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Unification of integrability in
supersymmetric gauge theories
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A four-dimensional analog of Chern—Simons theory produces in-
tegrable lattice models from Wilson lines and surface operators.
We show that this theory describes a quasi-topological sector of
maximally supersymmetric Yang—Mills theory in six dimensions,
topologically twisted and subjected to an 2-deformation. By re-
alizing the six-dimensional theory in string theory and applying
dualities, we unify various phenomena in which the eight-vertex
model and the XYZ spin chain, as well as variants thereof, emerge

from supersymmetric gauge theories.
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1. Introduction

Over the past decade there has been considerable progress in our under-
standing of connections between quantum field theories and quantum inte-
grable systems. Many phenomena have been discovered in which structures
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of integrable quantum spin chains and integrable lattice models emerge from
quantum field theories in diverse spacetime dimensions, in most cases su-
persymmetric ones.

Among these phenomena, there are several instances where the same
family of integrable systems appears. The most notable example is the XXX
spin chain and its generalizations the XXZ and XYZ spin chains, or equiv-
alently, the six- and eight-vertex models [I]. These spin chains and lattice
models have been found to arise in two-, three- and four-dimensional su-
persymmetric gauge theories with four supercharges [2, 3], four-, five- and
six-dimensional supersymmetric gauge theories with eight supercharges [4-
8], three-dimensional A/ =4 supersymmetric gauge theories [9, [10], four-
dimensional supersymmetric gauge theories in the presence of surface opera-
tors [IIHI7], and a four-dimensional analog of Chern—Simons theory [I8-21].

Then a question comes to mind: why does a single family of integrable
systems makes appearances in multiple contexts?

In this paper we provide an answer to this question. We argue that these
field theory setups are actually different descriptions of one and the same
physical system, all related by dualities in string theory.

Another, closely related, aim of the paper is to better understand four-
dimensional Chern—Simons theory. This bosonic theory has a fairly direct
connection with integrable lattice models, which can be elegantly deduced
solely from its topological-holomorphic nature. Yet, this is by far the
strangest of the theories listed above. For one thing, it can only be de-
fined on a product ¥ x C of two surfaces, with C' being either the complex
plane C, the punctured complex plane C* = C\ {0} or an elliptic curve
E =C/(Z+ 7Z); the three choices correspond to the three levels of the
rational-trigonometric—elliptic hierarchy of integrable systems. Moreover, it
has a complex gauge group and a complex action functional.

One of the main results of this paper is that four-dimensional Chern—
Simons theory in fact has an origin in six dimensions: it describes a six-
dimensional topological-holomorphic theory, subjected to a so-called “Q2-
deformation” [22H24]. This six-dimensional theory is a partial topological
twist [25] of maximally supersymmetric Yang—Mills theory, and the restric-
tion on the choice of C' comes from the requirement for unbroken super-
charges. The complex gauge group and the complex action functional nat-
urally arise when the path integral is partially carried out to yield a four-
dimensional description.

In turn, the six-dimensional construction allows us to realize four-
dimensional Chern—Simons theory and its observables using branes in string
theory. Various chains of dualities then relate the brane configuration thus
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obtained to different but physically equivalent configurations which realize
the other relevant theories, thereby unifying the connections between quan-
tum field theories and the eight-vertex model mentioned above.

Since this paper is somewhat long and at times technical, let us give a
brief overview here before proceeding to detailed discussions.

We begin in Section [2] by formulating the six-dimensional topological—
holomorphic theory. The theory is defined on a product M x C', and is topo-
logical on the four-manifold M and holomorphic on C. For M = D x 3, we
may regard the theory as a B-twisted gauge theory [26] 27] on the sur-
face D, with an infinite-dimensional gauge group and infinite-dimensional
matter representations. It turns out that in this two-dimensional descrip-
tion, the theory has a superpotential which coincides with the action of
four-dimensional Chern—Simons theory.

In Section [3| we turn to general B-twisted gauge theories and explain
how to introduce Q-deformations to these theories [28], 29]. By localization
of the path integral, we show that when the spacetime D is R?, the quasi-
topological sector of an )-deformed B-twisted gauge theory is equivalent to
a zero-dimensional gauge theory with complex gauge group, whose action
is given by the superpotential of the two-dimensional theory [28430]. The
integration domain of the path integral for this zero-dimensional theory
consists of the gradient flow trajectories generated by the superpotential,
terminating on a Lagrangian submanifold chosen in a relevant moduli space.

Then we apply this result to the six-dimensional topological-holomorphic
theory, viewing it as a B-twisted gauge theory. We are immediately led to the
conclusion that the topological-holomorphic theory on R? x ¥ x C, with an
-deformation on R?, is equivalent to four-dimensional Chern-Simons the-
ory on ¥ x C. This is done in Section

Section [ is devoted to discussions on the relations between four-
dimensional Chern—Simons theory and integrable lattice models in the case
when C = E. We explain how a lattice model [31, 32] whose Boltzmann
weights are given by Felder’s dynamical R-matrix [33], 34] arises from a
lattice of Wilson lines, and how certain surface operators transform this R-
matrix to the Baxter-Belavin R-matrix [35H37] for the eight-vertex model
and its sl generalization. We also use these surface operators to define two
kinds of L-operators, which may be thought of as R-matrices associated with
a pair of finite- and infinite-dimensional representations. The section ends
with some discussions on framing anomaly and junctions of Wilson lines;
these lie outside the main line of argument and are not strictly necessary for
understanding of the rest of the paper.
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In Section [6] we present a string theory realization of the Q-deformed
six-dimensional topological-holomorphic theory. This realization involves
a stack of Db5-branes placed in a background with a nontrivial Ramond—
Ramond (RR) two-form field. Wilson lines are created by fundamental
strings ending on the D5-branes, whereas surface operators are produced by
D3-branes forming bound states with the D5-branes. Applying string duali-
ties, we map this brane configuration to those realizing brane tiling [38] [39]
and class-Sy;, [14] [40] [41] theories, linear quiver theories [42], and theories re-
lated to the cotangent bundles of partial flag manifolds. In each dual picture
we identify how the structures of lattice models and spin chains arise.

There are many directions for future research. One important question
which we hope this paper will shed some light on is the origin of the chiral
Potts model and its higher genus curve for spectral parameters. The myste-
rious coincidence between the chiral Potts model and magnetic monopoles,
pointed out by Atiyah [43] in 1990, hints that we are on the right track.
Indeed, we have necessary ingredients in our construction: monopoles create
surface operators, and crossings of surface operators produce [44-46] a vari-
ant of the Bazhanov—Sergeev model [47, [48] which is known to reduce to the
chiral Potts model in a special limit. It is plausible that the higher genus
curve emerges in low energy physics as a geometric object, in a way similar
to how the Seiberg—Witten curve does when a D4-NS5 brane configuration
is lifted to M-theory [42].

Finally, we remark that another string theory construction of four-
dimensional Chern—Simons theory has been proposed recently in [49]. Their
construction appears to be related to a T-dual version of ours. Also, a string
theory realization was discussed by Nikita Nekrasov in his talk on his joint
work with Samson Shatashvili and Mina Aganagic at the conference String—
Math 2017, where we also announced our results.

2. Six-dimensional topological-holomorphic theory

In this section we formulate the six-dimensional topological-holomorphic
theory, from which four-dimensional Chern—Simons theory arises via an 2-
deformation. After explaining the construction, we reformulate this theory
as a two-dimensional gauge theory, in a form more suited for the application
of the Q-deformation.
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2.1. N = (1,1) super Yang—Mills theory

The topological-holomorphic theory is defined as a topological twist of
N = (1,1) super Yang-Mills theory in six dimensions, which in turn can
be constructed from super Yang—Mills theory in ten dimensions by dimen-
sional reduction. So let us quickly review these super Yang-Mills theories.
We mainly follow the convention of [50].

To describe spinors in ten dimensions, we use the gamma matrices I'y,
I1=0,...,9, obeying the anticommutation relation

(1) {1, Ty} =2n17,

where n = —(dz®)? + (dz1)? + - - - + (dz¥)? is the ten-dimensional Minkowski
metric. They can be chosen to be real 32 x 32 matrices. We let I'y, ;. be
the matrix that equals I'y, --- 'y, if Iy, ..., I} are all different and vanishes
otherwise.

The generators of the Lorentz group Spin(9,1) are represented on R32
by the matrices I';;. The chirality operator I'gi23456789 squares to 1 and
anticommutes with I';. Its eigenspaces therefore furnish irreducible spinor
representations of Spin(9,1) on which the chirality operator acts as multi-
plication by +1 or —1; let ST and S~ denote the space of positive chirality
spinors and that of negative chirality spinors, respectively. There is a charge
conjugation matrix C such that CT;;0~! = —F}FJ, and the map

k

(2) a—a=ad'C

sends a € ST to its dual a € (ST)*. For «a, § € ST, the product al';, 1,
transforms under Spin(9, 1) like the corresponding component of a k-form.

The fields of ten-dimensional super Yang—Mills theory with gauge group
G are the gauge field A and a fermionic field ¥, the latter being a positive
chirality spinor in the adjoint representation. More precisely, A is a connec-
tion of a principal G-bundle P over Minkowski spacetime R*!, and ¥ is a
section of ST ® ad(P), where ad(P) is the adjoint bundle of P. The theory
is governed by the action

1 10 Lo Tl

(3) —62/d xTr<2F Fry —i9T DI\IJ>.
Here e is the gauge coupling, FF =dA + AA A is the field strength and

D = d+ A is the covariant derivative. The symbol Tr denotes an invariant
symmetric bilinear form on the Lie algebra g of the compact Lie group
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G. We have chosen A in such a way that it is antihermitian in a unitary
representation of G, and Tr to be negative definite. We pick generators Ty,
a=1,...,dimG, of g such that Tr(7,T}) = —dap so that we can write, for
example, A; = ZSEG A$T,, with real coefficients A9.

The action (3) is invariant under the supersymmetry variation

1
(4) 8 A = il 0, 5.0 = §F1JFU6,

whose parameter € is a constant spinor of positive chirality. Hence, the the-
ory has sixteen supercharges, which is the maximum amount of supercharges
for theories without gravity. Let ()¢ be the supercharge generating the above
transformation. Up to equations of motion, the supercharges obey the anti-
commutation relation

(5) {Qe, Q) =Py,

where the momentum Pj generates translations in the a/-direction.

Now, let us demand the fields to be independent of the coordinates %, 27,
2%, 2°. Then we obtain a six-dimensional gauge theory, which is ' = (1, 1)
super Yang-Mills theory.

Under the splitting of R%! into R>! and R?, the ten-dimensional Lorentz
group Spin(9,1) decomposes into the product Spin(5,1) x Spin(4)g. The
first factor is the six-dimensional Lorentz group, while the second is the R-
symmetry group of the six-dimensional theory. The ten-dimensional gauge
field Z?:O Ardz! descends to a gauge field Z?:O Ardz! and four adjoint

scalar fields

8

(6) ¢,LL’ ,UJ:O>"'737

in the six-dimensional theory, where the latter come from the components
A, t6 and transform in the vector representation 4 of Spin(4)g. Upon the
dimensional reduction the bosonic part of the action becomes

(7) —é/d%”ﬁ"( Z FI‘]FIJ+ZZD D1,

=0 I=0 p=0
3
Z %m])

To understand what the fermion ¥ becomes in six dimensions, we recall
that Spin(4) is isomorphic to SU(2) x SU(2). In the case of Spin(4)r, we
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can take the first SU(2) factor to be generated by

1 1 1
(8) §(F67 +I'gg), §(F68 +T97), _§(F69 +1I'7g)

and the second to be generated by

1 1 1
(9) §(F67 —TI'sg), §(F68 —Ty7), §(F69 —TI'7g).

Acting on these generators with the chirality operator I'g7gg for Spin(4)g,
we see that the irreducible spinor representations of Spin(4)g of positive
and negative chirality are the representations (1,2) and (2,1) of SU(2) x
SU(2), respectively. The chirality operator for Spin(5, 1) is T'g12345, 50 ST of
Spin(9, 1) decomposes with respect to Spin(5,1) x Spin(4)g as

(10) (44+,(1,2)) @ (4-,(2,1)),

where 44 are the spinor representations of Spin(5,1) with the chirality in-
dicated by the subscripts. Thus, in six dimensions, ¥ becomes two sets of
spinors which have opposite chirality and are doublets of different SU(2)
factors of Spin(4)g.

The six-dimensional super Yang-Mills theory inherits the sixteen su-
percharges from ten dimensions. Since the parameter € of supersymmetry
variations transforms in the same way as ¥ does, the theory has two SU(2)
doublets of supercharges with opposite chirality, generating N' = (1,1) su-
persymmetry in six dimensions.

2.2. Topological-holomorphic theory

The topological-holomorphic theory we are going to construct is a topo-
logical twist of the Euclidean version of six-dimensional A" = (1,1) super
Yang—Mills theory, and can be defined on a product M x C', with M being
a four-manifold and C' either C, C* or C/(Z + 7Z). The relevant topological
twist is essentially the GL-twist of N' = 4 super Yang-Mills theory in four
dimensions, which plays an important role in a gauge theoretic approach to
the geometric Langlands duality [50].

The Euclidean theory is obtained from the Lorentzian one by the Wick
rotation 2% — —iz?. Correspondingly, we get gamma matrices in Euclidean
signature by making the replacement I'g +— il'g in those in Lorentzian sig-
nature.



1938 K. Costello and J. Yagi

For a moment, suppose that M is a spin manifold. The structure group
of the spinor bundle over M x C' is Spin(4)ys % Spin(2)c. To implement
the topological twist in question, we turn on a background gauge field for
Spin(4) g whose value is equal to the spin connection of M, and interpret
the diagonal subgroup Spin(4)), of Spin(4)ss x Spin(4)r as a new rotation
group on M. Under Spin(4)),, the scalars ¢, transform as the components
of a one-form

(11) ¢ = ¢ppdat

since they originated from the components of the ten-dimensional gauge field
along the directions rotated by Spin(4)rg.

The transformation properties of the fermions can be identified as
follows. In Minkowski signature, we can take the chirality operators for
Spin(3, 1), Spln(2) and Spin(5, 1) to be —iF0123, —iF45 and F012345 =
—(—ilp123)(—ily5), respectively. Then, 4, of Spin(5,1) transforms under
the subgroup Spin(3,1) x Spin(2) as 2;1 @ 2!, while 4_ transforms as 2} @
27!, Here the superscripts indicate the charges under Spin(2) = U(1), mea-
sured by —il'45. In Euclidean signature, Spin(3, 1) is replaced with Spin(4) =
SU(2) x SU(2), and 24 becomes (1,2) and 2_ becomes (2,1). Using the
decomposition 2 ® 2 =1 @ 3 of SU(2), we find that the fermions transform
under Spin(4)’, x Spin(2)c as

(12) 21, 1) e (1,3) e (3,1) e 2(2,2)".

The first three summands represent two scalars and one two-form on M,
transforming as negative chirality spinors on C"

(13) €& er(AYy oKs?®ad(P)), xel(A4 @Ko ®ad(P)).

The last summand gives two one-forms on M which are positive chirality
spinors on C':

(14) v e T(AY, @ K @ ad(P)).

Here A%, is the bundle of p-forms on M and Fé” ? are the bundles of spinors
on C' with positive and negative chirality, all pulled back to M x C. We have
used the same symbol P as in the ten-dimensional case to denote the gauge
bundle.
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Since the twisted theory does not contain any spinors on M, at this
point we can relax the assumption that M is spin. The twisted theory can
be defined on any four-manifold M.

Looking at the transformation properties of the fermions, we see that
the twisted theory has two supercharges that are invariant under Spin(4)’,.
They generate supersymmetry transformations whose parameters are con-
stant scalars on M and constant spinors on C, and as such are present for
any choice of M. In contrast, the other supercharges are broken unless M
admits covariantly constant one-forms or two-forms.

Let us describe the supercharges that are scalars on M more explicitly.
The relevant supersymmetry parameters are annihilated by the generators

of Spin(4),:

(15) (T +Tutep46)e=0, p,v=0,...,3.
These equations can be rewritten as

(16) € =T ut6,046€,

and impose three independent constraints on e. Each of them reduces the
dimension of the parameter space by half, so there are 16 x (1/2)3 = 2 in-
dependent solutions, as expected.

We can single out a supercharge by further demanding

(17) € = —il') u16€.

These equations are compatible with the condition and the chirality
condition

(18) ilo123456780€ = €

in Euclidean signature since I';, ;16 commute with I'g123456789 and I'yu46,046-
We are left with a unique solution up to rescaling, and call the corresponding
supercharge (). Similarly, imposing the condition

(19) € = il utee

we obtain another supercharge Q’.
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An important property of the supercharges thus defined is that they
square to zero:

(20) Q*=(@)=0.

It is clear that P, cannot appear in Q? or (Q')? because these supercharges
are Spin(4)’,-invariant. To see that Py for any I =0, ..., 9 makes no ap-
pearance either, say in @2, we pick p such that I # p, u+6 and note
i€l 6 = —ieTFf;u%C = €. So we have

(21) el're = EFI(_iFu,;H—GE) = —iEFlMH_GFIE = —él'je

and Q? = él'leP; = 0.
From the constraints and the chirality condition , it follows

(22) € = Io17l'2389€ = il'y5¢€.

Since the parameters € under consideration have charge —1 with respect to
the U(1) symmetry generated by —il'4s5, the corresponding supercharges have
charge +1. As can be seen from the transformation property of a(I'y — il'5) 5,
the linear combination P, — iP5 has charge 2 and is the only translation gen-
erator with that charge. Hence, {Q, Q'} o< Py — iPs. Introducing the complex
coordinate

(23) z:%( i),

we normalize the supercharges in such a way that

(24) {Q.Q}=P:.

Comparing the equation (I'y —iI's)e = 0 with the formula for su-
persymmetry variations, we see that Az is invariant under the action of
Q and @Q'. The extra condition says (', +il'j46)e = 0, meaning that
A, +iA,46 is annihilated by Q. The twisted theory therefore has the Q-
invariant partial connection

(25) A=A, ds" + Azdz, A, =A,+ig, .
By the same token, if we define

(26) A= (A, —ig,)dz" + A,dz,
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then Zuda:“ + Azdz is @Q'-invariant. We write D and F for the covariant
derivative and curvature of A+ A,dz, and D and F for those of A+ A;dz.

We can readily write down the action of @) on the rest of the fields.
From the Q-invariance of A, the transformation properties of the fields under
Spin(4), % Spin(2)¢, and the fact that the supersymmetry variation of a
fermion is a linear combination of the field strength F7; in ten dimensions,
we deduce that the (J-action can be written as

5'/4“:0’ 5juzwu7

JA, =€, 0A; =0,
(27) 56 =0, 8¢ =P,
Su=0, 60, = Fu,

P =0, X = Fuv -

We have introduced an auxiliary bosonic scalar P in order to realize the
correct supersymmetry algebra off-shell.

The variation ¢’ under the action of @’ can be identified with the help
of relation (24). Setting {4,6'} A, = Fz,, leads to 66" A, = —d1)],, so we have
VA, = —1% up to Q-invariant terms which we can absorb in the definition of
¢, Likewise, the relation {4, 0"} A, = F 3, implies 6"y, = —F s Redefining
¢ and P if necessary, we can set 6’A, = —&'. Then, {0,0'}A, = F;, gives
5/5 - P - Fzg.

To have {6,0'}x = Dzx, we need to use the equation of motion for x.
Let us postulate that the part of the action that contains y is given by

1 — 1
(28) S1=- deTr<—6(X/\*M]-") —i—x/\Dz//—i—X/\DZX)
€ MxC 2
1 _ _
== d2zTr(—}"/\*M]-'+x/\*MD¢
€ JMmxc
1
+X/\D¢/+2X/\sz> ,
where d%2z = —2idz A dz = dz* A da®. Note that we have chosen a metric

gr on M to define the Hodge star x3; on M. The above expression is Q-
invariant thanks to the Bianchi identity DF = 0, provided that boundary
terms do not arise in the Q)-variation. The equation of motion for y derived
from this action is

(29) Dsx = —6(xm F) +8'0x.
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Equating the left-hand side with {d,6'}x, we find &'y = — %y F up to Q-
invariant terms. Because we did not redefine y, its supersymmetry variation
is still given by a linear combination of Fjj;, and the @-invariant terms,
if exist, must be constructed from F. Such terms are not compatible with
§"?x = 0 and should be absent (unless we are willing to use other equations
of motion). The @'-variations of the remaining fields can be fixed by the
requirement 2 = 0.

We have thus obtained the following formula for the supersymmetry
transformation generated by Q'

O A, ==y, §A, =0,
§A, = ¢, §A; =0,
(30) 5/£:P_Fz27 5,5/:07
5,1/}/L = _?uz ) 511#:1, = 07
0P = D3¢, X = — (ot F) o -

With these transformation rules, we can write Sq as

1 — 1
(31) S1=—5 d2zTr<5’(]:Ax) +xA*xy DY+ =x A sz> .
€ Jmxc 2

This is Q'-invariant, again up to boundary contributions. Hence, S; is in-
variant under both QQ and Q’.
The rest of the action of the twisted theory is

1
(32) Sy = —
e? MxC
1

=2
e MxC

Vg 0z 88" Tr(—£¢' + 2iF,,¢")

Vg d8z S Tr((—P + Fuz + 2iD ¢, )¢ — F ™)
where we have ignored boundary terms in going to the last expression. To
define the volume form \/§d6x we have endowed C with the metric go =
(dz*)? + (d2®)?; the total metric on M x C is g = gy @ go and we have

g2z = gz = 2. This action is manifestly Q- and @Q'-invariant. Explicitly, we
have

1 —uz
(83) S =5 / VadSa Tr(=P(P — F.z - 2iD"¢,,) — 27" Fiz
e? MxC

+ & D€ + €Dt + ¢, D'E+ Doph,)
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The bosonic part of the full action S7 + S5 is

1* v Lz
(34) Vg dix Tr(—2f“ Fuy — P(P — F.z — 2iD*¢,) — 2F" fu,g)

g MxC
1 ] 1 . Sy
== VgdSazTr( —(P— ZF.; —iDVg, | — ZF"™F,,
e MxC 2 2

— 2FM*F,, — F¥*F,; — D"¢" D¢, — 2D*¢" D, ¢,

- %[¢N7 (by] [¢,LL7 ¢l/] - RHV¢M¢V> )

where R,,,, is the Ricci curvature of g. For M = R*, it reproduces the bosonic
part of the action for A' = (1, 1) super Yang-Mills theory.

Now that we have constructed a theory with two supercharges that
square to zero, let us pick one of them, say @), and consider the Q)-invariant
sector of the theory. The correlation function of a Q-exact operator van-
ishes because in the path integral representation it is the integral of a “total
derivative” over an infinite-dimensional supermanifold. Therefore, the corre-
lation function of a Q-invariant operator depends only on the ()-cohomology
class of that operator. We can also define the ()-cohomology of states. This
is a module over the ()-cohomology of operators, and the partition function
with ()-closed states specified on the boundary components of spacetime
depends only on the @Q-cohomology classes of those states. (More gener-
ally, correlation functions of (J-closed operators with ()-closed states have a
similar property.)

Since the dependence of the action on the metric of M is completely
buried in the @-exact part, the theory becomes topological on M once we
restrict it to the Q-invariant sector. Similarly, the Q-invariant sector of the
theory depends on the complex structure of C' but not on the metric. The
anticommutation relation shows that P; = 0 in the @)-cohomology, so
correlation functions of @Q-closed operators supported at points on C' vary
holomorphically on C. In this sense, the twisted theory is a topological—
holomorphic theory on M x C.

An example of a ()-closed operator is a Wilson line constructed from A,
supported along a closed curve K C M and a point z € C:

(35) Try Pexp <% .A> )
Kx{z}
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The trace is taken in some representation G¢ — GL(V') of the complexifica-
tion G¢ of G. Such Wilson lines form one of the two classes of observables
from which we construct integrable lattice models.

2.3. Two-dimensional formulation

Suppose that C is an elliptic curve. If we make C' very small and discard the
Kaluza—Klein modes, the topological-holomorphic theory on M x C reduces
to a topological theory on M. This is the GL-twisted A/ = 4 super Yang—
Mills theory [50]. We can further take M to be the product of a surface D and
a torus, and make the torus very small. Then, after discarding the Kaluza—
Klein modes, we obtain a topologically twisted N' = (8, 8) super Yang—Mills
theory on D.

In this series of reduction from six to two dimensions, we could as well
keep all Kaluza—Klein modes. If we chose to do so, we would end up with a
formulation of the six-dimensional topological-holomorphic theory as a two-
dimensional gauge theory. Let us describe this two-dimensional formulation
concretely, as we will use it later when we introduce an 2-deformation of
the theory.

2.3.1. Two-dimensional supersymmetry. Recall that the topological
twist of the six-dimensional theory replaces the generators I',,, of the rota-
tion group Spin(6) with Iy, + T')46.+6. The supercharges @, Q" are char-
acterized by three conditions on the parameter € of supersymmetry trans-
formation:

(36) (Fgl + F67)6 = (Flg -+ F78)€ = <F23 + Fgg)e =0.
Requiring the additional condition
(37) €= —iFgge

then picks out the supercharge @) used to define the topological-holomorphic
theory. To describe this procedure in two-dimensional terms, let us impose
the above conditions in a different order.

First, we demand (g3 4+ I'sg)e = (1 + il'39)e = 0. These equations have
four independent solutions that are eigenvectors of the two-dimensional chi-
rality operator —il'g;. The action of I'gg leaves the space of solutions invari-
ant but changes chirality, so there are equal number of positive and negative
chirality solutions. The corresponding supercharges generate N' = (2,2) su-
persymmetry in two dimensions.
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Next, we impose (I'g; + I'g7)e = 0, which reduces the number of inde-
pendent solutions to two. There are two U(1) R-symmetries that rotate the
supercharges of N/ = (2,2) supersymmetry, U(1)y generated by —il'y5 and
U(1)a generated by —il'g7. This condition means that we twist the two-
dimensional rotation group U(1)p by replacing it with the diagonal sub-
group U(1)’, of U(1)p x U(1) 4, and keep only those supercharges that are
scalars under U(1)’,. The R-symmetry U(1)4 used in this twisting acts on
the scalars ¢g, ¢7, which are part of the Q)-invariant connection Z}:o A;dz?
in two dimensions and belong to the vector multiplet of N = (2,2) super-
symmetry. It is known as the axial U(1) R-symmetry, and the topological
twist with respect to it is called the B-twist [26], 27]. Since € = iI's5€, the
scalar supercharges have charge 1 under the other R-symmetry U(1)y, re-
ferred to as the vector U(1) R-symmetry. The topological twist using U(1)y
is called the A-twist.

Finally, the condition (I'12 4+ I'7g)e = 0 picks out a particular linear com-
bination of the scalar supercharges, which we have been calling Q). We can
choose another scalar supercharge @) (which is different from Q') such that
@ and @ obey the relations

(38) P*=Q*={Q.Q} =0

up to central charges. These supercharges do not have definite chirality since
the last condition is not compatible with the chirality condition ¢ = +il'g1e€.

2.3.2. B-twisted gauge theory. Our task is therefore to describe the
six-dimensional topological-holomorphic theory as a B-twisted gauge theory
in two dimensions. To this purpose we briefly review the construction of the
latter theory.

We write G for the gauge group of a B-twisted gauge theory to distinguish
it from the gauge group of the six-dimensional theory. We pick generators
Ta, a=1, ..., dimG, of the Lie algebra Lie(G) of § that are orthonormal
with respect to the minus of an invariant symmetric bilinear form Tr. The
spacetime of the theory is a surface D, and the gauge bundle is a principal
G-bundle P — D.

The basic ingredients of a B-twisted gauge theory are vector multiplets
and chiral multiplets. A vector multiplet consists of a gauge field A of P,
bosonic fields

(39) ocel(Ap®ad(P)), DeTl(A)®ad(P)),
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and fermionic fields
(40) aeTl(Ah®ad(?), el (Ap®ad(P)), (el (A} ®ad(P)).

A chiral multiplet is valued in a unitary representation R of G. It consists
of bosonic fields

(41) peT(AL®@R(P)), Fel(AL®R(?P)),
and fermionic fields
(42) el (AL ®@R(P), pel(AL®R(®P), pel(AL®R(?),

where R(P) denotes the vector bundle associated to P constructed from R,
and R is the complex conjugate of R which we also regard as the dual of R
by a hermitian form on the representation space.

As mentioned already, a B-twisted N = (2,2) supersymmetric theory
has two scalar supercharges, Q and ). Under the action of (), the vector
multiplet transforms as

SA=0, A=)\,
(43) SA=0, oda=D,
D=0, 6C=F,

while the chiral multiplet transforms as

5@ = 07 5@ =1,
op =Dy, on=20,
(44) p=% "
0F =Dp — Cp, F=0,
op=F.
Here we have introduced the notation
(45) A=A+io, A=A-io.

The fields @ and F are the hermitian conjugates of ¢ and F.
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The other supercharge @ depends on a choice of a metric on D. It acts
on the vector multiplet by

A =%\, bA=0,
(46) A=0, b =% F,
6D =—%xDX, 0(=—*D+2iD*o

and on the chiral multiplet by

890:07 530:_*/7’7
bp=—*Doy, 6 = xF,
(47) EEY o
F=Dxp—xayp, F=0,
5 —

The main part of the action is exact with respect to both ) and @ The
action governing the dynamics of the vector multiplet is

(48) Sy = /D 55 Te(Ca)
—/ §Tr((—*xD+2iDx0)a — (x F)
D

= / Tr(—FxF —D*(D —2ixDx0) +aD*A+(xDA).
D
The action for the chiral multiplet is

(49)  So = / 55(— @F)
D
—/ §(—p(D*p—*awp) + i F)
D
_/(—@D*DgH—*@D(p—i—F*F
D

— D% p — ix Dp + *fjap — AN % p + fix(p) .

In addition, we can turn on a superpotential W, which is a gauge in-
variant holomorphic function of the chiral multiplet scalars. It generates the
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interaction terms given by

1 oW
(50) Sw = /<F+2p pa a0 +*65W>
_/ FOW 1P oW 9T
o\ ap 27 Pavae T o T Mogog)

Unlike Sy and Sc, this is neither Q-exact nor @—exact. Furthermore,
it is not automatically invariant under @ or @ if D has a boundary. The
(Q-invariance requires

ow
51 / p—=—=0,
(51 op Op
while for the Q—invariance we need
(52) / paW 0.
oD dp

Appropriate boundary conditions must be imposed for the supercharges to
be unbroken.

2.3.3. Topological-holomorphic theory as a B-twisted gauge the-
ory. Now we take M =D x ¥ and describe the six-dimensional topological—
holomorphic theory on D x 3 x C' as a B-twisted gauge theory on D. We
use letters 4, j, ... for indices for D and m, n, ... for those for ¥. For
simplicity we assume D x ¥ x C' has no boundary (or impose appropriate
boundary conditions so that all boundary terms arising from integration by
parts vanish).

We need to organize the fields of the six-dimensional theory into super-
multiplets of B-twisted gauge theory. Clearly, the theory has a single vector
multiplet whose gauge field A;da’ is part of the six-dimensional gauge field.
Comparing the transformation rules and in two and six dimensions,
we identify the other fields in the vector multiplet as

(53) o; = ¢;, D=P, a=¢, Ai = g, Gij = Xij -

In order to lift the vector multiplet action (48]) to six dimensions, we
interpret the bilinear form Tr on Lie(§) as

1
(54) G} *TxC T‘I‘,
e? ExC )
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where Tr in the integrand stands for the bilinear form on g. This gives

1

(55) Sv=—
e? DxXxC

ﬁd%dﬁ((—P + 2iD¢;)¢" — ;Xijfij> .

As can be seen from the bosonic fields annihilated by ), we have three
chiral multiplets in the adjoint representation, whose scalar components are
A, and Az. We name the fields of these multiplets as (Ap,, Fin, Ty Py i)
and (AZ7 FZ; Nz, Pz, ,az)

To lift formula to six dimensions, what we have to do is essentially
to replace the scalar fields with the corresponding covariant derivatives so
that when we perform dimensional reduction on ¥ x C, we get back to the
same formula. In this way we obtain

(SAm:O, (Sjm:ﬁma
6mi:Jrim7 577”:0’
(56) 0 c
0Fmij = Dipmj — Djpmi + DmCij,  0Fmij =0,
Ofimij = Fmij
and
5A5:O7 5142:7727
opzi = Fiz, 07 =0,
(57) / -
5F5¢j = Dipzj - Djpzi + DZCij , 5inj =0,
Ofizij = Faij .

From the @-variations involving the gauge field, we see

(58) NMm = ¢m7 Pmi = Xim » Ny = f, Pzi = w; .
With this identification, we can write 0F,;j = (DX)mi;j and dFz;; = (Dy');; +

D:x;j. On the other hand, from the six-dimensional action we derive the
equations of motion

(59) Darx = —*a Do) + x0r Dpré = —xap 19, 0F
and

(60) D)’ + Dzx = —*p Dyyp = —*pg 6.F
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with Dys = D, dz*. Combining these equations we deduce the on-shell rela-
tions

(61) Fmij = _(*M Laz?)mij s Fiij = _(*M ?)U .

Then, we have fmij = —(*um Laj./r)mij and F.qp = —(%ns F)ij on shell (note
the sign; the on-shell value of F is minus the hermitian conjugate of F) and

(62) Pmij = (xm ¢,)mij ) Pzij = —(*m X)ij .

Lifting the chiral multiplet action to six dimensions is also straight-
forward. For example, the term 6(—@D % p) in the integrand on the sec-
ond line can be converted to §(Dg A * p) by integration by parts and lifted
to 5Tr(—7’:lmxl-m — Fi9"). Also, since ¢ is in the adjoint representation,
d(@*ap) can be written as 6 Tr(x[p, pla) and is lifted to § Tr((21.D™ ¢y, +
F.z)¢"). For comparison with the six-dimensional description, it is useful to
express the chiral multiplet action as

1 - . '
Sc == Vg d®z Tr (5(—#’”;@,” — Fi" + (2iD™ ¢y, + F.5)E)
€ Dx¥XxC
+ ifm” Fnij + =F2 inj)
1
(63) +— 4?2 Tr(=Dx A v + xs A (DY + D:y)) .
€ Dx¥XxC

Here we have defined
1 m n / / m
(64) Xz = 5andx Adx™, sz = wmdx .

We also need to determine the superpotential. In order to reproduce the
equations of motion , the superpotential must be

(65) W= —1/ dz A CS(A),
where

(66) CS(A) :Tr<A/\dA+ zA/\A/\A>
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is the Chern—Simons three-form constructed from A. The corresponding
superpotential terms are

1 1 . 1
(67)  Sw=— Vod'a ﬁ<FmZ] (ens 10, F Jmij + 5 F (ear Fij
" JDxTxC 2

1—mij — 1—ij
+5F T (xar 0. F Jmij + 5F2 (kar Fig

_ 1 _
— 5]:’mzwlm + anéfmn>

2
1 , (1 ,
+ - d®zTr XDz A D:zx + xpjs ANDYp ),
€” JDxExC
where
(68) XDz = Xim da’ A da™, Yy =l dat

The superpotential is not quite gauge invariant, but this is not a prob-
lem because the resulting action is gauge invariant.

While the sum Sy + Sc + Sy reproduces the fermionic part of the six-
dimensional action, they lack the terms

1 1fmn —mz
(69) = / @d%"ﬁ(—}' Fon — 2F fmz>
€ Dx¥XxC 2

from the bosonic part. These missing terms are supplied when the auxil-
iary fields are integrated out. Thus, we have obtained a two-dimensional
formulation of the six-dimensional topological-holomorphic theory, which is
applicable for M = D x X.

3. -deformation of B-twisted gauge theories

Once we reformulate the six-dimensional topological-holomorphic theory
as a two-dimensional B-twisted gauge theory, we can subject it to an (-
deformation [22-24] following the construction of [29]. Via localization of
the path integral, the 2-deformation reduces the topological sector of the
B-twisted gauge theory to a zero-dimensional gauge theory with complex
gauge group [28430]. In this section we discuss this localization mechanism
for a general B-twisted gauge theory.
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3.1. Q-deformation

As we have seen above, a B-twisted gauge theory has two scalar supercharges
Q@ and Q. If the spacetime D is flat, the theory additionally has a one-form
supercharge G = G;dz?, satisfying {Q, G;} = P; and {G;,G;} = 0 in some
coordinates. More generally, if V' is a parallel vector field on D (which may
or may not be curved), there is an associated fermionic symmetry and hence
the corresponding supercharge ¢y G. The linear combination @ + ¢y G is then
a supercharge which squares to V.

If V' is not covariantly constant, t;yG does not exist in general. Never-
theless, if V' is a Killing vector field generating an isometry of D, we can
construct a deformation of the theory such that it has a supercharge Qy
that squares to the generator of the isometry and reduces to @ for V = 0.
This deformation is what we call an Q)-deformation of the B-twisted gauge
theory.

Specifically, the deformed supercharge Qv acts on the vector multiplet
by

5VA:LVC7 5‘/]:)\_[’VC7
(70) oyA =2y F — 2iDuyo, oy =F,
(5\/042 D7 5\/D:1,Vpa,

and on the chiral multiplet by

dvep =1vp, dyp =1,
(71) ovp =Dy +wF, 5vj =wDp,
ovF =Dp—(p, ovF =Duwp,

oyp=F

Its square is essentially the Lie derivative Ly = diy + tiyd, but made covari-
ant with respect to the complexified gauge symmetry:

(72) Q% =Duy +1yD.

The right-hand side equals Ly plus the infinitesimal gauge transformation
generated by ty A.

Being a generator of an isometry, V' is a real vector field. More generally,
we allow V to be a complex Killing vector field that commutes with its
complex conjugate V. Also, V|sp must be tangent to dD so that the isometry
preserves the boundary.
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The action of the Q2-deformed theory is again of the form Sy + Sc + Sw,
each term being a @y -invariant deformation of the corresponding term in
the undeformed action. As in the undeformed case, we can take Sy and Sc¢
to be Qy-exact. A minimal choice is

(73) szév/DTr((*D+21D*o—)a§*]—")
:/ Tr(—F *F —D*(D — 2ixDx0)
§ +aDx A+ *DA+ adV’ x()
+/ Tr(* %ty * )
oD
and
(74) Sczév/D((Dgo—i—ch)/\*p—i—*npanp—i—,u*F)
/D((D<p+LVF)/\*(D<p+LVF)—i—*nggo—i—F*F—i—Dn*p
— [ixDp + xTasp — PAN * p + fix (p + 1Dy fix p),
where V? is the one-form dual to V with respect to the metric on D and
(75) A=X— 1y —*y*a.

It is important here that V' is a Killing vector field and [V, V] = 0. The former
property means that £y annihilates the metric and commutes with x, while
the latter implies [Ly, t37] = 0. Together with the identity [Ly, 1] = 0, these
properties ensure the QQy-invariance of Sy and Sc.

Remarkably, the Q-deformation allows Sy to be @Qy-invariant without
resorting to any boundary conditions. Suppose, for simplicity, that there is
only one boundary component in D, and parametrize this boundary circle
by an angular coordinate 6. Then

ow 1 oPwW 19)%% dé

(76) Sw /p( 9 2" Pogap 5V< 8<p>> Ve
ow 1 W oW *W dé
— Fi — _F — mnil — M/i
/D< O +2pAp3<P3<P op Watﬁ3¢> /6D Ve

is a QQy-invariant superpotential action.
Since @)y squares to zero on operators and states that are invariant
under the gauge symmetry and the isometry, we can define its cohomology
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in the spaces of such states and operators. Unlike the undeformed case, the
Qy-invariant sector of the theory is not quite topological: it is invariant
under deformations of the metric only if V' remains as a Killing vector field.
For this reason, we refer to the 2-deformed B-twisted gauge theory as a
quasi-topological theory.

3.2. Localization on a disk

As we have just seen, an {2-deformation can be applied to a B-twisted gauge
theory whenever the spacetime D has an isometry. A basic example is when
D is a disk of finite radius, equipped with a rotation invariant metric, and V'
is a generator of rotations. We now show that for a suitable boundary con-
dition, the quasi-topological sector of the (2-deformed theory is in this case
equivalent to a zero-dimensional theory, whose path integral is performed
over a domain specified by the boundary condition.

To be concrete, we endow D with the metric of a hemisphere of unit
area. In terms of polar coordinates (r, ), the metric takes the form

(77) g(r,0) = grr(r)dr® + gog(r)d6?
and we have
(78) V =€y

for some € € C. We use hatted indices (7,0) to denote components of ten-
sors with respect to the orthonormal vectors d; = /g% dp, 0x = /g O,

an(zl their duals df = , /Go0 46, A7 = /g d7. For example, V¥ = | /ggg V? and
|V?| equals the norm ||V|| of V.

3.2.1. Boundary conditions. To begin with, let us figure out what sort
of boundary condition should be imposed. In general, a good boundary con-
dition ensures that the boundary terms vanish in the variation of the action
so that the classical equations of motion are obtained from the variational
principle. In our case, we moreover want the boundary condition to be Qy -
invariant.

We start with the vector multiplet. Integrating D out and varying the
gauge field, we see that the boundary terms in the variation of the action
vanish if either the Dirichlet condition § Ay = 0 or the Neumann condition
F,9 = 0 is satisfied on the boundary. The former breaks the gauge symmetry
on the boundary. For our applications we look for a boundary condition that
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preserves the gauge symmetry, so we pick the Neumann condition. We can
also choose a gauge in which

(79) A =0
on the boundary. Then, the Neumann condition reads
(80) 0, A9 =0.

Next, varying o, we find that each component o; of o should obey either
the Dirichlet condition do; = 0 or the Neumann condition 0,0; = 0. In view
of the fact that the gauge field appears in Q%/ through the combination
A = A+ io, it is natural to choose

(81) op =0rop =0.
Letting Qv act on the boundary conditions we have so far, we get
(82) Gro = A = Ordog=0.

These conditions already ensure that the boundary terms vanish under vari-
ations of the fermions.

Since Ag does not vanish on the boundary, the action should have a term
that contains the boundary value of A\y. The only term that may not vanish
on the boundary is aD%)\g. So we require o to obey the Neumann condition

(83) Ora=0,
just as Ag does. Then we must have
(84) 0D =0

for QQy-invariance.

The set of boundary conditions for the vector multiplet thus obtained is
Qy-invariant. Repeated action of @)y does not lead to any further conditions
since Q%, just generates translations on the boundary.

On the chiral multiplet, we impose a boundary condition of brane type.
The target space X for the chiral multiplet is the representation space of
the representation R. We choose a submanifold v in X, and demand the
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boundary value of the scalar field to lie in ~:
(85) pEY.

The @Qy-action on this condition yields

(86) (twp,i) €Ty ® C.

We require v to be G-invariant so that the gauge symmetry is preserved.
Furthermore, we assume that Re(W/e) is bounded above on « so that the
boundary term in the superpotential action does not render the path
integral divergent.

Varying the fermions we get the boundary terms

A 1
(57) [ ab (= st + omor ).

For these terms to vanish, we should have

(88) (pr, IV 2 (t71)7) € Ny ® C,

where N+ is the normal bundle of v with respect to the Kéhler metric
(89) g9x = Re(dp ® dp)

of X. The Qy-variation of this condition, together with the gauge condi-

tion , gives
(90) (amo—i— (LvF)f,—HV‘rQ(LV?)f,) € N¢7®C,

which completes a Qy-invariant set of boundary conditions on the chiral
multiplet. _
The equations of motion for F and F are

1 oW
Fo=————(V Dip+
0 1+\V||2< 4 39@)

_ 1 i 151%%4
Fo=—— (V" Dip— — ).
0 1+\V||2< v aso)

Plugging these equations into the boundary condition , we get

(91)

oW 1 oW
(92) (&gp Vea_,ﬁcp 73 B )ez\mm:
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As a check, let us verify that boundary terms are absent in the variation of
the action under this boundary condition. After F and F are integrated out,
the bosonic terms in Sc¢ + Sy are given by

. i 1 = —0 b0 OWOW
93 /dT‘d@( (’DMODMO-FV afW—V (%W—i— >
©3) L e 9y 0%
— B dé
+ DsjpDyp + @Dw) - W—.
op VY

Varying the scalars, we see that the boundary terms indeed vanish.

In the undeformed case € = 0, the boundary condition implies that
W is locally constant on . The same condition then requires (9,¢, 0,9) €
N7y on the boundary. If 7 is a complex submanifold, this is (part of) a “B-
brane” boundary condition for a B-twisted Landau-Ginzburg model [27],
which preserves half of N’ = (2, 2) supersymmetry. For our application, how-
ever, we will actually take v to be, roughly speaking, a Lagrangian subman-
ifold.

We remark that the boundary condition described here depends on
[V||%. As a consequence, the presence of boundary mildly breaks the quasi-
topological invariance of the theory. We are still allowed to deform the metric
as long as we continue to impose the same boundary condition defined with
respect to the original metric.

3.2.2. Gauge fixing. Performing the path integral requires gauge fixing.
We do this by adapting the BRST gauge fixing procedure to the present
setting.

We enlarge the set of fields with additional fermionic fields b, ¢ and
auxiliary bosonic field B, all transforming in the adjoint representation:

(94) b, ¢, Be T (ad(P)).

Then we introduce the BRST symmetry that acts on these fields by
1
(95) (5]3[):8, (5BB:0, (5]36:5{6,0}.

On the other fields the BRST symmetry acts by the gauge transformation
generated by c¢; for instance, dgyp = cp. Since the action of the theory is
gauge invariant, it is invariant under the BRST symmetry.

The conserved charge Qp for the BRST symmetry squares to zero. In
the standard BRST gauge fixing, one adds (Jp-exact gauge fixing terms to
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the action and considers the (Q-cohomology. However, such terms will not
be Qy-invariant and breaks the quasi-topological invariance of the theory.

To remedy this problem we combine )y with Qv . Let us postulate that
Qv acts on b, ¢ and B by

(96) (5\/() = 0, (SvB = Lvdb, (5Vc = —Lv.A .

With this definition of the action of Qy, the combined charge Qvyp =
Qv + Qp satisfies

(97) Qvip = tvd+duy .

The right-hand side is the ordinary Lie derivative instead of a gauge covari-
ant one, so we can define the cohomology with respect to the action of Qv 1p
on rotation invariant states and operators which are not necessarily gauge
invariant.

After gauge fixing, therefore, what we should consider is not the Qy-
cohomology, but the Qv +p-cohomology in the spaces of rotation invariant
states and operators. Since Sy and S¢ are QQy-commutators of gauge invari-
ant expressions, they are automatically exact with respect to Qv 1p. The
quasi-topological invariance of the theory is thus maintained.

Now we can perform gauge fixing as in the usual BRST procedure, treat-
ing Qv 4B as the BRST operator. We pick a suitable Lie(§)-valued function
far constructed from the original set of fields, and add to the action the
Qv +p-exact term

(98) 0v+B /[)*ﬂ(2ibfGF) = /D*Tr@iBfGF —2ibdyyBfarF) -

Integrating over B produces a delta function which imposes the gauge fixing
condition

(99) far =0.

The fermionic part can be written as

(100) 2i /D *(Ty - fap)2bre
for some fermion

(101)

[
Il
o

—+



Unification of integrability in supersymmetric gauge theories 1959

where T3 - for denotes the infinitesimal gauge transformation of fgg by
Ty € Lie(9). This is possible because for a sensible choice of fgp, the matrix-
valued function ((Tj - fGF)“)gfg;gl represents an invertible operator on the
field space. The integration over the fermions produces the Faddeev—Popov
determinant for the gauge fixing.

For the convenience of computation, we actually make another choice of
gauge fixing terms:

(102) ScrF = 5\/4.]3/ *Tr(—bB + 2ibfGF)
D

= / «Tr(—B? 4 buydb + 2iBfar — 2ibdy .5 far)
D

This is a Qyp-exact deformation of the previous gauge fixing action, so
it leads to the same result. With this choice, integrating B out yields the
potential term Tr(— f2p) rather than setting for = 0.

In the present situation where D is endowed with a hemisphere met-
ric, the gauge field on D can be obtained from one on the sphere S? by
restriction. Then, Uhlenbeck’s theorem [51] guarantees that there exists a
representative satisfying the Lorenz gauge condition

(103) ViA; =0

in each gauge equivalence class (at least when the field strength is sufficiently
small), and it is unique up to constant gauge transformations. Further, the
Lorenz gauge is compatible with the boundary conditions and on
the equator 6DE|

We can remove the residual gauge freedom by imposing an additional
gauge fixing condition:

(104) faro(wo, @o) =0.

Let (6, ¢) be the spherical coordinates on S?, and A a gauge field on D obeying
the boundary condition Ay = 9549 = 0 at ¢ = 7/2. We extend A to S? by setting
Ag(0,0) = Ag(0,m — ¢) and Ay(0,¢) = —Ay(0, ™ — ¢) for ¢ > w/2. Suppose that a
gauge transformed connection A9 = gAg~! — g~'dg satisfies the Lorenz gauge con-
dition, and let g(0, ¢) = g(6, ™ — ¢). Then, A7(0,¢) = AJ(0, 7 — ¢) and Ai(@, @) =
fAi(H,w — ¢), and A9 also satisfies the Lorenz gauge condition. By the unique-
ness property we have § = ggg for some constant element gg. This implies that at
¢ =m/2, we have —g~ 1039 = —g 10,9 = +g~ ' 09 and hence A'Z) =—g'9,9=0
and 6¢A“z = gF¢gg_1 =0.
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Here fgr, is an appropriate Lie(§)-valued function on X, and ¢ is the
constant part of ¢, defined as the average of ¢ with respect to the volume
form of D:

(105) o0 = /Dw.

Hence, we take our gauge fixing function to be

(106) far = V' A; + faro(vo, Po) -

The corresponding gauge fixing action is

(107) Scr = / *Tr(—(V'A;)* + buydb + 2ibV' Djc — ibV°\;)
D
— Tr(far,0(po, $o)? + 2ibo dv4B far,0(vo, $0)) »

where b is the constant part of b.

Before proceeding, we need to specify the boundary conditions for b, ¢
and B. For the Qy p-action to preserve the boundary gauge condition ,
¢ must obey the Neumann condition. Then, for the nondegeneracy of Sgp
on the boundary b should also obey the Neumann condition, and so should
B for Qv p-invariance. Thus, we impose the boundary condition

(108) ob=0,c=0,B=0.
The set of all boundary conditions is then invariant under Qg as well as Qv .

3.2.3. Localization. We are ready to demonstrate the equivalence be-
tween the Qv 4 p-invariant sector of the ()-deformed B-twisted gauge theory
and a zero-dimensional theory. To this end we take advantage of the invari-
ance of the theory under @y p-exact deformations and rescale the kinetic
terms by large factors. Such a rescaling makes the oscillating modes of fields
very massive and yields an effective description in terms of constant modes.

There are various ways of doing this by a Qv 4p-exact deformation, but
perhaps the most transparent is to rescale the metric as

(109) g—tg

and send t to a large value. (A disadvantage of this choice of deformation
is that the metric appearing in the action no longer matches the one that
enters the boundary condition.) In other words, we shrink the spacetime D
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by a large factor so that the excited modes get large masses. To cancel the
accompanied rescaling of the volume form, at the same time we also rescale
the Qv p-exact part of the action by a factor of 2

(110) Sy + Sc + Sar + Sw —>t2(Sv+Sc+SGF)—|—Sw.

We want to show that in the limit ¢ — oo, the path integral with respect
to this deformed action reduces to the path integral for a zero-dimensional
theory.

After this rescaling, the bosonic part of the action, with the auxiliary
fields integrated out, becomes

(111) /Ddf dé (t4 Tr <_Ff-2é — DinDZ'O'j — RijO'in — [Uf,O'é]Q — (V2A1>2>

t2— vV 2
+t2<” | (IDsel? + |ospl?)

2+ V]2
4 I Brol? 4 1Dl + gl
2+ V]2 ’ ’
1 2i —0
— (@Ta0) + ——  Im(V oW
N
ot 0W>
2+ V2| oy
1
—— [ Wdo — Tr(faro(po, ¢0)?) .
€ JoD

where R;; is the Ricci curvature of g. The metric used in this expression is
the original one before the rescaling.

The real part of the integrand of the bulk integral is a sum of squares,
while the boundary integral is bounded below by the assumption on the
boundary condition for ¢. Looking at the terms multiplied by positive pow-
ers of t, we find that as ¢ — oo, the action diverges away from the field
configurations such that

(112) Fij = VZAI = DZ'Jj = [JZ’, Uj] = H(Rijdigj) = DZ‘QO =0;0 = 0.

The path integral therefore localizes in this limit to the locus of the field
space defined by these equationsﬂ

2It is crucial here that D is compact. If D were noncompact, D,.p, for example,
could vanish as ¢t~! in the limit ¢ — oo but ¢ could still vary by a finite amount
over D.
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A general solution (Ag, 09, o) of the localization equations can be eas-
ily identified. The obvious solution of Fj; = 0 is the vanishing gauge field,
and any flat connection on D is gauge equivalent to it under the Neumann
boundary condition which preserves the gauge symmetry. This solution also
satisfies the Lorenz gauge condition V?A; = 0, so we have

(113) Ay =0.

Also, as we have equipped D with a hemisphere metric which has a positive
Ricci curvature, Tr(R;j0'0?) = 0 implies

(114) 00 =0.
Given the vanishing of the gauge field, D;p = 0 simply means that g is a

constant, which by the boundary condition must belong to the submanifold
~v of X:

(115) ©oE .

We can evaluate the path integral by perturbation theory around these
localization configurations. To facilitate the calculation we write

(116) A:Ao—i-tiQAl, O':O'()—l-tfzal, g0:<p0+t71g0/,
and rescale the fermions by the usual scale transformation:

(117) (A Q) = (a, t7'N %), () = (0,6 p,t™2R).

The rescaling suppresses the fermionic terms that contain V.

Further, for each fermion V¥, let Wy be the part of ¥ that is a zero mode
of the Laplace-de Rham operator Aq = (d — xd x)? and satisfies the relevant
boundary condition, and write

(18) - {\1104—15_1/2\1" (U ¢ {b,c});

Vo +t7 10 (Ve {bc}).

There are no zero modes for A and p since there are no harmonic one-forms
on a hemisphere. A zero mode for ¢ would be proportional to the volume
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form but this is killed by the boundary condition {5 = 0. Thus we have
(119) Ao =C=po=0.

Then, ng and * pg are constants satisfying the boundary conditions
(120) (0,70) € Tp,y® C, (0,%fip) € Npyy ® C.

The zero modes by, cg of b, ¢ are constant and not affected by the boundary
conditions Oyby = Orcg = 0.

In terms of the field variables introduced above, the action reads, to the
zeroth order in ¢,

(121) /D (Tr(—A’*AdA’ — o' *xAqo’ + N Ax(d —xdx)(a/ — C'))

1 _
+ 5(90’*Ad<p’ + Aqe' @)

— ' Ax(d—*d*) (7 — i) — 2ib’*Adc'>
A1
+ / d9<2(@’&w’ +0:¢'¢') = ﬂ;épg> + S0
oD
The last term contains only ¢g, ¢o and the fermion zero modes:

(122) So = —Q?WW(%) + (f&ro)”

. - 1, _ _
+20(Ty - fép o)bGEs — 1(%00%%00)2 + oo -

Here ¢y = ¢y + - - - is the constant part of the fermion ¢ defined earlier. The
contributions from the higher order terms vanish in the limit ¢ — co.

Thus, to the order relevant in the limit we are interested in, the bosonic
and fermionic nonzero modes (the primed variables) enter the action quadrat-
ically and can be integrated out exactly. In general, the one-loop determinant
A1 1oop (0, o) produced by this integration is a function on 7: even though
the quadratic terms are independent of the point g € « around which we
are expanding ¢, the boundary conditions do depend on it.

Now that the nonzero modes have been integrated out, we are only
left with the integration over the zero modes. This step can be expressed
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schematically as
(123) / vol, / davg dfig dio dbo déo A1oop (0, Po)e ™,
gl

where vol, is a volume form of . The final expression may be thought of as
the path integral for a zero-dimensional theory, which is what we wanted to
obtain.

3.2.4. Lagrangian branes and complex gauge symmetry. The first
thing to notice about the integral is that fip is absent from the ac-
tion ; as ¢ has no zero modes, the interaction term i+ y dropped
out in the localization process. For the integral to be nonvanishing, then,
it should have no zero modes either. In the same way, the number of zero
modes for 7 should equal that of « or the integral vanishes.

The numbers of zero modes for 7 and i depend on the boundary con-
ditions . If we wish to have a nontrivial result, we should choose the
submanifold « for the support of the brane appropriately so that both of
the above requirements are satisfied.

First, suppose that the gauge symmetry is trivial. Then, the theory has
no vector multiplet, and we want the boundary conditions to kill 9 and fig
completely. This is achieved if we take v to be a Lagrangian submanifold of
the target space X, with respect to the Kahler form

(124) wy = %dgp/\d@.

An interesting property of a Lagrangian submanifold of a K&hler mani-
fold is that the action of the complex structure J interchanges the tangent
and normal bundles. It follows that (0, —ifg) € N,y ® C and (0, —i* f1g) €
Tpyy ® C, hence 79 = fig = 0, as desired.

Now suppose that the theory has a nontrivial gauge symmetry. In this
case, the action contains the potential

(125) (o) — 3 (2Tat0)?.

Actually, we can rescale this potential by an arbitrarily large factor without
affecting the localization argument; we just have to rescale the Qv p-exact
part of the action by that factor. Hence, for a nontrivial result, v must
intersect with the zero locus of the potential.

The zero locus is characterized by the equations faro=0 and
i00Tawo/2 = 0. The former is the gauge fixing condition, so we can drop



Unification of integrability in supersymmetric gauge theories 1965

it and instead undo the gauge fixing. This puts us in a situation where we
have the Kéahler manifold X, endowed with a G-action and the G-invariant
Kahler form wx. The quantities

_ i_
(126) Ha (0, Po) = 3%0Tavo

which we are setting to zero are the moment map p: X — Lie(G)* for the
G-action evaluated on T,. By u being the moment map, we mean that du, =
Ly, wx, Where vg = Tp00,, — (ﬁ(ﬁ'a&;o is the vector field on X generated by
Ta-

As p is G-equivariant (that is, (u(g- ), To) = (u(z), 971 Tag)), the level
set u=1(0) is G-invariant. The zero locus of the potential is homeomorphic
to the quotient

(127) M= pL(0)/9.

This is the symplectic reduction of X by the G-action and itself a symplectic
manifold. The symplectic form of M is naturally induced from wx since
wx (vq,v) = v(ig) = 0 for any vector field v tangent to n=1(0).

The equation p = 0, like the other equation fgro = 0, can be regarded
as a gauge fixing condition, albeit for a complex gauge symmetry. The G-
action on X naturally extends to a holomorphic action of the complexified
gauge group Gc, whose Lie algebra Lie(G¢) is spanned by {T,,iT,}. The
vector fields Jv, generated by iT, are normal to p=1(0): for v € T'(T'u=%(0)),
we have gx(Jvg,v) = wx(vg,v) = 0. Hence, the Gc-orbit G¢ - = of a point
z € u~1(0) intersects the G-orbit G-z C u=1(0) orthogonally. Moreover, it
can be shown that every Gc¢-orbit contains in its closure at most a single
G-orbit inside p=1(0).

A point of X such that the closure of its Gc-orbit has a nonempty inter-
section with w=1(0) is said to be semistable. The fact just mentioned implies
that M is homeomorphic to the quotient of the set X*° of semistable points
by the Gc-action:

(128) M~ X*/Ge¢ .

Put differently, imposing the condition u = 0, roughly speaking, gauge fixes
the noncompact part of the complex gauge symmetry generated by {iT,}.
Being a quotient by a holomorphic Ge-action, M is complex, hence Kéhler.

At low energies, the theory effectively becomes one without gauge sym-
metry whose target space is the curved Kéhler manifold M. Then, an argu-
ment similar to what we have given for flat target spaces would show that 7jg
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and [i9 should vanish when pushed forward by the projection m: X% — M.
Thus, we take v to be the preimage of a Lagrangian submanifold £ of M:

(129) y=7n"YL).

This is indeed a good choice. The kernel of 7, is spanned by the vectors
(Tato,0) and (0, ¢oT,). These lie in T,y ® C, so we still have fip = 0. How-
ever, 79 no longer needs to vanish and can be anything of the form

(130) o = Pobo

with 5y € Lie(G). The number of zero modes for 7jg is therefore dim G, just
as for ayp.

We call a boundary condition of the type described above a Lagrangian
brane. Its support + gives a Lagrangian submanifold in the symplectic re-
duction M of X.

Putting together what we have found, we conclude that the localized
path integral is given by

2
(131) / vol, / [ (de§ dp5 dbg deg) Asieop exp(:W - 55) :
Y a
with

(132) Sh = (fépo)® + 2i(Ty - f&p0)b0Eh + 12 + (PoTaTuwo) B 0f -

The measure for the fermion zero modes is the natural one induced by the
metric on Lie(G).

The superpotential W is a holomorphic function of ¢ and gauge invari-
ant, and as such invariant under G¢. The domain « of the bosonic integration
is also Ge-invariant. The emergence of complex gauge symmetry is sugges-
tive. Sure enough, the above integral may be interpreted as the path integral
for a zero-dimensional gauged sigma model with gauge group G¢. This is a
gauge theory described by a map g from a point to -, and its action is given
by —27W/e. The Q-deformation parameter € plays the role of the Planck
constant, so the undeformed limit € — 0 is the classical limit.

Since the integral is supposed to be a gauge fixed form of the path
integral for this bosonic theory, the fermionic piece S, in the exponent must
be a gauge fixing action. As we explained already, the complex gauge symme-
try can be gauge fixed by the condition fgro = 1 = 0. Denoting the ghosts



Unification of integrability in supersymmetric gauge theories 1967

for the real and imaginary parts of G¢ by (bg, co) and (Bo, ), respectively,
we can write the corresponding gauge fixing action as

(133)  Saro = (f&r.0)® +20(Ty - f&po)bGeh + 12 + 2i((iT) - 1a) Baf -

Similarity between S, and Sgr ¢ is obvious, but they do not precisely match.
The last term in Sgr o is —igo{Ta, Tp }poSiad, so up to a trivial rescaling of
the ghosts, it differs from the last term in Sj by a quantity which vanishes
on u~1(0). However, the effect of this discrepancy, if any, should be offset
by the one-loop determinant, as we can argue as follows.

The idea is to rescale the potential u2 by a large factor via a Q. p-
exact deformation (say, by rescaling the bilinear form Tr). Then, the integral
localizes to 1~ 1(0) where the discrepancy disappears. Now we show that
Ajloop Is constant on pfl(())ﬁ

First, we note that the intersection v N u=!(0) is a Lagrangian subman-
ifold of X. This is because v N pw=1(0) is the union of G-orbits in u=1(0) that
make up the Lagrangian submanifold £ C M. Having an isotropic image
under the symplectic reduction, v N u=1(0) is itself isotropic. Furthermore,
it has dimension dim § + dim £ = dim X/2.

Next, pick pg € v N p~1(0) and choose an orthonormal basis (e;), j = 1,
ooy dim G, of T, (S - 0) C Tipy (v N u™t(0)). We can extend it to an or-
thonormal basis (ex), k=1, ..., dim§ + dim £, of T,,,(y N n=1(0)). As we
saw earlier, the vectors Je; are normal to 1=1(0). They are also tangent to
7, so (ex, Je;) is an orthonormal basis of T,,y. On the other hand, (Je) is
an orthonormal basis of Ny, (v N p~1(0)). Then, (e, Jeg) is an orthonormal
basis of T,,, X, and ((ex — iJex)/v/2) is a unitary basis of Té;OX . We require
the bases constructed here to vary smoothly over v N u=1(0).

In terms of this unitary basis, the boundary conditions are described in
a uniform manner, irrespective of the choice of the point g € v N w=1(0).
For example, the condition (vyp,n) € T,y ® C says that wpt=q for | =
dimG+1, ..., dim§G+dim£. Also, the quadratic terms in the nonzero
modes, from which the one-loop determinant is calculated, has a uniform
expression in a unitary basis. Therefore, the one-loop determinant is inde-
pendent of .

3In general, the argument given below cannot be applied globally, and the one-
loop determinant is not a constant but a flat section of a line bundle. We will not
address this issue here.
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3.3. Localization on a plane

We have just seen that when the spacetime is a disk of finite radius and the
boundary condition is given by a Lagrangian brane, the quasi-topological
sector of the (2-deformed B-twisted gauge theory is equivalent to a zero-
dimensional gauged sigma model with complex gauge group whose target
space is the support of the brane.

The case when the spacetime is a plane is similar but qualitatively dif-
ferent. It is similar in that the -deformed B-twisted gauge theory in this
case is still equivalent to a zero-dimensional gauged sigma model with the
same complex gauge group. The target space, however, is different due to the
noncompactness of the spacetime; it is no longer given by the brane itself.
Rather, it consists of gradient flows generated by the superpotential [30], as
we now show.

3.3.1. Path integral on a semi-infinite cylinder. Let us deform the
spacetime D = R? into the shape of a cigar, consisting of a semi-infinite
cylinder capped with a hemisphere. We split the path integral on the cigar
into two parts. One is performed on the hemisphere, and we already under-
stand it well. The other is on the cylinder. Our strategy is to impose some
boundary condition at infinity and see what state the latter path integral
yields at the other end of the cylinder. Subsequently we feed this state into
the former path integral to deduce the result of the path integral on the
whole cigar.

Let Dg and Dy, be the hemisphere and cylinder parts of D, respectively.
As usual, we can deform the action by Qy-exact terms since this does not
change the Qy-cohomology class of the state at the end. Using this freedom
we choose the metric to be such that

1
(134) 900 = T3
€]
on Dy so that we have ||[V|| = 1 on the cylinder. Moreover, we make g,,(r)

decay sufficiently fast so that D has a finite area.

The action on D is the sum of two Qy-invariant integrals, Sp, on Dy
and Sp__ on Dy,. It turns out that Sp__ is Qy-exact: the part of the action
that depends on W can be written as

dg ow
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For the above choice of metric, the bosonic part of Sp_ is given by

N | . 1 . .
(136) /D dfd@(TI‘(—QFUFij —DZO']DZ'O']' — 2[0'1,0']][0'1',0'j]>

2

1 €
2

_|_

(@)}
SE

_ 1
Do - +IDgol? + gl — i

SE(Ia‘PV) :
€]
Note that there are no boundary terms in this expression.

Let us “squash” the cigar in the longitudinal direction in such a way
that g, is rescaled on D, as

(137) 9rr — t_QQM .
At the same time, we also rescale W as
(138) W — tW.

Both of these deformations are Qy-exact. In the limit ¢ — oo, the path
integral on D, localizes to the locus where

e OW

———=0.

139 F = Dy0 = Do, = [07,00] = Dp — 15— =
(139) [, 6] EGE

For the path integral to be nonvanishing, the boundary condition at
r = oo must be compatible with the localization equations. Then, for the
vector multiplet, we should take the Neumann condition as we did in the
hemisphere case. We can choose the gauge A, = 0 on D, and in this gauge
and with this boundary condition on the vector multiplet, the above equa-
tions reduce to
(140) A= Opdy = dwp— <V

le] Op

If Dy were compact, with r varying over a finite interval, we would be
able to shrink it to a very short cylinder so that the localization equation
for ¢ would imply that ¢ does not vary in the longitudinal direction. In the
case at hand, however, r is not bounded above and takes values in [rg, c0)
on Dy, for some rg > 0. If we introduce a new coordinate

(141) s = ]e]/ VGrr dr,
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which ranges from 0 to oo, then in terms of this coordinate the equation
becomes

Therefore, ¢ localizes to a solution of the gradient flow equation generated
by the function Re(W/e) on X with respect to the Kéhler metric (89).

We have found that the chiral multiplet scalar should approach a gradi-
ent flow as t — co. As we will see, for the convergence of path integral the
flow must terminate at a fixed point. So we pick a submanifold 7, of the
critical locus Crit(W) of W and demand

(143) P € Yoo

at r = 0o. The boundary condition at r = oo for the chiral multiplet is the
brane-type condition characterized by Yoo.

Now we turn our attention to the state produced by the path integral at
the other boundary of D.,. The wavefunction of this state is sharply peaked
on the localization locus. In the limit ¢ — oo, the effect of including this
wavefunction in the path integral on Dg is to impose a boundary condition
that forces the bosonic fields to lie on the localization locus. For the vector
multiplet this is the Neumann condition.

For the chiral multiplet, the boundary condition is a brane-type condi-
tion whose support g consists of all points p € X such that there exists a
gradient flow ps: R>g — X with ¢g = p and ¢ € Yoo, namely the union of
all gradient flow trajectories terminating on ~... When 7, is a nondegener-
ate critical point, g is known as a Lefschetz thimble.

3.3.2. Gradient flow trajectories as Lagrangian branes. We have
reduced the path integral on a plane to the path integral on the hemisphere
Dy with a particular brane boundary condition. For the path integral on Dy
to be sensible, Re(W/e) had better be bounded above on the brane support
~o so that the boundary term does not diverge. Furthermore, for the path
integral to be nonvanishing, 79 should be a Lagrangian brane, that is, there
should be a Lagrangian submanifold £ of M such that vo = 7 1(Lo).
These requirements are satisfied if we choose the brane support v, at
r = oo appropriately [52] 53]. Since W is invariant under G¢ and so is the
gradient flow equation (142)), gradient flows in X define gradient flows in M
which are generated by Re(W/e) as a function on M. We pick a compact
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Lagrangian submanifold £, of Crit(W) C M and set
(144) Yoo =T (Loo) -

Then we have 79 = 7~ 1(Lg), with Lo being the union of all gradient flow
trajectories in M that terminate on £ .

First of all, Re(1W/e) is bounded above on -y because it is nondecreasing
along a gradient flow:

w 1 oW oW
14 Re( L) = 2V .
9 e’ ) = 19 7 2

As such, it attains the maximum value along each gradient flow when it
reaches 7o, but this value is locally constant on Crit(W).

We can show that £y is a middle-dimensional submanifold of M as fol-
lows. By the holomorphic Morse—Bott lemma, in a neighborhood of any point
p € Crit(W) € M we can find local holomorphic coordinates (zz)?fllc M such

that
(146) W =W+ (")
i=1

for some n. The Hessian of Re(W/e¢) at p has n positive, n negative and
(dimg M — 2n) zero eigenvalues. Hence, the union of gradient flows trajec-
tories terminating at p is a submanifold of dimension n. Since £ is the union
of such submanifolds as p varies over the (dimg M/2 — n)-dimensional sub-
manifold £, it has dimension dimg M/2.

To show that L is isotropic, we use the fact that gradient flows are
Hamiltonian flows generated by Im(W/e). Indeed, if v = 0,00, + 05@0; is
a vector field generating a gradient flow, we have

i(10W  _ 10w W

It follows that wy is preserved along the flows: L,wx = (diy + t,d)wx = 0.
On the other hand, any differential form on £y is mapped to a differential
form on £, upon pullback to £ by gradient flows. Since wx vanishes on
L by construction, the invariance of wx under gradient flows implies that
wx vanishes when restricted to Lg.

Combining what we have just found and the localization of the path
integral on the hemisphere, we arrive at the main result of this section: The
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quasi-topological sector of a B-twisted gauge theory with gauge group G,
subjected to an §-deformation on R?, is equivalent to a zero-dimensional
gauged sigma model with gauge symmetry ¢ whose action is —27WW /e and
target space is a Lagrangian brane 79 = 7~!(£g). The Lagrangian subman-
ifold £¢ of the Kéhler quotient M consists of the gradient flow trajectories
generated by Re(W/e), terminating on a chosen compact Lagrangian sub-
manifold £, of Crit(W) C M.

4. Four-dimensional Chern—Simons theory from
six dimensions

Let us apply the result obtained in the previous section to the six-dimensional
topological-holomorphic theory on D x ¥ x C, viewing it as a B-twisted
gauge theory on D.

The chiral multiplet scalars of the theory form a partial G¢-connection

(148) A= Apda™ + Azdz

on X x C. The target space X is therefore the space of such connections,
with (A, Az) providing holomorphic coordinates. The gauge group § is the
group of maps from ¥ x C to G, which is the group of gauge transformations
that are constant on D. Looking at the chiral multiplet action, we see that
X is endowed with the G-invariant Kahler metric

1

(149)  gx = ~53 / Vs 22 22 Tr(6A™ @ 6 Ay, + 0A™ @ 5 A,
xC

+0A; ®0A, +0A, ®6Az),

where /gs d?z is the volume form of X. The superpotential is given by the
integral (65]). This is not a fully gauge invariant expression; we will address
this point later.

Now we take D = R? and turn on an -deformation using the rotation
symmetry. Then, by localization the path integral reduces to the integral

(150) / DAexp<7:h /Z e CS(A)> ,

with

€e
151 h=—-——.
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This is precisely the path integral for four-dimensional Chern—Simons theory
with gauge group G [18H21].

Thus we conclude: the 2-deformed topological-holomorphic theory on
R? x ¥ x C is equivalent to four-dimensional Chern-Simons theory on
Y xC.

We still have to identify the integration domain for the localized path
integral . With application to integrable lattice models in mind, let
us do so in the case when ¥ is a flat torus 72 and C is an elliptic curve
E =C/(Z + 1Z). Moreover, we take G to be either U(N) or a connected
and simply connected compact Lie group. We parametrize ¥ with periodic
Cartesian coordinates (z,y), and let C, and C, denote the homology cycles
represented by loops in the z- and y-directions. The one-cycles along E are
denoted by C, and Cp, with the former corresponding to a path from z =0
to 1 and the latter a path from z =0 to 7.

The main task is to understand the critical locus of W in the Kéhler
quotient M of X. The Kéahler form of X is

(152)  wx=—== [ on 2w d2Tr(SA™ A Ay, +5A: AGA,).
2e xC

A simple computation shows that the moment map p for the G-action is
given by the formula

(153) (W, e) = —;12 /EXC\/gEd% d?z Tr(a (D%m — ;F>> ,

where ¢ € Lie(9) is the parameter of gauge transformation. Hence, the zero
locus of p is described by the condition

(154) Dm¢m - %Fzz = 0,

and M is the quotient by the G-action of the space of partial G¢-connections
satisfying this condition. The critical locus of W is where the equations of
motion hold:

(155) Fon = Fmz = 0.
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Imposing the conditions (154) and (155]) is the same as requiring the
vanishing of the integral

1fmn —-m
(156) — / N d2xd2zTr<f Fon +F 2 Fmsz
YxC 2

. 2

By integration by parts we can rewrite this integral as

1 1
(157) — / Vs &2z d?z Tr(Fm"an + F™,Fpz — - F2
ExC 2 4

+ D™ " Dyphn + D™ Dby, + %[ebm, ?"][Pm, %]) :

The integrand is again a sum of nonnegative terms and must vanish sepa-
rately. On u=1(0) N Crit(W), therefore, A is a flat connection and ¢ satisfies

(158) Dm(lsn = Dz¢m = [d)m? ¢n] =0.

A flat connection A on a principal G-bundle P — T2 x E is character-
ized, up to gauge transformation, by the holonomies around the one-cycles
in the base,

(159) Pexp(/ A), e=2x,9,a,b.
co

Since the fundamental group of T2 x E is abelian, the holonomies form a
commuting quadruple of elements of G.

For G = U(N), the elements of the quadruple can be diagonalized simul-
taneously. Things are a little more complicated if G is not unitary. In this
case, these elements can be pairwise conjugated to lie in a given maximal
torus T of G, but in general it is not possible to put all of them into T. Still,
the moduli space of commuting quadruples has a component in which all
four elements belong to the same maximal torus, and if the holonomies are
generic they fall in this component. We will restrict our attention to this
generic situation.

The equations D, ¢, = D,¢,, = 0imply that ¢, are left invariant by the
holonomies. Under the genericity assumption, this condition requires ¢,, to
be valued in the Lie algebra t of T, and the remaining equation [¢,, ¢n] = 0
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is satisfied. If we choose a gauge such that A is represented by a constant t-
valued one-form, the same equations imply that ¢ is also a constant t-valued
one-form.

The constant tc-valued one-form A define local holomorphic coordinates
on Crit(W) € M. A better set of local holomorphic coordinates is given by

1 1
160 —— [ 4 —
(160) T om ST YT 2w e,

and

(161) 2m< /Cb > /A d%z.

These quantities are invariant under topologically trivial T¢-valued gauge
transformations.

Globally, topologically nontrivial gauge transformations induce the iden-
tifications

(162) Ty ~Tp +u, Ty ~ Ty +u, A~A+u~A+TU,

with 2miu € t being an element of the kernel of the exponential map exp: g —
(. Lastly, we must identify values related by the action of the Weyl group
W(G) of G, which is part of the gauge symmetry. Altogether, the relevant
part of Crit(IW) C M is isomorphic to

(163) ((C)" = (C)" x E")/W(G),

where r is the rank of G.

As discussed in the previous section, the integration domain for the local-
ized path integral is the union of the gradient flow trajectories terminating
on a chosen compact Lagrangian submanifold £, of Crit(W) C M. An ob-
vious Lagrangian submanifold of the moduli space is the product of
closed curves in each factor. For example, for the torus part (C*)" x (C*)",
we can set Im T, and Im T, to constant elements of t.

It will prove useful to interpret the last factor of the moduli space (163])
in the language of holomorphic vector bundles. At each point in 3, the gauge
bundle P restricts to a principal G-bundle over E. Pick a unitary represen-
tation of G and consider the vector bundle associated to this representation.
The G-action extends to a G¢-action, making it a Ge-bundle. Since the inte-
grability condition 5124 = 0 is trivially satisfied for a dimensional reason, given
a connection A there always exists a holomorphic structure on this bundle
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in which the Dolbeault operator d coincides with d4. On u=1(0) N Crit(W)
where A is flat, the bundle has degree 0 (that is, topologically trivial) and
is semistable. Conversely, a semistable holomorphic vector bundle of de-
gree 0 arises in this way from a flat unitary connection, according to the
Narasimhan—Seshadri theorem [54].

The relation between the coordinates on M and the holomorphic struc-
ture is as follows. The associated vector bundle in question is a quotient of a
flat bundle over the universal cover C of E. Let us take a gauge in which A;
is constant and valued in tc. Then, choosing a basis (s;(0))7_; consisting of
eigenvectors of Az in the fiber at z = 0, we can define holomorphic sections

(164) si(z) = exp((z — 2)Az)5;(0) = exp<—27ri7\i?r;l7z_> 5:(0),

where A; is the eigenvalue of A associated with s;(0). These sections provide
a basis for a local holomorphic frame. They obey the monodromy relations

(165) si(z+1) = si(2), si(z + 1) = exp(—27iA;)si(z) ,

which determine the corresponding holomorphic transition functions. Thus,
the parameter A of the flat connection specifies the holomorphic structure
via monodromy of holomorphic sections.

Now that we have understood the integration domain, let us come back
to the more fundamental question: how do we make sense of the superpo-
tential in the first place when it lacks gauge invariance? Fortunately, no
problem arises if G is connected, which we assume.

The point is that given a homotopy A: [0,1] — X between two connec-
tions Ag and A;, we can define the difference of W evaluated for Ay and A,
in a gauge invariant manner:

(166) W(A) — W(Ay) = 1/ dz ATe(F A F).
[0,1]xXxC

e2

Here F is the curvature of .Z, regarded as a connection on [0, 1] x ¥ x C. By
assumption, for any two gauge equivalent connections Ay and A; satisfying
the equations of motion (155]), there is a path g: [0,1] — G such that §(0)
is the identity element and A; is the gauge transform of Ag by g(1). For
the homotopy A generated by the action of g on Ay, the right-hand side of
the above formula vanishes since the components of dz A F along ¥ x C are
zero throughout the interval [0, 1]. Hence, W can be made gauge invariant for
connections in Crit(WW). Also by the same formula, the value of W (.A;) for
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a connection A; equipped with a homotopy to a connection Ag in Crit(W)
is determined from W(Ap). We only have to deal with such connections
because A must approach a point on ., as r — 00, and 7Y is a submanifold
of Crit(WW).

If we choose 7 inside a connected component of Crit(W), the definition
of W on the relevant part of X boils down to a choice of a single constant
as the value of W in that component. This constant may be thought of as
an overall normalization factor for the path integral.

5. Integrable lattice models from four-dimensional
Chern—Simons theory

Now that we have understood the six-dimensional origin of four-dimensional
Chern—Simons theory, let us focus on this theory itself and explore its phys-
ical properties. In this section we explain how integrable lattice models and
related mathematical structures arise from nonlocal observables of the the-
ory. Throughout this section we take C = FE, except for the argument in
Section which works for all choices C = C, C* and E. Also, we take
¥ = T? whenever the topology of ¥ matters.

5.1. Line operators and integrable lattice models

As in the ordinary Chern—Simons theory, the basic observables in four-
dimensional Chern—Simons theory are Wilson lines. Recall that in the six-
dimensional topological-holomorphic theory there are Q-invariant Wilson
lines constructed from the partial G¢-connection A, which lie in the four-
manifold M = D x ¥ and are supported at points on C. For D = R? or
a disk, these Wilson lines remain as good observables even after the €2-
deformation is turned on (that is, they are Qy-invariant) if they are sup-
ported on closed curves in ¥ and placed at the origin of D. They descend
to Wilson lines in four-dimensional Chern—Simons theory.

In the present setup, these Wilson lines wind around various one-cycles
of ¥ = T?. More generally, suppose that there are m + n line operators L,
a=1,...,m+ n, the first m of which are supported on the horizontal lines
located at (y,2) = (Yas 2a), while the last n are supported on the vertical
lines at (x,z) = (zq, 2a). These line operators form an m x n square lattice
on T2. The case with (m,n) = (2,3) is illustrated in Figure [1(a)]
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- ) ]
L b /B ‘
(a) (b) (c)

Figure 1: (a) A lattice formed by line operators on T?. (b) Decomposition
of the lattice into square pieces. (c¢) A single square piece with boundary
conditions specified on the corners.

We are interested in the correlation function
m—+n
(167) < 11 La> .
a=1

In order to compute this quantity, we break T2 up into square pieces, each
containing precisely two intersecting segments of line operators [46}, 55]. See
Figure for an example of this decomposition.

Take a single such piece, containing line operators L, and Lg. On the
corners we pick boundary conditionsﬁ which we label a, b, ¢ and d, as in
Figure This determines Hilbert spaces assigned to the sides of the
square. Let V;, o, be the Hilbert space of states on an interval with boundary
conditions a on the left end and b on the right end, intersected by L, in the
middle. The path integral on the square piece produces a linear map

} d
(168) Ra,é’ < Z c ) : Vab,a ® Vbcﬁ — Vad”b’ & Vdc,a .

We call this operator an R-matriz.

After computing the path integral on each square piece, we can glue the
pieces back together by composing the resulting R-matrices in an appro-
priate way. Finally, we sum over the boundary conditions specified on the

4To handle surfaces with corners in the framework of open-closed topological field
theory, one may imagine cutting out the corners and replacing them with branes on
which open strings have ends. For each corner we are choosing a boundary condition
that specifies the type of the brane sitting there [55].
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corners so that the fields are allowed to have all possible behaviors at those
pointsﬂ

This procedure for computing the correlation function of line operators
may be thought of as defining the partition function of a lattice model in
statistical mechanics. In this lattice model, state variables (or “spins”) are
placed on the faces and edges of the lattice of line operators. The boundary
conditions on the corners are identified with the face variables, whereas
basis vectors of the Hilbert spaces on the sides of the squares are the edge
variables. The matrix elements of an R-matrix encode the local Boltzmann
weights for various configurations of states around a vertex of the lattice. The
partition function of the lattice model is the product of the local Boltzmann
weights, summed over all allowed state configurations. This is precisely what
we have to calculate to reconstruct the path integral on the whole torus from
those on the square pieces.

The crucial property that makes this interpretation useful is that the
theory is topological on TQH This property ensures that the state space
and local Boltzmann weights of the lattice model are independent of the
locations of the lines or how we cut 7?2 into pieces; only topology matters.

So far we have only used the structure of a two-dimensional topological
field theory to establish that a collection of line operators gives rise to a
lattice model. Actually, our theory has more than just this structure. It is
really four-dimensional, and this fact has a profound implication [I8| [19].

The two-dimensional topological invariance guarantees that the parti-
tion function of the lattice model remains unchanged when one of the lines,
say a horizontal one, is moved up and down. This is true as long as it does
not pass another horizontal line, at which point the topology of the lattice
changes. In general, one excepts the partition function of a quantum field
theory to behave badly at a singular configuration where two line operators
sit on top of each other. In the present case, however, the line operators
are generically located at different points on C', and the partition function
should be perfectly smooth even when two lines coincide on T since they
are separated on C. The topological invariance on 7 then implies that the

"Here we are assuming that the vacuum state of the Hilbert space for a closed
string (which is mapped to the identity operator under the state—operator corre-
spondence) can be expanded in boundary states describing branes [55].

6In reality, as we will see later, the topological invariance is broken due to a
framing anomaly [20, 2I]. For the purpose of this discussion it suffices to consider
the situation where the lines making up the lattice are straight and therefore the
framing anomaly plays no role.
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partition function is left intact when the positions of two lines are inter-
changed.

Another important point is that each line in the lattice carries a con-
tinuous complex parameter, namely its coordinate on C. In the context of
lattice models, this parameter is called the spectral parameter of the line.
Hence, Raﬁ depends on the spectral parameters z, and zg, and by transla-
tion invariance it is a function of the difference z, — z5. Since the theory is
holomorphic on C, it should satisfy

(169) (D=, Reg] = 0

so that gauge invariant quantities constructed from the R-matrices are holo-
morphic in the spectral parameters.

These two properties — the commutativity of any two parallel lines and
the existence of a spectral parameter assigned to each line — are what make
a lattice model integrable. Let us quickly explain why.

Formally, we can reformulate the above lattice model in such a way that
it no longer carries state variables on the faces: we simply introduce big
Hilbert spaces

(170) Vo =P Vaba
a,b

and extend the R-matrix (168 to a linear map

(171) Rop(za —28): Vo ® Vg V30 V,,

setting the excess matrix elements to zero. With this reformulation, we can
introduce the row-to-row monodromy matrices

(172) Ta(za; AmA4ly - Zm+n)

= Ra,m+n (Zoz - Zern) Oy, *** OV, Ra,erl (Za - Zm+1)
and transfer matrices
(173) ta(za; ZmAly .- - 72m+n) = TI'VQ Ta(zoc§ ZmA4ly ey Zm—l—n) ;

where the compositions and trace are taken in the space V, assigned to
the horizontal edges in the ath row. These are endomorphisms of V, ®
Vind1 ® - @V and Vi1 @ -+ @ Vg, respectively. Graphically, a
monodromy matrix is a horizontal line traversing segments of vertical lines,
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N R C_{_ﬂ_iii_b
(a) (b)

Figure 2: (a) A monodromy matrix and (b) a transfer matrix.

and a transfer matrix is obtained when the horizontal line makes a loop and
comes back to the starting point; see Figure

Using the transfer matrices we can express the partition function as a
trace:

m—4n
(174) < 11 La> =Try,,, 0@V, (tmo---0t1).
a=1

If we think of the vertical direction as a time direction, we may regard
the transfer matrices ¢1, ..., ¢, as a sequence of discrete “time evolution
operators” acting on the “total Hilbert space” V411 ® -+ ® Vipqp of the
lattice model.

The commutativity of horizontal lines means that transfer matrices com-
mute:

(175) [ta(za)vtﬁ(zﬁ)] =0.

(Here we have suppressed the dependence of the transfer matrices on the
spectral parameters assigned to the vertical lines.) If we expand t,(z,) in
the powers of z,, the expansion coefficients are themselves operators on the
total Hilbert space. In this way we obtain an infinite number of “conserved
charges” which commute with the time evolution operator ¢g(zg). Further
expanding t3(z3) in zg, we learn that these conserved charges mutually
commute. In this sense the lattice model is said to be integrable.

To recapitulate, the correlation function of a lattice of line operators
in four-dimensional Chern—Simons theory is the partition function of an
integrable lattice model defined on the same lattice. The integrability is a
consequence of the topological invariance on T2 and the existence of the
extra dimensions C.

In fact, we can make a stronger statement. A similar argument as above
leads to the conclusion that the R-matrices satisfy the unitarity relation

. a d - a e
(176) ZRﬁa<e i zﬁ—za>Raﬁ<b .

Zo — Z,B) = pa idv,, @V, 5
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Figure 3: (a) The unitarity relation and (b) the Yang-Baxter equation.

and the Yang—Bazter equation
s ([e s (af s (by
(177) ZRQB<9 d Za — 2p | Ray b g Ra = Ry R/J”Y cd ZB — 2y
g

p (af 5 (9¢€ 5 (a9
:ZRm(ge 25—27>Ra7<cd za—z,y>Rag<bc za—25>.
g

The latter is an equality between two linear maps from Vg, o ® Vi g @ Vg
to Vo, @ Vi3 ® Veq o, and each R-matrix is implicitly tensored with an
identity operator. These relations imply the commutativity of transfer ma-
trices, hence integrability. Their graphical representations are shown in Fig-

ure Bl

5.2. Wilson lines and dynamical R-matrices

What kinds of R-matrices do we get if L, are Wilson lines

(178) W, = Try, Pexp ( 7{ A)

in representations G — GL(V,,)? To answer this question, we recall how we
defined the path integral for our theory. The computation is done in two
steps. First, we fix a tc-valued gauge field A that represents a point in the
Lagrangian submanifold Lo of the moduli space (163)), and integrate over
the gradient flow trajectories generated by the real part of the action. The
result is a function on L. Subsequently, we integrate this function over L.

The first step can be well approximated by perturbation theory around
the background A%°. In perturbation theory, the contributions to the cor-
relation function come from the exchange of gluons between Wilson lines.
(There are also vacuum and self-energy diagrams which should be taken
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care of by renormalization.) The fluctuations from A that we integrate
over are massive by construction. So if we take advantage of the topolog-
ical invariance of the theory and rescale the metric on 72 by a very large
factor, the contributions from gluons traveling a finite distance in 72 are
suppressed. This argument might fail if the coupling constant increases as
we take the large volume limit, but this does not happen as our theory is
actually infrared free. Thus, quantum effects get localized in the vicinity of
the crossings of Wilson lines. Accordingly, the correlation function factor-
izes into the product of local contributions associated to the vertices of the
lattice. These local contributions are the R-matrices of the lattice model.

While quantum effects are important only for interactions between
nearby Wilson lines, classical effects are not confined to short distances. A
Wilson line may be thought of as a heavy, electrically charged particle mov-
ing along a curve. The state of this particle is labeled by a weight w € t{. of
its representation. When two such particles encounter, they exchange gluons
and their states may change. Hence, a state of the system under considera-
tion is specified by a set of weights assigned to the edges of the lattice. Each
of these edges sources an electromagnetic field, which does affect charged
objects at distant places.

As an example, consider a Wilson line in the state w along a horizontal
line K at y = z = 0. The part of the Wilson line felt by faraway objects is

(179) exp< /K w(A°°)> —exp< /K XIXETr(wAOO)de(ym?(z,z)d?z),

where [ is an interval in the y-direction such that K x I x E contains the
Wilson line and the objects under consideration, 6(y) is a step function such
that 0,0(y) = d(y), and we have identified tc and & via the bilinear form
Tr. The presence of this factor in the path integral has the same effect on
those objects as shifting AX by —mhwd(y)é?(z, 2) over K x I x E. We must
take this shift into account when computing the R-matrices.

The above analysis shows that the R-matrices depend on the effective
background gauge field which differs from A% by a shift due to the combined
effect of all Wilson lines present in the system. By gauge symmetry, the R-
matrices are functions of the parameter

(180) A€ te

for the effective background, defined by formula (161)). Its value jumps by
hw across a segment of Wilson line carrying the state w. Drawing a Wilson
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line with a dashed line, we can express this jump rule graphically as follows:

(181) W —mmmmmmm s >

In lattice models, this parameter A is called the dynamical parameter. An R-
matrix that has a dynamical parameter is known as a dynamical R-matrix.
The appearance of dynamical R-matrices from Wilson lines was argued
in [20] based on considerations in an effective two-dimensional abelian gauge
theory.

When one refers to an R-matrix depending on a dynamical parameter,
there is a potential confusion as to which point one is evaluating the dynam-
ical parameter at because its value varies from place to place. We define the
R-matrix

(182) Rog(za —28,N): Vo ®@ Vg = Vg @ V,,

arising from the crossing of two Wilson lines W, and Wj, with respect to
the dynamical parameter on the top-left face:

. A
(183) Rog(2a — 28,N) = a ---

]
1
V¥

W —mmm

The dynamical parameters on the other three faces are determined once
states are chosen on the edges. Consistency at the bottom-right face requires
that the R-matrix has zero weight, that is, RQB commutes with the action
of ’c(c.

A priori, the R-matrix also depends on the components of A>
along T2. However, by a Tc-gauge transformation we can make A% and
AJ° vanish everywhere except in the neighborhood of a single z-coordinate
and a single y-coordinate, respectively. In this gauge the sole effect of these
components is to twist the periodic boundary conditions with the gauge
transformations by the corresponding holonomies. Hence, we conclude that
the transfer matrices and the partition function are given by

(184) to = TrVa (exp(27TiTx)Ra,m+n ov, "oV, Ra,m—H)
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and
m—+n

(185) < H Wa> =Try, ©-@Viin (exp(QWiTy)tm 0-++0 t1) ,
a=1

where R,z now refers to the R-matrix in the background with A = A7 =
0. The zero-weight property of R,g implies that the transfer matrix has zero
weight. In turn, this ensures that the partition function is independent of
the choice of the row in which the twist exp(27it,) is inserted, as it must be
by gauge invariance. By symmetry the same can be said about the choice of
the column for exp(27it,).

Keeping track of how the dynamical parameter changes in the graphical
representation of the Yang—Baxter equation, we find that the R-matrices
arising from the crossings of Wilson lines obey

(186) Rapg(2a — 28, A — hhy) Romy (26 — 24, A) Ry (25 — 24, A — Bhg)
= R\ (25 — 24, N Roy (20 — 24, A — Bhg) Rap(za — 23, A) -

Here the notation h, means that it is to be replaced with w when the R-
matrices act on a state with weight w in V,. The Yang—Baxter equation of
this form is known as the dynamical Yang—Baxter equation.

Four-dimensional Chern—Simons theory thus produces a dynamical R-
matrix Rag, specified by a choice of the gauge group GG and a pair of rep-
resentations (Vy, V) of G. This R-matrix has zero weight and satisfies the
unitarity relation

(187) Rga(zg — za,A)Rag(za —28,N) = idy, gV, -

Furthermore, by perturbation theory we can compute the R-matrix order
by order in h. At each order (except the zeroth), Rag(za — 23,A) diverges
at zo — zg = 0, which is the point corresponding to the situation where W,
and Wj intersect in the four-dimensional spacetime. At the first order, the
divergence comes from a diagram in which a single gluon travels between the
two Wilson lines in a neighborhood of the intersection, without going around
one-cycles of E. Hence, if we gauge away AZ° in this neighborhood, the
singular behavior of the R-matrix is independent of the dynamical parameter

to first order in A.
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5.3. Dynamical R-matrices for G = U(IN) and SU(N)

For G = U(N) and (V,, V) = (CV,CY), with Tr taken to be the trace in
the vector representation CV, Etingof and Varchenko [56] showed that a
dynamical R-matrix with the properties described above is unique to all
orders in perturbation theory, up to certain simple transformations and per-
turbative corrections to 7. It is Felder’s R-matrix for the elliptic quantum
group for sly [33], B4], which first appeared as the Boltzmann weight for an
integrable lattice model discovered by Jimbo, Miwa and Okado [31), 32]. For
N =2, the Jimbo—-Miwa-QOkado model reduces to the eight-vertex solid-on-
solid model [57].

To state the result of [56] more precisely, we need a little preparation.

First of all, let us introduce some notations. For G = U(NN), the com-
plexified Cartan subalgebra tc¢ is the space of complex diagonal matrices.
The standard basis for t¢ consists of the matrices E;;, i =1, ..., N, which
have 1 in the (¢,7) entry and O elsewhere. The trace Tr identifies Ej;; with

its dual E};, so we can write the dynamical parameter as
N
(158) A= S ONES,
i=1
using an N-tuple of complex numbers (Ag,...,Ay). The standard basis vec-

tor e; of CV has weight w; = E};. The matrix elements of an endomorphism
R of CN @ CV are defined by R(e; ® e;) = Zglzl er ® elRfjl.

We also need Jacobi’s first theta function 0;(z) = 61(z|7). In terms of
the theta function with characteristics

(189) 0 |: Z:| (Z’T) _ Z eﬂi(n+a)27+27ri(n+a)(z+b) ,

this is given by

(190) 0, (z|r) = —e“g](zm.

It is an odd function:

(191) 91(—,2) = —(91(2).
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From the identities

a

G[Z](” 1|7) = e%iaﬂ{b](zh'),

(192) a ic? i a+tc
e[ ) ] (z+cr|r) =™ T—2mc<z+b>9[ ] (2]7),

b

it follows that ¢; has the following quasi-periodicity property:
(193) 01(z+1) = —01(2), 01(z +7) = —e ™T2MEG) (2

We can now define Felder’s R-matrix RF. This is an End(CY ® CV)-
valued meromorphic function on C x ti such that

(194) RY(2,A) = PRY(2,))

satisfies the dynamical Yang—Baxter equation and the unitarity rela-
tion (I87). Here P € End(CY ® CV) is the swap isomorphism: P(v ® w) =
w ® v. The matrix elements RF(z,?\)f} vanishes unless {i,j} = {k,(}. The
nonzero matrix elements are

i 61(2)(91(7\1 +h)

(195) RE (2,05 = 01(z — h ‘;1()\13) ’
F i Hl(h)Hl(z - 7\1 )

BN = 4 o)

where i # j and A;j = A; — Aj.

Finally, let RV™) be the R-matrix for the crossing of two Wilson lines in
the vector representation of U(N), and RVY) = PRUN)| As our aim is to
relate RYY) and R, we must identify RV(N) with an End(CN ® CN)-valued
meromorphic function on C x . We do this by choosing a trivialization for
the rank- /N holomorphic vector bundle V), — F corresponding to a flat gauge
field characterized by the dynamical parameter A.

Let us treat the dynamical parameter on the left side of a Wilson line
as the background gauge field experienced by the charged particle; for in-
stance, the Wilson line in diagram is a charged particle moving in the
background A, which itself sources a gauge field and shifts the background to
A — hw on the right side. If the spectral parameter of this line is z, a state
of the charged particle is a point in the fiber Vj|,. We identify the local
holomorphic frame (s;)¥, of Vj defined by formula and the standard

7
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frame (e;)YY; of the trivial bundle C x C. With respect to this trivializa-
tion, RV is an End(CN @ CV)-valued function, and its matrix elements
are meromorphic functions of the spectral parameter since Dzs; = 0 and
[Dz, RVN)] = 0. The matrix element RV (z; — 2y, A)f]l describes the pro-
cess in which the state s;(21) ® sj(22) in VAl, ® Va—rw, |z, evolves into the
state sk(zl) & 8[(2’2) in V?\—hwl|zl (%9 V)\|Z2.

By choosing this gauge, we have set AZ° =0 and let the monodromies
of s; encode the dynamical parameter. For a generic value of A, all we can
do now is to rescale s; by separate factors, so the residual gauge symmetry
(apart from the Weyl group action) is given by T¢-valued gauge transfor-
mations that are constant on E. Since we have also gauged away A2° and
AZO, these gauge transformations must be constant on ¥ as well.

According to a theorem of Etingof and Varchenko [56], RYW) regarded
as an End(CY @ CV)-valued function as above, is related to RF by a se-
quence of transformations. Some of these transformations can be understood
as Tc-valued gauge transformations which are meromorphic and possibly
multivalued on E. On a dynamical R-matrix R: C x t& — End(CY @ CV),
the gauge transformation R — ¢g- R by a Tc¢-valued meromorphic function
g on C x {7 acts by

(196) g+ R(z1 — 22,A) = (9(21,A — Bhg) @ g(22,A)) R(z1 — 22,A)
X (g(21,7\) ® g(z2,A — hhy)~ ) .

Under gauge transformations a unitary R-matrix is mapped to a unitary
R-matrix.

One of the transformations relevant for the theorem is the gauge trans-
formation by a multivalued function of the form

(197) g(2, N)i = dle VN O—hw)

with ¢(\) being a meromorphic function on t.

Another transformation involves a closed meromorphic multiplicative
two-form ¢ on tf, which is a set {¢;;} of meromorphic functions on t§ such
that ;; = goj_il and

©i; (M)A ori(N)
©ij (A — hawp)@ik(N — hw;)pri (A — hw)

Its action R +— ¢ - R is given by

=1.

(198)

(199) - R(2, N7 = 0ii(MR(z, M),
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with the other matrix elements unchanged. This transformation is also a
gauge transformation, at least locally on . Indeed, locally we can write
¢ as an exact form [58]; in other words, there exist meromorphic functions
{&} such that

§i(A)E; (A — haw;)

(200) 2N = R ha 6 ()

Thus, the action of ¢ is locally the gauge transformation with g(z, )\)z =
(51@()\)_1
J

The other relevant transformations are the maps
(201) R(z,A) = o0 ®@0R(z,07 - N)(c®0)™!,

with o being an element of the symmetric group Sy, acting on t and cN
in the obvious ways;

(202) R(z,A) = f(2)R(z, ),
with f a meromorphic function on C such that f(z)f(—z) = 1; and
(203) R(z,A) — R(bz,cA + u),

with b, c € C* and p € .

The map (201)) is simply the action of the Weyl group, under which our
R-matrix should be invariant. For ¢ # 1, the map (203)) changes the amount
by which the dynamical parameter jumps across Wilson lines. So we have
c=1.

To constrain the remaining freedom, we look at the quasi-periodicity
of RYW)_ In the gauge we are using, the holomorphic sections s; obey the
monodromy relations ((165)). In view of these relations, the matrix elements
of RYM) have the quasi-periodicity property

U(N ki U(N Kl
R )(Z+1a7\)ij = rY( )(277\)1‘]‘,

(204) RYM) (2 + 7 M = e2miuhlws) U (2 J)M
= 6*27Ti(7\zj+h(wi)j)RU(N)(Z’ )\)Zl _
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Here w; = E;\le(wi)jEjj,

should take the form[]

or (w;); = d;;. For this to be the case, RV

(205) RYM(z,0) = f(2)¢ - B (—2.A),
with f satisfying the quasi-periodicity relations

(206) e+ =[(), flz+r)=ef(2).

At this point there is nothing that constrains .

Let us turn to the case when the gauge group is SU(NV). In this case
tc is the space of complex traceless diagonal matrices, so the dynamical
parameter for SU(N), which we call A, obeys the constraint

N
(207) S A =0.
=1

The weight w; = Zé\;l(@i)jE;‘j of e; is given by (w;); = d;; — 1/N. We refer
to the background field configuration specified by a dynamical parameter A
as an (N,0) background, for a reason that will become clear later.

To identify the R-matrix R(V:0) for the vector representation of SU(N),
we consider four-dimensional Chern—Simons theory for G = U(N) and split
the gauge field into the overall U(1) part and the SU(N) part:

(208) A=AV 4 fgSUN)

Correspondingly, the dynamical parameter splits as
_ 1 &
(209) A=NI*+A, AO:NX;Ai,
=

where I* is the dual of the identity matrix. Since A and ASYW) are
decoupled in the theory, the total R-matrix is the product of the R-matrices

For RYW)(2)% to have the correct quasi-periodicity, ¥(A) — 21(A — hw;) +
(A — 2hw;) must be independent of A for all . A function ¥ (A) that has this
property and is invariant under the Weyl group action is a multiple of the trace
Zfil A;, but the corresponding gauge transformation acts trivially on the R-matrix.
Then, the quasi-periodicity of RV(Y )(Z)Z fixes that of f, and the quasi-periodicity
of the other components determines the value of b and tells that p;; are integers.
Shifting A;; by integers does not affect RF.
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RYM) for the U(1) part and R0 for the SU(N) part:
(210) RYM) (2, A) = RYW (2, A) RN (2, ).

The U(1) part is a scalar function of z and Ag, while the SU(/V) part depends
on z and A.

We know RUVN) (2 \)# = f(2) and therefore RV(Y) is independent of Ag.
The formula for RYN) then implies that ¢ - RY is a function of A and
not of Ag. As RY is independent of A, so is ¢. Thus, we can write

(211) RO (2, 8) = fNO (2)¢™1 - RF (=2,1),

where we have expressed the action of <p as the gauge transformation by a
diagonal matrix {1 = diag|( 51 ..., &5Y) of meromorphic functions of A. By
considering the monodromies of RV OI)V as in the U(N) case, we deduce

(212) FNO 4+ 1) = fNO(2),
f(N,O) (Z + T) — 6727riFL(N71)/Nf(N,O) (Z) ]

The unitarity relation requires
(213) FRO ) fNO(—z) = 1.

In Sections and we will obtain more conditions on f(V:0 from
considerations on framing anomaly and junctions of Wilson lines.

5.4. Surface operators and nondynamical R-matrices

Just as an electrically charged particle moving in spacetime creates a Wilson
line, the worldline of a magnetically charged particle is also a line operator.
This operator is called an ’t Hooft line operator if the particle is a magnetic
monopole. More generally, a dyon, which carries both electric and magnetic
charges, creates a Wilson—"t Hooft line operator [59].

Suppose that in addition to Wilson lines, we have ’t Hooft lines lying in
> and supported at points on E in four-dimensional Chern—Simons theory.
The inclusion of t Hooft lines in the path integral means that the gauge
field has a prescribed behavior such that as the distance from any of these
lines tends to zero, the gauge field approaches the corresponding monopole
configuration.
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For monopoles to originate from Qy-invariant configurations in six di-
mensions and have a classical interpretation as a particle, their field configu-
rations, away from the points at which they are located, should be solutions
of the semistability condition and the equations of motion . Al-
though we analyzed these equations in Section [} there we assumed that
all fields were nonsingular, which may not be the case in the presence of
monopoles. We have to reexamine the analysis to incorporate possible sin-
gularities.

Let U be the union of small disks in E, each centered at the location of
a monopole where some fields may become singular. Performing integration
by parts on the integral as before, but this time taking C' = E\ U, we
find that this integral equals the bulk integral plus the boundary term

(214) - / Vs Pz Tr(2¢™ (Fp.dz + Fpzdz)) .
¥xoC

For solutions of the equations of motion, this term equals

(215) i/Z 6C@d2x(dzﬁz —dz0z) Tr(¢" o)

= — / \/gEde dro, Tr(¢" om) ,
Y xoU

where (r,0) are the polar coordinates around the monopoles (defined by
27 = rel?; recall the definition of z).

We know that ¢ is constant in the absence of monopoles, so — Tr(¢™ ¢p,)
should decay to a constant as r increases. Then the boundary term is nonpos-
itive. There are two possibilities: either the boundary term remains nonzero
as we send the radii of the disks to zero, or it vanishes in this limit.

In the former case, the previous argument based on the positivity of the
terms in the integrand fails. As a result, the characterization of semistable
solutions of the equations of motion is altered, a complication we want to
avoid. We will not pursue this possibility in this paper.

Therefore we consider the latter possibility. The previous argument then
goes through, and the semistable solutions are still parametrized by the same
data as in the case with no monopoles, as long as we stay away from singu-
larities. In particular, the curvature of the gauge field vanishes everywhere
except at the points on £ where the 't Hooft lines are placed. Such tightly
confined magnetic fluxes are familiar: they are Dirac strings attached to the
monopoles.
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(a) (b) (c)

Figure 4: (a) A Dirac string emanating from a monopole. (b) The motion of
the monopole creates an 't Hooft operator bounding a surface operator. (c)
A surface operator formed by a Dirac string stretched between a monopole—
antimonopole pair. Here the antimonopole is represented as a monopole
moving in the reverse direction.

As the monopoles move, their Dirac strings sweep out surfaces. Hence,
these 't Hooft lines are really the boundaries of surface operators. Since the
spacetime is compact in the present setup, every Dirac string emanating from
a monopole must be eventually absorbed by other monopoles. For example,
a Dirac string may be suspended between a pair of monopoles with opposite
charges. The introduction of 't Hooft lines thus divides ¥ into distinct regions
supporting various surface operators. See Figure {4 for illustrations.

The signature of a confined magnetic flux is the Aharonov—Bohm effect,
the phase shift in the wavefunction as an electrically charged particle travels
around the flux. Near the location of a Dirac string in E, the gauge field
behaves as

(216) A=iadf+ -

where i € t and the ellipsis refers to terms less singular than 1/r as r — 0.
The gauge transformation by g = exp(iuf), with 27iu € ker exp |y, shifts « by
u, so the singular behavior of the gauge field is characterized by the holonomy
exp(2miar) around the singularity. Surface operators that induce nontrivial
monodromies in fields are often called Gukov-Witten surface operators [60].

In the familiar story of monopoles, one requires this monodromy to be
the identity so that the Dirac sting is unobservable, and this leads to the
quantization of monopole charges. Here, the quantization condition needs
not be satisfied. If the monodromy is nontrivial, the Dirac string is physical,
hence so is the surface operator it creates. In that case the ’t Hooft line is
not a genuine line operator as it cannot exist by itself without having to
bound a physical surface operator.
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Figure 5: A lattice of Wilson lines in the presence of surface operators.

To better understand these surface operators, consider first a situation
in which none of them are present in the system. Part of the data specifying
a semistable solution of the equations of motion is a flat G-bundle over F.
Such a bundle is characterized by the holonomies a, b of the gauge field
around the one-cycles Cq, Cp of E. They satisfy the relation

(217) aba~ o' =,

where e is the identity element of G.

Now suppose that we put surface operators at a point p € E, covering
some region of 3 whose boundaries extend in the y-direction, as in Figure [5
As a result of the introduction of the surface operators, the holonomies are
modified in this region, where instead of the above relation they obey

(218) aba"'b7! = exp(27ia) .

While a pair (a, b) satisfying this modified relation corresponds to a flat
G-bundle over E \ {p}, this bundle cannot be extended to a flat G-bundle
over all of E. The right-hand side becomes the identity only if we project the
equation to the quotient of G by a normal subgroup N containing exp(27ic).
This means that (a, b) still describes a flat bundle over E only if the structure
group can be reduced to G/N. The surface operators thus modify the gauge
bundle in a rather drastic way.

This modification of the gauge bundle is of a special kind [50]. The
surface operators map a solution of the equations of motion to another
solution. In particular, we have

throughout ¥, provided that we are away from p € E. In a gauge in which
A, = 0, this equation reads

(220) OpAs = iDso, .



Unification of integrability in supersymmetric gauge theories 1995

This shows that along the x-direction Az varies by gauge transformations,
and the holomorphic structure defined by Az remains unchanged. Therefore,
the holomorphic vector bundles associated to a unitary representation of GG,
before and after the modification, are isomorphic on E \ {p}.

If the normal subgroup N acts trivially in the chosen representation,
the modified bundle can be extended to E as a (G/N)c-bundle. In this
situation the surface operators modify a holomorphic (G/N)c-bundle over
E to another holomorphic (G/N)c-bundle over E, which is isomorphic to
the original one on E \ {p}. Such a modification of a holomorphic vector
bundle over a Riemann surface is known as a Hecke modification.

In relation to integrable lattice models, the case of particular interest is

when G = SU(N) and

1 1 1
221 = di l— =, —, ..., —=
( ) « la'g< Na Na ) N)a

or any choice of « related to this one by a permutation of the diagonal
entriesﬁ In this case the monodromies are represented by N x N matrices
A, B with determinant 1, satisfying the relation

(222) ABAT'B™ = ¢ 2m/NT

The right-hand side of this relation is a generator of the center Zx of SU(N).
Thus, the pair (A, B) defines a flat vector bundle over F with structure group
PSU(N) = SU(N)/Zy.

The reason this surface operator is interesting is that relation
determines (A, B) uniquely up to gauge transformation: we can take them
to be the matrices defined by

(223) Aey, = M WN-1)/Ng—2mik/N o , Bey = ep11 -

In other words, the flat PSU(/V)-bundle over E has no moduli. Consequently,
the R-matrix arising from the crossing of a pair of Wilson lines in this

8In the rest of this section we only consider t Hooft lines and surface operators
whose charges have £1 — 1/N in the first entry. The distinction between surface
operators with charges related by permutations is meaningful in a generic back-
ground.
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background has no dynamical parameter, and satisfies the ordinary Yang—
Baxter equation

(224) Raﬁ(za - Zﬁ)Ra*y(Za - Z’V)Rﬁ'y(zﬂ — Z’Y)
= Rg (28 — 2y)Rary (20 — 2y)Rap(2a — 23) -

With respect to holomorphic frames on the holomorphic vector bundles asso-
ciated to the representations of the Wilson lines, the R-matrix is represented
by a matrix of meromorphic function on FE.

Although the form of the R-matrix generally depends on the location p €
E of the surface operator in which the Wilson lines are placed, for a suitable
choice of holomorphic frames this dependence disappears. (We implicitly
assumed that such a choice was made when we wrote down the Yang—Baxter
equation above.) This is because if we change the location of the surface
operator from p to p/, the associated bundles over F \ {p} change to new
bundles over E \ {p'}, but the two sets of bundles are isomorphic on E \
{p, p'} since they are both isomorphic there to the set of bundles we originally
had before the introduction of the surface operator. It follows that there
exists a choice of holomorphic frames on the relevant bundles with respect
to which the form of the R-matrix remains unchanged under the shift in the
location, at all point in F \ {p,p'}, hence on the whole FE.

Let us call the field configuration for this surface operator the (N, 1)
background, and let R™N-1) denote the R-matrix for the crossing of two Wilson
lines in the vector representation in this background:

(225) RV (2 — 20) = = ey

z2

The associated bundle over E \ {p} has holomorphic sections

(226) 5(2) = Pexp ( /O ) A) 5:(0).

(We have to be a little careful about the choice of the counter for the inte-
gral in the exponent because of the singularity of A.) With respect to the
holomorphic frame (51')?;1, we have Az = 0 identically and the dependence
on the location of the surface operator disappears. In this frame R is
an End(C"V ® CV)-valued meromorphic function with the quasi-periodicity
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property

RMD(z 4 1) = ARV (2) A7 = 471 RND(2) 45,

227
P20 ROy ) = BROD (B = By RO ()8,

We have introduced the notation X1 =X ® 1 and Xo=1® X for X €
End(CV).

There is a well-known R-matrix which almost has the same quasi-
periodicity. The Baxter-Belavin R-matrix R [35-37] is a unitary solution
of the Yang—Baxter equation satisfying the relations

RB(z+1) = A1RB(2)A7" = A;'RB(2) Ay,
(228) RB(z+7) = ™" N-D/N B RB(2) B!
— €2ﬂih(N71)/NB2_1RB(Z)B2 )

It is an End(C" ® C¥)-valued meromorphic function whose matrix elements
are given by [61]

6r(h) 05Dt h) [INZH0(2)
229 RB()M =6, . ' ' A
(229) (Z)w +7,k+1 01(z + h) 0= (R)AG—1) (z) Hgi 6™ (0) )

where the indices are understood modulo N and

(230) 09) (z|r, N) = 6 { 1/21_/23'/]\7} (2|N7).

For N = 2, these matrix elements reduce to the local Boltzmann weights for
the eight-vertex model [35] [36].

Comparing the quasi-periodicity of R(N'Y) and RB, it is fairly natural to
identify these two R-matrices:

(231) RV (2) = fND(2)RB(2) .

Here f(V:1) is a function that accounts for the slight discrepancy in the
quasi-periodicity, and satisfies f(\'1)(2) fV:1)(—2) = 1 so that the unitarity
is preserved. In fact, as explained in [2I], a theorem proved by Belavin and
Drifeld [62] on the classification of the solutions of the classical Yang-Baxter
equation ensures that RN"Y) must be of this form to all orders in &, up to
reparametrizations of A.
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We can also consider the (N, —1) background created by the surface
operator with the opposite charge,

1 1 1
232 =di 14+ = —=,..., =
(232) a=ding(~1+ Loy )

and identify the R-matrix R~ that arises from the crossing of Wilson
lines in this background. Graphically we distinguish the (N, —1) background
from the (N, 1) background by using a different color:

(233) RNV (2] — 29) = 21 ===

Since A"'BAB~! = €2™/NJ in an appropriate gauge this R-matrix
should obey the quasi-periodicity relations

(234) RN"D(z+1) = AT' RN (2)A) = A, RN (2) 471
RN(z 4+ 1) = BIRND(2) B! = By ' RND(2)B,.

Noting that AT = A and BT = B~!, we see that R®N>~1 can be written as
(235) RND(z) = fN D ()RR (2)7,

where RB(2)7 is the transpose of RB(z).

We have already encountered a function that has the right properties to
be fVD or fFIN=1: the function f(V:0) which enters the definition of
the dynamical R-matrix RN:9). We will argue in Section that the three
functions are actually equal.

The relation between modification of bundles and that of R-matrices
discussed here had been previously considered in [63, [64]. In particular, the
R-matrices in the presence of more general surface operators were studied
in [64]. In general, the R-matrices depend on ! moduli, with 0 <[ < N — 1.

5.5. Intertwining operators and vertex—face correspondences

Once we have new line operators, we can construct new R-matrices. Es-
pecially interesting are the R-matrices that correspond to a Wilson line
crossing an 't Hooft line and moving into a surface operator. The Yang—
Baxter equations involving two Wilson lines and one 't Hooft line, such



Unification of integrability in supersymmetric gauge theories 1999

Z1 \\7\ 7\ ,,7 Z1 SO ;\ 7\/;,
~ ~
> K 21~ - - ~ 21 Z1 N o e
\\ // S \\ - \\ - P— \\ /,
PialS - 2] PLOg - <
7 S 4 - IS s - SS
. > z9 - ~ _ = St zo 7 <
2o -7 > 29 27 >
w w w w
(a) (b)

Figure 6: Vertex—face correspondences between RV-0) and R(V-D.

as the ones illustrated in Figure [6] show that these R-matrices intertwine
the dynamical R-matrix and nondynamical ones. This kind of relation be-
tween dynamical and nondynamical R-matrices is known as a vertex—face
correspondence [311, [32), [57], for the two R-matrices may be regarded as the
Boltzmann weights for lattice models of “face type” and “vertex type,” re-
spectively.

Let S be the intertwining operator between R™N:9) and R™V:1) that arises
from the the crossing of a Wilson line in the vector representation and an ’t
Hooft line of charge diag(1 —1/N,—1/N,...,—1/N):

(236) S(z—w,\) = z--f-= >

By translation invariance S is a function of the difference of the spectral
parameters of the two lines, which we have written as z and w here; unlike
the location of the bulk of the surface operator, that of the 't Hooft line is a
physical parameter. It also depends on the value of the dynamical parameter
A in the region adjacent to the 't Hooft line.

With respect to the local holomorphic frames we have been using for
the relevant bundles, S is an End(C")-valued meromorphic function and
satisfies the quasi-periodicity relations

(237)  S(z+1,A) = AS(z,A), S(z+T7,A) = BS(z,A) exp(—27iA) .

In perturbation theory, we expect S(z, 7\) to have poles at z = 0 where the
Wilson and 't Hooft lines intersect in the four-dimensional spacetime.
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A matrix ®(z,A) that has the right quasi-periodicity and pole structure
is given by [63]

238 Oz, A = —— %
( ) (Zv )z 01(2)1/]\[

In fact, ® is an intertwining operator relating R¥ and R® [31]:

(239) RB(Zl — 22)(131(21, 7\)@2(22, 7\ — hhl)
= @2(,22,7\)@1(21, A— hhg)@il . RF(22 — 21, 7\) .

Here © = diag(01, ..., 0y) is the diagonal matrix of meromorphic functions
with
(240) 0;,(\) = [ 61N,

3(#1)

acting on RY by the gauge transformation (196).
Given the expression (211)) for RW:0) | the above consideration suggests
that we have

(241) S(z,A) = ®(z+d, N (O LE)(N)G(z,N),

where d € C and g is a diagonal matrix of meromorphic functions on E x t*
that acts trivially on R™:0). Let us further assume that the two functions

fN0) and f(NV1 in formulas (211) and ([231)) are equal:
(242) fINO = (D
Then, with this form of S, the following vertex—face correspondence holds:

(243) RNV (21 — 29)81 (21 — w,A)S2(22 — w, A — hhy)
= So(z0 — w,A)S1(21 — w, A — hhg)R(N’O)(zl — 29,A).
The two sides of this relation are represented by the diagrams in Figure

A Wilson line coming out of the surface operator produces another in-
tertwining operator:

(244) S'(z—w,\) = = beed y
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Figure 7: Vertex—face correspondences between RN9) and RN~

It satisfies the relation
(245) RO (21 — 25, A)Sh(z0 — w, A — Bh1)S) (21 — w, A)
= 51 (21 —w, A — hhy)Sh(z2 — w, ) RNV (2) — 25),

which is the vertex—face correspondence in Figure This relation sug-
gests that S’ is essentially the inverse of S. Hence, we propose that it can
be written as

(246) S'(z,A) = x(z,N)S(z 4+ 6,A) L,

where § € C and x is a diagonal matrix of meromorphic functions that acts
trivially on R™V:0). We will determine § and x in Sections and

The intertwining operators involving the (N, —1) background can be
identified in a similar manner. Let us write

(247) S(z—w,A) = z--4- s, S(z—wA) = zeafl 9

and define a matrix ®(z,A) by
(248) ®(2,A) = ®(z, —A + hd;)" .

7

If we assume
(249) fOOr = pD

and

(250) Z
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for some diagonal matrices §(z,A) and Y(z,A) acting trivially on R0 then
using the identities

051 RY(z,~ )T =07 1. RF(2,N),
(251) RY(2,A + h(h1 + h2)) = RF (2,7

we can verify that S and S’ furnish the vertex-face correspondences between
RW:9) and R™N>=1D shown in Figure

5.6. L-operators

Now consider a surface operator stretched between two antiparallel 't Hooft

lines, and a Wilson line traversing it. This configuration defines an L-operator
(N,0).

(252) LWNO(z —w,z—w') = = ——[—{—-) .

w ’UJ/

The Wilson line shifts the dynamical parameters on the two sides of the
surface operator by amounts depending on the states on the left and right
edges. Hence, we may think of L(V:9) as a matrix whose entries are difference
operators. A

More precisely, we define the matrix element LW ’0)(2 —w,z —w')! to
be a difference operator acting on a Weyl-invariant meromorphic function f
on t¢ X {7 as

(253) LNV (z —w, z —w)] f(A, )
= (2 —w, W)LS(z — W, NEFA = hdy, ft — hav;) .

Then, the vertexface correspondences ([243) and (245) imply that L(*V:0)
satisfies the following RLL relation with RWN:0):
(254) RWMO) (2 — 2, ﬁ)LgN’O) (21 —w, 2 — w’)LéN’O) (20 —w, 29 —w')

= ZLng)(ZQ —w, 2y — w/)LgN’O)(zl —w,z —w)RWMO (2 — 25, A):.

The normal ordering sign : : means that the matrix elements of RN:9) should
be placed in the leftmost position so as not to be acted on by the L-operators.
This relation is depicted in Figure
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Figure 8: RLL relations for (a) R™:9 and (b) R,
Interchanging the intertwining operators we get another L-operator:

(255) LD —w,z—w') = =2 ——l—{—-).

w ’LU/
This is a matrix of difference operators acting on Weyl-invariant meromor-
phic functions on . by

(256) LD (2 —w,z —w' )] f(N) = S(z — w, A)LS" (2 — w/, N)F fF(A — hy) .

]

It satisfies the RLL relation

(257) R(N’l)(zl — zz)LgN’l)(zl —w, 2] — w')LgN’l)(zg —w, 29 —w)

= LgN’l)(zz —w, 29 — w')LgN’l)(zq —w, 21 —w)RWMV (2 — 29),

which is the relation shown in Figure

A good way to think about the L-operators is that they are R-matrices
associated with the crossings of Wilson lines and “thick” line operators,
where the latter are composed of pairs of antiparallel 't Hooft lines and carry
infinite-dimensional representations. For example, L(V:Y) is an R-matrix
whose vertical line carries an infinite-dimensional representation on the space
of Weyl-invariant meromorphic functions on {¢.

Being constructed from the same intertwining operators, the two L-
operators LNV9) and LMD lead to the same transfer matrix:

(258) Trew (LY L) = Trew (L4 L00Y).

This is a difference operator acting on the space of Weyl-invariant mero-
morphic functions on (t?&)®k . By considering Wilson lines in various repre-
sentations, we get a number of such difference operators which commute



2004 K. Costello and J. Yagi

with each other. For k = 1, these difference operators are [65] the conserved
charges of the elliptic Ruijsenaars—Schneider model of type An_1 [66].

The RLL relation is, roughly speaking, the defining relation for
the elliptic quantum algebra A, ,(sly) [67-69] at level zero, with (¢,p) =
(e2™h e2m7) (It should be supplemented with the relation that sets the
quantum determinant of the L-operator to 1.) The algebra A, ,(sly) is gen-
erated by the matrix elements of the L-operator, and is the elliptic coun-
terpart of the Yangian double DYy (sly) and the quantum affine algebra
Uq(sln). The coalgebra structure making A, ,(sly) a quantum group was
given in [70].

If it is further required that the dependence of the L-operator on the
spectral parameter takes a certain special form, the RLL relation encodes
the defining relations for the Zy Sklyanin algebra [71} [72]. This is a two-
parameter deformation of the universal enveloping algebra U(sly) of sly,
and reduces to the quantum group U,(sly) in the limit 7 — ioco [73-75].
Essentially, our L-operator LV:)) gives an infinite-dimensional representa-
tion of the Zx Sklyanin algebra in terms of difference operators [T6H7§|. For
N = 2, this representation corresponds to a Verma module of sly whose high-
est weight is determined by the difference w — w’ of the spectral parameters
of the two 't Hooft lines [71].

In a similar way, the other L-operator L(N9) provides [16] an infinite-
dimensional representation of Felder’s elliptic quantum group E,,(sln) [33]
34]. Alternative formulations of (a central extension of) E,,(sly) are dis-
cussed in [70, [7T9H81].

5.7. Framing anomaly

Up until now we have discussed four-dimensional Chern—Simons theory on
> x C assuming it is perfectly topological on ¥, as suggested by the form
of the action which makes no reference to a metric on . As a matter of
fact, this assumption is a little too naive. When it comes to actually per-
forming the path integral, one needs to introduce a metric on X for gauge
fixing and regularization. The introduction of metric can potentially spoil
the topological invariance. This is indeed what happens, but in a somewhat
subtle manner.

A manifestation of this quantum anomaly is the fact that the equation
that seemingly represents the equivalence between two diagrams, shown in

Figure does not quite hold:

(259) RO (21 — 20)f RV (29 — 29 )R £ 6767
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Figure 9: Crossing—unitarity relations in (a) the (N, 1) background and (b)
an (N, 0) background.

o e TSl z2 — ApNE/2T

Figure 10: Translation of Wilson lines leads to the same operator.

Instead, RNV satisfies the crossing-unitarity relation [61]
1 ml 1 nk

(260) RN (2 — Nh> RN (z — Nh) = o7on,
2 kj 2 li

provided that we have

01(z + h)01(z + (N — 1)h)
91(2)01 (Z + Nﬁ)

(261) fNO () fNO (—z = Nh) =

Somehow the arguments of the R-matrices used in this relation have to be
shifted by —N%/2 compared to the ordinary unitarity relation.

This shift is due to framing anomaly. As an analysis carried out in [20]
revealed, an anomaly breaks the gauge invariance of a Wilson line when
the line curves in the (IV, 1) background. For this anomaly to be canceled,
the spectral parameter must be shifted by —ApNh/27, where Ay is the
angle by which the Wilson line bends. Note that in order to talk about the
angle of a curve, one must endow X with a framing, that is, a choice of a
trivialization of the tangent bundle. The only closed surface that admits a
framing is 72, hence our choice ¥ = T2.

In turn, the framing anomaly implies, under the assumption that the
topological invariance on ¥ is otherwise unbroken, that the R-matrix should
really depend on the angle at which two Wilson lines cross. This is because
as these lines curve, the R-matrix should change by shifting the argument
so as to compensate for the shift in the spectral parameters. In Figure
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two diagrams are shown in which a straight Wilson line intersects another
Wilson line which initially goes straight but at one point bends by angle Ae.
If the straight Wilson lines in the two diagrams are parallel, these diagrams
should represent the same operator. From this equality we deduce that the
R-matrix R&N’l) for Wilson lines crossing at angle ¢ satisfies the relation

(N, — pWD (P
(262) R (z) = RS (z 27rNh).

The unitarity relation , as we formulated it, does not involve any
shift in the spectral parameter. This is possible only if the equation refers to
the situation where the two lines are almost parallel. Therefore, the R-matrix
RW.) that appears in this equation corresponds to the case p=20:

(263) RN — RV

The crossing—unitarity relation , on the other hand, corresponds to
the case when two lines are almost antiparallel, which explains the shift by
—Nh/2.

It turns out that the framing anomaly in an (N, 0) background is more
complicated. To see why, consider the crossing—unitarity relation shown in
Figure For i # n, the left-hand side is nonvanishing only when ¢ = k =
m and j = [ = n. If the sole effect of the framing anomaly were to shift the
spectral parameter just as in the (NN, 1) background, then the left-hand side
in this case would be

1. - g
(264) R(N’O) <2:1 — 29 — §Nh7 A+ h@j)

ij

1 - 7
x RN0) <22 — 21— 5 NEA+ hwj>

Je

This equals

(265) 0, (};ilj()f;(?jh)—QQH)

and not 1 as required by the relation.

Apparently, the matrix elements of the R-matrix Rng’o) for p = 7 differs
from those of RY:0) = R(()N’O) not only by the shift in the spectral parameter,
but also by some factors which are ratios of theta functions containing A.
Let us determine these factors.
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Figure 11: Unitarity relations involving a Wilson line and an ’t Hooft line.

First, consider the equality between two diagrams shown in Figure
On the left-hand side, a Wilson line enters the (N, 1) background and makes
a left turn. The spectral parameter gets shifted by —N//2, and the line
comes out to an (NN, 0) background. The right-hand side would be the iden-
tity operator if it were placed in the (IV, 1) background. In the (IV,0) back-
ground, however, the framing anomaly replaces it with a diagonal matrix
diag(x1, - .., x~), which is a function of A but not of z because of translation
invariance. So we get the equality

k
(266) S’ (2 — %Nﬁ, 7\> S(z, )] = xx(N)oF .
J

Comparing this equation with the expression (246€) for S’, we see

1 _ _
(267) 0=5Nh,  X(zM); =xsA); -

It should be emphasized here that we have defined the intertwining operators
S, 8" using Wilson and 't Hooft lines crossing at the right angle.

Next, suppose that the Wilson line instead makes a right turn, as in
Figure . Then, the right-hand side is replaced with x(A)~! because one
can straighten out a line that makes successive left and right turns, without
altering the initial and the final directions. Thus we get another relation
between S and S”:

l By - - \k 1 <\’ A\ —1 sk
(268) S(z,k—hwi—l—hwk)jS(z— 2Nh,7\> =xe(A)" ;.

(3

These two relations imply

(269) S’l(z + Nh, A+ thk);“S(z, A+ hd)z){ = Xk(j\ + h@k)725§ .
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The left-hand side of this equation contains
(270) Oz + Nh+d, A+ hawp)5®(z + d, A + ha;)] .
According to the formula [65]

91(2)1/N
91(Z+Nh)1/N
91(Z+ (N — 1)h+7\i — B — (N — 1)/2) H 91(7\Z - W — h)

TEES R L VTR § S

(271) oz + Nh, )5 ®(2,N)]

this factor vanishes for ¢ # k. Setting ¢ = k, we find

Gi(z + No, A+ haoy)  01(z + Nh+d)V/N
gk(zj\—i—hd)k) N 91(Z+d)1/N
01(2+ (N —Dh+d— (N —-1)/2)
01(z + Nhi+d — (N —1)/2)

(272)

- 01 (A
X Xk(}\ + ha)k)2 79 (;\( ]:l-)h) .
1k VAR
Since z and A appear in separate factors on the right-hand side, g; takes the
forml’]
(273) ar(z,A) = hi(2)ne(A) .

Then we have

01(A
(274) = [ ; ;\ "‘l
1K) 1(Akt —
(275) hi(z+ Nh) 01(z+ Nh+ d)l/N
hio() "0z + d)UN

01(z + (N — Dli+d— (N —1)/2)
01(z+ Nh+d— (N —1)/2)

for some constants C},.

9Tf we write gx(z,A) = he(2)nk(2,A), with hy, as given below, then 7y, is a doubly
periodic meromorphic function of z satisfying ng(z,A) = nx(z + Nh,A). Assuming
that any pair from 1, 7 and N# are linearly independent in C, this implies that
Nk is independent of z as there are no triply periodic meromorphic functions other
than constants.
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The requirement that g acts trivially on RN translates to the con-
straints
(276) hi(z1)hj(z2) (M) (A — haw;)

hj(21)hi(z2) — ni(A — haw;)n;(A) |

This equation tells that the left-hand side cannot depend on z; or zo, so we
have

(277) hi(z) = cph(z)
for some function h and constants c;. Absorbing ci into 7, we can set
(278) hp =h, C,=C

for some constant C.
We will see in Section [5.8 that C' = 1. Then we can write

01 (Aij)'/?
(A — hg)i) /2"

(279) W =11

1<j

This shows that in the definition of the difference operator L1,
what the factor y contained in S’ does is just to apply conjugation with the
operator that acts on a function f(A) by multiplication by [Tic; (Aij) /2.
Therefore, it does not affect the algebra generated by the L-operator.

Having determined y, we finally consider the same relation as in Fig-
ure (10 but placed in an (N,0) background. Taking ¢ =0 and Ap = 7, we
conclude

ij

(280) RMO (2, )M ) povo) v, !

Nz, N = —=————RY"Y | 2 — =Nh, .
T K X (}\ — hwz) 2

The prefactor on the right-hand side cancels the extra factor (265) in the

crossing—unitarity relation, as it should. The unitarity relation for Rng’
also readily follows from this relation.

5.8. Junctions of Wilson lines
Although the Yang-Baxter equations and various other relations put strong

constraints on the forms of the R-matrices and the intertwining operators, we
have not been able to fix some ambiguities. While the determination of the
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Figure 12: (a) A junction of Wilson lines for N = 5. (b) The spectral pa-
rameters are shifted due to the framing anomaly when the Wilson lines are
bent.

matrix £ is not so crucial as it drops out from gauge invariant expressions, the
function fV:0) = f(NED (oes affect physical quantities. We can determine
this function by considering junctions of Wilson lines [21].

In gauge theory, one can join Wilson lines by contracting the ends of the
lines with an invariant tensor of the gauge group. In the case of G = SU(N),
we use a completely antisymmetric tensor € to construct a junction of N
Wilson lines in the vector representation:

(281) el (W) (W)Y

An example for N =5 is shown in Figure

While in the path integral the junction is described by the constant
tensor €, it can receive quantum corrections in the effective description we
are using. This is natural because states on the Wilson lines participating
in a junction live in holomorphic vector bundles that are inequivalent due
to the jumps of the spectral parameter, and the notion of determinant has
to be modified.

Now, take a junction and bend the Wilson lines so that they all extend
horizontally to the right, as in Figure At the junction the lines have
the same spectral parameter, but as they curve their spectral parameters get
shifted because of the framing anomaly. It was found in [20] that quantum
mechanically a configuration of Wilson lines suffers from an anomaly unless
the lines make equal angles at the junctions. Therefore, in the region where
the lines are horizontal, the spectral parameters of adjacent lines must differ
by h. Let these parameters be z, z — h, ..., z — (N — 1)/ from top to bottom.

As we have seen already, in addition to the shifts in the spectral param-
eters, bending of Wilson lines in an (N, 0) background also induces some
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Figure 13: (a) Quantum determinant relation for RV:0 (b) Quantum de-
terminant relation with a surface operator.

factors of theta functions containing the dynamical parameter. We have de-
termined these factors only in the case when the lines make 180-degree turns,
which can be useful only for N = 2.

Rather than trying to determine the quantum corrections to the junction
and the framing anomaly for general angles separately, let us encapsulate
both of these effects into a single tensor £5(A). This is the operator represent-
ing the diagram in Figure It is still totally antisymmetric since the
contributions to the path integral from terms in the junction vanish if
im = i, for some (m,n).

To this collection of Wilson lines let us introduce an additional Wilson
line, almost parallel to the horizontal lines. The familiar field theory argu-
ment then suggests that the relation shown in Figure should hold.
(For the ease of visualization we have drawn the additional Wilson line ver-
tically.) The left-hand side of this relation, evaluated for (ki, ka,...,kn) =
(1,2,...,N), is the quantum determinant of RWN.0)

To determine £5(A), we look at a similar relation, in which the vertical
Wilson line is replaced with an 't Hooft line; see Figure The right-
hand side of this relation contains a junction in the (N,1) background.
Since the (N, 1) background has no moduli, the antisymmetric tensor can
only receive quantum corrections that rescale it by an overall factor, which
can be absorbed by rescaling of the antisymmetric tensor used to define the
junction in the path integral. Thus, we have
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X Yit i - 6% (2 + NN, +d)
(283) en(A) th@—wn—nﬁwﬂz_@%_nh+@UN

n—1
x (©71en) (7\ —h Z wim) _ ok
m=1 ;

n

A key to crack this equation is the following determinant formula [82]:

(284) det(e( )(z4 NA; ))i,j=17~-~71\’ = Cnr01(z — (N —1)/2) H01 (Aij) -

i<j

Here Uy ; is a constant that depends only on N and 7. From this formula
it follows

ﬁ z—l—d (n —1)R)V/N

2
@) S eTi— =1/ 11 —(n—1)h)
1 N ~ n—1
N'Ell ZNCNT H 01 i 55(}\)11 N H(@_lg"?) (A —h Z wim> o
Z<] n=1 m=1 in

and the two sides are equal to some constant D which can depend on h.
Thus we get

(256) v [T en, (A - hzwl)
n=1

= C&}TD€“"'ZN H91 7;]'

i<j
and

1
1(z+d— (N -1)/2)

(z —( n—l)fH—d)l/N B
—(n=1)h)

:jz

(287)

The last equation is consistent with relation (275]) only if
(288) Cp =1

for all k.
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Let us go back to the quantum determinant relation in Figure
For the calculation of the quantum determinant of RV, we can perform
a gauge transformation to put the R-matrix in a convenient form. If we
apply the gauge transformation by ©~1¢n, the tensor used at the junction
becomes precisely the left-hand side of relation . Moreover, since 1 acts
on RYV:0) trivially, we have

(289) 071y RNV (2, N7 = fNO ()@~ . RF (-2, M)
0 (Z)@l(j\z — h)
_ £(N0) L J
f (Z) 91(2’ + ﬁ)gl (}\U)

and therefore

(290) 07 '¢n- RNV (a5 = fNO(R)RF (—h, A},
_ o1 N,0 Vi
=07y RN (h, N7

From this we deduce that for generic values of A, the kernel of @ 1¢&n -
R0 (B ) is A*CN. In this gauge, the left-hand side of the quantum de-
terminant relation is antisymmetric under an exchange of final states on
adjacent horizontal lines, as we can see by making those lines cross and us-
ing the Yang—Baxter equation. Hence, it is completely antisymmetric in the
final states on all horizontal lines.

Making use of this antisymmetry we can arrange the final states so that
k1 = j1. Then, the only contribution to the quantum determinant comes
from the case when j, = j1 = k1 and ¢, = k,, for all n, and the quantum
determinant relation reduces to the equation

(291) CK,}TDEkl'"kN H91 (7\1‘]‘)_1
1<j
N n—1 knj1
x [Je~"¢n  RVO <z —(n—DhA-h> a)km>
n=1 m=1 knj1

_ C&}Tngl...kN H 61 ((A — ha)jl)ij)_l .

1<j
All constants and functions of A in the equation cancel out, leaving

N

H f(N’O)(z —(n—1)h) =1.

n=1

01(z — (N — 1)h)
01(z)

(292)
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This is consistent with the quasi-periodicity property (212), as well as with
the unitarity condition (213]) and the crossing—unitarity condition (261)). The
same equation is obtained if one sets the quantum determinant of RN1 to 1.

6. String theory realization and dualities

In the final section we discuss a realization of four-dimensional Chern—
Simons theory and the associated integrable lattice models in string theory.
The embedding into string theory allows us to invoke its powerful duali-
ties. Using these dualities, we relate the field theory setup considered in the
previous sections to other setups which have been extensively studied in
relation to quantum integrable systems. The string theory realization thus
provides a unified perspective on a number of phenomena in which the same
integrable systems arise from apparently different theories.

6.1. Brane construction of the -deformed
topological-holomorphic theory

Consider a stack of N D5-branes in Type IIB superstring theory. If the space-
time is flat Minkowski space R%!, the low energy dynamics of the branes is
described by six-dimensional N' = (1, 1) super Yang-Mills theory with gauge
group U(N). Discarding the decoupled degrees of freedom associated with
the center-of-mass motion of the D5-branes, we obtain the theory with gauge
group SU(N).

If, instead, the spacetime is T*M x C and the D5-branes wrap the zero
section of T* M and C, then the effective worldvolume theory is topologically
twisted along M [83]. (Here, as before, M is a four-manifold and C'is either
C, C* or an elliptic curve E.) In fact, it is the twisted N = (1,1) super Yang—
Mills theory whose @Q-invariant sector is the topological-holomorphic theory
on M x C, constructed in Section [2, The reason is that the four bosonic
fields parametrizing the positions of the branes in the fiber directions of
T*M are not scalars as in the untwisted theory. Rather, at each point on C,
they are components of a one-form on M. Turning the four scalar fields
into a one-form on M is precisely what the topological twisting for the
topological-holomorphic theory does.

Our goal is to understand how to introduce an 2-deformation to this
brane construction of the topological-holomorphic theory. More specifically,
we take M = R? x ¥ and C = F, and wish to turn on an Q-deformation in
the worldvolume theory using the rotation symmetry of R2.
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To this end, suppose that we could realize the desired Q2-deformation,
and subsequently dimensionally reduced the 2-deformed theory on E. Then,
we would obtain an Q-deformation of the GL-twisted N/ = 4 super Yang—
Mills theory on R? x ¥. This Q-deformation is, however, different from the
one commonly considered in the study of four-dimensional ' = 2 supersym-
metric gauge theories.

The standard Q-deformation [22] 23] is compatible with the Donaldson—
Witten twist [25]. Upon dimensional reduction on ¥, the Donaldson-Witten
twist descends to the A-twist of N' = (2,2) supersymmetric theories in two
dimensions [84]. On the other hand, as we have seen already, the topological—
holomorphic theory reduces to a B-twisted theory in two dimensions, not an
A-twisted one.

From the GL-twisted N’ = 4 super Yang—Mills theory we can obtain ei-
ther of these twists in two dimensions, depending on the choice of the super-
charge we use to define a topological theory. In the four-dimensional theory,
the two types of twists are related by S-duality [50, 84, 85]. This means
that the Q-deformation of the topological-holomorphic theory descends to
the S-dual of the standard Q-deformation of the GL-twisted A/ = 4 super
Yang-Mills theory.

A nice thing about the standard Q-deformation of an N/ = 2 supersym-
metric gauge theory is that it has a transparent geometric construction.
First, we lift the theory to an N' = (1,0) supersymmetric gauge theory in
six dimensions. The lifted theory is defined on the product M x E. Then,
we twist this product so that when we go around the one-cycles of E, we
do not come back to the point we started from, but arrive at a point that is
shifted by the action of an isometry of M. Finally, we perform the dimen-
sional reduction of the lifted theory down to four dimensions. The resulting
four-dimensional theory is deformed compared to the original one because
of the twisting of the product.

This procedure can be incorporated in our brane construction straight-
forwardly [86H89]. In our setup, the D5-branes are supported on the prod-
uct R? x ¥ x E sitting in the ten-dimensional spacetime T*R? x T*¥ x E,
where R? is the zero section of T*R? and, for the purpose of this discussion,
we can take 3 to be the zero section of T*3..

If we apply T-duality on E, the D5-branes turn into D3-branes. In the
limit where E shrinks to a point, the low energy dynamics of these D3-
branes is described by the GL-twisted N’ = 4 super Yang—Mills theory on
R? x 2. To introduce the Q-deformation, we modify the geometry before
applying the T-duality. Viewing R? x ¥ x F as a flat R%-bundle over ¥ x FE,
we twist it so that the fiber is rotated by some angles as it is transported
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along the one-cycles of E. For supersymmetry to be preserved, we must
simultaneously rotate the fiber of T*R? in the opposite direction. Now, T-
duality on E produces a D3-brane configuration realizing the GL-twisted
N = 4 super Yang—Mills theory, subjected to the standard Q-deformation.

To obtain the brane setup for the 2-deformed topological-holomorphic
theory, all we have to do is to apply S-duality to this D3-brane configuration,
which leaves the D3-branes intact but acts nontrivially on the background,
and then T-duality on the dual elliptic curve EV to turn the D3-branes back
into D5-branes.

Let us describe this construction more precisely, following the chain of
dualities step by step. We use radial coordinates (r,v) and (p, ¢) for the base
and fiber of T*R2, respectively, and parametrize E with real coordinates
(x*,2%) defined up to the identification

(293) (z*,25) ~ (2% 4+ 27 R, 2°) ~ (2 + 27R7, 2% — 27 R™),
with 75 > 0. With respect to the complex coordinate z = (z? — ix%)/2, the
modular parameter of F is 7 = 7 + imo.

Our starting point is the D5-branes supported on a twisted product of
T*R? and E. In terms of the periodic coordinates y', y? defined by
(294) st =Ry +ny?),  2°=-Rmy’,

we can construct this space via the identification

(295) (9, 0,y", %) ~ (0 + 2mer, o — 2mer, y' + 2m,3°)
~ (U + 2meg, ¢ — 2w,y y? + 27),

with some parameters €1, €9 € R. The spacetime metric is given by
(296) g = dr? 4+ r2dv? + dp? + pPde?® + (dz*)? + (d2®)? + gr-x,

where gp-y is a Ricci flat metric on T*Y. We take the dilaton to be a
constant:

(297) D= .

The other background fields, the Kalb-Ramond two-form field By and the
RR p-form fields C),, are all set to zero.
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The first step in the chain of dualities is T-duality on E. For this step
it is convenient to introduce angle variables

(298) 0=0-cy' —e2y”, b= +eay +ew?,
which disentangle the identification (295)):

(299) 0,0, y", %) ~ (0,0,y" +2m,9%) ~ (0,6, y",y* + 27) .

With these coordinates we can use the standard formulas for T-duality [90]
91].

The action of T-duality on g and By can be expressed concisely in terms
of the tensor g + Bs. We write it in the block matrix form as

K N
(300) srm=(3 ).

where K represents the block whose indices involve only y' and y2; Under
T-duality in the y'- and y2-directions, g + Bs is transformed to § + B, with
the corresponding blocks given by

(301) K=K', L=L-MK'N, M=MK', N=-K'N.
The dilaton is shifted as

- 1
(302) b =)~ Indet K.

Since Bz = 0 initially, K and L are symmetric while M T = N. Then, K
and L are symmetric and N =—MT. The T- duality thus turns the metric
into a block diagonal form and induces a nonzero B-field:

(303) j= (Io{ %) ., By= (z\% _‘7(‘)4T> .

An explicit calculation shows

g = dr? +r2d0? + dp? + p?de® — | i ( 240 — P2d¢) + 91+%
4 2, 2 - -
I d d¢d
0 + R ((r + p%) (Im(z C)) +d¢ <) ,
~ 2 219 2 _
By = REraA? (r“df — p*d¢) ARe(€d(),

d = &y — In(R*nA),
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where we have defined

TE1L — &2 R
(305) e=—2—, (=5(y—y"), AP=1+[eP(r+p7).
Rmy 2
This is the NS fluxtrap background studied in [86H89).
Next, we apply S-duality. This step changes the metric and the dilaton
to

(306) g=e%, Bd=-0,
and exchanges the B-field and the RR two-form:
(307) By=Cy, Co=-B,.

This background is called the RR fluxtrap [89].
Finally, we apply T-duality in the y'- and y?-directions again. The re-
sulting metric and dilaton are

§ = R*mAe % (dr2 + 72d6? 4 dp? + p?de¢?

el - 21 0\2
— ——5(r°df — p°d .
(308) Az (" p*dd)* + gr-x
@,
€ 2, 2 _ 2 _
" RnA (02 + ) (1m(zd2))* +dzdz)

d = In(R*mA) .

On the RR two-form this step acts as a 90-degree rotation on the y'-y/?
plane, sending d( to dz:

(309) = R27_22A2(7“2d9 — p2d¢) A Re(2d2).

Based on the argument we have given above, we claim that this is the back-
ground in which a stack of D5-branes realizes the €2-deformed topological—
holomorphic theory.

In principle, we should be able to verify this claim by comparing the
Dirac-Born-Infeld (DBI) action for the worldvolume theory of the D5-branes
and the action for the 2-deformed topological-holomorphic theory. In prac-
tice, this is not as easy as it may sound because the two actions only need
to coincide up to @Q-exact terms and a nontrivial field redefinition. Here
we content ourselves with confirming that the DBI action reproduces some
important terms.
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The metric on the D5-brane worldvolume is

(310) gps = R272A06 (dT‘ + pdez + gz)

4e%o
T RZnA

(7"2 (Im(édz)) +dz dZ) ,

where Ag = 1 + |¢|?>r2. For this metric to reduce at € = 0 to the one we used
for the topological-holomorphic theory, we must take

(311) e® = R’ny.
Then, we have

(312) Vps A%z = /g5 d%z

where dfz = d2z® A - -+ A da®, with 20 + izt = 7€l and (22, 23) being coordi-
nates on .

The DBI action, expanded to quadratic order in derivatives, contains
the terms

27ra

6
Vax, d%z
2R272 »/R2><E><E g
X Tr(AQF"mFrm + F'"E,  +
0

(313)

A Fm"an> .

Here (27a/)~! is the string tension, T is the D5-brane tension, and indices
are raised with respect to the metric dr? 4+ 72d6? + gs + (dz?)? + (da®)2.
We identify these terms with the kinetic terms |Dyo|?/(1+ |V ||?) 4+ |Dye?
for ¢ = Ay, and the potential term [0W/dp|?/(1 + ||V ||?) for ¢ = As in the
bosonic part (with ¢t = 1) of the action for the Q2-deformed topological—
holomorphic theory. Thus we find

1 (2ra)?
314 —- = T =le|.
( ) o2 2R2’7'2 5 ’6’ |€’

The RR two-form induces the Wess—Zumino term

B i(2770/)2
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where p5 is the D5-brane charge. This term contains

(316) (fgﬁfj 62M5>

x 2iIm TdrAdG/\ZTQ&«<—612/ dz/\CS(A)) .
R? 0 YxXE

We see it within the terms 2i Im(Ve&aW)/(l +|V||?). Comparing the coef-
ficients of 0,W, we identify

(317) e=c¢.

For the overall factor to be equal to 1, we must have T5 = u5. This is the
BPS condition for D5-branes.

6.2. Wilson lines and surface operators

Let us construct integrable lattice models in the above string theory setup.
For ¥ = T2, the ten-dimensional spacetime is

(318) TR xT*L x EXR? x T? x E x R%, x REy,

where RZ. and RZ, are the fibers of T*R? and T*¥, respectively. The sub-
scripts refer to the coordinates for these spaces which are consistent with
the ones used in Section [2l We use coordinates (z,y) for T? and a complex
coordinate z on E.

Four-dimensional Chern—Simons theory for G = SU(N) is realized by N
Db5-branes D5;, i =1, ..., N, supported on

(319)  R*xT?x E x {0} x {(¢,¢})} CR*x T? x E x Rg; x Rgy.
Without loss of generality we may assume
(320) oy < P2 << oY

The coordinates (%, ¢!) of D5; in R, determine the imaginary part of the
background value of the complex gauge field A,dx + A,dy. Together with
the real part, given by the values of the gauge fields on D5; along T2, they
specify the twisted periodic boundary conditions of the lattice models. In
the absence of the 2-deformation, the D5-branes would preserve half of the
thirty-two supercharges of Type IIB superstring theory.
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The construction of integrable lattice models requires Wilson lines and
surface operators bounded by 't Hooft lines. To be concrete, let us consider
a lattice similar to the one illustrated in Figure |5} It consists of m horizontal
and n vertical Wilson lines in the vector representation of SU(N), as well
as k vertical strips of surface operators.

In general, Wilson lines in the worldvolume theory of a stack of N D-
branes are created by fundamental strings ending on the D-branes. The end
of a semi-infinite open string behaves as a charged particle with infinite
mass. There are N choices for the D-brane on which the string ends, and
these correspond to the possible states of the charged particle. Thus, a single
open string creates a Wilson line in the vector representation. For Wilson
lines in other representations, there are more elaborate constructions which
involve multiple strings and additional branes [15, 92-94].

Adopting this construction, we see that the horizontal Wilson lines are
realized by fundamental strings F1., a =1, ..., m, ending on one of the
D5-branes at (y,2) = (Ya, 2) and extending in the negative x8-direction. If
the ath Wilson line is in the i,th state, F1) ends on D5; . The vertical
Wilson lines are created by fundamental strings Flg, 6=1,..., n, ending
on D5;, at (z,z) = (23,23) and extending in the negative z%-direction. To
be compatible with the 2-deformation, these strings must sit at the origins
of R? and RZ,. In the undeformed situation, F1;” would break half of the
sixteen supercharges preserved by the D5-branes, and Flg would further
break half of the surviving eight supercharges.

The brane realization for the 't Hooft lines can be identified from the fact
that 't Hooft lines in NV = 4 super Yang—Mills theory in four dimensions are
the S-duals of Wilson lines. As such, in the worldvolume theory of D3-branes
these lines are created by D1-branes, which are the S-duals of fundamental
strings. Since D3-branes are what the D5-branes become if we compactify
R? to a torus and apply T-duality along its one-cycles, 't Hooft lines in the
worldvolume theory of the Db5-branes are created by the T-duals of those
D1-branes, namely D3-branes.

Therefore, the 't Hooft lines going upward in Figure [5| are created by

semi-infinite D3-branes D3,, v =1, ..., k, coming from 2® = —o0 and hit-
ting D5; at (z,2) = (2!, 2]). The choices i, of the D5-branes that these

D3-branes hit determine the charges of the 't Hooft lines: for G = U(N),
the yth 't Hooft line has charge diag(0,...,0,1,0,...,0), with 1 in the i,th
entry. Throwing away the center-of-mass degrees of freedom of the D5-branes
makes the charge traceless, replacing it with the fractional charge or
its permutation. This brane realization of monopoles is the S-dual of the one
studied in [95].
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Spacetime: R? x 7 x E x RZ x RZ,
D5;: R? x T x E x {0} x {(dL, 0L)}
F17: {0} < {y=va} x {za} x {0} x {(2% )| 2° < oy}
FIj: {0} x {o—ap) x {za} x {0} x {(6¥,a%) |a® < 6})
T. 2 — 1 8 iy 8 iy
SR ol o e S
% v gl Y =

Table 1: A brane configuration for an integrable lattice model. The branes
are placed in a background with nonzero RR two-form. D3, forms a bound
state with the D5-branes in the region {z] <z < xfy} on T2.

If a D3-brane creating an 't Hooft line curves in 72, it also has to curve
in ]Rgg by the same angle to preserve supersymmetry. In particular, an ’t
Hooft line going downward is created by a D3-brane hitting one of the D5-
branes from the positive 28-direction. This observation suggests the following
construction for the strips of surface operators.

When D3, comes from 2% = —0o and hits D5;_, it makes a right turn to
move along 72, and the two branes form a bound state. This D3-D5 bound
state creates the surface operator whose left boundary is the yth upward 't
Hooft line. While maintaining the bound state, D3, can gradually shift its
position in £. When D3, reaches (z,2) = (w%, z#), it makes a left turn and
leaves D5; . Then D3, goes off to 28 = +o0, yielding the downward 't Hooft
line on the right boundary of the surface operator,

The D3-branes break half of the four supercharges preserved by the other
branes. We refer to the semi-infinite parts of D3, responsible for the upward
and downward 't Hooft lines as D3I¥ and DS#, respectively.

The brane configuration realizing the integrable lattice model is summa-
rized in Table [Il

6.3. Brane tilings and class-Si theories

Tracing back the chain of dualities, we obtain another realization of the same
integrable lattice model. By the application of T-duality on F, S-duality, and
T-duality on E again, F1; and F1j are converted to D3-branes D3 and

DS‘AB, while DSIY and DS# are converted to NS5-branes N 852 and NS5#. The
dual brane configuration is summarized in Table

Each NS5-brane forms a bound state with the D5-branes over a colored
region in Figure |5l This bound state of N D5-branes and one NS5-brane is
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Spacetime: R* x T2 x E x RZ x R3y
D5;: R? x T x Ex {0} x . {( ;,4;%)} '
D3;)Z: {0} x {y=wa} x E x {0} x {(a:‘,cbﬁf) | 2° < d)f;}
D3y {0} x {w=us) x Ex {0} x {(67.a") ]2 <oy}
NS5$: R? x {x :a;fy} x E x {0} x {(a:8,¢y”) | 28 < ¢}
NS5l: R? x {z=a!} x Ex {0} x {(2%¢y)|a®> o7}
Table 2: A brane tiling configuration for an integrable lattice model. The
product between R? x ]R%7 and F is twisted by rotations of R? and ]Rg7 n

opposite directions.

called an (N, 1) 5-brane. In this terminology, a stack of N D5-branes may
be referred to as an (N,0) 5-brane. Our choice of the names for various
backgrounds was motivated by this 5-brane interpretation.

The 5-brane system realizes a five-dimensional A/ = 1 supersymmetric
gauge theory on R? x St x E [96, [97], with the product between R? and
E being a twisted one. The D3-branes create three-dimensional defects sup-
ported on {0} x S x E in this theory. Thus, the partition function of the lat-
tice model translates to the correlation function of these defects in this the-
ory, also known as the supersymmetric indezx of the theory on R? x S' x E
in the presence of the defects.

If we wish, we can introduce additional ’t Hooft lines in the horizontal
direction and make a tricolor checkerboard pattern on T2, as in Figure
or for that matter, we can consider entirely different patterns of (/V,0) and
(N, +£1) background regions, such as the one shown in Figure Such
configurations of 5-branes, called brane tilings, realize four-dimensional N' =
1 supersymmetric gauge theories on R? x E [38, [39]. These theories have
multiple SU(N) gauge (and flavor) groups, one for each (N,0) background
region, and chiral multiplets in the bifundamental representations under
two SU(N) gauge groups associated to (N, 0) background regions sharing a
vertex.

The theories realized by the brane tilings in Figure |14 are also examples
of N = 1 supersymmetric theories of class Sy [14, /40, 41]. Theories of class Sy
describe the dynamics of M5-branes probing a transverse C?/Z;, singularity,
compactified on punctured Riemann surfaces which in our case are tori.
This brane setup is obtained by T-duality in the horizontal direction of T2,
followed by a lift to M-theory. The D3-branes are lifted to M2- and Mb5-
branes, producing surface operators in the class-Sy theories.
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Figure 14: (a) A tricolor checkerboard brane tiling. (b) Another brane tiling.

Spacetime: R? x T2 x E x RZ x Rgg

NS5: R2x T2 x E x {0}x {(¢L, 07)}

DOy: {0} x {(Tarta)} x {za} x {0} x {(2%¢f) ] 2 < gie}
D2k {0} x  T* x {z} x {0} x {(¢¥,2%) ] a® < ¢y}
Dal: RZ x T2 x {2} x {0} x {(%¢y) 2% <oy}
D4l R? x T2 x {z} x {0} x {(a%¢y) | 2 > ¢}

Table 3: A brane configuration of Hanany—Witten type for an integrable
lattice model.

It is known that surface operators act on the supersymmetric indices
of brane tiling and class-Sj, theories as difference operators [11HI7]. Our
construction shows that these difference operators are nothing but transfer
matrices of L-operators. This result, obtained in [I5}[16] from the perspective
of brane tilings, was a primary motivation for us to study surface operators
in four-dimensional Chern—Simons theory.

6.4. Linear quiver theories

Another interesting chain of dualities we can apply to the brane configu-
ration in Table [1| is S-duality and T-duality in the horizontal direction of
T2. This turns D5; into NS5-branes NS5;, F1;7 into DO-branes DO, Flg

into D2-branes D2[§7 and D3§ and D3# into D4-branes D4§ and D4#, as
summarized in Table [3| A schematic picture of this brane setup is shown
in Figure These branes are placed in a background with a nonzero
B-field.

Let us decompactify the holomorphic surface C = E to C. Then, the
part of the system consisting of the D4- and NS5-branes is a well-known
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k D4t

N + 1 nodes

(b)

Figure 15: (a) A D4-NS5 brane configuration of Hanany—Witten type with
additional D0- and D2-branes. (b) The linear quiver for the theory realized
by the D4-NS5 brane configuration.

brane configuration studied in Witten’s classic paper [42], which builds on
his earlier work [08] with Hanany.

The D4-NS5 brane configuration realizes a four-dimensional N' = 2 su-
persymmetric gauge theory on R? x T2. This theory is described by a linear
quiver shown in Figure A circle node represents a vector multiplet for
an SU(k) gauge group, a square node an SU(k) flavor group, and an edge a
bifundamental hypermultiplet.

The value ¢! — ¢L determines the gauge coupling of the ith SU(k)
gauge group, while the difference of the periodic scalars on NS5; and NS5,
gives the #-angle for this group; together they form a complexified gauge
coupling. The positions zg and z# of the D4-branes in C' determine the
masses of the hypermultiplets charged under the left and right SU(k) flavor
groups, respectively. For generic values of QSL, the theory is in the Higgs
phase in which the gauge symmetry is completely broken.

The topological twist used in the construction of the six-dimensional
topological-holomorphic theory becomes the Donaldson—Witten twist of the
linear quiver theory, as can be seen as follows. If there are only the NS5-
and D4-branes, the dualities used above can be applied to a more general
setup where M is the product of a three-manifold W and S?, instead of R? x
T?. By dimensional reduction on S*, the linear quiver theory reduces to a
three-dimensional NV = 4 supersymmetric gauge theory on W. There are two
topological twists for a general N' = 4 supersymmetric gauge theory [99], and
what we get here is the one using the SU(2) R-symmetry coming from the
rotation symmetry of R3-o. This is known to be the dimensional reduction
of the Donaldson—Witten twist.
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The presence of the B-field and other e-dependent part of the background
has the effect of introducing the standard 2-deformation. A quick way to
see this is to note that if we apply S-duality, T-duality in the horizontal
direction of T2, and T-duality on E to the brane configuration in Table
we arrive at an almost identical Hanany—Witten configuration, in which E' is
replaced with the dual elliptic curve EV. The linear quiver theory realized by
this brane configuration is clearly subjected to the standard 2-deformation
because the last T-duality is applied to a twisted product of R? and E and,
as discussed earlier, this is how the standard 2-deformation is constructed.
The theories realized by the two Hanany-Witten configurations are related
by a diffeomorphism between the elliptic curves, so the deformations they
receive are the same.

The DO-branes insert local operators in the linear quiver theory, while
the D2-branes create surface operators supported on {0} x T2. In particular,
each D0O-brane acts on the partition function of the 2-deformed linear quiver
theory as a transfer matrix.

Let us consider the situation where all D4§ and D4# end on the same
NS5-brane, say NS5;. In this case, this transfer matrix is constructed from k
copies of a rational version of L(V:1) corresponding to the decompactification
of E to C[[

If we further specialize to the case N = 2, these L-operators are R-
matrices for the rational six-vertex model (the rational limit of the eight-
vertex model) whose vertical lines carry Verma modules of sl;. The mod-
ule structure comes from dynamical creation and annihilation of D2-branes
stretched between D4# and NS5 [5].

A transfer matrix of the rational six-vertex model is a generating func-
tion of the conserved charges of the XXX spin chain. Thus, our brane con-
struction naturally explains the appearance of the “noncompact” XXX spin
chain of length k, whose spins take values in Verma modules of sly, from
the Q-deformed N = 2 supersymmetric gauge theory with a single SU(k)
gauge group and two fundamental hypermultiplets [4, [5]. This phenomenon
generalizes to any N > 2, for which an sl spin chain arises [6H§].

Now let us make C' compact again, taking C' = E. Then, the D4-NS5
brane configuration realizes a six-dimensional lift of the linear quiver theory

10The dynamical parameter is absent for C = C as we explain in Section
so the decompactification acts as if wrapping T2 with a surface operator and then
taking the rational limit. The transfer matrix still consists of L(V-1) if the positions
of the 't Hooft lines are pairwise interchanged. To be precise, the L-operator that
enters the transfer matrix is not equal but gauge equivalent to L(N:1) because we
have defined L1 as the L-operator in the background with A, = Ay, =0.
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Figure 16: A brane configuration for a two-dimensional A" = (4,4) super-
symmetric gauge theory.

compactified on F, as one can see by applying T-duality on F. Correspond-
ingly, the six-vertex model is promoted to the eight-vertex model, whose
transfer matrix generates the conserved charges of the XYZ spin chain. If
we compactify only one direction so that C' = C*, the brane configuration
produces a five-dimensional gauge theory and the XXZ spin chain.

6.5. Nekrasov—Shatashvili realization of compact spin chains

In the same brane configuration, the crossings of the D0- and D2-branes
create transfer matrices constructed from R-matrices in the vector repre-
sentation of sly. Therefore, the sl spin chains with spins in the vector
representation also appear in this setup. It is interesting to look at these
spin chains from the point of view of the D2-branes.

For the moment let us take N = 2, so there are two NS5-branes. The
possible configurations of n D2-branes ending on either NS5-brane are classi-
fied by an integer M such that 0 < M < n, namely the number of D2-branes
ending on NS5s. This is the magnon number of the spin chain, counting the
total number of “up” spins in the chain. A case with M = 2 is illustrated in
Figure

In the case when C' = C and the )-deformation is absent, the D2-NS5
brane configuration with fixed M realizes an N = (4,4) supersymmetric
gauge theory on T?. This theory has a U(M) gauge group and a hypermul-
tiplet in the bifundamental representation of the gauge group and a U(n)
flavor symmetry.

The separation qﬁz — ¢zl/ of the NS5-branes in the 2°-direction determines
the gauge coupling. The separation ¢2 — ¢. in the z8-direction is propor-
tional to the Fayet—Iliopoulos (FI) parameter r for the U(1) part of the
gauge group, and it combines with the two-dimensional #-angle ¥ to form
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the complexified FI parameter

i
(321) b= +ir.

The positions zg of D2;3 in C are twisted masses of the hypermultiplet. These
complex mass parameters may be thought of as the eigenvalues of the scalar
field in the nondynamical vector multiplet for the U(n) flavor symmetry.

To this theory the Q-deformation is applied. This makes use of the U(1)
isometry of a plane transverse to the D2-branes, and breaks the ' = (4,4)
supersymmetry to A = (2,2) supersymmetry. In the language of ' = (2, 2)
supersymmetry, the N' = (4,4) vector multiplet consists of a vector multiplet
and a chiral multiplet in the adjoint representation, whereas the N' = (4, 4)
fundamental hypermultiplet splits into a pair of fundamental and antifun-
damental chiral multiplets. The 2-deformation gives the adjoint chiral mul-
tiplet a twisted mass u proportional to €, and the fundamental and antifun-
damental chiral multiplets twisted masses —u/2 and u/2, respectively [86].

The topological twist is the A-twist here. We can see this from the fact
that the scalar field o of the vector multiplet for the gauge symmetry, whose
eigenvalues parametrize the positions of the D2-branes on C, is unaffected
by the twist. Alternatively, we may note that the D2-branes are surface
operators in the theory on the D4-branes, and the Donaldson-Witten twist
reduces to the A-twist in two dimensions.

Suppose that r # 0 and the twisted masses are vanishing, including those
induced by the -deformation. Then, the theory is in the Higgs phase and
flows in the infrared to a topological sigma model whose target space is
the cotangent bundle T*Gr(M,n) of the Grassmannian Gr(M,n), endowed
with a hyperkahler metric. This is the A-model [100], and its algebra of local
operators is given by the quantum cohomology ring QH®*(T*Gr(M,n)). By
the state—operator correspondence this is isomorphic as a vector space to
the Hilbert space of states.

Now we turn on all the twisted masses. As the supercharge of an A-
twisted gauge theory squares to a gauge transformation generated by the
adjoint scalar in the vector multiplet, this amounts to working equivariantly
with respect to the U(n) flavor symmetry as well as the U(1) isometry used
in the 2-deformation. The algebra of local operators is therefore deformed
to the equivariant quantum cohomology QH&CX)HX(CX (T*Gr(M,n)), where
(C*)™ is the diagonal torus of the complexification of the U(n) flavor sym-
metry and the last C* is the complexification of the U(1) isometry.
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The DO0-branes create local operators in the theory. According to our
brane construction, these operators can be understand as transfer matrices,
constructed from a rational version of RV:0) . Although there is a rational
solution of the dynamical Yang—Baxter equation [56], what we get here is
a nondynamical one: flat connections on C' = C are all gauge equivalent to
zero, so the relevant moduli space has no directions that would correspond to
a dynamical parameter. (In our brane setup ¢ goes to a constant value at the
infinity of C, and with this boundary condition the argument in Section [4]
applies.) The transfer matrices of this rational R-matrix are those of the
XXX spin chain whose spins are in the vector representation.

By integrability, these transfer matrices generate a commutative algebra
of operators, called a Bethe algebra, which has the same dimension as the
Hilbert space of the spin chain. Since the total spin is a conserved quantity
in the XXX spin chain, this is the direct sum of n 4+ 1 commutative alge-
bras, each acting on a subspace of a fixed magnon number. In the present
setup, the local operators created by the DO-branes generate the summand
corresponding to the M-magnon sector. The dimension of this summand
is actually equal to the dimension of Q]if('(cx)nx(cX (T*Gr(M,n)), so the DO-
branes generate the whole algebra of local operators of the A-model. Hence,
the Bethe algebra for the M-magnon sector of the XXX spin chain of length
n is isomorphic to QH(' X)X CX (T*Gr(M,n)).

Our brane construction thus explains the correspondence between the
XXX spin chain and the equivariant cohomology of the cotangent bundles
of Grassmannians, discovered by Nekrasov and Shatashvili [2, 3] and math-
ematically developed in [I0THI03]. The above brane configuration has been
studied in this context in [104].

If we take C' = C*, the brane configuration realizes a three-dimensional
lift of the above theory, and the rational R-matrix is replaced with a trigono-
metric one. This is again a nondynamical R-matrix for the following reason.
Physically, we expect that the trigonometric case is equivalent to the limit
7 — ioco of the elliptic case where E degenerates to a cylinder. If the dynami-
cal parameter A is fixed in this limit, the dynamical elliptic R-matrix becomes
a dynamical trigonometric R-matrix. In our case, however, A is determined
by the background gauge field according to formula . Provided that the
holonomy of A around the one-cycle C, is generic and fixed, taking 7 — ico
entails the limit |A;| — oo. In this limit of infinite dynamical parameter, the
dynamical trigonometric R-matrix reduces to a nondynamical one.

Hence, the three-dimensional theory corresponds to the M-magnon sec-
tor of the XXZ spin chain, whose transfer matrices coincide with those
of the nondynamical trigonometric R-matrix. The trigonometric case of
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the Nekrasov—Shatashvili correspondence has been mathematically estab-
lished [105].

For the elliptic case C' = E, one may be tempted to say that the four-
dimensional lift of the theory should correspond to the “M-magnon sector”
of the XYZ spin chain. However, such a statement does not make sense since
the total spin is not a conserved quantity in the XYZ spin chain. This is
not a contradiction. The point is that the R-matrix for the XYZ spin chain
is Baxter’s nondynamical elliptic R-matrix, while what the theory gives is
the dynamical elliptic R-matrix RN:9). The transfer matrices of R0 do
preserve the total spin. The correct statement is therefore that the Higgs
branch of the four-dimensional theory corresponds to the Bethe algebra for
the M-magnon sector of the spin chain defined by RZV:0).

For general N > 2, the configurations of n D2-branes ending on N NS5-
branes are classified by integers M = (M, ..., My) such that

The gauge theory on the D2-branes has gauge group U(M;) x---xU(Mpy_1)
and flavor group U(My), and a bifundamental hypermultiplet of U(M;) x
U(M;41) for each i =1, ..., N — 1. For generic values of the FI parame-
ters, it flows to the A-model (or its three- or four-dimensional lift) whose
target space is the cotangent bundle T*Fng of the partial flag manifold Fg
parametrizing chains of subspaces

(323) O=FCF,C---CFy=C", dim F; = M; .

Everything we have said about 7*Gr(M,n) generalizes straightforwardly to
T*Fwm, and we find that the subsector of an sly spin chain with total sl
weight Ef\il(Mz — M;_1)®pN_;1+1 arises from this theory.

6.6. Q-operators

In all of these spin chains there are important operators called @Q-operators,
which are of great help in solving the spectra. One of the main results of [2 [3]
is that the Q-operator Q(z) for the XXX spin chain is identified with the
local operator

(324) det(z — o)

in the gauge theory. (Similar results have been obtained for the trigonometric
case in [106, [107].) We can understand this identification as follows.
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Let us enrich the system by introducing an additional 't Hooft line along
the horizontal direction of the lattice, with the Dirac string extending along
C = C and going off to co. By following the chain of dualities we see that
this is another kind of D2-brane, which covers the Q-deformation plane R?
and ends on one of the two NS5-branes, say NS5, from the positive z°-
direction. (Which NS5-brane it ends on is immaterial due to the symmetry
under flipping of all spins, or the isomorphism Gr(M,n) = Gr(n — M,n),
or Hanany—Witten transitions involving D6-branes.) This D2-brane is sup-
ported at a point on T2, hence creates a local operator in the theory.

From the point of view of the linear quiver theory on R? x T2, the orig-
inal D2-branes and the additional one represent two kinds of surface op-
erators, one extending along 72 and the other along R2. Such intersecting
surface operators were studied in [I08] by means of the correspondence to Li-
ouville theory [I09]. There it was found that open strings stretched between
intersecting D2-branes give rise to a zero-dimensional N = (0, 2) Fermi mul-
tiplet at the intersection. In the present case, this multiplet takes values in
the bifundamental representation of U(M) x U(1), where U(M) is the fla-
vor symmetry on the original M D2-branes attached to NS52 (which is the
gauge symmetry of the two-dimensional gauge theory) and U(1) is the global
symmetry on the additional D2-brane. The partition function of this multi-
plet turns out to be given precisely by the operator , with z being the
value of the scalar field in the U(1) vector multiplet, or the position of the
additional D2-brane on C.

Thus, we identify Q(z) with a horizontal 't Hooft line with spectral pa-
rameter z crossing the vertical Wilson lines. In our forthcoming paper, we
will present a more explicit derivation of this identification using a descrip-
tion of surface operators in four-dimensional Chern—Simons theory in terms
of two-dimensional degrees of freedom.

6.7. Theories for open spin chains

In the above discussions on the appearances of spin chains from linear quiver
theories and theories related to the cotangent bundles of partial flag mani-
folds, it is crucial that the horizontal direction of 72 is periodic because we
need to use T-duality in this direction to arrive at the relevant brane con-
figurations. Consequently, the spin chains appearing in these theories are
closed ones with periodic boundary conditions.

In four-dimensional Chern—Simons theory, however, there is nothing that
stops us from considering lattices on a noncompact surface such as R?. Even
though we can no longer apply the T-duality then, S-duality still leads to
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an interesting configuration consisting of NS5-branes NS5;, D1-branes D1,
and Dl‘ﬁ, and D3-branes D3§ and D3#.

For C' = C, the part of the system comprised of NS5; and Dl; realizes
a one-dimensional gauge theory which is the dimensional reduction of the
two-dimensional A = (2,2) supersymmetric gauge theory discussed above.
Our construction therefore implies that an open sly spin chain arises from
this one-dimensional theory.

Since the horizontal Wilson lines now extend indefinitely, they do not
represent transfer matrices anymore. Rather, these Wilson lines crossing the
vertical ones are monodromy matrices T}, constructed from the rational ver-
sion of RY:0) | which is a nondynamical R-matrix. The monodromy matrices
satisfy the RLL relation , with T, taking the place of L&N’O). As such,
they provide a representation of the corresponding quantum algebra, namely
the Yangian of sly.

Again, the theory flows to a sigma model on T Fyp for generic values of
the FI parameters. Due to the topological twist this is topological quantum
mechanics on T*Fng, whose algebra of local operators is the equivariant
cohomology H (.CX)"xCX (T*Fnm). Thus, the action of monodromy matrices
on the Hilbert space defines an action of the Yangian on H (.(CX)”'X(CX (T*Fnm)-
This statement was proved in [I0IHI03].

Similarly, we obtain in the trigonometric case an action of the quantum
loop algebra of sly on the equivariant K-theory of T*Fy [105], and in the
elliptic case an action of the elliptic quantum group of sl on the equivariant
elliptic cohomology of T™* Fyy [TT0HIT2].

6.8. Yangians in three-dimensional linear quiver theories

The D3-NS5 part of the above system, for C = C, is the original Hanany—
Witten configuration for a three-dimensional N’ = 4 supersymmetric gauge
theory, described by a linear quiver with U(k) gauge and flavor groups [98§].
In this theory D1 create local operators which involve monopoles, and
they represent monodromy matrices with k£ vertical lines carrying infinite-
dimensional representations of sly.

For generic values of the FI parameters, the theory is in the Higgs phase,
and the topological twist and the (2-deformation reduce it to topological
quantum mechanics on the moduli space of vortices [I13]. Therefore, D1, act
as the Yangian on the equivariant cohomology of this space. This conclusion
fits nicely with results obtained in [9, [10], where it was found that the algebra
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of local operators of the topologically twisted and €2-deformed linear quiver
theory is a certain quotient of the Yangian.
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