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We explain how, starting with a stack of D4-branes ending on an
NS5-brane in type IIA string theory, one can, via T-duality and the
topological-holomorphic nature of the relevant worldvolume theo-
ries, relate (i) the lattice models realized by Costello’s 4d Chern-
Simons theory, (ii) links in 3d analytically-continued Chern-Simons
theory, (iii) the quantum geometric Langlands correspondence re-
alized by Kapustin-Witten using 4d N = 4 gauge theory and its
quantum group modification, and (iv) the Gaitsgory-Lurie conjec-
ture relating quantum groups/affine Kac-Moody algebras to Whit-
taker D-modules/W-algebras. This furnishes, purely physically via
branes in string theory, a novel bridge between the mathematics of
integrable systems, geometric topology, geometric representation
theory, and quantum algebras.
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1. Introduction, summary and acknowledgements

Introduction

Chern-Simons theories in dimensions higher than three have recently been
found to have intriguing mathematical and physical implications. In partic-
ular, 4d Chern-Simons theory studied by Costello, Witten and Yamazaki
[1, 2] realizes the Yang-Baxter equation with spectral parameter for various
integrable lattice models, as well as the underlying Yangian algebra, quan-
tum affine algebra, and elliptic quantum group for rational, trigonometric
and elliptic solutions of the Yang-Baxter equation, respectively. Moreover,
a non-commutative deformation of 5d Chern-Simons theory introduced by
Costello has also been shown to encapsulate Ω-deformed M-theory [3, 4].

In fact, 4d and 5d Chern-Simons theory form a family together with
3d analytically-continued Chern-Simons theory and 6d holomorphic Chern-
Simons theory; they are related by successive dimensional reductions from
the 6d theory, and the theories are moreover T-dual as QFTs [5]. This sug-
gests that mathematical quantities realized in these various Chern-Simons
theories should be related in suitable limits. It is well-known, for example,
that knot invariants are obtainable from suitable limits of integrable models,
with the braid group relation descending from the Yang-Baxter equation [6].

In another direction, 3d analytically-continued Chern-Simons theory
should be related to a generalization of the geometric Langlands corre-
spondence, namely, the quantum geometric Langlands correspondence, as
the latter has an extension for quantum groups known as the Gaitsgory-
Lurie conjecture [7]. Moreover, it was shown by Witten [8] that the four-
dimensional topological field theory that realizes geometric Langlands [9]
realizes 3d analytically-continued Chern-Simons theory on the boundary of
the underlying four-manifold. This was an essential step in the 5d gauge
theory approach to Khovanov homology, which itself has been defined using
moduli spaces of geometric Hecke transformations [11], an essential ingredi-
ent in geometric Langlands.

In this paper, we will show, in the framework of string theory, that
one can indeed relate lattice models realized by 4d Chern-Simons theory to
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links in 3d analytically-continued Chern-Simons theory, and consequently to
the quantum geometric Langlands correspondence (that relates categories
of twisted D-modules) and a quantum group modification thereof, and the
Gaitsgory-Lurie conjecture, thereby furnishing a novel bridge between the
mathematics of integrable systems, geometric topology, geometric represen-
tation theory, and quantum algebras.

Summary

To achieve this, we begin by using a partial twist of 5d N = 2 supersymmet-
ric Yang-Mills (SYM) theory developed in [12] by the authors. We show that
this twist gives rise to a 5d analogue of the geometric Langlands twist of
4d N = 4 SYM, that also leads to a family of twisted theories parametrized
by a complex variable, t. Such a partially-twisted theory can be understood
to be the worldvolume theory of a stack of D4-branes in a non-trivial type
IIA string theory background, where boundary conditions corresponding to
a (deformed) NS5-brane are also imposed. The 5d partially-twisted action
on a five-manifold, M, is shown to take the form

(1.1)
S = {Q, Ṽ }+ w − w̄

4

iΨ̃

2π

∫

∂M
dzw

∧ Tr

(
Aw ∧ dAw +

2

3
Aw ∧ Aw ∧ Aw

)
,

for the relevant supercharge, Q, and parameters Ψ̃ and w .
As we shall explain, the path integral of the 5d partially-twisted theory

obtained from (1.1) localizes to 4d Chern-Simons theory

(1.2)

∫

Γ̃
DA exp

(
Ψ̃Im(w)

4π

∫

∂M
dz ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

))
,

on the boundary, where Γ̃ denotes an appropriate integration cycle defined
by gradient flow equations

(1.3)
F3γ̃ = ±i2ε α̃

γ̃ F α̃z

F3z̄ = ± i

4
εβ̃γ̃F

β̃γ̃
,
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and a supplementary constraint. This integration cycle allows 4d Chern-
Simons theory to be defined beyond perturbation theory [13].

Then, taking T-duality of this D4-NS5 system, we arrive at the D3-
NS5 system studied by Witten in [8] that realizes 3d analytically-continued
Chern-Simons theory. Here, lattices in the former (realized by fundamental
strings) are identified with links in the latter. We then explain how these
T-dual systems can be modified to realize quantum geometric Langlands
duality, by the inclusion of an additional D-brane at the other end of the
D4-NS5 system such that T-duality give us a D3-NS5-D5 system. This shall
be shown, via a further duality, to correspond in the low-energy limit to
branes of the 2d sigma model on Hitchin’s moduli space, MH(G,C), that
realize twisted D-modules. Then, S-duality of type IIB string theory real-
izes quantum geometric Langlands duality that identifies twisted D-modules
on MH(G,C) and MH(LG,C), where LG is the Langlands dual of G. In
fact, when the aforementioned links are in non-trivial representations of
the relevant quantum group, we have a quantum group modification of this
Langlands duality.

In addition, we shall also show how S-duality of type IIB string the-
ory leads us to S-duality of 3d analytically-continued Chern-Simons theory
previously uncovered in [14, 15]. Moreover, we discuss an extension of quan-
tum geometric Langlands duality realized in our setup, namely, the afore-
mentioned Gaitsgory-Lurie conjecture [7] that relates the Kazhdan-Luzstig
category of representations of quantum groups Uq(G) - or equivalently, the
category of finitely generated modules over the affine Kac-Moody algebra
ĝ on which the action of g[[z]] integrates to an action of the group G[[z]] -
to the category of Whittaker D-modules on the affine Grassmannian of LG
- or equivalently to a category of modules of the affine W-algebra of LG.
Our findings are summarized in Figure 1, which shall be elaborated on in
Section 5. This is how we relate lattice models to links and the quantum geo-
metric Langlands correspondence, and its extensions, which realizes a novel
bridge between the mathematics of integrable systems, geometric topology,
geometric representation theory, and quantum algebras.
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T −1
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x

4d CSΨ̃(GC)
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Ψ+1
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S′
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1

Ψ+1

(M(LG,C))

Figure 1: A relationship between 4d Chern-Simons theory, 3d S-dual Chern-
Simons theories, the quantum group modification of quantum geometric
Langlands, and the Gaitsgory-Lurie conjecture. Here, q′ = exp( πi

Ψ+1).
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2. Partial twist of 5d N = 2 supersymmetric Yang-Mills

2.1. 5d N = 2 supersymmetric Yang-Mills

We begin with the 5d maximally supersymmetric Yang-Mills theory
(MSYM), obtained in the low-energy limit of a stack of D4-branes in type
IIA string theory. The classical action may be written as

S = − 1

g25

∫

M

d5x Tr

(
1

2
FMNF

MN +DMϕM̂D
MϕM̂(2.1)

+
1

2
[ϕ

M̂
, ϕN̂ ][ϕM̂ , ϕN̂ ]− iρAÂ(ΓM ) B

A DMρBÂ

− ρAÂ(ΓM̂ ) B̂
Â

[ϕ
M̂
, ρAB̂]

)
,
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which is invariant under the supersymmetry transformations

(2.2)

δAM = iζAÂ(ΓM ) B
A ρBÂ

δϕM̂ = ζAÂ(ΓM̂ ) B̂
Â

ρAB̂

δρAÂ = −i(ΓM ) B
A DMϕ

M̂ (Γ
M̂
) B̂
Â

ζBB̂

− 1

2
(Γ

M̂
) B̂
Â

(ΓN̂ )B̂Ĉ [ϕ
M̂ , ϕN̂ ]ζ Ĉ

A +
1

2
FMN (ΓMN ) B

A ζBÂ.

Here, M in the subscript of the integral in (2.1) denotes a flat 5d Euclidean
manifold. Also, (M,N, . . .) and (A,B, . . .) are respectively vector and spinor
indices for the SOE(5) rotation group, with their hatted counterparts cor-
responding to the SOR(5) R-symmetry group. In addition, the Lie algebra
of the U(N) gauge group is taken to be generated by antihermitian ma-
trices Ta, where a = 1, . . . , dim u(N), implying that the invariant quadratic
form on this Lie algebra, denoted Tr, is negative-definite. In particular, the
matrices Ta are chosen such that Tr(TaTb) = −δab.

The 5d action and supersymmetry transformations given here can be
obtained from those of 10d N = 1 supersymmetric Yang-Mills theory, i.e.,

(2.3) S10 = − 1

e2

∫
d10xTr

(
1

2
FIJF

IJ − iλ̄ΓIDIλ

)

and

(2.4)
δAI = iϵ̄ΓIλ

δλ =
1

2
ΓIJFIJ ,

via dimensional reduction. Here, we have used the notation and conventions
of Kapustin and Witten [9].

2.2. Partial topological twist

Consider next, a flat 5-manifold M = Y × R+ × Σ, where Y and Σ are 2-
manifolds corresponding to the {x1, x2} and {x4, x5} directions respectively,
while R+ is half of the real line, R, that corresponds to the x3 direction. We
shall twist along V = Y × R+, by redefining its SOE(3) rotation group to
be the diagonal subgroup SOE(3)

′ of SOE(3)× SOR(3), where SOR(3) is
the subgroup of the R-symmetry group that rotates {ϕ1̂, ϕ2̂, ϕ3̂}.

Put differently, we are considering the rotation subgroup SOE(3)×
SOE(2) ⊂ SOE(5), and also the R-symmetry subgroup SOR(3)× SOR(2) ⊂
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SOR(5), and defining a new rotation group, SOE(3)
′, along V = Y × R+.

Before we proceed, we first specify our notational conventions for vector
and spinor indices of the various symmetry groups. These are given in the
following table:

SOV (3) SOR(3) SOΣ(2) SOR(2)

Vector α, β, γ, . . . α̂, β̂, γ̂, . . . m, n, p, . . . m̂, n̂, p̂, . . .

Spinor ᾱ, β̄, γ̄, . . . ̂̄α, ̂̄β, ̂̄γ, . . . m̄, n̄, p̄, . . . ̂̄m, ̂̄n, ̂̄p, . . .
Twisting amounts to setting the hatted SOR(3) indices to unhatted indices.

The twisting results in the scalar fields {ϕ1̂, ϕ2̂, ϕ3̂} now transforming
as the components {ϕ1, ϕ2, ϕ3} of a one-form on Y × R+. Furthermore, the
twisting of the fermions which transform as (2,2) under SOE(3)× SOR(3)
results in fermions which transform as 1 and 3 under SOE(3)

′, i.e.,

(2.5) 2⊗ 2 = 1⊕ 3.

We can see this explicitly by expanding the spinor fields ρAÂ = ρᾱm̄̂̄α ̂̄m, after
twisting, as

(2.6) ρᾱm̄β̄ ̂̄m = ϵᾱβ̄ηm̄ ̂̄m + (σα)ᾱβ̄ψαm̄ ̂̄m,

where we have used the antisymmetric matrix ϵᾱβ̄ and the symmetric ma-
trix (σα)ᾱβ̄ introduced in the appendix. The supersymmetry transformation
parameters ζAÂ = ζᾱm̄̂̄α ̂̄m may also be expanded in this manner, i.e.,

(2.7) ζᾱm̄β̄ ̂̄m = ϵᾱβ̄ζm̄ ̂̄m + (σα)ᾱβ̄ζαm̄ ̂̄m.

Using the explicit representation of the gamma matrices given in the ap-
pendix, we can substitute (2.6) and (2.7) into (2.1) to obtain the partially-
twisted supersymmetry transformations.

Now, we shall pick a supercharge, Q, that is scalar along V , with respect
to which we shall eventually localize the theory. The parameters ζm̄ ̂̄m in
(2.7) transform as scalars under SO (3)′. We shall choose only two of these
parameters to be non-zero, namely ζ11 and ζ21, and take a linear combination
of their corresponding supercharges to be Q. The first reason for this choice
is that it gives us supersymmetric localization equations that will eventually
ensure the convergence of the 4d Chern-Simons path integral. Secondly, this
choice shall also lead to a relation to the geometric Langlands twist of 4d
N = 4 Yang-Mills theory [9], in which the topological supercharge is a linear
combination of two scalar supercharges. Setting ζ11 = κ and ζ21 = λ, where
κ, λ ∈ C, the supersymmetry transformations are
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(2.8)

δAα = −2iκψα22 + 2iλψα12

δϕα = 2κψα22 + 2λψα12

δA4 = 2iκη12 + 2iλη22

δA5 = −2κη12 + 2λη22

δϕ4̂ = 2κη21 + 2λη11

δϕ5̂ = 2iκη21 + 2iλη11

δψα11 = κεαβγ

(
i

2
F βγ − i

2

[
ϕβ , ϕγ

]
−Dβϕγ

)

+ λ (Fα4 − iFα5 + i (D4 − iD5)ϕα)

δψα12 = κ
([
ϕα, ϕ4̂ + iϕ5̂

]
− iDα

(
ϕ4̂ + iϕ5̂

))

δψα21 = κ (−Fα4 − iFα5 + i (D4 + iD5)ϕα)

+ λεαβγ

(
i

2
F βγ − i

2

[
ϕβ , ϕγ

]
+Dβϕγ

)

δψα22 = λ
([
ϕα, ϕ4̂ + iϕ5̂

]
+ iDα

(
ϕ4̂ + iϕ5̂

))

δη11 = iκ
(
F45 +

[
ϕ4̂, ϕ5̂

]
+Dβϕ

β
)

δη12 = −iλ (D4 − iD5)
(
ϕ4̂ + iϕ5̂

)

δη21 = −iλ
(
F45 −

[
ϕ4̂, ϕ5̂

]
+Dβϕ

β
)

δη22 = −iκ (D4 + iD5)
(
ϕ4̂ + iϕ5̂

)
.

Field redefinitions

In what follows, it shall be convenient to redefine the scalars ϕ4̂, ϕ5̂, fermi
fields ψα, η and the supersymmetry parameters κ, λ, as it will allow us to
identify them with objects in the 4d GL-twisted theory. For the scalars, we
have

(2.9) σ =
1√
2

(
ϕ5̂ − iϕ4̂

)
, σ̄ =

1√
2

(
ϕ5̂ + iϕ4̂

)
.

σ here is a complex scalar field that is not to be confused with the Pauli
matrices. For the fermions, we have
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(2.10)

χα =
(1− i)

25/4
ψα11 +

(−1− i)

25/4
ψα21, χ̃α =

(−1− i)

25/4
ψα11 +

(1− i)

25/4
ψα21

η =
(1 + i)

21/4
η11 +

(1− i)

21/4
η21, η̃ =

(−1 + i)

21/4
η11 +

(−1− i)

21/4
η21

ψα =
(1 + i)

23/4
ψα12 +

(−1 + i)

23/4
ψα22, ψ̃α =

(−1 + i)

23/4
ψα12 +

(1 + i)

23/4
ψα22

Υ =
(1− i)

23/4
η12 +

(1 + i)

23/4
η22, Υ̃ =

(−1− i)

23/4
η12 +

(−1 + i)

23/4
η22.

Finally, the supersymmetry parameters are

(2.11) u =
1

21/4
[(1 + i)κ+ (1− i)λ] , v =

1

21/4
[(−1 + i)κ+ (−1− i)λ] .

The supersymmetry transformations in (2.8) then become

(2.12)

δAα = iuψα + ivψ̃α

δϕα = ivψα − iuψ̃α

δA4 = iuΥ+ ivΥ̃

δA5 = ivΥ− iuΥ̃

δσ = 0

δσ̄ = iuη + ivη̃

δχα =
1

2
u

[
Fα4 +D5ϕα +

1

2
εαβγ

(
F βγ −

[
ϕβ , ϕγ

])]

+
1

2
v
[
Fα5 −D4ϕα + εαβγD

βϕγ
]

δχ̃α =
1

2
v

[
Fα4 +D5ϕα − 1

2
εαβγ

(
F βγ −

[
ϕβ , ϕγ

])]

− 1

2
u
[
Fα5 −D4ϕα − εαβγD

βϕγ
]

δη = v (F45 +Dαϕ
α) + u [σ̄, σ]

δη̃ = −u (F45 +Dαϕ
α) + v [σ̄, σ]

δψα = uDασ + v [ϕα, σ]

δψ̃α = vDασ − u [ϕα, σ]

δΥ = uD4σ + vD5σ

δΥ̃ = vD4σ − uD5σ.
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We shall use this convenient form of the supersymmetry transformations in
what follows.

2.3. Relation to GL-twisted N = 4 super Yang-Mills

Now, we shall show that the supersymmetry transformations in (2.12) are
related to those of the GL-twisted theory in 4d which was studied in [9]. To
be precise, the supersymmetry transformations in (2.12) reduce to those of
the GL-twisted theory in 4d via dimensional reduction.

To perform the dimensional reduction we shall take Σ = R× S1, where
S1 is along the x5 direction. We then dimensionally reduce along S1. Then,
the 5th component of the gauge fields becomes disassociated, and we make
the replacement A5 → ϕ4. This is not to be confused with ϕ4̂, which was
used in the definition of σ in (2.9). Instead, ϕ4 is to be viewed as the 4th
component of the scalar fields – i.e. ϕµ = (ϕα, ϕ4), where we have taken µ =
1, 2, 3, 4. Also, because there is no longer any dependence on the x5-direction,
derivatives in the compactified direction simply vanish. Consequently, we get
the following reductions:

(2.13)
Fµ5 → Dµϕ4

D5 → [ϕ4, · ] .

For the fermions, we first make the identification χα = (χ+)α4 and χ̃α =
(χ−)α4, where χ

± are 4d self-dual/anti-self-dual tensors that satisfy

(2.14)
(
χ±
)
µν

= ±1

2
ε ρσ
µν

(
χ±
)
ρσ
.

To obtain the αβ components of χ± we use

(2.15)

(
χ+
)
αβ

=
1

2
ε γ
αβ χγ

(
χ−
)
αβ

= −1

2
ε γ
αβ χ̃γ .

since this identification implies

(2.16)
(
χ±
)
αβ

= ±1

2
ε γ4
αβ

(
χ±
)
γ4
,

in agreement with (2.14). Finally, we identify Υ and Υ̃ as ψ4 and ψ̃4, respec-
tively.
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The supersymmetry transformations (2.12) then become

(2.17)

δAµ = iuψµ + ivψ̃µ

δϕµ = ivψµ − iuψ̃µ

δσ = 0

δσ̄ = iuη + ivη̃

δ
(
χ+
)
µν

= u (Fµν − [ϕµ, ϕν ])
+ + v (Dµϕν)

+

δ
(
χ−
)
µν

= v (Fµν − [ϕµ, ϕν ])
− − u (Dµϕν)

−

δη = v (Dµϕ
µ) + u [σ̄, σ]

δη̃ = −u (Dµϕ
µ) + v [σ̄, σ]

δψµ = uDµσ + v [ϕµ, σ]

δψ̃µ = vDµσ − u [ϕµ, σ] .

These are the GL-twisted supersymmetry transformations which were found
by Kapustin and Witten in [9], and therefore we have found a connection
between our partially-twisted 5d N = 2 SYM theory and the GL-twisted
4d N = 4 SYM theory. In other words, we now have a 5d analogue of the

GL-twist in 4d.1

3. Construction of the Q-invariant action

3.1. Q-exact action

We would like to find an action that is suitable for localization. To do this, we
need the action to be Q-exact (where Q is some complex linear combination
of the scalar supercharges we have considered) up to a metric-independent
Q-invariant term which, as we shall see, turns out to take the form of the 4d
Chern-Simons action. Before we write down the action, some observations
are in order.

From (2.12), observe that the supersymmetry variation can be expressed
as

(3.1) δ = uδL + vδR.

Equivalently, we may write Q in terms of supercharges QL and QR, i.e.,

(3.2) Q = uQL + vQR,

1Such a partial twist has also been discussed conceptually in [10].
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which acts on any field Φ as

(3.3) [Q,Φ} = δΦ.

Here, we have added the labels L and R to remind ourselves of the corre-
sponding left- and right-handed supersymmetries in the 4d case which were
denoted by ℓ and r in [9]. It should be emphasised that there is no concept
of chirality in 5d. In addition, we can rescale the supersymmetry variations
such that they depend only on the ratio t = v/u, i.e., we obtain

(3.4) δt = δL + tδR

by dividing by u on both sides of (3.1), and taking δ
u = δt.

Now, to put the action in Q-exact form, we require that the transforma-
tion δt is nilpotent off-shell (up to gauge transformations). In order to achieve
this, we introduce some auxiliary fields. Let us first define two auxiliary g-
valued 1-forms H and H̃, which modify the supersymmetry transformations
of χ and χ̃ in (2.12). At the same time, the variations in H and H̃ may also
be defined. Collectively we have, in terms of δt,

(3.5)

δtχα = Hα

δtχ̃α = H̃α

δtHα = −i
(
1 + t2

)
[σ, χα]

δtH̃α = −i
(
1 + t2

)
[σ, χ̃α],

where α = 1, 2, 3 as before. We will construct an action whose equations of
motion will impose the conditions H = V and H̃ = tṼ, where V and Ṽ are
functions of t defined as

(3.6)

Vα(t) =
1

2

([
Fα4 +D5ϕα +

1

2
εαβγ

(
F βγ −

[
ϕβ , ϕγ

])]

+ t
[
Fα5 −D4ϕα + εαβγD

βϕγ
])

Ṽα(t) =
1

2

([
Fα4 +D5ϕα − 1

2
εαβγ

(
F βγ −

[
ϕβ , ϕγ

])]

− t−1
[
Fα5 −D4ϕα − εαβγD

βϕγ
])
,

and thereby there is on-shell agreement with the original supersymmetry
transformations.
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We may also define a g-valued 0-form P , which modifies the supersym-
metry transformations (2.12) of η and η̃. As with H and H̃, we may also
define the corresponding supersymmetry transformation for P . Collectively
we have

(3.7)

δη = tP + [σ̄, σ]

δη̃ = −P + t [σ̄, σ]

δP = −it[σ, η] + i [σ, η̃] .

We shall require an action that imposes the equation of motion P = F45 +
Dαϕ

α to ensure that we have on-shell agreement with the original super-
symmetry transformations.

The introduction of the auxiliary fields gives rise to the following off-shell
supersymmetry algebra for any field Φ:

(3.8) δ2tΦ = −i(1 + t2)Lσ(Φ),

where Lσ(Φ) is the change in Φ due to a gauge transformation generated
by σ, to first order. Furthermore, from (3.4), we find that the algebra is
equivalent to

(3.9)
δ2LΦ = δ2RΦ = −iLσ(Φ),

{δL, δR}Φ = 0.

Now, for a gauge invariant fermionic expression, Ṽ , we can define a Q-
exact action to take the form {Q, Ṽ } = δtṼ . Our choice of Ṽ has two parts,
i.e., Ṽ = Ṽ1 + Ṽ2. We shall first pick

(3.10) Ṽ1 =
2

g52

∫

M

d5x
4

1 + t2
Tr

(
χα

(
1

2
Hα − Vα

)
+ χ̃α

(
1

2
H̃α − tṼα

))
.

The corresponding action takes the form

S1 = δtṼ1 =
1

g52

∫

M

d5x Tr

(
4

1 + t2

(
1

2
HαHα −HαVα

)
(3.11)

+
4

1 + t2

(
1

2
H̃αH̃α − tH̃αṼα

))
+ · · · ,
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where the ellipsis indicates fermion terms that have been suppressed. Upon
integrating out the auxiliary degrees of freedom, the ensuing action, includ-
ing fermion terms, is

S1 =
1

g52

∫

M

d5x Tr

( −4

1 + t2

(
VαVα + t2ṼαṼα

)
+ 4iχα[σ, χ

α] + 4iχ̃α[σ, χ̃
α]

+ 4χα
[
iDαΥ− iD4ψα − iD5ψ̃α − i[Υ̃, ϕα]

+
i

2
εαβγ

(
Dβψγ + [ψ̃β , ϕγ ]−Dγψβ − [ψ̃γ , ϕβ ]

)]

+ 4χ̃α
[
iDαΥ̃− iD4ψ̃α + iD5ψα + i[Υ, ϕα]

− i

2
εαβγ

(
Dβψ̃γ − [ψβ , ϕγ ]−Dγψ̃β + [ψγ , ϕβ ]

)])
.(3.12)

Next, instead of directly constructing a Q-exact action of the form δtṼ2,
we can make use of the fact that for a gauge invariant expression, Ṽ ′

2 , we
have

(3.13) δLδRṼ
′
2 = − 1

2t
(δL + tδR)(δL − tδR)Ṽ

′
2 ,

via (3.9). This means that we can also write down a Q-exact action in the
form δLδRṼ

′
2 . We shall do this to construct the second part of the Q-exact

action, δtṼ2. In other words, we have Ṽ2 = − 1
2t(δL − tδR)Ṽ

′
2 . We pick the

gauge-invariant expression Ṽ ′
2 to be

(3.14) Ṽ ′
2 =

2

g52

∫

M

d5x Tr

(
−1

2
ηη̃ − iσ̄ (F45 +Dαϕ

α)

)
,

for which the corresponding action is

S2 = δLδRṼ2 =
2

g52

∫

M

d5x Tr

(
1

2
P 2 − P (F45 +Dαϕ

α)−DM σ̄D
Mσ

+
1

2
[σ̄, σ]2 − [ϕα, σ][ϕ

α, σ̄] + ∂α(σ̄D
ασ) + iη̃Dαψ̃

α + iηDαψ
α

+ iη̃
(
D4Υ̃ +D5Υ

)
+ iη

(
D4Υ−D5Υ̃

)
− i

2
[σ, η̃]η̃ − i

2
[σ, η]η

− iη̃[ψα, ϕ
α] + iη[ψ̃α, ϕ

α] + i[σ̄, ψα]ψ
α + i[σ̄, ψ̃α]ψ̃

α

+ i[σ̄,Υ]Υ + i[σ̄, Υ̃]Υ̃

)
.(3.15)
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Here, we can integrate P out to obtain

S2 =
2

g52

∫

M

d5x Tr

(
− 1

2
(F45 +Dαϕ

α)2 −DM σ̄D
Mσ +

1

2
[σ̄, σ]2

− [ϕα, σ][ϕ
α, σ̄] + ∂α(σ̄D

ασ) + iη̃Dαψ̃
α + iηDαψ

α

+ iη̃
(
D4Υ̃ +D5Υ

)
+ iη

(
D4Υ−D5Υ̃

)

− i

2
[σ, η̃]η̃ − i

2
[σ, η]η − iη̃[ψα, ϕ

α] + iη[ψ̃α, ϕ
α]

+ i[σ̄, ψα]ψ
α + i[σ̄, ψ̃α]ψ̃

α + i[σ̄,Υ]Υ + i[σ̄, Υ̃]Υ̃

)
.(3.16)

The fullQ-exact action is just the sum of the actions in (3.12) and (3.16),
and can be written as

S = S1 + S2 =
1

g52

∫

M

d5x Tr

( −4

1 + t2

(
VαVα + t2ṼαṼα

)
+ 4iχα[σ, χ

α]

+ 4iχ̃α[σ, χ̃] + 4χα

[
iDαΥ− iD4ψα − iD5ψ̃α − i[Υ̃, ϕα]

+
i

2
εαβγ

(
Dβψγ + [ψ̃β , ϕγ ]−Dγψβ − [ψ̃γ , ϕβ ]

)]

+ 4χ̃α

[
iDαΥ̃− iD4ψ̃α + iD5ψα + i[Υ, ϕα]

− i

2
εαβγ

(
Dβψ̃γ − [ψβ , ϕγ ]−Dγψ̃β + [ψγ , ϕβ ]

)]

− (F45 +Dαϕ
α)2 − 2DM σ̄D

Mσ + [σ̄, σ][σ̄, σ]

− 2[ϕα, σ][ϕ
α, σ̄] + 2∂α(σ̄D

ασ) + 2iη̃Dαψ̃
α + 2iηDαψ

α

+ 2iη̃
(
D4Υ̃ +D5Υ

)
+ 2iη

(
D4Υ−D5Υ̃

)

− i[σ, η̃]η̃ − i[σ, η]η − 2iη̃[ψα, ϕ
α] + 2iη[ψ̃α, ϕ

α]

+ 2i[σ̄, ψα]ψ
α + 2i[σ̄, ψ̃α]ψ̃

α + 2i[σ̄,Υ]Υ + 2i[σ̄, Υ̃]Υ̃

)
.(3.17)

Next, we make use of the identity
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1

g52

∫

M

d5x Tr

( −4t−1

t+ t−1

(
VαVα + t2ṼαṼα

)
− (F45 +Dαϕ

α)2
)

(3.18)

= − 1

g52

∫

M

d5x Tr

(
FαmF

αm + F45F
45 +

1

2
FαβF

αβ

+DmϕαD
mϕα +DαϕβD

αϕβ +
1

2
[ϕα, ϕβ ][ϕ

α, ϕβ ]

+ ∂α

(
ϕαDβϕ

β
)
− ∂γ

(
ϕδD

δϕγ
)
+ 2∂α(F45ϕ

α)

− 4

(
t− t−1

t+ t−1

)(
1

2
εαβγ

)

×
(
1

2
Fα4Fβγ +

1

2
∂α (ϕβD4ϕγ) + ∂α (Fβ5ϕγ)

)

+

(
8

t+ t−1

)(
1

2
εαβγ

)

×
(
1

2
Fα5Fβγ +

1

2
∂α (ϕβD5ϕγ)− ∂α (Fβ4ϕγ)

))
,

to rewrite the action (3.17) in terms of a t-independent part and a t-
dependent part. Note that, apart from total derivative terms and t-dependent
terms, the boson terms in the action correspond to standard kinetic and
potential terms of 5d N = 2 supersymmetric Yang-Mills, partially-twisted
along Y × R+.

Now, the t-dependent term of the Q-exact action takes the form

St =
1

g52

∫

M

d5x εαβγTr

(
2

(
t− t−1

t+ t−1

)
(3.19)

×
(
1

2
Fα4Fβγ +

1

2
∂α (ϕβD4ϕγ) + ∂α (Fβ5ϕγ)

)

−
(

4

t+ t−1

)(
1

2
Fα5Fβγ +

1

2
∂α (ϕβD5ϕγ)− ∂α (Fβ4ϕγ)

))
.

Since we do not expect such a t-dependent term from the physical 5d action,
we shall choose to cancel it by adding

(3.20) S3 = −St

to the action. Therefore, our total action is now S1 + S2 + S3. However, this
action is not yet Q-invariant, which leads us to discuss boundary conditions
for this action that will ensure Q-invariance.
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3.2. Boundary conditions from NS5-branes

We shall now specify boundary conditions at the origin of R+, i.e., x
3 = 0,

such that we have a system that can be understood as the worldvolume
theory of a stack of D4-branes ending on a (deformed) NS5-brane in type
IIA string theory. Specifically, we consider the following configuration in flat
Euclidean space :

Y R Σ NṼ⊂T ∗Ṽ

Ṽ

1 2 3 4 5 6 7 8 9 10

D4 × × × × ×
ÑS5 × × × × × ×

where, e.g., an empty entry under ‘3’ indicates that the brane is located at
x3 = 0. The scalar fields {ϕ1̂, ϕ2̂, ϕ3̂, ϕ4̂, ϕ5̂} of the 5d theory are understood
to parametrize the {6, 7, 8, 9, 10} directions, respectively. Note that the par-
tial twist arises in this configuration because V ⊂ Ṽ = Y × R, where Ṽ is
the zero section of the cotangent bundle T ∗Ṽ , and ‘coordinates’ normal to
Ṽ in T ∗Ṽ must be components of one-forms, as we obtained via twisting
[17].

Firstly, this configuration implies that the fields ϕ3, σ and σ obey Dirich-
let boundary conditions which set them to zero at the boundary. Secondly,
the sets of fields {ϕ1,ϕ2} and {A1,A2,A4,A5} obey generalized Neumann
boundary conditions that can be obtained from boundary interactions given
by

S∂M =
1

g52

∫

∂M
d4x Tr

((
t+ t−1

)(1

2
εα̃β̃D5ϕα̃ϕβ̃

)
(3.21)

+

(
t+ t−1

t− t−1

)
εijk

(
Ai∂jAk +

2

3
AiAjAk

))
,

by insisting that the equations of motion do not have boundary corrections.
Here, the indices i, j, k = 1, 2, 4 and α̃, β̃ = 1, 2, and the Levi-Civita symbols
are defined such that ε124 = 1 and ε12 = 1.

Thirdly, the lifted boundary conditions on the fermionic fields are pro-
jection conditions that follow from supersymmetry. We also note that the
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boundary conditions above imply that

(3.22)
δ(Ai + wϕi) = 0

δ(A4 + wA5) = 0,

for i = 1, 2 and w = t−t−1

2 , along the boundary. Finally, the boundary con-
ditions restrict the complex parameter t such that |t| = 1.

Dimensional reduction, as detailed in Section 2.3, of the boundary con-
ditions above will indeed reduce them to the GL-twist of the (deformed)
NS5 boundary conditions for 4d N = 4 supersymmetric Yang-Mills theory
derived in [18] and used in [8]. Note that the constraint |t| = 1 is satisfied
in the 4d theory since it obeys t2 = τ

τ , where τ is the complex coupling
parameter of this theory.

3.3. 5d topological-holomorphic theory

Having specified the boundary conditions and boundary interactions at x3 =
0 for our partially-twisted theory, we first note that the total derivative
terms 2

g2
5

∫
M
d5x Tr ∂α(σ̄D

ασ) in (3.17) and − 1
g2
5

∫
M
d5x Tr

(
∂α
(
ϕαDβϕ

β
)
−

∂γ
(
ϕδD

δϕγ
)
+ 2∂α(F45ϕ

α)
)
in (3.18) vanish via Stoke’s theorem and the

boundary conditions σ̄ = 0 and ϕ3 = 0. It can be checked that the action we
have dimensionally reduces exactly to the GL-twisted 4d N = 4 super Yang-
Mills action studied by Witten in [8], via the procedure given in Section 3.

We would like to further understand our partially-twisted theory, in
particular the non-Q-exact sector. Recall that along the boundary, we have
t-dependent boundary interactions given by (3.21). Miraculously, when these
boundary interactions are combined with the t-dependent action S3 in (3.20),
a term proportional to a 4d Chern-Simons action is obtained. To see this,
we first need to rewrite the coordinates x4, x5 ∈ Σ in terms of complex ones.
We define the coordinates

(3.23)
zw = 2

(wx4 − x5)

w − w

z̄w = 2
(wx4 − x5)

w − w
,

where w was defined previously to be w = t−t−1

2 . These coordinates are cho-
sen since we shall make use of one of their corresponding partial derivatives,
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which are

(3.24)
∂zw =

1

2
(∂4 + w∂5)

∂zw
=

1

2
(∂4 + w∂5).

We also introduce the complexified gauge fields

(3.25) Awα̃ = Aα̃ + wϕα̃

(for α̃ = 1, 2) and

(3.26) Awz̄w =
1

2
(A4 + wA5)

that are Q-invariant along the boundary. We may then write the combined
t-dependent action as

S3 + S∂M =
iΨ̃

4π

∫

∂M
d4x Tr

(
Aw1(∂2A4 − ∂4Aw2) +

2

3
Aw1[Aw2, A4]

+Aw2(∂4Aw1 − ∂1A4) +
2

3
Aw2[A4,Aw1]

+A4(∂1Aw2 − ∂2Aw1) +
2

3
A4[Aw1,Aw2]

)

+ w
iΨ̃

4π

∫

∂M
d4xTr

(
Aw1(∂2A5 − ∂5Aw2) +

2

3
Aw1[Aw2, A5]

+Aw2(∂5Aw1 − ∂1A5) +
2

3
Aw2[A5,Aw1]

+A5(∂1Aw2 − ∂2Aw1) +
2

3
A5[Aw1,Aw2]

)
,(3.27)

(details of the derivation can be found in the appendix), or more succintly
as

S3 + S∂M =
w − w̄

4

iΨ̃

2π
(3.28)

×
∫

∂M
dzw ∧ Tr

(
Aw ∧ dAw +

2

3
Aw ∧ Aw ∧ Aw

)
,

where Ψ̃ is a t-dependent parameter, which may be written as

(3.29) Ψ̃ =
4πi

g52

(
t− t−1

t+ t−1
− t+ t−1

t− t−1

)
.
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Hence, we have found an action that is Q-exact up to the Q-invariant
term (3.28), which is explicitly given by

(3.30)

S = δtṼ1 −
1

2t
δt(δL − tδR)Ṽ

′
2

+
w − w̄

4

iΨ̃

2π

∫

∂M
dzw ∧ Tr

(
Aw ∧ dAw +

2

3
Aw ∧ Aw ∧ Aw

)
.

This 5d theory is topological-holomorphic, with the boundary action depend-
ing on the complex structure defined on Σ via (3.24).

4. Localization to 4d Chern-Simons theory and integrable

lattice models

We shall now explain how the path integral of our 5d topological-holomorphic
theory is equivalent to a path integral of 4d Chern-Simons theory that is
valid beyond perturbation theory.

Firstly, in what follows, we shall exclude t = ±1 in the classical theory,
as we require the parameter w = t−t−1

2 to be nonzero to eventually obtain 4d

Chern-Simons theory. In fact, since |t| = 1, w = t−t−1

2 is purely imaginary,
i.e., w = iIm(w). In addition, we shall also only consider t ̸= ±i. As a result,
one can show that the t-dependence of δt can be eliminated via rescaling
of δt as well as fermion redefinitions. Consequently, as t only appears in a
Q-exact term, it is irrelevant for our topological-holomorphic theory. Also
note that since |t| = 1, Ψ̃ is real.

Secondly, the path integral localizes to field configurations that obey
δtλ = 0, for a fermionic field, λ. However, not all of these configurations
play an equal role, as we shall see shortly. Via some field redefinitions, we
can find fermionic fields whose (on-shell) variations are Vα(t), Ṽα(t) and V0 =
F45 +Dαϕ

α, which we refer to as χα, χ̃
′
α and η′, respectively. Localization of

the path integral to Vα = Ṽα = V0 = 0 can be achieved by scaling up the Q-
exact terms in (3.30), since these equations are among the conditions for the
Q-exact terms to vanish. Hence, we find that the path integral is supported
on the solution space of the equations

(4.1)

Vα(t) = 0

Ṽα(t) = 0

V0 = 0.
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The remaining (bosonic) field configurations necessary for the Q-exact terms
terms to vanish are

(4.2)

DMσ = 0

[ϕα, σ] = 0

[σ, σ] = 0,

(since t ̸= ±i) and these just imply that σ = 0 everywhere on M, since we
have imposed σ = 0 at the boundary.

Now, localization of the path integral of the 5d partially-twisted theory
reduces it to a path integral over the bosonic fields Awα̃ and Awz̄ along the
boundary, with the integral being restricted to solutions of the equations
(4.1). This follows since the bulk modes contained in the Q-exact action can
be integrated out to give boson and fermion one-loop determinants that can-
cel due to the Q-symmetry, leaving only the path integral over the boundary
action (assuming a certain anomaly vanishes, as we discuss later in this sec-
tion). However, note that to see that the resulting path integral actually
converges, we require that the parameter t takes a suitable value in the Q-
exact sector of the action prior to localization, via the addition of Q-exact
terms. As we shall see, t = ±1 are such suitable values. Note that although
we exclude these values classically, the freedom to add Q-exact terms to the
action in the quantum theory allows t = ±1 in the resulting Q-exact sector.

Another way to understand this localization is that our partially-twisted
theory can be interpreted as a 1d gauged A-model, studied in [19], with
target space being the space A of all possible Awα̃ and Awz̄ fields, and gauge
group the space H of maps from Y × Σ to the worldvolume gauge group,
G (assuming that we formulate our 5d theory using a trivial G-bundle).
The essential observation is that a 4d Chern-Simons action serves as the
superpotential of the 1d theory, via which 5d bulk terms involving fields in
A can be obtained as standard terms of the 1d theory.

To see this explicitly, let us pick on A the metric

g = − 1

2g25

∫

Y×Σ
d2zd2x Tr

(
δAα̃ ⊗ δAα̃

+ δAα̃ ⊗ δAα̃(4.3)

+ 4δAz̄ ⊗ δAz + 4δAz ⊗ δAz̄

)
,

and the complex structure where Aα̃ and Az̄ are holomorphic, which implies
the following moment map for the H-action:

(4.4) µ = − 1

g25
(Dα̃ϕ

α̃ + F45).
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Here, we have defined the complex gauge fields

(4.5) Aα = Aα + iϕα, Aα = Aα − iϕα,

and

(4.6) Az =
1

2
(A4 − iA5), Az̄ =

1

2
(A4 + iA5).

Let us also define the 4d Chern-Simons superpotential

(4.7) W = −e
iα

g25

∫

Y×Σ
dz ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

As we shall see,W is not uniquely determined; as only derivatives ofW enter
the 1d gauged A-model action, it is defined modulo an additive constant.
Furthermore, it is only defined up to an arbitrary phase factor (that can be
changed by an R-symmetry rotation), which we have denoted by eiα.

Now, the 1d gauged A-model action has the form (suppressing fermion
terms and boundary action for brevity)

SBose
1d =

∫
dτ

(
giȷ∂

A
τ x

i∂Aτ x
ȷ + giȷV

i
a σ̃

aV
ȷ
bσ̃

b
+ giȷV

i
a σ̃

a
V

ȷ
bσ̃

b(4.8)

+ giȷV
i
a ϕ̃

aV
ȷ
bϕ̃

b − giȷF
iF

ȷ
+

1

2
F i∂iW +

1

2
F

ȷ
∂ȷW

)

− 1

e2

∫
dτ Tr’

(
Dτ ϕ̃Dτ ϕ̃+ 2Dτ σ̃Dτ σ̃ + [σ̃, σ̃][σ̃, σ̃]

+ 2[ϕ̃, σ̃][ϕ̃, σ̃]−D2 + 2e2µD
)
,

where ∂Aτ x
i = ∂τx

i +Aa
τV

i
a . Here, x is a map from R+ to A, Va, a = 1, . . . ,

dim H are the Killing vector fields generating the action of H on A, ϕ̃a is a
real scalar field, σ̃a and σ̃

a
are complex scalar fields, F i and D are auxiliary

fields, e2 is a coupling constant, and Tr’ is a negative-definite quadratic form
on the Lie algebra of H.

By integrating out the auxiliary fields F i and D, we find that the po-

tential energy terms of the form
∫
dτ

(
1
4g

iȷ∂iW∂ȷW − e4Tr’µ2
)

of the 1d

gauged sigma model are (for τ = x3)

(4.9) − 1

g25

∫

M

d5x Tr

(
1

2
F α̃β̃F

α̃β̃
+ 4F α̃

z̄F α̃z + (−2iFzz̄ +Dα̃ϕ
α̃)2
)
,
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where the covariant derivatives

(4.10) Dα = ∂α + [Aα, · ], Dα = ∂α + [Aα, · ],

and

(4.11) Dz = ∂z + [Az, · ], Dz̄ = ∂z̄ + [Az̄, · ],

have been used to define the field strengths Fβγ = [Dβ ,Dγ ], Fαz̄ = [Dα,Dz̄]
and Fzz̄ = [Dz,Dz̄]. Upon integration by parts, (4.9) is equal to

− 1

g25

∫

M

d5x Tr

(
1

2
F α̃β̃F

α̃β̃
+Dα̃ϕβ̃Dα̃ϕβ̃ +

1

2
[ϕα̃, ϕβ̃ ][ϕα̃, ϕβ̃ ](4.12)

+ 4F α̃
z̄Fα̃z + 4Dzϕα̃Dz̄ϕ

α̃ − 4Fzz̄Fzz̄

)
.

These are just the bulk boson terms in our partially-twisted 5d action that
do not involve the x3 direction nor the fields, ϕ3, σ and σ̄. The remaining
bulk boson terms of the 1d theory correspond to the 5d bulk boson terms
not given in (4.12), i.e., by identifying e2, ϕ̃, σ̃ and σ̃ with g25, ϕ3, σ and σ
respectively, the remaining terms are

− 1

g25

∫

M

d5x Tr
(
F3α̃F

3α̃ +D3ϕα̃D
3ϕα̃ + F3xF

3x + 2Dα̃σD
α̃σ(4.13)

+ 2[ϕα̃, σ][ϕ
α̃, σ] + 2Dz̃σD

z̃σ +Dα̃ϕ3D
α̃ϕ3

+ [ϕα̃, ϕ3][ϕ
α̃, ϕ3] +Dz̃ϕ3D

z̃ϕ3 +D3ϕ3D
3ϕ3

+ 2D3σD
3σ + [σ, σ][σ, σ] + 2[ϕ3, σ][ϕ

3, σ]
)
,

where the index z̃ = z, z̄. In this manner, the entire 5d topological-
holomorphic theory can be shown to be equivalent to the 1d gauged A-
model with target A, and boundary action (3.28).

Hence, from [19], we know that this model should localize to the bound-
ary action. However, note that there is an anomaly arising from the residual
SO(2) R-symmetry that does not enter the twisting. We shall assume that
this anomaly vanishes; even when it does not, we may insert suitable oper-
ators to guarantee a non-vanishing path integral. We also have to specify
the boundary conditions at x3 = ∞ on the half-line, which we take to be a
critical point of the 4d Chern-Simons action that satisfies µ = 0, together
with Neumann boundary conditions on ϕ3, σ and σ (note that µ = 0 and
the Neumann boundary condition for σ also sets to zero the total derivative
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terms discussed at the beginning of Section 3.3). This ensures that the con-
tribution of the boundary theory at x3 = ∞ is just an overall constant in
the path integral, which can be absorbed into the measure.

We thus arrive at

∫

Γ̃
DAw exp

(
− w − w̄

4

iΨ̃

2π
(4.14)

×
∫

∂M
dzw ∧ Tr

(
Aw ∧ dAw +

2

3
Aw ∧ Aw ∧ Aw

))
,

where Γ̃ is a subspace of A defined by solutions of (4.1). Recalling that the
argument of the exponent in (4.14) is the negative of (3.27), we shall perform
the coordinate redefinition

(4.15) x5 → Im(w)x5,

that implies d4x→ Im(w)d4x, Im(w)∂5 → ∂5 and Im(w)A5 → A5, whereby
this argument becomes

− iΨ̃
2π

Im(w)

∫

∂M
d4x Tr

(
Aw1(∂2Az̄ − ∂z̄Aw2) +

2

3
Aw1[Aw2, Az̄](4.16)

+Aw2(∂z̄Aw1 − ∂1Az̄) +
2

3
Aw2[Az̄,Aw1]

+Az̄(∂1Aw2 − ∂2Aw1) +
2

3
Az̄[Aw1,Aw2]

)
.

Now, apart from a factor multiplying the action, and a factor multiplying the
path integral measure (that we can remove via a choice of normalization),
the path integral only depends on Im(w) in the definitions of Aw1 and Aw2.
Hence, we can conveniently fix it in these fields, whereby we obtain the path
integral

(4.17)

∫

Γ̃
DA exp

(
Ψ̃Im(w)

4π

∫

∂M
dz ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

))
.

This is the path integral for 4d Chern-Simons theory with 1
ℏ
= − iΨ̃Im(w)

2 , de-

fined beyond perturbation theory with an integration cycle determined by Γ̃.
This integration cycle in fact ensures the convergence of the path inte-

gral, as long as we tune the value of t in theQ-exact terms of the action (prior
to localization) to 1 or −1. To see this, note that the equations δχα = Vα = 0
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and δχ̃′
α = Ṽα = 0 can be rewritten (for any t ∈ R) via

(4.18) t =
cos α− 1

sin α

as the single equation

(4.19) Fαz̄ = −1

4
e−iαεαβγFβγ

.

The equation (4.19) is equivalent to

(4.20)
F3γ̃ = −e−iα2ε α̃

γ̃ F α̃z

F3z̄ = −1

4
e−iαεβ̃γ̃F

β̃γ̃
,

where α̃, β̃, γ̃ = 1, 2. These equations in fact correspond to gradient flow
equations. Indeed, they can be written in the gauge A3 = 0 (with x3 = τ)
as

(4.21)
dxi

dτ
= −gij ∂W

∂xj

(using the field-space metric (4.3), and the 4d Chern-Simons functional given
in (4.7)),2 which are gradient flow equations for a Morse function that is
2Re(cW ), where c ∈ R. This factor of c is inconsequential as we are free to
rescale τ in (4.21).

Now, for t = ±1, we have eiα = ∓i, and

(4.22) W = ± i

g25

∫

Y×Σ
dz ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

Since Im(W ) is conserved along a gradient flow [20], Re(iW ) is conserved
along the gradient flow; in fact, Re(c̃iW ) is conserved for any c̃ ∈ R. Hence,
the real part of the argument of the exponent in (4.17) is conserved along
Γ̃. Since the gradient flow starts from a critical point (or more precisely, a
critical H-orbit) given by δW = 0 at x3 = ∞ that ensures the argument of
the exponent is a constant at this boundary, we find that this argument is

2Note that in relating (4.20) and (4.21), as well as V0 = 0 and µ = 0 below, one
requires the condition ϕ3 = 0. This condition can be shown to be a consequence of
the localization equations together with the boundary conditions on ϕ3, using an
argument analogous to that given in Section 4.1 of [20].
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appropriately bounded to ensure the convergence of the path integral. In
addition, the boundary condition µ = 0 at x3 = ∞ ensures that the critical
H-orbit is semistable,3 and the fact that µ = 0 (that is equivalent to V0 = 0),
is also a localization condition is consistent with µ being conserved along
gradient flows.

Therefore, the localization equations in the form of the gradient flow
equations (4.21) together with the equation µ = 0 define an integration cycle
for 4d Chern-Simons theory that ensures its convergence. This integration
cycle is the Lefschetz thimble associated with the critical point δW = 0 that
is a boundary condition at x3 = ∞.

In order to obtain lattice models from our brane construction, we may
repeat the derivation above with fundamental strings ending on the D4-
brane boundary at x3 = 0. The worldlines of the endpoints of these strings
realize the desired Q-invariant Wilson lines, given by

(4.23) W = Tr(P e
∫
L
Aw),

where L is a line along Y ⊂ ∂M. In this manner, we may reproduce R-
matrices, the Yang-Baxter equation with spectral parameter, and partition
functions of integrable lattice models, all from a 5d partially-twisted gauge
theory obtained from a type IIA configuration involving branes and funda-
mental strings.

5. Relation to 3d Chern-Simons theory and the geometric

Langlands correspondence

In this section, we shall show how integrable lattice models realized by
4d Chern-Simons theory can be related to invariants of 3d analytically-
continued Chern-Simons theory, as well as the geometric Langlands pro-
gram.

We shall first discuss how T-duality invariance of the partially-twisted
D4-NS5 system leads to the relationship between 4d Chern-Simons theory
and 3d analytically-continued Chern-Simons theory. We then modify our
setup, such that the relationship can be further connected to the quantum
geometric Langlands correspondence, a quantum group modification thereof,
as well as a conjecture of Gaitsgory and Lurie.

3It was shown that in [20] that only semistable H-orbits need to be considered
to understand Stokes phenomena that occur when deforming the integration cycle.
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5.1. T-duality and 3d Chern-Simons theory

To relate to 3d analytically-continued Chern-Simons theory, we recall the
D4-NS5 configuration described in Section 3.2. Here, we further specify Σ to
be R× S1, with S1 (parametrized by x5) having infinitesimal radius. Taking
T-duality along this infinitesimal S1 decompactifies it to R.

As a result, we arrive at the following D3-NS5 configuration:

Y R R R NṼ⊂T ∗Ṽ

Ṽ ′ NṼ ′⊂T ∗Ṽ ′

1 2 3 4 5 6 7 8 9 10

D3 × × × ×
ÑS5 × × × × × ×

This is a special case of the system studied by Witten [8], that realizes 3d
analytically-continued Chern-Simons theory on Y × R at x3 = 0, with an
appropriate integration cycle defined by 4d localization equations. Hence,
we find that T-duality of the D4-NS5 and D3-NS5 configurations suggests a
relation between 4d and 3d analytically-continued Chern-Simons theories.

This relationship can be observed at the level of twisted gauge theories.
Recall from Section 3.3 that our action reduces upon dimensional reduction
to that of the GL-twisted 4d super Yang-Mills action studied by Witten
in [8]. To see that our 5d partially-twisted theory and Witten’s 4d twisted
theory are in fact equivalent, we note that our theory only depends on the
complex structure of Σ = S1 × R, and therefore we may the take the radius
of S1 ⊂ Σ to be infinitesimally small without changing our theory. This is
because the theory only depends on the complex structure of Σ, and all
cylinders share the same complex structure. Thus, at the twisted gauge
theory level, the relationship between the two theories follows from scale
invariance along Σ, which amounts to rescaling of S1.

Now, in the string theory picture, if we include fundamental strings
along the D4-brane boundary at x3 = 0 to realize a lattice, they remain
invariant under the operation of T-duality. As a result, we would have a
lattice of Wilson lines along Y in 3d analytically-continued Chern-Simons
theory on Y × R. In fact, if we take Y to be non-simply connected, e.g.,
T 2, this lattice forms links in Y × R, since in general the Wilson lines are
located at arbitrary points along R.

In this manner, we find a relationship between lattice models realized
by 4d Chern-Simons theory and link invariants of analytically-continued 3d
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Chern-Simons theory. It is worth noting that even without being embedded
in gauge/string theory, the 3d and 4d Chern-Simons theories themselves can
be shown to be T-dual as QFTs [5].

5.2. S-duality and the geometric Langlands program

The geometric Langlands correspondence is realized via 4d GL-twisted N =
4 SYM on a product of Riemann surfaces, C × (I × R), as shown by Kapusin
and Witten [9]. Concisely, shrinking the Riemann surface C leads to a sigma
model governing maps from I × R into Hitchin’s moduli space, and 4d S-
duality gives rise to mirror symmetry of branes in the sigma model, which
furnishes the geometric Langlands correspondence.

To relate our 5d theory on Y × R+ × R× S1 to the geometric Langlands
program,4 we shall use a specialized and modified version of the setup dis-
cussed in the previous section. We first identify Y with C, which we take
to be of genus g > 1 (following [9]).5 Then, we replace the half-line R+ by
the finite interval I, which also allows us to relate to the setup of [9]. Now,
we ought to replace the boundary condition at x3 = ∞ of the half-line by
a suitable boundary condition at some finite point x3 = s, since noncon-
stant gradient flows can only start at critical points if they are at infinity
[19]. From the string theory perspective, this implies modifying the D4-NS5
system by another D-brane located at x3 = s. We shall specify the relevant
D-brane later, and instead first use T-duality (as described in section 5.1) to
obtain a modification of Witten’s setup in [8] involving the D3-NS5 system.

Having done so, we may use the topological invariance along C to shrink
it to be infinitesimally small, which leads us to a sigma model on I × R

with Hitchin’s moduli space, MH(G,C), as target space. Let us understand
the nature of this sigma model. We first recall that the twisted D3-brane
worldvolume theory depends solely on the canonical parameter

(5.1) Ψ =
θ

2π
+

4πi

g24d

t− t−1

t+ t−1
.

4In what follows, we shall take the gauge group to be G = SU(N), by freezing
the center-of-mass degree of freedom of the stack of D4-branes.

5Note that, until now, we have taken Y to be flat. Since the 5d topological-
holomorphic theory is topological along Y , we can take Y to be a curved manifold,
via a straightforward generalization of the previous derivations.
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In addition, recall that the deformed NS5-brane boundary condition requires
that

(5.2) Ψ =
|τ |2
Re(τ)

,

(where τ is the complexified coupling of the worldvolume theory), i.e., Ψ
is real. Now, following the discussion of the T-dual theory in Section 4, t
cannot be ±i or ±1, but obeys |t| = 1. The restriction t ̸= ±1 was necessary
to obtain the full 4d Chern-Simons action, since for t = ±1 we have w = 0.
Nevertheless, since t was not a relevant parameter, we could choose it to be
t = ±1 in the Q-exact part of the partially twisted 5d theory, by addition
of Q-exact terms to the action. Likewise, we can choose t = ±1 in the Q4d-
exact part of the GL-twisted 4d theory, by addition ofQ4d-exact terms to the
action (here, Q4d is the topological supercharge of the GL-twisted theory).
Furthermore, we can understand the real value of Ψ at hand to come from
a different value of theta parameter, denoted θ′, where t = ±1, i.e.,

(5.3) Ψ =
θ′

2π
= Re τ ′.

For t = ±1, we know that the corresponding sigma model is in fact an A-
model in a symplectic structure (of the target space) proportional to ωK

(following the convention of [9]), and we shall employ this description of the
sigma model in what follows.6

Now, the NS5-boundary condition we used on one end of the interval can
be interpreted as a space-filling coisotropic brane, Bc, of the sigma model,
of type (B,A,A) . To see this, first note that the relevant fields A1, A2,
ϕ1 and ϕ2 that enter the sigma model obey generalized Neumann boundary
conditions in the twisted 4d worldvolume theory, which correspond to a
space-filling sigma model brane. In addition, recall that the sigma model
includes an action for the B-field

(5.4) B = − θ′

2π
ωI ,

where

(5.5) ωI = − 1

4π

∫

C
Tr(δA ∧ δA− δϕ ∧ δϕ).

6In fact, it can be shown that for all t satisfying |t| = 1 with t ̸= ±i, the sigma
model is a B-field transform of an A-model with symplectic structure proportional
to ωK .
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This B-field is nondegenerate on the brane, and satisfies (ω−1B)2 = −1,
where ω = ΨωK is the defining symplectic structure of the A-model, mean-
ing that the brane is indeed an A-brane (that is coisotropic) with respect
to ω. Moreover, the B-field is of type (1,1) in complex structure I, which
implies that the brane is a B-brane in this complex structure. Finally, in the
localization limit whereby the Q-exact term of the sigma model is multiplied
by a large factor, the boundary conditions reduce to the boundary restric-
tion of the localization equations (i.e., holomorphic maps), as expected for
a coisotropic A-brane.

Next, at x3 = s, we shall pick a boundary condition that will eventually
enable us to realize the quantum geometric Langlands correspondence. This
boundary condition is that of an (A,B,A) brane, B′, that is Lagrangian with
respect to the symplectic form (5.5). In particular, such a brane arises when
MH(G,C) is described (using the complex structure J) as the moduli space
of semi-stable flat GC-bundles on C. In this description, an open subset of
MH(G,C) maps to M(G,C), the moduli space of semi-stable G-bundles,
and the fibers of the map are the (A,B,A) branes of interest. From the
perspective of type IIB string theory, these sigma model branes arise from
D5-branes [21].

In fact, we have obtained the necessary ingredients to realize the struc-
ture of a twisted D-module, due to the presence of the coisotropic brane,
Bc at x3 = 0, as well as the Lagrangian property of B′. This follows since
we can also define the sigma model with Bc boundary conditions at both
x3 = 0 and x3 = s, and the sheaf of (Bc,Bc) strings can be shown to be
the sheaf DK

1/2
M

⊗LΨ of holomorphic differential operators acting on sections

of K
1/2
M

⊗ LΨ, where M = M(G,C) and where L is the determinant line
bundle on M(G,C) [9]. Moreover, the (Bc,B′) strings can be shown to be

sections of a tensor product bundle that includes K
1/2
M

⊗ LΨ.
Now, under type IIB S-duality, which results in S-duality of the worldvol-

ume theory, the canonical parameter Ψ of the D3-NS5 brane system trans-
forms to LΨ = − 1

Ψ . In addition, since t is not a relevant parameter, it can
be considered to be invariant under S-duality. This implies that the effective
2d A-model with MH(G,C) as target space is dualized to another A-model
in symplectic structure ωK of the target MH(LG,C), i.e., Hitchin’s moduli
space for the Langlands dual gauge group LG. Moreover, under this dual-
ity, (B,A,A) and (A,B,A) branes in MH(G,C) are mapped respectively
to (B,A,A) and (A,B,A) branes in MH(LG,C). This in fact gives rise
to a realization of the quantum geometric Langlands correspondence that
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maps twisted D-modules to twisted D-modules similar to that described in
Section 11.3 of [9].

To understand why the Bc brane on MH(G,C) maps to the Bc brane on
MH(LG,C) under S-duality from the perspective of type IIB string theory,
first note that the duality of sigma models above can be generalized such
that the canonical parameter transforms to LΨ = 1

Ψ instead. This happens
when we use the orientation reversal symmetry of the 4d worldvolume theory
prior to taking S-duality, which results in Ψ → −Ψ.

Also recall that Bc originated from the deformed NS5-brane boundary
condition of the D3-brane worldvolume theory. This deformation arises from
the nonzero value of θ, which is the expectation value of a Ramond-Ramond
scalar. Now, under the SL(2,Z) transformation that maps the complex cou-
pling parameter τ to τ + 1, θ shifts to θ + 2π. This shift converts the NS5-
brane to a (1,1) fivebrane, while the canonical parameter of the GL-twisted
theory is shifted as Ψ → Ψ+ 1. Since the effect is just a shift of the θ param-
eter, the sigma model description of the boundary condition as a Bc brane
is unaffected, and we can just consider this to be our starting point where
the canonical parameter is Ψ.

Now, orientation reversal symmetry further converts this (1,1) fivebrane
to a (1,-1) fivebrane. Then, under the SL(2,Z) transformation that maps
the gauge group G to LG and τ to − 1

τ , this (1,-1) fivebrane becomes a (1,1)
fivebrane, and the resulting canonical parameter is 1

Ψ . As before, the lat-
ter gives rise to generalized Neumann boundary conditions for the relevant
fields A1, A2, ϕ1 and ϕ2, but now in the S-dual 4d gauge theory. In the
aforementioned localization limit of the effective sigma model, these reduce
to the boundary restriction of the localization equations, just as in the orig-
inal theory with gauge group G. This implies that the corresponding sigma
model brane is the coisotropic brane Bc on MH(LG,C).

S-duality of 3d analytically-continued Chern-Simons theory

Now, we have a duality of the 4d D3-brane worldvolume theory that maps
the gauge group G to its Langlands dual LG and (1,1) fivebranes to them-
selves, and moreover both systems localize to 3d analytically-continued
Chern-Simons theory at the boundary. This can be interpreted as an S-
duality for 3d analytically-continued Chern-Simons theory, which has been
predicted previously in [14, 15]. Note that the aforementioned SL(2,Z)
transformation that converts the NS5-brane to a (1,1) fivebrane also con-
verts fundamental strings to (1,1) strings, and therefore the Wilson lines
that realize links (as discussed in Section 5.1) ought to become Wilson-’t
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Hooft lines at x3 = 0 in the 4d worldvolume theory, and therefore Wilson-’t
Hooft lines in the equivalent 3d analytically-continued Chern-Simons the-
ory. Moreover, the duality of the 4d worldvolume theory that gives rise to
S-duality of Chern-Simons theory maps (1,1) strings to themselves, implying
that Wilson-’t Hooft lines for the gauge group G are mapped to Wilson-’t
Hooft lines for the gauge group LG. Note that although the full GC/

LGC

symmetry of the S-dual Chern-Simons theories does not enter the definition
of the Wilson-’t Hooft lines, they are nevertheless expected to exist from
consideration of supersymmetry of the twisted 4d theory at x3 = 0.

5.3. A modification of the quantum geometric Langlands

correspondence

If we include the fundamental strings that realize lattices and links as pre-
viously discussed, the quantum geometric Langlands correspondence is ac-
tually generalized in our case, as follows. Recall that to realize integrable
lattice models using 4d Chern-Simons theory, we ought to include a network
of Wilson lines along x3 = 0 in our setup above. Since Σ = R× S1, these
Wilson lines are in fact classified by representations of a quantum affine
algebra [2].

These Wilson lines are located at points on Σ = R× S1, and upon
shrinking S1 (using the holomorphic invariance of the partially-twisted D4-
brane worldvolume theory), they are located on points along R, and are
now determined by representations of a quantum group that descend from
representations of the aforementioned quantum affine algebra [2]. Then, the
subsequent SL(2,Z) transformation that maps the NS5-brane to a (1,1) five-
brane maps fundamental strings to (1,1) strings, and therefore Wilson lines
to Wilson-’t Hooft lines.

Upon shrinking Y , they then become local operators located at x3 = 0
and along R. Therefore, they correspond to points on the coisotropic brane.
Hence, this modifies the twisted D-modules that appear in quantum geo-
metric Langlands to involve the data of the Wilson-’t Hooft lines (labelled
by an index, i), namely, homomorphisms ρi : U(1) → G (’t Hooft) and rep-
resentations of the quantum deformation of a subgroup of G (Wilson). This
subgroup, denoted Gρi , is that which commutes with ρi(U(1)).7

7The definition of an ’t Hooft line operator for the gauge group, G, involves
embedding a Dirac monopole into G, via a homomorphism ρ : U(1) → G, and this
continues to be true for a Wilson-’t Hooft line operator. In the presence of the
latter, the gauge field is ρ(A0) + Â, where A0 is the singular U(1) gauge field with
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Hence, this indicates that in our present setup that realizes lattices/links,
quantum geometric Langlands is actually modified by the data of quan-
tum group representations. In particular, the dual categories of twisted
D-modules on M(G,C) and M(LG,C) are modified by representations of
quantum deformations of Gρi and LGLρi , respectively, where Lρi : U(1) →
LG.

5.4. The Gaitsgory-Lurie conjecture

The relationship between 3d analytically-continued Chern-Simons theory
and the quantum geometric Langlands correspondence also realizes a known
extension of this correspondence to quantum groups, conjectured by Gaits-
gory and Lurie [7]. Here, the correspondence is between the Kazhdan-Luzstig
category, KLΨ(G), of finitely generated modules over the affine Kac-Moody
algebra ĝΨ−h∨ (where h∨ is the dual Coxeter number of G) on which the
action of g[[z]] integrates to an action of the group G[[z]], and the cate-
gory of Whittaker D-modules on the affine Grassmannian Gr(LG) of LG,
denoted Whit 1

Ψ

(LG).8 The former category is in fact equivalent to the cate-

gory of representations of quantum groups Uq(G), where q is related to Ψ via
q = exp(πiΨ ), with Ψ = k + h∨ (where k is the level of the affine Kac-Moody
algebra).

Realizing the Gaitsgory-Lurie conjecture

In the present setup, the conjectured correspondence can be realized as fol-
lows. The deformed NS5-brane boundary condition leads to 3d analytically-
continued Chern-Simons theory on the boundary C × R, where Wilson lines
(realized by fundamental strings) are admissible as operators, and form links.
These Wilson lines are labelled by representations of the quantum deforma-
tion of GC that descend from representations of the corresponding quantum
affine algebra [2] when we shrink S1, as described in Section 5.1. Now, we
may deform the integration cycle of 3d analytically-continued Chern-Simons
theory to one that parametrizes real gauge fields, and upon making the

Dirac singularity, and Â is smooth. To ensure that the singular part of the curvature
coincides with the Dirac singularity and does not depend on Â, we need [ρ(A0), Â] =
0. However, this results in gauge transformations along the operator being restricted
to the subgroup of G that commutes with ρ(U(1)).

8The Whittaker category Whitc consists of c-twisted D-modules on GrG that
are N((z))-equivariant with respect to a non-degenerate character, where N is the
maximal unipotent subgroup of G.
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identification Ψ = k + h∨, we obtain ordinary 3d Chern-Simons theory [8],
where k ∈ Z+ is the level (more generally, if we also allow k ∈ Z−, we require
Ψ = k + sign(k)h∨).9 Upon doing so, the Wilson lines will be in representa-
tions of Uq(G), where q = exp( πi

k+h∨ ).
Moreover, the Wilson lines can be taken to lie along R and on points

on C, by deforming the links appropriately using topological invariance of
Chern-Simons theory. As a result, there are local operators of the corre-
sponding WZW theory on C (at any point on R) associated with the quan-
tum group representations, giving rise to the aforementioned finitely gener-
ated module over ĝk, denoted ĝΨ−h∨-mod0C .

Under an orientation reversal that sends Ψ → −Ψ and S-duality that
sends −Ψ → 1

Ψ , the NS5-brane becomes a D5-brane that realizes the maxi-
mal Nahm pole boundary condition on the ϕ1, ϕ2 and ϕ4 fields [18]. More-
over, the Wilson lines realized by fundamental strings become ’t Hooft lines
realized by D1-branes. The category of these ’t Hooft lines is precisely the
Whittaker category, as explained in [21].

Realizing the vertex algebra version of

the Gaitsgory-Lurie conjecture

We can also realize the vertex algebra version of the Gaitsgory-Lurie conjec-
ture, as studied by Aganagic, Frenkel, and Okounkov [22]. In this version,
the Whittaker category is replaced by a certain subcategory of the category
of modules of the affine W-algebra, W 1

Ψ

(Lg), whose objects are modules,

denoted W 1

Ψ

(Lg)-mod0, that correspond to “magnetic” vertex operators.
We can understand how this arises physically on C. Firstly, the D5-brane
boundary condition was shown by Gaiotto and Witten [16] to have a de-
scription in terms of Lg opers (with singularities due to the ’t Hooft lines),
which describeW 1

Ψ

(Lg) conformal blocks on C in the classical limit. Further-

more, with ’t Hooft line knots/links, braiding along R of the R-independent
quantum BPS states of the D3-D5 system was identified with braiding of
complex integration cycles for 3d analytically-continued Chern-Simons the-
ory on C × I with coupling 1

Ψ . This in turn is related via deformation of
its complex integration cycle to one that parametrizes real gauge fields, as
well as the oper boundary condition, to W 1

Ψ

(Lg) conformal blocks on C.
Hence, the vertex algebra form of the Gaitsgory-Lurie conjecture ought to
be realizable as the equivalence of quantum BPS states under S-duality.

9The possibility of such a deformation does not imply an S-duality for real 3d
Chern-Simons theory, since in general 1

k+h∨ is not an integer.
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Realizing the quantum q-Langlands correspondence

In the present setup, one should also be able to realize the quantum q-
Langlands correspondence [22] that relates modules of the quantum defor-
mation of the affine algebra, ĝC, and the q-deformed affine W-algebra for
LgC, by T-dualizing both the D3-NS5 and D3-D5 systems. The former leads
to the D4-NS5 system studied in previous sections that gave us 4d Chern-
Simons theory on C × R× S1, with Wilson lines in representations of the
quantum deformation of ĝC. On the other hand, T-dualizing the D3-D5
system in an appropriate direction gives us a D4-D6 system, while the D1-
branes realizing ’t Hooft lines become D2-branes realizing ’t Hooft surface
operators along R× S1 and on points on C. Given the known T-duality
between 3d and 4d Chern-Simons theories, as well as the fact that the D4-
D6 system also realizes the Nahm pole boundary condition, it is reasonable
to expect that we can find a generalization of Gaiotto-Witten’s description
of the D3-D5 BPS states. That is, we expect that braiding along R of the
R-independent quantum BPS states of the D4-D6 system can be identified
with braiding of complex integration cycles for 4d Chern-Simons theory on
C × I × S1. This in turn ought to be related via the Nahm pole boundary
condition to a 3d boundary theory on C × S1 that realizes modules of the
q-deformed affine W-algebra for LgC.

KLΨ(G)/ĝΨ−h∨-mod0C
S′

−−−−→ Whit 1

Ψ

(LG)/W 1

Ψ

(Lg)-mod0C

T −1

x S′T −1S′−1

x

4d CSΨ̃(GC)
T T−−−−→ 3d CSΨ+1(GC)

S′

−−−−→ 3d CS 1

Ψ+1

(LGC)

C→0

y C→0

y

D-mod
Uq′ (Gρi ),ρ

i

Ψ+1 (M(G,C))
S′

−−−−→ D-mod
ULq′ (

LGLρi ),
Lρi

1

Ψ+1

(M(LG,C))

Figure 2: A relationship between 4d Chern-Simons theory, 3d S-dual Chern-
Simons theories, the quantum group modification of quantum geometric
Langlands, and the Gaitsgory-Lurie conjecture. Here, q′ = exp( πi

Ψ+1).
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Summary

The results above are summarized in Figure 2. Here, T denotes T-duality
from type IIA string theory to type IIB string theory, S ′ = SR where R is
the orientation reversal symmetry transformation of the twisted D3-brane
worldvolume theory, and where S and T are the generators of the SL(2,Z)
symmetry of type IIB string theory.

6. Conclusion and future work

In this work, we have shown that integrable lattice models, link invariants,
quantum geometric Langlands, and the Gaitsgory-Lurie conjecture are re-
lated via dualities in string theory. These dualities manifest as invariances
in the relevant spectra of the respective worldvolume theories. The crucial
ingredient is the fact that the 5d N = 2 SYM theory of a stack of D4-branes
admits a partial twist that is topological-holomorphic, and analogous to the
GL-twist of 4d N = 4 SYM.

This suggests generalizations of our present work. Firstly, we should
be able to define GL type twists for maximally supersymmetric Yang-Mills
theory in 6d and 7d as well, which would lead to 5d and 6d Chern-Simons
theories once NS5-type boundary conditions are imposed. Then, we would
find that all Chern-Simons theories in dimensions three to six are related
via a chain of T-dualities that relate the D3-NS5, D4-NS5, D5-NS5 and D6-
NS5 systems, in accordance with their known T-duality at the level of field
theory [5].

Moreover, further T-dualities applied to the S-dual D3-D5 system ought
to furnish higher analogues of the quantum geometric Langlands correspon-
dence, just as the D4-D6 system ought to realize the quantum q-Langlands
correspondence via TST-duality to the D4-NS5 system. Namely, we ex-
pect the quantum q, v-geometric Langlands correspondence involving elliptic
affine W-algebras to follow from T-duality to the D5-D7 system, and a fur-
ther generalization to be furnished by T-duality to the D6-D8 system.

We hope to explore these issues in future work.

Appendix A. 5d gamma matrices and spinor operations

Where necessary in Section 2, we use the following representation of the
gamma matrices in five (Euclidean) dimensions
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(A.1)
Γ1 = σ1 ⊗ σ3, Γ2 = σ2 ⊗ σ3, Γ3 = σ3 ⊗ σ3,

Γ4 = 1⊗ σ1, Γ5 = 1⊗ σ2,

where the {σ1, σ2, σ3} are the Pauli matrices, i.e.,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(A.2)

These gamma matrices obey the Clifford algebra

(A.3) {ΓM ,ΓN} = 2gMN14×4.

In addition, this set of gamma matrices is also used for the R-symmetry
group SO(5)R.

The SO(5) rotation/R-symmetry group spinor indices are lowered and
raised using the two index antisymmetric tensor Ω, i.e.,10

ρA = ρBΩBA, ρA = ΩABρB,(A.4)

where ρA and ρA correspond to the representation 4 and its dual represen-
tation 4∨. Here, Ω is

(A.5) ΩAB = ϵᾱβ̄ ⊗Bm̄n̄ =

(
0 1
−1 0

)
⊗
(
0 1
1 0

)
.

Furthermore, the two index antisymmetric tensor ϵ can be used to lower and
raise SO(3) spinor indices, i.e.,

λᾱ = λβ̄ϵβ̄ᾱ, λᾱ = ϵᾱβ̄λβ̄ .(A.6)

In particular, this antisymmetric tensor acts on the Pauli matrices to give

symmetric matrices, i.e., (σα) β̄
ᾱ ϵβ̄γ̄ = (σα)ᾱγ̄ and ϵᾱβ̄(σα) γ̄

β̄
= (σα)ᾱγ̄ ,

where (σα)ᾱγ̄ = (σα)γ̄ᾱ and (σα)ᾱγ̄ = (σα)γ̄ᾱ.

10We shall only write formulas corresponding to rotation group spinors in what
follows; the corresponding formulas for R-symmetry group spinors can be obtained
by replacing indices with hatted versions of themselves.
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Appendix B. Derivation of Q-invariant boundary term of 5d

partially-twisted theory

Here, we explain the derivation of (3.27) from the t-dependent terms (3.20)
and (3.21) of the 5d partially-twisted worldvolume theory of a stack of
D4-branes ending on a (deformed) NS5-brane. Explicitly, these t-dependent
terms are

S3 + S∂M = − 1

g52

∫

M

d5x εαβγTr

(
2

(
t− t−1

t+ t−1

)

×
(
1

2
Fα4Fβγ +

1

2
∂α (ϕβD4ϕγ) + ∂α (Fβ5ϕγ)

)

−
(

4

t+ t−1

)(
1

2
Fα5Fβγ +

1

2
∂α (ϕβD5ϕγ)− ∂α (Fβ4ϕγ)

))

+
1

g52

∫

∂M
d4x Tr

((
t+ t−1

)(1

2
εα̃β̃D5ϕα̃ϕβ̃

)

+

(
t+ t−1

t− t−1

)
εijk

(
Ai∂jAk +

2

3
AiAjAk

))
.(B.1)

Now, note that

(B.2) Tr(εαβγ4FαβFγ4) = Tr

(
1

4
εµνρσFµνFρσ

)

for µ, ν, ρ, σ = 1, 2, 3, 4 where the Levi-Civita symbol is defined such that
ε1234 = 1, and analogously

(B.3) Tr(εαβγ5FαβFγ5) = Tr

(
1

4
εµ̃ν̃ρ̃σ̃Fµ̃ν̃Fρ̃σ̃

)

for µ̃, ν̃, ρ̃, σ̃ = 1, 2, 3, 5 and ε1235 = 1. Moreover, these expressions can be
written as total derivatives using

(B.4) Tr

(
1

4
εµνρσFµνFρσ

)
= εµνρσ∂µTr

(
Aν∂ρAσ +

2

3
AνAρAσ

)

and

(B.5) Tr

(
1

4
εµ̃ν̃ρ̃σ̃Fµ̃ν̃Fρ̃σ̃

)
= εµ̃ν̃ρ̃σ̃∂µ̃Tr

(
Aν′∂ρAσ̃ +

2

3
Aν̃Aρ̃Aσ̃

)
.

Hence, all the terms in S3 can be written as total derivatives, and using
Stoke’s theorem, we find that the entire t-dependent action (B.1) can be
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written as the boundary action

1

g25

∫

∂M
d4xTr

(
Tεijk

(
Ai∂jAk +

2

3
AiAjAk

)
(B.6)

+ Tw

(
2εα̃β̃F

β̃4
ϕα̃

)
− Tw2εα̃β̃ϕα̃D4ϕβ̃

+ Twεĩj̃k̃
(
Aĩ∂j̃Ak̃

+
2

3
AĩAj̃Ak̃

)

+ Tw2

(
2εα̃β̃F

β̃5
ϕα̃

)
− Tw3εα̃β̃ϕα̃D5ϕβ̃

)
,

where ĩ, j̃, k̃ = 1, 2, 5, and

(B.7) T = − t− t−1

t+ t−1
+
t+ t−1

t− t−1
.

Here, we have used

Tw =
2

t+ t−1
,(B.8)

Tw2 =
t− t−1

t+ t−1
,(B.9)

and

(B.10) Tw3 =
t+ t−1

2
− 2

t+ t−1
.

The boundary action (B.6) is equal to (3.27). This follows from Ψ̃ = −4πi
g2
5

T ,

and can be checked by expanding (3.27) in terms of A1, A2, ϕ1 and ϕ2.
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