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We explore the non-perturbative Dyson-Schwinger equations
obeyed by the partition functions of the Ω-deformed N = 2, d = 4
supersymmetric linear quiver gauge theories in the presence of sur-
face defects. We demonstrate that the partition functions of differ-
ent types of defects (orbifold or vortex strings) are related by ana-
lytic continuation. We introduce Darboux coordinates on a patch
of the moduli space of flat SL(N)-connections on a sphere with
special punctures, which generalize the NRS coordinates defined
in the SL(2) case. Finally, we compare the generating function of
the Lagrangian variety of opers in these Darboux coordinates with
the effective twisted superpotential of the linear quiver theory in
the two-dimensional Ω-background, thereby proving the NRS con-
jecture and its generalization to the SL(3) case.
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1. Introduction

The dynamics of supersymmetric gauge theories is a rewarding research sub-
ject. The exact low-energy description of the four-dimensional gauge theories
with N = 2 supersymmetry was proposed in [3, 4] for the SU(2) theories
with various matter multiplets. The proposal has been generalized in the
subsequent papers, allowing for different gauge groups and matter represen-
tations. In many cases the Coulomb branch of the moduli space of vacua
is a family of algebraic curves (called the Seiberg-Witten curves) equipped
with meromorphic differential. The periods of the differential compute the
central charges of the supersymmetry algebra determining the masses of the
BPS particles at this vacuum. The microscopic study of these theories using
direct quantum field theory methods and supersymmetric localization was
initiated in [15], leading to the exact computation of the partition functions
of a deformed version of the theory, the realization they coincide with the
partition functions of some two dimensional chiral theory, and connecting
that theory to the M - and string theory fivebranes [15, 19, 20, 37, 40].

The method of [15] reduces the computation of the path integral to a
problem of counting fixed points under the action of the global symmetry
group on a finite dimensional BPS field configurations. More specifically, the
partition function can be written as a product of analytic functions,

Z(a,m, ε, q) = Zclassical(a, ε, q) Z1-loop(a,m, ε) Zinst(a,m, ε, q).(1)

Here q schematically denotes the gauge couplings of the theory, while a, m,
and ε = (ε1, ε2) denote the equivariant parameters for the group of global
gauge symmetry, the group of flavor symmetry, and the group of Lorentz
symmetry, respectively. ε1,2 are also called Ω-deformation parameters (See
appendix A for a more detailed review of the N = 2 partition functions).
The effective prepotential is then obtained by taking the limit (while keeping
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a,m, q generic)

F(a,m, q) = lim
ε1,ε2→0

ε1ε2 logZ(a,m, ε, q),(2)

which provides the direct microscopic derivation of the results in [3, 4] (either
using the limit shape approach [16], or the blowup equations [17]).

Meanwhile, it was observed in [8–10] that the Coulomb branch of vacua
of a N = 2 theory canonically has a structure of a base B of an algebraic inte-
grable system. The full structure is revealed when the theory is compactified
[13] on a circle S1

R [25]. The moduli space of the effective N = 4, d = 3 the-
ory is a hyper-Kähler manifold which metrically collapses to the Coulomb
moduli space B of the four-dimensional theory in the limit R→∞ [13].
In this limit, one of the complex structures, say, I is singled out, with re-
spect to which we have a holomorphic symplectic form ΩI . For finite R, the
moduli space is a ΩI -Lagrangian fibration over B by abelian varieties. More
specifically, the Coulomb branch B is parametrized by the expectation val-
ues uk = ⟨Ok⟩ of chiral observables (these are local operators anticommuting
with the four nilpotent supercharges of one Lorentz chirality).

These observables carry over to the theory with finite R. We define the
Hamiltonians to be the I-holomorphic functions on the moduli space of the
compactified theory by

(3) Hk = ⟨Ok⟩, k = 1, . . . , dimB,

and it is not difficult to show that these functions Poisson-commute with
respect to the Ω−1

I .

1.1. Quantization via gauge theory:
Effective twisted superpotential as Yang-Yang functional

The remarkable correspondence between the gauge theory and integrable
system was promoted to the quantum level in [23], by placing the gauge
theory into the realm of Bethe/gauge correspondence [21, 22]. We consider
the theory in the Ω-background affecting two out of four dimensions of
spacetime. Equivalently, we take the NS limit (ε1 = ℏ ̸= 0, ε2 → 0) of the
general Ω-background, so that the theory retains the two-dimensional N =
(2, 2) supersymmetry. The effective action includes the twisted F -term given
by the effective twisted superpotential,

W̃(a,m, ℏ, q) = lim
ε2→0

ε2 logZ(a,m, ε1 = ℏ, ε2, q).(4)
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Typically, the theories with four supercharges have isolated vacua. In this
way the Ω-deformation of the four dimensional theory lifts the continuous
moduli of vacua. The discrete set of vacua is in one-to-one correspondence
with the solutions to the following equation,

exp
∂W̃(a,m, ℏ, q)

∂aα
= 1, α = 1, . . . , dimB(5)

In the context of Bethe/gauge correspondence, this equation is identified
with the Bethe equation which determines the set of joint eigenvalues of the
mutually commuting Hamiltonians. The Coulomb moduli a in (5) map to
the quasi-momenta, or Bethe roots, of the integrable system. The spectrum
of the Hamiltonians for a given solution a∗ of (5) is computed as

uk(a∗,m, ℏ, q) = ⟨Ok⟩
ε1=ℏ,ε2=0;m,q
a=a∗

,(6)

The Ω-deformation parameter ℏ plays the role of the Planck constant of the
quantum integrable system. The potential W̃ of the Eqs. (5) determining
the Bethe roots is identified with the Yang-Yang functional [74] in the con-
text of the integrable system. The effective twisted superpotential, or the
Yang-Yang functional, can be written in the following form according to the
decomposition of (1),

W̃(a,m, ℏ, q) = W̃classical(a,m, ℏ) log q(7)

+ W̃1-loop(a,m, ℏ) + W̃inst(a,m, ℏ, q).

The 1-loop part depends on the regularization scheme but is independent
of the gauge coupling q, while the instanton part is expanded as a series in
q. The series can be exactly computed by taking the NS limit of the Young
diagram expansion of the instanton partition function. See appendix A for
more background on the localization computation of the effective twisted
superpotential.

1.2. Hitchin systems, flat connections, and opers

In this paper, we study a specific subclass of the four-dimensional N = 2
theories, which is called the class-S theories [37]. The class-S theory T [g,C]
(g = ADE) is the four-dimensional N = 2 superconformal theory engineered
by compactifying the 6-dimensional (2, 0) superconformal theory of type g

on the Riemann surface C, with a partial topological twist. As we discussed
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earlier, the further compactification of T [g,C] on a circle S1 yields a three-
dimensional N = 4 gauge theory whose Coulomb moduli space is the phase
space of the Seiberg-Witten integrable system. By changing the order of
compactification on C× S1[39], it can be verified that the moduli space is
equivalent to the moduli space MH(G,C) of the Hitchin pairs (P, φ), that
is, the locus of the Hitchin equations on C [46],

FA + [φ, φ̄] = 0

∂̄Aφ = 0, ∂Aφ̄ = 0.
(8)

modulo the G-gauge transformations. Here, G is the simple Lie group cor-
responding to g, A is a G-connection on the principal G-bundle P → C, and
φ ∈ Γ(C,KC ⊗ adP) is the gC-valued (1,0)-form called the Higgs field. Note
that C may have punctures, and the Higgs field is prescribed to have specific
singular behaviors at those punctures. Therefore, the Seiberg-Witten inte-
grable system for the class-S theory T [g,C] is the Hitchin integrable system
with the phase space MH(G,C).

As discussed in [60], we can view the Hitchin moduli space MH as a
hyper-Kähler quotient of the affine space W of all the field configurations of
(A,φ). W is hyper-Kähler with a natural P1-family of complex structures,

I = aI + bJ + cK, I2 = −1, for a2 + b2 + c2 = 1,(9)

where we may choose the convention that I, J , and K are the complex
structures with the holomorphic coordinates (Az̄, φz), (Az ≡ Az + iφz,Az̄ ≡
Az̄ + iφz̄), and (Az + φz, Az̄ − φz̄), respectively. The corresponding Kähler
forms are

ωI = −
1

4π

∫

C

Tr (δA ∧ δA− δφ ∧ δφ),

ωJ =
1

2π

∫

C

|d2z| Tr (δφz̄ ∧ δAz + δφz ∧ δAz̄),

ωK =
1

2π

∫

C

Tr (δA ∧ δφ).

(10)

Then the Hitchin equations (8) are just the moment map equations for
these Kähler forms. Therefore MH(G,C) is also hyper-Kähler with the same
complex structures and Kähler forms. We also define ΩI = ωJ + iωk and its
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cyclic permutations,

ΩI =
1

π

∫

C

|d2z| Tr (δφz ∧ δAz̄),

ΩJ = −
i

4π

∫

C

Tr (δA ∧ δA),

ΩK = −
i

2π

∫

C

|d2z| Tr(δAz̄ ∧ δAz − δφz̄ ∧ δφz

− δφz̄ ∧ δAz − δφz ∧ δAz̄),

(11)

each of which is a holomorphic symplectic (2,0)-form with respect to the
complex structure I, J , and K, respectively.

The complete integrability of MH(G,C) is manifest when we work in the
complex structure I. We restrict our attention to the case g = AN−1 from
now on. Let us define the Hitchin fibration by the map,

π : MH(AN−1,C) −→ B ≡

N⊕

k=2

H0(C,Kk
C),

(P, φ) 7−→
(
Trφk

)N
k=2

.

(12)

It is possible to show that under the partial topological twist, the vac-
uum expectation values of the chiral observables of U(1) R-charge k ex-
actly span H0(C,Kk

C
). Therefore, we observe that the base B of the Hitchin

fibration is precisely the Coulomb moduli space of T [AN−1,C]. It is clear
from the expression for ΩI in (11) that all the base elements are mutu-
ally Poisson-commuting under ΩI . A dimension counting also shows that
dimB = 1

2 dimMH(AN−1,C). Finally, the preimage of u = (uk(z))
N
k=2 ∈ B

can be shown to be an abelian variety, the Jacobian Jac(Σu) of the spectral
curve

Σu =

{
(z, x) ∈ T ∗C | xN +

N∑

k=2

uk(z)x
N−k = 0

}
⊂ T ∗C,(13)

establishing the algebraic integrable structure of MH(AN−1,C). The spec-
tral curve Σu is identified with the Seiberg-Witten curve of the theory
T [AN−1,C].

On the other hand, we can alternatively view MH(AN−1,C) through the
complex structure J . Up to some stability issue that we do not discuss here,
the hyper-Kähler quotient can be equivalently performed by imposing only
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the moment map equation for ΩJ ,

F ≡ dA+A ∧A = 0,(14)

and moding out the GC(= SL(N))-gauge transformations. Thus, the Hitchin
moduli spaceMH(AN−1,C) is identified with the moduli space of flat SL(N)-
connections on C, Mflat(SL(N),C). It is convenient to use the holonomy map
to express Mflat(SL(N),C) as the character variety, i.e., the representations
of the fundamental group of C,

Mflat(SL(N),C) = {ρ ∈ Hom(π1(C), SL(N)) | [ρ(γi)] fixed} /SL(N),(15)

where {i} enumerates all the punctures in C, γi is the loop encircling the i-th
puncture only, and the bracket [· · · ] denotes the conjugacy class. The Poisson
structure induced by ΩJ on Mflat(SL(N),C) can be explicitly written as the
skein-relations on the Wilson loops [47, 48].

To see the quantization at work, the class-S theory T [AN−1,C] is subject
to the Ω-deformation in the NS limit. This is most effectively implemented
by deforming the underlying geometry into the product of a cylinder and a
cigar-like geometry, X4 = R× S1 ×D2 [24]. The following metric on D2 is
taken,

ds2 = dr2 + f(r)dθ2, r ∈ I = [0,∞], θ ∈ [0, 2π),

with f(r) ∼ r2 for r ∼ 0,

f(r) ∼ const for sufficiently large r

(16)

Note that this metric asymptotes to X4 ∼ R× S1 × I× S̃1. One recalls that
the Ω-deformation with respect to the isometries of the two-torus can be
undone by a redefinition of the fields of the theory [24]. In the limit where

both circles S1 and S̃1 are small we can approximate the theory by its re-
duction. The dependence of the theory on the radii of the circles S1 and

S̃1 is Q-exact, where Q is the supercharge preserved by the Ω-deformation.

The dimensional reduction along the two-torus S1 × S̃1 results in a two-
dimensional N = (4, 4) sigma model, with the worldsheet R× I and the tar-
get space MH(AN−1,C). The quantization of the Hitchin integrable system
arises by correctly specifying the boundary conditions at 0,∞ ∈ I [24]. The
boundary condition at ∞ ∈ I determines the space of states in the inte-
grable system, implemented by a ωK-Lagrangian brane. It is also argued in
[24] that the effect of the Ω-deformation is correctly accounted by the bound-
ary condition at 0 ∈ I corresponding to the canonical coisotropic brane of



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1796 — #8
✐

✐

✐

✐

✐

✐

1796 S. Jeong and N. Nekrasov

MH(AN−1,C) [36]. Surprisingly, this brane could be T-dualized along the
fibers of the Hitchin fibration to produce a brane supported on a distin-
guished Jℏ-holomorphic ΩJℏ

-Lagrangian submanifold of MH(AN−1,C): con-
jecturally, the variety of opers [53]. Here, Jℏ differs from I,−I, and is deter-
mined by the Ω-deformation parameter ℏ. In the absence of punctures on C

all complex structures different from I,−I are diffeomorphic. When punc-
tures are present the diffeomorphism rotating Jℏ to J changes the masses
of the matter hypermultiplets, and, accordingly, the eigenvalues of the mon-
odromy around the punctures. With this subtlety understood, we shall skip
the subscript ℏ in the notation for the complex structure J in what follows.

The variety ON [C] = {D̂} of opers can be locally represented as a set of
N -th order meromorphic differential operators

D̂ = ∂N
z + t2(z)∂

N−2
z + · · ·+ tN (z),(17)

acting on
(
−N−1

2

)
-differentials K

−N−1

2

C
. Here we view D̂ as an element of

Mflat(SL(N),C) by associating it to the representation

ρ
D̂
: π1(C) −→ SL(N)

γ 7−→Mγ(D̂),
(18)

where Mγ(D̂) is the SL(N)-valued monodromy of the solutions of D̂ along
the loop γ. More specifically, the conjugacy class of the monodromy around
each puncture is fixed, so that

ON [C] =
{
D̂

∣∣∣
[
Mγi

(D̂)
]
fixed

}
,(19)

leaving only dimON [C] = dimB degrees of freedom for the meromorphic
functions (tk(z))

N
k=2 which is equal to the half of the dimension of the full

moduli space Mflat(SL(N),C). In fact, as an oper (17) can be regarded
as a quantization of the Seiberg-Witten curve (13), the variety of opers
ON [C] provides a quantization of the Coulomb moduli space B, and the
holomorphic functions on ON [C] precisely correspond to the off-shell spectra
of the mutually commuting quantum Hitchin Hamiltonians [52].

The ωK-Lagrangian brane at infinity∞ ∈ I is T-dualized to another ωK-
Lagrangian brane L. The ground states of open strings with two ends on
ON [C] and L, respectively, define the space of morphisms in Fukaya category

H = Hom(ON [C], L).(20)
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The space of morphisms between two Lagrangian branes in Fukaya category
is the symplectic Floer homology HF •

symp(ON [C], L), which can be obtained
as a cohomology of a complex spanned by the intersection points with the
differential obtained by studying pseudo-holomorphic disks with boundaries
on ON [C] and L. For hyper-Kähler manifolds, such as the Hitchin space in
our case, there is no contribution coming from the disks of non-zero relative
degree, thus the space of states are determined by the classical intersection
points.1 In other words, the problem of quantization reduces to enumera-
tion of the intersection of the variety of opers and a ωK-Lagrangian brane.
The isolated intersection point defines a common eigenstate of the quantum
Hamiltonians. The spectra of quantum Hamiltonians are the holomorphic
functions on the variety of opers restricted to this locus.

1.3. The NRS conjecture

Since the variety of opers ON [C] is a complex Lagrangian submanifold of
Mflat(SL(N),C), there exists the generating function S [ON [C]] for ON [C],

βi =
∂S [ON [C]]

∂αi
, i = 1, . . . ,

1

2
dimMflat(SL(N),C),(21)

for any Darboux coordinate system {αi,βj} = δij on Mflat(SL(N),C). In
[1], it was suggested that there exists a specific Darboux coordinate system
(which we refer to as the NRS coordinate system), in which the generating
function for the variety of opers is identified with the effective twisted su-
perpotential, up to a contribution from the boundary at the infinity which
is independent of the gauge coupling, namely,

S [ON [C]] =
1

ε1

(
W̃ [T [AN−1,C]]− W̃∞

)
.(22)

In the N = 2 case, the NRS coordinate system on the moduli space of
SL(2,C)-flat connections essentially restricts to the coordinate systems pro-
posed in [49–51] for the SU(2) flat connections, Teichmüller space (which
is a component of the moduli space of SL(2,R)-flat connections) and the
SO(1, 2)-flat connections, respectively. The intuition behind the above equiv-
alence is that as we vary the complex structure of C, the corresponding vari-
ation of O2[C] is represented by a closed holomorphic one-form on O2[C],

1There is a subtlety when the Lagrangians are not transversal. It appears the lift
of degeneracy of the ground states [32, 35] in quantum mechanics corresponds to
such singularities.
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which is a derivative of a holomorphic function since O2[C] is simply-
connected. As we noted earlier, the holomorphic functions on O2[C] are
the spectra of the quantum Hamiltonians, which are, in the spirit of the
Bethe/gauge correspondence,

u = q
∂W̃ [T [A1,C]]

∂q
.(23)

Since the complex structure of C is controlled by the gauge coupling q, this
motivated [1] to identify the generating function for the variety of opers with
the effective twisted superpotential, and thereby with the Yang-Yang func-
tional. As a result, the classical symplectic geometry (which operates with
symplectic manifolds and thier Lagrangian subvarieties), the N = 2 gauge
theory, and quantum integrable system (which belongs to the domain of
noncommutative algebras, their commutative subalgebras, and representa-
tion theory) are nicely interconnected through the equality (22). Note that
this is a finite-dimensional version of the quantum/classical duality stud-
ied at some examples in [12], which connects the integrable quantum field
theories to the classical nonlinear differential equations.

There were many questions that remain unanswered. Some of them are:

1) Can one precisely describe the variety of opers ON [C] as of a defor-
mation of the Coulomb moduli space B (of course, the first order
deformation is simply the WKB approximation)? In particular, how
the meromorphic coefficients (tk(z))

N
k=2 in (17) are related to the ex-

pectation values (uk)
N
k=2 of the chiral observables in (6)?

2) How is the NRS coordinate system generalized to the higher rank case,
at least for g = AN−1?

2

3) How should the equality (22) be understood? Specifically, the left hand
side is written in the NRS coordinates, while the right hand side is writ-
ten in the gauge theoretic terms. How do we match these parameters?3

4) Most importantly, derive the equality (22) from the first principles of
the gauge theory (to all orders in the gauge coupling q)?

We address these questions below:

2In the genus one case it was done in [5, 57].
3Some of these questions are addressed in [65] from a geometric point of view.



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1799 — #11
✐

✐

✐

✐

✐

✐

Opers, surface defects, and Yang-Yang functional 1799

1.4. Outline

The key players of the work are the half-BPS codimension two (surface)
defects in the four-dimensional N = 2 gauge theories. The surface defects
can be constructed in several ways [20, 61, 62]. The exact computation of
their partition functions became accessible in part by [41–43], and in a more
general setting in [30]. In particular, the explicit forms of the surface defects
as the observables in the underlying gauge theory were written down in [30].

Meanwhile, the analysis of the analytic properties of the N = 2 partition
functions became available since [27]. The qq-characters were introduced
as gauge theory observables, which can be constructed out of the spiked
instanton configurations [28, 29, 34]. The crucial property of these observ-
ables is the regularity of their expectation values [27], which follows from
the compactness theorem [28]. From the regularity of qq-characters follows
the vanishing theorem for the non-regular parts of the expectation values,
thereby constraining the partition functions. We call these vanishing equa-
tions the non-perturbative Dyson-Schwinger equations [27].

In section 2, we recall two independent constructions of surface defects:
the quiver and the orbifold. In section 3, we describe the fundamental qq-
character for the surface defects, and derive the non-perturbative Dyson-
Schwinger equations for their partition functions. We show that the final
equations satisfied by the surface defect partition functions can be regarded
as a quantized version of the opers, in the sense that they reduce to the
differential equations for the opers in the NS limit ε2 → 0. The relations of
the expectation values of the chiral observables to the holomorphic coordi-
nates on the variety of opers are naturally revealed through this procedure,
clarifying in what sense the variety of opers is a quantization of the Coulomb
moduli space.

Being solutions to the non-perturbative Dyson-Schwinger equations, in
the NS limit the asymptotics χ of the appropriately normalized surface de-
fect partition function becomes the oper solution D̂χ = 0. Consequently, the
monodromy of the solutions of the oper can be obtained by first computing
the monodromy of the surface defect partition functions and then taking the
NS limit. However, each surface defect partition function has its own con-
vergence domain, and to compute the monodromy we need the connection
matrix which links the surface defect partition functions lying on different
domains. This is the subject of the section 4. Namely, we present how the
surface defect partition function is analytically continued to another conver-
gence domain, and how they can be glued together. In fact, the analytically
continued quiver surface defect partition function is shown to be identical
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to a specific orbifold surface defect partition function, suggesting the equiv-
alence of the two distinct types of surface defects. It may be regarded as
an independent nontrivial result in itself, realizing the duality between the
surface defects [38] at the level of the partition functions.

In relating the gauge effective theory twisted superpotential to the gen-
erating function of the variety of opers, we need to specify the Darboux
coordinate system on the moduli space of flat connections relevant to the
correspondence. More precisely, we need at least the coordinates on the
patch of the moduli space, in which the theory has a weak coupling descrip-
tion (the twisted superpotential is defined, of course, everywhere, however
we can only compute it directly in quantum field theory in that region).
It may appear that the coupling constant of the theory, being the complex
moduli of the underlying Riemann surface, has nothing to do with the co-
ordinate charts on the moduli space of flat connections in the J-complex
structure, as the latter depends only on the topology of C. The explanation
is the following. The continuous dependence on the couplings q is indeed
absent. However, the universality classes of the Lagrangians describing the
theory depend on the type of the degeneration of the Riemann surface C,
the so-called pair-of-pants decomposition. The latter is determined by the
choice of a handlebody (together with an embedded graph) whose boundary
is C (with the punctures being the end-points of the graph edges).

With this understood, in section 5, we propose Darboux coordinates on
a particular patch of the moduli space of flat SL(N)-connections on the
r + 3-punctured sphere. Our coordinates agree (up to a simple shift) with
the NRS coordinates [1] restricted to the corresponding patch of the SL(2)-
moduli space. We verify the canonical Poisson relations for the proposed
coordinate system by using the geometric representation of Poisson brackets
between the Wilson loops in the classical Chern-Simons theory. We compute
explicitly the invariants of the holonomies of flat connections in our main
r = 1 example.4

4There are alternative approaches to the construction of Darboux coordinates
from spectral networks [63], motivated by the work of A. Voros [72] on the exact
WKB approximation, and from symplectic doubles [56], motivated by the work of
W. Thurston on the measured laminations. The spectral networks were used in
[56, 63–65] to generalize Fock-Goncharov [54], NRS [1], Goldman [47] and Fenchel-
Nielsen [50] coordinates. We stress that we only work on an open subset of the
moduli space, so the subtleties discussed in [54–56], forcing one to work on certain
covers of the moduli space, are not visible at the level we are working.
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Finally, the monodromy data of opers is computed in section 6. More
precisely, we compute the analytic continuation of the surface defect parti-
tion functions, using the results of section 4. Then we take the NS limit of
the resulting transfer matrices to reduce them to the monodromies of the
opers. Then we express those data in terms of the generalized NRS coor-
dinates proposed in the section 5. This procedure reveals that the effective
twisted superpotential is naturally identified with the generating function
of the variety of opers. The conclusions and discussions are presented in the
section 7. The appendices contain some computational details.
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2. Surface defects

We start on the Hitchin system side. We will mainly consider the four-
punctured Riemann sphere C = P1\{0, q, 1,∞}. All the punctures are as-
sumed to be regular. That is, we only allow a simple pole for the Higgs
field φ at each puncture. Moreover, we call a puncture maximal when the
residue of φ at the puncture belongs to a generic semisimple conjugacy class
of g = AN−1, and minimal when the residue is in a maximally degenerate
semisimple conjugacy class (as in [6, 14]). We assume the punctures at 0
and ∞ are maximal (this is the typical limit of a Hitchin system on a sta-
bly degenerate curve, see [7]), while the punctures at q and 1 are minimal.
In what follows in listing the punctures we underline the minimal ones, as
in {0, q, 1,∞}. We shall also denote by C the punctured Riemann surface
together with the assignment of the minimal and maximal punctures, e.g.
C = P1\{0, q, 1,∞}. There is no distinction between the maximal and the
minimal punctures in the N = 2 case. For N > 2 the difference is signif-
icant. The corresponding class-S theory T [AN−1,C] is the superconformal
N = 2 gauge theory with the gauge group SU(N) and the 2N hypermulti-
plets, whose gauge coupling is q and the masses of the hypermultiplets are
determined by specific combinations of the eigenvalues of the residue of φ
[37].
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1802 S. Jeong and N. Nekrasov

A half-BPS surface defect on T [AN−1,C] can be constructed in several
ways. Here we present two constructions relevant to our study. It is conve-
nient to treat the gauge group formally as U(N), by making an overall shift
in the masses of the hypermultiplets, as we do throughout the discussion.
The SU(N) gauge theory parameters can be easily recovered by shifting
back the Coulomb moduli and the masses of hypermultiplets.

2.1. The quiver construction

The construction starts with the superconformal A2-quiver U(N) gauge the-
ory. As reviewed in appendix A in detail, the equivariant localization reduces
the instanton partition function of the theory to that of a grand canoni-
cal ensemble on the 2N -tuples of Young diagrams λ = {λ(i,α) | i = 1, 2, α =
1, . . . , N}. It can be conveniently written as

ZA2
(a0;a1;a2;a3|ε1, ε2|q1, q2) =

∑

λ

∏

i=1,2

q
|λ(i)|
i

ϵ [TA2
[λ]](24)

where the character TA2
is

TA2
=
∑

i=1,2

(NiK
∗
i + q12N

∗
i Ki − P12KiK

∗
i )(25)

−M0K
∗
1 − q12M

∗
3K2 −N1K

∗
2 − q12N

∗
2K1 + P12K1K

∗
2 ,

and the ϵ-operation5, also known as the plethystic exponent, converts a
character into the product of weights,

ϵ(R) =

∏
w∈R− w(θ)∏
w∈R+ w(θ)

for θ ∈ Lie(TH), R =
∑

w∈R+

ew(θ) −
∑

w∈R−

ew(θ).(26)

Let us choose β ∈ {1, . . . , N}, and tune the Coulomb moduli of the first
gauge node as

{
a1,β = a0,β − ε2

a1,α = a0,α for α ̸= β
(27)

We define the defect partition function as ZA2
with the constrained Coulomb

parameters:

ZL
β ≡ ZA2

(
a0; a1,α = a0,α − ε2δα,β ; a2; a3 | ε1, ε2 | q1 = z−1, q2 = q

)
.(28)

5Not to be confused with the Ω-deformation parameters ε1, ε2.
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The constraints can be succinctly expressed as the relation between the
characters

M0 = N1 − P2µ,(29)

where we have defined µ = eβ(a0,β−ε2). Note that due to the constraints,
almost all the Young diagrams for the first gauge node have vanishing con-
tributions to the partition function, except the ones of the form

λ(1) =


∅, . . . ,∅, ...





k ,∅, . . . ,∅


 ,(30)

which is empty λ(1,α) = ∅ except the single-columned λ(1,β).
We can view the constraint (27) as adding an extra equation in the

ADHM construction for the quiver instanton moduli space, as we now re-
call. First, the A2-quiver U(N) theory can be obtained by the Z4-orbifold
procedure from the N = 2∗ U(4N) theory. The ADHM data for the N = 2∗

U(4N) gauge theory is the following collection of linear maps between com-
plex vector spaces:

B1,2,3,4 : K −→ K

I : N −→ K

J : K −→ N,

(31)

where N = C4N andK = Ck1+k2 . The reason for strange dimensions of these
spaces will become clear momentarily. The extended ADHM equations are
written as [28]

[B1, B2] + IJ + [B3, B4]
† = 0

[B1, B3] + [B4, B2]
† = 0

[B1, B4] + [B2, B3]
† = 0

s+ ≡ B3I + (JB4)
† = 0

s− ≡ B4I − (JB3)
† = 0.

(32)

We also impose the stability condition (cf. (A.18))

C[B1, B2, B3, B4]I(N) = K.(33)
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1804 S. Jeong and N. Nekrasov

Upon the Z4-orbifolding, the spaces N and K become Z4-modules, and
therefore can be decomposed according to the Z4-representations

N =
⊕

ω∈Z4

Nω ⊗ Rω, K =
⊕

ω∈Z4

Kω ⊗ Rω.(34)

The coupling constant is also fractionalized accordingly, qω for ω ∈ Z4. We
manually set q0 = q3 = 0, then we are restricted to K0 = K3 = 0 due to the

measure factor q
|Kω|
ω . Let |K1| = k1 and |K2| = k2. Also, we impose the Z4-

weights to the space N in such a way that Nω = CN for each ω ∈ Z4. Let
the maps

ΩN : N −→ N, ΩK : K −→ K,(35)

be defined by the diagonal action of iω to the elements in Nω and Kω. Then
we impose the conditions for the ADHM data

Ω−1
K B1,2 ΩK = B1,2

Ω−1
K B3 ΩK = iB3

Ω−1
K B4 ΩK = −iB4

Ω−1
K I ΩN = I

Ω−1
N J ΩK = J,

(36)

which fractionalize these matrices as

Bω,1 : Kω −→ Kω

Bω,2 : Kω −→ Kω

Bω,3 : Kω −→ Kω+1

Bω,4 : Kω −→ Kω−1

Iω : Nω −→ Kω

Jω : Kω −→ Nω.

(37)

Note that many of these maps are identically zero due to the restriction
K0 = K3 = 0. Hence only the following equations survive among the ADHM
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equations (32),

[B1,1, B1,2] + I1J1 −B†
1,3B

†
2,4 = 0

[B2,1, B2,2] + I2J2 −B†
2,4B

†
1,3 = 0

B2,1B1,3 −B1,3B1,1 +B†
2,2B

†
2,4 −B†

2,4B
†
1,2 = 0

B1,1B2,4 −B2,4B2,1 +B†
1,3B

†
2,2 −B†

1,2B
†
1,3 = 0

s+1 ≡ B1,3I1 +B†
2,4J

†
1 = 0

s−2 ≡ B2,4I2 −B†
1,3J

†
2 = 0.

(38)

The stability condition also becomes

C[B1,1, B1,2, B2,1, B2,2, B1,3, B2,4]I(N) = K.(39)

We find that the sum of the squares of the norms of the first two equations
of (38) can be simplified, using the other four equations, into a sum of
squares,

0 = ||[B1,1, B1,2] + I1J1||
2 + ||[B2,1, B2,2] + I2J2||

2(40)

+ ||B1,3I1||
2 + ||B2,4I2||

2 + ||B2,1B1,3 −B1,3B1,1||
2

+ ||B1,1B2,4 −B2,4B2,1||
2.

Applying the last two equations to the stability condition, we can commute
B1,3 and B2,4 through all the way to hit I1(N1) or I2(N2), respectively.
This vanishes as a result of the third and the fourth equations. Hence, the
stability condition is reduced to

C[Bi,1, Bi,2]Ii(Ni) = Ki, i = 1, 2.(41)

This implies B1,3 = B2,4 = 0. The first and the second equations of (40)
provide the reduced ADHM equations

[Bi,1, Bi,2] + IiJi = 0, i = 1, 2,(42)

which are precisely the ADHM equations for the instanton moduli space of
the A2-quiver U(N) theory.

In this construction of the A2-theory, the constraint (27) can be under-
stood as adding an equation “s+0 ” : N0 −→ K1. Note that we neglected the
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N0 N1 N2 N3

K1 K2

I1 J1 J2I2

B1,1, B1,2 B2,1, B2,2

s+0

Figure 1: The ADHM data for the A2-quiver gauge theory, with the extra
map s+0 .

equation

s+0 ≡ B0,3I0 +B†
1,4J

†
0 : N0 −→ K1,(43)

since it is identically zero by B0,3 = I0 = B1,4 = J0 = 0 due to the restriction
K0 = 0. However, we can avoid this restriction if we first set

N0 = Ñ ⊕ L, N1 = Ñ ⊕ q2L,(44)

where we have chosen an one-dimensional subspace L ⊂ N0, which corre-
sponds the choice of β ∈ {1, . . . , N} in the constraint (27). Then we may
define a non-vanishing map

s+0 = I1
∣∣
Ñ
⊕B1,2I1

∣∣
L
: N0 −→ K1.(45)

Adding the equation s+0 = 0 to the ADHM construction, we find that the
space K1 is further restricted by the stability condition (41),

K1 = C[B1,1, B1,2] I1(N1) = C[B1,1] I1(L).(46)

In other words, the Young diagram that denotes the space K1 only grows
in one direction from the chosen basis vector I1(L). This exactly manifests
the single-columnedness expressed in (30). The physics picture of what is
happening is the following. The constraint (27) makes N hypermultiplets
nearly massless (exactly massless in the absence of Ω-deformation). The
theory can then go to the Higgs branch, where the gauge group is partially
Higgsed to a subgroup, by the expectation values of the hypermultiplet
scalars. Now, the theory allows for the half-BPS field configurations where
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the gauge group is restored along a codimension two defect, essentially a
vortex string. Consequently, the gauge field configuration of the first gauge
node is squeezed into a two-dimensional plane (ε1-plane), effectively form-
ing a vortex. The resulting two-dimensional supersymmetric sigma model
couples to the remaining four-dimensional A1-theory, generating a surface
defect in the four-dimensional point of view.

We can confirm that the 2d-4d coupled system arises at the level of the
partition function. First we have the simplified expression for

K1 = µ
1− qk1
1− q1

.(47)

Therefore, the character (25) can also be simplified into

TA2
= [N2K

∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N1K

∗
2 − q12M

∗
3K2](48)

+
[
P2µq

k
1K

∗
1 + q12K1(N

∗
1 − S∗

2)
]
.

Accordingly, the partition function (24) of the A2-quiver gauge theory is
reduced to the expectation value of an observable in the A1-quiver gauge
theory

ZL
β =

∑

λ(2)

q
|λ(2)|
2 ILβ [λ

(2)] ϵ
[
TA1

[λ(2)]
]
= ⟨ILβ ⟩ ZA1

,(49)

where we have defined the character for the A1-theory

TA1
≡ N2K

∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N1K

∗
2 − q12M

∗
3K2,(50)

which defines the instanton partition function of the A1-theory by

ZA1
≡
∑

λ(2)

q
|λ(2)|
2 ϵ

[
TA1

[λ(2)]
]
,(51)
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and the surface defect as an element of the chiral ring

ILβ [λ
(2)] ≡

∞∑

k=0

qk1 ϵ
[
P2µq

k
1K

∗
1 + q12K1(N

∗
1 − S∗

2)
]

(52)

=

∞∑

k=0

qk1 ϵ

[
k∑

l=1

ql1(P2 + µq2(N
∗
1 − S∗

2))

]

=

∞∑

k=0

qk1

k∏

l=1

Y2(a0,β + lε1)[λ
(2)]

P0(a0,β + lε1)
.

Here, we have used the Y-observable (A.26) for the second gauge node, and
P0(x) ≡

∏N
α=1(x− a0,α) by definition. Let us focus on the zero bulk instan-

ton sector, |λ(2)| = 0. The contribution of this sector is the vortex parti-
tion function of a two-dimensional gauged linear sigma model. This sigma
model generates the surface defect, when coupled to the four-dimensional
bulk [20, 41]. The Y-observable in this sector simply reduces to a poly-
nomial Y2(x)→ A2(x) ≡

∏N
α=1(x− a2,α). The partition function (52) is ex-

actly that of the gauged linear sigma model on the Hom(O(−1),CN )-bundle
over PN−1 whose Kähler modulus is q1 [30]. For the non-trivial sectors of
the four-dimension, the two-dimensional sigma model couples to the four-
dimensional gauge theory through the non-perturbative corrections to the
Y-observable. Thus, the full partition function (49) represents the 2d-4d cou-
pled system in this manner.

It is instructive to cast the surface defect partition function (52) into
the form relevant to our study. Recall that the Y-observable (A.26) can be
written as a ratio

Yi(x)[λ] =

N∏

α=1

∏
□∈∂+λ(i,α)(x− c□)∏

□∈∂−λ(i,α)(x− c□ − ε)
.(53)

This suggests to represent the Y-observable as a ratio of two entire functions
[27],

Yi(x) =
Qi(x)

Qi(x− ε1)
,(54)

where we have defined the Q-observable

Qi(x)[λ] ≡

N∏

α=1


 (−ε1)

x−ai,α

ε1

Γ
(
−x−ai,α

ε1

)
∏

□∈λ(i,α)

x− c□ − ε2
x− c□


 .(55)
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Therefore, the surface defect (52) can be understood as an infinite sum of
Q-observables,

ILβ [λ
(2)] =

∞∑

k=0

qk1




N∏

α=1

Γ
(
1 + a0,β−a0,α

ε1

)

εk1 Γ
(
k + 1 + a0,β−a0,α

ε1

)


 Q2(a0,β + kε1)[λ

(2)]

Q2(a0,β)[λ
(2)]

.

(56)

We will observe that the Q-observable reduces to the so-called Baxter Q-
function in the NS limit. It will be more apparent in section 3 that this
representation is useful for our purpose.

Likewise, we can similarly impose the constraints for the Coulomb mod-
uli in the second gauge node,

{
a2,β = a3,β − ε− ε2

a2,α = a3,α − ε α ̸= β,
(57)

for some chosen β ∈ {1, . . . , N}. Here, we are using the abbreviated notation
ε ≡ ε1 + ε2. The constraint can also be written as

q−1
12 M3 = N2 − P2µ,(58)

where now µ = eβ(a3,β−ε−ε2). For a reason that will be clarified in section
4.2, we make the following re-definition for the parameters after imposing
the constraints (58),

a0,α −→ −a0,α − ε

a1,α −→ −a1,α α = 1, . . . , N

a3,α −→ −a3,α + 2ε,

(59)

The corresponding partition function,

ZR
β ≡ ZA2

(
− a0,α − ε; −a1,α; −a3,α + ε− ε2δα,β ;(60)

− a3,α + 2ε | ε1, ε2 | q1 = q, q2 = q−1 z
)
,

can be likewise simplified to:

ZR
β =

∑

λ(1)

q
|λ(1)|
1 IRβ [λ

(1)] ϵ
[
TA1

[λ(1)]
]
,(61)
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where the character for the A1-theory is now

TA1
≡ N1K

∗
1 + q12N

∗
1K1 − P12K1K

∗
1 −M0K

∗
1 − q12N

∗
2K1,(62)

and the surface defect is

IRβ [λ
(1)] ≡

∞∑

k=0

qk2

k∏

l=1

Y1(−a3,β + lε1)

P3(−a3,β + 2ε+ lε)
(63)

=

∞∑

k=0

qk2

N∏

α=1




Γ
(
1 + a3,α−a3,β

ε1

)

εk1 Γ
(
k + 1 + a3,α−a3,β

ε1

)


 Q1(−a3,β + kε1)

Q1(−a3,β)
,

where we have used the Y-observable for the first gauge node and P3(x) ≡∏N
α=1(x+ a3,α − 2ε) (Be cautious about the re-definition of the parameters).

Also, the Y-observable has been replaced by a ratio of Q-observables in the
second line. Note that the bulk coupling is now q1, while the Kähler modulus
for the two-dimensional sigma model is q2. Thus it is natural to expect that
the q2 of ZL

β would correspond to q1 of ZR
β , when we try to connect these

partition functions. The issue will be clarified in section 4.

2.2. The orbifold construction

We construct a surface defect by placing the gauge theory on an orbifold. We
first form an orbifold Cε1 × (Cε2/Zp) by the following Zp-action on Cε1 × Cε2

ζ : (z1, z2) 7−→ (z1, ζz2), ζ ≡ exp

(
2πi

p

)
∈ Zp.(64)

Here, Cεi denotes the complex plane with the equivariant parameter εi
for the C×-action. Then the surface defect is constructed as a prescrip-
tion of performing the path integral only over the Zp-invariant field config-
urations. Indeed, under the map (z1, z2) 7→ (z̃1 ≡ z1, z̃2 ≡ zp2), the orbifold
Cε1 × (Cε2/Zp) is mapped to Cε1 × Cpε2 , and the field configurations are
allowed to be singular along the surface z̃2 = 0. Therefore, the resulting the-
ory on Cε1 × Cpε2 can be interpreted as a surface defect inserted upon the
underlying gauge theory.

To fully characterize the surface defect, we have to specify how the field
configurations are projected out by the Zp-action. We present here how this
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is done for the A1-theory. Let us introduce the coloring function

c : [N ] −→ Zp.(65)

Then the space N is decomposed according to the Zp-representations,

N =
⊕

ω∈Zp

Nω ⊗ Rω, Nω ≡
∑

α∈c−1(ω)

eβaα .(66)

Also,

K =
⊕

ω∈Zp

Kω ⊗ Rω, Kω ≡

N∑

α=1

eβaα

l(λ(α))∑

i=1

qi−1
1

∑

1≤j≤λ
(α)
i

c(α)+j−1≡ω mod p

qj−1
2 ,(67)

where Rω is the one-dimensional irreducible representation of Zp with the

weight ω, and l
(
λ(α)

)
= λ

(α) t
1 is the number of rows in the Young diagram

λ(α). It is straightforward to include the fundamental matter fields, namely,

M =
⊕

ω∈Zp

Mω ⊗ Rω.(68)

Now as explained, we perform the path integral only for the Zp-invariant
field configurations, projecting out the non-invariant contributions. At the
level of the character (see (A.24)), this is to pick up the Zp-invariant piece,
namely,

TZp ≡

[
1

P12
(−SS∗ +M∗S)

]Zp

,(69)

from which the partition function is given by

ZZp,c ≡
∑

λ

q|Kω|
ω ϵ

[
TZp [λ]

]
.(70)

Though providing a concrete formula, it is not so obvious from (70) that the
partition function can be interpreted as an insertion of an observable in the
A1-theory. Thus it is important to properly construct the projection of the
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set of N -tuples of Young diagrams

ρ : λ 7−→ Λ,(71)

where Λ is supposed to enumerates the fixed points of the instanton moduli
space of the A1-theory on Cε1 × Cpε2 = C2/Zp.

The construction of the map ρ can be done as follows. Let us first re-
define the Coulomb moduli by the shift

ãα ≡ aα − ε2 c(α),(72)

so that

Ñω ≡
∑

α∈c−1(ω)

eβãα , Ñ ≡

p−1∑

ω=0

Ñω.(73)

and

K̃ω ≡ Kωq
−ω
2 =

N∑

α=1

eβãα

l(λ(α))∑

i=1

qi−1
1

li,α,ω∑

j=1 or 2

q̃j−1
2 ,(74)

where

li,α,ω =

[
λ
(α)
i + c(α)− ω + p− 1

p

]
(75)

q̃2 ≡ qp2 (ε̃2 ≡ pε2),(76)

and the lower limit of the sum over j is equal to 1 for c(α) ≤ ω and 2 for
c(α) > ω. In particular, for ω = p− 1,

K̃ ≡ K̃p−1 =

N∑

α=1

eβãα

l(Λ(α))∑

i=1

qi−1
1

Λ
(α)
i∑

j=1

q̃j−1
2 ,(77)

where we have defined a new N -tuple of Young diagrams Λ =
(
Λ(α)

)N
α=1

by

Λ
(α)
i = li,α,p−1 ≡

[
λ
(α)
i + c(α)

p

]
.(78)

The map ρ is defined by this relation, ρ(λ) = Λ.
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The partition function (70) is a weighted sum over λ, which can be first
summed over ρ−1(Λ) for fixed Λ and then summed over Λ. We will show the
sum over ρ−1(Λ) provides an observable insertion to the A1-theory whose
measure for the partition function is given by Λ. First, the vector multiplet
contribution in the measure (69) is

−

p−1∑

ω,ω′,ω′′=0

SωS
∗
ω′

P1(1− q̃2)
qω

′′

2 δ
Zp

ω−ω′+ω′′ ,(79)

where we have used the identity

1

1− q2R1
=

1

1− q̃2

p−1∑

ω=0

qω2 Rω.(80)

After defining

S̃ω ≡ Sωq
−ω
2 , S̃ ≡

p−1∑

ω=0

S̃ω = Ñ − P1P̃2K̃,(81)

the character (79) can be written as

−
S̃S̃∗

P̃12

+
1

P1

∑

0≤ω<ω′<p

S̃ω′S̃∗
ω.(82)

Note that the first term is precisely the vector multiplet contribution to the
partition function of the A1-theory on Cε1 × Cε̃2 in the k̃-instanton sector.
The second term is interpreted as an observable insertion to this theory. We
can further simplify it by introducing

Σω ≡ Ñ0 + · · ·+ Ñω−1 − P1K̃ω−1 + q̃2P1K̃, ω = 1, . . . , p.(83)

The second term in (82) is now given by

1

P1

p−1∑

ω=1

(Σω+1 − Σω)Σ
∗
ω.(84)

Similarly, the matter contribution in the measure (69) can be written as

p−1∑

ω,ω′,ω′′=0

M∗
ω′Sω

P1(1− q̃2)
qω

′′

2 δ
Zp

ω−ω′+ω′′ .(85)
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After defining M̃ω ≡Mωq
−ω
2 and M̃ ≡ q̃−1

2

∑p−1
ω=0 M̃ω, it can be re-expressed

as

M̃∗S̃

P̃12

+
1

P1

p−1∑

ω=0

M̃∗
ωΣω+1(86)

Note that the first term is the usual fundamental matter contribution to
the measure of the A1-theory on Cε1 × Cε̃2 in the k̃-instanton sector. The
second term is interpreted as an observable insertion to the theory.

We also introduce the auxiliary variables (zω) and q to express the frac-
tionalized couplings,

qω ≡
zω+1

zω
, ω = 0, . . . , p− 2,

qp−1 = q
z0

zp−1
,

(87)

so that

p−1∏

ω=0

qω = q.(88)

Note that q is weighted with the power k̃ in the measure and therefore is
the bulk coupling of the A1-theory on Cε1 × Cε̃2 .

As a result, the full partition function (70) can be written as

ZZp,c =
∑

Λ

q|Λ| Ic[Λ] ϵ

[
1

P̃12

(
−S̃S̃∗ + M̃∗S̃

)]
= ⟨Ic⟩ZA1

,(89)

where the surface defect is expressed as a chiral ring element

Ic[Λ] ≡
∑

λ∈ρ−1(Λ)

p−1∏

ω=0

z
kω−1−kω

ω ϵ(90)

×

[
1

P1

(
p−1∑

ω=1

(
(M̃ω−1 − Σω)

∗Σω +Σω+1Σ
∗
ω

)
+ M̃∗

p−1S̃

)]
.
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Let us focus on the zero-instanton sector, |Λ| = k̃ = 0. An element of the

inverse image λ =
(
λ(α)

)N
α=1
∈ ρ−1(∅) is of the form

λ(α) =

c(α) c(α)+1 . . . p−2

...
...

...
...

...
...

...

...
...

...

(91)

where the number in each box denotes its color. We may define the length
of the column of color ω to be dω+1,α (c(α) ≤ ω < p− 1). Note that kω−1 =∑

α dω,α. Consequently, we have

K̃ω =
∑

c(α)≤ω

eβãα

dω+1,α∑

i=1

qi−1
1 ,(92)

from which we simplify (83) as

Σω =
∑

c(α)<ω

eβãαq
dω,α

1 .(93)

Therefore, the partition function (90) is reduced to a sum over the non-
negative integers

{
dω,α ≥ 0

∣∣∣∣∣
ω = 1, . . . , p− 1, c(α) < ω

dω,α ≥ dω+1,α

}
,(94)

with the simplified Σω given above. This is precisely the partition function
of the gauged linear sigma model on the

⊕p−1
ω=1Hom(Eω, M̃ω−1)-bundle over

the partial flag variety Flag(l1, l2, . . . , N), with

lω ≡ |{α | c(α) < ω}|,(95)
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1816 S. Jeong and N. Nekrasov

under certain stability condition [30]. Here, Eω is the ω-th tautological bundle
with rk Eω = lω. The Kähler moduli are precisely {qω−1 = zω/zω−1 | ω =
1, . . . , p− 1}.

In the non-zero instanton sector of the four-dimensional theory, the
sigma model couples to the four-dimensional gauge theory through (90) in
a non-trivial way, generating a surface defect. In this way, the full partition
function (89) represents the 2d-4d coupled system.

The investigations in this paper mainly utilize the special case, the (N −
1, 1)-type Z2-orbifold. That is, we set p = 2 and assign the coloring function

cβ(α) ≡

{
1 for α = β

0 otherwise,
(96)

for some chosen β ∈ {1, . . . , N}. We also set M̃0, M̃1 = CN . For later use,
it is instructive to separate out the instanton part in the partition function
(89),

Z
Z2

β =
∑

Λ

q|Λ| Iβ [Λ] ϵ
[
Ñ∗K̃ + q−1

12 ÑK̃∗ − P ∗
12K̃K̃∗ − M̃∗K̃

]
,(97)

where the instanton part of the surface defect is

Iβ [Λ] =
∑

λ∈ρ−1(Λ)

zk0−k1 ϵ
[
(K̃0 − K̃1)(Ñ0 − P1K̃0 + q̃2P1K̃1)

∗(98)

+q1Ñ1(K̃0 − q̃2K̃1)
∗ − M̃∗

0 (K̃0 − q̃2K̃1)− P̃2M̃
∗
1 K̃1

]
.

In this special case, the target space of the two-dimensional sigma model
that generates the surface defect is the Hom(O(−1),CN )-bundle over PN−1,
which is exactly the same with that of the quiver surface defect in section
2.1. Thus it is natural to expect the two distinct types of surface defects are
actually related to each other. However, it is not so obvious from the explicit
expressions for their partition functions, (49) and (89), how they can really
be associated. In particular, the combinatorics that define these partition
functions are quite different; one involves a simple sum over non-negative
integers while the other involves the non-trivial mapping ρ between N -tuples
of Young diagrams. We come back to this problem in section 4.2.
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3. Non-perturbative Dyson-Schwinger equations

We investigate the non-perturbative Dyson-Schwinger equations satisfied by
the surface defect partition functions that we constructed in the previous
section. The primary object of this investigation is the qq-character, which
is a gauge theory observable formed as a certain Laurent polynomial of Y-
observables [27]. The most general qq-characters were constructed in [27, 29]
from the spiked instanton configurations, by integrating out the degrees of
freedom orthogonal to the four-dimensional gauge theory. The compactness
theorem for the spiked instanton moduli space proven in [28] provided the
crucial property of the qq-character, the holomorphicity of its expectation
value. Schematically,

〈
X(Y(x))

〉
=

1

Zinst

∑

λ

X(Y(x)[λ]) q|λ| µλ = T (x),(99)

where T (x) is a polynomial in x of certain degree. Therefore, the qq-character
generates an infinite number of constraints that the partition function sat-
isfies, from the expectation values of its non-regular parts

[x−n]

〈
X(Y(x))

〉
= 0, n ≥ 1,(100)

which we call the non-perturbative Dyson-Schwinger equations.
In this section, we present the fundamental qq-characters relevant to each

surface defect, and study the consequences of their non-perturbative Dyson-
Schwinger equations. For other analysis on the non-perturbative Dyson-
Schwinger equations, see [31, 33] in the context of the BPS/CFT corre-
spondence, and [32] in the context of the Bethe/gauge correspondence.

3.1. The quiver

As in section 2.1, we start with the A2-quiver gauge theory with the U(N)
gauge group. The fundamental qq-characters for this theory is given by [27]

X1(x) = Y1(x+ ε) + q1
Y0(x)Y2(x+ ε)

Y1(x)
+ q1q2

Y0(x)Y3(x+ ε)

Y2(x)
,(101a)

X2(x) = Y2(x+ ε) + q2
Y1(x)Y3(x+ ε)

Y2(x)
+ q1q2

Y0(x− ε)Y3(x+ ε)

Y1(x− ε)
,(101b)
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where Y0(x) ≡
∏N

α=1(x− a0,α) and Y3(x) ≡
∏N

α=1(x− a3,α) by definition.6

We construct the surface defect by imposing the constraints (27) or (57) for
the Coulomb moduli. In each case, the Y-observable of the first or the second
gauge node is simplified to

Y1(x)[λ
(1)(k1)] = Y0(x)

x− a0,β + ε2 − k1ε1
x− a0,β − k1ε1

, for (27)(102a)

Y2(x)[λ
(2)(k2)] = Y3(x+ ε)

x+ a3,β − ε1 − k2ε1
x+ a3,β − ε− k2ε1

, for (57)(102b)

It is now straightforward to plug (102) back into (101) and compute their
expectation values of the non-regular parts. However, it is convenient to
follow the systematic procedure established in [33]. First let us define

G(x; t) ≡
1

Y0(x)
∏2

i=0(1 + tzi)

3∑

l=0

z0z1 · · · zl−1 t
l Xl(x− ε(1− l))(103)

=

∞∑

n=0

G(−n)(t)

xn
,

where we have defined the parameters zi by qi ≡
zi

zi−1
(z−1 =∞ and z3 = 0

by definition), and t is an auxiliary parameter. The non-perturbative Dyson-
Schwinger equations imply

[x−n]
〈
Y0(x)G(x; t)

〉
= 0, n ≥ 1,(104)

for any value of t. In appendix B, we summarize the systematic approach
for computing G(−n)(t). We focus on presenting the results below.

3.1.1. N = 2. We observe that Y0(x) =
∏N

α (x− a0,α) is a polynomial of
degree N . Hence in the case of N = 2, the x−1-term in (104) is

0 =
〈
G(−3)(t)

〉
− (a0,1 + a0,2)

〈
G(−2)(t)

〉
+ a0,1a0,2

〈
G(−1)(t)

〉
.(105)

6Be cautious about the re-definition of parameters (59) when we deal with the
case (57). The expressions for Y0 and Y3 also change correspondingly.
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Recall that with the constraints (27) the Young diagram λ(1) for the first
gauge node is restricted to be single-columned. Thus we can simplify

〈 ∑

□∈λ(1)

c□

〉
= (a0,β − ε)

〈
k1

〉
+

ε1
2

〈
k1(k1 + 1)

〉
(106)

=
1

ZL
β

[(
a0,β − ε−

ε1
2

)
q1

∂

∂q1
+

ε1
2

(
q1

∂

∂q1

)2
]
ZL
β .

Using this relation, the residue of (105) at t = −z−1
0 can be written as the

following second order differential equation

0 =

[
ε21

(
z0

∂

∂z0

)2

(107)

− ε1

(
2∑

i=1

zi
zi − z0

A
(1)
i + 2a0,β − a0,1 − a0,2

)(
z0

∂

∂z0

)

+

2∑

i=1

zi
zi − z0

(
1

2

(
A

(2)
i +

(
A

(1)
1

)2)

− ε1ε2zi
∂

∂zi
− (a0,1 + a0,2 − a0,β)A

(1)
i

)

+
z1z2

(z1 − z0)(z2 − z0)

(
A

(1)
1 − ε

)
A

(1)
2

]
ZL
β ,

where we have introduced

A
(n)
i ≡

N∑

α=1

(
ani,α − (ai+1,α − ε)n

)
, i = 1, 2.(108)

Here N = 2 but we will also extend to the higher N by the same expression.
In particular, for n = 1 we can write

A
(1)
i = N(āi − āi+1 + ε),(109)

where we have defined āi ≡
1
N

∑N
α=1 ai,α. For our purpose of investigating

the relations with the opers, it is important to re-define the partition function
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as

Z̃A2
≡

2∏

i=0

zLi

i

∏

0≤i<j≤2

(
1−

zj
zi

)Tij

ZA2
,(110)

where we have multiplied the prefactors with the exponents,

Li ≡
(ai+1,1 − ai+1,2)

2 − (ai,1 − ai,2)
2

4ε1ε2

+
(āi − āi+1 + ε)(āi − āi+1)

ε1ε2
, i = 0, 1, 2,

Tij =
2(āj − āj+1 + ε)(āi − āi+1)

ε1ε2
, i, j = 0, 1, 2.

(111)

With the constraints (27) imposed on these prefactors, the modification
for the surface defect partition function ZL

β is simpler than the most generic
case. Let us set z0 = z, z1 = 1, and z2 = q by using the redundancy of overall
scaling of zi’s. Then we find the prefactors (with the overall constant that
we choose at our convenience) for ZL

β can be written as

(
−
1

z

)−rL,β

q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

(
1−

1

z

) 2ā0−2ā2+2ε1+ε2
2ε1

(112)

×
(
1−

q

z

) ā2−ā3+ε

ε1 (1− q)
2(ā2−ā3+ε)(2ā0−2ā2−ε2)

ε1ε2 ,

where we have defined

(rL,β)β=1,2 =

(
−a0,1 + a0,2 + ε+ ε2

2ε1
,
a0,1 − a0,2 + ε+ ε2

2ε1

)
,(113)

and

∆0 ≡
ε2 − (a3,1 − a3,2)

2

4ε1ε2

∆q ≡ −
(ā2 − ā3)(ā2 − ā3 + ε)

ε1ε2

∆1 ≡ −
(2ā0 − 2ā2 + 2ε1 + ε2)(2ā0 − 2ā2 − ε2)

4ε1ε2

∆∞ ≡
ε2 − (a0,1 − a0,2)

2

4ε1ε2
.

(114)
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For the re-defined partition function Z̃L
β , the differential equation (107) be-

comes

0 =

[
ε21∂

2 − ε1ε2
2z − 1

z(z − 1)
∂ + ε1ε2

q− 1

z(z − 1)(z − q)
q
∂

∂q
(115)

+ ε1ε2

(
∆0

z2
+

∆1

(z − 1)2
+

∆q

(z − q)2

−
−2ε+ε2

4ε1
+∆1 +∆q +∆0 −∆∞

z(z − 1)

)]
Z̃L
β .

We can view this differential equation as the second-order differential op-

erator
̂̂
D2 annihilating the modified partition function Z̃L

β . Note that the

operator
̂̂
D2 is independent of β, so that each choice of β ∈ {1, 2} provides

a solution to
̂̂
D2. We may regard

̂̂
D2 as the quantization of the SL(2)-oper

D̂2 for the four-punctured sphere P1\{0, q, 1,∞}, as we now argue.
Under the NS limit (ε1 ̸= 0, ε2 → 0), the surface defect partition func-

tion (49) is dominated by the limit shape [16]. Viewed as the expectation
value of ILβ in the A1-theory, the surface defect partition function gets the
singular contribution, or the effective twisted superpotential, from the bulk
A1-theory, while the observable ILβ only contributes regular terms. There-
fore, we arrive at the following asymptotics of the partition function

Z̃L
β (a2 ≡ a, z, q) = e

W̃(a,q)

ε2 (χβ(a, z, q) +O(ε2)) ,(116)

where we have omitted the subscript for the Coulomb moduli a2 since it
precisely becomes the Coulomb moduli a of the A1-theory. W̃ is a part of
the effective twisted superpotential of the underlying A1-gauge theory,

W̃ ≡ lim
ε2→0

ε2 log Z̃
L
β(117)

= W̃classical + W̃inst + W̃extra,
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where we have defined

W̃classical ≡ −
(a1 − a2)

2

4ε1
log q(118a)

W̃inst ≡ lim
ε2→0

ε2 logZ
inst
A1

(118b)

W̃extra ≡ ε1

(
1

4
− δq − δ0

)
log q(118c)

+
2(ā0 − ā)(ā− ā3 + ε1)

ε1
log(1− q),

where the instanton partition function Zinst
A1

for the A1-theory is given by

(51). In particular, W̃inst is fully determined by the Young diagram expan-
sions reviewed in appendix A. Also, we have defined the limit,

ε2∆i
ε2→0
−−−→ ε1δi, i = 0, q, 1,∞.(119)

We have emphasized that (117) is only a part of the full effective twisted
superpotential, since we are missing the 1-loop term. This is because the
1-loop term is independent of the gauge coupling and therefore ignorant of
the differential equation that the partition function satisfies. The missing
1-loop part will re-combine in section 6.

Thus, under the NS limit the equation for the differential operator
̂̂
D2

becomes

0 =

[
∂2 +

δ0
z2

+
δ1

(z − 1)2
+

δq
(z − q)2

(120)

−
δ1 + δq + δ0 − δ∞

z(z − 1)
+

H

z(z − 1)(z − q)

]
χβ ,

which is exactly the equation for the Heun’s oper, the Fuchsian differential
operator D̂2 of degree 2 with fixed conjugacy class of monodromy at each
puncture of P1\{0, q, 1,∞}. The variety O2[P

1\{0, q, 1,∞}] of these opers is
spanned by the accessory parameter,

H ≡ −q(1− q)
1

ε1

∂W̃

∂q
(121)

= (1− q)

(
1

2ε21
lim
ε2→0

〈
O2

〉
A1

−
1

4
+ δq + δ0

)

+
2(ā0 − ā)(ā− ā3 + ε1)

ε21
q.
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All the terms are just some constants except the expectation value of chi-
ral observable O2 = Trϕ2

2. Thus, a holomorphic coordinate on the variety
O2[P

1\{0, q, 1,∞}] of opers is provided by the expectation value of the chi-
ral observable O2 in the limit ε2 → 0. The varietyO2[P

1\{0, q, 1,∞}] of opers
is a quantization of the Coulomb moduli space of T [A1,P

1\{0, q, 1,∞}] in

this sense. The expectation value limε2→0

〈
O2

〉
A1

is also identified with the

off-shell spectrum of the quantum Hitchin system on P1\{0, q, 1,∞} through
the Bethe/gauge correspondence. Hence, we observe that the relation (121)
establishes the connection between the accessory parameter H of D̂2 and
the off-shell spectrum of quantum Hitchin Hamiltonian. A proper on-shell
condition is expected to be introduced by a ωK-Lagrangian brane which
intersects with O2[P

1\{0, q, 1,∞}] at isolated points. As we argued earlier,
the holomorphic coordinate, i.e., the expectation value, (121) evaluated at
these points gives the on-shell spectrum of the quantum Hitchin system.

Remarks.

• It was checked in [66, 67] that the series expansion (121) for the acces-
sory parameter H matches with the direct computation in which H is
determined by fixing the monodromy of the oper D̂2 along the A-cycle
(see Figure 5), up to some low orders in the gauge coupling q. The
derivation above is purely gauge theoretical and therefore guarantees
the validity to all orders in q.

• The series expansion for the instanton partition function is valid when
0 < |q1|, |q2| < 1. This implies that the solutions Z̃L

β for the operator
̂̂
D2 are in the convergence domain 0 < |q| < 1 < |z|.

• The solution χβ for the oper D̂2 can be represented as a sum of the
Baxter Q-functions, by using (56) and taking the limit ε2 → 0. This ex-
pression reflects that the equation for the oper is the Fourier transform
of the Baxter TQ-equation.

• The fact that (115) coincides with well-known null-vector decoupling
equation in two-dimensional CFT [73], see also [68–70], confirms the
paradigm of the BPS/CFT correspondence [19] at the example of the
AGT correspondence [40].

Similarly, it is not too difficult to derive a closed differential equation
for ZR

β . Again, we re-define partition function as in (110) with the prefac-
tors (111), yet with the constraints (57). Also we need the re-definition of
parameters (59) for the prefactors this time. By setting z0 = 1, z1 = q, and
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z2 = z, the relevant prefactor for ZR
β is

(
−
q

z

)−rR,β

q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′

q
+

2ε+ε2
4ε1(122)

× (1− q)
(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1−

z

q

) 2ā1−2ā3+2ε1+ε2
2ε1

where we have defined

(rR,β)β=1,2 ≡

(
−a3,1 + a3,2 + ε

2ε1
,
a3,1 − a3,2 + ε

2ε1

)
,(123)

and

∆′
q ≡ −

(2ā1 − 2ā3 − ε2)(2ā1 − 2ā3 + 2ε1 + ε2)

4ε1ε2

∆′
1 ≡ −

(ā0 − ā1)(ā0 − ā1 + ε)

ε1ε2
.

(124)

Then the differential equation satisfied by the modified partition function
Z̃R
β is

0 =

[
ε21∂

2 − ε1ε2
2z − 1

z(z − 1)
∂ + ε1ε2

q− 1

z(z − 1)(z − q)
q
∂

∂q
(125)

+ ε1ε2

(
∆0

z2
+

∆′
1

(z − 1)2
+

∆′
q

(z − q)2

−
−2ε+ε2

4ε1
+∆′

1 +∆′
q +∆0 −∆∞

z(z − 1)

)]
Z̃R
β .

Note that this differential equation is precisely the equation (115) for
̂̂
D2,

except ∆1 → ∆′
1,∆q → ∆′

q. To equate these quantities to get the same equa-
tion, we have to clarify how the Coulomb moduli of the two theories are
associated. This will be the subject of section 4.2.2.

Remarks.

• This time, 0 < |q1|, |q2| < 1 implies the convergence domain 0 < |z| <
|q| < 1. Thus the domains for the solutions Z̃L

β and Z̃R
β are disjoint.
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3.1.2. N = 3. Since Y0(x) is now a polynomial of degree 3, the x−1-term
of (104) can be written as

0 =
〈
G(−4)(t)

〉
−

3∑

α=1

a0,α

〈
G(−3)(t)

〉
(126)

+
∑

1≤α<β≤3

a0,αa0,β

〈
G(−2)(t)

〉
−

3∏

α=1

a0,α

〈
G(−1)(t)

〉
.

In addition to (106), we utilize the following relation from the single-
columnedness of λ(1)

〈 ∑

□∈λ(1)

c2
□

〉
= (a0,β − ε)2

〈
k1

〉
+ ε1(a0,β − ε)

〈
k1(k1 + 1)

〉
(127)

+
ε21
6

〈
k1(k1 + 1)(2k1 + 1)

〉

=
1

ZL
β

[
ε21
3

(
q1

∂

∂q1

)3

+

(
ε21
2

+ ε1(a0,β − ε)

)(
q1

∂

∂q1

)2

+

(
ε21
6

+ (a0,β − ε)(a0,β − ε2)

)(
q1

∂

∂q1

)]
ZL
β .

Using the relations (106) and (127), the residue of (126) at t = −z−1
0 can be

written as the following third order differential equation

0 =

[
−ε31

(
z0

∂

∂z0

)3

+ ε21

(
3a0,β −

3∑

α=1

a0,α − ε2
z1

z1 − z0

(128)

+

2∑

i=1

zi
zi − z0

A
(1)
i

)(
z0

∂

∂z0

)2

− ε1

(∏

α ̸=β

(a0,β − a0,α)

+
z1z2

(z1 − z0)(z2 − z0)
A

(1)
2 (A

(1)
1 − ε)− ε2ε (2a0,β − ε− ε1)

z1
z1 − z0

+

2∑

i=1

zi
zi − z0

((
2a0,β −

3∑

α=1

a0,α

)
A

(1)
i − ε1ε2zi

∂

∂zi

+
1

2

(
A

(2)
i +

(
A

(1)
i

)2)
))(

z0
∂

∂z0

)
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+

2∑

i=1

zi
zi − z0

(
1

6
(A

(1)
i )3 +

1

3
A

(3)
i +

1

2
A

(1)
i A

(2)
i

−
1

2

(
A

(2)
i +

(
A

(1)
i

)2)
(

3∑

α=1

a0,α − a0,β

)

+ ε1ε2

(
3∑

α=1

a0,α − a0,β −A
(1)
i

)(
zi

∂

∂zi

)

+
∏

α ̸=β

a0,α A
(1)
i − ε1ε2ε z2∂2

)

− 2ε1ε2
z0(z1 − z2)

(z0 − z1)(z0 − z2)

〈 ∑

□∈λ(2)

c□

〉

A2

+
z1z2

(z1 − z0)(z2 − z0)

(
1

2

(
A

(1)
1 − 2ε

)(
A

(2)
2 +

(
A

(1)
2

)2)

+
1

2
A

(1)
2

(
A

(2)
1 +

(
A

(1)
1

)2)
−A

(1)
2

(
A

(1)
1 − ε

)( 3∑

α=1

a0,α − a0,β + ε

)

− ε1ε2

(
A

(1)
2 z1

∂

∂z1
+ (A

(1)
1 − 2ε)z2

∂

∂z2

))]
ZL
β ,

where we have used (108). We modify the partition function by multiplying
the prefactors,

Z̃3 ≡

2∏

i=0

zLi

i

∏

0≤i<j≤2

(
1−

zj
zi

)Tij

Z3,(129)

where

Li ≡
(ai+1,1 − ai+1,2)

2 + (ai+1,1 − ai+1,3)
2 − (ai+1,1 − ai+1,2)(ai+1,1 − ai+1,3)

3ε1ε2

−
(ai,1 − ai,2)

2 + (ai,1 − ai,3)
2 − (ai,1 − ai,2)(ai,1 − ai,3)

3ε1ε2

+
3(āi − āi+1 + ε)(āi − āi+1)

ε1ε2
, i = 0, 1, 2,

Tij ≡
3(āj − āj+1 + ε)(āi − āi+1)

ε1ε2
, i, j = 0, 1, 2.

(130)



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1827 — #39
✐

✐

✐

✐

✐

✐

Opers, surface defects, and Yang-Yang functional 1827

With the constraints (27), the prefactors simplify. We also set z0 = z, z1 = 1,
and z2 = q. Then the prefactor for ZL

β becomes

(
−
1

z

)−rL,β

q
−∆q−∆0+

1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)

3

)(131)

×

(
1−

1

z

) 3ā0−3ā2+3ε−ε2
3ε1

(
1−

q

z

) ā2−ā3+ε

ε1 (1− q)
(ā2−ā3+ε)(3ā−3ā2−ε2)

ε1ε2 ,

where the exponents are

(rL,β)
3
β=1 ≡

(
−3a0,β +

∑3
γ=1 a0,γ + 3ε1 + 5ε2

3ε1

)3

β=1

,(132)

and

∆0 ≡
1

ε1ε2

(
ε2 −

(a3,1 − a3,2)
2 + (a3,1 − a3,3)

2 − (a3,1 − a3,2)(a3,1 − a3,3)

3

)

∆q ≡ −
3(ā2 − ā3)(ā2 − ā3 + ε)

ε1ε2

∆1 ≡ −
(3ā0 − 3ā2 − ε2)(3ā0 − 3ā2 + 3ε− ε2)

3ε1ε2

∆∞ ≡
1

ε1ε2

(
ε2 −

(a0,1 − a0,2)
2 + (a0,1 − a0,3)

2 − (a0,1 − a0,2)(a0,1 − a0,3)

3

)
.

(133)

It is also convenient to define the quantities

Λ0 ≡
(2a3,1 − a3,2 − a3,3)(−a3,1 + 2a3,2 − a3,3)(−a3,1 − a3,2 + 2a3,3)

27ε31

Λq ≡
(ā2 − ā3)(ā2 − ā3 + ε)(2ā2 − 2ā3 + ε)

ε31

Λ1 ≡
1

ε31

(
ā0 − ā2 −

ε2
3

)(
ā0 − ā2 + ε−

ε2
3

)(
2ā0 − 2ā2 + ε−

2ε2
3

)

Λ∞ ≡
(2a0,1 − a0,2 − a0,3)(−a0,1 + 2a0,2 − a0,3)(−a0,1 − a0,2 + 2a0,3)

27ε31
.

(134)
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Then under the modification, the differential equation (128) defines an op-

erator
̂̂
D3 annihilating the partition function Z̃L

β ,

0 =

[
ε31∂

3 − ε21ε2
5z − 3

z(z − 1)
∂2 + ε1t̂2(z, q)∂ + t̂3(z, q)

]
Z̃L
β ,(135)

where we have defined the meromorphic operators,

t̂2(z, q) ≡ ε1ε2

(
∆0

z2
+

∆q

(z − q)2
+

∆1

(z − 1)2
(136a)

+
∆∞ −∆1 −∆q −∆0 +

3ε+ε2
3ε1

z(z − 1)
+

Ĥ1

z(z − q)(z − 1)

)

+ ε2

(
3ε1 + 2ε2

z2
−

2(ā2 − ā3 + ε)

(z − q)2
+

ā0 − ā2 + ε− ε2
3

(z − 1)2

−
3ā0 − 9ā2 + 6ā3 − 16ε2

3z(z − 1)
−

2(1− q)(ā2 − ā3 + ε)

z(z − q)(z − 1)

)

t̂3(z, q) ≡
ε31Λ0

z3
+

ε31Λq

(z − q)3
+

ε31Λ1

(z − 1)3
(136b)

+
ε31(Λ∞ − Λ0 − Λq − Λ1 −

ε2(3ε+ε2)(3ε+2ε2)
27ε31

)

z(z − q)(z − 1)

+
(1− q)(6ā0 − 6ā2 + 3ε1 + ε2)

6z(z − q)(z − 1)2
ε1ε2

×

(
−∆∞ +∆0 +∆q +∆1 −

3ε+ ε2
3ε1

)

−
1

2z(z − q)(z − 1)
ε1ε2

×

(
2ā2 − 2ā3 + ε

z − q
+

6ā0 − 6ā2 + 3ε1 + ε2
3(z − 1)

)
Ĥ1

+
Ĥ2

z2(z − q)(z − 1)
+

ε1
2
∂
(
t̂2(z, q)

)
+ ε2 (· · · ) .

We have omitted the last term in t̂3(z, q) which is rather lengthy but is
constant and subleading in ε2. This term decouples in the limit ε2 → 0.
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Also, we have defined

Ĥ1 ≡ −q(1− q)
∂

∂q
(137a)

Ĥ2 ≡ −(1− q)

(
1

3

〈
O3

〉
A2

(137b)

+ ε1ε2

(
3ā2 − ā3 +

3ε1 + 2ε2
2

)
q
∂

∂q
+ · · ·

)

+ q

(
ε1ε2(3ā0 − 6ā2 + 3ā3 − 2ε− ε2)q

∂

∂q
+ · · ·

)

+
q2

1− q
(3ā0 − 6ā2 + 3ā3 − 2ε− ε2)

× (3ā0 − 3ā2 − ε2)(ā2 − ā3 + ε).

It is not very instructive to write down the full lengthy expression of Ĥ2

here, but we emphasize that it is fully expressed in gauge theoretical terms.
In particular, it includes the expectation value of the chiral observable

O3 = Trϕ3
2 =

3∑

α=1

a32,α − 3ε1ε2εk2 − 6ε1ε2
∑

□∈λ(2)

c□(138)

of the A2-theory. We present the full expression for Ĥ2 in the appendix C.
In the NS limit, the partition function exhibits the asymptotics:

Z̃L
β (a2 ≡ a, z, q) = e

W̃(a,q)

ε2 (χβ(a, z, q) +O(ε2)) ,(139)

where W̃ is a part of the effective twisted superpotential of the underlying
A1-gauge theory,

W̃ ≡ lim
ε2→0

ε2 log Z̃
L
β(140)

= W̃classical + W̃inst + W̃extra.
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Each piece is given as

W̃classical ≡ −
(a1 − a2)

2 + (a1 − a3)
2 − (a1 − a2)(a1 − a3)

3ε1
log q(141a)

W̃inst ≡ lim
ε2→0

ε2 logZ
inst
A1

(141b)

W̃extra ≡ ε1 (1− δq − δ0) log q+
3(ā− ā3 + ε)(ā0 − ā)

ε1
log(1− q),(141c)

where W̃inst is the is fully determined by the Young diagram expansions.
Also we have defined the limit,

ε2∆i
ε2→0
−−−→ ε1δi, i = 0, q, 1,∞.(142)

It is convenient to define also

Λi
ε2→0
−−−→ λi, i = 0, q, 1,∞.(143)

It is clear that δi and λi are written in gauge theoretical terms by their

definitions. Now, the equation (135) for the operator
̂̂
D3 becomes

0 =
[
∂3 + t2(z)∂ + t3(z)

]
χβ ,(144)

where the meromorphic functions ti(z) are obtained by taking the limit to
the meromorphic operators t̂i(z, q),

t2(z) ≡
δ0
z2

+
δq

(z − q)2
+

δ1
(z − 1)2

+
δ∞ − δ1 − δq − δ0

z(z − 1)
(145a)

+
H1

z(z − q)(z − 1)
,

t3(z) ≡
λ0

z3
+

λq

(z − q)3
+

λ1

(z − 1)3
+

λ∞ − λ0 − λq − λ1

z(z − q)(z − 1)
(145b)

−
H1

2z(z − q)(z − 1)

1

ε1

(
2ā− 2ā3 + ε1

z − q
+

2ā0 − 2ā+ ε1
z − 1

)

+
H2

z2(z − q)(z − 1)

+
(1− q)(2ā0 − 2ā2 + ε1)

2z(z − q)(z − 1)

1

ε1
(−δ∞ + δ0 + δq + δ1)

+
1

2
t′2(z).
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This is exactly the equation for the SL(3)-oper D̂3 on the four-punctured
sphere P1\{0, q, 1,∞}.7 In particular, the monodromies of D̂3 around
the punctures exhibit the desired semi-simplicity and degeneracy of the
eigenvalues, as verified by the analytic properties of the solutions χ ob-
tained from the surface defect partition functions (see section 6). The variety
O3[P

1\{0, q, 1,∞}] of such opers is parametrized by the accessory parame-
ters,

H1 ≡ −q(1− q)
1

ε1

∂W̃

∂q
,(146a)

= (1− q)

(
1

2ε21
lim
ε2→0

〈
O2

〉
A1

− 1 + δq + δ0

)

+
3(ā− ā3 + ε1)(ā0 − ā)

ε21
q

H2 ≡ −(1− q)

(
1

3ε31
lim
ε2→0

〈
O3

〉
A1

(146b)

+
1

ε21

(
3ā− ā3 +

3ε1
2

)
q
∂W̃

∂q
+ · · ·

)

+ q

(
1

ε21
(3ā0 − 6ā+ 3ā3 − 2ε1)q

∂W̃

∂q
+ · · ·

)

+
q2

1− q

3(ā0 − ā)(ā− ā3 + ε1)(3ā0 − 6ā+ 3ā3 − 2ε1)

ε31
.

We present the full expression for H2 in appendix C. Notice that the acces-
sory parameters are expanded as series in q whose coefficients are completely
determined in gauge theoretical terms. In particular, the series begin with

H1 =
(a1 − a2)

2 + (a1 − a3)
2 − (a1 − a2)(a1 − a3)

3ε21
− 1 + δq + δ0 +O(q)

H2 = λ0 −
λq

2
−

(2a1 − a2 − a3)(−a1 + 2a2 − a3)(−a1 − a2 + 2a3)

27ε31

+
2ā− 2ā3 + ε1

2ε1

×

(
δ0 − 1 +

(a1 − a2)
2 + (a1 − a3)

2 − (a1 − a2)(a1 − a3)

3ε21

)

+O(q).

(147)

7The equation (144) matches exactly the one for the generalized Heun oper in
[65], where it is derived from the constraints for the minimal punctures.
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Thus holomorphic coordinates on the variety O3[P
1\{0, q, 1,∞}] of opers

are given by the expectation values of the chiral observables in the A1-
theory, O2 and O3

8, in the limit ε2 → 0. Hence we observe that the variety
O3[P

1\{0, q, 1,∞}] of opers gives a quantization of the Coulomb moduli
space of T [A2,P

1\{0, q, 1,∞}]. The Bethe/gauge correspondence identifies
the NS limits of the expectation values of O2 and O3 with the off-shell spec-
tra of the Hamiltonians of the quantum Hitchin system on P1\{0, q, 1,∞}.
Thus, the relations (146) establish the connection between the holomorphic
functions on the variety O3[P

1\{0, q, 1,∞}] of opers and the off-shell spectra
of the quantum Hitchin Hamiltonians.

Remarks.

• The gauge theoretical derivation of the series expansions (146) for the
accessory parameters guarantee their validity to all orders in the gauge
coupling q. It would be nice to mimic the procedure in [66, 67] and
check the series expansions by directly computing the monodromy of
the oper D̂3 (144) along the A-cycle on P1\{0, q, 1,∞} (see Figure 5).

• From the point of view of the AGT correspondence [40], the expecta-
tion value of the higher chiral observable O3 corresponds to the confor-
mal block with a W-descendant (we briefly mention this issue in sec-
tion 7). It is not very obvious how we should relate the semi-classical
conformal block with a W-descendant to the off-shell spectrum of the
higher quantum Hitchin Hamiltonian. In the gauge theoretical per-
spective, the Bethe/gauge correspondence immediately establishes the
relation between the expectation value of O3 and the off-shell spec-
trum of the higher quantum Hitchin Hamiltonian. Thus, the relation
between the accessory parameter H2 and the off-shell spectrum of the
higher quantum Hitchin Hamiltonian is also revealed through (146b).

Similarly, we can start by imposing other constraints, e.g. (57) on the
A2-theory. Hence we consider the partition function ZR

β (60). Again, we
modify the partition function as (129) with the prefactors (130), yet this

8Here, we are using the fact that

lim
ε2→0

〈
O3

〉
A2

= lim
ε2→0

〈
ILβ O3

〉
A1〈

ILβ

〉
A1

= lim
ε2→0

〈
O3

〉
A1

,

since the expectation value is dominated by the limit shape when ε2 → 0.
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time under the constraint (57) and the re-definition (59). The final form of
the prefactor is

(
−
q

z

)−rR,β

q
1

ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)

3

)
−∆′

q
−∆0+

3ε+ε2
3ε1

× (1− q)
(ā0−ā1+ε)(3ā1−3ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1−

z

q

) 3ā1−3ā3+3ε−ε2
3ε1

,

(148)

where we have defined

(rR,β)
3
β=1 ≡

(
−3a3,β +

∑3
γ=1 a3,γ + 3ε

3ε1

)3

β=1

(149)

and

∆′
q ≡ −

(3ā1 − 3ā3 − ε2)(3ā1 − 3ā3 + 3ε− ε2)

3ε1ε2

∆′
1 ≡ −

(ā0 − ā1)(ā0 − ā1 + ε)

ε1ε2
.

(150)

Let us also define

Λ′
q ≡

(3ā1 − 3ā3 + 3ε− ε2)(3ā1 − 3ā3 − ε2)(6ā1 − 6ā3 − 3ε+ 2ε2)

27ε31

Λ′
1 ≡

(ā0 − ā1)(ā0 − ā1 + ε)(2ā0 − 2ā1 + ε)

ε31
.

(151)

Then the modified partition function Z̃R
β satisfies the equation of the form

(135), after substituting ∆q,1 → ∆′
q,1 and Λq,1 → Λ′

q,1.

3.2. The (N − 1, 1)-type Z2-orbifold

We construct the surface defect on theA1-theory by placing it on Zp-orbifold.
Due to the orbifolding, the bulk Y-observable fractionalizes into p observ-
ables,

Yω(x)[λ] =
∏

α∈c−1(ω)

(x− aα)
∏

□∈Kω

x− c□ − ε1
x− c□

∏

□∈Kω−1

x− c□ − ε2
x− c□ − ε

.(152)



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1834 — #46
✐

✐

✐

✐

✐

✐

1834 S. Jeong and N. Nekrasov

The fundamental refined qq-characters are given by [29]

Xω(x) = Yω+1(x+ ε) + qω
Pω(x)

Yω(x)
.(153)

It is often possible to derive a useful equation for the partition function
for specific p and the coloring function c from the non-perturbative Dyson-
Schwinger equations of (153). We now describe how this is be done for the
(N − 1, 1)-type Z2-orbifold. The details of the computation for the non-
regular parts of Xω is given in the appendix D. Below we focus on the
results.

3.2.1. N = 2. For N = 2, we consider (1, 1)-type Z2-orbifold. This case
is special since the coloring function is one-to-one. Let us define

c−1(1) = β, c−1(0) = β̄,(154)

without any loss of generality. Each of the non-perturbative Dyson-Schwinger
equations

[x−1]
〈
X0(x)

〉
= [x−1]

〈
X1(x)

〉
= 0(155)

involves the unwanted term

〈 ∑

□∈K0

c□ −
∑

□∈K1

c□

〉
,(156)

but they can be combined to cancel this term and to yield the following
closed equation
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0 =

[
ε21(z∂)

2 − ε1

{
−2ãβ̄ +

∑

α=1,2

m̃+,α −
q

z − q

∑

α=1,2

(ãα − m̃−,α)(157)

+
1

1− z

∑

α=1,2

(ãα − m̃+,α)

}
(z∂)

+ ε1ε̃2
z(1− q)

(1− z)(z − q)
q
∂

∂q
+

1

2

(
ãβ̄ −

∑

α=1,2

m̃+,α

)2

+
1

2
ã2
β̄
−

1

2

∑

α=1,2

m̃2
+,α

−
1

2(1− z)

[(
ãβ̄ −

∑

α=1,2

m̃+,α

)2

+ ã2
β̄
−
∑

α=1,2

m̃2
+,α

]

−
q

2(z − q)

[(
ãβ −

∑

α=1,2

m̃−,α −
ε̃2
2

)2

+

(
ãβ +

ε̃2
2

)2

−
∑

α=1,2

(
m̃−,α +

ε̃2
2

)2
]]

Z
Z2

β ,

where we have re-defined the couplings as in (87), q0 = −z and q1 = −
q
z

(up to the sign which is not very important). Now, let us also re-define the
parameters as

ãα = a2,α, m̃+,α = a0,α, m̃−,α = a3,α − ε1 − ε̃2, α = 1, 2.(158)

Then we decouple multiplicative prefactors

Z̃
Z2

β ≡ −

(
−
1

z

)−r
Z2
β

q
ε2−(a2,1−a2,2)2

4ε1ε2
−∆0−∆q(1− z)

ε(2ā0−2ā2−ε2)

2ε1ε2(159)

× (1− q)
(2ā0−2ā2−ε2)(ā2−ā3+ε)

ε1ε2

(
1−

q

z

) ā2−ā3+ε

ε1
Z
Z2

β ,

where

(
rZ2

β

)
β=1,2

≡

(
−a2,1 + a2,2 + ε

2ε1
,
a2,1 − a2,2 + ε

2ε1

)
,(160)
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and the other exponents have been defined in the previous section. The
differential equation (157) then becomes

0 =

[
ε21∂

2 − ε1ε2
2z − 1

z(z − 1)
∂ + ε1ε2

q− 1

z(z − 1)(z − q)
q
∂

∂q
(161)

+ ε1ε2

(
∆0

z2
+

∆1

(z − 1)2
+

∆q

(z − q)2

−
−2ε+ε2

4ε1
+∆1 +∆q +∆0 −∆∞

z(z − 1)

)]
Z̃
Z2

β ,

which is precisely the differential equation (115) for
̂̂
D2.

Remarks.

• The convergence domain for the partition function is 0 < |q0|, |q1| < 1.
This implies the solutions Z̃Z2

β are in yet another intermediate domain
0 < |q| < |z| < 1.

3.2.2. N = 3. For N = 3, the computation is more involved. First, re-
call that the (2, 1)-type Z2-orbifold surface defect partition function (97) is
split into the underlying A1-theory part and the surface defect part. The
fixed points of the instanton moduli space of the underlying A1-theory are
enumerated by the Young diagrams Λ (78), whose weights are encoded in
the space K̃ = K̃1 (77). Thus the observables in the underlying A1-theory
descends from the observables in the space K1 of the original theory on the
Z2-orbifold . In particular, we have

∑

□∈K1

c□ =
∑

□∈Λ

c̃□ +
1

2
ε̃2k1,(162)

where

c̃□ ≡ ãα + (i− 1)ε1 + (j − 1)ε̃2, for □(i,j) ∈ Λ(α).(163)

We will reduce the non-perturbative Dyson-Schwinger equations so that the
final equation only involves the expectation value of this observable, since it
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comprises the chiral observable

O3[Λ] =

3∑

α=1

ã3α − 3ε1ε̃2(ε1 + ε̃2)k1 − 6ε1ε̃2
∑

□∈Λ

c̃□,(164)

of the underlying A1-theory. The non-perturbative Dyson-Schwinger equa-
tions that we utilize are

[x−1]
〈
X1(x)

〉
= [x−1]

〈
X0(x)

〉
= [x−2]

〈
X0(x)

〉
= 0.(165)

The second equation can be used to cancel the unwanted terms

〈 ∑

□∈K0

c□

〉
,

〈
(k0 − k1)


 ∑

□∈K0

c□ −
∑

□∈K1

c□



〉
,(166)

while the first and the third equations can be combined to cancel the un-
wanted term

〈 ∑

□∈K0

c2
□
−
∑

□∈K1

c2
□

〉
,(167)

The final equation only involves the partition function itself and the expec-

tation value
〈∑

□∈Λ c̃□

〉
:

0 =


− ε31(z∂)

3 + ε21

(
3ãβ − 3¯̃a+

3q

z − q

(
−¯̃a+ ¯̃m−

)
(168)

−
6z

z − 1

(
¯̃a− ¯̃m+

))
(z∂)2

− ε1



−

z

1− z

((∑

β̄ ̸=β

ãβ̄ −

3∑

α=1

m̃+,α

)2

+
∑

β̄ ̸=β

ã2
β̄
−

3∑

α=1

m̃2
+,α

)

−
6ε1
(
ā− ¯̃m+

)
z

(1− z)2
+

ε̃2
2

(
ε1 +

ε̃2
2

)
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+

∏
β̄ ̸=β

(
ε1 +

ε̃2
2 − ãβ̄

)
z

z − q
+

ε1(ε1 − ãβ)

2(1− z)
−

z(ε1 + ε̃2)
(
2ε1 + ε̃2 −

∑
β̄ ̸=β ãβ̄

)

2(z − q)

−
q

2(z − q)

(
(
ãβ − 3 ¯̃m− − ε̃2

)2
+ (ε1 + ε̃2)(ãβ − 3 ¯̃m− − ε̃2)

+

(
ãβ +

ε̃2
2

)2

−

3∑

α=1

(
m̃−,α +

ε̃2
2

)2
)

+
z

2(1− z)

((∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+

)2

+
∑

β̄ ̸=β

ã2
β̄

−

3∑

α=1

m̃2
+,α + ε1

(∑

β̄ ̸=β

ãβ̄ −

3∑

α=1

m̃+,α

))

− ε1ε̃2
z(1− q)

(z − 1)(z − q)
q
∂

∂q
+

(∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+ +
ε1
2

+
3(¯̃a− ¯̃m+)

z − 1

)

×

(
2
∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+ +
3(¯̃a− ¯̃m+) + ε1

z − 1
+

3q(¯̃a− ¯̃m−)

z − q

)
 (z∂)

+



−

2ε1z

(1− z)2
+

1 + z

2(1− z)

(
−2
∑

β̄ ̸=β

ãβ̄ + 3 ¯̃m+ −
3(¯̃a− ¯̃m+) + ε1

z − 1
−

3q(¯̃a− ¯̃m−)

z − q

)

− ε1
z(1− q)

(1− z)(z − q)
− ε1 −

ε̃2
2

+
ε1 − ãβ
2(1− z)

+
z(2ε1 + ε̃2 −

∑
β̄ ̸=β ãβ̄)

2(z − q)

+
z
(
−
∑

β̄ ̸=β ãβ̄ + 3 ¯̃m+

)

2(z − 1)
+

(ãβ − ε̃2 − 3 ¯̃m−)q

2(z − q)



 ε1ε̃2q

∂

∂q

+
z(1− q)

(1− z)(z − q)

(
2ε1ε̃2

〈∑

□∈Λ

c̃□

〉
+ ε1ε̃2(ε1 + ε̃2)q

∂

∂q

)

+
zε1

(1− z)2

((∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+

)2

+
∑

β̄ ̸=β

ã2
β̄
−

3∑

α=1

m̃2
+,α

)

+
z

2(1− z)

((∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+

)2

+
∑

β̄ ̸=β

ã2
β̄
−

3∑

α=1

m̃2
+,α

)

×

(
2
∑

β̄ ̸=β

ãβ̄ − 3 ¯̃m+ +
3(¯̃a− ¯̃m+) + ε1

z − 1
+

3q(¯̃a− ¯̃m−)

z − q

)
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−
q

z − q

((
ãβ − 3 ¯̃m− − ε̃2

)3

6
+

(
ãβ + ε̃2

2

)3
−
∑3

α=1

(
m̃−,α + ε̃2

2

)3

3

+

(
ãβ − 3 ¯̃m− − ε̃2

)((
ãβ + ε̃2

2

)2
−
∑3

α=1

(
m̃−,α + ε̃2

2

)2)

2

)

−
z

1− z

((∑
β̄ ̸=β ãβ̄ − 3 ¯̃m+

)3

6
+

∑
β̄ ̸=β ã

3
β̄
−
∑3

α=1 m̃
3
+,α

3

+

(∑
β̄ ̸=β ãβ̄ − 3 ¯̃m+

)(∑
β̄ ̸=β ã

2
β̄
−
∑3

α=1 m̃
2
+,α

)

2

)
ZZ2

β ,

where we have re-defined the couplings as q0 = −z and q1 = −
q
z
. Let us also

re-define the other parameters as

ãα = a2,α, m̃+,α = a0,α, m̃−,α = a3,α − ε1 − ε̃2, α = 1, 2, 3.(169)

and modify the partition function by the prefactors,

Z̃
Z2

β ≡ −

(
−
1

z

)−r
Z2
β

q
1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)

3

)
−∆q−∆0

× (1− z)
−

2(3ā0−3ā2−ε2)

3ε1 (1− q)
(3ā0−3ā2−ε2)(ā2−ā3+ε)

ε1ε2

(
1−

q

z

) ā2−ā3+ε

ε1
Z
Z2

β .

(170)

Here, we have defined the critical exponent for z as

(
rZ2

β

)3
β=1

=

(
−3a2,β +

∑3
γ=1 a2,γ + 3ε

3ε1

)3

β=1

.(171)

Then the equation satisfied by the modified partition function Z̃
Z2

β becomes
of the form (135).

4. Analytic continuation and gluing

To compute the monodromies of the solutions to the quantized opers, it
is necessary to know how to connect the solutions in different convergence
domains. We accomplish this by analytically continuing the surface defect
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partition functions to different convergence domains, and gluing those con-
tinuations in the intermediate regime.

4.1. Analytic continuation

We use the duality transformation similar to the one described on p.13
of [11]. There, one traded the sum over the fluxes of the two dimensional
abelian gauge field (magnetic fluxes) for the sum over a dual integral variable
(electric flux), which could be viewed as the label enumerating the sheets of
the (possibly disconnected) effective target space.

4.1.1. Gauged linear sigma model. Let us begin with the two-
dimensional gauged linear sigma model (GLSM), which would generate the
surface defect when coupled to the four-dimensional A1-theory. In section 2,
we have shown that the 2d GLSM responsible for the quiver surface defect
and the (N − 1, 1)-type Z2-orbifold surface defect is the one which flows
to the non-linear sigma model on the Hom(O(−1),CN )-bundle over PN−1.
This theory is the N = (2, 2) supersymmetric U(1) gauge theory with the
field contents

Twisted chiral : Σ = (σ,A)

Fundamental chiral : Qα α = 1, . . . , N,

Anti-fundamental chiral : Q̃α α = 1, . . . , N,

(172)

where we have only denoted the bosonic component fields. By weakly gaug-
ing the (U(N)× U(N)) /U(1) flavor symmetry, the fundamental and the
anti-fundamental acquire the twisted masses which we denote as (a0,α)

N
α=1

and (a2,α)
N
α=1 respectively, for the reason to be clarified soon. Note that we

may re-define σ by a constant amount so that the twisted masses appear as if
weakly gauging the full U(N)× U(N) symmetry. Due to the twisted masses
all the chiral multiplets can be integrated out. The resulting effective theory
is the N = (2, 2) U(1) gauge theory with the effective twisted superpotential

W̃(σ) = −tσ −

N∑

α=1

(σ − a0,α) (log(σ − a0,α)− 1)(173)

−

N∑

α=1

(−σ + a2,α) (log(−σ + a2,α)− 1) ,

where we have introduced the complex coupling t = r − iθ from the Fayet-
Illiopoulos parameter r and the two-dimensional θ-angle. Hence the vacuum



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1841 — #53
✐

✐

✐

✐

✐

✐

Opers, surface defects, and Yang-Yang functional 1841

equation reads

N∏

α=1

−σ + a2,α
σ − a0,α

= et = z,(174)

with the Kähler modulus defined by z ≡ et. Note that the Fayet-Illiopoulos
parameter r is not renormalized since the total charge of the chiral multiplets
is zero, and we can imagine flowing from the region r ≫ 0 to the region
r ≪ 0. The GLSM in both regions gives rise to the non-linear sigma model
on the Hom(O(−1),CN )-bundle over PN−1, yet with the base and the fiber
exchanged with each other as we cross r = 0. The classical singularity at
r = 0 is actually shifted by the quantum effect, leaving only a single point
θ = Nπ (mod 2π) singular. Hence the flow can be smoothly continued to
the other region, connecting the two sigma models. The vacuum equation
(174) implies that the N -vacua continuously flow from σ ∼ a0,α at r ≫ 0 to
σ ∼ a2,α at r ≪ 0.

Upon the Ω-deformation on the two-dimensional plane, the partition
function of the GLSM can be exactly computed by the equivariant localiza-
tion. The effective twisted superpotential only exhibits the leading singular
term in the partition function, so we investigate how the flow of z appears
at the level of the partition function. The partition function localizes on the
generalized vortex configurations,

Dz̄Q ≡ ∂z̄Q+Az̄Q = 0

Dz̄Q̃ = 0

Fzz̄ + |Q|
2 − |Q̃|2 = r.

(175)

Depending on the sign of r, we are forced to localize on either vortices or
anti-vortices. Let us assume r > 0 for now. The asymptotics of the D-term
equation forbids the anti-fundamental Q̃ to generate any bosonic moduli,
and only allows its fermionic zero-modes [44]. The final form of the partition
function is precisely the expression (52) without the coupling to the four-
dimension,

ZGLSM
β =

∞∑

k=0

z−k

k!

∏N
α=1

(
1 + a0,β−a2,α

ε1

)
k∏

α ̸=β

(
1 + a0,β−a0,α

ε1

)
k

(176)

= NFN−1

((
1 +

a0,β − a2,α
ε1

)

α=1,...,N

;

(
1 +

a0,β − a0,α
ε1

)

α ̸=β

; z−1

)
,
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where we have chosen the vacuum at the infinity as σ = a0,β . The effective
twisted superpotential evaluated at this vacuum can be obtained by taking
the asymptotics of the partition function,

ZGLSM
β = e

W̃β

ε1 (1 +O(ε1)) .(177)

Once we flow to the region r < 0, the above series expansion is no longer
valid. However, we can still study the asymptotics of the partition func-
tion, i.e., the effective twisted superpotential, in this region by applying the
Picard-Lefschetz theory to the integral representation of the partition func-
tion [45]. To illustrate the idea, let us consider the case N = 2. Also let us

assume Re
(
1 + a0,1−a0,2

ε1

)
> Re

(
1 + a0,1−a2,2

ε1

)
> 0 for simplicity. Then the

Euler integral representation for the hypergeometric function gives

ZGLSM
1 =

Γ
(
1 + a0,1−a0,2

ε1

)

Γ
(
1 + a0,1−a2,2

ε1

)
Γ
(
a2,2−a0,2

ε1

)(178)

×

∫ 1

0
dt t

a0,1−a0,2

ε1 (1− t)
−1+

a2,2−a0,2

ε1 (1− z−1t)
−1−

a0,1−a2,1

ε1 .

We now promote the real integral to an integral on the complex t-plane. We
can represent the integral as

∫

C=[0,1]
dt g(t)e

S(t)

ε1 ,

g(t) = (1− t)−1(1− z−1t)−1

S(t) = (a0,1 − a0,2) log t+ (a2,2 − a0,2) log(1− t)

− (a0,1 − a2,1) log(1− z−1t).

(179)

The critical points of S(t) are at

S′(t) =
a0,1 − a2,2

t
−

a2,2 − a0,2
1− t

+
(a0,1 − a2,1)z

−1

1− z−1t
= 0.(180)

Let us denote the critical points as t±, namely, S′(t±) = 0. Let us assume
that the masses are generic enough so that the critical points t± are distinct.
We would like to deform the integration contour C into a union of paths, in
which each path passes through one of the critical points and the imaginary
part ImS(t) is constant along the path. Such paths are called the Lefschetz
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thimbles, and can be obtained by treating the imaginary part of S(t) as a
Hamiltonian

H(t) ≡ ImS(t) =
1

2i
(S(t)− S̄(t)),(181)

which defines the gradient flow by the equation

˙̄t = {H, t̄} = ωab∂aH∂bt̄ = −
∂S(t)

∂t
,(182)

where the symplectic form on the t-plane is given by ω = 1
2idt ∧ dt̄. The Lef-

schetz thimble J± is defined as the union of these paths emanating from the
critical points t±. Note that ReS(t) monotonically decreases along the flow
(182), so that the integral along J± would show good convergence. Now the
problem is decomposing the contour C into a union of those Lefschetz thim-
bles, and this procedure can be done as follows. Note that the integration
contour C defines an element of the relative homology H1(C,C−T ;Z), where

C−T ≡ {t ∈ C | ReS(t) ≤ −T},(183)

for T ≫ 1. The Lefschetz thimbles are defined as the paths emanating
from the critical points, in which ReS(t) decreases along the flow. Hence
the Lefschetz thimbles also define elements of the relative homology, J± ∈
H1(C,C−T ;Z), and moreover they actually form a basis of this relative ho-
mology. Thus we can express C as a linear combination of the basis elements
J±, say, C =

∑
± n±J±. Then the integral in the partition function can be

expressed as

∑

±

n±

∫

J±

dt g(t)e
S(t)

ε1 .(184)

The remaining problem is to find the number n±. For this, let us consider
the relative homology H1(C,C

T ;Z), where

C
T ≡ {t ∈ C | ReS(t) ≥ T},(185)

for T ≫ 1. This relative homology is generated by the dual Lefschetz thim-
bles, K±, which are defined as the union of the paths (182) converging to
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the critical point t±. Note that we have the intersection pairing

⟨Jτ ,Kτ ′⟩ = δτ,τ ′ , τ, τ ′ = ±,(186)

under an appropriate orientation on these thimbles, since J± and K± in-
tersect at t± and ReS(t) only decreases or increases along these thimbles.
Therefore, we derive

n± = ⟨C,K±⟩,(187)

and the final form of the integral is

∑

±

⟨C,K±⟩

∫

J±

dt g(t)e
S(t)

ε1 .(188)

When r > 0 (|z| > 1), it can be checked that only one dual thimble, say,
K+, intersects with the original contour C = [0, 1]. Hence the integral can
be performed in the WKB sense as

√
−

πε1
S′′(t+)

g(t+) e
S(t+)

ε1

(
1 +

∞∑

k=1

c+,k ε
k
1

)
(189)

In particular, the effective twisted superpotential is essentially S(t+). This
confirms that we have a contribution from the single vacuum σ = a0,β . How-
ever, when r < 0 (|z| < 1) the topology of thimbles change so that both
dual thimbles K± intersect with the contour C = [0, 1]. Hence the integral
is rather performed as

√
−

πε1
S′′(t+)

g(t+) e
S(t+)

ε1

(
1 +

∞∑

k=1

c+,k ε
k
1

)
(190)

+

√
−

πε1
S′′(t−)

g(t−) e
S(t−)

ε1

(
1 +

∞∑

k=1

c−,k ε
k
1

)
,

In other words, we start to get a contribution from the other vacuum, rep-
resented by the thimble J−. The continuous flow the the vacua (174) only
exhibits the leading contribution from J+, but the Picard-Lefschetz analysis
shows that the contribution from the other vacuum also emerges as we flow
to the region r < 0.

For higher ranks N ≥ 3, we have to deal with the Euler integral rep-
resentation for the generalized hypergeometric function NFN−1 which is
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N − 1-complex dimensional. It is more difficult to visualize, but the ba-
sic idea is the same. When we fix a vacuum in the region r > 0 and flow to
the region r < 0, the exponentially suppressed contributions from the other
N − 1-vacua start to emerge. It can be also understood as the manifestation
of the analytic continuation of the generalized hypergeometric function. In
the domain |z| < 1, the generalized hypergeometric function (176) is still
well-defined by the analytic continuation, and the proper series expansion
for this analytic continuation is simply obtained by the connection formula,

NFN−1

((
1 +

a0,β − a2,γ
ε1

)

γ=1,...,N

;

(
1 +

a0,β − a0,β′

ε1

)

β′ ̸=β

; z−1

)
(191)

= −

N∑

α=1

∏

β′ ̸=β

Γ
(
1 +

a0,β−a0,β′

ε1

)

Γ
(
a2,α−a0,β′

ε1

)
∏

α′ ̸=α

Γ
(
a2,α−a2,α′

ε1

)

Γ
(
1 +

a0,β−a2,α′

ε1

)(−z)1+
a0,β−a2,α

ε1

× NFN−1

((
1 +

a0,γ − a2,α
ε1

)

γ=1,...,N

;

(
1 +

a2,α′ − a2,α
ε1

)

α′ ̸=α

; z

)
.

The Picard-Lefschetz analysis provides a physical interpretation of this for-
mula, i.e., the emergence of other N − 1-vacua as a consequence of the flow
from r > 0 to r < 0.

4.1.2. Four-dimensional theory with surface defect. The analytic
continuation along the flow of the Kähler modulus can be conducted in a
more general setting: the two-dimensional gauged linear sigma model cou-
pled to the four-dimensional gauge theory. Let us start with the quiver sur-
face defect partition function (28) with the constraints (27), namely,

ZL
β = ZA2

(
a0; a1,α = a0,α − ε2δα,β ; a2; a3 | ε1, ε2 | q1 = z−1, q2 = q

)
.(192)

We recall that this can be expressed in terms of the Q-observables (55). Thus
(28) can be written as

ZL
β =

∑

λ(2)

q
|λ(2)|
2 µλ(2)

∞∑

k=0

qk1

N∏

α=1

(−1)k Γ
(
1 + a0,β−a0,α

ε1

)
Γ
(
−a0,β−a2,α

ε1

)

Γ
(
k + 1 + a0,β−a0,α

ε1

)
Γ
(
−k − a0,β−a2,α

ε1

)

(193)

×
∏

□∈K2

a0,β + kε1 − c□ − ε2
a0,β + kε1 − c□

a0,β − c□
a0,β − c□ − ε2
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=
∑

λ(2)

q
|λ(2)|
2 µλ(2)

∞∑

k=0

qk1

N∏

α=1

Γ
(
1 + a0,β−a0,α

ε1

)
Γ
(
k + 1 + a0,β−a2,α

ε1

)

Γ
(
k + 1 + a0,β−a0,α

ε1

)
Γ
(
1 + a0,β−a2,α

ε1

)

×
∏

□∈K2

a0,β + kε1 − c□ − ε2
a0,β + kε1 − c□

a0,β − c□
a0,β − c□ − ε2

,

where we have used the reflection formula Γ(x)Γ(1− x) = π
sinπx

in the sec-
ond equality. It is crucial to notice that the partition function now can be
represented as a contour integral

ZL
β = −

N∏

α=1

Γ
(
1 + a0,β−a0,α

ε1

)

Γ
(
1 + a0,β−a2,α

ε1

)(−q1)−
a0,β

ε1

∑

λ(2)

q
|λ(2)|
2 µ̃λ(2)(194)

×

∮

C
dx (−q1)

x

ε1

Γ
(
−x−a0,β

ε1

)∏N
α=1 Γ

(
1 + x−a2,α

ε1

)

∏
α ̸=β Γ

(
1 + x−a0,α

ε1

)

×

N∏

α=1

l(λ(2,α))∏

i=1

x− a2,α − (i− 1)ε1 − λ
(2,α)
i ε2

x− a2,α − (i− 1)ε1
,

where we have defined

µ̃λ(2) ≡ µλ(2)

∏

□∈λ(2)

a0,β − c□
a0,β − c□ − ε2

(195)

= ϵ [N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −M0K

∗
2 − q12M

∗
3K2] .

The contour C is described in Figure 2. Here, we are assuming the Coulomb
moduli a2 = (a2,α)

N
α=1 and the masses of hypermultiplets a0 = (a0,α)

N
α=1

(and a3 = (a3,α)
N
α=1 for ZR

β ) are generic, so that the simple poles do not
overlap with each other. Note that this contour integral is analogous to
the famous Barnes integral. It is straightforward to prove that the integral
(194) uniformly converges as long as Arg(−q1) < π, i.e., q1 /∈ R+, using the
asymptotics of the Γ-functions. The equality in (194) is obtained as we close
the contour by adding the semi-circle R+ at the infinity, picking only the
poles at x = a0,β + kε1, k ∈ Z≥0. It can be shown that the integral along
R+ uniformly converges to zero in the regime |q1| < 1, and therefore it is
safe to add R+ to the contour C.

Now, we take the contour integral representation (194) as the analytic
continuation of the partition function ZL

β . In particular, the partition func-
tion assumes a different series expansion in the regime |q1| > 1, and it
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R+R−

C

a2,1−a0,β

ε1
+ l
(
λ(2,1)

)
− 1

a2,N−a0,β

ε1
+ l
(
λ(2,N)

)
− 1

0 1 2

Figure 2: The contour C on the x−a0,β

ε1
-plane.

can be computed as we close the contour by adding a semi-circle R− on
the opposite side. It is possible to show that the integral along R− uni-
formly converges to zero in the regime |q1| > 1, and hence it is safe to add
R− to the contour C. The resulting contour encloses the rest of the poles,
i.e., x = a2,α +

(
l
(
λ(2,α)

)
− k − 1

)
ε1 where α = 1, . . . , N and k ∈ Z≥0. First

note that the denominator in the contour integral can be absorbed into the
Γ-functions, yielding

∮

C
dx (−q1)

x

ε1

Γ
(
−x−a0,β

ε1

)∏N
α=1 Γ

(
−l
(
λ(2,α)

)
+ 1 + x−a2,α

ε1

)

∏
α ̸=β Γ

(
1 + x−a0,α

ε1

)(196)

×

N∏

α=1

l(λ(2,α))∏

i=1

x− a2,α − (i− 1)ε1 − λ
(2,α)
i ε2

ε1
.
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Then we can pick up the residues of the N -rays of poles at x = a2,α +(
l
(
λ(2,α)

)
− k − 1

)
ε1, α = 1, . . . , N and k ∈ Z≥0. We can write the resulting

series expansion for the analytically continued partition function as a sum
over these N -rays,

ZL
β =

N∑

α=1

∏

β′ ̸=β

Γ
(
1 +

a0,β−a0,β′

ε1

)

Γ
(
a2,α−a0,β′

ε1

)(197)

×
∏

α′ ̸=α

Γ
(
a2,α−a2,α′

ε1

)

Γ
(
1 +

a0,β−a2,α′

ε1

)q−1
1 (−q1)

a2,α−a0,β

ε1 ZL→M
α ,

where we have defined the basis function in the regime |q1| > 1, which is
independent of the choice of β in the constraints (27), by

ZL→M
α (a2) ≡

∑

λ(2)

q
|λ(2)|
2 µ̃λ(2)

∞∑

k=0

q
−k+l(λ(2,α))
1

(−1)k

k!

(198)

×
∏

α′ ̸=α

Γ
(
−k + l

(
λ(2,α)

)
− l
(
λ(2,α′)

)
+

a2,α−a2,α′

ε1

)

Γ
(
a2,α−a2,α′

ε1

)

×

N∏

γ=1

Γ
(
a2,α−a0,γ

ε1

)

Γ
(
−k + l

(
λ(2,α)

)
+ a2,α−a0,γ

ε1

)

×

N∏

γ=1

l(λ(2,γ))∏

i=1

a2,α − a2,γ +
(
l
(
λ(2,α)

)
− k − i

)
ε1 − λ

(2,γ)
i ε2

ε1
,

so that the choice of β only affects the coefficients of the continuation for-
mula (197). We will explicitly write the argument of ZL→M

α only when we
emphasize its Coulomb moduli, but otherwise we omit it. Note that the ba-
sis function can be expressed as the expectation value of an infinite sum of



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1849 — #61
✐

✐

✐

✐

✐

✐

Opers, surface defects, and Yang-Yang functional 1849

Q-observables (55),

ZL→M
α =

∑

λ(2)

q
|λ(2)|
2 µ̃λ(2)

∏

□∈λ(2)

a2,α − ε− c□
a2,α − ε1 − c□

(199)

×

∞∑

k=0

q
−k+l(λ(2,α))
1 ε

N(k−l(λ(2,α)))
1

×

N∏

γ=1

Γ
(
a2,α−a0,γ

ε1

)

Γ
(
−k + l

(
λ(2,α)

)
+ a2,α−a0,γ

ε1

)

×
Q2

(
a2,α +

(
l
(
λ(2,α)

)
− k − 1

)
ε1
)

Q2 (a2,α − ε1)
.

Remarks.

• The ratios of the Γ-functions in (198) and (199) can be expressed as
Pochhammer symbols, but they may appear either in the numerator
or in the denominator depending on k and l

(
λ(2,α)

)
’s.

• While the exponent of q2 is always positive, the exponent of q1 can ei-
ther be positive or negative depending on k and l

(
λ(2,α)

)
. The conver-

gence regime is 0 < |q2| < |q
−1
1 | < 1. We may introduce new coupling

constants

q1 ≡ q′1
−1

, q2 ≡ q′1q
′
2,(200)

so that the the convergence regime becomes 0 < |q′1|, |q
′
2| < 1. Indeed,

the exponent of the new coupling constant q′1 is k + |λ(2)| − l
(
λ(2,α)

)
≥

k ≥ 0, i.e., bounded below. The first inequality is saturated if and only
if λ(2) is single-columned, namely, λ(2,α′) = ∅ for all α′ ̸= α and λ(2,α)

is single-columned. This suggests the basis function Zα is related to
the A2-theory in which the Coulomb moduli of the two gauge nodes
are subject to certain constraints. We come back to this question in
section 4.2.1.

• The reparametrization of the couplings q1 = z−1 and q2 = q of (28)
were introduced to be consistent with the convention in (115). Note
that q′1 = z and q′2 =

q
z
under the reparametrization.

• Let O be an observable lying only on the second gauge node, i.e.,
O[λ] = O[λ(2)]. The expectation value of such observables can similarly
be analytically continued. We simply need to insert the observable
inside (198), along with the measure µ̃λ(2) .
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Similarly, we can analytically continue the quiver surface defect partition
function (61). After imposing the constraints (57) and the re-definition of
parameters (59) we consider

ZR
β = ZA2

(
− a0,α − ε; −a1,α; −a3,α + ε− ε2δα,β ;(201)

− a3,α + 2ε | ε1, ε2 | q1 = q, q2 = q−1 z
)
,

The partition function can be analytically continued in the same way,

ZR
β =

N∑

α=1

∏

β′ ̸=β

Γ
(
1 +

a3,β′−a3,β

ε1

)

Γ
(
a3,β′−a1,α

ε1

)(202)

×
∏

α′ ̸=α

Γ
(
a1,α′−a1,α

ε1

)

Γ
(
1 +

a1,α′−a3,β

ε1

)q−1
2 (−q2)

a3,β−a1,α

ε1 ZR→M
α ,

where

ZR→M
α (a1) =

∑

λ(1)

q
|λ(1)|
1 µ̃λ(1)

∞∑

k=0

q
−k+l(λ(1,α))
2

(−1)k

k!

(203)

×
∏

α′ ̸=α

Γ
(
−k + l

(
λ(1,α)

)
− l
(
λ(1,α′)

)
+

a1,α′−a1,α

ε1

)

Γ
(
a1,α′−a1,α

ε1

)

×

N∏

γ=1

Γ
(
a3,γ−a1,α

ε1

)

Γ
(
−k + l

(
λ(1,α)

)
+ a3,γ−a1,α

ε1

)

×

N∏

γ=1

l(λ(1,γ))∏

i=1

−a1,α + a1,γ +
(
l
(
λ(1,α)

)
− k − i

)
ε1 − λ

(1,γ)
i ε2

ε1
.

=
∑

λ(1)

q1
|λ(1)|µ̃λ(1)

∏

λ(1)

−a1,α − c□ − ε

−a1,α − c□ − ε1

∞∑

k=0

q
−k+l(λ(1,α))
2 ε

N(k−l(λ(1,α)))
1

×

N∏

γ=1

Γ
(
a3,γ−a1,α

ε1

)

Γ
(
−k + l

(
λ(1,α)

)
+ a3,γ−a1,α

ε1

)

×
Q1

(
−a1,α +

(
l
(
λ(1,α)

)
− k − 1

)
ε1
)

Q1 (−a1,α − ε1)
,
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We have defined the modified measure

µ̃λ(1) ≡ µλ(1)

∏

□∈K1

−a3,β − c□
−a3,β − c□ − ε2

(204)

= ϵ
[
N1K

∗
1 + q12N

∗
1K1 − P12K1K

∗
1 −M0K

∗
1 − q212M

∗
3K1

]
.

Remarks.

• The convergence regime of (203) is 0 < |q1| < |q
−1
2 | < 1. We may define

new coupling constants

q1 ≡ q′1q
′
2, q2 ≡ q′2

−1
,(205)

so that the convergence regime becomes 0 < |q′1|, |q
′
2| < 1.

• The reparametrizations of coupling constants (60) were introduced to
be consistent with the convention in (125). Note that the new coupling
constants q′1 = z and q′2 =

q
z
match with the previous ones. Thus, both

analytically continued partition functions lie in the intermediate do-
main, 0 < |q| < |z| < 1.

4.2. Gluing the partition functions

4.2.1. The connection matrix. Recall that the surface defect partition

functions are annihilated by the operators
̂̂
D obtained in section 3. The

uniqueness of the analytic continuation guarantees that the continued func-
tions satisfy the same differential equations. Therefore we may regard the
analytically continued partition functions as the extensions of the solutions
to other convergence domains. Motivated by the analytic continuation for-
mulas (197) and (202), let us define the connection matrices

(C∞)αβ ≡
∏

α′ ̸=α

Γ
(
1 +

a0,α−a0,α′

ε1

)

Γ
(
a2,β−a0,α′

ε1

)
∏

β′ ̸=β

Γ
(
a2,β−a2,β′

ε1

)

Γ
(
1 +

a0,α−a2,β′

ε1

) ,(206a)

(C0)αβ ≡
∏

α′ ̸=α

Γ
(
1 +

a3,α′−a3,α

ε1

)

Γ
(
a3,α′−a1,β

ε1

)
∏

β′ ̸=β

Γ
(
a1,β′−a1,β

ε1

)

Γ
(
1 +

a1,β′−a3,α

ε1

) .(206b)

We will scrutinize below how the connection matrices associate the solutions

to
̂̂
D in different convergence domains, for each N ≥ 2.
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N = 2. We have shown in section 3.1.1 that the modified surface defect
partition functions,

Z̃
L
≡
(
Z̃L
α

)
α=1,2

,(207)

solve the differential equation (115) given by
̂̂
D2, with the prefactors in

(111). These functions provided the solutions of the form

∞∑

k1,k2=0

ck1,k2
zrL−k1 qL2+k2 ,(208)

in the domain 0 < |q| < 1 < |z|. It is not so difficult to show that they are
the only solutions once the critical exponent L2 is given. Indeed, by directly

acting
̂̂
D2 to the ansatz and expanding in z−1 and q, we get a recursive

relations for the coefficients ck1,k2
. In particular, the zeroth order equation

is

0 =

(
ε21r

2
L − ε1(ε1 + 2ε2)rL + ε1ε2

(
2ε+ ε2
4ε1

+∆1

))
c0,0.(209)

The existence of the solution (c0,0 ̸= 0) implies that we are restricted to only
two choices for the critical exponent rL,

(rL,α)α=1,2 =

(
−a0,1 + a0,2 + ε+ ε2

2ε1
,
a0,1 − a0,2 + ε+ ε2

2ε1

)
,(210)

which are precisely (113). Once rL is chosen, the recursive relations fully

determine all the coefficients ck1,k2
. Since the partition functions Z̃

L
already

provide two solutions, we conclude that the surface defect partition functions

Z̃
L
provide all solutions to

̂̂
D2 in the domain 0 < |q| < 1 < |z|, for each fixed

L2.
With the modification of the partition function by the multiplication of

the prefactors (111), the analytic continuation formula (197) becomes

Z̃L
α = −

∑

β=1,2

(C∞)αβ

(
−
1

z

)−rL,α+
2ā0−2ā2+ε2

2ε1
+

a2,β−a0,α

ε1

q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

(211)

× (1− z)
2ā0−2ā2+2ε1+ε2

2ε1

(
1−

q

z

) ā2−ā3+ε

ε1 (1− q)
2(ā2−ā3+ε)(2ā0−2ā2−ε2)

ε1ε2 ZL→M
β .
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Note that the critical exponent of z is independent of α, namely,

(rL→M,β)β=1,2 ≡

(
rL,α −

2ā0 − 2ā2 + ε2
2ε1

−
a2,β − a0,α

ε1

)

β=1,2

(212)

=

(
−a2,1 + a2,2 + ε

2ε1
,
a2,1 − a2,2 + ε

2ε1

)
.

Finally, we define the modified basis functions as

Z̃L→M
β ≡ −

(
−
1

z

)−rL→M,β

q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

× (1− z)
2ā0−2ā2+2ε1+ε2

2ε1

(
1−

q

z

) ā2−ā3+ε

ε1

× (1− q)
2(ā2−ā3+ε)(2ā0−2ā2−ε2)

ε1ε2 ZL→M
β ,

Z̃
L→M

≡
(
Z̃L→M
β

)
β=1,2

.

The uniqueness of analytic continuation guarantees that Z̃
L→M

also provides

solutions to
̂̂
D2. Therefore, the analytic continuation formula,

Z̃
L
= C∞Z̃

L→M
,(213)

connects the solutions to the differential operators
̂̂
D2 in different conver-

gence domains, through the connection matrix defined in (206a).

Remarks.

• In the limit ε2 → 0, the modified functions ZL→M produce solutions to
the oper D̂. It is evident from the expression (199) that the solutions
are again expressed as sums of the Baxter Q-functions.

• We observe that the critical exponent rL→M,β of z for Z̃L→M
β is pre-

cisely the L1 in (111) subject to the constraint

{
a1,β = a2,β + ε2

a1,α = a2,α (α ̸= β)
.(214)

This strongly indicates the identity,

ZL→M
β = (1− z)

− 2ε

ε1ε2
(ā0−ā2−ε2)

ZA2
(a1,α = a2,α + ε2δα,β) ,(215)
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between the two seemingly distinct partition functions. Even though
this identity is rather obvious in the point of view of AGT [40], its rig-
orous proof in the gauge theory side is not. As is clear from the defini-
tion of each side, this identity implies a lot of non-trivial combinatoric
identities. It would be nice to directly prove the identity, perhaps by
using the non-perturbative Dyson-Schwinger equations, but it is not
necessary for our study so we do not attempt it here.

Similarly, we have shown that the modified surface defect partition func-
tions,

Z̃
R
≡
(
Z̃R
α

)
α=1,2

,(216)

give solutions to
̂̂
D2 in the domain 0 < |z| < |q| < 1, which are now of the

form

∞∑

k1,k2=0

ck1,k2
zrR+k2 qL1+k1−k2 =

∞∑

k1,k2=0

ck1,k2
qL1+rR+k1

(
z

q

)rR+k2

.(217)

We can act with
̂̂
D2 on this series and expand in q and z

q
, to find the indicial

equation,

0 = ε21r
2
R − ε1ε rR + ε1ε2∆0,(218)

whose solutions are precisely (123), namely,

(rR,α)α=1,2 ≡

(
−a3,1 + a3,2 + ε

2ε1
,
a3,1 − a3,2 + ε

2ε1

)
.(219)

Once rR is chosen, all the coefficients ck1,k2
are determined recursively. Thus

we conclude that Z̃
R
provide the only two solutions to

̂̂
D2 in the domain 0 <

|z| < |q| < 1, for each fixed L1 + rR. With the prefactors (122), the analytic
continuation formula (202) becomes

Z̃R
α = −

∑

β=1,2

(C0)αβ

(
−
q

z

)−rR,α−
2ā1−2ā3+ε2

2ε1
−

a3,α−a1,β

ε1(220)

× q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′

q
+

2ε+ε2
4ε1 (1− q)

(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2

× (1− z)
ā0−ā1+ε

ε1

(
1−

q

z

) 2ā1−2ā3+2ε1+ε2
2ε1

ZR→M
β .
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Note that the critical exponent for z becomes, again, independent of α,

(rR→M,β)β=1,2 ≡

(
rR,α +

2ā1 − 2ā3 + ε2
2ε1

+
a3,α − a1,β

ε1

)

β=1,2

(221)

=

(
−a1,1 + a1,2 + ε+ ε2

2ε1
,
a1,1 − a1,2 + ε+ ε2

2ε1

)
.

Hence we define the modified basis function by

Z̃R→M
β ≡ −

(
−
q

z

)−rR→M,β

q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′

q
+

2ε+ε2
4ε1

× (1− q)
(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

×
(
1−

q

z

) 2ā1−2ā3+2ε1+ε2
2ε1

ZR→M
β ,

Z̃
R→M

≡
(
Z̃R→M
β

)
β=1,2

.

(222)

By the uniqueness of the analytic continuation, we conclude that Z̃
R→M

gives the solutions to
̂̂
D2 in the domain 0 < |q| < |z| < 1. The analytic con-

tinuation formula,

Z̃
R
= C0 Z̃

R→M
,(223)

connects the solutions in different convergence domains, through the con-
nection matrix defined in (206b).

N = 3. Under the modification (129) with the prefactors (130), the ana-
lytic continuation formula (197) becomes

Z̃L
α = −

3∑

β=1

(C∞)αβ

(
−
1

z

)−rL,α+
3ā0−3ā2+2ε2

3ε1
+

a2,β−a0,α

ε1

(224)

× q
−∆q−∆0+

1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)

3

)

× (1− z)
3ā0−3ā2+3ε−ε2

3ε1

(
1−

q

z

) ā2−ā3+ε

ε1

× (1− q)
(ā2−ā3+ε)(3ā−3ā2−ε2)

ε1ε2 ZL→M
β .
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Again, the critical exponent of z is independent of α,

(rL→M,β)
3
β=1 ≡

(
rL,α −

3ā0 − 3ā2 + 2ε2
3ε1

−
a2,β − a0,α

ε1

)3

β=1

(225)

=

(
−3a2,β +

∑3
γ=1 a2,γ + 3ε

3ε1

)3

β=1

.

Hence, we define the modified basis functions as

Z̃L→M
β ≡ −

(
−
1

z

)−rL→M,β

× q
−∆q−∆0+

1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)

3

)

× (1− z)
3ā0−3ā2+3ε−ε2

3ε1

(
1−

q

z

) ā2−ā3+ε

ε1

× (1− q)
(ā2−ā3+ε)(3ā−3ā2−ε2)

ε1ε2 ZL→M
β ,

Z̃
L→M

≡
(
Z̃L→M
β

)3
β=1

.

(226)

Then the analytic continuation formula,

Z̃
L
= C∞Z̃

L→M
,(227)

connects the solutions to
̂̂
D3 in different converence domains.

Likewise, under the multiplication of the prefactors (148), the analytic
continuation formula (202) becomes

Z̃R
α = −

3∑

β=1

(C0)αβ

(
−
q

z

)−rR,α−
3ā1−3ā3+2ε2

3ε1
−

a3,α−a1,β

ε1(228)

× (1− q)
(ā0−ā1+ε)(3ā1−3ā3−ε2)

ε1ε2 (1− z)
(ā0−ā1+ε)

ε1

× q
1

ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)

3

)
−∆′

q
−∆0+

3ε+ε2
3ε1

×
(
1−

q

z

) 3ā1−3ā3+3ε−ε2
3ε1

ZR→M
β .
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Note that the critical exponent of z becomes independent of α, namely,

(rR→M,β)
3
β=1 ≡

(
rR,α +

3ā1 − 3ā3 + 2ε2
3ε1

+
a3,α − a1,β

ε1

)3

β=1

(229)

=

(
−3a1,β +

∑3
γ=1 a1,γ + 3ε+ 2ε2

3ε1

)3

β=1

.

Therefore we modify the basis function by

Z̃R→M
β ≡ −

(
−
q

z

)−rR→M,β

(1− q)
(ā0−ā1+ε)(3ā1−3ā3−ε2)

ε1ε2

× (1− z)
ā0−ā1+ε

ε1

(
1−

q

z

) 3ā1−3ā3+3ε−ε2
3ε1

× q
1

ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)

3

)
−∆′

q
−∆0+

3ε+ε2
3ε1

× ZR→M
β

Z̃
R→M

≡
(
Z̃R→M
β

)3
β=1

.

(230)

We conclude that the connection formula,

Z̃
R
= C0 Z̃

R→M
,(231)

associate the solutions in different domains, through the connection matrix
(206b).

4.2.2. The shift matrix. We have verified in section 4.2.1 that the ana-
lytically continued partition functions Z̃

L→M
and Z̃

R→M
provide the so-

lutions to the operator
̂̂
D in the intermediate domain, 0 < |q| < |z| < 1.

Moreover, we have found in section 3.2 that the (N − 1, 1)-type Z2-orbifold

surface defect partition functions ZZ2 also provide the solutions to
̂̂
D in the

same domain. The question arises on how these solutions are associated to
each other. Exact identities between these partition functions are established
with the help of the shift matrix

Sαβ ≡ eε2
∂

∂aα δαβ ,(232)

which is introduced to facilitate shifting the Coulomb moduli of the under-
lying A1-theory. We proceed below with the derivation of the identities, for
each N ≥ 2.
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N = 2. Let us consider the generic ansatz for
̂̂
D2 in the intermediate do-

main 0 < |q| < |z| < 1,

∞∑

k1,k2=0

ck1,k2
zrM+k1−k2qL2+k2 =

∞∑

k1,k2=0

ck1,k2
zrM+L2+k1

(q
z

)L2+k2

.(233)

By acting
̂̂
D2 to the ansatz and expanding in z and q

z
, we find the indicial

equation

0 = ε21r
2
M − ε1ε rM + ε1ε2(∆q +∆0) + ε1ε2L2.(234)

Once the critical exponents r1 and L2 are chosen to satisfy the indicial
equation, all the coefficients ck1,k2

are determined recursively. The solution
is unique in this sense.

We have seen that Z̃
L→M

, Z̃
R→M

, and Z̃
Z2

are annihilated by
̂̂
D2,

and therefore their critical exponents evidently satisfy the indicial equa-
tion (234). Moreover, we observe from (212), (221), (160), (114), and (124)
that

(rL→M,α)α=1,2 =

(
rR→M,α

∣∣∣
a1,α→a2,α+ε2

)

α=1,2

=
(
rZ2
α

)
α=1,2

,(235)

∆q = ∆′
q

∣∣∣
a1,α→a2,α+ε2

,(236)

so that the indicial equation guarantees that those solutions are identical
under the shift of the Coulomb moduli, namely,

Z̃
L→M

(a) = S Z̃
R→M

(a) = Z̃
Z2

(a).(237)

Note that the re-definitions (59) of the Coulomb moduli and the masses of

the hypermultiplets for Z̃
R

were carefully designed to yield this equality.
Consequently, we conclude that the analytically continued partition func-
tions agree in the intermediate domain, and this is also identical to the
orbifold surface defect partition function.

N = 3. From (133), (134), (150), and (151), we observe that

∆q,1 = ∆′
q,1

∣∣∣
a1,α→a2,α+ε2

Λq,1 = Λ′
q,1

∣∣∣
a1,α→a2,α+ε2

(238)
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Also, from (225), (229), and (171), we have

(rL→M,α)
3
α=1 =

(
rR→M,α

∣∣∣
a1,α→a2,α+ε2

)3

α=1

=
(
rZ2
α

)3
α=1

.(239)

Although these relations look promising, they do not guarantee the equality
of the partition functions this time. The problem is that the equation for
̂̂
D3 involves the expectation value

〈
O3

〉
, which is an object independent of

the partition function itself. Without an additional information on equating
the expectation values analytically continued from different domains, the

single equation of
̂̂
D3 is not enough to fully determine the partition function.

Nevertheless, in the limit ε2 → 0 the equation is reduced to the oper D̂3

on P1\{0, q, 1,∞}, and the relations (238) and (239) are indeed enough to
guarantee that the solutions agree with each other. This is because, as we

have seen earlier, the expectation value
〈
O3

〉
is dominated by the limit

shape and becomes a series only in q, comprising an accessory parameter
for the oper D̂3 which is unambiguously determined once the monodromy
along the A-cycle is fixed.

We furthermore suspect that even for generic values of ε2, there is a
proper matching between the analytically continued expectation values in
the intermediate domain, so that the identities,

Z̃
L→M

(a) = S Z̃
R→M

(a) = Z̃
Z2

(a),(240)

persist to be true. We have checked the identities at low orders in the gauge
couplings z and q. We discuss more on this issue in section 7.

Remarks.

• The duality between the quiver-type and the orbifold-type surface de-
fects was realized in [38] as the M-theory brane transition, for the
A1-theories. It would be interesting to study the relation between the
higher rank generalization of the duality in [38] and the exact identi-
fication of the partition functions (240).

5. Darboux coordinates

Recall that the main assertion of [1] is that the generating function for the
variety of opers with respect to the NRS coordinate system is identical to
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the effective twisted superpotential of a class-S theory:

S [ON [C]] =
1

ε1

(
W̃ [T [AN−1,C]]− W̃∞

)
.(241)

We need a generalization of the NRS coordinates for N > 2 to give any
meaning to the left hand side of the correspondence.

Here, we propose a Darboux coordinate system on the moduli space
of flat SL(N)-connections on the r + 3-punctured sphere P1

2,r+1 with two
maximal and r + 1 minimal punctures, for the arbitrary higher rank N − 1.
The proposed coordinates reduce to the usual NRS coordinate system in
N = 2 on a specific patch of the moduli space of flat connections.

In this section Cr denotes P1
2,r+1 = P1\{z−1, z0, . . . , zr, zr+1}. We often

set z−1 =∞, zr+1 = 0, and z0 = 1.

5.1. Construction of Darboux coordinates

5.1.1. Definition. We construct Darboux coordinates on a patch of the
moduli space of flat SL(N)-connections on the r + 3-punctured sphere Cr,
which reduces to the NRS coordinates in the N = 2 case. Our main exam-
ple of the four-punctured sphere is the case r = 1. As in (15), the moduli
space Mflat(SL(N),Cr) is the space of (stable) equivalence classes of the ho-
momorphisms of the fundamental group of the punctured Riemann sphere
to SL(N), in which the loops encircling each puncture are mapped to the
prescribed conjugacy classes in SL(N). In particular, the two maximal punc-
tures correspond to generic semisimple conjugacy classes in SL(N), while
the r + 1 minimal punctures correspond to semisimple conjugacy classes in
SL(N) with maximally degenerate eigenvalues. We fix the conjugacy classes
by specifying the eigenvalues of the holonomy matrices gi, i = −1, 0, 1, . . . ,
r + 1. The moduli space is given by:

Mflat(SL(N),Cr)

(242)

=





(gi)
r+1
i=−1

∣∣∣∣∣

gi ∈ SL(N) ,

Det(gi − x) = (mi − x)N−1(m1−N
i − x) , i = 0, . . . , r

Det(gi − x) =

N∏

α=1

((
m

(α)
i

)−sgn(i)
− x

)
, i = −1, r + 1

g−1g0 · · · gr+1 = 1N





stable

/
SL(N).
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The stability condition chooses an open subset in the set of matrices gi
obeying all of the conditions above. We shall not need to specify the stability
condition since we are going to work on an open patch of the moduli space
which belongs to the stable subset.

The holonomies gi ∼ diag(mi, . . . ,mi,m
−N+1
i ) around the minimal punc-

tures require more detailed notation. We can form such an element of SL(N)
by setting

gi = mi

(
1N +

(
m−N

i − 1
)
Ei ⊗ Ẽi

)
,(243)

where

Ei ∈ C
N , Ẽi ∈

(
C
N
)∗

(dual space)

Ẽi(Ei) = 1,
(244)

which are defined up to rescaling
(
Ei, Ẽi

)
7→
(
tiEi, t

−1
i Ẽi

)
, ti ∈ C×. For

fixed Ẽi, its null subspace in CN isN − 1-dimensional. Hence we haveN − 1-
dimensional eigenspace of gi with the eigenvalue mi. The one last eigenvector
is given by Ei, with the eigenvalue m−N+1

i fixed by the normalization con-
dition. The number of degrees of freedom in such a gi is equal to

2N (from E and Ẽ)− 1 (normalization)− 1 (rescaling) = 2(N − 1).

(245)

Therefore, a simple dimension count gives

dimMflat(SL(N),P1
2,r+1) = 2

(
(N2 − 1)− (N − 1)

)
(246)

+ (r + 1) (2(N − 1))− 2(N2 − 1)

= 2r(N − 1).

We need to define r(N − 1)-pairs of coordinates which are canonical
under the Poisson bracket. For this, it is convenient to parametrize the
moduli space as follows. Let us define the projection operators

Πi = Ei ⊗ Ẽi, i = 0, 1, . . . , r

Π2
i = Πi,

(247)

formed by the eigenvector Ei (244) of gi and its dual-vector. Then gi is
expressed as

gi = mi

(
1N +

(
m−N

i − 1
)
Πi

)
, i = 0, 1, . . . , r.(248)
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−1

0

1

i

r

r + 1

gi

Mi

Figure 3: The r + 3-punctured sphere P1
2,r+1. The (−1)-th puncture (located

at z =∞) and the (r + 1)-th puncture (located at z = 0) are maximal, de-
noted by double circles, while all the other punctures are minimal, denoted
by simple dots. The holonomy along the loop encircling each puncture is
represented by gi (blue line), while the holonomy along the loop enclosing
i+ 2 punctures is represented by Mi (red line).

For later use, we also give the expression for its inverse:

g−1
i = m−1

i

(
1N + (mN

i − 1)Πi

)
, i = 0, 1, . . . , r.(249)

Let us also define

Mi ≡ g−1g0 · · · gi ∈ SL(N), i = −1, 0, 1, . . . , r + 1.(250)

These matrices represent the holonomies along the curves on the r + 3-
punctured sphere enclosing i+ 2 punctures (see Figure 3). In particular, it
is immediate that we have M−1 = g−1, Mr = g−1

r+1, and Mr+1 = 1N . We can
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express these matrices as

(251) Mi =

N∑

α=1

m
(α)
i Π

(α)
i ,

with the projection operators Π
(α)
i obeying

(252) Π
(α)
i Π

(β)
i = δα,β Π

(α)
i ,

each having rank one. Using the eigenbasis E
(α)
i ∈ CN , i = 0, 1, . . . , r − 1 of

Mi, and its dual-basis Ẽ
(β)
i ∈

(
CN
)∗
, Ẽ

(α)
i (E

(β)
i ) = δα,β , we can write

(253) Π
(α)
i = E

(α)
i ⊗ Ẽ

(α)
i .

The basis vectors are defined up to rescalings

(
E

(α)
i , Ẽ

(α)
i

)
7→

(
t
(α)
i E

(α)
i ,

(
t
(α)
i

)−1
Ẽ

(α)
i

)
, t

(α)
i ∈ C

×,

and reorderings E
(α)
i 7→ E

(σi(α))
i , σi ∈ S(N).

Now we are ready to propose a Darboux coordinate system. We define

the coordinates α
(α)
i , β̃

(α)
i , i = 0, 1, . . . , r − 1, α = 1, . . . , N , subject to the

constraints

(254)

N∑

α=1

α
(α)
i = 0

and defined up to the shifts

(255) β̃
(α)
i 7→ β̃

(α)
i + bi , bi ∈ C

via

(256) Mi E
(α)
i = e2πiα

(α)
i E

(α)
i

and

(257) e−β̃
(α)

i +β̃i =
Ẽ

(α)
i (Ei+1)

Ẽ
(α)
i (Ei)

Ẽi+1(Ei) =
TrNΠiΠ

(α)
i Πi+1

TrNΠiΠ
(α)
i

,
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where β̃i is defined by:

(258) eβ̃i =

N∑

α=1

eβ̃
(α)

i TrN

(
Πi+1Π

(α)
i

)
.

Due to the constraint (254) and the ambiguity (255), the coordinates α
(α)
i ,

β̃
(α)
i are redundant. Thus we refine the coordinates by choosing mutually

independent r(N − 1)-pairs

(
α

(α)
i , β

(α)
i ≡ β̃

(α)
i − β̃

(N)
i

)
, i = 0, 1, . . . , r − 1, α = 1, . . . , N − 1.(259)

to form a proper coordinate system on Mflat(SL(N),P1
2,r+1).

5.1.2. Canonical Poisson relations. To show that

{
α

(α)
i ,β

(α)
i | i = 0, 1, . . . , r − 1, α = 1, . . . , N − 1

}

forms a Darboux coordinate system on Mflat(SL(N),P1
2,r+1), we have to

verify that the Poisson brackets [57] are canonical9

{
β̃
(α)
i , α

(β)
j

}
= δi,jδα,β

{
α

(α)
i ,α

(β)
j

}
=

{
β̃
(α)
i , β̃

(β)
j

}
= 0,

i, j = 0, 1, . . . , r − 1,

α, β = 1, . . . , N.
(260)

The Poisson bracket on the space of all gauge fields

(261)

{
Aa(x),Ab(y)

}
= δabδ(2)(x, y)

(the δ(2) is a two-form on P1
2,r+1) has a simple geometric description when

represented on the holonomies. To illustrate, consider two distinct elements

of the fundamental group [γ1,2] ∈ π1

(
P1
2,r+1

)
. We can choose their represen-

tatives γ1,2 to intersect transversally. We assign to each intersection point

9It is clear that the Poisson brackets for the refined coordinates (259) are also
canonical once (260) is proven.
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γ1

γ2

+ γ2

γ1

−

Figure 4: The sign assignment to intersection points and the resolution of
the union of curves.

x ∈ γ1 ∩ γ2 a sign

s : γ1 ∩ γ2 −→ {±}(262)

according to the orientation of the curves γ1,2 at x relative to the orientation
of the sphere (see Figure 4). Then we define

(γ1 ∩ γ2)
± ≡ {x ∈ γ1 ∩ γ2 | s(x) = ±} .(263)

At each intersection x, we compose a resolution (γ1 ∪ γ2)x of the union of
the curves as described in Figure 4. Now the Poisson structure on the moduli
space of flat connections can be represented on the holonomies ρ along γ1,2
by

{
ρ([γ1]), ρ([γ2])

}
=

∑

x∈(γ1∩γ2)+

ρ ([(γ1 ∪ γ2)x])(264)

−
∑

x∈(γ1∩γ2)−

ρ ([(γ1 ∪ γ2)x]) .

Using the geometric description of the Poisson structure, we can show
that the coordinates defined in (256) and (257) satisfy the canonical Poisson
relations (260). Let us package (256) into the generating function:

(265) Ai(x) ≡ TrN (x−Mi)
−1 =

∞∑

l=0

1

xl+1
TrN M l

i ,

which has a simple geometric meaning as the generating function of the
loops which wind along the same curve (whose holonomy is represented by
Mi) multiple times. Since there is no intersection among these curves, it is
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clear that we have
{
Ai(x),Aj(y)

}
= 0,(266)

for any i, j = 0, 1, . . . , r − 1. Thus we derive

{
α

(α)
i ,α

(β)
j

}
= 0,(267)

for any i, j = 0, 1, . . . , r − 1, α, β = 1, . . . , N .
We can also package (257) into

(268) Bi(x) ≡ TrN Πi (x−Mi)
−1Πi+1 = eβ̃i

N∑

α=1

e−β̃
(α)

i
TrN ΠiΠ

(α)
i

x−m
(α)
i

.

We can re-express this via:

Di(x) ≡ TrN gi (x−Mi)
−1 gi+1(269)

= mimi+1(m
−N
i − 1)(m−N

i+1 − 1)Bi(x)

+mimi+1x
−1

(
Pi−1(m

−1
i x)

Pi(x)
− 1

)

−mim
1−N
i+1 x−1

(
Pi+1(mi+1x)

Pi(x)
− 1

)
+mimi+1Ai(x),

where Pi(x) is the characteristic polynomial of Mi:

Pi(x) = Det(x−Mi) =

N∏

α=1

(
x−m

(α)
i

)
.(270)

In deriving the second equality of (269), we had simple manipulations on
the determinants10 and (251):

Pi−1(m
−1
i x)

Pi(x)
− 1 = x

(
1−m−N

i

)
Tr(Mi − x)−1Πi(271)

Pi(mix)

Pi−1(x)
− 1 = x

(
1−mN

i

)
Tr(Mi−1 − x)−1Πi.(272)

10Use that for any rank one projector Π, and any operator A, Det(1 +AΠ) =
1 + Tr(AΠ)
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The function Di(x) has a simple geometric meaning:

(273) Di(x) =

∞∑

l=0

1

xl+1
TrN giM

l
igi+1

from which it is obvious that {Di(x),Aj(y)} = 0 for i ̸= j (the correspond-
ing loops on the r + 3-punctured sphere do not intersect), as well as that
{Di(x),Dj(y)} = 0 for |i− j| > 1. From these, we derive

{
β̃
(α)
i ,α

(β)
j

}
= 0, i ̸= j, α, β = 1, . . . , N,

{
β̃
(α)
i , β̃

(β)
j

}
= 0, |i− j| > 1, α, β = 1, . . . , N.

(274)

It remains to compute:

(275)

{
Di(x),Ai(y)

}
,

{
Di(x),Di+1(y)

}
, and

{
Di(x),Di(y)

}
,

which are a bit more involved. As we elaborate in appendix E in detail,
the rest of the canonical Poisson relations (260) are obtained out of these
brackets, confirming that the proposed coordinate system is indeed Darboux.

Remarks.

• Other constructions generalizing the NRS-type coordinates were pro-
posed in the SL(2) case in [64], in the arbitrary group case in [56],
and specifically in the SL(3) case in [65]. In [64] and [65], the spectral
coordinates are defined as the holonomies of a (twisted) flat GL(1)-
connection on a line bundle over the N -fold branched covering Σ of
the Riemann surface C, which is a certain uplift (called abelianization)
of the flat SL(N)-connection on C [63]. To give some credit to our con-
struction, as described above, it produces the Darboux coordinates for
arbitrary N in an elementary fashion, albeit only on a specific patch
of the moduli space.
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5.2. The four-punctured sphere

We consider our main example, the four-punctured sphere P1\{0, q, 1,∞}.
The generalized NRS coordinate system on the moduli space

Mflat(SL(N),P1\{0, q, 1,∞})

is just a special case r = 1 of the one defined in the previous section. In this
special case, it is convenient to express the generalized NRS coordinates in
terms of the trace invariants of the holonomies, and take these expressions
as equivalent definitions for those coordinates. Since the dimension of the
moduli space is dimMflat(SL(N),P1\{0, q, 1,∞}) = 2(N − 1), it is enough
to consider two independent cycles on P1\{0, q, 1,∞} which we choose to be
the A-cycle and the B-cycle in Figure 5. We describe how the traces of the
holonomiesMA,B along these cycles are expressed in terms of the generalized
NRS coordinates, for N = 2 and N = 3.

5.2.1. SL(2). We start with the A-cycle. It is clear that we have

MA = M−1
0 =

2∑

α=1

(
m

(α)
0

)−1
Π

(α)
0 .(276)

Thus we find

TrMA =
(
m

(1)
0

)−1
+
(
m

(2)
0

)−1
= e−2πiα

(1)
0 + e−2πiα

(2)
0 .(277)

It is convenient to omit the superscript and write α ≡ α
(1)
0 = −α

(2)
0 . Thus

we have

TrMA = 2 cos 2πα.(278)

Next, we can express the holonomy along the B-cycle as

MB = g2g−1 = g−1
1 g−1

0(279)

= m−1
0 m−1

1

(
12 + (m2

1 − 1)Π1

) (
12 + (m2

0 − 1)Π0

)
.

Thus we find

TrMB = m0m
−1
1 +m−1

0 m1 + (m0 −m−1
0 )(m1 −m−1

1 ) TrΠ0Π1(280)
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Note that we can express the trace in the last term using the β coordinates,

TrΠ0Π1 =

2∑

α=1

TrΠ0Π
(α)
0 Π1(281)

=

2∑

α=1

e−β̃
(α)

0 +β̃0 TrΠ0Π
(α)
0

=

2∑

α=1

TrΠ0Π
(α)
0 TrΠ1Π

(α)
0 + eβ̃

(1)

0 −β̃
(2)

0 TrΠ0Π
(2)
0 TrΠ1Π

(1)
0

+ eβ̃
(2)

0 −β̃
(1)

0 TrΠ0Π
(1)
0 TrΠ1Π

(2)
0 ,

where we have used (258) in the third equality. Using (271) and (272), we can
express the rest of the traces in terms of the α coordinates. For simplicity,

let us define m−1 ≡ m
(1)
−1 and m2 ≡ m

(2)
1 .11 Also we refine the β coordinate

according to the definition (259): β ≡ β̃
(1)
0 − β̃

(2)
0 . Then the final expression

for the trace of the holonomy along the B-cycle is

TrMB =

(
m2 +m−1

2 −m1 −m−1
1

) (
m−1 +m−1

−1 −m0 −m−1
0

)

8 sin2 πα

(282)

+

(
m2 +m−1

2 +m1 +m−1
1

) (
m−1 +m−1

−1 +m0 +m−1
0

)

8 cos2 πα

−
∑

±

(e∓2πiα−m0m−1)(m−1
0 e∓2πiα−m

−1
−1)(e±2πiα−m

−1
1 m

−1
2 )(m1e

±2πiα−m2)

4 sin2 2πα
e±β.

Thus we observe that the coordinates (α,β) determine the traces of the
holonomies along the A-cycle and B-cycle on P1\{0, q, 1,∞} by (278) and
(282). Conversely, we may take these formulas as defining equations for the
coordinates (α,β).

Remarks.

11Not to be confused with the eigenvalue m2 of g2 which appears when r > 1.
Here, we restrict ourselves only to the case r = 1 and there would be no confusion
in notation.
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• For a direct comparison with the coordinates defined in [1], let us
define

(283)
x1 = m−1 +m−1

−1, x2 = m0 +m−1
0 ,

x3 = m2 +m−1
2 , x4 = m1 +m−1

1 .

Also we use the abbreviation

A = TrMA, B = TrMB.(284)

Then we find that (282) becomes

B(A2 − 4) = 2(x1x4 + x2x3)−A(x1x3 + x2x4)

+
(
eβ + e−β

)√
c12(A)c34(A),

(285)

where

cij(A) ≡ A2 −Axixj + x2i + x2j − 4,(286)

under the canonical transformation

β → β +
1

2
log
(
e−2πiα −m0m−1

) (
m−1

0 e−2πiα −m−1
−1

)
(287)

×
(
e2πiα −m−1

1 m−1
2

) (
m1e

2πiα −m2

)

−
1

2
log
(
e2πiα −m0m−1

) (
m−1

0 e2πiα −m−1
−1

)

×
(
e−2πiα −m−1

1 m−1
2

) (
m1e

−2πiα −m2

)
.

The relation (285) is precisely the defining equation for the NRS co-
ordinate β for the four-punctured sphere. Thus we confirm that the
Darboux coordinate system proposed in section 5.1 is a higher-rank
generalization of the NRS coordinate system.

As we will see in section 6, the canonical transformation (287)
amounts to change the boundary contribution to the effective twisted
superpotential. Although the transformed coordinates may be natural
in some context, we will find in section 6 that our original definition
is more natural in the gauge theoretical context. Therefore we stick to
our original definition of the generalized NRS coordinates in section
5.1 without making additional canonical transformation throughout
the discussion.
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5.2.2. SL(3). We begin with the A-cycle holonomy which is clearly con-
jugate to

MA = M−1
0 =

3∑

α=1

(
m

(α)
0

)−1
Π

(α)
0 .(288)

Thus we find

TrM±1
A =

3∑

α=1

(
m

(α)
0

)∓1
= e∓2πiα

(1)
0 + e∓2πiα

(2)
0 + e±2πi(α

(1)
0 +α

(2)
0 ).(289)

For notational convenience, let us define the coordinates without super-
scripts,

αα ≡ α
(α)
0 , α = 1, 2, 3.

α3 = −α1 −α2,
(290)

so that we have

TrM±1
A = e∓2πiα1 + e∓2πiα2 + e±2πi(α1+α2).(291)

The expressions for the holonomy along the B-cycle and its inverse are

M±1
B =

(
g−1
1 g−1

0

)±1
(292)

= m∓1
0 m∓1

1

(
13 + (m±3

1 − 1)Π1

) (
13 + (m±3

0 − 1)Π0

)
.

Thus we obtain

TrM±1
B = m∓1

0 m∓1
1 (1 +m±3

0 +m±3
1 )(293)

+ (m±2
0 −m∓1

0 )(m±2
1 −m∓1

1 ) TrΠ0Π1.
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Again, we can express the trace in the last term using the β coordinates,

TrΠ0Π1 =

3∑

α=1

TrΠ0Π
(α)
0 Π1(294)

=

3∑

α=1

e−β̃
(α)

0 +β̃0 TrΠ0Π
(α)
0

=

3∑

α=1

TrΠ0Π
(α)
0 TrΠ1Π

(α)
0

+
∑

α ̸=β

eβ̃
(α)

0 −β̃
(β)

0 TrΠ0Π
(β)
0 TrΠ1Π

(α)
0 .

The rest of the traces can be expressed in terms of the α coordinates by
using (271) and (272). We also write the refined β coordinates without
superscripts,

βα ≡ β̃
(α)
0 − β̃

(3)
0 , α = 1, 2.(295)

Then the final expressions for the traces of the holonomies along the B-cycle
are

TrM±1
B = B±

0 +B±
12e

β1−β2 +B±
13e

β1 +B±
23e

β2(296)

+B±
21e

−β1+β2 +B±
31e

−β1 +B±
32e

−β2 ,

where

B+
0 = m−1

0 m−1
1 +m2

0m
−1
1 +m−1

0 m2
1

−
m2

0m
−1
1

16

3∑

α=1

∏3
γ=1

(
m−1

0 eπiαα −m
(γ)
−1e

−πiαα

)(
m1e

πiαα −m
(γ)
1 e−πiαα

)

∏
α′ ̸=α sin

2 π(αα −αα′)

B−
0 = m0m1 +m−2

0 m1 +m0m
−2
1

−
m0m

−2
1

16

3∑

α=1

∏3
γ=1

(
m−1

0 eπiαα −m
(γ)
−1e

−πiαα

)(
m1e

πiαα −m
(γ)
1 e−πiαα

)

∏
α′ ̸=α sin

2 π(αα −αα′)

(297)
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and

B+
αβ = −

m2
0m

−1
1

16

∏3
γ=1

(
m−1

0 eπiαβ −m
(γ)
−1e

−πiαβ

)(
m1e

πiαα −m
(γ)
1 e−πiαα

)

∏
α′ ̸=α sinπ(αα′ −αα)

∏
β′ ̸=β sinπ(αβ −αβ′)

B−
αβ = −

m0m
−2
1

16

∏3
γ=1

(
m−1

0 eπiαβ −m
(γ)
−1e

−πiαβ

)(
m1e

πiαα −m
(γ)
1 e−πiαα

)

∏
α′ ̸=α sinπ(αα′ −αα)

∏
β′ ̸=β sinπ(αβ −αβ′)

.

(298)

Therefore, we obtain the traces of the holonomies along the A-cycle and
B-cycle on P1\{0, q, 1,∞} expressed in terms of the generalized NRS coor-
dinates in (291) and (296). We can conversely regard these formulas as the
defining equations for the generalized NRS coordinates {αα,βα |α = 1, 2}.

Remarks.

• After our work has been completed and submitted to the arXiv, we
were informed that the generalized Fenchel-Nielsen spectral coordi-
nates constructed in [65] are equivalent to the ones obtained here in
(291) and (296), up to some simple shifts for the β coordinates. Since
our construction is elementary and does not use the auxiliary con-
structs such as the Seiberg-Witten curve disguised in the form of the
spectral network, we may hope that more general spectral network
constructions of Darboux coordinates could be simplified as well. In
this way we expect our coordinates to match with the (generalized)
Fenchel-Nielsen spectral coordinates in [64, 65] and their higher-rank
analogues [56], possibly up to some simple shifts.

6. Monodromies and generating functions of opers

Finally, we compute the monodromies of opers to find the expressions for
the generalized NRS coordinates restricted to the variety of opers. Since
the variety of opers is a Lagrangian submanifold in the moduli space of flat
connections and the generalized NRS coordinates form a Darboux coordi-

nate system, there exists generating function S
[
ON [P1

2,r+1]
]
for the variety

ON [P1
2,r+1] of opers with respect to the generalized NRS coordinates:

β
(α)
i =

∂S
[
ON [P1

2,r+1]
]

∂α
(α)
i

, i = 0, 1, . . . r − 1, α = 1, . . . , N − 1.(299)
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∞

1 q

0

L
RM

A

B

Figure 5: The A-cycle and the B-cycle on the four-punctured sphere
P1\{0, q, 1,∞}. The double circles represent the maximal punctures at 0
and ∞, while the simple dots represent the minimal punctures at q and 1.
The shaded regions represent the convergence domains L, M , and R, respec-
tively. The A-cycle is represented by the dark blue line, while the B-cycle is
represented by the dark red line.

We verify that the generating function for the variety of opers is identi-
fied with the effective twisted superpotential of the corresponding class-

S theory T
[
AN−1,P

1
2,r+1

]
, for the example of the four-punctured sphere

P1\{0, q, 1,∞}.

The strategy to compute the monodromies of the oper D̂N is to study

the holonomy of the operator
̂̂
DN , and then take the limit ε2 → 0. The

monodromy along the A-cycle is easy to compute: as noted in the section 4,

the solution Z̃
L→M

is defined in the domain 0 < |q| < |z| < 1 (it is easy to
estimate the growth of coefficients of z-expansion to conclude it converges
there). Thus we simply continue along the path

z −→ z eit with 0 ≤ t ≤ 2π,(300)

to enclose the punctures at 0 and q, thereby making the A-cycle. In this
fashion we pick up the multiplicative factors from the non-integral part of
the exponent of z in the perturbative prefactor, and thereby obtain the

holonomy MA(
̂̂
D). The monodromy of the oper D̂ is then computed by

taking the limit:

MA(D̂) = lim
ε2→0

MA(
̂̂
D).(301)
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The monodromy along the B-cycle is more involved. First we need the
rotation matrices R0 and R∞ which are the monodromy matrices for the
2π-rotations around the punctures at 0 and ∞. As noted in section 3, the

solutions Z̃
L
and Z̃

R
are defined by gauge theory as series expansions in the

domains 0 < |q| < 1 < |z| and 0 < |z| < |q| < 1, respectively. Thus we get

R0 by following Z̃
R
along the circle z 7→ z e2πi, and we get R∞ by following

Z̃
L
along the circle z 7→ z e−2πi. For completeness, we give the expressions

for the rotation matrices for the punctures at q and 1 also:

Rq = MAC−1
0 R−1

0 C0

R1 = M−1
A C−1

∞ R−1
∞ C∞.

(302)

It is immediate to see, in the N = 3 case for example, that the eigenvalues
of limε2→0Rq and limε2→0R1 are maximally degenerate, which means they
correspond to minimal punctures. Now for the B-monodromy matrix, we

start from the solution Z̃
L
. By concatenating the connection matrices, the

shift matrices, and the rotation matrices, we construct the following sequence
of continuations of the solutions

Z̃
L C∞−−→ Z̃

L→M S
−→ Z̃

R→M C
−1
0−−→ Z̃

R R
−1
0−−−→ Z̃

R
(303)

C0−−→ Z̃
R→M S−1

−−→ Z̃
L→M C−1

∞−−→ Z̃
L R−1

∞−−−→ Z̃
L
.

Hence the corresponding holonomy is

MB(
̂̂
D) = R∞ C∞ S C−1

0 R0 C0 S
−1 C−1

∞ .(304)

We have seen in section 3.1 that under the NS limit, the solutions Z̃
L
for

̂̂
D

behaves as

Z̃
L
= e

W̃

ε2 (χ+O(ε2)) ,(305)

which leads to the equation for the oper, D̂χ = 0. Therefore, we compute
the B-monodromy for the oper D̂ as

MB(D̂) = lim
ε2→0

MB(
̂̂
D) e

W̃

ε2(306)

= lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S

−1 C−1
∞ e

W̃

ε2 .

Now we exhibit in detail how these computations can actually be done.
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6.1. SL(2)-oper

We obtain the A-monodromy matrix for
̂̂
D2 by letting z make the full circle

z 7→ z e2πi in the expression for Z̃
L→M

. Since the critical exponent for z is
given as (212), we find that

MA(
̂̂
D2) = diag

(
e
2πi

−a1+a2+ε

2ε1 , e
2πi

a1−a2+ε

2ε1

)
.(307)

Then by taking the NS limit (ε1 ̸= 0, ε2 → 0), we obtain the A-monodromy
matrix for the oper D̂2,

MA(D̂2) = lim
ε2→0

MA(
̂̂
D2)(308)

= diag
(
e
2πi

−a1+a2+ε1
2ε1 , e

2πi
a1−a2+ε1

2ε1

)
,

so that

Tr MA(D̂2) = 2 cos 2π

(
a1 − a2 + ε1

2ε1

)
.(309)

Comparing this with (278), we obtain

α =
a1 − a2 + ε1

2ε1
.(310)

Next, we find the expression for the β coordinate by computing the B-
monodromy matrix. It is necessary to compute the rotation matrices first, by

shifting z 7→ z e−2πi and z 7→ z e2πi for Z̃
L
and Z̃

R
, respectively. Since their

critical exponents are given as (210) and (219), we immediately compute

R∞ = diag

(
e
πi

a0,1−a0,2−ε1−2ε2

ε1 , e
πi

−a0,1+a0,2−ε1−2ε2

ε1

)
,

R0 = diag

(
e
πi

−a3,1+a3,2+ε

ε1 , e
πi

a3,1−a3,2+ε

ε1

)
.

(311)

The connection matrices and the shift matrices are given by (206) and (232).
For N = 2, it is easier to write these matrices explicitly. In particular, the
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connection matrices are

C∞ =




Γ
(
1+

a0,1−a0,2

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a0,1−a2

ε1

)
Γ
(

a1−a0,2

ε1

)
Γ
(
1+

a0,1−a0,2

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a0,1−a1

ε1

)
Γ
(

a2−a0,2

ε1

)

Γ
(
1+

a0,2−a0,1

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a0,2−a2

ε1

)
Γ
(

a1−a0,1

ε1

)
Γ
(
1+

a0,2−a0,1

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a0,2−a1

ε1

)
Γ
(

a2−a0,1

ε1

)



,

C0 =




Γ
(
1+

a3,2−a3,1

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a2−a3,1

ε1

)
Γ
(

a3,2−a1

ε1

)
Γ
(
1+

a3,2−a3,1

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a1−a3,1

ε1

)
Γ
(

a3,2−a2

ε1

)

Γ
(
1+

a3,1−a3,2

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a2−a3,2

ε1

)
Γ
(

a3,1−a1

ε1

)
Γ
(
1+

a3,1−a3,2

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a1−a3,2

ε1

)
Γ
(

a3,1−a2

ε1

)



.

(312)

Their inverses can also be computed directly as

C−1
∞ =

a1 − a2
a0,1 − a0,2




Γ
(
1+

a0,2−a0,1

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a0,2−a1

ε1

)
Γ
(

a2−a0,1

ε1

) −
Γ
(
1+

a0,1−a0,2

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a0,1−a1

ε1

)
Γ
(

a2−a0,2

ε1

)

−
Γ
(
1+

a0,2−a0,1

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a0,2−a2

ε1

)
Γ
(

a1−a0,1

ε1

)
Γ
(
1+

a0,1−a0,2

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a0,1−a2

ε1

)
Γ
(

a1−a0,2

ε1

)



,

C−1
0 =

a1 − a2
a3,1 − a3,2




Γ
(
1+

a3,1−a3,2

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a1−a3,2

ε1

)
Γ
(

a3,1−a2

ε1

) −
Γ
(
1+

a3,2−a3,1

ε1

)
Γ
(

a1−a2
ε1

)

Γ
(
1+

a1−a3,1

ε1

)
Γ
(

a3,2−a2

ε1

)

−
Γ
(
1+

a3,1−a3,2

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a2−a3,2

ε1

)
Γ
(

a3,1−a1

ε1

)
Γ
(
1+

a3,2−a3,1

ε1

)
Γ
(

a2−a1
ε1

)

Γ
(
1+

a2−a3,1

ε1

)
Γ
(

a3,2−a1

ε1

)



.

(313)

Now it is straightforward to evaluate the B-monodromy matrix for
̂̂
D2 by

MB(
̂̂
D2) = R∞ C∞ S C−1

0 R0 C0 S
−1 C−1

∞ .(314)

We need to evaluate the trace of the B-monodromy matrix for the SL(2)-
oper D̂2, which is obtained by taking the limit,

TrMB(D̂2) = Tr

(
lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S

−1 C−1
∞ e

W̃

ε2

)
.(315)
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A few pages of computation shows that

TrMB(D̂2)

(316)

=

(
cosπ a3,1−a3,2

ε1
− cosπ 2(ā3−ā)

ε1

)(
cosπ a0,1−a0,2

ε1
− cosπ 2(ā0−ā)

ε1

)

2 sin2 π a1−a2

2ε1

+

(
cosπ a3,1−a3,2

ε1
+ cosπ 2(ā3−ā)

ε1

)(
cosπ a0,1−a0,2

ε1
+ cosπ 2(ā0−ā)

ε1

)

2 cos2 π a1−a2

2ε1

− 4

∏
γ=1,2 sinπ

a2−a0,γ

ε1
sinπ a3,γ−a1

ε1

sin2 π a1−a2

ε1

Γ
(
a1−a2

ε1

)2

Γ
(
a2−a1

ε1

)2

×
∏

γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)

Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

)e
(

∂

∂a1
− ∂

∂a2

)
W̃

− 4

∏
γ=1,2 sinπ

a1−a0,γ

ε1
sinπ a3,γ−a2

ε1

sin2 π a1−a2

ε1

×



Γ
(
a1−a2

ε1

)2

Γ
(
a2−a1

ε1

)2
∏

γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)

Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

)




−1

e
−
(

∂

∂a1
− ∂

∂a2

)
W̃

It is crucial to note that the products of Γ-functions in the third and the
fourth lines can be absorbed as the 1-loop part of the effective twisted su-
perpotential of the A1-theory computed under the ζ-function regularization
(see (A.33) and its derivation above), namely,

(
∂

∂a1
−

∂

∂a2

)
W̃1-loop = log

Γ
(
a1−a2

ε1

)2

Γ
(
a2−a1

ε1

)2
∏

γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)

Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

) .

(317)

Hence we define the full effective twisted superpotential by

W̃full ≡ W̃classical + W̃1-loop + W̃inst + W̃extra,(318)



✐

✐

“4-Jeong” — 2021/8/17 — 2:24 — page 1879 — #91
✐

✐

✐

✐

✐

✐

Opers, surface defects, and Yang-Yang functional 1879

where the 1-loop part is given in (A.29) and the other parts have been
obtained in (118),

W̃classical = −
(a1 − a2)

2

4ε1
log q(319a)

W̃1-loop = lim
ε2→0

ε2 log

∏2
α,β=1 Γ2(aα−aβ ;ε1,ε2)∏2

α,β=1 Γ2(aα−a0,β ;ε1,ε2)Γ2(a3,α−aβ ;ε1,ε2)
(319b)

W̃inst = lim
ε2→0

ε2 logZ
inst
A1

(319c)

W̃extra = ε1

(
1

4
− δ2 − δ3

)
log q(319d)

+
2(ā0 − ā)(ā− ā3 + ε1)

ε1
log(1− q).

Thus the expression for the trace of the B-monodromy matrix is simpli-
fied with the full effective twisted superpotential W̃full. Let us also make
an overall shift for the Coulomb moduli and the masses of the hypermulti-
plets to recover the SU(2) parameters (see section 2). The final form of the
expression is

TrMB(D̂2) =

(
cosπ a3,1−a3,2

ε1
− cosπ 2ā3

ε1

)(
cosπ a0,1−a0,2

ε1
− cosπ 2ā0

ε1

)

2 cos2 πα

+

(
cosπ a3,1−a3,2

ε1
+ cosπ 2ā3

ε1

)(
cosπ a0,1−a0,2

ε1
+ cosπ 2ā0

ε1

)

2 sin2 πα

−
∑

±

4

∏
γ=1,2 cosπ

(
∓α− a0,γ

ε1

)
cosπ

(
a3,γ

ε1
∓α

)

sin2 2πα
e
± 1

ε1

∂W̃
full

∂α .

(320)

This expression exactly matches with (282) under the identification of pa-
rameters,

m−1 = e
πi

a0,1−a0,2−ε1

ε1 , m0 = e
πi

a0,1+a0,2

ε1 ,

m1 = e
−πi

a3,1+a3,2

ε1 , m2 = e
πi

−a3,1+a3,2+ε1

ε1 .
(321)

Most importantly, we observe that

β =
1

ε1

∂W̃full

∂α
.(322)
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Consequently, the generating function for the variety O2[P
1\{0, q, 1,∞}] of

opers is identified with the effective twisted superpotential, namely,

S
[
O2[P

1\{0, q, 1,∞}]
]
=

1

ε1
W̃full

[
T [A1,P

1\{0, q, 1,∞}]
]
,(323)

by the relation (322). This identification verifies the main assertion of [1] for
all orders in the gauge coupling q.

Remarks.

• The equivalence (323) involves an extra term in the effective twisted
superpotential, W̃extra. Note that W̃extra has been completely deter-
mined in gauge theoretical terms in (319d).

• The regularization scheme that has been used to define the 1-loop
part W̃1-loop was the ζ-function regularization, which is natural in the
gauge theory context. Note that it is free to choose other schemes
to regularize the infinite product, or the IR divergence, in the 1-loop
contribution. The other choices would lead to the correction in the
effective twisted superpotential of the form,

W̃∞ ∼ Li2 e
l(a,a0,a3),(324)

where l is some linear function of the arguments. Physically, IR reg-
ulator corresponds to cutting the cigar D2 (16) at the infinity. Thus
the correction W̃∞ to the effective twisted superpotential can be in-
terpreted as the contribution from a three-dimensional theory coupled
to the four-dimensional bulk theory at the boundary at infinity. Note
that W̃∞ is independent of the coupling q. Hence this correction to the
effective twisted superpotential corresponds to a canonical coordinate
transformation.

6.2. SL(3)-oper

Using the critical exponent (225) of z, we see that under the z 7→ z e2πi loop

the partition function Z̃
L→M

transforms by

MA(
̂̂
D3) = diag

(
e
2πi

−2a1+a2+a3+3ε

3ε1 , e
2πi

a1−2a2+a3+3ε

3ε1 , e
2πi

a1+a2−2a3+3ε

3ε1

)
.

(325)
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Hence, by taking the limit ε2 → 0, we obtain

MA(D̂3) = lim
ε2→0

MA(
̂̂
D3)

= diag
(
e
2πi

−2a1+a2+a3
3ε1 , e

2πi
a1−2a2+a3

3ε1 , e
2πi

a1+a2−2a3
3ε1

)
.

(326)

Comparing with (291), we find

αα =
3aα −

∑3
γ=1 aγ

3ε1
, α = 1, 2,(327)

so that we have

TrMA(D̂3)
±1 = e∓2πiα1 + e∓2πiα2 + e±2πi(α1+α2).(328)

For notational convenience, let us also define α3 ≡ −α1 −α2 as before.
Next, we obtain the expression for the β coordinates restricted to the

variety of opers by evaluating the B-monodromy matrix. First, we compute

the rotation matrices by shifting z 7→ z e−2πi and z 7→ z e2πi for Z̃
L
and Z̃

R
,

respectively. From their critical exponents (132) and (149) we get

R∞ = diag
(
e
2πi

2a0,1−a0,2−a0,3−3ε−2ε2

3ε1 , e
2πi

−a0,1+2a0,2−a0,3−3ε−2ε2

3ε1 ,

e
2πi

−a0,1−a0,2+2a0,3−3ε−2ε2

3ε1

)
,

R0 = diag
(
e
2πi

−2a3,1+a3,2+a3,3+3ε

3ε1 , e
2πi

a3,1−2a3,2+a3,3+3ε

3ε1 ,

e
2πi

a3,1+a3,2−2a3,3+3ε

3ε1

)
.

(329)

Then the B-monodromy matrix for
̂̂
D3 is obtained by (304)

MB(
̂̂
D3) = R∞ C∞ S C−1

0 R0 C0 S
−1 C−1

∞ ,(330)

where the connection matrices and the shift matrices are given by (206) and
(232). The B-monodromy matrix for the oper D̂3 is obtained by taking the
limit,

MB(D̂3) = lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S

−1 C−1
∞ e

W̃

ε2 .(331)
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To determine the β coordinates, we need to compute the following traces of
MB(D̂3)

TrMB(D̂3) = Tr

(
lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S

−1 C−1
∞ e

W̃

ε2

)

TrMB(D̂3)
−1 = Tr

(
lim
ε2→0

C∞ S C−1
0 R−1

0 C0 S
−1 C−1

∞ R−1
∞ e

W̃

ε2

)
.

(332)

The computation of these traces can be broken in several steps. First note
that

TrMB(D̂3) = Tr

(
lim
ε2→0

(C−1
∞ R∞ C∞) S (C−1

0 R0 C0) S
−1 e

W̃

ε2

)
,(333)

due to the limit ε2 → 0. Then

TrMB(D̂3) =

3∑

α,β=1

(C∞)βα (C0)αβ e

(
∂

∂aα
− ∂

∂aβ

)
W̃

,(334)

where we have defined

(C∞)αβ ≡

(
lim
ε2→0

C−1
∞ R∞ C∞

)

αβ

(335)

= e
iπ

ε1
(aα+aβ−2ā0)


δα,β − 2i e

3πi

ε1
(ā0−ā)

∏
β′ ̸=β Γ

(
aβ−aβ′

ε1

)

∏
α′ ̸=α Γ

(
aα−aα′

ε1

)
sinπ aα−aα′

ε1

×

3∏

α′=1

Γ
(
aα−a0,α′

ε1

)
sinπ

aα−a0,α′

ε1

Γ
(
aβ−a0,α′

ε1

)


 ,
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and

(C0)αβ ≡

(
lim
ε2→0

C−1
0 R0 C0

)

αβ

(336)

= e
iπ

ε1
(−aα−aβ+2ā3)


δα,β − 2i e

3πi

ε1
(−ā3+ā)

∏
β′ ̸=β Γ

(
aβ′−aβ

ε1

)

∏
α′ ̸=α Γ

(
aα′−aα

ε1

)
sinπ aα′−aα

ε1

×

3∏

α′=1

Γ
(
a3,α′−aα

ε1

)
sinπ

a3,α′−aα

ε1

Γ
(
a3,α′−aβ

ε1

)


 .

Similarly, we can write

TrMB(D̂3)
−1 = Tr

(
lim
ε2→0

S (C−1
0 R−1

0 C0) S
−1 (C−1

∞ R−1
∞ C∞) e

W̃

ε2

)
,

=

3∑

α,β=1

(C−1
0 )αβ (C−1

∞ )βα e

(
∂

∂aα
− ∂

∂aβ

)
W̃

,(337)

where we have used

(C−1
∞ )αβ =

(
lim
ε2→0

C−1
∞ R−1

∞ C∞

)

αβ

(338)

= e
iπ

ε1
(−aα−aβ+2ā0)


δα,β + 2i e

3πi

ε1
(−ā0+ā)

∏
β′ ̸=β Γ

(
aβ−aβ′

ε1

)

∏
α′ ̸=α Γ

(
aα−aα′

ε1

)
sinπ aα−aα′

ε1

×

3∏

α′=1

Γ
(
aα−a0,α′

ε1

)
sinπ

aα−a0,α′

ε1

Γ
(
aβ−a0,α′

ε1

)


 ,
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and

(C−1
0 )αβ =

(
lim
ε2→0

C−1
0 R−1

0 C0

)

αβ

(339)

= e
iπ

ε1
(aα+aβ−2ā3)


δα,β + 2i e

3πi

ε1
(ā3−ā)

∏
β′ ̸=β Γ

(
aβ′−aβ

ε1

)

∏
α′ ̸=α Γ

(
aα′−aα

ε1

)
sinπ aα′−aα

ε1

×

3∏

α′=1

Γ
(
a3,α′−aα

ε1

)
sinπ

a3,α′−aα

ε1

Γ
(
a3,α′−aβ

ε1

)


 .

Therefore, the traces can be expressed as

TrMB(D̂3)
±1 = B±

0 +
∑

α ̸=β

B̃±
αβ e

(
∂

∂aα
− ∂

∂aβ

)
W̃

,(340)

where we have computed the coefficients as

B±
0 ≡

3∑

α=1

(
C
±1
0

)
αα

(
C
±1
∞

)
αα

,(341)

and

B̃±
αβ ≡

(
C
±1
0

)
αβ

(
C
±1
∞

)
βα

(342)

= −4e
±iπ

ā0−ā3
ε1

∏3
γ=1 sinπ

aβ−a0,γ

ε1
sinπ a3,γ−aα

ε1∏
α′ ̸=α sinπ

aα′−aα

ε1

∏
β′ ̸=β sinπ

aβ−aβ′

ε1

×
∏

α′ ̸=α

Γ
(
aα−aα′

ε1

)

Γ
(
aα′−aα

ε1

)
∏

β′ ̸=β

Γ
(
aβ′−aβ

ε1

)

Γ
(
aβ−aβ′

ε1

)

×

3∏

γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)

Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) .

It is crucial to note that the last line of (342) is precisely the contribution
from 1-loop part of the effective twisted superpotential of the A1-theory,
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under the ζ-function regularization (see (A.33) and its derivation above),

(
∂

∂aα
−

∂

∂aβ

)
W̃1-loop = log

∏

α′ ̸=α

Γ
(
aα−aα′

ε1

)

Γ
(
aα′−aα

ε1

)
∏

β′ ̸=β

Γ
(
aβ′−aβ

ε1

)

Γ
(
aβ−aβ′

ε1

)(343)

×

3∏

γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)

Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) .

We define the full effective twisted superpotential by

W̃full ≡ W̃classical + W̃1-loop + W̃inst + W̃extra.(344)

Here, the 1-loop part of the effective twisted superpotential is given in (A.29)
and the rest was obtained in (141),

W̃classical = −
(a1 − a2)

2 + (a1 − a3)
2 − (a1 − a2)(a1 − a3)

3ε1
log q(345a)

W̃1-loop = lim
ε2→0

ε2 log

∏3
α,β=1 Γ2(aα−aβ ;ε1,ε2)∏3

α,β=1 Γ2(aα−a0,β ;ε1,ε2)Γ2(a3,α−aβ ;ε1,ε2)
(345b)

W̃inst = lim
ε2→0

ε2 logZ
inst
A1

(345c)

W̃extra = ε1 (1− δq − δ0) log q(345d)

+
3(ā− ā3 + ε)(ā0 − ā)

ε1
log(1− q).

Again, the expression for the traces of the B-monodromy matrix are sim-
plified with the full effective twisted superpotential W̃full. Let us make an
overall shift of the Coulomb moduli and the masses of the hypermultiplets
to recover the SU(3) parameters (see section 2). Then we get the final ex-
pressions for the traces of the B-monodromy:

TrMB(D̂3)
±1(346)

= B±
0 +B±

12 e
1

ε1

(
∂

∂α1
− ∂

∂α2

)
W̃

full

+B±
13 e

1

ε1

∂W̃
full

∂α1 +B±
23 e

1

ε1

∂W̃
full

∂α2

+B±
21 e

− 1

ε1

(
∂

∂α1
− ∂

∂α2

)
W̃

full

+B±
31 e

− 1

ε1

∂W̃
full

∂α1 +B±
32 e

− 1

ε1

∂W̃
full

∂α2 ,
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where the coefficients are computed as

B±
0 = 3e

± 2πi

ε1
(ā3−ā0) ± 2i e

± iπ

ε1
(2ā3+ā0) sinπ

3ā0
ε1

(347)

∓ 2i e
∓ iπ

ε1
(ā3+2ā0) sinπ

3ā3
ε1

− 4e
± iπ

ε1
(ā0−ā3)

3∑

α=1

∏3
γ=1 sinπ

(
αα −

a0,γ

ε1

)
sinπ

(
a3,γ

ε1
−αα

)

∏
α′ ̸=α sin

2 π (αα −αα′)

and

B±
αβ = −4e

±iπ
ā0−ā3

ε1

∏3
γ=1 sinπ

(
αβ −

a0,γ

ε1

)
sinπ

(
a3,γ

ε1
−αα

)

∏
α′ ̸=α sinπ (αα′ −αα)

∏
β′ ̸=β sinπ (αβ −αβ′)

.(348)

We observe the precise agreement between (296) and (346) under the iden-
tification of parameters,

m
(α)
−1 = e

2πi
a0,α−ā0

ε1 , m
(α)
1 = e

2πi
a3,α−ā3

ε1 , α = 1, 2,

m0 = e
2πi

ā0
ε1 , m1 = e

−2πi
ā3
ε1 .

(349)

Most importantly, we find

βα =
1

ε1

∂W̃full

∂αα
, α = 1, 2.(350)

Therefore, we verify that the generating function for the variety
O3[P

1\{0, q, 1,∞}] of opers with respect to the generalized NRS coordinate
system is identical to the effective twisted superpotential, namely,

S
[
O3[P

1\{0, q, 1,∞}]
]
=

1

ε1
W̃full

[
T [A2,P

1\{0, q, 1,∞}]
]
,(351)

by the relation (350).

Remarks.

• The validity of the equivalence (351) at the 1-loop level was checked in
[65].12 The gauge theoretical derivation of (351) that we have shown
guarantees its validity at all orders in the gauge coupling q.

12In [65], a different, the so-called Liouville/Toda regularization scheme was used.
Although Liouville/Toda scheme is natural in the context of the AGT correspon-
dence [40], the ζ-function regularization arises more naturally in the gauge theo-
retical context. Besides, the ζ-function regularization has a notational advantage
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6.3. Higher SL(N)-oper

It is straightforward to generalize the procedure to the higher SL(N)-opers
D̂N on P1\{0, q, 1,∞}. We schematically describe how we proceed. First, we
need to express the traces of the holonomies of the flat SL(N)-connections
in terms of the generalized NRS coordinates, as we did for N = 2 and N = 3
in section 5.2. It is clear that the holonomy along the A-cycle is still given
by

MA = M−1
0 =

N∑

α

(
m

(α)
0

)−1
Π

(α)
0 .(352)

Hence we obtain

TrMk
A =

N∑

α=1

(
m

(α)
0

)−k

, k = 1, . . . , N − 1.(353)

The holonomy along the B-cycle is written as

MB = g−1
1 g−1

0(354)

= m−1
0 m−1

1

(
1N + (mN

1 − 1)Π1

) (
1N + (mN

0 − 1)Π0

)
.

Due to the properties of the projection operators, we have

Tr (Π0Π1)
k = (TrΠ0Π1)

k , k ∈ Z
>0.(355)

Thus we can expand the traces of (354) as a polynomial in TrΠ0Π1,

TrMk
B = m−k

0 m−k
1 (N − 2 +mNk

0 +mNk
1 )(356)

+ · · ·+m−k
0 m−k

1 (mN
0 − 1)k(mN

1 − 1)k (TrΠ0Π1)
k ,

in that the defining equations for the generalized NRS coordinates (291), (296) are
written more simply without any Γ-functions or square roots.
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for any k = 1, . . . , N − 1. Since we can express TrΠ0Π1 by the β coordinates,

TrΠ0Π1 =

N∑

α=1

TrΠ0Π
(α)
0 Π1(357)

=

N∑

α=1

e−β̃
(α)

0 +β̃ TrΠ0Π
(α)
0

=

N∑

α=1

TrΠ0Π
(α)
0 TrΠ1Π

(α)
0

+
∑

α ̸=β

eβ̃
(α)

0 −β̃
(β)

0 TrΠ0Π
(β)
0 TrΠ1Π

(α)
0 ,

we obtain the representation of the traces (356) in terms of the generalized

NRS coordinates αα, βα ≡ β̃
(α)
0 − β̃

(N)
0 .

Next, we evaluate the monodromies of the oper D̂N . By shifting z 7→

z e2πi for Z̃
L→M

we compute MA(
̂̂
DN ). The A-monodromy matrix for the

oper D̂N is then

MA(D̂N ) = lim
ε2→0

MA(
̂̂
DN ),(358)

which can be expressed in terms of the α coordinates by comparing its traces

with (353). We also compute the B-monodromy for
̂̂
DN by

MB(
̂̂
DN ) = R∞ C∞ S C−1

0 R0 C0 S
−1 C−1

∞ ,(359)

from which we compute the B-monodromy matrix for the oper D̂N as

MB(D̂3) = lim
ε2→0

MB(
̂̂
DN ) e

W̃

ε2(360)

= lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S

−1 C−1
∞ e

W̃

ε2 .

Then we find the expressions for the traces

TrMB(D̂N )k, k = 1, . . . , N − 1.(361)

By comparing these expressions with (356), we find that

βα =
1

ε1

∂W̃full

∂αα
, α = 1, . . . , N − 1.(362)
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This relation verifies that the generating function for the variety
ON [P1\{0, q, 1,∞}] of opers in the generalized NRS coordinate system
{αα,βα | α = 1, . . . , N − 1} is identical to the effective twisted superpoten-
tial:

S
[
ON [P1\{0, q, 1,∞}]

]
=

1

ε1
W̃full

[
T [AN−1,P

1\{0, q, 1,∞}]
]
.(363)

7. Discussion

We have shown that non-perturbative Dyson-Schwinger equations for the
class-S theories with the insertion of a surface defect produce the operators
̂̂
D annihilating their partition functions. These operators were reduced to
the opers D̂ in the limit ε2 → 0, providing an explicit relation between the
holomorphic coordinates on the variety of opers and the expectation values
of the chiral observables in the limit ε2 → 0. The surface defect partition

functions, i.e., the solutions to
̂̂
D, were analytically continued to different

convergence domains and glued together in the intermediate domain. This
procedure enabled the computation of the monodromies of the solutions to
̂̂
D, and therefore the monodromies of the opers D̂ by taking the limit ε2 → 0.
We constructed a higher-rank generalization of the NRS coordinate system,
and represented the monodromies of opers in terms of these coordinates.
The effective twisted superpotential arose as the generating function for the
variety of opers in the generalized NRS coordinate system by construction.

We believe that the subject deserves more investigations in various as-
pects. Let us consider the example of g = A1. We have constructed the
Darboux coordinate system (α,β) in which the generating function for the
variety O2[C] oper D̂2 is identified with the effective twisted superpotential.
Meanwhile, O2[C] is a a Lagrangian submanifold of Mflat(SL(2),C), which is

spanned by the off-shell spectra u2 = limε2→0

〈
O2

〉
for fixed gauge couplings

q. The variation of the gauge couplings, i.e., the elements of the Teichmüller
space T[C] of C, gives the foliation of the moduli space Mflat(SL(2),C) by the
leaves of the varieties of opers with varying gauge couplings. Thus there ex-
ists another Darboux coordinate system (τ2 = log q, u2) on Mflat(SL(2),C)
induced from the identification Mflat(SL(2),C) ≃ T ∗T[C]. We observe that
the relations

β =
1

ε1

∂W̃

∂α
, u2 =

∂W̃

∂τ2
,(364)
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identify the effective twisted superpotential with the generating function for
the canonical transformation of the Darboux coordinate systems,

(τ2, u2)
W̃
←−−→ (α,β).(365)

Let us consider generalizing this relation to the higher rank g = A2, for
a fixed Riemann surface, say, P1

2,r+1. We still have the generalized NRS

coordinate system {α
(α)
i ,β

(α)
i | i = 0, 1, . . . , r − 1, α = 1, . . . , N − 1} on one

hand, but it is apparent that the variation on the Teichmüller space T[P1
2,r+1]

does not saturate the half of the dimension of the moduli space, since the
dimension of the moduli space increases as the rank increases,

dimMflat(SL(3),P
1
2,r+1) = 2r(N − 1) = 4r,

while the dimension of the Teichmüller space is independent of the rank,
dimT[P1

2,r+1] = r. In other words, we need r more parameters τi,3 to form a
Darboux coordinate system,

{τi,2, τi,3, ui,2, ui,3 | i = 1, . . . , r},(366)

in which the effective twisted superpotential produces the spectrum ui,3 =

limε2→0

〈
Oi,3

〉
of the higher Hamiltonian Oi,3 = Trϕ3

i
under the differentia-

tion with respect to τi,3. Then the effective twisted superpotential becomes
the generating function for the canonical transformation between Darboux
coordinate systems, through the relations

β
(α)
i =

1

ε1

∂W̃

∂α
(α)
i

, i = 0, 1, . . . , r − 1, α = 1, . . . , N − 1,(367)

ui,2 =
∂W̃

∂τi,2
, ui,3

?
=

∂W̃

∂τi,3
, i = 1, . . . , r.(368)

But what is the meaning of the parameters τi,3?
In the gauge theory side, the meaning of τi,3 is clear. As investigated in

[18], we may extend the theory by manually adding the higher times to the
microscopic action,

L =

r∑

i=1

τi,2

∫
d4θ TrΦ2

i + τi,3

∫
d4θ TrΦ3

i ,(369)
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whose partition function can still be computed by equivariant localization
as, schematically,

Zinst(a,m, ε1, ε2; τ2, τ3) =
∑

λ

r∏

i=1

q
|λ(i)|
i

exp

[
r∑

i=1

τi,3 Oi,3[λ]

]
µλ(a,m, ε1, ε2).

(370)

Under the limit ε2 → 0, the partition function shows the asymptotic behav-
ior,

Zinst(a,m, ε1, ε2; τ2, τ3) = e
W̃(a,m,ε1;τ2,τ3)

ε2 (1 +O(ε2)) .(371)

Then it is straightforward that we produce the relation

ui,3 = lim
ε2→0

〈
Oi,3

〉
=

∂W̃

∂τi,3
.(372)

Therefore, the extra parameters that foliate the remaining orthogonal direc-
tions to the varieties of opers are the higher times of the extended theory.
The varieties O3[C] of opers such as (144) are located at τi,3 = 0 and only
probe the τi,2-variations.

The question is, then, what the extended opers are, which rise under
the flow along the directions of the higher times. When re-phrased in terms

of the qq-characters, the problem is to derive proper extended operators
̂̂
D

from the non-perturbative Dyson-Schwinger equations of the extended the-
ories with an insertion of a surface defect. The limit ε2 → 0 of these objects
would yield the desired extended opers. Note that the expectation values
of Oi,3 would be compensated by the derivatives with respect to τi,3, so
that the issue of equating the analytically continued expectation values in
the intermediate domain would also be resolved with this enhancement. It
is not clear, however, how to derive meaningful expressions for these ex-

tended quantized opers
̂̂
D as of yet, so we leave this to future work. The

variation along the higher times has many different manifestations. It cor-
responds to varying the higher Teichmüller structures studied in [54, 55],
flowing along the higher Hamiltonians in the isomonodromic deformation of
Fuchsian systems, and properly extending the Hamilton-Jacobi formulation
of the Painlevé equations discussed in [2] to the higher order Painlevé-type
equations. It would be interesting to see how the extended gauge theory ties
up these different realms of mathematical physics.
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In the context of the BPS/CFT correspondence, the subject reveals still
another feature along the line of [40]. The well-established relation between
the partition functions of T [AN−1,C] and the correlation functions of AN−1-
Toda CFTs has to be extended when we deal with the higher ranks N ≥ 3.
Namely, we start to face the expectation values of higher chiral observables
in the gauge theory side, which cannot be compensated by the derivatives
of gauge couplings, and they are supposed to correspond to the correlation
functions with inclusion ofW-descendant fields in the CFT side. The precise
dictionary between the two objects are yet to be accomplished. The real-
ization of the higher times of the extended theories in the CFT side is even
more unclear. The free field representation of the monodromies of degenerate
fields studied in [71] can be relevant for this study.

Another problem related to this work is the generalized NRS coordinate
systems corresponding to the non-Lagrangian theories. It is well-known that
the higher rank class-S theories do not always admit Lagrangian descrip-
tions. Our computation of monodromy data of opers heavily utilized the
availability of the exact computations of the partition functions and the ex-
pectation values of the chiral observables. For the non-Lagrangian theories,
it is not even clear what the instanton counting means. Nevertheless, the
Fuchsian systems with the prescribed monodromies around the punctures
are still well-defined, and we may wonder if it is possible to explicitly link the
accessory parameters of the corresponding opers and the expectation values
of the chiral observables in the non-Lagrangian theories. In the case when
the non-Lagrangian theory is S-dual to a Lagrangian theory, it is desirable to
explicitly construct the coordinate transformation [1] between the relevant
generalized NRS coordinate systems and investigate their field theoretical
meaning.

Appendix A. Partition functions of N = 2 supersymmetric
quiver gauge theories

We give a brief review on the partition functions of the N = 2 quiver gauge
theories. For more details on this subject, see [26, 27].

For an oriented graph γ, we denote the sets of its vertices and edges and
Vertγ and Edgeγ , respectively. We define s, t : Edgeγ → Vertγ as the maps
which send an edge to its source and target, respectively. For each vertex
we assign two integers,

n = (ni)i∈Vertγ ∈
(
Z
>0
)Vertγ

, m = (mi)i∈Vertγ ∈
(
Z
≥0
)Vertγ

.(A.1)
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The N = 2 quiver gauge theory associated to γ is the four-dimensional N = 2
supersymmetric gauge theory, whose gauge group is

Gg =
ą

i∈Vertγ

U(ni),(A.2)

and whose flavor group is

Gf =


 ą

i∈Vertγ

U(mi)× U(1)Edgeγ



/

U(1)Vertγ .(A.3)

Here the overall U(1)Vertγ transformation has been mod out due to the gauge
symmetry,

(ui)i∈Vertγ :
(
(gi)i∈Vertγ , (ue)e∈Edgeγ

)
(A.4)

7→
(
(uigi)i∈Vertγ , (us(e)ueu

−1
t(e))e∈Edgeγ

)
.

The field contents of the theory are the following: the vector multiplets
Φ = (Φi)i∈Vertγ in the adjoint representation of Gg, the fundamental hyper-
multiplets Qfund = (Qi)i∈Vertγ in the fundamental representation of Gg and
the antifundamental representation of Gf , and finally the bifundamental
hypermultiplets Qbifund = (Qe)e∈Edgeγ in the bifundamental representation
(ns(e), nt(e)) of Gg. The N = 2 supersymmetric action is then fixed up to the
gauge couplings,

qi = exp(2πiτi)

(
τi =

ϑi

2π
+

4πi

g2
i

)
, i ∈ Vertγ ,(A.5)

and the masses of the hypermultiplets,

m = ((mi)i∈Vertγ , (me)e∈Edgeγ ),

mi = diag(mi,1, . . . ,mi,mi
) ∈ End(Cmi), me ∈ C.(A.6)

The global symmetry group of the theory is

H = Gg ×Gf ×Grot,(A.7)

where Gg (A.2) is the group of global gauge symmetry, Gf (A.3) is the
group of flavor symmetry, and Grot = SO(4) is the group of the Lorentz
symmetry. We turn on equivariant parameters for the maximal torus TH ⊂
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H. The equivariant parameters for Gg is the vacuum expectation values of
the complex scalars,

⟨Φi⟩ = ai, ai = diag(ai,1, . . . , ai,ni
) ∈ End(Cni), i ∈ Vertγ .(A.8)

The equivariant parameters for Gf is the masses of the hypermultiplets
(A.6). Finally the equivariant parameters for Grot is the Ω-deformation pa-
rameters ε1, ε2. The partition function of the theory is a function of these pa-
rameters (a,m , ε) ∈ Lie(TH). In expressing the partition function, we abuse
our notation and denote the vector spaces and their TH -equivariant charac-
ters in the same letters. Hence we write

Ni =

ni∑

α=1

eβai,α , Mi =

mi∑

f=1

eβmi,f .(A.9)

It is helpful to use the following notation for abbreviated expressions,

qi ≡ eβεi , Pi ≡ 1− qi i = 1, 2,

q12 ≡ q1q2, P12 ≡ (1− q1)(1− q2).
(A.10)

The partition function factors into the classical, one-loop, and the instanton
parts:

Z(a,m, ε, q) = Zclassical Z1-loop Zinst.(A.11)

The classical part is given by

Zclassical(a, ε, q) =
∏

i∈Vertγ

q
− 1

2ε1ε2

∑
ni
α=1 a

2
i,α

i
.(A.12)

The one-loop part is given by

Z1-loop(a,m, ε) = ϵ


 1

(1− e−βε1)(1− e−βε2)

(A.13)

×


 ∑

i∈Vertγ

(Mi −Ni)N
∗
i +

∑

e∈Edgeγ

eβmeNt(e)N
∗
s(e)




,
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where the ϵ-symbol is defined by

ϵ [· · · ] ≡ exp

[
d

ds

∣∣∣∣∣
s=0

1

Γ(s)

∫ ∞

0
dββs−1[· · · ]

]
,(A.14)

which converts a character into a product of weights. In particular, the
ϵ-symbol regularizes an infinite product of weights such as (A.13) by the
Barnes double gamma function,

Γ2(x; ε1, ε2) ≡ exp

[
−

d

ds

∣∣∣∣∣
s=0

1

Γ(s)

∫ ∞

0
dββs−1 e−βx

(1− e−βε1)(1− e−βε2)

]
.

(A.15)

The instanton part Zinst is obtained by a TH -equivariant integral over
the instanton moduli space. Given the vector of the instanton charges k =
(ki)i∈Vertγ ∈ Z≥0, the total framed noncommutative instanton moduli space
of the quiver gauge theory for γ is

Mγ(n,k) ≡
ą

i∈Vertγ

M(ni, ki),(A.16)

where M(ni, ki) is the ADHM moduli space

M(n, k) =

{
B1,2 : K → K,

I : N → K, J : K → N

∣∣∣∣∣
[B1, B2] + IJ = 0,

[B1, B1
†] + [B2, B2

†] + II† − J†J = ζ

}/
U(k).

(A.17)

(N = C
n,K = C

k)

Solving the real moment map equation [B1, B1
†] + [B2, B2

†] + II† − J†J =
ζ and dividing by the compact U(k) is equivalent to imposing the stability
condition and dividing by the complex group GL(k),

M(n, k) =

{
B1,2 : K → K,

I : N → K, J : K → N

∣∣∣∣∣
[B1, B2] + IJ = 0,
K = C[B1, B2] I(N)

}/
GL(k).

(A.18)

The TH -equivariant integration over the instanton moduli space (A.16) lo-
calizes on the set of fixed points of TH -action, Mγ(n,k)

TH , which is the set
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of colored partitions λ = ((λ(i,α))ni

α=1)i∈Vertγ , where each λ(i,α) is a partition,

λ(i,α) =
(
λ
(i,α)
1 ≥ λ

(i,α)
2 ≥ · · · ≥ λ

(i,α)
l(λ(i,α))

> λ
(i,α)
l(λ(i,α))+1

= · · · = 0
)
,(A.19)

with the size |λ(i,α)| =
∑l(λ(i,α))

i=1 λ
(i,α)
i = ki,α constrained by ki =

∑
α ki,α =

|λ(i)| [15, 16]. At each fixed point λ, the vector space Ki carries a represen-
tation of TH with the weights given by the formula

Ki[λ] =

ni∑

α=1

∑

□∈λ(i,α)

eβc□ ,(A.20)

where we have defined the content of the box,

c□ = ai,α + ε1(i− 1) + ε2(j − 1)(A.21)

for □ = (i, j) ∈ λ(i,α) ⇐⇒ 1 ≤ j ≤ λ
(i,α)
i .

The tangent bundle and the matter bundle comprise the character

T[λ] =
∑

i∈Vertγ

(NiK
∗
i + q12N

∗
i Ki − P12KiK

∗
i −M∗

i Ki)

−
∑

e∈Edgeγ

eβme(Nt(e)K
∗
s(e) + q12N

∗
s(e)Kt(e) − P12Kt(e)K

∗
s(e)),(A.22)

associated to each fixed point λ ∈Mγ(n,k)
TH . At last the instanton part of

the partition function is evaluated by

Zinst(a;m ; ε; q) =
∑

λ

∏

i∈Vertγ

q
|λ(i)|
i

ϵ [T[λ]] ,(A.23)

where we have used the ϵ-symbol (A.14). Note that the one-loop part and
the instanton part can be combined into

Z1-loop(a,m, ε) Zinst(a;m ; ε; q)(A.24)

=
∑

λ

∏

i∈Vertγ

q
|λ(i)|
i

ϵ


 1

(1− e−βε1)(1− e−βε2)

×


 ∑

i∈Vertγ

(Mi − Si)S
∗
i +

∑

e∈Edgeγ

eβmeSt(e)S
∗
s(e)




,

with the character Si ≡ Ni − P12Ki.
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The regularized characteristic polynomials of the adjoint scalars form
important chiral observables, called the Y-observables, are defined by

Yi(x) ≡ xni exp

∞∑

l=1

−
1

lxl
Tr Φl

i|0,(A.25)

Their expressions at the fixed point λ are written as

Yi(x)[λ] =

ni∏

α=1

(
(x− ai,α)

∏

□∈λ(i,α)

(x− c□ − ε1)(x− c□ − ε2)

(x− c□)(x− c□ − ε)

)
.(A.26)

which shows that upon the regularization, the instanton contribution makes
the polynomials into rational functions of the auxiliary variable x. The Y-
observable can be simply written as

Yi(x)[λ] = β−ni ϵ[−eβxS∗
i ].(A.27)

Note that the Y-observables are the generating functions for the chiral ob-
servables

Oi,k[λ] ≡ Tr Φk
i |0[λ]

(A.28)

=

ni∑

α=1

[
aki,α +

∑

□∈λ(i,α)

(
(c□ + ε1)

k + (c□ + ε2)
k − ck

□
− (c□ + ε)k

)]
.

The qq-characters for the quiver gauge theories are given as certain Laurent
polynomials of the Y-observables.

In section 6, it is important to correctly identify the 1-loop contribution
to the effective twisted superpotential in the A1-theory. The formula (A.13)
tells that

Z
1-loop
A1

=

∏N
α,β=1 Γ2(aα − aβ ; ε1, ε2)∏N

α,β=1 Γ2(aα − a0,β ; ε1, ε2)Γ2(a3,α − aβ ; ε1, ε2)
.(A.29)

Note that we have the following identity,

∂

∂x

(
lim
ε2→0

ε2 log Γ2(x; ε1, ε2)

)
= − log Γ1(x; ε1),(A.30)
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where we have defined

Γ1(x; ε1) ≡ exp

[
−

d

ds

∣∣∣∣∣
s=0

1

Γ(s)

∫ ∞

0
dββs−1 e−βx

1− e−βε1

]
=

√
2π/ε1

ε
x

ε1

1 Γ
(

x
ε1

) .

(A.31)

Thus for the 1-loop part of the effective twisted superpotential,

W̃1-loop ≡ lim
ε2→0

ε2 logZ
1-loop
A1

,(A.32)

we derive the identity,

(
∂

∂aα
−

∂

∂aβ

)
W̃1-loop = log

∏

α′ ̸=α

Γ
(
aα−aα′

ε1

)

Γ
(
aα′−aα

ε1

)
∏

β′ ̸=β

Γ
(
aβ′−aβ

ε1

)

Γ
(
aβ−a′

β

ε1

)(A.33)

×

N∏

γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)

Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) ,

which was used in section 6 to absorb the 1-loop contribution W̃1-loop into
W̃full.

Appendix B. Computing G(x;t)

Even though we only consider the A2-quiver in section 3.1, it is possible to
compute the generating function Gr(x; t) for general Ar-quiver gauge theory.
The fundamental qq-characters for the Ar-theory are written as [27]

Xℓ(x) =
Y0 (x+ ε (1− ℓ))

z0z1 · · · zℓ−1

∑

I⊂[0,r]
|I|=ℓ

∏

i∈I

[zi Ξi (x+ ε (hI(i) + 1− ℓ))] ,(B.34)

ℓ = 0, 1, . . . , r + 1,

where we have defined qi ≡
zi

zi−1
, hI(i) ≡ |{j ∈ I | j < i}|, and

(B.35) Ξi(x) ≡
Yi+1(x+ ε)

Yi(x)
= 1 +

∞∑

n=1

ζi,n
xn

.
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We form the generating function by

Gr(x; t) = Y0(x)
−1∆−1

r

r+1∑

ℓ=0

z0z1 · · · zℓ−1t
ℓXℓ (x− ε(1− ℓ))

= ∆−1
r

∑

I⊂[0,r]

[(∏

i∈I

tzi

)∏

i∈I

Ξi (x+ εhI(i))

]
(B.36)

=

∞∑

n=0

G
(−n)
r (t)

xn
,(B.37)

where

(B.38) ∆r =
∑

I⊂[0,r]

(∏

i∈I

tzi

)
=

r∏

i=0

(1 + tzi) .

For convenience, we define the parameter

(B.39) ui =
tzi

1 + tzi
.

Let us start from r = 0. Straightforward computation shows that

(B.40) G
(0)
0 (t) = 1, G

(−n)
0 (t) = u0ζ0,n, n ∈ Z

>0.

We proceed to higher r by recursion. Divide the sum in (B.37) over I ⊂ [0, r]
into two classes, where in the first r ∈ I and in the second r /∈ I. From this
decomposition follows the relation:

Gr(x; t) = G0(x; t) +

r∑

j=1

uj∆
−1
j−1

∞∑

n=1

ζj,n(
x+ εt ∂

∂t

)n (∆j−1Gj−1(x; t)) .(B.41)
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Explicitly pulling out the coefficients of each negative powers of x, we can
write the recursive relations as

G(0)
r (t) = G

(0)
0 (t) = 1,(B.42a)

G(−1)
r (t) =

r∑

j=0

ujζj,1,(B.42b)

G(−2)
r (t) =

r∑

j=0

ujζj,2 +

r∑

j=1

ujζj,1G
(−1)
j−1 (t)(B.42c)

− ε

r∑

j=1

ujζj,1∆
−1
j−1t

∂

∂t
∆j−1,

G(−3)
r (t) =

r∑

j=0

ujζj,3 +

r∑

j=1

uj

[
ζj,1G

(−2)
j−1 (t) + ζj,2G

(−1)
j−1 (t)

]
(B.42d)

− ε

r∑

j=1

uj∆
−1
j−1

[
ζj,1t

∂

∂t

(
∆j−1G

(−1)
j−1 (t)

)
+ 2ζj,2t

∂

∂t
∆j−1

]

+ ε2
r∑

j=1

ujζj,1∆
−1
j−1

(
t
∂

∂t

)2

∆j−1,

G(−4)
r (t) =

r∑

j=0

ujζj,4(B.42e)

+

r∑

j=1

uj

[
ζj,1G

(−3)
j−1 (t) + ζj,2G

(−2)
j−1 (t) + ζj,3G

(−1)
j−1 (t)

]

− ε

r∑

j=1

uj∆
−1
j−1

[
ζj,1t

∂

∂t

(
∆j−1G

(−2)
j−1 (t)

)

+ 2ζj,2t
∂

∂t

(
∆j−1G

(−1)
j−1 (t)

)
+ 3ζj,3t

∂

∂t
∆j−1

]

+ ε2
r∑

j=1

uj∆
−1
j−1

[
ζj,1

(
t
∂

∂t

)2 (
∆j−1G

(−1)
j−1 (t)

)

+ 3ζj,2

(
t
∂

∂t

)2

∆j−1

]

− ε3
r∑

j=1

ujζj,1∆
−1
j−1

(
t
∂

∂t

)3

∆j−1.
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Introduce the notation:

(B.43) Ur [s1, s2, . . . , sℓ] ≡
∑

0≤i1<···<iℓ≤r

ℓ∏

n=1

(uinζin,sn) ,

where si ∈ Z≥0 and ζi,0 ≡ 1 by definition. It is straightforward to derive the
useful identities:

t
∂

∂t
∆r = ∆rUr[0],(B.44)

t
∂

∂t
(∆rUr[s1, . . . , sℓ]) = ∆r

(
ℓUr[s1, . . . , sℓ] + U⊕

r [s1, . . . , sℓ]
)
,(B.45)

r∑

j=1

ujζj,mUj−1[s1, . . . , sℓ] = Ur [s1, s2, . . . , sℓ,m] ,(B.46)

where

U⊕
r [s1, . . . , sℓ] ≡ Ur[0, s1, . . . , sℓ] + Ur[s1, 0, . . . , sℓ](B.47)

+ · · ·+ Ur[s1, . . . , sℓ, 0].

Using them we simplify (B.42) and finally arrive at the expressions

G(0)
r (t) = 1,(B.48a)

G(−1)
r (t) = Ur[1],(B.48b)

G(−2)
r (t) = Ur[2] + Ur[1, 1]− εUr[0, 1],(B.48c)

G(−3)
r (t) = Ur[3] + Ur[2, 1] + Ur[1, 2]− ε (Ur[1, 1] + 2Ur[0, 2])(B.48d)

+ ε2Ur[0, 1] + Ur[1, 1, 1]− ε (2Ur[0, 1, 1] + Ur[1, 0, 1])

+ 2ε2Ur[0, 0, 1],

G(−4)
r (t) = Ur[4] + Ur[1, 3] + Ur[2, 2] + Ur[3, 1](B.48e)

− ε (Ur[2, 1] + 2Ur[1, 2] + 3Ur[0, 3])

+ ε2 (Ur[1, 1] + Ur[0, 2])− ε3Ur[0, 1] + Ur[2, 1, 1]

+ Ur[1, 2, 1] + Ur[1, 1, 2]

− ε
(
3Ur[1, 1, 1] + 3Ur[0, 2, 1] + 3Ur[0, 1, 2]

+ 2Ur[1, 0, 2] + Ur[2, 0, 1]
)

+ ε2 (6Ur[0, 1, 1] + 3Ur[1, 0, 1] + 6Ur[0, 0, 2])

− 6ε3Ur[0, 0, 1] + Ur[1, 1, 1, 1]

− ε (3Ur[0, 1, 1, 1] + 2Ur[1, 0, 1, 1] + Ur[1, 1, 0, 1])

+ ε2 (6Ur[0, 0, 1, 1] + 3Ur[0, 1, 0, 1] + 2Ur[1, 0, 0, 1])

− 6ε3Ur[0, 0, 0, 1].
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for the coefficients of the generating function. For the results in section 3.1,
we simply set r = 2.

Appendix C. The accessory operator Ĥ2

We present the full expression for the accessory operator Ĥ2(z, q) in
̂̂
D3

below.

Ĥ2(z, q) = −(1− q)


1
3

〈
O3

〉
A2

+
ε1ε2(12ā0 − 4A

(1)
1 + 2A

(1)
2 + 15ε1 + 8ε2)

6
q
∂

∂q

(C.49)

−
1

3

3∑

α=1

a32,α +
2
(
A

(1)
1

)2
A

(1)
2

9
−
(
A

(1)
2

)2
(
3ā0 −A

(1)
1

3
+

33ε1 + 22ε2
36

)

+
A

(2)
1 A

(1)
2

3
+A

(2)
2

(
−ā0 +

4A
(1)
1 + 2A

(1)
2 − 9ε1 − 2ε2
12

)
+
A

(3)
2

3

−
8ā0 + 7ε1 + 2ε2

6
A

(1)
1 A

(1)
2 −

2ε1ε2
3

(∆0 −∆a)A
(1)
1 −

(
A

(1)
2

)3

18

+
ε1ε2(∆0 −∆a)

6
(12ā0 + 15ε1 + 8ε2) +

(
ε1ε2(∆0 +∆∞ −∆a)

3
+

7ā0ε1
2

+

∏
α<α′ a0,αa0,α′ + ε2(2a0,β + 3ā0)

3
+

51ε21 + 48ε1ε2 + 2ε22
18

)
A

(1)
2




− q


ε1ε2

(
−A

(1)
1 +A

(1)
2 + 2ε

)
q
∂

∂q
+
A

(3)
1 +A

(2)
2

3

+
A

(2)
1

(
−12ā0 + 2A

(1)
1 + 8A

(1)
2 + 3ε1 + 10ε2

)

12

+
A

(2)
2

(
−12ā0 + 8A

(1)
1 + 2A

(1)
2 − 21ε1 − 14ε2

)

12
+

(
A

(1)
1

)3
− 5

(
A

(1)
2

)3

18

+
(−12ā0 + 4A

(1)
2 − 3ε1 − 10ε2)

(
A

(1)
1

)2

36

+

(
−12ā0 + 28A

(1)
1 − 39ε1 − 46ε2

)(
A

(1)
2

)2

36

+A
(1)
1 A

(1)
2

(
−2ā0 −

ε1
6

+
8ε2
9

)
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+A
(1)
1

(
ε1ε2(∆a −∆0)−

ā0ε1
2
− 2ā0ε2 +

a0,βε2
3

+
3ε21 + 9ε1ε2 + 38ε22

18

+
ε1ε2∆∞ − ε2 +

∏
α<α′ a0,αa0,α′

3

)

+A
(1)
2

(
ε1ε2(∆0 −∆a) + ā0

(
3ε1
2
− ε2

)
+

4a0,βε2
3

+
12ε21 − 15ε1ε2 − 16ε22

18
+

ε1ε2∆∞ − ε2 +
∏

α<α′ a0,αa0,α′

3

)

+ 2ε1ε2ε(∆0 −∆a) +
ε2(a0,β − ā0)(2a0,β − 2ā0 − 3ε1)

2

+
ε22(4a0,β − 4ā0 + 3ε1)

6
−

35ε32
9




+
q2

3(1− q)
A

(1)
2

(
A

(1)
1 − 3ε

)(
A

(1)
1 −A

(1)
2 − 2ε

)
,

where we have defined

∆a ≡
1

ε1ε2

(
ε2 −

(a2,1 − a2,2)
2 + (a2,1 − a2,3)

2 − (a2,1 − a2,2)(a2,1 − a2,3)

3

)
.

(C.50)

The accessory parameter H2 can be obtained simply by taking the limit
ε2 → 0.

Appendix D. Computing the non-regular parts of Xω

We present the explicit expressions for the non-regular parts of the fun-
damental refined qq-character Xω for the N = 3 case, i.e., the (2, 1)-type
Z2-orbifold surface defect. The computation for the N = 2 case is easier and
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can be done in a similar way.

[x−1] X0(x) =
ε21
2
(k0 − k1)

2 −
ε21
2
(k0 − k1) + ε1ε2k1

(D.51)

+ (ε− aβ)ε1(k0 − k1) + ε1

(∑

K0

c□ −
∑

K1

c□

)

+ q0


1
2

(∑

β̄ ̸=β

aβ̄ −
∑

α

m+,α + ε1(k0 − k1)

)2

+
1

2

∑

β̄ ̸=β

a2
β̄
−

1

2

∑

α

m2
+,α +

ε21
2
(k0 − k1)

− ε1ε2k1 + ε1

(∑

K0

c□ −
∑

K1

c□

)


[x−2] X0(x) =
ε31
6
(k0 − k1)

3 −
ε31
2
(k0 − k1)

2 + ε21ε2k1(k0 − k1)

(D.52)

+
ε31
3
(k0 − k1)− ε1ε2εk1 + 2ε1ε2

∑

K1

c□

+ ε21(k0 − k1)

(∑

K0

c□ −
∑

K1

c□

)
− ε21

(∑

K0

c□ −
∑

K1

c□

)

+ ε1

(∑

K0

c2
□
−
∑

K1

c2
□

)
+ (ε− aβ)

(
ε21
2
(k0 − k1)

2

−
ε21
2
(k0 − k1) + ε1ε2k1 + ε1

(∑

K0

c□ −
∑

K1

c□

))

+ q0


1
6

(∑

β̄ ̸=β

aβ̄ −
∑

α

m+,α + ε1(k0 − k1)

)2

+
ε1
2


∑

β̄ ̸=β

a2
β̄
−
∑

α

m2
+,α


 (k0 − k1) +

ε31
2
(k0 − k1)

2

− ε21ε2k1(k0 − k1) + ε21(k0 − k1)

(∑

K0

c□ −
∑

K1

c□

)
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+
ε31
3
(k0 − k1)− 2ε1ε2

∑

K1

c□ +
1

3


∑

β̄ ̸=β

a3
β̄
−
∑

α

m3
+,α




+ ε21

(∑

K0

c□ −
∑

K1

c□

)
+ ε1

(∑

K0

c2
□
−
∑

K1

c2
□

)
− ε1ε2εk1

+

(∑

β̄ ̸=β

aβ̄ −
∑

α

m+,α

)(
1

2

∑

β̄ ̸=β

a2
β̄
−

1

2

∑

α

m2
+,α +

ε21
2
(k0 − k1)

− ε1ε2k1 + ε1

(∑

K0

c□ −
∑

K1

c□

))


[x−1] X1(x) = −
ε31
6
(k0 − k1)

3 −
ε31
2
(k0 − k1)

2 −
ε31
3
(k0 − k1)

(D.53)

− ε21ε2k0(k0 − k1) + ε21(k0 − k1)

(∑

K0

c□ −
∑

K1

c□

)

+ ε21

(∑

K0

c□ −
∑

K1

c□

)
− ε1

(∑

K0

c2
□
−
∑

K1

c2
□

)

+ 2ε1ε2
∑

K0

c□ − ε1ε2εk0 − ε1(k0 − k1)
∏

β̄ ̸=β

(ε− aβ̄)

+

(
2ε−

∑

β̄ ̸=β

aβ̄

)(
ε21
2
(k0 − k1)

2 +
ε21
2
(k0 − k1)

+ ε1ε2k0 − ε1

(∑

K0

c□ −
∑

K1

c□

))

+ q1


1
6

(
aβ −

∑

α

m−,α − ε1(k0 − k1)

)3

+
ε31
2
(k0 − k1)

2

+ ε21ε2k0(k0 − k1)−
ε31
3
(k0 − k1)−

ε1
2

(
a2β −

∑

α

m2
−,α

)
(k0 − k1)

− ε1ε2εk0 − 2ε1ε2
∑

K0

c□ +
1

3
a3β −

1

3

∑

α

m3
−,α

+ ε21(k0 − k1)

(∑

K0

c□ −
∑

K1

c□

)
− ε21

(∑

K0

c□ −
∑

K1

c□

)
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− ε1

(∑

K0

c2
□
−
∑

K1

c2
□

)
+

(
aβ −

∑

α

m−,α

)(
−
ε21
2
(k0 − k1)− ε1ε2k0

− ε1

(∑

K0

c□ −
∑

K1

c□

)
+

a2β
2
−

∑
αm

2
−,α

2

)


Appendix E. Computing the Poisson brackets

Let us first recap some definitions. Let N ≈ CN be a vector space with a
volume form. Let

(E.54) gi,Mi ∈ End(N), , i = −1, 0, 1, . . . , r + 1

be SL(N) matrices, such that

M−1 = g−1

gi = mi

(
1 +

(
m−N

i − 1
)
Πi

)
, i = 0, 1, . . . , r

Mi = g−1g0g1 · · · gi =

N∑

α=1

m
(α)
i Π

(α)
i , i = 0, 1, . . . , r

Mr+1 = 1N ,

(E.55)

where the projection operators Π are written in terms of

Ei, E
(α)
i ∈ N, Ẽi, Ẽ

(α)
i ∈ N∗,

Ẽi(Ei) = 1, Ẽ
(α)
i (E

(β)
i ) = δα,β

(E.56)

as

Πi = Ei ⊗ Ẽi, i = 0, 1, . . . , r − 1,

Π
(α)
i = E

(α)
i ⊗ Ẽ

(α)
i , i = −1, 0, 1, . . . , r, α = 1, . . . , N.

(E.57)

The following formulas are useful throughout the computation: for any
α, β = 1, . . . , N ,

Ẽ
(α)
i+1(E

(β)
i ) =

m
(α)
i+1(m

N
i+1 − 1)

mi+1m
(β)
i −m

(α)
i+1

Ẽ
(α)
i+1(Ei+1)Ẽi+1(E

(β)
i )

Ẽ
(α)
i (E

(β)
i+1) =

m
(α)
i (m−N

i+1 − 1)

m−1
i+1m

(β)
i+1 −m

(α)
i

Ẽ
(α)
i (Ei+1)Ẽi+1(E

(β)
i+1).

(E.58)
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We packaged the Darboux coordinates into

Ai(x) ≡ TrN (x−Mi)
−1 =

∞∑

l=0

1

xl+1
TrN M l

i

Bi(x) ≡ TrN Πi (x−Mi)
−1Πi+1 = eβ̃i

N∑

α=1

e−β̃
(α)

i
TrN ΠiΠ

(α)
i

x−m
(α)
i

,

(E.59)

where we express Bi(x) via

Di(x) ≡ TrN gi (x−Mi)
−1 gi+1(E.60)

= mimi+1(m
−N
i − 1)(m−N

i+1 − 1)Bi(x)

+mimi+1x
−1

(
Pi−1(m

−1
i x)

Pi(x)
− 1

)

−mim
1−N
i+1 x−1

(
Pi+1(mi+1x)

Pi(x)
− 1

)
+mimi+1Ai(x).

The brackets remained to be computed are

(E.61)

{
Di(x),Ai(y)

}
,

{
Di(x),Di+1(y)

}
, and

{
Di(x),Di(y)

}
.

Using the geometric representation (264), the first Poisson bracket is com-
puted as (see Figure E1)

{
Di(x),Ai(y)

}
= TrN

(
Mi

(y −Mi)2
gi

1

x−Mi
gi+1

)
(E.62)

− TrN

(
gi

Mi

(y −Mi)2
1

x−Mi
gi+1

)

= mimi+1(m
−N
i − 1)(m−N

i+1 − 1)

× TrN

[
Mi

(y −Mi)2
,Πi

]
1

x−Mi
Πi+1.

On the other hand, a direct computation gives (we omit the 2πi in front of
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i i+ 1

.... ....

− − −

+ + +

Figure E1: The geometric picture for {Di(x),Ai(y)}.

the α coordinates)

{
Di(x),Ai(y)

}
= mimi+1(m

−N
i − 1)(m−N

i+1 − 1)(E.63)

×

{
eβ̃i

N∑

α=1

e−β̃
(α)

i TrΠiΠ
(α)
i

x−m
(α)
i

,

N∑

β=1

1

x−m
(β)
i

}

= mimi+1(m
−N
i − 1)(m−N

i+1 − 1)

×
∑

α,β

m
(α)
i TrΠiΠ

(β)
i Πi+1

(x−m
(β)
i )(y −m

(α)
i )2

{α
(α)
i , β̃

(β)
i }

−mimi+1(m
−N
i − 1)(m−N

i+1 − 1)

×
∑

α,β,γ

m
(α)
i TrΠiΠ

(β)
i Πi+1Π

(γ)
i

(x−m
(β)
i )(y −m

(α)
i )2

{α
(α)
i , β̃

(γ)
i }

By comparing the two expressions, we derive:

(E.64)

{
β̃
(α)
i , α

(β)
i

}
= δα,β , i = 0, 1, . . . , r − 1, α, β = 1, . . . , N.

Next, we compute from the geometric representation (see Figure E2)

{
Di(x),Di+1(y)

}
= TrN

([
gi+1, gi(x−Mi)

−1

]
gi+1(y −Mi+1)

−1gi+2

)
.

(E.65)

On the other hand, a direct computation gives
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i+ 1i i+ 2

.... ....

+

−

Figure E2: The geometric picture for {Di(x),Di+1(y)}.

{
Di(x),Di+1(y)

}
= mim

2
i+1mi+2(m

−N
i − 1)(m−N

i+1 − 1)(E.66)

× (m−N
i+2 − 1){Bi(x),Bi+1(y)}

+mim
2
i+1mi+2(m

−N
i − 1)(m−N

i+1 − 1)

× y−1

{
Bi(x),

Pi(m
−1
i+1y)

Pi+1(y)

}

−mim
2−N
i+1 mi+2(m

−N
i+1 − 1)(m−N

i+2 − 1)

× x−1

{
Pi+1(mi+1x)

Pi(x)
,Bi+1(y)

}
.

Each term can be explicitly computed. By comparing the results we derive

{
β̃
(α)
i , β̃

(β)
i+1

}
= 0, i = 0, 1, . . . , r − 1, α, β = 1, . . . , N.(E.67)

Finally, we compute from the geometric representation (see Figure E3)

{
Di(x),Di(y)

}
= TrN

([
1

y −Mi
gi+1, gi+1

]
1

x−Mi
gi+1gi

Mi

x−Mi

)
(E.68)

+ TrN

([
gi

1

x−Mi
, gi+1

]
Mi

y −Mi
gi+1gi

1

y −Mi

)

+TrN

(
gi

1

y −Mi
gi+1

[
gi,

1

x−Mi
gi+1

])

+TrN

(
gi

1

y −Mi
gi+1

[
gi+1, gi

1

x−Mi

])
.
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i i+ 1
.... ....

−

+

+ + + +

− −−−
+

−+++ +

−−− −

Figure E3: The geometric picture for {Di(x),Di(y)}.

On the other hand, a direct computation gives

{
Di(x),Di(y)

}
= m2

im
2
i+1(m

−N
i − 1)(m−N

i+1 − 1)(E.69)

× ({Bi(x),Ai(y)}+ {Ai(x),Bi(y)})

+m2
im

2
i+1(m

−N
i − 1)(m−N

i+1 − 1)

×

(
y−1

{
Bi(x),

Pi−1(m
−1
i y)

Pi(y)

}
+ x−1

{
Pi−1(m

−1
i x)

Pi(x)
,Bi(y)

})

−m2
im

2−N
i+1 (m−N

i − 1)(m−N
i+1 − 1)

×

(
y−1

{
Bi(x),

Pi+1(mi+1y)

Pi(y)

}
+ x−1

{
Pi+1(mi+1x)

Pi(x)
,Bi(y)

})

+m2
im

2
i+1(m

−N
i − 1)2(m−N

i+1 − 1)2{Bi(x),Bi(y)},

in which all the brackets are explicitly computable. By comparing the results
we derive

{
β̃
(α)

i , β̃
(β)

i

}
= 0, i = 0, 1, . . . , r = 1, α, β = 1, . . . , N.(E.70)

Therefore, we confirm that the Poisson brackets for the coordinatesα
(α)
i , β̃

(α)
i

are canonical.
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