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We describe the coupling of holomorphic Chern-Simons theory at
large N with Kodaira-Spencer gravity. We explain a new anomaly
cancellation mechanism at all loops in perturbation theory for
open-closed topological B-model. At one loop this anomaly can-
cellation is analogous to the Green-Schwarz mechanism.

As an application, we introduce a type I version of Kodaira-
Spencer theory in complex dimensions 3 and 5. In complex dimen-
sion 5, we show that it can only be coupled consistently at the
quantum level to holomorphic Chern-Simons theory with gauge
group SO(32). This is analogous to the Green-Schwarz mechanism
for the physical type I string. This coupled system is conjectured
to be a supersymmetric localization of type I string theory. In com-
plex dimension 3, the required gauge group is SO(8).

1 Introduction 1723

2 Open-closed topological B-model 1725

3 The type I topological string 1753

References 1768

1. Introduction

Holomorphic Chern-Simons theory is the open-string field theory of the B-
model topological string [1]. The corresponding closed-string field theory
is known as Kodaira-Spencer theory [2]. This is a “gravitational” theory
describing fluctuations of the complex structure of a Calabi-Yau manifold.
Both theories are non-renormalizable by power-counting, and so in principle
could have new counter-terms or gauge anomalies appearing at arbitrary
order in the loop expansion. The problem of quantizing Kodaira-Spencer

1723
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theory can be viewed as a toy model for the fundamental problem of quan-
tizing Einstein gravity. Kodaira-Spencer theory, like Einstein gravity, is a
non-renormalizable theory controlling geometric deformations of the space-
time.

String theory provides a mechanism for quantizing certain supergravity
theories, due to the absence of UV divergences. Similarly, one can hope that
topological string theory could provide a mechanism for quantizing Kodaira-
Spencer theory.

In the first part of this paper we report on our work [4, 5], where we
found a remarkable new anomaly-cancellation mechanism which allows us
to quantize Kodaira-Spencer theory coupled to holomorphic Chern-Simons
theory. Our mechanism does not require world-sheet techniques, only stan-
dard space-time Feynman diagrams. Our mechanism cancels all anomalies
occurring at all orders in the loop expansion, and fixes all counter-terms
uniquely. At one loop the anomaly cancellation is analogous to the Green-
Schwarz mechanism [6].

We view our method as a space-time proof of the UV finiteness of string
theory.

One reason a physicist might be interested in Kodaira-Spencer theory
is that, on a Calabi-Yau manifold of dimension 5, Kodaira-Spencer theory
conjecturally describes [3, 5, 7] a supersymmetric sector of type IIB super-
string theory. To further test our method, we introduce in this paper a type
I version of Kodaira-Spencer theory which lives on Calabi-Yau manifolds of
complex dimension 3 or 5. Type I Kodaira-Spencer theory on C5 can be cou-
pled to SO(n) holomorphic Chern-Simons theory, and a one-loop anomaly
can be cancelled only if n = 32, as in the usual Green-Schwarz mechanism.
In that case, and only that case, our method also cancels all higher-loop
anomalies. This result is in some ways stronger than the original one of
Green-Schwarz, because it holds to all orders in perturbation theory and
not just at leading order. It would be very interesting to see whether our
higher-loop anomaly cancellation mechanism can be applied to physical the-
ories.

We conjecture that our type I Kodaira-Spencer theory, coupled to SO(32)
holomorphic Chern-Simons theory, is a supersymmetric localization of type
I string theory. This conjecture is further supported by a calculation where
we show that the theory on a D1 brane in our type I theory matches a super-
symmetric localization of the worldsheet theory of the Spin(32)/Z2 heterotic
string.

On C3, we show that the Green-Schwarz mechanism cancels the anomaly
for type I Kodaira-Spencer theory when the holomorphic Chern-Simons
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gauge group is SO(8). We leave detailed investigation of this type I topo-
logical string to future work.

2. Open-closed topological B-model

2.1. The open-string sector

In this section we will describe the open-string sector of toplogical B-model
via Holomorphic Chern-Simons theory [1]. Let us start with X = C3 the
three dimensional complex space with linear holomorphic coordinates
{zi}i=1,2,3. We denote Ωp,q

X or simply Ωp,q to be smooth differential forms of
type (p, q). An element α of Ωp,q

X can be written as

α =
∑

i1,··· ,ip,j̄1,··· ,j̄q

αi1···ipj̄1···j̄qdz
i1 ∧ · · · ∧ dzip ∧ dz̄j̄1 · · · dz̄j̄q

where αi1···ipj̄1···j̄q ’s are smooth functions on X and they are totally skew-
symmetric with respect to i-indices and with respect to j̄-indices.

Let g be a Lie algebra with non-degenerate Killing pairing Tr. The fun-
damental field of holomorphic Chern-Simons theory is a g-valued (0, 1)-form

A ∈ Ω0,1
X ⊗ g.

The holomorphic Chern-Simons functional is given by

(1) S[A] :=

∫

X
Tr

(

1

2
A ∧ ∂̄A+

1

6
A ∧ [A,A]

)

∧ ΩX

where

(2) ΩX = dz1 ∧ dz2 ∧ dz3

is the canonical holomorphic volume form. The bracket operation [−,−] is
induced by the Lie bracket on the g-factor combined with wedge product on
the form factor.

The equation for A, obtained from varying S, is

(3) ∂̄A+
1

2
[A,A] = 0.
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This is equivalent to saying that ∂̄ +A defines a new (0, 1)-connection whose
curvature vanishes. Geometrically, such data describes a holomorphic struc-
ture on the associated complex vector bundles with g-action, where ∂̄ +A
describes the new ∂̄-operator.

The holomorphic Chern-Simons functional has a gauge symmetry. The
infinitesimal gauge transformation is

(4) δφA = ∂̄ϕ+ [A, ϕ], ϕ ∈ Ω0,0
X ⊗ g.

It is easy to verify that δφS = 0 for any such ϕ. Solutions of the linearized
equations of motion modulo gauge transformations are parametrized by the
sheaf cohomology H1(X, g) which is zero on the affine space X = C3. This
corresponds to the fact that any holomorphic vector bundle on C3 is equiv-
alent to a trivial holomorphic bundle.

To obtain non-trivial solutions, we can put holomorphic Chern-Simons
theory on an arbitrary complex three-dimensional manifold X with a holo-
morphic volume form ΩX . Such a pair (X,ΩX) is called a Calabi-Yau 3-fold.
g can be replaced by the endomorphism bundle End(E) of a holomorphic
vector bundle E on X, or the adjoint bundle associated to a holomorphic
principal bundle. Then the moduli space of classical solutions modulo gauge
transformations is given by all holomorphic structures on E. The infinitesi-
mal deformation is again described by the cohomologyH1(X,End(E)) which
is non-zero in general.

In this article, we will focus on the local case X = C3 to illustrate the
basic idea of its coupling with gravity in the large N limit.

To incorporate gauge fixing, we work with the Batalin-Vilkovisky (BV)
formalism [8]. We add into the ghost field living in Ω0,0 ⊗ g, the anti-field of
A living in Ω0,2 ⊗ g, and the anti-field of the ghost living in Ω0,3 ⊗ g. The
master field collecting all above is described by

(5) A ∈ Ω0,• ⊗ g[1].

Here [1] means a degree shifting on the space Ω0,• ⊗ g such that fields in
Ω0,p ⊗ g have cohomological degree p− 1 (ghost number 1− p). We will
sometimes talk about “cohomological degree” in this paper to be consistent
with homological algebra conventions latter. The space Ω0,• ⊗ g[1] has an
odd symplectic structure of degree −1. The symplectic pairing (−,−) is
given by

(6) (η1, η2) =

∫

X
Tr(η1 ∧ η2) ∧ ΩX , for η1 ∈ Ω0,p ⊗ g, η2 ∈ Ω0,3−p ⊗ g.
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The odd symplectic pairing (−,−) induces a BV anti-bracket. Explicitly,
let us choose a basis eα of g. Let ηαβ = Tr(eαeβ) and ηαβ be the inverse
matrix of ηαβ . We write A in components

A =
∑

α

Aαeα, Aα =
∑

p

Aα
p eα, Aα

p ∈ Ω0,p.

Then the BV anti-bracket is of the form

(7) {A(z)α,A(w)β}o = ηαβδ(z − w)

3
∏

i=1

(dz̄i − dw̄i)

where δ(z − w) is the δ-function on C3. The subscript o refers to open string
sector. The above formula is read by matching both sides with appropri-
ate form components in dz̄i and dw̄i. For example, the BV bracket is only
nontrivial between Aα

p and Aβ
3−p. The BV completed action of holomorphic

Chern-Simons takes the same form

(8) HCS[A] :=

∫

X
Tr

(

1

2
A ∧ ∂̄A+

1

6
A ∧ [A,A]

)

∧ ΩX

where now A ∈ Ω0,• ⊗ g[1] collects all fields of different types via its com-
ponents. This is completely similar to the superspace formalism of ordinary
Chern-Simons theory in the BV set-up [9].

The following classical master equation

(9) {HCS,HCS}o = 0

holds, where {−,−}o is the above BV anti-bracket. This equation is equiva-
lent to the fact that Ω0,• ⊗ g forms a differential graded Lie algebra, with ∂̄
the differential and the Lie bracket induced from that on g. We will denote
the BRST operator δHCS = {HCS,−}. Explicitly

(10) δHCS(A) = ∂̄A+
1

2
[A,A].

The classical master equation implies δ2HCS = 0 as usual.

2.2. The closed-string sector

In this section we will describe the closed-string sector of the topological B-
model via Kodaira-Spencer gravity [2], which is generalized in [4] by turning
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on gravitational descendants. Let

(11) PV•,•
X =

⊕

i,j

PVi,j
X

denote the space of polyvector fields on a Calabi-Yau three-fold X. Here
PVi,j are smooth sections of the bundle ∧iT 1,0

X ⊗ ∧j(T 0,1
X )∗. In coordinates

{zi}, µ ∈ PVi,j has the form

µ =
∑

i1,··· ,ip,j̄1,··· ,j̄q

µ
i1···ip
j̄1···j̄q

∂zi1 ∧ · · · ∧ ∂zip ∧ dz̄j̄1 · · · dz̄j̄q

where µ
i1···ip
j̄1···j̄q

’s are smooth functions on X and they are totally skew-

symmetric with respect to i-indices and with respect to j̄-indices. ∂zi is
the holomorphic (1, 0)-vector along zi. We will write |µ| = i+ j for the total
degree of µ ∈ PVi,j .

We can identify PVi,j with Ω3−i,j via contracting polyvectors with the
(3, 0) volume form ΩX

(12) PV•,• ⊢ΩX→ Ω3−•,•, µ→ µ ⊢ ΩX .

The two operators ∂̄, ∂ on differential forms Ω•,• induce two linear operators
on PV•,•, which we denote by ∂̄, ∂Ω. Geometrically,

(13) ∂Ω : PVp,q → PVp−1,q

represents the holomorphic divergence operator with respect to the Calabi-
Yau volume form ΩX .

In the topological B-model, the complex PV•,•, with the differential ∂̄,
is the space of local operators on the world-sheet. As in the physical string,
not all local operators of the world-sheet topological field theory (TFT)
can be modifications of the closed-string background: we should only con-
sider operators which are invariant under world-sheet reparametrizations.
Because the world-sheet theory is a TFT, a small reparametrization will act
trivially (up to a cochain homotopy) on the space of local operators. Large
reparametrizations can have non-trivial effects, however.

Let us consider how this works in a general two-dimensional oriented
TFT, with cochain complex of local operators (V,QV ). We let Diff0(D)
be the group of orientation-preserving reparametrizations of a small disc,
with Lie algebra Vect0(D). Then, V has an action of Diff0(D) which is
homotopically trivialized at the level of the Lie algebra Vect0(D).
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This is the kind of structure that is familiar from equivariant cohomology.
Suppose M is a manifold with an action of a Lie group G. The complex Ω•

M

of differential forms on M has a G-action, which at the level of the Lie
algebra g is given by Lie derivative LY for Y ∈ g. The Cartan homotopy
formula tells us that

LY = [ddR, ιY ]

where ιY is the operator of contraction with the vector field generated by
Y ; ddR is the de Rham differential. That is, every LY acts homotopically
trivially on Ω•

M , so that we have a homotopy trivialization of the g-action
on Ω•

M . In this situation, we know that the correct notion of G-invariants
is given by the equivariant de Rham complex of M , defined to be the G-
invariants in Ω•

M ⊗ Sym∗(g∨), equipped with a differential combining the de
Rham operator and ιY .

Similarly, for a TFT, invariance under world-sheet reparametrization is
imposed by taking the equivariant cohomology with respect to the group
Diff0(D). Since Diff0(D) is homotopy equivalent to the group U(1) (rota-
tions onD), we can just as well take the equivariant cohomology with respect
to the U(1) action. The U(1) action on the cochain complex V of local op-
erators of the world-sheet TFT is realized by a linear operator ρ : V → V
which commutes with the BRST operator on V and has integer eigenvalues.
The fact that small variations of a reparametrization are equivalent tells us
that we must have an operator D : V → V with the feature that

(14) ρ = [D,QV ]

where QV is the BRST operator on V . The U(1)-equivariant cohomology
of V is defined as follows. We first consider the subspace V ρ of operators
invariant under ρ, then introduce an equivariant parameter u of cohomolog-
ical degree 2, to give us the space V ρ[[u]], and use the differential QV + uD.
Here we work with formal series in u instead of polynomials.

In the context of the topological B-model, where V = PV•,•
X and QV = ∂̄

[10], one finds by a TFT analysis [11–13]1 that ρ = 0 and D = ∂Ω. Thus, the
space of closed-string states – that is, the S1 equivariant cochains of local

1These references identify the circle-rotation operator D with the Connes B-
operator on Hochschild cochains. By results of Connes [14] this is equivalent to the
operator ∂Ω on polyvector fields.
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operators of the worldsheet TFT – is

(15) PV•,•
X [[u]] with differential ∂̄ + u∂Ω.

This is the space of closed string fields of topological B-model proposed in
[4], as the enlargement of Kodaira-Spencer gravity [2] to include fields cor-
responding to world-sheet descendents. This complex played a fundamental
role in the Barannikov-Kontsevich construction [15] of flat structures asso-
ciated to the Kodaira-Spencer gravity.

2.3. Coupling closed to open strings at leading order

Every closed-string state Σ ∈ PV•,•[[u]] will give us a first-order deformation

I
(1)
Σ of the holomorphic Chern-Simons action. This can be understood from a
Lie algebra cohomology computation on the BRST complex of holomorphic
Chern-Simons theory. This was described in [5], where we gave an explicit
formula of the deformation (including also higher order deformations at the
disk level) from a world-sheet calculation of disc amplitudes [16] (extending
that of [17]).

It is important to emphasize that writing down disc amplitudes at all
orders in the open and closed string fields is a very non-trivial problem.
Indeed, giving a collection of such disc amplitudes which solve the master
equation is equivalent to providing a proof of (the cyclic enhancement of)
Kontsevich’s formality theorem, proved in [16, 17].

For instance, we note that any holomorphic and divergence-free Poisson
tensor on the space-time Cn satisfies the closed-string equations of motion.
If we have a collection of disc amplitudes, we can insert this Poisson tensor
as a closed string field. The master equation for the disc amplitudes implies
that the open-string amplitudes in the presence of this closed-string field
satisfy the axioms of an A∞ algebra. If we have a space-filling brane on Cn,
the cohomology of this A∞ algebra is some deformation of the associative
algebra C[z1, . . . , zn]. We conclude, that providing a collection of disc ampli-
tudes for the open-closed theory gives a universal formula for deformation
quantizing any divergence-free holomorphic Poisson tensor. There is no sim-
ple expression for such a universal formula: the problem of providing one
was solved by Kontsevich [17] by explicitly evaluating the world-sheet path
integral for the disc amplitudes.

To get a feeling for the deformation I
(1)
Σ , we start with the case when

Σ = µ ∈ PVk,• has no higher u-order and ∂Ωµ = 0, i.e. µ is divergence free.
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There I
(1)
µ is easy to describe and is proportional to

(16) I(1)µ [A] ∝
∑

i1,··· ,ik

∫

X
Tr

(

µi1···ikA ∧ ∂zi1A ∧ · · · ∧ ∂zikA
)

∧ ΩX .

Here A ∈ Ω0,• ⊗ glN [1] is the master field of HCS, and

µ =
∑

i1···ik

µi1···ik∂zi1 ∧ · · · ∧ ∂zik

where µi1···ik ∈ Ω0,•. We can write the above formula in a compact notation
as

∫

X
Tr (µ ⊢ A ∧ ∂A ∧ · · · ∧ ∂A) ∧ ΩX .

For instance, if µ =
∑

ī,j µ
j

i
dz̄ ī∂zj ∈ PV1,1, then this expression describes

the response of the holomorphic Chern-Simons action to a fluctuation in the
complex structure of X:

(17) I(1)µ [A] ∝
∑

ī,j

∫

X
µj
i
Trdzi (A ∧ ∂zjA) ∧ ΩX .

This term has the effect of varying ∂̄ to ∂̄ +
∑

ī,j µ
j

i
dzi ∂

∂zj in the holomorphic
Chern-Simons action.

If µ =
∑

i,j µ
ij∂zi ∧ ∂zj ∈ PV2,0, then I

(1)
µ gives the infinitesimal response

of the holomorphic Chern-Simons action to making the space-time non-
commutative, so that the coordinates commute to leading order as [zi, zj ] =

µij(z). In this case, I
(1)
µ is

(18) I(1)µ [A] ∝
∑

i,j

∫

X
Tr

(

µijA ∧ ∂ziA ∧ ∂zjA
)

∧ ΩX .

This term arises from Tr (A ∧A ∧A) when the space-time coordinates fail
to commute.

The coupling of a general element of PV•,•[[u]] is a little more compli-

cated. If we take an element ulµ for µ ∈ PVk,•, then the coupling I
(1)
ulµ is a

sum of terms of the form

(19)

∫

X
Tr

(

µi1···ikA ∧Ar1 ∧ ∂zi1A ∧ · · · ∧ Ark ∧ ∂zikA
)

∧ ΩX

where r1 + . . . rk = 2l. Here Am means the m-th wedge product A ∧ · · · ∧ A.
That is, the coupling for ulµ takes the same form as the coupling for µ, except
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that we place extra 2l copies of A without any z-derivatives at general places
in the cyclic word we are integrating, with certain extra coefficients.

The simplest example of this is when Σ = uµ for µ ∈ PV0,0, in which
case

(20) I(1)uµ ∝

∫

X
µΩX ∧ Tr(A ∧A ∧A).

This term changes the interacting term of the holomorphic Chern-Simons
action. If ∂̄µ = 0, then a field redefinition of the form A → A+ µA shows

that I
(1)
uµ is the response of the holomorphic Chern-Simons action to a change

in the volume form ΩX → ΩX(1 + µ) (at leading order).

2.4. Kodaira-Spencer gravity in BV formalism

The space PV•,•[[u]][2] describes gravitational modes in the B-twisted sector
of topological string. Here [2] is the degree shift by 2 such that elements in
uk PVi,j have degree i+ j + 2k − 2 (ghost number 2− i− j − 2k). Such shift
puts PV1,1 at degree 0, which is the field describing deformation of complex
structures on X. Following [2], we still call it the Kodaira-Spencer gravity.

PV•,• has a natural differential BV structure, with the differential

(21) Q = ∂̄ + u∂Ω

and the odd bracket [−,−] coming from the Schouten-Nijenhuis bracket. We
normalize the sign convention such that the following BV relation holds

(22) [α, β] = ∂Ω(αβ)− (∂Ωα)β − (−1)|α|α∂Ωβ, ∀α, β ∈ PV•,• .

The equation of motion describing Kodaira-Spencer gravity is given by the
Maurer-Cartan equation

(23) QΣ+
1

2
[Σ,Σ] = 0, Σ ∈ PV•,•[[u]].

The solution space of this set of equations modulo gauge equivalence is shown
[15] to lead to a smooth moduli, as long as the manifold X is compact.
This generalizes the classical theorem of Bogomolov-Tian-Todorov on the
smoothness of Calabi-Yau moduli.
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To understand the geometric meaning of its solution, let us consider the
sub-locus when

(24) Σ = µ+ uρ, µ ∈ PV1,1, ρ ∈ PV0,0 .

Note that by the degree shifting [2], Σ of the above form has degree 0. The
equations of motion state that

{

∂̄µ+ 1
2 [µ, µ] = 0.

∂̄ρ+ ∂Ωµ+ [µ, ρ] = 0.
(25)

The first equation describes an integrable deformation of complex structure
via the standard Kodaira-Spencer theory. In the new complex structure
specified by µ, the smooth form eµ ⊢ ΩX will have type (3, 0), but may
not be holomorphic. The second equation is equivalent to (using the first
equation)

(26) d(eρeµ ⊢ ΩX) = 0.

This says that eρ rescales the new (3, 0)-form eµ ⊢ ΩX into a closed form.
It follows that eρeµ ⊢ ΩX precisely describes a new holomorphic volume
form in the complex structure µ. Therefore the equation of motion for (µ, ρ)
describes the pair deformation (X,ΩX) of a complex structure together with
a Calabi-Yau volume form. i.e., deformation of Calabi-Yau structures. We
can also include other components of the fields, and they can be viewed
as extended Calabi-Yau structure, including all possible non-commutative
deformations, as well as all possible symmetries.

In the original formulation of [2], Kodaira-Spencer fields are described
by divergence free polyvectors (i.e. polyvectors preserving the Calabi-Yau
volume form)

ker ∂Ω ⊂ PV•,• .

The equation of motion is

(27) ∂̄µ+
1

2
[µ, µ] = 0, µ ∈ ker ∂Ω

which describes the deformation of complex structures. Our model PV•,•[[u]]
can be viewed as an extension of [2] by turning on the gravitational de-
scendants. It extends complex structure deformations to deformations of
Calabi-Yau structures. As we have seen, the model including the paremeter
u is natural from the string-field theory perspective.
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To connect this to Einstein gravity, we need to borrow Yau’s theorem on
Calabi conjecture, which says that on compact Kähler manifold, solutions
of Ricci flat metrics in a certain Kähler class are completely determined by
the complex structure. This explains the name “Kodaira-Spencer gravity”.

It is non-trivial to write down an action functional leading to the equa-
tions of motion described above. The kinetic term in the action functional
is not that well defined, although the propagator and the linearized BRST
operator are defined. The interaction term is however defined, and can in
principle be computed using world-sheet methods. We will write down the
formula for the interaction shortly.

It will be important for our analysis of quantization to put Kodaira-
Spencer gravity into the BV formalism. That is, we will introduce a BV
anti-bracket on the space of Kodaira-Spencer fields. Precisely, let us write
Σ ∈ PV•,•[[u]] in components

Σ =
∑

k≥0

µku
k, µk =

3
∑

i,j=0

µ
(i,j)
k , where µ

(i,j)
k ∈ PVi,j .

The only nontrival BV anti-bracket is given by

{µ0(z), µ0(w)}c =

3
∑

k=1

∂

∂zk
δ(z − w)

3
∏

i=1,i ̸=k

(∂zi − ∂wi)

3
∏

j=1

(dz̄j − dw̄j̄).(28)

Here δ(z − w) is the δ-function. The factor

3
∏

i=1,i ̸=k

(∂zi − ∂wi) = (−1)k(∂z1 − ∂w1) ∧ · · · ̂(∂zk − ∂zk) ∧ · · · (∂z3 − ∂w3).

The subscript c refers to closed string sector.
The above formula is read by matching both sides with appropriate

components of polyvectors. For example, the BV bracket is only nontrivial

between µ
(i,j)
0 and µ

(2−i,3−j)
0 . The BV bracket involving µk for k > 0 are all

zero. In other words, only fields µ
(i,j)
0 with i ̸= 3 are dynamical. In particular,

this BV bracket is highly degenerate.
Intrinsically, the Poisson kernel of the above BV bracket is given by

the integral kernel of the divergence operator ∂Ω on polyvector fields. To
illustrate this, we give an explicit description of the induced BV anti-bracket
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on local functions. Let us denote for convenience

(29)

∫ PV

X
: PV•,• → C, µ→

∫

X
(µ ⊢ ΩX) ∧ ΩX .

This is an integration on polyvector fields against the holomorphic volume
form. Note that it is only nonzero on PV3,3.

Let S = S[Σ] be a local functional of Σ =
∑

k≥0

µku
k ∈ PV•,•[[u]]. We de-

fine the variation δS
δµk

by

(30) δS :=
∑

k≥0

∫ PV

X
δµk ∧

δS

δµk
,

δS

δµk
∈ PV•,• .

Then for any two local functional S1, S2 of Σ, their induced BV anti-bracket
from (28) is given by

(31) {S1, S2}c =

∫ PV

X

(

δS1
δµ0

)

∂Ω

(

δS2
δµ0

)

.

It is not hard to check that it satisfies the graded Jacobi-identity, defining
a consistent BV anti-bracket. This fact also follows from a general abstract
analysis in [4].

Define the following local functional which we call BCOV interaction [4]
(See also [18] for an algebraic combinatorial model)

(32) IBCOV[Σ] =

∫ PV

X

〈

eΣ
〉

0
=

∑

n≥3

1

n!

∫ PV

X

〈

Σ⊗n
〉

0
, Σ ∈ PV•,•[[u]].

Here ⟨−⟩0 means

〈

uk1α1 ⊗ · · · ⊗ ukmαm

〉

0
(33)

:=

(

m− 3

k1 · · · km

)

α1 ∧ · · · ∧ αm for αi ∈ PV•,• .

Note that the leading cubic term is precisely the Kodaira-Spencer interaction
described in [2]. This interaction is natural from the string-field theory point
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of view since
(

m− 3

k1 · · · km

)

=

∫

M0,m

ψk1

1 . . . ψkm
m .

One can show that IBCOV satisfies the following classical master equation
[4]

(34) QIBCOV + 1
2{I

BCOV, IBCOV}c = 0.

Here Q refers to the linearized BRST transformation transformation Σ →
QΣ = (∂̄ + u∂Ω)Σ. This allows us to define the non-linear BRST transfor-
mation

(35) δBCOV = Q+ {IBCOV,−}c.

Classical master equation implies δ2BCOV = 0, which is in fact a nontrivial
identity to check. Similar to (10), the equations of motion of the string field
theory with interaction IBCOV are

(36) δBCOV(Σ) = 0, for Σ ∈ PV•,•[[u]].

Let us compare these equations with that in the Kodaira-Spencer gravity
described above. From the Kodaira-Spencer gravity, it is more natural to
consider the following BRST operator

(37) δKS(Σ) = QΣ+
1

2
[Σ,Σ].

δKS(Σ) = 0 is precisely the Maurer-Cartan equation described above.
It can be checked that δBCOV is equivalent to δKS under the nonlinear

transformation of fields

(38) Σ →
[

u(eΣ/u − 1)
]

+
, Σ ∈ PV•,•[[u]].

Here [−]+ means truncating to non-negative powers in u. We refer to [4] for
details about this (see also [19] for a review). It follows that the equation
δBCOV(Σ) = 0 again describes deformation of Calabi-Yau structures.

We can not further express Q as a BV bracket. Again, this is because
the kinetic term in the Lagrangian of the string-field theory is ill-defined.
The classical master equation for IBCOV fits into the general form of closed
string field dynamics as described in [20].
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2.5. Green-Schwarz mechanism

It is standard to quantize classical gauge theories within BV formalism in
terms of quantum master equation. The precise form of the quantum master
equation for open-closed string fields can be organized in terms of topological
types of bordered Riemann surfaces [20, 21].

In general, the problem of solving quantum master equation may be ob-
structed due to gauge anomalies. It turns out that there is a remarkable one-
loop anomaly cancellation for holomorphic Chern-Simons theory coupled to
Kodaira-Spencer theory due to the interplay between open and closed string
sectors. This is a topological string version of the Green-Schwarz mechanism
[6].

The one-loop gauge anomaly of holomorphic Chern-Simons theory can
be computed in a standard way using a diagram with four vertices. In the BV
formalism, this is analyzed in [5], which is further systematically developed
in [22]. Explicitly, we let A ∈ Ω0,• ⊗ g[1] be the master field collecting fields,
ghost, etc. Let

(39) FA := dA+
1

2
[A,A]

be the curvature form. Then the one-loop gauge anomaly is proportional to
the expression

(40)

∫

X
TradA(FA)

3.

Here Trad means the trace in the adjoint representation of g. Let us restrict
our master field to the more familiar fields

A = A+ c, A ∈ Ω0,1 ⊗ g, c ∈ Ω0,0 ⊗ g

where A is the connection and c is the ghost field. Then the anomaly is
proportional to the familiar expression

(41)

∫

X
Trad(c(FA)

3).

Because A is a (0, 1)-form, this is the same as
∫

Trad(c(∂A)
3).
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As a consistency test, we check the Wess-Zumino consistency condition.
Let us denote

FA = F 1,•
A + F 0,•

A

where

(42) F 1,•
A = ∂A, F 0,•

A = ∂̄A+
1

2
[A,A].

The Bianchi identity dFA + [A, FA] = 0 implies

(43) ∂F 1,•
A = 0, ∂F 0,•

A + ∂̄F 1,•
A + [A, F 1,•

A ] = 0, ∂̄F 0,•
A + [A, F 0,•

A ] = 0.

Using this above relation, we find

δHCSTr(F
k
A) = −∂ Tr(FA)

k(44)

δHCSTr(A(FA)
k) = −∂ Tr(A(FA)

k) + Tr(FA)
k+1.(45)

Then the following Wess-Zumino consistency holds

(46) δHCS

∫

X
Trad(A(FA)

3 =

∫

X
Trad(FA)

4 = 0

since the topological term Tr(FA)
4 is a total derivative.

Now we specialize to the case when g = gl(N). Since the adjoint repre-
sentation ad of gl(N) is the tensor of the fundamental representation fun
and its dual, we have

∫

X
Trad(A(FA)

3) =

∫

X
Trad(A(∂A)3)(47)

∝

3
∑

i=0

∫

X
(−1)iTrfunA(∂A)iTrfun(∂A)3−i.

On the other hand, there is a tree level contribution from Kodaira-
Spencer field

{I(1), I(1)}c

where I(1) is the first order coupling of a Kodaira-Spencer field to a holo-
morphic Chern-Simons field as described in Section 2.3. The BV bracket
of Kodaira-Spencer field (31) implies that only terms in (16) of I(1) will
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contribute to {I(1), I(1)}c and we find

(48) {I(1), I(1)}c =

2
∑

i=0

(−1)i
∫

X
TrfunA(∂A)iTrfun(∂A)3−i.

By suitably rescaling I(1), they cancel with that in the one-loop gauge
anomaly and we end up with a total anomaly proportional to

(49) Trfun(1)

∫

X
Trfun(A(FA)

3).

When g = gl(N), Trfun(1) = N . Then we find that the total anomaly at
leading order isN

∫

X Trfun(A(FA)
3), orN

∫

X Trfun(cF (A)
3) whenA = A+

c. We can get around this anomaly by working with the super Lie algebra
gl(N |N) instead. The formulae for coupling the gl(N | N) gauge theory to
Kodaira-Spencer theory are the same as those for gl(N). Since Trfun(1) is
the super trace on gl(N |N), which vanishes, there is no anomaly in this case.

The Green-Schwarz mechanism only accounts for one-loop anomalies. It
turns out that anomalies cancel at all orders in the loop expansion [5]. We
will sketch this argument later in this note.

2.6. The holomorphic stress-energy tensors

Before we get to explaining the cancellation of higher loop anomalies, we will
need to study the holomorphic stress-energy tensor of holomorphic Chern-
Simons theory.

Any Lorentz invariant field theory on Rn has a stress-energy tensor T ij ,
which is a local operator in the theory. This tensor tells us how to couple the
theory to a variation in the metric tensor. If we vary the metric to δij + gij ,
then the Lagrangian L of the theory varies to first order as

L → L+
∑

i,j

∫

x∈Rn

gij(x)T
ij(x).

In a similar way, any holomorphic theory on Cn has a stress-energy
tensor which tells us how the theory responds to a variation of the complex
structure. The holomorphic stress-energy tensor Tli1...in−1

(anti-symmetric

in the indices ik) is characterized by the fact that if we vary the complex
structure by the Beltrami differential µj

i
, then, to first order, the Lagrangian
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of the holomorphic theory varies as

(50) L → L+
∑

l,i1,··· ,in

∫

z∈Cn

ϵi1...inµl
in
(z)Ti1...in−1l

(z)

Here ϵi1...in is the totally antisymmetric tensor in anti-holomorphic indices.
The holomorphic stress-energy tensor Tli1...in−1

represents a (1, n− 1)-
form with coefficients in the algebra of local operators. Let us denote it by
T (1,n−1). Then the above variation (50) is read in a compact form

(51) L → L+

∫

Cn

T (1,n−1) ∧ (µ ⊢ Ω), µ ∈ PV1,1, Ω = dz1 ∧ · · · ∧ dzn.

Here µ ⊢ Ω is contracting µ with the holomorphic volume form Ω to get an
(n− 1, n)-form 2. We then wedge with the operator-valued (1, n− 1) form
T (1,n−1), to get an (n, n) form valued in local operators, i.e. a first-order
variation of the Lagrangian. This we can integrate over Cn.

In the holomophic world, however, there is no reason for T (1,n−1) to
be BRST closed. This is because we do not expect to obtain a consistent
deformation of the theory by coupling to a Beltrami differential which is not
∂̄-closed. Instead, we expect that QBRSTT

(1,n−1) should be ∂̄-exact:

(52) QBRSTT
(1,n−1) = ∂̄T (1,n−2)

for some tensor T (1,n−2) which is a (1, n− 2)-form. This is sufficient to imply
that the expression (50) is BRST closed as long as µ is ∂̄-closed:

QBRST

∫

Cn

T (1,n−1) ∧ (µ ⊢ Ω) =

∫

Cn

(∂̄T (1,n−2)) ∧ (µ ⊢ Ω)

= (−1)n
∫

Cn

T (1,n−2)) ∧ (∂̄µ ⊢ Ω) = 0.

Note that in complex dimension 1, any Beltrami differential defines an in-
tegrable complex structure, which is why we always have a BRST closed
stress-energy tensor in that case.

2If we did not want to introduce a holomorphic volume form on our complex
manifold, we could treat T (1,n−1) as an operator-valued section of the canonical
bundle tensored with (1, n− 1) forms.
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Similarly, T (1,n−2) is not BRST closed, but its BRST variation is ∂̄-exact:

QBRSTT
(1,n−2) = ∂̄T (1,n−3).

Iterating this procedure, we find that there is a BRST closed stress-energy
tensor T (1,0) of ghost number n− 1 (T (1,n−1) has ghost number 0). This is
the fundamental holomorphic stress energy tensor. The other tensors T (1,•)

are obtained from T (1,0) by descent.
Let us specialize the above discussion to dimension 3, and consider the

stress-energy tensor of holomorphic Chern-Simons theory. Here, there are
additional constraints coming from the fact that the theory is defined only
on manifolds equipped with a holomorphic volume form which could vary
together with the change of complex structures. Thus, we will have a second

kind of stress-energy tensor which we call T
(0,3)
1 which describes the response

to a variation of the holomorphic volume form.
If we vary to leading order the the holomorphic volume form by ΩX(1 +

ρ) for some ρ ∈ PV0,0, then the response of the theory to these changes in
the geometry is given by

L → L+

∫

X
T 0,3
1 ρΩX

If we simultaneously vary the volume form by ρ and complex structure by
some Beltrami differential µ ∈ PV1,1, the Lagrangian is varied by

L → L+

∫

X
T 1,2
0 ∧ (µ ⊢ ΩX) +

∫

X
T 0,3
1 ρΩX

We do not expect every variation of complex structure and of volume form
to give rise to a consistent deformation of the theory. A BRST closed defor-
mation of the Lagrangian (at leading order) should only arise when ∂̄µ = 0
and ∂Ωµ+ ∂̄ρ = 0 (the linear part of (25)).

These equations tell us that the two stress energy tensors T
(1,2)
0 and

T
(0,3)
1 should satisfy

QBRSTT
(1,2)
0 = ∂̄T

(1,1)
0 + ∂T

(0,2)
1

QBRSTT
(0,3)
1 = ∂̄T

(0,2)
1 .



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1742 — #20
✐

✐

✐

✐

✐

✐

1742 K. Costello and S. Li

Further iterating this procedure, we end up with the operator T
(0,0)
1 of ghost

number 3 and the operator T
(1,0)
0 of ghost number 2, related by

QBRSTT
(1,0)
0 = ∂T

(0,0)
1

QBRSTT
(0,0)
1 = 0.

This describes the stress-energy tensors we find for a holomorhpic theory
that can be placed on a Calabi-Yau 3-fold.

In holomorphic Chern-Simons theory, the stress-energy tensors T
(1,0)
0 is

found from the first order coupling to a background field of Kodaira-Spencer
theory in PV1,3. Equation (16) tells us

(53) T
(1,0)
0 = Tr(c∂c)

where c is the ghost field for the gauge transformations of holomorphic
Chern-Simons theory (the ghost field is the lowest degree component of the
master field A).

Similarly, the stress-energy tensor T
(0,0)
1 is given by coupling to the

Kodaira-Spenser field in ρ ∈ uPV0,3, giving us

(54) T
(0,0)
1 = Tr(c3).

Since QBRSTc = c2 as usual, one can calculate readily that QBRSTT
(1,0)
1 =

∂T
(0,0)
1 holds.
For a theory like holomorphic Chern-Simons for glN , we can couple

to an arbitrary Kodaira-Spencer field. Therefore we will have a tower of

stress-energy tensors T
(k,m)
l ∈ Ωk,m measuring the response to a variation

by µ(k,3−m)ul ∈ PVk,3−m ul such that the Lagrangian changes at the leading
order by

(55)

∫

X
T
(k,m)
l ∧

(

µ(k,3−m) ⊢ ΩX

)

.

The above discussion generalizes to all T
(k,m)
l ’s (l ≥ 0) and we find























QBRSTT
(k,m)
l = ∂̄T

(k,m−1)
l + ∂T

(k−1,m)
l+1 k,m ≥ 1

QBSRTT
(0,m)
l = ∂̄T

(0,m−1)
l m ≥ 1

QBSRTT
(k,0)
l = ∂T

(k−1,0)
l+1 k ≥ 1

QBSRTT
(0,0)
l = 0.

(56)



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1743 — #21
✐

✐

✐

✐

✐

✐

Anomaly cancellation in the topological string 1743

The fundamental stress-energy tensors are local operators T
(k,0)
l of ghost

number k + 2l + 1. Other tensors are obtained by descent in terms of ∂̄-
operator. These measure the response of the theory to a fluctuation of the
closed-string background.

For instance, the operator T
(2,0)
0 of ghost number 3 can be descended

to an operator T
(2,3)
0 of ghost number 0 which measures the response of the

theory to a non-commutative deformation of the Calabi-Yau geometry. If the
geometry deforms by a Poisson tensor µ = µij∂zi ∧ ∂zj , then the Lagrangian
of the open-string field theory deforms by

∫

T
(2,3)
0 ∧ (µ ⊢ ΩX) .

From formula (16) for the coupling between open and closed string fields,

we find that T
(k,0)
l is built only from the ghost c and its z-derivatives, and

is a sum of terms proportional to

(57) Tr
(

cr1+1(∂c)cr2(∂c) . . . crk(∂c)
)

where r1 + · · ·+ rk = l. The BRST differential relates these operators by

(58) QBRSTT
(k,0)
l = ∂T

(k−1,0)
l+1 .

2.7. Large N single trace operators

A remarkable feature of holomorphic Chern-Simons theory is the following
fact, which we state as a theorem:

Theorem 1. The BRST cohomology of the large-N single trace operators
of holomorphic Chern-Simons theory is isomorphic to the BRST cohomology

of generalized stress-energy tensors T
(k,0)
l .

This statement holds whether we work with gl(N) or gl(N | N). We
prove it at the classical level. This theorem is essentially equivalent to a
classic result in homological algebra: the Loday-Quillen-Tsygan Theorem
[23, 24] that relates Lie algebra cohomology at large N to cyclic cohomology.

We will first describe the algebra of local operators. Let A ∈ Ω0,•(C3)⊗
gl(N) be the master field in holomorphic Chern-Simons theory. Let ι∂zi

A be
the contraction with anti-holomorphic vector ∂zi . Given a differential form
ω ∈ Ω•,•, we denote by ω(0) the evaluation at 0 of the component of ω which
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lies in Ω0,0. A general local operator at 0 is a polynomial in the following
basic operators

(∂Iz∂
J
z ι

K
∂z
Ai

j)(0)

where I, J,K are multi-indices, and i, j represent matrix entry in gl(N).
The linearized BRST operator is ∂̄ =

∑

dzi∂zi
. If we take cohomology with

respect to this linearized BRST operator, then Poincare lemma implies can-
cellation between ∂zi ’s and ι∂zi

’s. We end up with cohomologies represented
by the following operators

∂IzA
i
j(0) = ∂Iz c

i
j(0)

which have no z-derivatives and ιz contractions. These operators are
fermionic operators only involving the z-derivatives of the ghost field, and
equipped with the usual BRST differential

QBRSTc
i
j =

∑

k

cikc
k
j .

Mathematically, this BRST cochain complex can be described as the Lie
algebra cochains of gl(N)[[z1, z2, z3]], where z1, z2, z3 can be viewed as holo-
morphic jet coordinates at 0.

Only GL(N) invariant cochains contribute to this BRST cohomology.
For N → ∞, every GL(N) invariant operator is a product of single-trace
operators of the form

Tr
(

∂I1z c∂I2z c . . . ∂Ikz c
)

where I1, . . . , Ik are multi-indices. (At finite N , there are trace relations
which complicate the analysis). Because of the cyclic invariance of the trace,
these tensors can be naturally identified as cyclically invariant linear maps
R⊗k → C, where R = C[[zi]].

Loday-Quillen [23] and Tsygan [24] showed that the BRST operator on
the single-trace operators is precisely the Hochschild differential on the cyclic
cochain complex of R, with a shift in cohomological degree by 1. We thus
conclude that:

(59) Large N single trace operators ∼= HC∗(R)[−1]

where HC∗(R) is the cyclic cohomology of R. This is a very useful observa-
tion, which allows one to readily compute the large N single trace operators
of many gauge theories using techniques from homological algebra.
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In the case at hand, standard techniques of homological algebra (the
Hochschild-Kostant-Rosenberg theorem and Connes’ spectral sequence re-
lating cyclic and Hochschild homology) allow us to compute HC∗(R) very
easily. Introduce

(60) Ω−• = C[[zi, dzi]]

where dzi have cohomological degree −1. This is the holomorphic de Rham
complex on C3, except the functions that appear are treated as formal series
and we put k-forms to have degree −k. We let ∂ be the holomorphic de Rham
operator. We also introduce the linear dual (continuous with respect to the
adic topology):

(

Ω−•
)∨
.

This is spanned by z-derivatives of the δ-function at zi = 0, and its contrac-
tions with ∂zi . If ιi indicates contraction with respet to ∂zi , then an element
of (Ω−•)

∨
is a linear combination of

(61) ∂zi1 . . . ∂zik ιj1 . . . ιjmδzi=0

whose value at α ∈ Ω−• is (∂zi1 . . . ∂zik ιj1 . . . ιjmα)(0). The holomorphic de
Rham differential ∂ on Ω−• induces a dual differential on (Ω−•)

∨
which we

still denote by ∂.
The Hochschild-Kostant-Rosenberg theorem implies that the cyclic co-

homology group HC∗(R) can be computed by the cochain complex

(62)
(

Ω−•
)∨

[[u]]

with the differential u∂. We can identify elements of this complex with the
components of the generalized stress-energy tensor of holomorphic Chern-
Simons theory:

(63) ul∂zi1 . . . ∂zik ιj1 . . . ιjmδzi=0 ↔ ∂zi1 . . . ∂zik (T
(m,0)
l )j1,...,jm .

The BRST operator on the components of the generalized stress-energy
tensors precisely matches the operator u∂ on (Ω−•)

∨
[[u]]. In this way we see

that single trace operators are, at the level of BRST cohomology, given by
the components of the generalized stress-energy tensors.

The components of the generalized stress-energy tensors arrange into

multiplets {∂IzT
(k,0)
r−k } with fixed r, which are closed under the BRST operator

(see equation (56)). We described this multiplet above in terms of the de
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Rham operator applied to holomorphic derivatives and contractions of δzi=0.
It is easy to see that the de Rham cohomology of the complex (62) (for r ≥ 3)
consists of simply the δ-function: all derivatives and contractions cancel in
cohomology.

We conclude that in the multiplet {∂IzT
(k,0)
r−k } for r ≥ 3, the only operator

that survives in cohomology is

(64) T (0,0)
r = Tr c2r+1.

These are topological operators, because ∂ziT
(0,0)
r is BRST exact.

For r < 3, there are additional operators in the BRST-cohomology of

this multiplet. For instance, if r = 0, any operator ∂i1z1 . . . ∂
i3
z3T

(0,0)
0 is BRST

closed. For r = 1, the components of

∂T
(1,0)
0

and their derivatives are BRST closed. As we will show later, only the oper-

ators T
(0,0)
r will further survive when we couple holomorphic Chern-Simons

theory to closed string sectors.
The above argument works in the same way when the matrix is the super

Lie-algebra gl(N | N) and the result is identical to the gl(N) case. This is
because the classical invariant theory has a natural generalization to the
super Lie-algebra case [26]. We refer to [5] for a brief discussion.

2.8. Operators of the coupled open-closed theory

We have seen that, in the large N limit, the space of single trace operators
of the open string theory can be described in terms of closed string fields.
Here we analyze what happens when we also introduce the operators of the
closed string field theory. We will find that there is a remarkable cancellation
which implies the coupled theory is purely topological and has no degrees
of freedom. (This effect is only visible at infinite N . At finite N it is spoiled
by trace relations).

Recall that the B-model closed string states are given as the S1-
equivariant cohomology of the Hilbert space of the B-model TFT. The pa-
rameter u in the closed string states is the equivariant parameter. We can
also consider the localized S1-equivariant cohomology of the B-model TFT.
This is obtained by inverting u, giving us PV•,•((u)).

We could try to build a (rather trivial) string-field theory based on these
localized string states. Without this localization, the string-field theory is
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holomorphic on the space-time X. After we localize, it is topological. This
is because the action of divergence-free holomorphic vector fields is BRST
exact, due to the BV relation (22):

(65) LV α = [V, α] = Q(u−1V ∧ α)− u−1V ∧Q(α), Q = ∂̄ + u∂Ω

for any α ∈ PV•,•((u)) and any divergence-free holomorphic vector field V
(i.e. QV = 0). In other words, the following Carten homotopy formula holds

(66) LV = [Q, u−1V ].

At the level of BRST cohomology, the local operators of this string-field
theory are generated by an infinite sequence of topological operators Tl,
where Tl measures the field in u−l−1 PV3,0. This is due to the simple fact
that locally on the manifold X

(67) H(PV•,•((u)), ∂̄ + u∂Ω) ∼= C((u))[Ω−1].

Here Ω−1 = ∂z1 ∧ ∂z2 ∧ ∂z3 ∈ PV3,0 is the holomorphic polyvector whose
contraction with Ω is 1. The operator Tl is of ghost number 2l + 1.

The cancellation between the open and closed operators at large N is
the following:

Theorem 2. At the level of BRST cohomology, the operators of the coupled
open-closed theory at large N are isomorphic to the operators of the localized
closed-string field theory. That is, the algebra is generated by topological
operators Tl of ghost number 2l + 1, for l ∈ Z.

The proof of this result is purely algebraic. Recall that we have op-

erators T
(k,m)
l (l ≥ 0) of stress-energy tensors from open string sector de-

scribed in Section 2.6. Now we introduce operators T
(k,m)
l (l < 0) from closed

string sector as follows. T
(k,m)
l ∈ Ωk,m depends only on closed string fields

in u−l−1 PV3−k,m and is given by

(68) T
(k,m)
l = µ ⊢ Ω, for u−l−1µ ∈ u−l−1 PV3−k,m, l < 0.

These operators capture the same information as the closed string fields.
The linearized BRST operator Q = ∂̄ + u∂Ω on closed string fields induces
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a linearized BRST operator on closed string operators T
(k,m)
l by











































QT
(k,m)
l = ∂̄T

(k,m−1)
l + ∂T

(k−1,m)
l+1 k,m ≥ 1, l < −1

QT
(k,m)
−1 = ∂̄T

(k,m−1)
−1 k,m ≥ 1

QT
(0,m)
l = ∂̄T

(0,m−1)
l m ≥ 1, l < 0

QT
(k,0)
l = ∂T

(k−1,0)
l+1 k ≥ 1, l < −1

QT
(k,0)
−1 = 0 k ≥ 1

QT
(0,0)
l = 0 l < 0

(69)

We observe that they are similar to the BRST transformation (56) of stress-

energy tensors from open string sector, except for a discrepancy at T
(•,•)
−1 .

This is precisely corrected by the coupling of open-closed sectors!
To see this, let I(1) denote the first order coupling of holomorphic Chern-

Simons fields with Kodaira-Spencer gravity described in Section 2.3. There
are extra terms in the BRST transformation of closed string operators by

(70) T
(k,m)
l → {I(1), T

(k,m)
l }c.

Here {−,−}c is the BV anti-bracket for Kodaira-Spencer fields. By (28),

this is only nontrivial for T
(k,m)
−1 . Using formula (16), we find

(71) {I(1), T
(k,m)
−1 }c =

{

∂T
(k−1,m)
0 k > 0

0 k = 0.

where T
(k−1,m)
0 is the stress-energy tensor from open string sector.

This is the BRST transformation connecting open and closed string sec-
tors!

Combining (56) (69) (71), we find the following BRST transformations
for operators in the coupled open-closed theory

(72) QBRSTT
(k,m)
l = ∂̄T

(k,m−1)
l + ∂T

(k−1,m)
l+1 .

Now l ∈ Z runs over all integers, and it is understood that T
(k,m)
l = 0 if

k < 0 or m < 0.
Using Theorem 1, we find that at the level of BRST cohomology, local

operators in the coupled open-closed theory are generated by components of

{T
(k,m)
l }l∈Z and their derivatives. Formula (72) implies that all derivatives

and form factors will cancel in BRST cohomology. Therefore the BRST
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cohomology will then consist only of the operators T
(0,0)
l of ghost number

2l + 1, for l ∈ Z. The derivatives of these operators are zero in cohomology,
so that these are topological operators at the level of BRST cohomology3.

We conclude that at the level of BRST cohomology, the algebra of op-
erators of the coupled open-closed theory is simply the polynomial algebra

generated by the topological operators {T
(0,0)
l }l∈Z. This proves Theorem 2

with the identification Tl = T
(0,0)
l .

2.9. A comment on counting loops

We have explained how the Green-Schwarz mechanism leads to cancellation
of one-loop anomalies. Now we will explain one of the main points of this
note: anomalies at higher loops are also cancelled, and counter-terms at all
loops are fixed uniquely.

Let us first comment on how we are counting loop number. As in any
open-closed string field theory, we can associate the topological type of a
Riemann surface with boundary to any Feynman diagram. Closed-string
vertices are viewed as pairs of pants, and open-string vertices are viewed as
discs with marked points on the boundary. Let γ be such a diagram, and Σγ

be the corresponding genus g Riemann surface with h boundary components
and n closed-string marked points. The loop number of γ is

(73) 2g − 2 + h+ n+ 1 = −χ(Σγ) + n+ 1

where χ(Σγ) is the topological Euler characteristic. In other words, we count
a closed string marked point as the same loop number as an open string
boundary component. Such a graph comes with a factor of λ2g−2+h+n =
λ−χ(Σγ)+n where λ is the string coupling constant. Note that χ(Σγ)− n is
the Euler characteristic of the surface obtained from Σγ with closed string
marked point deleted.

In this counting, the open-string interaction occurs with a coefficient of
λ−1, because a disc has Euler characteristic 1. The open string propagator
occurs with coefficient λ, because when we glue to surfaces along an interval

3One might worry that there are further corrections to the BRST operator which
take some T to a product of T ’s. One can show that this is not possible, for dimen-
sional reasons. The point is that any such term in the BRST operator must occur
for a world-sheet of Euler characteristic zero, otherwise it would be dimensionful
which is impossible since all operators are dimensionless. It is not hard to show
directly that world-sheets of Euler characteristic zero don’t contribute any further
terms.
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in their boundaries the Euler chacteristic decreases by one. The closed-string
propagator has coefficient λ0, as gluing surfaces along a common boundary
preserves Euler characteristic. The closed-string vertex has coefficient λ, as
the sphere with three punctures has Euler characteristic −1.

The tree-level graphs are given by disks without closed string insertions,
i.e., g = 0, h = 1, n = 0. They are computed by tree-level Feymann diagrams
in holomorphic Chern-Simons theory. It satisfies the BV quantum master
equation [21] at the level of g = 0, h = 1, n = 0 as a consequence of the clas-
sical master equation (9).

The one-loop graphs are those with a power of λ0. There are two cases
with non-trivial insertions: g = 0, h = 1, n = 1 and g = 0, h = 2, n = 0. The
first case is computed by tree-level Feynman diagrams with one vertex by
the first order coupling I(1) as in Section 2.3 and other vertices by the
holomorphic Chern-Simons interaction. It satisfies the BV quantum master
equation [21] at the level of g = 0, h = 1, n = 1 by the construction of I(1)

(more precisely by the linearized BRST transformation property: QI(1) +
δHCSI

(1) = 0).
The Riemann surface associated to the second case g = 0, h = 2, n = 0

is a cylinder. The BV quantum master equation [21] at this level is pictured
as the degeneration of the cylinder

∂( ) = + +

These are exactly the graphs that appeared in our discussion of the Green-
Schwarz mechanism.

If we write Ig,h,n for the effective interaction of genus g with h boundary
components and n closed-string marked points, then the above picture reads
as the following master equation

(74) QI0,2,0 + {I0,1,0, I0,2,0}o +∆oI0,1,0 +
1

2
{I0,1,1, I0,1,1}c = 0.

Here {−,−}o is the BV bracket in the open string sector (HCS), {−,−}c is
the BV bracket in the closed string sector (KS gravity), and ∆o is the BV
operator in the open string sector. This master equation has an anomaly to
solve if the gauge Lie algebra is gl(N), and anomaly free if the gauge Lie
algebra is gl(N |N), as discussed in section 2.5.

This counting of loop number has the following nice feature. If µ is a
polyvector field on Cd, let us give it a dimension based on the dimension
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of the differential form µ ⊢ Ω. Then, a field µi1···ik
j̄1···j̄l

in a component of PVk,l

has dimension d− k + l, and charge d− k − l under the diagonal U(1) in
U(d). Similarly, for a HCS field Aī1···̄ik in a component of Ω0,k ⊗ g, we give
it dimension k and U(1) charge −k. If we give the string coupling constant
λ dimension d and U(1) charge d, then the open-closed Lagrangian is di-
mensionless and U(1) invariant.

For example, the interaction of holomorphic Chern-Simons in complex
dimension 3 is a linear combination of expressions of the form

∫

d3zd3z̄AĪ1AĪ2AĪ3 , with |I1|+ |I2|+ |I3| = 3.

It has dimension 6− |I1| − |I2| − |I3| = 3. This is because the volume density
d3zd3z̄ has dimension 6, and the minus sign is because a functional of a field
has the opposite dimension to the corresponding field. If we take into count
the string coupling constant λ, then λ−1

∫

Aī1Aī2Aī3d
3zd3z̄ is dimensionless.

For another example, let µ ∈ PVk,l and consider its first order coupling

I
(1)
µ [A] (16) with HCS fields. It is given by a linear combination of the form

∫

d3zd3z̄µi1···ik
j̄1···j̄l

AĪ0∂zi1AĪ1 · · · ∂zikAĪk , with |I0|+ · · ·+ |Ik| = 3− l.

Since each derivative ∂zi has dimension −1, this interaction has dimension
(k − 3− l)− (|I0|+ · · ·+ |Ik|+ k) + 6 = 0 and it comes with a coupling con-
stant λ0 as expected.

2.10. Quantization and anomaly cancellations at higher loops

Now let us turn to the analysis of higher-loop graphs. We have seen that
coupling the open and closed B-model yields a theory that, at large N , is
purely topological. In particular, all local operators are of dimension 0 (for
this to be true, it is important that we count the dimension of polyvector
fields as described above). This leads to a remarkable cancellation of poten-
tial higher-loop anomalies: beyond the leading order in the expansion in the
string coupling, the coupled theory has no possible counter terms or gauge
anomalies.

The reason is the following. As we have seen, the string coupling constant
is dimensionful, so that possible counter-terms or gauge anomalies beyond
the one loop level must be dimensionful. Theorem 2 implies that there are,
however, no dimensionful counter-terms or potential gauge anomalies in the
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BRST cohomology. Any counter-terms or gauge anomalies arise by descent
from local operators Tl, which are all dimensionless.

As a consequence, it shows that the dynamics of Kodaira-Spencer gravity
are fully recovered from the large N holomorphic Chern-Simons theory! For
example, consider the following BV master equation [20] at genus 2 in the
closed string sector

∂( ) =×

×

× +×

×

×

+×

×

×

×

×

×

It reads as the following equation (using the notation Ig,h,n as above)

QI2,0,n +∆cI2,0,n+2 +
1

2

∑

n1+n2=n

{I1,0,n1+1, I1,0,n2+1}c(75)

+
∑

n1+n2=n

{I0,0,n1+1, I0,0,n2+1}c = 0

Here ∆c is the BV operator in the closed string sector. Such equation is
solved without ambiguity (up to gauge equivalence) as part of the recur-
sive process of constructing higher loop graphs via the BRST cohomology
analysis.

It seems like this argument might only work for N = ∞, because the
cancellation between open and closed string operators only holds when we
do not impose trace relations on the open-string side. However, the argument
can be applied for all values of N ; see [5] for details. To do this, we should
consider gauge theories defined for all gl(N) (or gl(N |N)) in a uniform
way. The Feynman diagrams of such gauge theories are ribbon-graphs (also
known as fat graphs). The amplitude of a ribbon graph can be evaluated for a
gl(N) (or gl(N |N)) gauge theory for any N . In this set-up, local operators,
counter-terms, etc. are all given as products of cyclic words of the gauge
fields, without imposing trace relations. The cancellation between open and
closed string theory operators holds in this setting since we have not imposed
trace relations. This implies the higher-loop anomaly cancellations for all N .
In particular, if we work with gl(N |N) where one-loop anomaly cancellation
holds by Green-Schwarz mechanism, then we have established quantization
of open-closed B-model at all loops in perturbation theory.
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3. The type I topological string

3.1. Holomorphic Chern-Simons for orthogonal groups

So far, we have discussed holomorphic Chern-Simons theory for the Lie
algebras gl(N) or gl(N | N). In this section we will explain a parallel analysis
in the case of so(N).

Holomorphic Chern-Simons theory for Lie algebras other than gl(N)
can not be coupled to the full Kodaira-Spencer theory. The Poisson tensor
field of Kodaira-Spencer theory makes the space-time non-commutative, and
one can not have a g-bundle on a non-commutative space-time unless g is of
type A. For example, if A ∈ Ω0,∗(Cn)⊗ g[1] denotes the holomorphic Chern-
Simons super-field, then the coupling to a Poisson tensor πij takes the form

∫

ϕabcA
a∂ziAb∂zjAcπijΩ

where a, b, c are Lie algebra indices and ϕabc is some invariant cubic tensor.
For this to be non-zero, ϕabc must be symmetric in the b and c indices. There
is only such a tensor when g is of type A.

There is, however, a variant of Kodaira-Spencer theory which can be
coupled to holomorphic Chern-Simons theory for general Lie algebras. In [5]
we called this (1, 0) Kodaira-Spencer theory, because of its relationship to
the (1, 0) tensor multiplet in 6 dimensions. A better name for this system
could be the type I topological string, because its relationship to the ordinary
B-model is similar to the relationship of physical type I string theory to the
IIB string theory.

The fields of Kodaira-Spencer theory are the SO(2)-equivariant states of
the B-model TFT. We took SO(2)-equivariant cohomology because we were
interested in operators that, by descent, correspond to Lagrangians that can
be defined on any oriented Riemann surface.

For type I Kodaira-Spencer theory, we would like to consider those op-
erators that descend to Lagrangians defined on a surface without a choice
of orientation. Any local operator can be descended twice to give a 2-form
valued local operator. On a Riemann surface without an orientation, we
can not integrate a two-form. Rather, we can integrate a two-form twisted
by the orientation local system, which is a flat rank 1 vector bundle whose
monodromy is given by the change of orientation.
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This tells us that in the type I theory, we should not just consider O(2)-
equivariant local operators: these will descend to give 2-form valued opera-
tors. Instead, we should consider O(2)-equivariant local operators after we
have twisted by the determinant representation of O(2).

The O(2)-equivariant cohomology is simply the Z/2-fixed points of the
SO(2)-equivariant cohomology. The O(2)-equivariant cohomology after
twisting by the determinant representation is the subspace of the SO(2)-
invariant cohomology on which Z/2 acts by −1.

One can show that Z/2 action has eigenvalue 1 on the space ul PVk,• for
k + l even, and eigenvalue −1 on these spaces when k + l is odd. Thus, the
O(2)-equivariant cohomology, twisted by the determinant representation of
O(2), is given by

(76)
∑

k+l odd,l≥0

ul PVk,• .

The BRST differential is, as before, ∂̄ + u∂Ω. These are the fields of type I
Kodaira-Spencer theory.

At the level of open-string, for a field A ∈ Ω0,∗(X)⊗ glN [1], the invo-
lution coming from an orientation-reversing symmetry of the world-sheet
sends A 7→ AT . As before, the fields of the open-string field theory must
be quantities that we can integrate over the boundary of a non-orienatble
surface, and so must transform by −1 under the Z/2 action. Therefore the
the open-string field theory is holomorphic Chern-Simons theory for soN .

The closed-string field theory couples to holomorphic Chern-Simons the-
ory for so(N) for any N . The formula for the coupling is the same as that
described in Section 2.3, which makes sense for the gauge Lie algebras so(N).
In fact, the coupling with the field

µ ∈ ul PVk,•

involves a sum of traces of 2l + k + 1 copies of the master field A and its
derivatives. One can show that this expression changes by (−1)k+l+1 when
we apply the symmetry that sends A to −AT while reversing the order of the
trace, so that only the fields in ul PVk,• with k + l odd couple non-trivially.
For instance, the field in ul PV0,• couples to Tr(A2l+1), which is zero for
matrices in so(N) when l is even.

The analysis of the large N single trace operators for so(N) proceeds
in a similar way to that for gl(N). The only difference is that single trace
operators for so(N) are represented by the Z/2 anti-invariants of the cyclic
cohomology group that describes the gl(N) operators. The Z/2 action is
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the same as that on the fields of Kodaira-Spencer theory, so we conclude
that in the large N limit, all operators in BRST cohomology are given by
the generalized stress-energy tensors that are responses to type I Kodaira-
Spencer fields. This is similar to the discussion in Section 2.6.

In the case of so(N), because only half of the fields of Kodaira-Spencer
theory contribute, the description of the operators is a little simpler. After
passing to BRST cohomology, the list of operators consists of

(77) T
(0,0)
2l−1 = Tr c4l−1

for l ≥ 1, and the holomorphic stress-energy tensor

(78) T
(1,0)
0 = Tr c∂c.

The operators T2l−1 for l ≥ 2 are, at the level of BRST cohomology, topolog-
ical operators, whose derivatives are BRST exact. The stress-energy tensor

T
(1,0)
0 is related to T

(0,0)
1 as before, by

QBRSTT
(1,0)
0 = ∂T

(0,0)
1 .

Thus the space of single-trace operators in this case consists of the stress-
energy tensor for a holomorphic theory defined on Calabi-Yau manifolds,
together with an infinite tower of topological operators.

3.2. Anomaly cancellation in type I topological string in 3
complex dimensions

We will show that the Green-Schwarz mechanism cancels the anomalies for
the type I topological string in 3 complex dimensions when coupled to holo-
morphic Chern-Simons for the group SO(8). This anomaly cancellation ex-
tends to all orders in the loop expansion.

As in the ordinary B-model, the open-string anomaly takes the same
form

(79)

∫

TradA(FA)
3.

where we take the trace in the adjoint representation of so(N).
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The closed-string contribution to the one-loop anomaly is given by

(80)

∫

Trfun(AFA) Trfun(F
2
A).

This is the only term that appears when we use the type I topological string:
it is the one associated to closed-string fields in PV1,∗. Here by Trfun we
simply mean the Killing form on our Lie algebra g, normalized according to
the trace in some fundamental representation.

The Green-Schwarz anomaly can be cancelled only if

(81) Trad(X
4) ∝

(

Trfun(X
2)
)2

where X ∈ g.
For the classical Lie algebras, the space of quartic invariant polynomials

is always two dimensional, with the following exceptions. For g = sl2, g = sl3,
the space of quartic invariant polynomials is one dimensional. For g = so8,
the space of quartic invariant polynomials is 3 dimensionals.

For the exceptional groups, the space of quartic invariant polynomials is
always one dimensional.

We find that the one-loop Green-Schwarz anomaly can be cancelled for
all exceptional groups, sl2, sl3. For the other classical groups, the anomaly
can be cancelled only in those situations when TradX

4 is not an independent
generator of the ring of invariant polynomials.

It turns out that this happens only for g = so8. We have the following
identity for g = son:

Trad(X
4) = (n− 8)Trfun(X

4) + 3(Trfun(X
2))2

This means that the one-loop anomaly vanishes if n = 8.
More generally, if we take for g the superalgebra osp(n | m), the same

identity holds with n−m playing the role of n. We find the anomaly cancels
for g = osp(n+ 8 | n).

For type A, it is easy to verify that the anomaly does not cancel for
g = sln for any n > 3.

3.3. Anomaly cancellation beyond one loop

Let us now briefly explain how higher loop anomalies are cancelled. We
will take the holomorphic Chern-Simons gauge group to be osp(N + 8 | N).
Sending N → ∞ has the effect of removing the trace relations from the
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open-string algebra. Following our analysis earlier, if we couple the type I
topological string to holomorphic Chern-Simons theory for osp(N + 8 | N)
for N → ∞, we find that only topological operators survive on the space-
time. at N → ∞

Essentially the same argument shows that, for N large, the theory cou-
pling so(N) holomorphic Chern-Simons with the type I closed string field
theory is topological. The topological operators are half of those present
in the ordinary B-model: namely, the operators T2l−1, for l ∈ Z, of ghost
number 4l − 1. These are exactly the operators we get when we perform
localized equivariant cohomology of the B-model TFT with respect to the
group O(2) instead of SO(2).

Similar argument as in Section 2.10 for gl(N |N) case shows that anoma-
lies cancel beyond the one-loop setting as well. As a result, we have estab-
lished quantization of our twisted type I topological string at all loops in
perturbation theory.

3.4. Anomaly cancellation in the type I topological string in 10
dimensions and SO(32)

The original Green-Schwarz anomaly cancellation occurs for the 10-
dimensional type I superstring. We argued in [7] that a supersymmetric
localization of the space-time theory of physical type IIB string theory can
be expressed in terms of the B-model on Calabi-Yau 5-folds. In particu-
lar, we argued that a twist of type IIB supergravity on R10 is given by the
closed-string field theory of the topological B-model on C5. In the open
string sector, Baulieu [27] showed that a supersymmetric localization of the
theory on a D9 brane is equivalent to holomorphic Chern-Simons theory
on C5.

In complex dimension 5, there is a ghost-number anomaly for the topo-
logical string. This means that we always need to insert fields of non-zero
ghost number to get non-trivial correlators. Equivalently, we should give the
string coupling constant λ ghost number −2 to put the action to have ghost
number zero. In this dimension, we should always treat our fields in the BV
formalism, so the fundamental field of holomorphic Chern-Simons theory is
the master field A ∈ Ω0,•(C5)⊗ g[1].

In [5], we showed that there is a unique quantization of coupled Kodaira-
Spencer theory and gl(N | N) holomorphic Chern-Simons theory, for all N ,
in complex dimension 5 as well. The proof is identical to the one sketched
above in the case of complex dimension 3.
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Here we will generalize this analysis to type I topological strings, and
show how the Green-Schwarz mechanism considered here is related to that
in physical string theory.

The space-time fields associated to Type I string theory are obtained
from those of type IIB by looking at the fixed points of a Z/2 action on
the space of fields. This procedure is compatible with supersymmetry, and
so can be applied to compute the supersymmetric localization of the space-
time theory of type I string theory. The closed-string fields of the localized
type IIB twisted theory are PV•,•(C5)[[u]]. We propose, as before, that Z/2
acts by (−1)k+l+1 on the fields in PVk,∗(C5)ul. Therefore our proposal for
the fields of twisted type I supergravity are

(82)
∑

k+l odd,l≥0

PVk,∗(C5)ul.

The fundamental field is, as before, the Beltrami differential β ∈ PV1,∗(C5).
We also have a dynamical field in PV3,∗(C5). The fields in PVk,∗(C5)ul,
where k + l ≥ 5, provide only consistent topological degrees of freedom and
are not so important.

If we have a stack of N D9 branes, the closed-string fields in type I
should be obtained by applying an involution corresponding to reversing
the order of the open strings. As in Section 3.1, this involution is simply
A→ AT . The open-string fields in type I consist of the fields that are odd
under this involution, so they give holomorphic Chern-Simons theory with
gauge Lie algebra so(N). More generally, if we start with N D9 and M
anti-D9, we will get holomorphic Chern-Simons theory for OSp(N |M).

Next we will show that the open-string anomaly can be cancelled only
if we use OSp(32 +N | N). Our result is in some ways stronger than the
original result of Green-Schwarz, because it holds to all orders in perturba-
tion theory and not just at leading order. It would be very interesting to
see whether our higher-loop anomaly cancellation can be applied to physical
theories.

In complex dimension 5, the one-loop anomaly for holomorphic Chern-
Simons theory with gauge Lie algebra g is

(83)

∫

Trad(AF (A)5) =

∫

Trad(A(∂A)5)

where the trace is taken in the adjoint representation. This is similar to
complex dimension 3 case and was computed in [5] for arbitrary dimensions
in the current context.
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If we couple our twisted type I super-gravity minimally to holomorphic
Chern-Simons theory with gauge Lie algebra g, then only the fields β ∈
PV1,∗(C5) and η ∈ PV0,∗(C5)u are coupled. The field β deforms the complex
structure, and is coupled by

∫

(β ⊢ trA∂A) ∧ Ω.

Here tr indicates the trace in the vector representation and Ω = d5z is the
holomorphic volume form. The field η deforms the volume form, and is
coupled by

∫

(η trA3) ∧ Ω.

These are similar to the discussion in Section 2.3. Let I(1) collect such
first order couplings.

The closed-string BV anti-bracket {−,−}c in complex dimension 5 is
similar to equation (28), and the only nontrivial BV anti-bracket is between
fields in PVk,• and PV4−k,•. It encodes the integral kernel of the divergence
operator ∂Ω. If we only turn on fields β, η as above, then {I(1), I(1)}c vanishes,
because the closed-string fields β, η have trivial BV bracket with each other.
To cancel the open-string anomaly, we need to add a term where the fields
in PV3,∗(C5) are coupled since the BV anti-bracket of a field in PV3,∗ with
one in PV1,∗ is non-trivial.

There is a potential coupling whereby µ ∈ PV3,∗ is coupled by

∫

(µ ⊢ tr (A∂A∂A∂A)) ∧ Ω.

(To make this closed under the linearized BRST operator, we also need to
couple the fields in ul PV3−l,• to l + 4 many A’s, as explained in Section 2.3
and 2.6). If we incorporate this coupling into I(1) , then

(84) {I(1), I(1)}c ∝

∫

tr(A∂A) tr((∂A)4).

We find that the open and closed-string anomalies can be cancelled only if

(85)

∫

tr(A∂A) tr((∂A)4) ∝ Tr(A(∂A)4)
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As is well-known, for so(n), the trace in the vector and adjoint representation
are related by

Tr(X6) = (n− 32) tr(X6) + 15(tr(X2))(tr(X4)).

Only when n = 32 does equation (85) hold.
For the super Lie algebras so(32 +N | N), (85) continues to hold. The

main point is that the trace of a power of an element of so(32) in the adjoint
representation of so(32 +N | N) is the same as its trace in the adjoint of
so(32).

We conclude that the twisted type I string is consistent only when we
include (32 +N | N) D9 branes, just as in the case of the physical string.

At higher orders in the loop expansion, the cancellation that occurs for
the type I topological string on C3 holds similarly on C5. The argument is
identical to the one given before. First, we try to quantize the open-closed
theory with gauge Lie algebras so(32 +N | N) for all N , in a compatible
way. This means that we remove all trace relations from the open-string
sector. The single-trace operators of holomorphic Chern-Simons theory are

given by the components T
(k,•)
l of the stress-energy tensor, where k + l is odd

and l ≥ 0. The operators from the closed-string sector gives us T
(k,•)
l when

l < 0 and k + l is odd. The BRST operator is as in equation (72), so that at

the level of BRST cohomology only the topological operators T
(0,0)
l , l odd,

remain. Because these operators are of dimension 0, they can not contribute
to anomalies or counter-terms at higher orders in the loop expansion.

Other gauge groups

The Green-Schwarz mechanism [6] allows for the groups E8 ⊕ E8, E8 ⊕
U(1)248, U(1)496 in addition to SO(32). String-theoretic reasoning selects
SO(32).

In our setting, the cancellation of one-loop anomalies works for any Lie
algebra g in which the trace TradX

6 (taken in the adjoint representation)
factors as a product of the Killing form and a quartic invariant polynomial.
This happens for all the Lie algebras listed above, but also for some other
algebras such as su(n) for n ≤ 5, E8, etc. Unlike the standard Green-Schwarz
calculation, our method does not immediately produce the condition that
the Lie algebra is of dimension 496.

In our analysis, we do not see the constraint that the dimension is 496
directly. However, the argument for higher-order cancellation of open and
closed anomalies only works for SO(32). For a gauge group such as E8 or
E8 ⊕ E8, the coupled open-closed theory has non-topological local operators
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which can contribute to anomalies and counter-terms at higher orders in the
loop expansion. To see this, we note that the closed-string field in PV3,∗ is
no longer coupled to any open-string field. This coupling is what induces
the BRST differential cancelling open and closed sectors. This tells us that
any local operators we can build from the closed-string field in PV1,∗ will
survive when we couple to the gauge theory.

To sum up, we see that although we do not directly find the constraint
that the gauge group is of dimension 496, our anomaly cancellation method
only works for OSp(32 +N | N), so ultimately we find the same gauge group
that is selected by string theory.

3.5. Branes in type I string theory

Physical type I string theory has D1 and D5 branes (as well as the 32
D9 branes we have already discussed). In this section we will explain their
appearance in the twisted type I string theory that we have described above.
We will also describe the branes that appear in type I topological string
theory in 3 complex dimensions.

Our general analysis of branes applies to complex dimensions 3 or 5. In
the ordinary topological B-model on a Calabi-Yau manifold X of dimension
3 or 5, a brane is given by a coherent sheaf F on X. The Z/2 action which
reverse orientation on the world-sheet acts on the category of branes by
sending a vector bundle E to the dual bundle E∨. A coherent sheaf F is
sent to its dual in the derived sense,

(86) F∨ = RHom(F ,OX).

In practice, if we choose a complex of vector bundles as a resolution of F ,
then F∨ is computed by the dual of this complex. A brane in the orbifold
theory is a sheaf F with a symmetric isomorphism F ∼= F∨ (again, in the
derived category). Symmetric means that the pairing

(87) F ⊗L F → OX

is symmetric.
If Y ⊂ X is a complex submanifold of complex codimension k, then one

can show that

(88) O∨
Y = ∧kNY/X [−k]
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where NY/X is the normal bundle to Y in X and [−k] indicates a shift of

cohomological degree by k. Since X is Calabi-Yau, ∧kNY/X is the same as
the canonical bundle KY of Y , so that

(89) O∨
Y = KY [−k].

From this we see that we can build a self-dual sheaf wrapping Y only if the

codimension k is even, and if we equip Y with a square root K
1/2
Y of the

canonical bundle. In that case, the self-dual sheaf is K
1/2
Y [−k/2], since

(K
1/2
Y [−k/2])∨ = K

−1/2
Y [k/2]⊗O∨

Y = K
1/2
Y [−k/2].

A self-dual sheaf F has, by definition, a map in the derived category
F ⊗OX

F → OX . We need this pairing to be symmetric. It can be shown

that the pairing for F = K
1/2
Y [−k/2] obtained above is (graded) symmetric

when k/2 is even, and (graded) anti-symmetric when k/2 is odd.

When k/2 is even, we can tensor K
1/2
Y [−k/2] with the fundamental rep-

resentation Cn of O(n,C). The resulting sheaf K
1/2
Y [−k/2]⊗ Cn is still self-

dual, and the pairing is symmetric. We conclude that when k/2 is even, we
can take a stack of n branes for any n, and the theory on the brane is an
O(n) gauge theory.

When k/2 is odd, the pairing on K
1/2
Y [−k/2] is anti-symmetric. If we

tensor with the fundamental representation C2n of Sp(n,C), we obtain a

sheaf K
1/2
Y [−k/2]⊗ C2n which has a symmetric pairing. We conclude that

when k/2 is odd, we can only have an even number of branes, and that the
gauge group on the brane is Sp(n,C).

For the type I B-model on a Calabi-Yau 5-fold X, this argument tells us
that the only branes are the D1 and D5 branes. We can have any number of
D1 branes, and these have an O(n) gauge group; but only an even number
of D5 branes, with an Sp(n) gauge group. This is consistent with what
happens in physical type I [28], where it is known that the gauge group on
a stack of D1 branes is O(n) and on a stack of D5 branes is Sp(n).

If we work on a Calabi-Yau 3-fold, the only consistent brane in the type
I theory is a D1 brane, living on an algebraic curve. Since this is of complex
codimension 2, there must be an even number of D1 branes, carrying an
Sp(n) gauge group.
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3.6. The open-string field theory on a brane in the type I
topological string

In this section we will compute the open-string field theory living on a brane
in the type I topological string, in dimensions 5 or 3. In each case, there is
potentially a one-loop gauge anomaly on the brane. However, we will find
that 32 (or 8) is precisely the correct number of space-filling branes to cancel
the anomaly on the brane (in dimensions 5 and 3).

The D1 brane in 5 complex dimensions

In the ordinary B-model on C5, the open-string states for n D1 branes
are Ω0,∗(C)[ϵ1, . . . , ϵ4]⊗ gl(n)[1] where ϵi are odd variables. This is obtained
from the dimension reduction of the usual holomorphic Chern-Simons theory
on C5 to C = {z1 = z2 = z3 = z4 = 0}, with the identification ϵi = dz̄i.

We interpret these fields as follows: the ϵi’s and the ϵiϵjϵk’s are dual to
each other and give 4 adjoint valued β − γ systems, describing the normal
motions of the brane. The ϵiϵj fields give 6 adjoint-valued real fermions (or
3 adjoint-valued complex fermions). The term without any ϵ gives the c-
ghost, and ϵ1ϵ2ϵ3ϵ4 is the b-ghost. Thus, the theory is the BRST reduction
of 4 β − γ systems and 6 real fermions, all adjoint-valued.

The variables ϵi are most naturally of spin 1/4, but the spin can be
changed by twisting using a homomorphism SO(2) → SU(4). If we choose
the ϵi to have spin 1/4, then the components of the β − γ system are of
spins 1/4, 3/4 and all other fields have their usual spin.

For type I, we should take the Z/2 fixed points of these fields. The Z/2
action sends an element A ∈ gl(n) to −AT , and also acts on the variables ϵi
by ϵi → −ϵi. This extra sign is dictated by the requirement that the open-

string fields act as symmetries of the sheaf of K
1/2
C

⊗ Cn[−2] which are
graded anti-symmetric with respect to the pairing

(KC1/2 ⊗ C
n)[−2]⊗ (KC1/2 ⊗ C

n)[−2] → OC5 .

We conclude that the D1−D1 strings in type I contribute an O(n) b− c
ghost system coupled to 6 real fermions valued in the adjoint representation
and 4 β − γ systems valued in the symmetric square of the vector represen-
tation of O(n)4. The symmetric square of the vector representation contains

4In the ordinary topological B-model, there is also a term in the BRST current
of the form fabcψaβbγc where a, b, c are indices for a basis of glN . When restricted
to the fields of the type I B-model, this term vanishes for symmetry reasons.
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a copy of the trivial representation, so we can write the bosonic fields as be-
ing four free β − γ systems, representing the normal motion, together with
four β − γ systems valued in the trace-free symmetric matrices.

In addition, there is a contribution from the 32 D9 branes. Because of
the Z/2 orbifold, only D9−D1 strings contribute; D1−D9 strings do not
contribute. For n D1 branes, these fields live in

(90) RHom(O32
C5 ,K

1/2
C

⊗ C
n[−2])[1] = K

1/2
C

⊗ C
n ⊗ C

32[−1].

(The shift of ghost number by 1 is the shift that always occurs when we move
from open-string states to fields of the gauge theory). Since only the ghost
number modulo 2 really matters, we see that these extra fields contribute
32n real fermions.

Note that the theory on the D1 branes is not the dimensional reduction
of the SO(n) holomorphic Chern-Simons theory on a space-filling brane.
This is to be expected: there is no T -duality in type I string theory which
transforms D1 to D9, nor is there a T -duality transforming D1 to D5.

The theory on the stack of n D1 branes is anomaly-free. Using the
standard formula for the chiral anomaly to BRST reduction of a system of
fermions and β − γ systems, we find the anomaly is

(91) 8TrS2Cn(X2)− 6Tr∧2Cn(X2)− 32TrCn(X2)− 2Tr∧2Cn(X2).

Here X is an element of the Cartan of so(n), and Cn indicates the funda-
mental representation. The four terms come from the four β − γ systems in
S2Cn, the 6 adjoint valued fermions, the 32 vector valued fermions, and the
b− c ghosts.

One can calculate that this combination is zero. Indeed, we can take
X to be a generator of the Cartan of a copy of so(2) ⊂ so(n), and break
Cn = C2 ⊕ Cn−2 as a representation of so(2). Then, S2Cn = S2C2 ⊕ C2 ⊗
Cn−2 ⊕ S2Cn−2, and ∧2Cn = C⊕ C2 ⊗ Cn−2 ⊕ ∧2Cn. This gives

TrS2Cn(X2) = TrS2C2(X2) + (n− 2)TrC2(X2) = 8 + 2(n− 2)

Tr∧2Cn(X2) = (n− 2)TrC2(X2) = 2(n− 2)

TrCn(X2) = TrC2(X2) = 2.

In these formulae, we are normalizing X in the Cartan of so(2) so that
the weights of the vector representation are (1,−1).This implies that the
anomaly (91) vanishes. Note that the vanishing of this anomaly gives an
independent way of fixing the number of D9 branes to be 32.
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D1 brane in three complex dimensions A similar argument gives a de-
scription of the theory living on a D1 brane in 3 complex dimensions. In this
case, we find b− c ghosts for the group sp(n). If C2n is the fundamental rep-
resentation of sp(n), then the matter fields consist of a β − γ system living
in ∧2C2n together with a system of symplectic bosons living in the bifunda-
mental representation C8 ⊗ C2n of so(8)⊕ sp(n). The trivial representation
in ∧2(C2n) is a free β − γ system describing the normal fluctuations of the
brane.

In this case also, there still is no anomaly to performing the BRST
reduction. The anomaly consists of

(92) 2Tr∧2C2n(X2) + 8TrC2n(X2)− 2TrS2C2n(X2).

These terms come from the β − γ system valued in ∧2C2n, the 8symplectic
bosons, and the b− c ghosts. As before, X is an element of the Cartan of
sp(2n).

To check this expression vanishes, we can assume that X is a basis
element the Cartan of sp(1) and we decompose C2n = C2 ⊕ C2n−2, as above.
We find, following the analysis above, that

Tr∧2C2n(X2) = 2(2n− 2), TrS2C2n(X2) = 8 + 2(2n− 2), TrC2n(X2) = 2.

The total anomaly is then zero.
This anomaly only vanishes if we have 8 space-filling branes, giving us

an independent verification that this is the correct number.

The D5 brane in 5 complex dimensions

The theory on a stack of 2n D5 brane in 5 complex dimensions can be
calculated using similar techniques. To describe this theory it is convenient
to work in the BV formalism. We will not present the full details of the
derivation, as they are similar to the computations above.

The fundamental fields are:

A ∈ Ω0,∗(C3)⊗ sp(n)[1]

B ∈ Ω3,∗(C3)⊗ sp(n)[1]

X ∈ Ω0,∗(C3,K1/2)⊗ ∧2
C
2n

Y ∈ Ω0,∗(C3,K1/2)⊗ ∧2
C
2n

Z ∈ Ω0,∗(C3,K1/2)⊗ C
2n ⊗ C

32

(93)
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The Lagrangian is

(94)

∫

BF (A) + X ∂̄AY + Z ∂̄AZ

The fields X ,Y,Z are those of holomorphic Rozansky-Witten theory valued
in the symplectic manifold C2n ⊗ C32 ⊕ ∧2C2n ⊗ C2. The fields A, B gauge
holomorphic Rozansky-Witten theory by coupling to holomorphic BF theory
for the gauge group sp(n).

There is a one-loop anomaly given by the same diagram which leads to
the one-loop anomaly for holomorphic Chern-Simons theory. The expression
for the anomaly is

(95) 2Tr∧2C2n(A(∂A)3) + 32TrC2n(A(∂A)3)− 2TrS2C2n(A(∂A)3).

Remarkably enough, 32 is precisely the correct number of D9 branes to
make this anomaly cancel. To see this we need the Lie algebraic identity:

(96) 2Tr∧2C2n(X4) + 32TrC2n(X4) = 2TrS2C2n(X4)

for X in the Cartan of sp(n). To verify this, we can assume that X is in the
Cartan of sp(1), and decompose C2n = C2 ⊕ C2n−2 as an sp(1) representa-
tion. Then ∧2C2n = C⊕ C2 ⊗ C2n−2 ⊕ ∧2C2n−2 and S2C2n = S2C2 ⊕ C2 ⊗
C2n−2 ⊕ S2C2n−2 as sp(1) representations. For X a basis of the Cartan of
sp(1) we have TrC2 X4 = 2 and TrS2C2 X4 = 32. This implies equation (96).

3.7. The D1 brane and the heterotic string

Under the duality between type I and the Spin(32)/Z2 heterotic string
[29, 30] the theory on the D1 brane becomes the world-sheet theory of
the heterotic string. As a final consistency check, we will show that in our
twisted version of type I string theory, the theory on the D1 brane is a
supersymmetric localization of the heterotic string world-sheet theory.

Let us consider the theory living on a single D1 brane in the type I B-
model on C5. Since SO(1) is trivial, the b− c ghost system and the 6 adjoint
valued fermions do not contribute. The gauge group on the D1 brane lives
in O(1), however, so we have an extra Z/2 gauge symmetry which will be
crucial for the analysis.

The heterotic string can be described [31] as 32 real fermions coupled
to the σ-model with (0, 2) supersymmetry with target the 8 transverse di-
rections to the worldsheet. There is a slightly subtle procedure for restrict-
ing to only certain states of the system of fermions, which differs between
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the Spin(32)/Z2 and E8 × E8 heterotic strings. We will find precisely the
fermions of the Spin(32)/Z2 model.

First let us describe the appearance of the (0, 2) system. It is shown in
[32] that a (0, 2) σ-model can be twisted to yield the β − γ system. The
D1−D1 strings in our model, in the case n = 1, yield a β − γ system on
C4, the four complex transverse directions to the worldsheet. This matches
the twist of this part of the heterotic string world-sheet theory.

The D9−D1 strings yield, as we have seen, 32 real fermions. These live,

of course, in K
1/2
C

. The choice of spin structure on the world-sheet is part of
the data of a self-dual sheaf on C5. As such, it must be dynamical. This tells
us that both Ramond-Ramond and Neveu-Schwarz sectors of the fermions
must contribute. In addition, the O(1) = Z/2 gauge group of the world-sheet
theory acts in a non-trivial way on the system of fermions, and cuts down
the physical states. In the Neveu-Schwarz sector, there are no zero-modes,
and so the space of states is obtained by applying the modes ψi

n/2, n > 0,

i = 1, . . . , 32 of the fermion to the vacuum vector. The action of Z/2 sends
ψi → −ψi, so that when we pass to gauge invariants only states involving
an even number of fermions contribute. This matches the constraint in [31].

In the Ramond sector, the zero modes form the Clifford algebra Cl32.
The space of states is then generated by applying the operators ψi

n, n > 0
to the irreducible representation of the Clifford algebra. If S± denote the
two irreducible spin representations of SO(32), then the Clifford algebra
representation is S+ ⊕ S−. The prescription of [31] is that we should take
the ground states of the physical Hilbert space to be given those elements
of S+ ⊕ S− on which the operator

γ = ψ1
0 . . . ψ

32
0

acts as the identity.
In our story, this prescription is achieved as follows. The action of Z/2

on the fermions, sending ψi
n → −ψi

n, acts on the operators in the Ramond
sector. We need to lift this to a compatible action on the Hilbert space
of the Ramond sector. The Hilbert space is freely generated over the spin
representation S+ ⊕ S− by ψi

n for n > 0. Once we define the Z/2 action on
S+ ⊕ S− we get it on the whole space of states.

To define the action of Z/2 on the Clifford module, we need to make the
Z/2 action on the Clifford algebra into an inner action. That is, we need to
construct some operator η such that η2 = 1 and ηψi

0η = −ψi
0. Setting η = γ

as above satisfies these properties. This operator acts by 1 on S+, and −1
on S−.
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We conclude that the Hilbert space in the Ramond sector consists of
states generated from an element of S+ by an even number of ψi

n, and from
S− by an odd number of ψi

n. This matches the description of [31].
In sum, we have found that the theory on a single D1 brane in our pro-

posed twist of type I string theory matches precisely with a supersymmetric
localization of the Spin(32)/Z2 heterotic string. Given the known duality
between type I and heterotic strings, this result gives convincing evidence as
that type I Kodaira-Spencer theory, coupled to SO(32) holomorphic Chern-
Simons theory, is indeed a supersymmetric localization of the space-time
theory of the type I superstring.
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Memorial Volume, Birkhäuser Basel, (1995), 637–678.

[2] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer
theory of gravity and exact results for quantum string amplitudes, Com-
munications in Mathematical Physics 165 (1994), no. 2, 311–427.

[3] N. Berkovits, H. Ooguri, and C. Vafa, On the world sheet derivation of
large N dualities for the superstring, Commun. Math. Phys. 252 (2004)
259.

[4] K. Costello and S. Li, Quantum BCOV theory on Calabi-Yau manifolds
and the higher genus B-model, arXiv:1201.4501, (2012).



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1769 — #47
✐

✐

✐

✐

✐

✐

Anomaly cancellation in the topological string 1769

[5] K. Costello and S. Li. Quantization of open-closed BCOV theory, I,
arXiv:1505.06703, (2015).

[6] M. Green and J. H. Schwarz, Anomaly cancellations in supersymmetric
D = 10 gauge theory and superstring theory, Physics Letters B 149
(1984), no. 1-3, 117–122.

[7] K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:
1606.00365, (2016).

[8] I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization,
Physics Letters B 102 (1981), no. 1, 27–31.

[9] S. Axelrod and I. M. Singer. Chern–Simons perturbation theory, Pro-
ceedings of the XXth International Conference on Differential Geomet-
ric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), 3–45,
World Sci. Publ., River Edge, NJ, (1992).

[10] E. Witten, Mirror manifolds and topological field theory, Essays on Mir-
ror Manifolds, 120–158, Int. Press, Hong Kong, (1992).

[11] M. Kontsevich and Y. Soibelman, Notes on A∞-algebras, A∞-categories
and non-commutative geometry, Lect. Notes Phys. 757 (2009) 153.

[12] K. Costello, Topological conformal field theories and Calabi-Yau cate-
gories, Adv. Math. 210 (2007) 165.

[13] J. Lurie, On the classification of topological field theories, arXiv:0905.
0465 [math.CT].

[14] A. Connes, Non-commutative differential geometry, Publications Math-
ematiques de l’IHES, (1985).

[15] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality
of Lie algebras of polyvector fields, International Mathematics Research
Notices 1998 (1998), no. 4, 201–215.

[16] T. Willwacher and D. Calaque, Formality of cyclic cochains, Advances
in Mathematics 231 (2012), no. 2, 624–650.

[17] M. Kontsevich, Deformation quantization of Poisson manifolds, Letters
in Mathematical Physics 66 (2003), no. 3, 157–216.

[18] A. Losev, S. Shadrin, and I. Shneiberg, Tautological relations in Hodge
field theory, Nuclear Physics B 786 (2007), no. 3, 267–296.



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1770 — #48
✐

✐

✐

✐

✐

✐

1770 K. Costello and S. Li

[19] S. Li, Renormalization and Mirror symmetry, SIGMA Symmetry Inte-
grability Geom. Methods Appl. 8 (2012), 101.

[20] B. Zwiebach, Closed string field theory: Quantum action and the
Batalin-Vilkovisky master equation, Nuclear Physics B 390 (1993),
no. 1, 33–152.

[21] B. Zwiebach, Oriented open-closed string theory revisited, Annals of
Physics 267 (1998), no. 2, 193–248.

[22] B. R. Williams, Renormalization for holomorphic field theories, arXiv:
1809.02661, (2018).

[23] J-L. Loday and D. Quillen. Cyclic homology and the Lie algebra homol-
ogy of matrices, Commentarii Mathematici Helvetici 59 (1984), no. 1,
565–591.

[24] B. Tsygan, The homology of matrix Lie algebras over rings and the
Hochschild homology, Russian Mathematical Surveys 38 (1983), no. 2,
198.

[25] J.-L. Loday, Cyclic Homology, Vol. 301. Springer Science and Business
Media, (2013).

[26] A. Sergeev, An analog of the classical invariant theory for Lie superal-
gebras. I, II, Michigan Math. J. (1999).

[27] L. Baulieu, SU (5)-invariant decomposition of ten-dimensional Yang-
Mills supersymmetry, Physics Letters B 698 (2011), no. 1, 63–67.

[28] E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996)
541.

[29] E. Witten, String theory dynamics in various dimensions, Nuclear
Physics B 443 (1995), no. 1-2, 85–126.

[30] J. Polchinski and E. Witten, Evidence for heterotic-type I string duality,
Nuclear Physics B 460 (1996), no. 3, 525–540.

[31] D. J. Gross, J. A. Harvey , E. Martinec, and R. O. H. M. Ryan, Heterotic
string theory (I). The free heterotic string, Current Physics — Sources
and Comments, Vol. 4, pp. 76–107. Elsevier, (1989).

[32] E. Witten, Two-dimensional models with (0, 2) supersymmetry: Pertur-
bative aspects, Advances in Theoretical and Mathematical Physics 11
(2007), no. 1, 1–63.



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1771 — #49
✐

✐

✐

✐

✐

✐

Anomaly cancellation in the topological string 1771

Perimeter Institute of Theoretical Physics

31 Caroline St N, Waterloo, ON N2L 2Y5, Canada

E-mail address: kcostello@perimeterinstitute.ca

Department of Mathematical Sciences

and Yau Mathematical Sciences Center

Tsinghua University, Beijing 100084, China

E-mail address: sili@mail.tsinghua.edu.cn



✐

✐

“2-Li” — 2021/9/4 — 1:50 — page 1772 — #50
✐

✐

✐

✐

✐

✐


	Introduction
	Open-closed topological B-model
	The type I topological string
	References

