ2)(Q− q−3µ2)(Q2 + q−1λµ2)

= (Q2(Q− q−3µ2) + q−1λµ2(Q− qµ2))(Q− q−1µ2).

Thus the following linear combination of A and E eliminates the ∂a21
terms:

(Q− q−1µ2)(Q− q−3µ2)λA− (Q2(Q− q−3µ2) + q−1λµ2(Q− qµ2))E

= (Q− q−1µ2)(Q− q−3µ2)λ(Q− µ2)

− (Q2(Q− q−3µ2) + q−1λµ2(Q− qµ2))(−qQ2 + Qµ + λµ− qλµ2)

+ O(a).

This last expression (without O(a)) is the q-deformed augmentation
polynomial for the trefoil, in the framing given by the braid σ3

1. We write
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this as Âug
3

T (λ, µ,Q, q), where 3 denotes the framing number correspond-
ing to σ3

1. To convert to the polynomial for framing number 0, we use the
following result; compare Theorem 3.14.

Proposition 7.2. Let Âug
f

K(λ, µ,Q, q) =
∑k

i=0 pi(µ,Q, q)λi denote the
quantized augmentation polynomial for a knot K in framing f . Then

Âug
f−f ′

K (λ, µ,Q, q) =

k∑

i=0

qf
′i2/2pi(µ,Q, q)µ−f ′iλi;

that is, to lower the framing by f ′, replace each λi by qf
′i2/2µ−f ′iλi.

Proof. The quantized augmentation polynomial in framing f annihilates the
wave function Ψf

K in framing f . Theorem 3.14 shows how the wave function

transforms as we change the framing. The tranformation rule for ÂugK is
the corresponding transformation of operators. □

Using Proposition 7.2 and the above expression for Âug
3

T (λ, µ,Q, q),
and multiplying on the left by µ3 to clear denominators, we finally arrive at

ÂugT = Âug
0

T , the quantized augmentation polynomial for the right-handed
trefoil in the 0 framing:

ÂugT (λ, µ,Q, q) = qQ3µ3(Q− q−3µ2)(Q− q−1µ)

+ q−5/2(Q− q−2µ2)
(
(q2µ2 + q3µ2 − q3µ + q4)Q2

−(qµ3 + q3µ2 + qµ2)Q + µ4
)
λ

+ (Q− q−1µ2)(µ− q)λ2.

7.3. Colored HOMFLY-PT recurrence for the trefoil

We now compare ÂugT with the recurrence relation for the colored HOMFLY-
PT polynomials of the trefoil. From [14, §1.4], this is:

PT (L,M, x, q) = x4(x2M2 − 1)(q6x2M4 − 1)L0

+ q7
(
q4x2M4 − 1)(q8x4M8 − q4x4M6 + q2x4M4 + x4M4

−q6x2M4 − q2x2M4 − x2M2 + 1
)
L1

− q18x2M6(q4M2 − 1)(q2x2M4 − 1)L2.

For convenience, we recall from [14] what it means for PT to be the recurrence
relation. Let WT ;n(x, q) denote the colored HOMFLY-PT polynomial for T
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colored by the partition with a single row and n boxes. Define operators
M,L on the set of all functions from N to Q(x, q) by

(Lf)(n) = f(n + 1), (Mf)(n) = qnf(n).

Then for the function f given by f(n) = WT ;n(x, q), we have

PT f = 0.

Note that PT is an element of a Weyl algebra, namely the algebra over
Q(q, x) generated by L and M , with LM = qML.

Remark 7.3. We can compare the recurrence relation PT (L,M, x, q) to
the expression given in [12] for the recurrence relation of the left-handed
trefoil. If we start with the expression in [12, (2.22)], and then set t = −1
(this corresponds to taking Euler characteristic in the homological grading)
and replace x̂ and ŷ from [12] by M and L, respectively, we get the following
recurrence for the left-handed trefoil:

− a2qM3(M − 1)(aM2q − 1)L0

+ a(aM2 − 1)(−aM2 + q + a2M4q −Mq2

+ M2q2 − aM2q2 − aM3q2 + M2q3)L1

+ q(aM − 1)(aM2 − q)L2.

Replacing a 7→ a−1, q 7→ q−1, M 7→ M−1 to pass to the mirror knot, we find
precisely the polynomial PT (L,M, x, q) given above.

We are now in a position to compare the recurrence PT (L,M, x, q) with

the quantized augmentation polynomial ÂugT (λ, µ,Q, q) from the previous
subsection. The following result shows that they agree, and is proven by
simply comparing the explicit equations for PT and ÂugT .

Proposition 7.4. For the right-handed trefoil, the polynomials PT (L,M, x, q)

and ÂugT (λ, µ,Q, q) agree after a change of variables, up to an overall unit:

PT (q−1Q−1λ, q−1/2µ−1/2, qQ1/2, q1/2) = q7Q−1µ−6ÂugT (λ, µ,Q, q).

We note that the commutation relations LM = qML and µλ = qλµ are
compatible with each other under this change of variables.
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