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We generalize the recently discovered relationship between JT grav-
ity and double-scaled random matrix theory to the case that the
boundary theory may have time-reversal symmetry and may have
fermions with or without supersymmetry. The matching between
variants of JT gravity and matrix ensembles depends on the as-
sumed symmetries. Time-reversal symmetry in the boundary the-
ory means that unorientable spacetimes must be considered in the
bulk. In such a case, the partition function of JT gravity is still
related to the volume of the moduli space of conformal structures,
but this volume has a quantum correction and has to be computed
using Reidemeister-Ray-Singer “torsion.” Presence of fermions in
the boundary theory (and thus a symmetry (−1)F) means that the
bulk has a spin or pin structure. Supersymmetry in the bound-
ary means that the bulk theory is associated to JT supergravity
and is related to the volume of the moduli space of super Rie-
mann surfaces rather than of ordinary Riemann surfaces. In all
cases we match JT gravity or supergravity with an appropriate
random matrix ensemble. All ten standard random matrix ensem-
bles make an appearance – the three Dyson ensembles and the
seven Altland-Zirnbauer ensembles. To facilitate the analysis, we
extend to the other ensembles techniques that are most familiar in
the case of the original Wigner-Dyson ensemble of hermitian ma-
trices. We also generalize Mirzakhani’s recursion for the volumes
of ordinary moduli space to the case of super Riemann surfaces.
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1. Introduction

Jackiw-Teitelboim (JT) gravity [1, 2] is a simple theory of two-dimensional
quantum gravity that describes rigid hyperbolic spaces. It was used as a
model for AdS2/CFT1 in [3], and more generally it describes the low-energy
dynamics of any near-extremal black hole.

The theory is so simple that it is almost trivial. On a closed Euclidean
manifold Y , the path integral reduces to the volume of a finite-dimensional
space – the moduli space of Riemann surfaces with the topology of Y . How-
ever, in most applications, it is interesting to consider JT gravity on a space
Y with at least one asymptotic boundary. In this setting, one also has to do
a path-integral over “wiggles” associated to each boundary [4–6].

These wiggles are governed by a solvable theory known as the
“Schwarzian theory.” This provides a link between JT gravity and the
Sachdev-Ye-Kitaev (SYK) model [7–9], which reduces at low energies to the
same Schwarzian theory [8–10]. For a review, see [11]. This correspondence
has motivated much recent work on JT gravity.1

1This has included many different derivations of the exact path integral [12–20],
studies of the Hilbert space structure [18, 21–23], correlation functions [24–26],
the physical symmetry charges [27], and the on-shell action [28]. Further work
has included generalizations to include higher spin fields [29], supersymmetry [30],
different topologies [23, 26, 31, 32], and de Sitter space [33, 34].
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In [35] it was shown that the path integral of JT gravity on arbitrary
orientable surfaces is computed by a Hermitian matrix integral, with the
dictionary

(1.1) ZJT(β1, . . . , βn) ↔
〈
Tr e−β1H . . .Tr e−βnH

〉
.

On the LHS, ZJT(β1, . . . , βn) is the JT gravity partition function with n
asymptotic boundaries with regularized lengths β1, . . . , βn. On the RHS,
the angle braces imply an average of H over an appropriate random matrix
ensemble. The contribution of a particular topology to the path integral
on the LHS coincides with the contribution at a given order in the “genus
expansion” of the matrix integral on the RHS. The crucial fact underlying
(1.1) is the correspondence [36] between Mirzakhani’s recursion relation for
the volumes of moduli space [37] and Eynard-Orantin “topological recur-
sion” [38] which gives the genus expansion of a Hermitian matrix integral
[39].

In this paper, we will generalize this in multiple directions by studying
JT gravity on unorientable surfaces, by including a sum over spin structures,
and by studying N = 1 supersymmetric JT gravity [30, 40–42]. We also
allow for the possibility of including a topological field theory that weights
crosscaps and/or spin structures in a particular fashion. All together, we
will consider three bosonic theories, twelve theories with fermions and no
supersymmetry, and ten supersymmetric theories. We will find evidence that
all of these are related to matrix integrals.

The relevant matrix integrals are characterized by two pieces of data:
first, one has to specify the “spectral curve,” or equivalently the leading
approximation to the density of eigenvalues (generalizing the Wigner semi-
circle). Second, one has to specify a discrete choice of one of ten different
symmetry classes. These classes consist of the three Dyson β-ensembles [43]
and the seven (α,β)-ensembles of Altland and Zirnbauer [44] (three of these
were previously discussed by Verbaarschot and Zahed in [45, 46]).2 Which
symmetry class is appropriate depends on the algebra of the random ma-
trix, the time-reversal operator T (if present) and the symmetry (−1)F (if
present). The genus expansion for each of these classes of matrix integrals
can be analyzed efficiently using the loop equations [47] in their modern
form, following [39].

2We will use the notation β for the Dyson index, reserving β for the inverse
temperature.
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The basic task of this paper is as follows. For each of the various bosonic,
fermionic and supersymmetric bulk theories, we determine the two pieces of
data described above, thus specifying a candidate matrix integral dual. Then
we check that the bulk theory and the matrix integral agree at higher orders
(in some cases these checks are limited, and in some cases they are to all
orders). In more detail, to match the leading approximation to the density
of eigenvalues, one has to compute the bulk partition function on the disk
topology. To match the discrete choice of symmetry class, one has to match
anomalies in the discrete symmetries T and (−1)F. Having fixed this data,
to check agreement at higher orders, one can compare the JT path integral
on some higher topology space with the prediction of the matrix integral
derived using the loop equations.

We will find evidence that the three bosonic JT theories are dual to
matrix integrals where the Hamiltonian H is drawn from one of the three
Dyson β-ensembles. Similarly, the ten supersymmetric JT theories are dual
to matrix integrals where H = Q2 and the supercharge Q is drawn from one
of the three Dyson ensembles, or from one of the seven Altland-Zirnbauer
ensembles. For the twelve theories involving spin structures but no super-
symmetry, we show how to reduce the problem to the three bosonic cases.
A summary of the different cases is as follows.

Bosonic, orientable only: This was the case considered in [35]. The vol-
umes of moduli space, and thus the JT path integral, are related to a β = 2
(GUE-like) matrix integral.

Bosonic, orientable + unorientable (two subcases): In bosonic JT grav-
ity, it is natural to consider a sum over not necessarily orientable manifolds.
In the context of holographic duality, this is appropriate if the boundary
theory has time-reversal symmetry. There are two versions of the sum, de-
pending on whether or not we include a factor of (−1)nc where nc is the
number of crosscaps. These two choices amount to two different bulk theo-
ries, and they correspond to β = 1 (GOE-like) and β = 4 (GSE-like) matrix
integrals. As it turns out, the volume of moduli space of a unorientable sur-
face has a logarithmic divergence due to the contribution of small crosscaps.
The corresponding matrix integrals also have a divergence in the relevant
double-scaled limit, and they predict the correct formula for the moduli
space measure associated to a crosscap. However, because of the divergence,
we are not able to study arbitrary-genus correlators in these cases.

Fermionic but nonsupersymmetric (twelve subcases): In holographic du-
ality, a bulk geometry should have a spin structure or a less familiar analog of
this known as a pin+ or pin− structure if the boundary theory has fermions
and, respectively, no time-reversal symmetry; time-reversal symmetry with
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T
2 = (−1)F (in other words, T2 anticommutes with elementary fermions); or

time-reversal symmetry with T
2 = 1. Hence it is natural to consider JT grav-

ity on an orientable manifold with a spin structure or on a not necessarily
orientable manifold with a pin+ or pin− structure. The sum over spin, pin+,
or pin− structures can be enriched with a topological field theory, for which
the number of possible choices is 2, 2, or 8. We match these 2 + 2 + 8 = 12
theories with random matrix constructions. New random matrix ensembles
are not needed; it suffices to consider the three Dyson ensembles together
with the assumed global symmetries.

Supersymmetric, orientable only (two subcases): New matrix ensembles
are needed if we incorporate not just spin structures but N = 1 supersym-
metry. In this case, JT gravity is replaced with JT supergravity, whose parti-
tion function is an integral over the moduli space of super Riemann surfaces.
Restricting to orientable surfaces, there are two subcases because of the free-
dom to include a factor of (−1)ζ , where ζ is the mod 2 index, weighting odd
spin structures with a minus sign. These two choices of bulk theory corre-
spond to two particular symmetry classes of matrix ensemble. In the case
where we weight all spin structures equally, the supercharge Q is drawn
from a GUE-like ensemble with a leading distribution of eigenvalues that
is nonzero everywhere on the real line. The loop equations for such a ma-
trix integral imply that essentially all correlations vanish. Correspondence
with JT supergravity then predicts that the volume of the moduli space
of genus g super Riemann surfaces (summed over even and odd spin struc-
tures) vanishes. For the second bulk theory in which we weight by (−1)ζ , the
right matrix ensemble is one in which Q is drawn from an Altland-Zirnbauer
ensemble. The loop equations for this matrix integral predict a nontrivial re-
cursion for the volumes of super moduli space weighted by (−1)ζ . We prove
this directly using a generalization of Mirzakhani’s approach in the bosonic
case.

Supersymmetric, orientable + unorientable (eight subcases): In N = 1
JT supergravity with time-reversal symmetry (which necessarily is of pin−

type), we have to include a sum over pin− structures. This sum can be
weighted by one of eight possible topological field theories, corresponding to
the factor e−iπN ′η/2 where η is the η-invariant of Atiyah-Patodi-Singer [48],
and N ′ is an integer mod 8. These cases can be matched to matrix integrals
by comparing the anomalies in time-reversal T and (−1)F. In six of these
eight cases, there is a divergence from the integral over small crosscaps, as in
the bosonic theory. Again, the crosscap measure is precisely matched by the
corresponding matrix integral, but the divergence prevents us from going
to higher orders. In the other two cases, the contribution of the crosscap is
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finite. Surprisingly, for the two cases where the crosscap is finite, the matrix
integral predicts that all higher-order contributions vanish, indicating a can-
cellation between volumes of moduli spaces of orientable and unorientable
super-surfaces.

We will now discuss the plan of the paper. In section two we review
the ten standard ensembles of random matrix theory, and match anomalies
in (−1)F and T symmetry in order to line them up with JT gravity and su-
pergravity theories. A useful tool in this section is the SYK model. Variants
of this theory have an approximate random matrix classification, as well as
an approximate relation to JT gravity and JT supergravity. Since both of
these relationships are approximate, SYK by itself does not imply an exact
correspondence between JT gravity and random matrix theory. However, as-
suming that such a correspondence does exist, the SYK model can be used
to match discrete choices on the two sides.

In this section, in addition to matching the anomalies, we show that
for the twelve fermionic but not supersymmetric theories, agreement with
random matrix theory follows from agreement in the three bosonic cases. To
demonstrate this, we evaluate the sum over spin, pin+ and pin− structures
weighted by appropriate topological field theories.

In section three we show how to compute the measure on the mod-
uli space of Riemann surfaces or super Riemann surfaces, starting with the
path integral of JT gravity or JT supergravity. These theories can be for-
mulated as BF theories with gauge group SL(2,R) or OSp(1|2) [40, 49, 50].
In general, the partition function of a BF theory reduces to an integral over
a moduli space of flat connections. On an orientable two-manifold, the ap-
propriate measure on the moduli space is defined by classical formulas (for
example, the Weil-Petersson measure on moduli space in the case SL(2,R),
as discussed in [35]), but on an unorientable surface, there is an important
one-loop correction, which is given by a ratio of determinants known as the
“torsion.” The role of torsion in what is now known as BF theory was origi-
nally shown in [51]. We discuss general features of the torsion and then show
how to compute it for SL(2,R) and OSp(1|2). As an important special case,
we compute explicitly the measure factor associated to the size modulus of a
crosscap. It turns out that the resulting measure has been defined previously
from a different point of view [52].

In section four we analyze the loop equations [47] of random matrix
theory. The loop equations are a general tool for computing the genus expan-
sion of correlation functions in random matrix ensembles. The method was
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significantly streamlined in [39] for β = 2 ensembles. We explain this stream-
lining and imitate it for the general β-ensembles and the Altland-Zirnbauer
(α,β) ensembles. Previous work on the β-ensembles includes [53–55].

Finally, in section five we compare the predictions of the loop equations
to JT gravity and JT supergravity. In all cases, we are able in lowest order
to match the crosscap measure computed from the torsion plus topological
field theory with a calculation in random matrix theory. In higher orders,
most of the cases present difficulties, either due to a divergent volume of
moduli space, or due to the difficulty in evaluating the volume of super-
moduli space by independent means. However, for the one supersymmetric
case where the matrix integral predicts that the volumes are both finite and
nonzero (orientable only, (−1)ζ weighting), we use the loop equations to
predict a simple recursion relation for the volumes of super moduli space,
which we prove directly in appendix D by adapting Mirzakhani’s approach
to super Riemann surfaces. This recursion relation has also been obtained in
unpublished work by Norbury, who has studied the spectral curve relevant
to JT supergravity from a different point of view [56], following earlier work
on the related “Bessel” spectral curve [57, 58]. The derivation in appendix D
is based on a super McShane identity, which in the prototypical case of a
genus 1 surface with one puncture has been discovered independently by Y.
Huang, R. Penner, and A. Zeitlin [59].

In appendix A, we describe a general formula for volumes of symplec-
tic supermanifolds that makes contact between our statements and some of
Norbury’s results. In appendix B, we explain a relationship between certain
pairs of matrix ensembles, generalizing a known relation between matrix
ensembles with orthogonal and symplectic symmetry [60]. In appendix C,
we compute the Schwarzian and super Schwarzian path integral on a disc
or trumpet; these computations are important inputs to the random matrix
analysis of JT gravity and supergravity. In appendix D, we review Mirza-
khani’s recursion relation for volumes of moduli spaces and generalize it to
super Riemann surfaces. We arrive at the same recursion relation found in
section five, thus confirming the relation between super JT gravity and the
matrix model. In appendix E we make preliminary comments about non-
perturbative effects in the matrix models, and in appendix F, we compare
to results about the minimal string.
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2. Random matrix ensembles and bulk topological theories

For the purposes of this paper, a matrix integral means an integral of the
form

(2.1)

∫
dMe−LTrV (M),

where M is an L× L matrix. Two types of data are needed to specify this
integral.3 One is the potential function V (M). In practice, it is more con-
venient to specify this function implicitly by giving the “spectral curve” or
equivalently, the leading large L approximation to the density of eigenval-
ues. In our application, this piece of data will be determined by comparing
to the gravity path integral on the disk topology, as we discuss in section 5
below.

The second piece of data is the symmetry class of matricesM over which
we integrate. In random matrix theory, there are ten standard classes. The
purpose of this section is to explain how the choice of symmetry class is
related to a discrete choice of topological field theory that one can include
in the bulk 2d gravity theory, and to explore some of the consequences.

We will start in section 2.1 by reviewing the symmetry classes of ran-
dom matrix ensembles. In section 2.2 we then discuss the correspondence
between topological field theories and random matrix classes for the simplest
purely bosonic cases. In section 2.3 we discuss the strategy for the remain-
ing more complicated cases. In section 2.4, we include (−1)F symmetry but
no time-reversal. In section 2.5 we include both (−1)F symmetry and time-
reversal, and in section 2.6 we include N = 1 supersymmetry. Much of the
complication in sections 2.4 and 2.5 has to do with demonstrating a type
of reduction: correspondence with JT gravity in these cases follows from a
correspondence in the three purely bosonic cases, together with spin and
pin structure identities that we derive. No such reduction is possible in the
supersymmetric cases of section 2.6.

2.1. Random matrix ensembles

2.1.1. The ensembles. There are 10 standard ensembles in random ma-
trix theory, and each of them will play a role in the present paper. In each

3In our application, there is actually another type of discrete choice: in the ap-
plication to JT gravity, we will regard the random matrix M as the Hamiltonian H
of the boundary theory. In the application to JT supergravity, we will regard the
matrix M as the supercharge Q such that Q2 = H.
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ensemble, one considers a class of L× L matricesM , with a symmetry group
G that is either U(L), O(L), or Sp(L), or a product of two groups of one of
those types.

(i) In the original application of randommatrix theory to nuclear physics,
the random matrixM was interpreted as the Hamiltonian. In the absence of
time-reversal symmetry,4 M is simply a random hermitian matrixM i

j , i, j =
1, . . . , L, and the symmetry group that acts on the ensemble of such matrices
is G = U(L), acting by conjugation. If time-reversal symmetry T is assumed,
then U(L) is reduced to the subgroup that commutes with T. This is O(L)
if T2 = 1 and Sp(L) if T2 = −1.5 Hermitian matrices that commute with T

correspond in the case of O(L) to real symmetric matrices Mij =Mji. For
Sp(L), a Hamiltonian that commutes with T takes the form M i

j = εikMkj ,
where εik is the invariant antisymmetric tensor of Sp(L) and Mkj = −Mjk

is antisymmetric. Energy level statistics associated to these three classes are
usually said to be of type GUE, GOE, or GSE (where U, O, or S stand for
unitary, orthogonal, or symplectic, respectively, and GE stands for Gaussian
ensemble, though we are interested in a generalization in which the measure
is not really Gaussian).

These three ensembles are sometimes referred to as the Dyson ensembles
[43]. Altland and Zirnbauer [44, 61] described seven more classes of random
matrix ensemble:

(ii) In four cases, the symmetry group is a simple group and M is a
second rank tensor of some kind. If G = U(L), then M can be either a
symmetric second rank tensor Mij =Mji or an antisymmetric second rank
tensorMij = −Mji. Note that it does not matter if we consider a covariant or
contravariant second rank tensor, since if M is of one type, then its adjoint
M † is of the opposite type. A tensor M i

j of mixed type is the hermitian
matrix already considered in (i). If G = O(L), M can be an antisymmetric
tensor Mij = −Mji, and if G = Sp(L), M can be a symmetric tensor Mij =
Mji. Again, the tensors with the opposite symmetry properties were already
considered in (i).

4Unitary symmetries (as opposed to the antiunitary symmetry of time-reversal)
do not play an important role in classifying matrix ensembles. For example, if a Z2

symmetry g is assumed, one simply diagonalizes g and describes the Hamiltonian
by one of the Wigner-Dyson ensembles in each eigenspace of g. We will encounter
this situation shortly with g = (−1)F.

5In nuclear physics, T2 = 1 for a nucleus with an even number of nucleons and
T
2 = −1 for an odd number.
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(iii) Finally, there are three cases6 in which G is a product U(L)×U(L),
O(L)×O(L), or Sp(L)× Sp(L), and M is a bifundamental Mij , with one
index transforming under the first factor and one under the second.7 These
three examples can be generalized to add another integer ν, so that G is
a product U(L)×U(L+ ν), O(L)×O(L+ ν), or Sp(L)× Sp(L+ ν). M is
again taken to be a bifundamental.

2.1.2. The integration measure. For each of these random matrix en-
sembles, by the action of the symmetry group, it is possible to put M in a
canonical form in terms of real “eigenvalues” λi. For some ensembles, the
λi can vary independently, and for others, they have a two-fold or four-fold
degeneracy. In the three original Wigner-Dyson ensembles, the independent
λi are real-valued, but in the seven Altland-Zirnbauer ensembles, they can
be chosen to be positive.

In each case, a G-invariant integral over M (by which one means an
integral over each independent matrix element of M) reduces, after putting
M in its canonical form, to an integral over the λi or more precisely over
those λi that are independent. For the three Wigner-Dyson ensembles, the
λi are simply the independent eigenvalues of a hermitian matrix (which may
obey a time-reversal constraint, as explained earlier) and the measure for
integration over the λi is of the form

(2.2) dM →
∏

i<j

|λi − λj |β
∏

k

dλk

6These three ensembles had been discussed earlier in [45, 46] in studying the
low energy spectrum of the massless Dirac operator in Euclidean signature coupled
to a generic gauge field. Properties of this spectrum have implications for chiral
symmetry breaking. In that application, the two factors of the symmetry group
act on fermion modes of positive or negative chirality, respectively, and the random
matrix is the chiral Dirac operator, which is a “bifundamental field” that exchanges
the two types of mode. The symmetry group is U(L)×U(L), O(L)×O(L), or
Sp(L)× Sp(L) depending on the nature of the fermion representation (complex,
pseudoreal, or real).

7The reader might wonder why it is not possible to mix and match groups of
different kinds, and to consider, for example, a bifundamental of O(L)× Sp(L).
The problem is that the bifundamental of O(L)× Sp(L) is pseudoreal rather than
real; as a real vector space its dimension is 2L2, not L2. By contrast, the dimension
of the group O(L)× Sp(L) grows as L2 for large L, not 2L2. So a bifundamental of
O(L)× Sp(L) has of order L2 real degrees of freedom that cannot be eliminated by
the symmetry. By contrast, in the Wigner-Dyson and Altland-Zirnbauer ensembles,
the number of independent degrees of freedom, modulo the symmetry, is always of
order L.
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with β = 2, 1, or 4 for GUE, GOE, or GSE. We will sometimes refer to these
Dyson ensembles as β-ensembles. The β-dependent factor comes from the
volume of the G orbits, as we describe presently. For the seven Altland-
Zirnbauer ensembles, the measure is

(2.3) dM →
∏

i<j

|λ2i − λ2j |β
∏

k

|λk|αdλk,

with various pairs α, β. We will sometimes refer to these as (α,β)-ensembles.
Let us first consider the basic GUE ensemble. For L = 1, a hermitian

matrix M is just a real number M = λ, and integration over M is the same
as integration over λ. Now suppose that L = 2 and the canonical form of M
is diag(λ1, λ2). Such an M commutes with the group G0 = U(1)×U(1) of
diagonal matrices. Let g0 be the Lie algebra of this subgroup, and let g⊥ be
its orthocomplement, consisting of 2× 2 hermitian matrices that are strictly
off-diagonal. These matrices, when commuted withM , generate the tangent
space to the orbit ofM in the space of all hermitan matrices. Concretely, g⊥
is 2-dimensional, and the commutator of any b ∈ g⊥ with M is proportional
to λ1 − λ2. So the volume of the orbit is proportional to (λ1 − λ2)

2. More
generally, for any L, let g0 be the Lie algebra of diagonal matrices and
g⊥ its orthocomplement, consisting of strictly off-diagonal matrices. Each
pair of eigenvalues λi, λj is associated to a two-dimensional subspace of the
full Hilbert space H. Two generators of g⊥ act in each such subspace and
their commutator with M is proportional to λi − λj . So the volume of the
group orbit is a multiple of

∏
i<j(λi − λj)

2, leading to the measure (2.2)
with β = 2.

The GOE and GSE cases are similar. For GOE, the canonical form
of the real symmetric matrix M under the action of G = O(L) is again
diag(λ1, . . . , λL). G has one broken or off-diagonal generator for each eigen-
value pair λi, λj . The commutator of that generator with M is proportional
to λi − λj , leading to the measure (2.2) with β = 1. For GSE, the eigenval-
ues are two-fold degenerate because of Kramers doubling of energy levels for
T
2 = −1. So each independent variable λi over which one integrates actually

represents a pair of eigenvalues. If the independent λi are all distinct, the
subgroup of G = Sp(L) that commutes with M is G0 = Sp(2)L/2. Let g0 be
the Lie algebra of G0 and g⊥ its orthocomplement. If a pair λi, λj becomes
equal, then a subgroup Sp(2)× Sp(2) of G0 is enhanced to Sp(4). As the
difference of dimension between Sp(4) and Sp(2)× Sp(2) is 4, for each pair
i ̸= j, there are 4 generators of g0 whose commutator withM is proportional
to λi − λj . This leads to the measure (2.3) with β = 4.



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1486 — #12
✐

✐

✐

✐

✐

✐

1486 D. Stanford and E. Witten

The seven Altland-Zirnbauer ensembles can be treated similarly, but
there are two differences. First, for some of these ensembles there is sym-
metry enhancement when a single eigenvalue λ vanishes. If α is the increase
in the dimension of the unbroken symmetry group when λ→ 0, then g0 has
that number of generators whose commutator with M is proportional to
λ, and this leads to the factor

∏
k λ

α
k in the measure (2.3). Second, for the

Altland-Zirnbauer ensembles, the group G can be used to flip separately the
signs of the λi, which is why the λi can be chosen to be all positive. But
this means that the same symmetry enhancement that occurs for λi = λj
must also occur for λi = −λj . If, therefore, β is the amount by which the
dimension of the symmetry group is enhenced if λi = λj , the measure will
contain a factor (λi − λj)

β(λi + λj)
β = (λ2i − λ2j )

β. So in short α and β can
be determined in all cases just by computing the dimensions of symmetry
enhancements. (In all of these ensembles, symmetry enhancement occurs
only if λi = ±λj or λi = 0.)

For illustration, we will compute α and β for one of the Altland-Zirnbauer
ensembles – the case that G = U(L)×U(L) and M is an element of the bi-
fundamental representation, which can be viewed as an L× L matrix with
one U(L) factor acting on each side. (M corresponds to C in eqn. (2.63)
below, not to the supercharge Q.) The canonical form of such a matrix un-
der the action of U(L)×U(L) is diag(λ1, λ2, . . . , λL) where the λi can be
assumed real and nonnegative. If the λi are all distinct, the unbroken sym-
metry is G0 = U(1)L. If a single λi vanishes, an additional U(1) symmetry
is restored, so α = 1. If λi = λj for some i, j, there is a symmetry enhance-
ment from U(1)×U(1) to U(2), so β = 2. The other six Altland-Zirnbauer
ensembles can be treated similarly. The results can be found in Tables 3 and
4 of section 2.6.2.

2.2. The purely bosonic cases

One can define three basic versions of bosonic JT gravity, and these are dual
to matrix integrals of the three Dyson types: GUE, GOE, and GSE. The
first version is JT gravity on orientable surfaces only, which is dual to a
GUE-type matrix integral [35].

The remaining two Dyson ensembles (GOE and GSE) describe matrices
that commute with a time-reversal symmetry. In AdS/CFT and related
dualities, global symmetries of a boundary theory become gauge symmetries
in the bulk description, with the restriction that a gauge transformation
should act trivially on the boundary. For the case that the global symmetry
is time-reversal T, the corresponding bulk theory should include T as a gauge
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symmetry, which means that surfaces can be glued together with a reversal
of orientation and unorientable manifolds are allowed. It is natural to guess
that GOE and GSE ensembles should be related to bulk theories of this
type.

Once the measure for summing over orientable manifolds has been fixed,8

there are two versions of the sum over possibly unorientable manifolds that
are consistent with the general principles of topological field theory – these
correspond to including or not including a factor of (−1)χ, where χ is the
Euler characteristic. On a closed orientable manifold, χ is even and such a
factor would have no effect. But on an unorientable manifold, χ can be odd
and the factor is nontrivial.

The GOE and GSE matrix ensembles were shown to differ by precisely
such a factor in [60], where χ labels the Euler characteristic of the ’t Hooft
double-line diagram in the perturbative expansion of the matrix integral.
(For more on this point and its analog for Altland-Zirnbauer ensembles,
see appendix B.) So it is natural to conjecture that GOE and GSE-like
versions of the matrix integral studied in [35] will be dual to JT gravity
on unorientable surfaces, with the (−1)χ factor in the GSE case. Of course,
these considerations are not limited to JT gravity. In the context of the
c < 1 minimal string, the conjecture analogous to ours was made in [62–64].
In general the amplitudes for unoriented open strings with orthogonal or
symplectic groups differ by a factor of (−1)χ.9

In studying the correspondence of matrix integrals and JT gravity, we
will be interested in observables that correspond to path integrals over sur-
faces with boundaries. In this case there are two further points to consider.
First, with an odd number of boundaries, χ would be an odd integer for
an orientable surface, so in order to have a topological field theory that is
trivial on orientable surfaces, it is convenient to replace the factor (−1)χ by

8This involves an arbitrary parameter that controls the genus expansion, e−S0 in
random matrix theory or the string coupling constant in string theory.

9Unoriented open strings give orthogonal or symplectic symmetry depending on
the sign of the operator Ω that exchanges the two ends of the string. Thus the two
cases differ by the sign of TrΩ exp(−βH), which is the amplitude for a Mobius
strip. On the other hand, the annulus partition function Tr exp(−βH) does not
depend on the sign of Ω. Since the annulus and Mobius strip have χ differing by 1,
a factor (−1)χ in the path integral measure gives a relative sign between these two
amplitudes. As we explain momentarily, on surfaces with boundary, it is useful to
replace (−1)χ with (−1)nc , where nc is the number of crosscaps. Since a Mobius
strip can be viewed as a disc with a crosscap attached, we have (−1)nc = +1 for an
annulus and (−1)nc = −1 for a Mobius strip.
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(−1)nc where nc is the number of crosscaps in the topological decomposition
of the surface. (We will give an introduction to crosscaps below.) The factors
(−1)χ and (−1)nc just differ by a minus sign for each boundary component;
using (−1)nc rather than (−1)χ will let us avoid minus signs in the map
between JT gravity and random matrix resolvents.

Second, in the sum over bulk geometries, the orientations of the bound-
aries should be regarded as gauge-invariant, because bulk gauge transforma-
tions are required to act trivially at the boundaries. So one can define gauge-
invariant “orientation Wilson lines” that measure the change in orientation
along a curve connecting the boundaries. These are Z2-valued quantities,
and with n boundaries there are n− 1 independent Wilson lines, so there
are 2n−1 topologically distinct contributions. (The simplest case, with two
boundaries, will be described in detail below, where we refer to the two pos-
sible geometries as the “double trumpet” and “twisted double trumpet.”)
The implication is that even on an orientable manifold, the partition func-
tion of JT gravity with orientation-reversal gauged will differ from that of
JT gravity without orientation-reversal gauged. It will be larger by a factor
2n−1.

In later sections of this paper, we will compare the predictions of JT
gravity on unorientable surfaces to GOE and GSE-like matrix integrals. But
for the remainder of this section, we will focus on lining up other possible
bulk theories with random matrix descriptions.

2.3. Strategy for the remaining cases

So far we have discussed the consequences of a symmetry T. We would
also like to explore the consequence of a symmetry (−1)F (the operator that
assigns 1 to bosonic states and −1 to fermionic states), and eventuallyN = 1
supersymmetry. In discussing the relevant matrix ensembles and their bulk
duals, an essential role will be played by anomalies in the realization of
the global symmetries (−1)F and T. These anomalies determine both the
topological field theory in the bulk and the random matrix theory class on
the boundary.

In principle, the connection between random matrix classes and bulk
topological field theories can be made abstractly, using these anomalies.
However, we will find it convenient to use the SYK model as a concrete
system that connects the concepts together. The SYK model is a quantum
mechanical system of N Majorana fermions, and it will be useful for three
reasons. First, although is not a random matrix theory in the sense we
mean it in this paper, it is “close enough,” in that the correlations of nearby
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energy eigenvalues have a well-defined random matrix classification [65–68].
Second, at low energies it has an approximate bulk description that includes
JT gravity or super JT gravity. And finally, it is flexible enough that its
variants display all of the needed anomalies and exhaust the Dyson and
Altland-Zirnbauer classification of random matrix theory.

The necessary anomalies have to do with the global symmetries (−1)F

and time-reversal T (if present), and they depend on the number of Majorana
fermions N . If N is odd, there is an anomaly in a narrow sense – a violation
of a classical symmetry – while if N is even, the expected symmetries are
present, but they do not satisfy algebraic relations (such as T

2 = 1) that
would be expected classically.

The same anomalies are relevant in many different problems; exam-
ples without time-reversal symmetry include the Kitaev chain of Majorana
fermions [69], the Ising model [70], and intersection theory on the moduli
space of Riemann surfaces with boundary [71, 72]. The extension to in-
clude time-reversal also has various applications; for instance, see [73] for a
time-reversal invariant version of the Kitaev chain with T

2 = 1 and [74] for
a version with T

2 = (−1)F. At a more abstract level, the mod 2 anomaly
when (−1)F is the only symmetry and the mod 8 anomaly that arises when
one includes time-reversal with T

2 = 1 are related to the properties of Dirac
operators in different dimensions and to the mod 2 periodicity of complex
K-theory and the mod 8 periodicity of real K-theory [75]. In that context,
the applications are too far-flung to be summarized here.

These symmetries and their anomalies have implications for the bulk
theory. As described above, T as a global symmetry of the boundary theory
(and gauge symmetry of the bulk) means that one must sum over unori-
entable as well as orientable manifolds; (−1)F means that one must sum
over spin structures. An anomaly in symmetries of a boundary theory must
somehow be reflected in the couplings of the bulk dual. This in general
happens as follows. Suppose that the boundary theory is formulated on a
manifold X. In the bulk dual description, one sums over manifolds Y of
one dimension higher. The theory on Y will then have couplings that are
well-defined if Y has no boundary but that, if Y has a boundary X, are
anomalous in a way that matches the anomaly of the original theory on X.
For example, if the theory on X has continuous global symmetries that have
’t Hooft anomalies (which would obstruct gauging those symmetries), then
the bulk theory on Y has gauge fields with Chern-Simons couplings that
are not gauge-invariant on a manifold with boundary. The analog of this for
discrete symmetries – such as we consider here – is that the bulk descrip-
tion must include a topological field theory that captures the anomaly. This
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is a topological field theory that is well-defined on a manifold Y without
boundary, but anomalous when Y has a boundary.10

In what follows, we explain how this works for the discrete symmetries
(−1)F and T of the SYK model. We will then use the random matrix clas-
sification of SYK to relate bulk topological field theories to random matrix
symmetry classes.

In discussing anomalies of (−1)F and T without supersymmetry, we will
encounter twelve cases, but we will not obtain essentially new random matrix
classes. In the boundary theory, one finds combinations of the GOE, GUE,
GSE ensembles [65–67]. In the bulk, we will have to analyze sums over
spin and pin structures with weighting given by the topological field theory.
However, the JT path integral does not depend on the spin structure, so
we get a result that is simply the product of a bosonic JT path integral
with a factor that comes from summing over spin or pin structures. By
evaluating this factor, one reduces the duality to the three purely bosonic
cases described above.

But in the ten distinct cases with N = 1 supersymmetry, one finds new
random matrix classes [66–68], which exhaust the full Altland-Zirnbauer
classification. Moreover, JT supergravity has fermionic fields, so its path
integral depends on the spin or pin structure. Hence, in the bulk JT su-
pergravity, the sum over spin or pin structures does not just give a simple
overall factor, but an essential and nontrivial part of the bulk theory.

2.4. Including (−1)F but not T

2.4.1. The SYK model for even and odd N . To begin, we assume no
symmetry except (−1)F. Let us start with the SYK model with N Majorana
fermions ψ1, . . . , ψN . The action is

(2.4) I =

∫
dt


 i

2

∑

k

ψk
dψk
dt

− iq/2
∑

i1...iq

ji1i2···iqψi1ψi2 · · ·ψiq




and the Hamiltonian is H = iq/2ji1i2···iqψi1ψi2 · · ·ψiq . Classically, there is, for
all N , a symmetry (−1)F that acts by ψk → −ψk. If q is not a multiple of
4, that is generically the only symmetry.

10The bulk factor (−1)nc considered in section 2.2 is part of the definition of
a purely bosonic topological field theory and could be treated in this framework,
though it appears to be hard to do this in an enlightening way,.
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If N is even, then upon quantization we get a Clifford algebra of rank N .
The Clifford algebra has an irreducible representation in a Hilbert space H
of dimension 2N/2. The symmetry operator (−1)F that anticommutes with
the elementary fermions is a multiple of the product

(2.5) ψ1ψ2 · · ·ψN

of all N elementary fermion fields; this operator anticommutes with the ele-
mentary fermions. The SYK path integral,11 on a circle of circumference β,
computes the partition function TrH e−βH if the fermions are antiperiodic
in going around the circle, or TrH (−1)Fe−βH if they are periodic. Antiperi-
odic or periodic fermions correspond to what we will call the Neveu-Schwarz
(NS) or Ramond (R) spin structure. In general, both are nonzero when N
is even.

A special case is that if H = 0, the path integral in the NS sector com-
putes the dimension of Hilbert space:

(2.6) TrH 1 = 2N/2.

Since this is the result with N Majorana fermions, the corresponding path
integral with a single Majorana fermion equals

√
2.

If N is odd, the product in eqn. (2.5) commutes (rather than anticommut-
ing) with the ψk, so it is a c-number in an irreducible representation of the
algebra. The operation ψk → −ψk changes the sign of this c-number, so for
odd N the Clifford algebra has two inequivalent irreducible representations,
differing by ψk → −ψk. Each of them has dimension 2(N−1)/2. Pick one of
these representations and call it H. It does not matter which one we pick
since the HamiltonianH, being an even function of the ψk, is invariant under
ψk → −ψk.

In the NS sector, the path integral of the SYK model on a circle of
circumference β computes

(2.7)
√
2TrH e

−βH .

To see that the factor of
√
2 is necessary, consider the special case that

H = 0. The path integral, with a factor
√
2 for each of N Majorana fermions,

is then 2N/2. On the other hand, since the dimension of H is 2(N−1)/2, we
have TrH1 = 2(N−1)/2, and therefore an extra factor of

√
2 is needed to

match the SYK path integral. This factor means that for odd N , the SYK

11We generally consider path integrals without operator insertions.
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path integral does not have a natural interpretation as a trace in a Hilbert
space. But it is still a well-defined path integral and it makes sense to ask
what sort of bulk dual description it would have.

Now let us consider the Ramond sector. For odd N , the path integral
of the SYK model in the Ramond sector (with no operator insertions) is
actually identically zero. To see this, first note that if H = 0, so that the
action (2.4) consists only of the kinetic energy, then each of the ψk has a
zero-mode in the Ramond sector, so in all there are an odd number of zero-
modes. Now including the Hamiltonian, a term that is proportional to Hr

for some r has an insertion of qr fermions, which is an even number since q
is even. An even number of these fermions can be paired up by propagators,
and the remaining ones – also an even number – can be used to soak up
zero-modes. Since we started with an odd number of fermion zero-modes,
there is always an odd number left over. In particular, we can never soak up
all of the zero-modes, and therefore the Ramond sector path integral of the
odd N SYK model is identically zero.

By contrast, the Ramond sector path integral of the model with an in-
sertion of an odd number of elementary fermion operators is generically
nonzero, since with the help of such an insertion (along with the Hamilto-
nian) all of the zero-modes can be soaked up. Thus formally the Ramond
sector path integral computes a generically nonzero expectation value ⟨ψk⟩
(where ψk is any one of the elementary fermion fields). This certainly quali-
fies as an anomaly, since it explicitly violates a hypothetical symmetry (−1)F

that is supposed to act by ψk → −ψk. This is related to the fact that for
odd N , the (−1)F symmetry is lost at the quantum level, since ψk → −ψk
exchanges two different representations of the Clifford algebra.

A summary of the above discussion is as follows. If we label the path
integral of SYK with NS and R boundary conditions as ZNS(β) and ZR(β),
then the path integrals are related to traces in the Hilbert space as

(2.8)

ZNS(β) =

{
Tr e−βH N even√
2Tr e−βH N odd

ZR(β) =

{
Tr (−1)Fe−βH N even

0 N odd.

The trace is in a Hilbert space of dimension 2N/2 for even N , and dimension
2(N−1)/2 for odd N .

2.4.2. Initial random matrix considerations with (−1)F symmetry.
Let us now work out the relevant random matrix symmetry classes. For even
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Figure 1: A double trumpet Y . At its “center” is a closed geodesic S.

N , we can choose a basis for the Hilbert space so that (−1)F =

(
I 0
0 −I

)
.

Then the only symmetry constraint is that H should commute with this
matrix. A maximally random matrix consistent with the symmetry would
be of type12

(2.9) H =

(
GUE1 0

0 GUE2

)
.

Here the subscripts on the two blocks indicate two independent GUE ma-
trices. For odd N , there is no (−1)F symmetry, so the random matrix class
is simply an unconstrained Hermitian matrix,

(2.10) H = GUE.

We emphasize that although these random matrix ensembles have the cor-
rect symmetry properties, they do not describe the SYK model exactly, since
SYK is not quite a random matrix theory. However, SYK was useful in moti-
vating (2.8) (2.9) and (2.10), and we will see that random matrix ensembles
of these types are precisely dual to appropriate refinements of JT gravity.

We will approach the relation to JT gravity in the following way. Corre-
lation functions of observables ZNS(β) and ZR(β) in random matrix theory

12A subtlety here is that if q = 2 mod 4, then the SYK Hamiltonian actually
anticommutes with a time-reversal operator. This affects the random matrix clas-
sification, but not at low energy (since a symmetry that anticommutes with H
exchanges low and high energies), and it will not have a dual statement in JT grav-
ity. However, to make the discussion above more precise for all energies, one can let
H be a linear combination of q = 0 mod 4 and q = 2 mod 4 terms, so that H does
not commute or anticommute with any version of T.
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will be related to JT gravity path integrals on manifolds with boundaries
with NS and R spin structures, and regularized lengths proportional to β.
As a first case, consider the expectation value of the quantity ZNS(β). This
is large in random matrix theory, in the sense that it is of order L, the
rank of the matrix.13 The leading contribution to ⟨ZNS(β)⟩ is dual to a JT
gravity path integral on a spacetime with disc topology. But ZNS(β) also
fluctuates in random matrix theory. The fluctuations can be measured by
the connected two-point function

(2.11)
〈
ZNS(β)

2
〉
c
=
〈
ZNS(β)

2
〉
− ⟨ZNS(β)⟩2 .

In JT gravity, to compute this two-point function, we need a spacetime whose
boundary consists of two circles, on each of which the holographic descrip-
tion would involve a path integral that generates a factor of Tr exp(−βH).
But to get a contribution to the connected two-point function, the space-
time should be connected. The simplest possible topology is the “double
trumpet,” topologically an annulus (fig. 1), and this makes the dominant
contribution to the connected correlation function when L is large.

Now let us consider ZR(β). Its expectation value in JT gravity (without
time-reversal symmetry) vanishes, since there is no oriented two-manifold
whose boundary consists of a single circle with R spin structure. In random
matrix theory, one interprets this as follows. For odd N , the R sector path
integral is identically zero, as we have seen. For even N , this path integral is
not identically zero, but it is zero on the average in random matrix theory:
the random matrix class for H in (2.9) consists of two independent GUE
matrices acting on the states of (−1)F = 1 or (−1)F = −1, and there is on
average a cancellation between their contributions to Tr (−1)Fe−βH .

Now let us consider in JT gravity the fluctuations of ZR(β) around its
mean value of zero. These fluctuations can be measured by the two-point
function ⟨ZR(β)

2⟩. This two-point function can receive contributions from
connected oriented two-manifolds whose boundary consists of two circles and
whose spin structure is of R type on each boundary. The simplest possible
choice is again the double trumpet (with a different spin structure). The
random matrix theory prediction is actually that for even N

(2.12)
〈
ZR(β)

2
〉
=
〈
ZNS(β)

2
〉
c

(N even).

13The types of matrix integral that are actually dual to JT gravity are “double-
scaled” matrix integrals, in which the analog of L is the parameter eS0 that specifies
the density of eigenvalues.
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To compute in random matrix theory the product of traces on the right or
left of eqn. (2.12), we have to sum over contributions of pairs of states which
may have either eigenvalue 1 or−1 of (−1)F. But pairs of states with opposite
eigenvalues make no contribution to the connected correlation functions on
either the left or the right of this equation, because in (2.9), the two blocks
are considered statistically independent. On the other hand, pairs of states
with the same eigenvalue of (−1)F make equal contributions on the left
and right hand side of eqn. (2.12). For odd N , however, Tr (−1)Fe−βH is
identically zero, so the expectation value of its square is also zero,

(2.13)
〈
ZR(β)

2
〉
= 0 (N odd).

By similar reasoning, for any N , the cross correlator

(2.14) ⟨ZNS(β)ZR(β)⟩

vanishes. It vanishes in random matrix for even N because the states with
(−1)F equal to 1 or −1 are statistically independent and contribute with
opposite signs, and for odd N because ZR(β) is identically 0, without fluc-
tuations. It vanishes in JT gravity because any oriented two-manifold with
boundary has an even number of boundary components of R type.

Our initial goal will be to understand what topological refinement should
be added to JT gravity to reproduce the predictions of eqns. (2.12) and
(2.13).

2.4.3. Bulk description Of (−1)F symmetry and its anomaly. Let
X be a compact 1-manifold (a circle or a disjoint union of circles) on which
we want to study an SYK model or a related random matrix theory. X is
endowed with a spin structure (of either NS or R type on each connected
component of X) since the SYK model has fermions. In a bulk dual descrip-
tion (assuming no T symmetry), we will sum in a JT-like model over oriented
spin manifolds Y of boundary X, such that the spin structure of Y restricts
on X to the spin structure of X. Given such a Y , we sum over equivalence
classes of spin structures on Y , keeping fixed that of X. (The equivalence
relation in this sum involves a subtlety that is explained later.) Such a sum
represents the bulk dual of an SYK or random matrix calculation with a
particular spin structure on X.

We want to find two versions of the sum over spin structures on X that
will match the two cases of even and odd N . It will be useful to know the
following. If Y is a two-dimensional compact oriented spin manifold without
boundary, then one can consider the Dirac equation /Dλ = 0, for a spinor
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field λ on Y of (say) positive chirality. Let ζ be the number of zero-modes
of this equation, mod 2. It is a topological invariant, in the sense that it
depends on the spin structure of Y but not on the choice of a Riemannian
metric on Y . In the terminology of Atiyah and Singer, ζ is the mod 2 index14

of the Dirac operator on Y . For an introduction to the mod 2 index and in
particular an explanation of why it is a topological invariant, see for instance
section 3.2 of [76].

On an orientable two-manifold without boundary, there are two ways
to sum over spin structures satisfying the general conditions of topological
field theory. One can sum over spin structures assigning the same weight
to each spin structure, or one can sum over spin structures with relative
weights (−1)ζ . The reason that it makes sense to include a factor (−1)ζ is
that this factor is local in the relevant sense, though to understand that,
one has to take a somewhat abstract view of what locality means. Usually
in field theory, one has some fields Φ and some Lagrangian density L(Φ); the
integrand of the path integral contains a factor Υ = exp(−

∫
Y dDx

√
gL(Φ)).

This is local in the sense that if one varies Φ only in a small region V ⊂ Y ,
then Υ changes by a factor that only depends on what is happening inside
V . Though this is far from obvious, (−1)ζ is local in the same sense. The way
we will use that is as follows. Suppose that we are given two spin structures
on Y that coincide outside of V . Let ζ and ζ ′ be the mod 2 indices for these
spin structures. Then the ratio (−1)ζ/(−1)ζ

′

depends only on V (and the
restriction of the two spin structures to V ). It does not depend on anything
that is happening outside V . This enables one to modify Y away from V in
a way that makes computations simpler.

So on a two-manifold Y without boundary, a sum over spin structures
with or without a factor of (−1)ζ gives a topological field theory. However,
our definition of ζ only made sense if Y has no boundary. (If Y has a bound-
ary, then to make sense of the equation for a fermion zero-mode, one needs
a boundary condition that mixes the two chiralities, so it is not possible to
consider fermions of just one chirality.) If one tries to define (−1)ζ on a two-
manifold with boundary, then one runs into an anomaly. As is explained,
for example, in section 3 of [72], this anomaly is precisely the anomaly of a
system with an odd number of Majorana fermions on the boundary. There-
fore, we expect that a simple sum over spin structures can be dual to an
SYK-like model with even N , but that such a model with odd N requires
including the factor (−1)ζ .

14An important point is that ζ is not the reduction mod 2 of an ordinary index
or of any integer-valued topological invariant.
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The only example in which we will actually need to calculate ζ is the
following. Let Y be a two-torus, obtained by dividing the real xy plane by
the identifications x ∼= x+ 1, y ∼= y + 1. On Y , there are four spin struc-
tures, conveniently represented as (±,±) where the two signs appear in the
periodicity or antiperiodicity relations

(2.15) λ(x+ 1) = ±λ(x), λ(y + 1) = ±λ(y)

that a spinor field on Y should obey. Thus the (+,+) spin structure means
that λ is periodic in both directions, and in the other cases, λ is antiperiodic
in one or both directions. Setting z = x+ iy, the chiral Dirac equation is

(2.16)
∂

∂z
λ = 0.

In the case of the (+,+) spin structure, there is a 1-dimensional space of
solutions, with constant λ; for the other cases, there are no solutions. So
ζ = 1 for the (+,+) spin structure, and ζ = 0 in the other cases.

We are now ready to analyze the contribution of the double trumpet in
eqns. (2.12) and (2.13). Once one understands the double trumpet, it is not
difficult to analyze any Y in a similar way. First of all, the spin structures
on the two boundary components of the double trumpet are always of the
same type. This is because the closed geodesic S at the center of the double
trumpet (fig. 1) can be smoothly moved to the left boundary or the right
boundary, so the spin structure is of the same type on each boundary as it
is on S. More generally, it is true because in general, for any Y , the number
of R type boundary components of Y is always even.

Now having fixed the spin structure on the two boundary components
of Y , how many spin structures are there on Y , up to equivalence? This is
a subtle question and we have to specify that we consider two spin struc-
tures on Y to be “equivalent” if they are equivalent under a redefinition of
the fermion field that is trivial on the boundary of Y . The reason for the
redefinition to be trivial on the boundary is that in general, in holographic
duality, a “gauge equvalence” in a bulk description is supposed to involve a
gauge transformation that is trivial along the boundary; the restriction of a
gauge transformation to the boundary behaves as a global symmetry.

Given this, we can count the spin structures on Y that have a given
restriction to the boundary as follows. Let YL and YR be “trumpets” (fig. 2)
that can be glued together along “inner boundaries” SL and SR to build the
“double trumpet” Y . The spin structure on YL or YR, once it is specified on
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Figure 2: Two trumpets YL and YR. By gluing their “inner boundaries” SL
and SR, one can build a “double trumpet.”

the outer boundary, is unique up to a unique equivalence,15 since any closed
path in YL or in YR can be deformed to the outer boundary. However, when
we glue SL to SR to build Y , a sign choice comes in; if λL and λR are fermion
fields on SL and SR, we could identify λL with λR or with −λR. This sign
can be eliminated if we are allowed to change the sign of the fermion field
on all of YR (or YL), but this is not allowed since a gauge equivalence is
supposed to be trivial on the outer boundaries.

Now we can explain eqns. (2.12) and (2.13) in the context of JT gravity.
First of all, if N is even, then we are simply summing over spin structures
on Y (restricted to agree with a given one on the boundary) without any
signs. Each spin structure makes the same contribution, given by the dou-
ble trumpet path integral of JT gravity, which is not sensitive to the spin
structure. The spin structures that contribute to the left or right hand side
of eqn. (2.12) are different, but there are 2 of them in each case. So the left
or right hand side of eqn. (2.12) is equal to 2 times the double trumpet path
integral of JT gravity.

For odd N , we have to deal with the factor of (−1)ζ . For this, first note
that the two spin structures on Y (once the spin structures on the boundaries
are given) are equivalent away from a small neighborhood of S, the geodesic
at the center of the double trumpet (fig. 1). They differ by a minus sign that
a fermion gets when it is parallel transported across S. Using the locality
of (−1)ζ , as explained above, we can cut a small neighborhood of S out
of the double trumpet and glue it into, for example, a two-torus (fig. 3).
(Alternatively, and by a similar reasoning, one could glue together the two

15Here an equivalence is allowed to involve a field redefinition that is nontrivial
along SL or SR, but not on the outer boundary.
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Figure 3: A small neighborhood of S has been cut out of the double trumpet
and glued into a two-torus.

outer boundaries of the double trumpet, again arriving at a two-torus. By
locality, that operation does not affect the comparison of the values of (−1)ζ

for a pair of spin structures that differ only near S.)
Now recall that spin structures on a two-torus are labeled as (±,±),

where here we can think of the first sign as the sign that a fermion gets
when parallel transported around S, and the second sign as the sign that
a fermion gets when it is parallel transported in a complementary direction
around the torus, on a closed path that intersects S once. Moreover, ζ = 1
for the (+,+) spin structure and otherwise ζ = 0. The first sign is − or
+ depending on whether the spin structures on the boundary components
are of NS or R type (as noted above, the spin structure on S in the original
double trumpet is of the same type as the spin structure on either of the two
boundaries). Suppose that the boundary spin structure is of NS type. Then
the spin structure on the torus after the regluing of fig. 3 is of type (−,±),
with some choice of the second sign. Regardless of the second sign, these
spin structures have ζ = 0 and so their contribution to the double trumpet
path integral is insensitive to whether N is even or odd. Hence

〈
ZNS(β)

2
〉
is

not sensitive to whether N is even or odd, in keeping with what one would
expect from random matrix theory.

Suppose on the other hand that the boundary spin structures are of R
type. Then the spin structures on the two-torus after regluing are of type
(+,±), with some choice of sign. One of them has (−1)ζ = 1 and one has
(−1)ζ = −1, so their contributions cancel. Thus when N is odd,

〈
ZR(β)

2
〉
=

0 in JT theory plus topological field theory, accounting for the claim in
eqn. (2.13).

If one replaces the double trumpet with any connected two-manifold Y
with two or more boundary components including some of R type, one can
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make a similar argument, using for S any closed curve in the interior of Y
that is homologous to a boundary of R type. Pairs of spin structures that
differ by a minus sign that a fermion acquires when transported across S
have opposite values of ζ and make canceling contributions. Thus for odd N ,
in JT gravity plus topological field theory, Tr (−1)Fe−βH = 0, in the sense
that all of its correlation functions vanish.

2.4.4. Reduction of cases with (−1)F symmetry to GUE. We would
now like to consider a general correlation function, of the type

(2.17) ⟨ZR(β1) . . . ZR(βnR
)ZNS(βnR+1) . . . ZNS(βn)⟩.

It is somewhat simpler to work with a connected version of this correlator,
by subtracting off all lower order correlation functions. As we will discuss in
detail in section 4, in a matrix integral such connected correlations have a
“genus” expansion

⟨ZR(β1) . . . ZR(βnR
)ZNS(βnR+1) . . . ZNS(βn)⟩c(2.18)

≃
∞∑

g=0

Zg,n,nR
(β1, . . . , βn)

(eS0)2g+n−2
.

For an ordinary matrix integral, the expansion parameter would be L, but
for the double-scaled matrix integrals that are relevant to JT gravity, it is a
parameter that we refer to as eS0 , proportional to the density of eigenvalues.

In random matrix theory, this expansion follows from ’t Hooft’s topo-
logical analysis [77] of matrix perturbation theory [78]. In JT gravity, this
expansion corresponds to the sum over different topologies of connected
manifold with n boundaries. The weighting by powers of eS0 comes from the
contribution of a term −S0χ in the action of JT gravity. The “genus” g of a
two-manifold is defined by 2− 2g − n = χ, so that g is a non-negative inte-
ger in the case of an orientable surface, but in general may be a non-negative
integer or half-integer.

For the ensembles defined by (2.8), (2.9), (2.10), we would like to relate
the expansion coefficients Zg,n,nR

to similar expansion coefficients Zg,n in
the ordinary GUE ensemble. One can do this as follows. First, in the case
of even N , H is a direct sum of two independent matrices of GUE type,
and connected correlation functions will be a sum of connected correlators
for the two independent blocks. Including a factor of (−1)nR for the block
corresponding to fermionic states, one expects Zg,n,nR

= (1 + (−1)nR) times
the GUE answer. Similarly, in the case of odd N , (2.8) and (2.10) imply
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that Zg,n,nR
should be (

√
2)n times the GUE answer if nR = 0, and zero

otherwise.
By rescaling the expansion coefficient eS0 , we can multiply Zg,n,nR

by
a factor (const.)2g+n−2. It is convenient to choose the constant so that the
“disk” amplitude Z0,1,0 is equal to the standard GUE answer. This modifies
the naive predictions described above to

Zg,n,nR
= 22g+n−2(1 + (−1)nR)ZGUE

g,n (N even)(2.19)

Zg,n,nR
=

{
2g+n−1ZGUE

g,n nR = 0

0 else
(N odd).(2.20)

This is the random matrix theory prediction. We would like to match it in
the two variants of JT gravity that were described above, starting with the
statement that JT gravity without spin structures matches ZGUE

g,n [35].
In fact, these relations follow from two identities for the sum over spin

structures:

∑

spin

1 = 22g+n−2(1 + (−1)nR)(2.21)

∑

spin

(−1)ζ =

{
2g+n−1 nR = 0

0 else.
(2.22)

In these expressions, the sum is over spin structures on an orientable surface
with genus g and n ≥ 1 boundaries, of which nR are of R type and the rest
are NS.

For n = 0, there are actually twice as many spin structures as these
formulas would suggest, but one has to divide by a factor of 2 as a discrete
Faddeév-Popov gauge fixing, because (−1)F has to be treated as a gauge
symmetry. So for example, the formula 22g+n−1 for the total number of spin
structures is effectively still valid for n = 0. For n > 0, the overall (−1)F

is not treated as a gauge symmetry because it is not gauged along the
boundaries.

To derive these identities, one can start with fact that on a closed ori-
entable surface, the number of even spin structures is 2g−1(2g + 1) and the
number of odd ones is 2g−1(2g − 1). (These statements can be derived using
the facts for the torus described above, and gluing together tori to form
the genus g surface.) This implies that on a closed surface,

∑
1 = 22g and∑

(−1)ζ = 2g. To include the boundaries, we cut n holes in the surface and
glue in n trumpets. The circles Sj along which we glue are treated as in the
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discussion above. The sum over spin structure “orthogonal” to a given circle
gives a factor of two in all cases except when the circle has R spin structure
and we are summing with (−1)ζ . In this case we get zero. Note that the
number of circles with R spin structure is always even.

To get the final results (2.21) and (2.22), one takes the product of the
factor for the closed surface times all of the factors for the circles Sj asso-
ciated to the n trumpets. A final factor of 1

2 is needed due to the fact that
this sum over spin structures counts as distinct situations that differ only
by the sign of the spinor in the “interior” portion of the surface inside all
of the circles S. This sign is pure gauge, so we divide by two to remove the
overcounting. In the case of the double trumpet, the counting of spin struc-
tures, including this last factor, was explained in a slightly different way in
section 2.4.3.

2.5. Including both (−1)F and T

2.5.1. Classical time-reversal symmetries in SYK-like models. The
most obvious way to get time-reversal symmetry in the SYK model is to take
q to be a multiple of 4. In this case, the classical SYK action (2.4) is invari-
ant under a time-reversal symmetry that maps t to −t, and at t = 0 leaves
the elementary fermions invariant,16

(2.23) T(ψk(0)) = ψk(0).

Classically, the time-reversal symmetry defined this way satisfies some ob-
vious relations

(2.24) T
2 = 1, T(−1)F = (−1)FT,

where (−1)F is understood to satisfy

(2.25)
(
(−1)F

)2
= 1.

As we will discuss, there are anomalies in these statements at the quantum
level.

If instead q is congruent to 2 mod 4, then there is no time-reversal
symmetry that acts precisely as in (2.23). However, even for q of this form, it

16Classically, we view T as a transformation of observables and write its action on
an observable ψ as T(ψ). Quantum mechanically, we will view T as a linear operator
acting on quantum states, and write the action on operators as ψ → TψT−1.
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is possible to constrain the SYK couplings to respect such a symmetry. There
are actually two ways to do this. In one approach, one divides the two sets of
fermions into two subsets, say ψi, i = 1, . . . , N+ and ψ̃j , j = 1, . . . , N−, with
N+ +N− = N , the total number of Majorana fermions. Then one defines T
to act at t = 0 as

(2.26) T(ψi(0)) = ψi(0), T(ψ̃j(0)) = −ψ̃j(0).

This is not a symmetry of the generic SYK action (2.4). However, we can
constrain the SYK coupling parameters ji1i2···iq to respect the symmetry of
eqn. (2.26) and otherwise to be random variables with specified variance. It
is reasonable to expect that such a model can have SYK-like behavior, in
the sense that the long time behavior is dominated by a Schwarzian mode,
as in the case of SYK.

This type of time-reversal symmetry obeys at the classical level the same
algebraic relations (2.24) and (2.25) as before. It turns out to have the same
anomalies as in the previous case, with N replaced by N+ −N−. So from
a topological field theory point of view, this generalization does not seem
to add anything new, but in section 2.6, we will see that it is useful to be
familiar with it.

Still with q congruent to 2 mod 4, it is actually also possible to impose
an essentially different sort of time-reversal symmetry.17 For this, we assume
N to be even, and we divide the fermions into two groups of equal size, say
ψ1, . . . , ψN/2 and ψ̃1, . . . , ψ̃N/2. Then we take T to act by

(2.27) T(ψk(0)) = ψ̃k(0), T(ψ̃k(0)) = −ψk(0).

Now we have not T2 = 1 at the classical level, but

(2.28) T
2 = (−1)F.

Again, the usual SYK model does not respect such a symmetry, but if we
choose the coupling parameters to respect this symmetry (and otherwise to
be random variables of specified variance), it is reasonable to expect to find
SYK-like behavior.

17We could do the same for q a multiple of 4, but the import would be different.
The SYK model with q a multiple of 4 unavoidably has a standard T symmetry
with T

2 = 1, so any other T symmetry would be the standard one times some global
symmetry.
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As remarked in section 2.3, when a boundary theory has time-reversal
symmetry, a bulk dual description will involve a sum over possibly unori-
ented two-manifolds. There are two essentially different generalizations of
the notion of a spin structure to unorientable manifolds. In Euclidean signa-
ture (where we will work in our study of bulk duals), these are called pin+

structures and pin− structures, and they correspond respectively to theo-
ries that have time-reversal symmetries that at the classical level satisfy
T
2 = (−1)F or T2 = 1, respectively.
Thus the usual SYK model with q a multiple of 4 may be expected to

have a bulk dual that involves a sum over pin− structures. Instead, an SYK-
like model with T

2 = (−1)F will potentially have a bulk dual that involves
a sum over pin+ structures.

With T
2 = 1, the anomalies depend on the value of N (or more generally

N+ −N−) mod 8, so there are 8 different cases. This matches the fact that
there are 8 topological field theories based on a sum over pin− structures in
two dimensions. With T

2 = (−1)F, N has to be even and it turns out that
only the value of N mod 4 matters, so there are two cases, with N congruent
to 0 or 2 mod 4. This matches the fact that two topological field theories can
be made by summing over pin+ structures. We will describe the anomalies
and the topological field theories, and try to match what we learn with what
one would expect from random matrix theory.

2.5.2. Anomalies when T
2 = 1 at the classical level. We will con-

sider a theory – such as the SYK model with q a multiple of 4 – that has a
symmetry group Z2 × Z2 at the classical level. One Z2 is generated by (−1)F,
and the other by a time-reversal transformation T that commutes with the
elementary fermions and obeys T2 = 1. The other nontrivial element of the
group is T

′ = T(−1)F, which anticommutes with elementary fermions and
satisfies

(2.29) (T′)2 = 1, (−1)F = TT
′.

We write ZT
2 × ZF

2 for the group generated by T and (−1)F.
It will be convenient to work with the fermion fields χk =

√
2ψk, which

obey a conventionally normalized Clifford algebra

(2.30) {χk, χl} = 2δkl.

This will minimize factors of
√
2 in the following formulas. Also, it is con-

venient to use the conventional 2× 2 Pauli matrices σ1, σ2, σ3, where σ2 is
imaginary and antisymmetric and σ1, σ3 are real and symmetric. We will
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now work out the anomalies in (−1)F and T by working out their operator
representations in terms of the fundamental SYK fermions.

The case that N is even. For N = 2, we can represent the Clifford
algebra of the χ’s by 2× 2 matrices

(2.31) χ1 = σ1, χ2 = σ2.

For N = 4, we need 4× 4 matrices. We can think of these as matrices that
act on a pair of qubits, where χ1, χ2 act on the first qubit as before and
χ3, χ4 are new:

(2.32) χ1 = σ1 ⊗ 1, χ2 = σ2 ⊗ 1, χ3 = σ3 ⊗ σ1, χ4 = σ3 ⊗ σ2.

Every time we increase N by 2, we add another qubit, replace the existing
χk by χk ⊗ 1, and add two new χ’s

(2.33) χN−1 = σ3 ⊗ σ3 ⊗ · · ·σ3 ⊗ σ1, χN = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ2.

The purpose of the factors of σ3 is to make sure that the new χ’s anti-
commute with the previous ones. The χk are real for odd k and imaginary
for even k. These formulas give an irreducible representation of the even N
Clifford algebra in a Hilbert space of dimension 2N/2.

An operator (−1)F that anticommutes with all of the χk and satisfies(
(−1)F

)2
= 1 is

(2.34) (−1)F = iN(N−1)/2χ1χ2 · · ·χN .

Letting K denote complex conjugation, an antiunitary time-reversal trans-
formation T that commutes with the χk and therefore (if q is a multiple of
4) with the usual SYK Hamiltonian is

(2.35) T =

{
Kχ2χ4χ6 · · ·χN N = 0 mod 4

Kχ1χ3χ5 · · ·χN−1 N = 2 mod 4.

The other symmetry is just T′ = T(−1)F. Based on these formulas, we find
that

(2.36) T
2 =

{
1, if N = 0, 2 mod 8

−1, if N = 4, 6 mod 8
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and

(2.37) T(−1)F =

{
(−1)FT, if N = 0, 4 mod 8

−(−1)FT, if N = 2, 6 mod 8.

Thus, for even N , there are anomalies in the statements T2 = 1, T(−1)F =
(−1)FT, unless N is a multiple of 8, and these anomalies depend nontrivially
on N mod 8.

We now discuss the random matrix classes associated with these symme-
tries. There is a unitary symmetry (−1)F, and we can treat the Hamiltonian
as a random matrix in each block labeled by the eigenvalue of (−1)F. If
N = 0 or 4 mod 8, then T commutes with (−1)F and constrains each block
separately. In more detail, for N = 0 mod 8, T2 = 1 so the statistics in each
block are GOE-like. For N = 4 mod 8, T2 = −1 and the statistics in each
block are GSE-like. On the other hand, for N = 2 or 6 mod 8, T anticom-
mutes with (−1)F and exchanges the two blocks, so each block has the same
energy levels. However, in these cases, T does not constrain the Hamiltonian
within any one block, and the statistics in either block are GUE-like.

The case that N is odd. The story is similar for odd N , though some
details are different. As we noted in section 2.4.1, (−1)F does not act in an
irreducible representation. Since (−1)F = TT

′, it will not happen that both
T and T

′ do act. What happens is that for each odd N , one of them acts
within an irreducible representation, and its square is again ±1.

To represent the Clifford algebra, we can represent χ1, . . . , χN−1 as be-
fore in a Hilbert space of dimension 2(N−1)/2. Then we define

(2.38) χN = ±i(N−1)/2χ1χ2 · · ·χN−1,

which is always real. Either choice of sign gives a representation of the
rank N Clifford algebra in a Hilbert space of dimension 2(N−1)/2. These
representations are irreducible, and they are inequivalent since they have
opposite values of the central element

(2.39) χ1χ2 · · ·χN

of the Clifford algebra. We choose one of them; nothing that follows depends
on this choice.
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We define a time-reversal operator T̂ as

(2.40) T̂ = Kχ1χ3χ5 · · ·χN .

It obeys

(2.41) T̂χkT̂
−1 =

{
χk if N = 1, 5 mod 8

−χk if N = 3, 7 mod 8.
.

and

(2.42) T̂
2 =

{
1 if N = 1, 7 mod 8

−1 if N = 3, 5 mod 8.
.

Eqn. (2.41) shows that T̂ = T if N = 1, 5 mod 8, while T̂ = T
′ if N = 3, 7

mod 8. This and the sign of T̂2 distinguishes the four cases mod 8.
The random matrix classes are somewhat simpler in this case. Since

there is no nontrivial (−1)F symmetry, there is only one block. For N = 1
or 7 mod 8, T2 = 1, so the symmetry group that commutes with T is O(L),
and the statistics are of GOE type. For N = 3 or 5 mod 8, T2 = −1, and
the statistics are of GSE type. This classification, together with the even N
case, is summarized in table 1 of section 2.5.3.

Further comments. We have described anomalies that depend on the
value of N mod 8, but the reader might ask if there could be a more subtle
anomaly that we have not found that remains even ifN is a multiple of 8. The
most powerful way to show that this is not the case is the following [79]. If χα,
α = 1, 2, . . . , 8 is a group of 8 Majorana fermions, all commuting with T, then
a generic quartic SYK-like Hamiltonian18 ∆H =

∑
αβγδ tαβγδχαχβχγχδ has

a unique ground state, which moreover (if the coefficients tαβγδ obey a suit-
able inequality) is invariant under both T and (−1)F. That means that, by
taking the coefficients in ∆H to be large enough, these 8 Majorana fermions
can be removed from an effective low energy description of the system, with-
out breaking any symmetries. Since anomalies in global symmetries can al-
ways be understood in terms of any description of the system that is valid
at low energies, this implies that anomalies in the symmetries of this system
can only depend on the value of N mod 8. (For N a multiple of 8, it is pos-
sible to pick a different representation of the Clifford algebra in which the
χk are all real and therefore time-reversal can act more simply as T = K.)

18A simple one that does the job is ∆H = −χ1χ2χ3χ4 − χ5χ6χ7χ8 −
χ1χ2χ5χ6 − χ1χ3χ5χ7.
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Still assuming that the symmetry group is ZT
2 × ZF

2 , we now want to
consider the case that at the classical level there are Majorana fermions
χ1, . . . , χN+

with

(2.43) TχkT
−1 = χk,

and additional Majorana fermions χ̃1, . . . , χ̃N−
with

(2.44) Tχ̃kT
−1 = −χ̃k.

This generalization can be analyzed without much effort. First of all,
there is no anomaly if N+ = N− = 1. We can work in a two-dimensional
Hilbert space with χ = σ1, χ̃ = σ2, along with T = K, (−1)F = σ3. All ex-
pected commutation relations are satisfied, and in particular T

2 = 1 and
T(−1)F = (−1)FT.

More generally, if we have any system of N Majorana fermions with a
time-reversal symmetry T, and two of them, say χ and χ̃, transform under
T with opposite signs, then a perturbation to the Hamiltonian ∆H = imχχ̃
is T-invariant, and is invariant under (−1)F if N is even (so that such a
symmetry exists). For large m, χ and χ̃ are removed from the low energy
description, without breaking any symmetry. Such an operation cannot af-
fect any anomalies, and it reduces N+ and N− by 1. So anomalies can only
depend on the difference N+ −N−. Combining this with the previous ar-
gument, we see that anomalies depend precisely on the value of N+ −N−
mod 8.

There is one last important comment. A low energy observer who does
not have access to microscopic fermion fields will not be able to distinguish
an anomaly of N from an anomaly of 8−N . This means, in particular, that
JT gravity together with topological field theory are not sensitive to the sign
of the anomaly.

Exchanging N with 8−N changes the sign of the anomaly, but one can
compensate for this by exchanging T with T

′, which also changes the sign
of the anomaly, as it exchanges (N+, N−) with (N−, N+). For even N , the
low energy observer sees both T and T

′ symmetry, but – without access to
a microscopic description – has no way to know which is which. For odd N ,
the low energy observer has access to only one of T and T

′, and has no way
to know which it is. Whether N is even or odd, one cannot distinguish N
from 8−N without access to the elementary fermions.

Note that along with elementary fermion fields χk, whose transforma-
tion under time-reversal we have discussed, SYK-like models have hermitian



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1509 — #35
✐

✐

✐

✐

✐

✐

JT gravity and the ensembles of random matrix theory 1509

Figure 4: This picture is meant to symbolically convey the idea of building
RP2 by closing off a disc with a “crosscap.”

fermion fields such as iχkχlχm which transform under time-reversal with an
opposite sign. To distinguish T from T

′, so that one can distinguish N from
8−N mod 8, one needs access to a fermion field whose time-reversal prop-
erties are related to those of the elementary fermions in a known way. An
example in which this is possible in a macroscopic description is the super-
symmetric SYK model. A low energy observer has access to the fermion in
the super-Schwarzian multiplet, whose time-reversal properties are related
in a simple way to those of the elementary fermions. The super-Schwarzian
multiplet is part of the description by JT supergravity. Consequently, JT su-
pergravity plus topological field theory can distinguish N from 8−N mod
8, as we will see in detail.

2.5.3. Topological field theory interpretation for cases with T
2 = 1

classically. To define fermions on an unorientable manifold, one needs a
generalization of a spin structure that is called a pin+ structure or a pin−

structure. The meaning of pin+ or pin− is that if R is a spatial reflection,
then R

2 commutes or anticommutes with fermion fields. A relativistic theory
has a T symmetry if and only if it has an R symmetry, but there is a perhaps
surprising sign reversal: if T2 commutes with elementary fermions, then R

2

anticommutes with them, and vice-versa.19 So T
2 = 1 in Lorentz signature

is associated after Wick rotation to pin− structures, while T
2 = (−1)F is

associated to pin+ structures. For a detailed introduction to pin− and pin+

structures, see appendix A of [76].

19 The usual explanation in terms of the Dirac equation for a fermion field ψ is
as follows. One starts with a Clifford algebra {γµ, γν} = ±2ηµν , where the choice
of sign will lead to pin+ or pin−. Suppressing all space coordinates except one, a
relativistic theory will have a symmetry T : ψ(t, x) → γ0ψ(−t, x) if and only if it
has a symmetry R : ψ(t, x) → γ1ψ(t,−x). Since γ20 = −γ21 , one of these operators
squares to 1 if and only if the other squares to (−1)F.
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The topological invariant for a compact two-dimensional pin− manifold
Y without boundary that generalizes (−1)ζ for spin manifolds is exp(−iπη/2),
where η is the Atiyah-Patodi-Singer eta-invariant of the self-adjoint operator
i /D. For any Y , exp(−iπη/2) is an eighth root of unity.20 A basic example
for which η has the minimum value21 ±1/2 is RP2.

There are many possible descriptions of RP2, but the one that is most
useful for us is as follows. Begin with a closed disc D, whose boundary
is a circle S, say parametrized by an angle θ, with θ ∼= θ + 2π. One can
build from D a two-manifold without boundary by identifying antipodal
points on S, that is by making the further identification θ ∼= θ + π. This
is often described by saying that D is closed off with a “crosscap.” As the
result is difficult to draw convincingly, it is often depicted symbolically as
in fig. 4. The resulting compact manifold is called RP2 (real projective two-
space). It is unorientable, with Euler characteristic 1, so its genus, defined by
χ = 2− 2g, is g = 1/2. By “gluing in a crosscap” to a two-manifold Y , one
means that one cuts out of Y an open ball and closes it off with a crosscap
in the sense just described. Topologically, any compact unorientable two-
manifold is an oriented one with a certain number of crosscaps glued in (in
fact, one or two crosscaps is enough). Every time one glues in a crosscap,
the Euler characteristic is reduced by 1. So the surfaces with odd Euler
characteristic are the ones with an odd number of crosscaps glued in; they
are the ones with half-integer g.

Since exp(−iπη/2) is an eighth root of unity, and has the appropriate
locality properties, one can build 8 different topological field theories on a
pin− manifold Y without boundary by summing over pin− structures on Y

20This can be proved along lines explained in detail in appendix C of [76] for an
analogous question in four dimensions. The two-dimensional case is slightly simpler.
In brief, we want to prove that, for any pin− bundle P → Y , (exp(−iπη/2))

8
= 1,

or equivalently that η is a multiple of 1/2. Let ε be the orientation bundle of Y (a
real line bundle with holonomy −1 around any orientation-reversing loop) and let
P ′ = P ⊗ ε be the complementary pin− bundle to P. Then η(P) + η(P ′) = 0 mod
4, because of general properties of the spectrum of the Dirac operator, but also
4η(P) = 4η(P ′) mod 4, because the real vector bundle ε⊕4 → Y is trivial for any
two-manfold Y . These steps are explained more fully in [76].

21Consider an orbifold T 3/Z2, where T
3 is a three-torus and Z2 acts as −1 on each

of the three coordinates. The Z2 action has eight fixed points. Removing a small
open neighborhood of each, one gets a compact three-manifold W whose boundary
consists of 8 copies of RP2. Applying the Atiyah-Patodi-Singer index theorem to
W , one learns that η(RP2) = ±1/2, with a sign that depends on the choice of pin−

structure. For the details of this argument (in an analogous four-dimensional case),
see appendix C of [76].
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with a factor of exp(−iπNη/2). When Y has a boundary, exp(−iπNη/2) has
an anomaly that precisely matches the anomaly of N Majorana fermions on
the boundary of Y . This is schematically explained in section 5 of [76]. For
a more abstract explanation based on cobordism invariance, see [80].

So we expect that in a bulk description of the SYK model with the
usual sort of time-reversal symmetry, we should include a sum over pin−

structures with a factor of exp(−iπNη/2). We will call the sum over the
pin− structures on a manifold, weighted by exp(−iπNη/2), the “pin− sum.”
We will denote this sum on a manifold Y as FY (N). If Y is orientable, then
a pin− structure on Y is the same as a spin structure, and exp(−iπη/2)
reduces to (−1)ζ . So for orientable Y , the pin− sum is just the sum over
spin structures weighted by (−1)Nζ . This is the same sum that we studied in
sections 2.4.3 and 2.4.4, and is only sensitive to N mod 2. For unorientable
Y , the pin− sum can detect the value of N mod 8.

However, as in section 2.5.2, JT gravity and topological field theory
cannot distinguish N from 8−N mod 8. Here we use the fact that pin−

bundles over Y come in pairs, in the following way. If P is a pin− bundle
over Y , then there is another pin− bundle P ′ over Y , with the property that
parallel transport of a fermion around any closed loop γ ⊂ Y gives the same
result up to sign. The sign is +1 or −1 depending on whether the orientation
of Y is invariant or is reversed in going around γ. The abstract way to
say this is that P ′ = P ⊗ ε, where ε is the orientation bundle of Y . Then
η(P) = −η(P ′) mod 4, so exp(−πiNη(P)/2) = exp(−πi(8−N)η(P ′)/2). In
other words, exchanging P with P ′ has the same effect as replacing N by
8−N mod 8. So once one sums over pin− structures, the distinction between
N and 8−N disappears. Moreover, it disappears by the same mechanism as
in section 2.5.2, since exchanging P with P ′ amounts to exchanging fermions
that transform with opposite signs under T.

For a variety of reasons, an important special case is the pin− sum
of RP2. Since RP2 has two pin− structures with η = ±1/2, its pin− sum
is FRP

2(N) = 2 cos(2πN/8). In particular, FRP
2(2) = 0 and FRP

2(N + 4) =
−FRP

2(N) for any N .
These facts have several interesting implications. Any two-manifold Y

can be built from an oriented one Y0 by gluing in some number nc of cross-
caps. Here nc is not uniquely determined, but it is uniquely determined mod
2; in fact, nc is congruent mod 2 to the Euler characteristic χ(Y ). Using the
locality properties of exp(−iπη/2), one can show that

(2.45) FY (N) = FY0
(N)FRP

2(N)nc .



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1512 — #38
✐

✐

✐

✐

✐

✐

1512 D. Stanford and E. Witten

Figure 5: A trumpet that ends on a crosscap; we will call this the crosscap
spacetime.

Since FY0
(N) only depends on N mod 2, and FRP

2(N + 4) = −FRP
2(N), we

get

(2.46) FY (N + 4) = (−1)ncFY (N).

In other words, shifting N by 4 simply gives a factor of −1 for every crosscap.
The random matrix counterpart of this is discussed in appendix B.

Another interesting consequence is the following. Since Y is unorientable
if and only if nc > 0, and since FRP

2(2) = FRP
2(6) = 0, we learn from equa-

tion (2.45) that FY (2) = FY (6) = 0 for any unorientable Y . So for those
values of N mod 8, only orientable manifolds contribute after the sum over
pin− structures.

We will now begin to discuss how the connection between JT gravity and
random matrix theory is modified by including unorientable surfaces and the
pin− sum. Suppose first that we want to compute the expectation value of
⟨ZNS(β)⟩ or ⟨ZR(β)⟩. We recall that these are computed in JT gravity by
summing over contributions of two-manifolds Y whose boundary is a single
circle X. In the present context, Y is a possibly unoriented two-manifold
with a pin− structure.

Then ⟨ZR(β)⟩ remains zero, because a pin− manifold with boundary
always has an even number of boundary components of R type. If Y has
just a single boundary component, it will be of NS type. On the other hand,
⟨ZNS(β)⟩ is nonzero, and can receive contributions from unoriented as well
as oriented manifolds. The dominant unoriented contribution comes from
the manifold Y with the largest possible Euler characteristic, given that it
is supposed to have one boundary component. This is a trumpet that ends
on a crosscap (fig. 5); we will more briefly call it the crosscap spacetime.
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Contribution of the crosscap spacetime. We will now evaluate the
contribution of this manifold and compare to the random matrix ensem-
bles identified above. In making this comparison, we will assume the purely
bosonic JT gravity / RMT correspondence discussed in section 2.2, so that
without any minus sign or sum over pin structures, the JT gravity partition
function on the crosscap spacetime agrees with a GOE-like random matrix
theory. There are two pin− structures on the crosscap, with the same values
η = ±1/2 as for RP2. Hence the pin− sum is just FRP

2(N). The dominant
crosscap contribution to ⟨ZNS(β)⟩ is therefore as follows:

For N = 0 mod 8, since FRP
2(0) = 2, the crosscap contribution to ZNS(β)

is two times the JT path integral for the crosscap spacetime, which we
assume is equal to the GOE-like answer. In random matrix theory, for N = 0
mod 8, there are two independent GOE blocks, see table 1 below, so the
factor of two matches.

For N = 1 mod 8, the pin− sum is FRP
2(1) =

√
2. In random matrix

theory, we have a single GOE block, see table 1 again, but the path integral
and the trace in the Hilbert space are related by the factor of

√
2 in (2.8),

so we find agreement.
For N = 2 mod 8, we have FRP

2(2) = 0, so the crosscap does not con-
tribute. This agrees with table 1, since the N = 2 case consists of GUE
blocks, for which there is no genus 1/2 contribution.

For N = 3 mod 8, the pin− sum is FRP
2(3) = −

√
2. On the random

matrix side, the only relevant difference from N = 1 mod 8 is that now
T̂
2 = −1, so that we have to use GSE statistics instead of GOE. Again, this

reverses the sign of the crosscap contribution.
For N = 4 mod 8, the pin− sum is FRP

2(4) = −2. On the random matrix
side, the only relevant difference from N = 0 mod 8 as that now T

2 = −1,
so that we have to use GSE statistics instead of GOE. This reverses the sign
of the crosscap contribution.

The remaining cases follow by exchanging N with 8−N mod 8, so they
do not add much.

Contribution of the double trumpet. Now we will discuss the lead-
ing contributions to the connected correlation functions

〈
ZNS(β)

2
〉
c
and〈

ZR(β)
2
〉
. These come from the same double trumpet studied in section

2.4.3, along with another topology that we will describe momentarily.
In section 2.4.3, we constructed the double trumpet Y by gluing together

two trumpets YL and YR along their inner boundaries SL and SR (fig. 2).
However, in a time-reversal invariant theory, we are free to make a reflec-
tion of SR, reversing its orientation, before gluing it onto SL. This makes a
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Figure 6: A Klein bottle can be constructed by closing off a cylinder at each
end with a crosscap.

different manifold that we will call the twisted double trumpet Ỹ . Ỹ is not
equivalent to Y by any diffeomorphism that acts trivially on its boundaries,
so in the context of duality between an SYK-like model (or random matrix
theory) and a bulk theory, we should consider Ỹ and Y to be inequivalent.22

In comparing exp(−iπNη/2) for different pin− structures on Y or on Ỹ ,
as usual, we can use locality to reduce to a simpler picture. A convenient
way to use locality is to glue together the outer boundaries of Y or of Ỹ .
This produces from Y the two-torus of fig. 3, while from Ỹ it produces a
Klein bottle, which we will call KB.

A standard description of KB is that it can be obtained from the x− y
plane by dividing by two symmetries Tx and Ty, where

(2.47) Tx(x, y) = (x+ 1, y), Ty(x, y) = (−x, y + 1).

It is the x direction here that parametrizes the circle SL or SR in the twisted
double trumpet (or the external boundaries, to which SL and SR are homol-
ogous), since it is the x direction that is reflected by one of these operations
(namely Ty). Another way to look at KB is also useful. The identifications
(x, y) ∼= (x+ 1, y) and (x, y) ∼= (−x, y + 1) let us restrict to 0 ≤ x ≤ 1/2. At
generic x, the equivalence relation on y is y ∼= y + 2, but at the endpoints
there is a further identification y ∼= y + 1. This means that KB can be con-
structed from a cylinder 0 ≤ x ≤ 1/2, y ∼= y + 2 by closing it off with a
crosscap at each end (fig. 6). This description implies that a complete pin−

sum of KB is just FKB(N) = FRP
2(N)2. But that is not quite what we need;

22We could also rotate SR (rather than reflecting it, or in addition) before gluing
it to SL. This is important in the path integral of JT gravity, but as it does not
affect the topology, it is not visible in the topological field theory.
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to understand contributions to ⟨ZNS(β)
2⟩c or ⟨ZR(β)

2⟩, we need to restrict
the sum over pin− structures on KB to those for which the pin− struc-
ture on the boundaries of Ỹ are of NS or R type, respectively. It turns out
that these restricted pin− sums are FNS

KB(N) = 2, FR
KB(N) = 2 cos(2πN/4)

(this claim is explained at the end of the present section). Similarly, we
can define the restricted pin− sums for the torus. Since this manifold is ori-
entable, pin− structures are the same as spin structures, and we reduce to
the case studied in section 2.4.3, which we can summarize as FNS

T (N) = 2
and FR

T (N) = 1 + (−1)N .
These results imply that

(2.48) FNS
T (N) + FNS

KB(N) = 4,

independent of N , while

FR
T (N) + FR

KB(N) = 1 + (−1)N + 2 cos 2πN/4(2.49)

=

{
4 if N = 0 mod 4

0 otherwise.

To compare to random matrix theory, we will need one standard fact
that we will borrow from section 4: the leading contribution to the connected
correlator ⟨Z(β)2⟩c in the GOE or GSE-like ensembles is twice as big as in
the GUE ensemble. More precisely, this is true if we define the GSE case
to include both of each pair of degenerate eigenvalues, which is implicit in
table 1.

If N = 0, 4 mod 8, then for either ⟨ZNS(β)
2⟩c or ⟨ZR(β)

2⟩, the pin− sums
of the double trumpet and the twisted double trumpet add to 2 + 2 = 4,
according to the above formulas. This multiplies what we would get by
computing this correlator in bosonic JT gravity. This is consistent with
random matrix theory, since each of the two GOE or GSE blocks in table 1
contribute twice the GUE answer, for a total factor of 4.

If N is odd, eqns. (2.48) and (2.49) imply that ⟨ZNS(β)
2⟩c is four times

the GUE answer, and ⟨ZR(β)
2⟩ = 0. Both are consistent with random matrix

theory. From (2.8), the NS answer is (
√
2)2 = 2 times the GOE or GSE

answer, so four times the GUE answer. Also, from (2.8), the R answer should
be zero because for odd N the path integral in the Ramond sector vanishes.

If N = 2, 6 mod 8, the random matrix ensemble consists of two iden-
tical GUE-like blocks. The twofold degeneracy implies a factor of four in
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⟨ZNS(β)
2⟩c, and since the two blocks have identical spectra, the Ramond-

sector partition function is identically zero. Both facts are consistent with
the pin− sums (2.48) and (2.49).

Finally, to justify the claim about the restricted pin− sums on KB, we
first note that the four pin− structures on KB can be presented by describing
a fermion field λ on KB as a fermion field on R2 that satisfies

λ(x+ 1, y) = (−1)αλ(x, y)

λ(−x, y + 1) = (−1)βγxλ(x, y).(2.50)

Here α, β ∈ {0, 1} label the four choices of pin− structure on KB, and γx
is a gamma matrix (the pin− condition means that γ2x = −1, while pin+

means γ2x = +1). Since the x direction parametrizes the external boundaries
of the twisted double trumpet (note the comment after eqn. (2.47)), this
means that parallel transport of a fermion around the external boundary is
controlled by (−1)α. Thus α = 1 means that the external boundaries are of
NS type, and α = 0 means R type.

Now we view KB as a cylinder with a crosscap at x = 0 and another
crosscap at x = 1/2. Eqn. (2.50) says that at x = 0, the pin− structure is
described by λ(0, y + 1) = (−1)βγxλ(0, y). But at x = 1/2, the pin− struc-
ture is instead described by λ(1/2, y + 1) = (−1)α+βγxλ(1/2, y). This says
that if α = 0, the pin− structures on the two crosscaps are isomorphic, re-
gardless of β, but if α = 1, they are opposite.

This is all we need to compute the restricted pin− sums. If the bound-
aries are of R type, we set α = 0. The two crosscaps have isomorphic pin−

structures, each contributing 1/2 or−1/2 to η, so the sum is η = 1 or η = −1.
Therefore FR

KB = exp(−iπN/2) + exp(iπN/2) = 2 cos(2πN/4), as claimed
earlier. If the boundaries are of NS type, we set α = 1. The two crosscaps
have pin− structures of opposite types. If one contributes ±1/2 to η, the
other contributes ∓1/2, so that overall η = 0. So FNS

KB = 2, as also claimed
earlier.

Reduction to the GOE, GUE, and GSE cases. At this point, we
actually have enough information about pin− structures to give a general
reduction that shows consistency with random matrix theory, assuming it in
the purely bosonic cases from section 2.2. Showing this requires several steps.
First, one copies the steps in section 2.4.4 to reduce the Zg,n,nR

coefficient
functions defined in (2.18) to combinations of Zg,n in the GOE, GUE, GSE-
like ensembles. The predictions are given in the third column of table 1.

Before proceeding further, we note that in topological field theory, ac-
cording to eqn. (2.49), amplitudes with boundaries of R type vanish unless
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N mod 8 RMT class Zg,n,nR
pin− sum identity (nR = 0)

0

(
GOE1 0
0 GOE2

)
22g+n−2

(
1 + (−1)nR

)
ZGOE
g,n

∑
pin−

1 = 22g+n−1

1 GOE

{
2g+n−1ZGOE

g,n nR = 0

0 else

∑
pin−

e−iπη/2 = 2g+n−1

2

(
GUE 0
0 GUE

) {
22g+2n−2ZGUE

g,n nR = 0

0 else

∑
pin−

e−iπη =

{
22g+n−1 nc = 0

0 else

3 GSE

{
2g+n−1ZGSE

g,n nR = 0

0 else

∑
pin−

e−3iπη/2 = 2g+n−1(−1)nc

4

(
GSE1 0
0 GSE2

)
22g+n−2

(
1 + (−1)nR

)
ZGSE
g,n

∑
pin−

e−2iπη = 22g+n−1(−1)nc

Table 1: Random matrix classes as a function of N mod 8, for the cases with
T
2 = 1 classically. Column two gives the RMT classes described in section

2.5.2 (for N = 2, the two GUE blocks are not independent but are exchanged
by T). In the third column we follow the logic of section 2.4.4 to reduce the
expansion coefficients Zg,n,nR

to expansion coefficients in the ordinary GOE,
GUE, GSE ensembles. In the final column, we give the pin− sum identity
(2.51) that implies this reduction in the bulk theory. The values of N mod
8 not listed here are obtained by N → 8−N .

N = 0, 4 mod 8. This agrees with the random matrix theory prediction in
the third column of the table. If N = 0, 4 mod 8, the restricted pin− sums
for an NS or R boundary are the same, so from a topological field theory
point of view, NS and R boundaries are equivalent except for the constraint
that the total number of R boundaries is even. This is also a random matrix
theory prediction, as stated in the third column in the table. Therefore, to
complete the demonstration that topological field theory and random matrix
theory make compatible predictions, it suffices to consider NS boundaries
only.

Next, one uses gluing to derive the pin− sum on a general surface Y .
To do so, we start with a closed orientable surface Y0 obtained from Y by
removing the holes and crosscaps. Y0 has genus g0 = g − 1

2nc, where nc is the
number of crosscaps in Y . Because Y0 is orientable, the pin

− sum is the same
as a spin sum, and leads to 22g0 for even N and 2g0 for odd N . Next, we glue
in the nc crosscaps, using (2.45). Finally, we cut n holes with boundaries Sj ,
and glue in n trumpets. As already explained, it suffices to assume the these
are of NS type, in which case the sum over the “orthogonal” pin− structure
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gives a factor of 2 for each boundary. The pin− sum is therefore

(2.51)
1

2
2n22g0FRP

2(N)nc

for even N ; for odd N , it is obtained by replacing 22g0 with 2g0 . Using
FRP

2(N) = 2 cos 2πN/8, this leads to the results stated in the last column
of the table for the pin− sums.

Comparing the last two columns in the table, we see that in all cases,
the topological field theory prediction is in agreement with the reduction to
GOE, GUE, GSE from the first step.23

2.5.4. Cases with T
2 = (−1)F classically. Now we want to consider

another symmetry group instead of ZT
2 × ZF

2 . We still assume a time-reversal
transformation T and a symmetry (−1)F that distinguishes bosons and
fermions. But now at the classical level we assume

(2.52) T
2 = (−1)F,

(
(−1)F

)2
= 1.

So T
4 = 1 and T generates a group that we call ZT

4 . How to construct an
SYK-like model with such a symmetry group was explained in section 2.5.1.
In particular the number N of elementary fermions must be even.

This case is actually simpler than the previous case of ZT
2 × ZF

2 , so we
can be more brief. For even N , we described in section 2.5.2 an irreducible
representation of the Clifford algebra with N/2 real generators and N/2
imaginary ones. Call the even generators χk, k = 1, . . . , N/2, and the odd
ones χ̃k, k = 1, . . . , N/2. Define the time-reversal transformation

(2.53) T =
χ1 + χ̃1√

2

χ2 + χ̃2√
2

· · ·
χN/2 + χ̃N/2√

2
K.

This has been chosen so that

(2.54) TχkT
−1 = χ̃k, Tχ̃kT

−1 = −χk.

A short computation gives

(2.55) T
2 = iN

2/4(−1)F,

23For N = 2 mod 8, one has to remember that the JT gravity path integral in
a time-reversal-invariant theory is 2n−1 times the path integral in the GUE-like
theory without time-reversal symmetry; see the end of section 2.2.
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with

(2.56) (−1)F = iN/2χ1χ̃1χ2χ̃2 · · ·χN/2χ̃N/2.

Up to an overall sign, the phase of (−1)F has been fixed to ensure
(
(−1)F

)2
=

1.
If N = 0 mod 4, we have the expected relations (2.52). The random

matrix symmetry class of a Hamiltonian with these symmetries consists of
two blocks for the ± eigenvalues of (−1)F. Acting on the + subspace, T2 = 1,
so we have GOE-like statistics. Acting on the − subspace, T2 = −1, so we
have GSE-like statistics.

If N = 2 mod 4, we have instead

(2.57) T
2 = i(−1)F.

If we absorb this factor of i in the definition of (−1)F, we would get(
(−1)F)

)2
= −1. So there is no way to avoid an anomaly, though it can

be moved around. Since T commutes with T
2 and anticommutes with i,

eqn. (2.57) implies the important fact that if N = 2 mod 4, T anticommutes
with (−1)F:

(2.58) T(−1)F = −(−1)FT.

This implies that the two blocks of the Hamiltonian are exchanged by T,
but are not constrained individually. So we have two GUE-like blocks with
identical eigenvalues.

Thus we have found an anomaly that depends on the value of N mod
4. There is no more subtle anomaly, since by perturbing the Hamiltonian
in a suitable fashion, one can remove two pairs of fermions, say χ1, χ̃1 and
χ2, χ̃2, from the low energy spectrum. One simply adds the “mass” term
∆H = −im(χ1χ2 + χ̃1χ̃2). For large m, this set of four fermions is removed
from the low energy effective theory, reducing N by 4, without breaking any
symmetry.

Since N is even and the anomaly only depends on N mod 4, this is
a Z2-valued anomaly. The bulk dual of a theory with ZT

4 symmetry is a
theory in which (in Euclidean signature) one sums over pin+ structures on
two-manifolds. Topological field theories that can be built by summing over
pin+ structures in suitable ways have a Z2 classification, which matches
what we need.

The necessary invariant is as follows. Let Y be a two-manifold, not nec-
essarily oriented, with a pin+ structure. On an unorientable two-manifold
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Y , it is not possible to consider a chiral fermion field, but we can of course
consider a non-chiral, two-component fermion field λ. Now we can define a
Z2-valued invariant ζ̃ by imitating the definition of the invariant ζ in sec-
tion 2.4.3. We simply define ζ̃ to be the mod 2 index of the nonchiral Dirac
operator on Y , that is the dimension mod 2 of the space of solutions of
the Dirac equation /Dλ = 0. This is a topological invariant, as discussed in
section 3 of [76]. On a two-manifold without boundary, one can make two
topological field theories by summing over pin+ structures with or without

a factor of (−1)ζ̃ . As in other cases we have discussed, ζ̃ has the necessary
locality properties to justify this statement. On an orientable manifold, the
two theories are equivalent because ζ̃ = 0 if Y is orientable.24 This is as one
would expect, because ZT

4 symmetry forces N to be even.
On a two-manifold with boundary, there is a problem with the definition

of ζ̃: although one can place a local boundary condition on the Dirac equation
and then count its zero-modes mod 2, such a local boundary condition is
not invariant under time-reversal symmetry, that is under a reflection of the

boundary. So (−1)ζ̃ has an anomaly on a manifold with boundary. One can
show that this anomaly matches the anomaly that we found above for N
congruent to 2 mod 4. One way to show this is to imitate arguments given in
[72] for the analogous statement about ζ, which was invoked in section 2.4.3.

Accordingly, we propose that an SYK-like model with the sort of time-
reversal symmetry that we have discussed here should be compared to JT

gravity with a sum over pin+ structures, with or without a factor of (−1)ζ̃ ,
depending on whether N is congruent to 2 or 0 mod 4. Equivalently, we can

in general include a factor (−1)
N

2
ζ̃ .

Since ζ̃ = 0 if Y is orientable, if follows that the difference between the
two theories only comes into play for unorientable Y . This is as we would
expect, since N is even in the present context, and anomalies that can be
seen on orientable manifolds only depend on N mod 2.

For illustration and because it will be useful, we will compute ζ̃ for a pin+

structure on a Klein bottle KB. Such structures can be described exactly as
we described pin− structures in eqn. (2.50),

λ(x+ 1, y) = (−1)αλ(x, y)

λ(−x, y + 1) = (−1)βγxλ(x, y),(2.59)

24If Y is orientable, the dimension of the space of solutions of the Dirac equation
is n+ + n−, where n+ and n− are the dimensions of the spaces of solutions with
positive or negative chirality. But n+ = n−, because complex conjugation reverses
the fermion chirality in two dimensions. So n+ + n− is always even.
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with the only difference being that now γ2x = +1 rather than −1. A zero-
mode of the Dirac equation on KB is simply a constant mode of λ that
obeys the conditions (2.59). If α = 1, there is no such mode. But if α = 0,
then since γx is a 2× 2 matrix with eigenvalues ±1, there is, regardless of
β, precisely one zero-mode. So ζ̃ = 0 if α = 1 and ζ̃ = 1 if α = 0.

Now let us view KB as a cylinder with a crosscap at each end, as in fig. 6.
There are two pin+ structures on each crosscap. By the same argument
as given for pin− structures in section 2.5.3, α = 0 means that the pin+

structures on the two crosscaps are isomorphic and α = 1 means that they
are opposite. So changing α from 0 to 1 flips the pin+ structure on one of
the two crosscaps, regardless of β. Since changing α also changes ζ̃, we learn
that flipping the pin+ structure on one crosscap changes the value of ζ̃.

By locality, this statement is universal and not limited to the particular
case of a Klein bottle. This leads to a simple statement about the sum over
pin+ structures on any manifold. Let GY (N) be the sum of pin+ structures

on a manifold Y , weighted by (−1)
N

2
ζ̃ . If Y is unorientable, it can be obtained

by gluing a crosscap onto some other manifold Y ′. Pairs of pin+ structures on
Y that differ by flipping the pin+ structure on this crosscap will, by locality,
make canceling contributions to GY (N) if N = 2 mod 4. So for N = 2 mod
4, only orientable manifolds contribute to the partition function after the
sum over pin+ structures. This is consistent with the random matrix class
identified above, consisting of two identical GUE-like blocks.

On the other hand, for N = 0 mod 4, unorientable manifolds do con-
tribute, and lead to something new. A difference between pin+ structures
and pin− structures is that if Y is a pin+ manifold with boundary, it can
have an odd number of boundary components of R type. In fact, the basic
crosscap spacetime of fig. 4 – a trumpet that ends on a crosscap – is an ex-
ample. The crosscap spacetime has two pin+ structures, both of which are of
R type on the boundary. Hence this spacetime contributes to ⟨ZR(β)⟩, not
to ⟨ZNS(β)⟩. (This is opposite from the pin− case; a pin− structure on the
crosscap spacetime is of NS type on the boundary.) This is consistent with
random matrix theory: for N = 0 mod 4, the Hamiltonian consists of a GOE
block with (−1)F = 1 and a GSE block with (−1)F = −1. The crosscap (or
genus 1/2) contributions in these two random matrix ensembles are equal in
magnitude but opposite in sign, so they cancel in ZNS(β) and add in ZR(β).

One can go on and look at the connected correlations functions
⟨ZNS(β)

2⟩c and ⟨ZR(β)
2⟩c. The lowest order contributions will come from

the double trumpet and the twisted double trumpet.
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N mod 4 RMT class Zg,n,nR
pin+ structure sum identity

0

(
GOE 0
0 GSE

)
22g+n−2

(
ZGOE
g,n + (−1)nRZGSE

g,n

) ∑
pin+

1 = 22g+n−2
(
1 + (−1)nR+nc

)

2

(
GUE 0
0 GUE

) {
22g+2n−2ZGUE

g,n nR = 0

0 else

∑
pin+

(−1)ζ̃ =

{
22g+n−1 nc = 0

nR = 0

0 nc ̸= 0

Table 2: Reductions to GOE, GUE, GSE as in table 1, but now for the cases
with T

2 = (−1)F classically. For N = 2 mod 4, T exchanges the two GUE
blocks.

For N = 0 mod 4, the double trumpet and twisted double trumpet have
two pin+ structures, each of which contributes +1, regardless of whether the
boundaries are of NS or R type. Thus the contributions to

〈
ZNS(β)

2
〉
c
and〈

ZR(β)
2
〉
c
are equal. The cross-correlator ⟨ZR(β)ZNS(β)⟩c is nonzero, but

will receive contributions only from spacetimes with odd Euler characteristic.
The leading term would be from RP2 with two holes removed.

For N = 2 mod 4, the double trumpet and twisted double trumpet con-
tributions to the correlator ⟨ZR(β)⟩c cancel. The cancellation happens be-

cause, with the boundaries being of R type, one has (−1)ζ̃ = 1 for a pin+

structure on the double trumpet and (−1)ζ̃ = −1 for a pin+ structure on
the twisted double trumpet. To prove this, using locality, one can glue the
two boundaries together, so that the double trumpet and the twisted double
trumpet become a torus and a Klein bottle. The torus is orientable, so it
has ζ̃ = 0 for any pin+ structure, and on the Klein bottle, since we are now
considering pin+ structures with α = 0 in the sense of eqn (2.59), we have
ζ̃ = 1. This cancellation is expected in random matrix theory because ZR(β)
vanishes identically, without fluctuations.

As in the previous cases, one can make a general argument that pin+

structure sums ensure that random matrix theory answer agrees with the
bulk. See table 2 for the necessary pin+ identities, which follow from the
analog of (2.51). Concretely, the above considerations show that for N = 0
mod 4, the orthogonal pin+ sum for any NS or R boundary is 2, so we get
eqn. (2.51) with FRP

2(N) replaced by GRP
2(0) = 2. In pin+, crosscaps are in

the R sector, so instead of imposing that the number of R boundaries should
be even, we impose that the number of R boundaries plus the number of
crosscaps should be even. This accounts for the result claimed in the table
for N = 0 mod 4. For N = 2 mod 4, the orthogonal pin+ sum vanishes for
an R boundary, and also GRP

2(2) = 0. So we restrict to nR = nc = 0. The
orthogonal pin+ sum still gives a factor of 2 for every NS boundary. In
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contrast to the pin− case, the pin+ sum on an orientable surface Y0 of genus
g0 is 22g0 for any N . These facts lead to the result shown in the table for
N = 2 mod 4.

2.6. Including N = 1 supersymmetry

2.6.1. The supersymmetric SYK model. The supersymmetric SYK
model, with minimal or N = 1 supersymmetry, is constructed [81] by start-
ing with a quantum mechanical system of N Majorana fermions and intro-
ducing a random supercharge

(2.60) Q = i
q̂−1

2

∑

a1a2···aq̂

j̃a1a2···aq̂
ψa1

ψa2
· · ·ψaq̂

.

Here q̂ is an odd integer ≥ 3. The Hamiltonian is defined as

(2.61) H = Q2.

The assertion that the model is supersymmetric just means that [H,Q] = 0.
If Q is a homogeneous function of the elementary fermions, as assumed

in eqn. (2.60), then the supersymmetric SYK model inevitably has ZT
2 × ZF

2

symmetry (possibly with a quantum anomaly). Indeed, if T is a time-reversal
symmetry that commutes with the elementary fermions, then

(2.62) TQ = (−1)(q̂−1)/2QT.

Thus Q is either even or odd under T, and therefore H is even. However, by
allowing Q to be a sum of terms with different values of q̂, one can break
the time-reversal symmetry.

Regardless of how Q is constructed, T2 = (−1)F is not compatible with
N = 1 supersymmetry. If T2 = (−1)F, then fermionic operators transform
under T in even-dimensional representations, but in the case of N = 1 su-
persymmetry, Q is a fermionic operator that is in a 1-dimensional represen-
tation.

As in a nonsupersymmetric SYK model, we can exchange T with T(−1)F,
and this will change the sign of the anomaly. But it also reverses the sign in
eqn. (2.62). This sign is important in the random matrix classification, and
also in the bulk supergravity. So unlike the nonsupersymmetric case, it is
not true that models differing by N → 8−N will be equivalent. Rather, a
model defined by a pair (N, q̂) will be equivalent to a model with parameters
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(8−N, q̂ + 2). So, for example, it suffices to consider only the case q̂ = 1 mod
4 if we consider all values of N mod 8, as in Table 4 of the next section.

2.6.2. Random matrix classes including supersymmetry. The ran-
dom matrix classification of the supersymmetric SYK model was studied
in [66–68]. We will give a self-contained description. First consider the case
without time-reversal symmetry, so the only global symmetry is the super-
charge Q and a possible (−1)F symmetry. If N is even, there is a (−1)F

symmetry. The two blocks of states with (−1)F = 1 or with (−1)F = −1
each have dimension L = 2N/2−1. The unitary group acting on either block
is U(L), so the full group of unitary transformations that commutes with
(−1)F is G = U(L)×U(L). Q anticommutes with (−1)F, so in a basis in
which (−1)F is block diagonal, Q has only off-diagonal blocks:

(2.63) Q =

(
0 C
C† 0

)
.

Here C is a complex L× L matrix obeying no constraint, and C† is its
hermitian adjoint. C transforms as a bifundamental of U(L)×U(L). Thus
the random matrix statistics will correspond to one of the Altland-Zirnbauer
ensembles that were described in section 2.1.1. If N is odd, then there is no
(−1)F symmetry. The symmetry group G reduces to U(L) (with now L =
2(N−1)/2) and Q is simply a hermitian matrix, governed by GUE statistics.

Returning to the case that there is a (−1)F symmetry, there is a possible
generalization that does not occur in the SYK model but that is natural from
a random matrix point of view. We will interpret it in JT supergravity in
section 5.5. One can assume that the blocks of bosonic and fermionic states
have different dimensions L+ ν and L, for some integer ν. The symmetry
group is then U(L+ ν)×U(L); C is still a bifundamental. This corresponds
to a supersymmetric matrix ensemble in which supersymmetry is unbro-
ken, the value of the supersymmetric index being Tr (−1)F = ν. The same
generalization is possible in the other examples with bifundamentals.

Now we consider the case with time-reversal symmetry, but with N even
so that Q has the block structure in eqn. (2.63). Then the role of T is to
reduce the symmetry group and place a constraint on C. If N = 0 mod 8,
then T

2 = 1 and the symmetry group that commutes with T and with (−1)F

is G = O(L)×O(L). C is a bifundamental of this group. If N = 4 mod 8,
then T

2 = −1, the symmetry group is G = Sp(L)× Sp(L), and C is again a
bifundamental of G. These are two more of the Altland-Zirnbauer ensembles.
If N = 2 or 6 mod 8, then T exchanges the two blocks, and the analysis is
slightly more subtle. Since T exchanges the two blocks, the symmetry group
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N mod 2 symmetry λ→ 0 enhancement λ1 → λ2 enhancement α β γ bulk TFT

0 U(L)×U(L) bif. U(1) → U(1)×U(1) U(1)×U(1) → U(2) 1 2 2 (−1)ζ

1 U(L) adjoint U(1) → U(1) U(1)×U(1) → U(2) 2
√
2 1

Table 3: Random matrix symmetry classification for the supercharge Q in
the N = 1 super SYK model with N fermions and with no time-reversal
symmetry. The matrix field is a bifundamental of U(L)×U(L) or an ad-
joint of U(L), as indicated in the second column. In the third and fourth
columns, we give the symmetry enhancements described in section 2.1.2. The
dimensions of these enhancements directly give α and β, also shown. The
variable γ is the degeneracy of eigenvalues, multiplied by

√
2 for the case

of odd N , see (5.43). In the first row, we have an Altland-Zirnbauer (α,β)
ensemble, and in the second row, we have an ordinary β = 2 (GUE-like)
ensemble (so no value of α is given).

that commutes with T (and with (−1)F) is just G = U(L): one can make
an arbitrary unitary transformation of the upper block, accompanied by a
T-conjugate transformation of the lower block. Let H+ and H− be the sub-
spaces of the super SYK Hilbert space H corresponding to the eigenvalue
+1 or −1 of (−1)F, respectively. Since H+ and H− are exchanged by the
antiunitary symmetry T, they are naturally dual. Hence instead of thinking
of C as a linear map from H+ to H−, we can think of it as a bilinear map
H+ ⊗H+ → C or in other words as a second rank tensor. But we need to
decide if C is a symmetric or antisymmetric second rank tensor, and this
point is somewhat subtle. Denoting as Spin(N) the group that rotates the N
elementary fermions of the SYK model, the elementary fermions transform
in the vector representation V of this group, and the Hilbert spaces H+ and
H− transform, respectively, as the positive and negative chirality spinor rep-
resentations, which we will call S+ and S−. Suppose that Q is homogeneous
of degree q̂ in the elementary fermions. Then Q and C transform in the
representation ∧q̂V (the antisymmetric product of q̂ copies of V ). To decide
if C is a symmetric or antisymmetric tensor, we just need to know if ∧q̂V
appears symmetrically or antisymmetrically in S+ ⊗ S+. For q̂ = 1 mod 4,
the group theory answer is that ∧q̂V appears symmetrically if N = 2 mod
8 and antisymmetrically if N = 6 mod 8; these statements are reversed if
q̂ = 3 mod 4. So for N = 2 or 6 mod 8, we get two more Altland-Zirnbauer
ensembles; which one occurs for N = 2 mod 8 and which for N = 6 mod 8
depends on q̂.
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N symmetry λ→ 0 enhancement λi → λj enhancement T
2
+ T

2
− α β γ bulk

0 O(L)×O(L) bif. 1 → 1 1 → O(2) +1 +1 0 1 2 eiπη/2

1 O(L) symm. 1 → 1 1 → O(2) +1 1
√
2 1

2 U(L) symm. 1 → U(1) 1 → U(1) +1 −1 1 1 2 e−iπη/2

3 Sp(L) symm. U(1) → Sp(2) U(1)×U(1) → U(2) −1 2 2 2
√
2 e−2iπη/2

4 Sp(L)×Sp(L) bif. Sp(2) → Sp(2)×Sp(2) Sp(2)×Sp(2) → Sp(4) −1 −1 3 4 4 e−3iπη/2

5 Sp(L) anti. Sp(2) → Sp(2) Sp(2)×Sp(2) → Sp(4) −1 4 2
√
2 e−4iπη/2

6 U(L) anti. SU(2) → U(2) SU(2)×SU(2) → Sp(4) −1 +1 1 4 4 e−5iπη/2

7 O(L) anti. O(2) → O(2) O(2)×O(2) → U(2) +1 0 2 2
√
2 e−6iπη/2

Table 4: Random matrix symmetry classification for the supercharge Q in
the N = 1 super SYK model with N fermions and with q̂ = 1 mod 4. The
first column is N mod 8. The second column indicates the symmetry group
and whether the matrix is a bifundamental of a product group or a sym-
metric or antisymmetric second rank tensor. The next two columns indicate
the symmetry enhancement when an eigenvalue goes to zero or two eigen-
values become equal (here 1 denotes the trivial group). The operators T±
are antiunitary operators built out of T and (−1)F so that they commute
(+) or anticommute (−) with the supercharge Q; a blank means that there
is no such operator. For the cases where α is blank, the matrix ensemble for
Q is a standard Dyson β ensemble. The others are Altland-Zirnbauer (α,β)
ensembles. The values of α,β follow from the symmetry enhancements, as
explained in section 2.1.2. γ is the degeneracy, multiplied by

√
2 when N is

odd. The last column shows a factor that must be included in the sum over
pin− structures. (The corresponding table for q̂ = 3 mod 4 is obtained from
this one by N → 8−N mod 8.)

With time-reversal and odd N , there is only one block in Q. The sym-
metry group is reduced from U(L) to O(L) if T2 = 1, which happens for
N = 1 or 7 mod 8, or to Sp(L) if T2 = −1, as happens for N = 3 or 5 mod
8 (see section 2.5.2 for these statements). As detailed momentarily, T either
commutes or anticommutes with Q, depending on N and q̂. If Q commutes
with T, then Q is governed by GOE statistics for T2 = 1 or GSE statistics for
T
2 = −1. But if T anticommutes with Q, then Q is governed by an ensemble

that we have not yet encountered. If T2 = 1 and T anticommutes with Q,
then Q = iM , where M is a real antisymmetric second rank tensor of O(L)
(equivalently, an element of the adjoint representation of O(L)). If T2 = −1,



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1527 — #53
✐

✐

✐

✐

✐

✐

JT gravity and the ensembles of random matrix theory 1527

then Q transforms as a symmetric tensor25 of Sp(L) (equivalently, the ad-
joint representation of Sp(L)). These are the last two Altland-Zirnbauer
ensembles.

We give a summary of this classification in tables 3 and 4. In these tables
we also list the values of α and β, along with a variable γ that characterizes
the degeneracy of levels in Q2 and that will be used in section 5. In table 4
for the time-reversal-invariant case, we also give the values of T2

+ and T
2
−.

These are defined as the antiunitary operators that either commute (+) or
anticommute (-) with Q. They are related to T and T(−1)F in a way that
depends on N .

2.6.3. Bulk description including supersymmetry. A bulk descrip-
tion of the supersymmetric SYK model involves JT supergravity at low
energies. This motivates a conjecture that pure JT supergravity, together
with the appropriate topological field theory, should be dual to matrix inte-
grals of the types just discussed. To determine the topological field theory,
we match the anomalies in the SYK model.

In the case without time-reversal symmetry, the potential anomaly is
in (−1)F. In the bulk we sum over spin structures on orientable manifolds,
with the weights 1 or (−1)ζ . Naively, one would identify the trivial theory
with the non-anomalous random matrix class (even N). However, there is
an important subtlety. Ordinary JT gravity includes a “Schwarzian” mode,
which is a bosonic mode that propagates along the boundary. In JT super-
gravity, the analog is a Schwarzian supermultiplet, a supermultiplet that
propagates along the boundary [30, 81]. In particular, the Schwarzian su-
permultiplet includes a Majorana fermion. This boundary mode contributes
to the anomaly.

To see how this affects things, suppose we start with a boundary theory
without the (−1)F anomaly. We look for a bulk dual description in terms of
JT supergravity, including the Schwarzian supermultiplet, plus a bulk topo-
logical field theory. The Schwarzian supermultiplet by itself has the (−1)F

25Let Mij =Mji be a symmetric tensor of Sp(L). Since the fundamental repre-
sentation of Sp(L) is not real, the components ofMij are not real, butM can satisfy

an Sp(L)-invariant reality conditionM
ij
= −εii′εjj′Mi′j′ , where ε

ij is the invariant
antisymmetric tensor of Sp(L) (which we take to be real). Equivalently, with ε and
M viewed as matrices, the reality condition on M is M† = εMε. Then the matrix
Qi

j = εikMkj is hermitian, since Q† = (εM)† =M†ε† = εMεε† = εM = Q, where
we use the fact that εε† = 1. The hermitian matrix Q is an element of the adjoint
representation of Sp(L). It is odd under T, since T(Q) = εQε−1 = εεMε−1 =Mε =
−εM = −Q. We used ε = ε, ε2 = −1.
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anomaly, so the bulk topological field theory must cancel it. We conclude
that the bulk description of the non-anomalous (even N) theory should in-
clude (−1)ζ , and the bulk description of the anomalous (odd N) theory
should be the trivial theory.

The logic for the case with time-reversal symmetry is similar. In the bulk,
we sum over orientable and unorientable manifolds. To match the ZT

2 × ZF
2

symmetry, we sum over pin− structures, and the possible topological field
theory is exp(−iπηN ′/2) with N ′ an integer mod 8. To relate this N ′ to the
N of SYK, we have to keep track of the contribution to the anomaly of the
Schwarzian supermultiplet. The fermion in this multiplet transforms under
T like the supercharge Q. That means that its contribution to the anomaly
is just the sign in eqn. (2.62), or (−1)(q̂−1)/2.

Now, suppose we start with a system of N Majorana fermions. We
want to match the anomaly in the bulk. The Schwarzian supermultiplet
contributes (−1)(q̂−1)/2 to the anomaly, so the bulk topological field theory
must contribute what remains, or

(2.64) N ′ = N − (−1)(q̂−1)/2.

Note that unlike the cases studied in sections 2.4 and 2.5, here we cannot
use spin structure sums to reduce the different cases to the GOE, GUE, GSE
cases. The bulk reason is simply that JT supergravity contains fermions, so
the path integral depends on the spin or pin structure in a nontrivial way.

As a final comment, one might wonder if JT supergravity plus topo-
logical field theory would be unable to distinguish N ′ from 8−N ′ mod 8,
on the grounds that exchanging N ′ with 8−N ′ could be compensated by
exchanging a pin− bundle P with the complementary one P ′. This is not
the case, because the path integral of JT supergravity is sensitive to the
difference between P and P ′, basically because it knows how the gravitino
field transforms under T.

3. Torsion

Our next goal is to understand the path integral of JT gravity or supergrav-
ity on an unorientable two-manifold. For this we will have to understand
the “torsion.” Since JT gravity or supergravity can be formulated as a BF
theory, we start by explaining how torsion is related to BF theory.

Torsion in topology originally meant the combinatorial torsion of Reide-
meister [82]. Roughly, on a triangulated manifold on which a flat background
gauge field is given, one defines the torsion (or R-torsion or combinatorial
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torsion) as a certain product of determinants which is somewhat miracu-
lously independent of how the manifold was triangulated. One can calculate
the torsion explicitly by triangulating a manifold in a very crude way with
only a few lattice points. On the other hand, by taking a very fine triangu-
lation, one can approximate a continuum limit. That last fact, in hindsight,
could be a clue that torsion has a quantum field theory interpretation. Our
interest in the torsion is related to the fact that it has a continuum limit,
but in our calculations later, we will take advantage of the fact that it is
possible to use a crude triangulation.

Long after Reidemeister’s construction, a differential geometric or an-
alytic version of the torsion was defined by Ray and Singer [83]. Analytic
torsion is defined in terms of a product of determinants of differential oper-
ators. The differential operators that appear are the Laplace-like operators
that arise in quantizing gauge theories. With hindsight, this could serve as
a clue that this form of the torsion is related to a one-loop approximation to
gauge theory. Indeed, it was shown by A. Schwarz that Ray-Singer analytic
torsion can arise as the partition function of what is now called BF the-
ory [51]. Later, this result was an ingredient in understanding the one-loop
approximation to Chern-Simons theory in three dimensions [84].

Ray and Singer introduced ζ-function regularization in order to define
their determinants. Combinatorial torsion can be viewed as a lattice reg-
ularization of the same determinants. From a physical point of view, one
might expect two regularizations of the same theory to give equivalent re-
sults, possibly after adjusting some local counterterms. In the present case,
no such counterterms arise in odd dimensions, but there are some in even di-
mensions.26 In hindsight, this might have provided a reason to suspect that
combinatorial and analytic torsion are equivalent. The equivalence, which
was conjectured by Ray and Singer, was proved by Cheeger [85] and Müller
[86], originally for compact gauge groups. The proof was later generalized
to a larger class of groups that includes noncompact but semi-simple Lie
groups such as SL(2,R) [87–89].

26In the two-dimensional case relevant to the present paper, there is one possible
counterterm that is consistent with the fact that the analytic and combinatorial
torsions are both topological invariants. This is a factor exp(wχ), where w is a
constant and χ is the Euler characteristic of a manifold. Such a factor, in general,
should be expected whenever one compares two formulations of BF theory. The
analytic and combinatorial torsions, however, have been defined in a way that avoids
such a factor.
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When there are no zero-modes, the torsion is a number. More gener-
ally, under favorable conditions,27 such as prevail in the two-dimensional
case that will be of interest here, the torsion is instead a measure on the
moduli space of flat connections. On an even-dimensional orientable mani-
fold (without boundary), the torsion is often said to be “trivial.” Triviality
means that the torsion is 1 if there are no zero-modes. When the torsion is
a measure on moduli space, the “triviality” means that this measure can be
defined by a simple classical formula, without any quantum correction. How-
ever, on an unorientable two-manifold (or an orientable one with boundary),
there is no such “triviality” and there is a quantum correction. For compact
gauge groups, volumes of moduli spaces of flat connections on orientable and
unorientable two-manifolds were computed in [90] using the combinatorial
definition of the torsion.28 Here we will perform an analogous computation
for gauge group SL(2,R) and its supersymmetric analog OSp(1|2). There
is a technical difference in the way we will describe the answer. In [90], in-
spired by what was known about two-dimensional Yang-Mills theory [91],
the torsion was written in terms of a sum over characters of the gauge group
(which provide a basis for the space of physical states). While such a repre-
sentation might be possible for SL(2,R) or OSp(1|2), it turns out to be very
convenient instead to calculate directly with Fenchel-Nielsen or length-twist
coordinates.

3.1. Analytic torsion

Let us first review the relationship between BF theory and the torsion.
We consider a theory with a gauge group G whose Lie algebra g admits
an invariant, nondegenerate quadratic form that we will denote as Tr. The
fields will be a gauge field A with field strength F = dA+A ∧A, and an
adjoint-valued spin zero field B. The action on a two-manifold Y is

(3.1) I = −i

∫

Y
TrBF.

This is well-defined even for unorientable Y , provided that we take B to be
a pseudoscalar. The path integral of this theory is one-loop exact, since the

27Quantizing a BF theory in higher dimensions requires introducing a hierarchy
of “ghosts for ghosts,” as explained in [51]. When the higher order ghosts have
zero-modes, the torsion does not have a simple interpretation as a measure on a
moduli space of classical solutions.

28Some important early ideas on this and related matters had been developed in
unpublished work by S. Axelrod.
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integral over B gives a delta function setting F = 0:

(3.2)

∫
DB exp(−I) =

∫
DB exp(i

∫
TrBF ) = δ(F ).

After gauge-fixing, the delta function localizes A on the moduli space of
flat connections modulo gauge transformations. The resulting measure on
the moduli space is given by a product of determinants – a ghost determi-
nant that arises in gauge fixing, and a second determinant that arises in
integrating over A after gauge-fixing with the help of the δ(F ) in eqn. (3.2).

Though it is possible to continue in precisely this way, we will take a
small detour so as to be able to present the derivation in a more familiar
language. Let us add to the action I a B2 term with a small coefficient ε:

(3.3) Iε = −i

∫

Y
TrBF − ε

2

∫

Y
d2x

√
gTrB2,

where g is a Riemannian metric on Y . Integrating out B, we get

(3.4) I ′ε = − 1

2ε

∫
d2x

√
gTrF 2.

This is simply weakly coupled Yang-Mills theory. The one-loop approxima-
tion (which is not exact in Yang-Mills theory, but is exact in the limit ε→ 0,
in which we return to the original BF theory) is given by a standard for-
mula. Suppose that we are expanding around a background flat connection
A0, say with A = A0 + a where a describes the fluctuations. Let d be the
exterior derivative and D = d + [A0, ·] its gauge-covariant extension, map-
ping adjoint-valued q-forms to adjoint-valued (q + 1)-forms for q = 0, 1. Its
adjoint D∗ maps q-forms to (q − 1)-forms for q = 2, 1. The Laplacian acting
on adjoint-valued differential forms is ∆ = D∗D +DD∗. We write ∆q for the
Laplacian acting on adjoint-valued q-forms. Then a standard computation
shows that after gauge-fixing, the one-loop path integral of the Yang-Mills
theory gives a ratio of determinants

(3.5) Z1,A0
=

det′∆0√
det′∆1

.

Here in a standard approach, the denominator comes from the Gaussian
integral over a after gauge-fixing, and the numerator is the ghost determi-
nant. The symbol det′ represents a determinant in a subspace orthogonal
to the zero-modes. If ∆1 has zero-modes, this means that the classical so-
lution A0 around which we are expanding is not unique but represents a
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point in a moduli space M of classical solutions; in this case, Z1,A0
must

be interpreted as a measure on M. If ∆0 has zero modes, this means that
the classical solution A0 leaves unbroken a positive-dimensional subgroup of
G and the Fadde’ev-Popov gauge-fixing should be discussed more carefully.
This typically does not occur in two dimensions for nonabelian G.

To understand the formula (3.5), we need to take into account the fol-
lowing identity:

(3.6) det′∆1 = det′∆0 det′∆2.

The origin of this identity is as follows. The Laplacian ∆ commutes with D
and D∗, so if ψ ∈ Ω0 is an eigenstate of ∆0, then Dψ ∈ Ω1 is an eigenstate
of ∆1 with the same eigenvalue. Likewise if χ ∈ Ω2 is an eigenstate of ∆2,
then D∗χ ∈ Ω1 is an eigenstate of ∆1 with the same eigenvalue. Hodge
theory says every nonzero eigenstate of ∆1 can be identified in a unique way
with an eigenstate of ∆0 or of ∆2 with the same eigenvalue, leading to the
identity (3.6). In fact, Hodge theory gives an orthogonal decomposition of
Ω1 as

(3.7) Ω1 = Ω1
0 ⊕ Ω1

2 ⊕ Ω1
harm,

where Ω1
0 consists of states of the form Dψ, ψ ∈ Ω0, Ω1

2 consists of the states
D∗χ, χ ∈ Ω2, and Ω1

harm is the space of zero-modes, which are known as
harmonic forms.

Using the identity (3.6), we get

(3.8) Z1,A0
=

√
det′∆0√
det′∆2

.

Now we can see why the one-loop correction is trivial if Y is orientable
(and without boundary29), but not otherwise. On an orientable manifold of
dimension D, one has the Hodge star operator mapping n-forms to (D− n)-
forms and ensuring that det′∆n = det′∆D−n. So in particular on an ori-
entable two-manifold Y without boundary, det′∆2 = det′∆0, and the 1-loop
correction is trivial. On an unorientable manifold, det′∆2 ̸= det′∆0, and the
1-loop correction is nontrivial.

Now let us discuss what we do with Z1,A0
when it is nontrivial. To define

the path integral of gauge theory, one starts formally with a Riemannian

29If Y has a boundary, one has to pick a boundary condition, which will typically
not be invariant under the Hodge star operator.
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metric on the fluctuation field a,

(3.9) ∥a∥2 = −
∫

Y
d2x

√
gTr aiajg

ij ,

which induces a Riemannian measure. This measure (and a similar one for
the ghosts and antighosts) is used, formally, in defining the functional inte-
gral. The Riemannian metric on the space of all a’s induces, in particular,
a Riemannian metric on the space of zero-modes. This in turn determines a
Riemannian metric on the moduli space M of classical solutions, and there-
fore this space gets a Riemannian measure µ0. The one-loop determinant

corrects this measure to µ =
√
det′ ∆0√
det′ ∆2

µ0, and the partition function of BF

theory for a compact non-abelian gauge group is obtained by integrating
this measure over the moduli space M of flat connections:

(3.10) ZBF =

∫

M
dµ =

∫

M
dµ0

√
det′∆0√
det′∆2

.

(For a group such as SL(2,R), one also wants to divide by the mapping
class group of Y in order to get a finite answer.) If Y is orientable, the
measure that is used here is the elementary one µ0 whose definition did
not require BF theory, but if Y is unorientable, the quantum correction√

det′∆0/ det
′∆2 is important.30

3.2. Combinatorial torsion

It is possible to imitate some of these formulas for a triangulated two-
manifold Y and more generally for one that has been built by gluing together
polygons (fig. 7). This will lead us to the definition of the Reidemeister tor-
sion. By a q-cell we will mean one of the q-dimensional building blocks in a

30A further subtlety arises if the gauge group has a nontrivial center Z. If we are
on a manifold without boundary, because Z acts trivially on any flat connection, the
Fadde’ev-Popov recipe tells us to supplement the ghost determinant with a factor
of 1/#Z, where #Z is the number of elements of Z. For SL(2,R), this would be a
factor of 1/2. In our applications, we are usually interested in a two-manifold Y with
a nontrivial boundary. In that context, we only allow gauge transformations that
are trivial along the boundary, so a constant gauge transformation by an element of
Z is not allowed and we do not divide by #Z. On the contrary, if the boundary of
Y has h components, then we have to sum over 2h−1 inequivalent classes of gauge
bundles on Y that would become equivalent if we allowed gauge transformations
that are nontrivial on the boundary. This factor was explained in section 2.5.4 in
the context of the double trumpet, which is an example with h = 2.
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Figure 7: A two-manifold build by gluing together polygons (not necessarily
triangles) on their boundaries.

covering by polygons (a vertex if q = 0, an edge if q = 1, and a polygon if
q = 2). We write Sq for the set of all these q-cells. Such a covering is some-
times called a cell decomposition. A somewhat more thorough explanation
of the following can be found, for example, in [90], section 4.31

In the combinatorial approach to torsion, it is convenient to use a lan-
guage that is dual to some of what we have said so far. Instead of q-forms, one
considers functions on q-cells (every q-form defines such a function, namely
its integral over a given q-cell) and instead of the exterior derivative D map-
ping q-forms to (q + 1)-forms, one has the boundary operator ∂ mapping
q-cells to (q − 1)-cells. The q-cells are considered to be oriented, and if W is
a q-cell, then its boundary ∂W is an oriented sum of (q − 1)-cells.

Suppose that on a two-manifold Y , we are given a flat G-bundle. Let
E be the associated bundle in the adjoint representation. Any particular
oriented q-cell w is contractible, so when restricted to w, the bundle E
has a trivialization by a vector space Vw consisting of covariantly constant
sections32 of E over w. Then we define for q = 0, 1, 2 a vector space that is

31There was a much more thorough explanation in a 1988 preprint by D. Johnson,
“A Geometric Form of Casson’s Invariant and Its Connection With Reidemeister
Torsion.” Unfortunately this article was unpublished and appears to be unavailable
online. Any reader with a copy is invited to share it.

32It can happen in a given covering by polygons that two or more vertices (if
q = 1, 2) or edges (if q = 2) of a given q-cell are glued together. We ignore any such
boundary identifications in defining Vw. One may say that Vw consists of covariantly
constant sections of E over the interior of w, which is always contractible, regardless
of what gluing occurs on the boundary of w. If a given edge or vertex appears more
than once in ∂w, then we add the different contributions in defining ∂s for s ∈ Vw.
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the direct sum of the Vw for all w ∈ Sq:

(3.11) Cq = ⊕w∈Sq
Vw.

Now we define maps ∂ : Cq → Cq−1 as follows. Let w be a q-cell and
suppose that geometrically the boundary of w is ∂w = ∪iyi, with yi being
(q − 1)-cells. Then one defines ∂ : Vw → ⊕iVyi by ∂s = ⊕is|yi . More gener-
ally, remembering that all the cells are oriented and their orientations may
not be compatible, we write the boundary of w as ∂w = ∪i(−1)λiyi, where
λi = 0, 1 and a minus sign means that the orientation of yi is not the one
that is induced by the orientation of w. Then we define ∂s = ⊕i(−1)λis|yi .
Having defined maps ∂ : Vw → Cq−1 for all w ∈ Sq, we just sum over w to
get ∂ : Cq → Cq−1.

The Lie algebra g of G can be given a G-invariant and translation-
invariant measure, which is unique up to a constant multiple. For example,
such a measure could be deduced from a G-invariant inner product on g,
which determines a flat G-invariant metric on g and hence a G-invariant
Riemannian measure. As each Vw is a copy of g, each Vw gets a measure, and
therefore each Cq = ⊕w∈Sq

Vw gets a measure, which we will call αq. These
measures will be important in what follows. Though there was an arbitrary
choice of the underlying measure on g, it can be shown that a change in this
measure will just multiply the combinatorial torsion by exp(wχ), where w is
a constant and χ is the Euler characteristic of Y . The proof of this assertion
uses the fact that χ = n0 − n1 + n2, where nq is the number of q-cells in the
cell decomposition of Y , together with a simple scaling argument using the
definition (3.15) of the torsion.

Up to now, we have defined a linear transformation ∂ : Cq → Cq−1 for
q = 1, 2; when we want to be more precise, we distinguish ∂2 : C2 → C1 and
∂1 : C1 → C0. Because the boundary of a boundary vanishes, these maps
satisfy ∂1∂2 = 0. That lets one define homology groups Hq(Y,E), which will
play a role shortly. The homology groups are defined as follows: H2(Y,E) is
the kernel of ∂2 : C2 → C1; H1(Y,E) is ker ∂1/im ∂2, that is it is the quotient
of the kernel of ∂1 by the image of ∂2; and H0(Y,E) is C0/∂1C1, that is it is
the quotient of C0 by the image of ∂1. A standard fact in topology is that
the vector spaces Hq(Y,E) do not depend on the specific cell decomposition
of Y that was used to define them.

At this point, a quick way to define the Reidemeister or combinatorial
torsion is to set ∆̂2 = ∂∗2∂2, ∆̂0 = ∂1∂

∗
1 , and then we can define the Reide-

meister torsion:



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1536 — #62
✐

✐

✐

✐

✐

✐

1536 D. Stanford and E. Witten

(3.12) τR =

√
det′ ∆̂2√
det′ ∆̂0

.

This is exactly in parallel with eqn. (3.8) except that the roles of q and
2− q have been exchanged. This has happened because we have employed a
dual description based on the operator ∂ which reduces q by 1 rather than
the operator d which increases q by 1, used in the analytic approach. The
remarkable property of τR is that it does not depend on the combinatorial
description, so we can use a crude triangulation, leading to simple formulas,
or a fine one, approaching a continuum limit. The main step in showing that
the choice of a cell decomposition does not matter is to show that subdividing
one of the polygons does not change τR. See, for example, section 4 of [90].

Both conceptually and for computational purposes, a slightly different
formula for τR is convenient. In describing this, we will first assume that the
homology groups Hq(Y,E) vanish.

We will use the measures αq on the vector spaces Cq. In general, if V is
a vector space and α is a measure on V , then to any basis v1, v2, . . . , vk of
V , α assigns a number α(v1, v2, . . . , vk), which is a linear function of each of
the vi. One can think of α(v1, v2, . . . , vk) as the volume of a parallelepiped
that has vertices at the origin in V as well as the points v1, v2, . . . vk ∈ V . If
M : V → V is a linear transformation, then

(3.13) α(Mv1,Mv2, . . . ,Mvk) = | det M |α(v1, v2, . . . , vk).

This formula involves | det M |, not det M , because α is a measure, not a
differential form of top degree.

Now if H2(Y,E) = 0, and s1, s2, . . . , sn2
is any basis C2, then the vec-

tors ∂s1, ∂s2, . . . , ∂sn2
are linearly independent in C1, so they can be com-

pleted to a basis ∂s1, ∂s2, . . . , ∂sn2
, t1, t2, . . . , tn1−n2

of C1. The conditions
H1(Y,E) = H0(Y,E) = 0 mean that ∂t1, ∂t2, . . . , ∂tn1−n2

provide a basis of
C0. Therefore, we have bases of C2, C1, and C0, and using the measures αq
on these vector spaces, we can define

(3.14) τR =
α2(s1, s2, . . . , sn2

)α0(∂t1, ∂t2, . . . , ∂tn1−n2
)

α1(∂s1, ∂s2, · · · ∂sn2
, t1, t2, . . . , tn1−n2

)
.

This formula does not depend on the choices of the si or the tj , basically
because each si and each tj appears in both the numerator and the denomi-
nator in eqn. (3.14), so a rescaling of the si or the tj , or a more general linear
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transformation of the s’s or of the t’s, does not affect τR. As we have already
remarked, τR also does not depend on the specific cell decomposition that
was used.

However, for our application, we need to relax the assumption that the
homology is trivial. For some purposes, we can maintain the assumption
H0(Y,E) = H2(Y,E) = 0, but we should not assume that H1(Y,E) = 0. On
the contrary, H1(Y,E) is the cotangent bundle to the moduli space M of
flat bundles on Y , at the point corresponding to a given flat bundle E.
Suppose that dimH1(Y,E) = dimM = r. Then we should modify the above
description as follows. To the vectors ∂s1, ∂s2, . . . , ∂sn2

, all of which are
annihilated by ∂1 since ∂1∂2 = 0, we should adjoin r more basis vectors
u1, u2, . . . , ur that are annihilated by ∂1 and provide a basis of H1(Y,E).
Then ∂s1, ∂s2, . . . , ∂sn2

, u1, u2, . . . , ur are a basis of the kernel of ∂1. We
complete this to a basis of C1 by adding vectors t1, . . . , tn1−n2−r which are
not annihilated by ∂1, after which as before (since we assume H0(Y,E) =
0), ∂t1, ∂t2, . . . , ∂tn1−n2−r provide a basis of C0. So we simply modify the
definition of τR by including the ui among the basis vectors of C1:

(3.15) τR =
α2(s1, s2, . . . , sn2

)α0(∂t1, ∂t2, . . . , ∂tn1−n2−r)
α1(∂s1, ∂s2, · · · ∂sn2

, u1, u2, . . . , ur, t1, t2, . . . , tn1−n2−r)
.

As before, τR is independent of the si and the tj , but it definitely does
depend on the uk, since they only appear in the denominator. In fact, if
we rescale one of the u’s by a factor λ, τR is multiplied by a factor of λ−1.
More generally, since the uk appear in the denominator, τR transforms in a
change of basis as the inverse of a measure on H1(Y,E), The inverse of a
measure on a vector space can be regarded as a measure on its dual space.
In the present context, H1(Y,E) is the cotangent bundle of the moduli space
M of flat connections on Y , and its dual space33 is H1(Y,E), the tangent
bundle to M. A measure on the tangent space to M at every point in M
determines a measure on M. In other words, τR is a measure on M.

In a combinatorial approach, the partition function of BF theory is the
volume of M computed with this measure:

(3.16) ZBF =

∫

M
dτR.

33The distinction between the tangent and cotangent bundle of M is only impor-
tant if Y is unorientable, because if Y is orientable, M has a symplectic structure
that does not depend on any choice of a metric on Y , and this can be used to
identify the tangent and cotangent bundles of M.
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Figure 8: A genus 2 surface Y built by gluing two three-holed spheres Y1
and Y2 along boundary circles S1, S2, S3.

If H0(Y,E) ̸= 0, then we need to add more basis vectors v1, · · · , vk of
C0, and the definition becomes

(3.17) τR =
α2(s1, s2, . . . , sn2

)α0(∂t1, ∂t2, . . . , ∂tn1−n2−r, v1, v2, . . . , vk)
α1(∂s1, ∂s2, · · · ∂sn2

, u1, u2, . . . , ur, t1, t2, . . . , tn1−n2−r)
.

From the foregoing, it is clear that τR can be effectively calculated, using
a simple covering of Y by polygons. But to get a useful result, it is important
to know the gluing law for the torsion.

3.3. Gluing

In general, a complicated two-manifold can be built by gluing together simple
building blocks. For an example, an oriented surface Y of genus ≥ 2 can be
built by gluing together three-holed spheres as in fig. 8.

From the point of view of BF theory, if Y is a Riemann surface with
boundary ∂Y , one can perform the path integral over the fields on Y while
keeping fixed the boundary values of the gauge field A on ∂Y . This path
integral will give a function Ψ(A) of the boundary values. This function
defines an element in a Hilbert space H of quantum states that live on ∂Y .
If ∂Y is a union of several circles Si, i = 1, . . . , n, then H = ⊗n

i=1Hi, where
Hi is a Hilbert space associated to Si. Suppose Y1 and Y2 are two Riemann
surfaces with boundary and we want to glue them along some or all of their
boundary components to make a surface Y which itself may or may not have
a boundary. We can compute the BF path integral on Y by first computing
BF path integrals on Y1 and Y2 separately, to generate Hilbert space states,
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after which, for any circle on which we want to glue Y1 and Y2, we take an
inner product of the corresponding factor in the Hilbert spaces. Roughly, we
“trace out” the Hilbert space factor associated to the circle on which gluing
is supposed to occur.

In the example of fig. 8, we could calculate the BF path integral on Y
all at once. Alternatively, we could calculate the path integral on Y1 and
Y2, keeping fixed the gauge field A on the three circles S1, S2, S3 that are
the common boundary of YL and of YR. If we write Ai for the restriction
of A to Si, then the BF path integral on Y1 or on Y2 with fixed boundary
values generates a state Ψ1(A1, A2, A3) or Ψ2(A1, A2, A3). If we multiply
the two states together and integrate over A1, A2, A3, we get the inner
product (Ψ1,Ψ2), which is simply the BF path integral on Y . The fact that
the computation can be split up into pieces in this fashion is an important
aspect of the locality of quantum field theory.

A similar cut and paste procedure is possible in the combinatorial ap-
proach to the torsion. However, the most convenient approach involves one
difference in detail. First of all, suppose that Y is a two-manifold with bound-
ary, and that we describe it combinatorially by gluing together polygons. The
procedure described in section 3.2 is still valid even if Y has a boundary; τR

as defined in eqn. (3.14) is a measure on the moduli space of flat connec-
tions on Y , even if Y has a boundary. In particular, let S be a circle that
is part of the boundary of Y , and let a be a gauge-invariant function of the
holonomy of A around S. For example, for G = SL(2,R), we can take a to
be (in a sense we make precise later) the logarithm of the holonomy. Then
a is a function on the moduli space and we can loosely write a measure on
M, suppressing other variables, as f(a)da.

Now suppose Y1 and Y2 are two-manifolds with a common boundary
circle S on which we want to glue them together. Now we have two moduli
spaces M1 and M2 of flat connections on Y1 and Y2 respectively. Working
on Y1, the logarithm of the holonomy of a flat connection around S is then
a function on M1 that we will call a1. Similarly, working on Y2, the corre-
sponding logarithm is a function on M2 that we will call a2. The torsion on
Y1 or on Y2 gives a measure that we can schematically call τY1

= f(a1)da1
or τY2

= g(a2)da2, ignoring other variables. (Y1 and Y2 might be different
topologically, so the functions f and g and the other variables that are be-
ing suppressed can be quite different in the two cases.)

When we glue Y1 and Y2 along S to make a two-manifold Y , what sort of
gluing law for the torsion might we one hope for, analogous to what happens
in BF theory? Naively, one might hope that after setting a1 = a2, we would
get τRY = τRY1

τRY2
. But this cannot be right, because after setting a1 = a2 and



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1540 — #66
✐

✐

✐

✐

✐

✐

1540 D. Stanford and E. Witten

writing, say, a for the common value, the product τRY1
τRY2

= f(a)g(a)(da)2 is
not a measure because it has an extra factor of da. To get a measure which
might equal τRY , we need a way to remove one factor of da.

Intuitively, what is wrong is that since S is part of Y1 and also part of Y2,
when we simply take a product τRY1

τRY2
, we are double counting the degrees

of freedom that live in S. To get the correct result, we have to remove one
copy of S, which is accomplished by dividing by τRS , the torsion of a flat
connection on S. τRS is defined exactly as in section 3.2, except that as S is
a 1-manifold, it can be built from 1-cells and 0-cells, with no 2-cells. (We
will go into more detail when we actually calculate τRS .) The correct gluing
law for the Reidemeister or combinatorial torsion, whenever Y1 and Y2 are
glued along S to make Y , is34

(3.18) τRY = τRY1

1

τRS
τRY2
.

We will see the power of this formula when we actually perform computa-
tions.

Dividing by τRS actually solves two problems. First, as already explained,
it removes a surplus factor of da. But it also provides an extra factor that
would be missing in the simple product τRY1

τRY2
. A flat bundle on Y can

be restricted to Y1 and to Y2, but it is not uniquely determined by those
restrictions. To build MY , the moduli space of flat connections on Y , out
of the corresponding MY1

and MY2
, we have to set a1 = a2, as already

discussed. But that is not all. On Y , there can be a new modulus, a relative
“twist parameter” between fields on Y1 and on Y2. For G = SL(2,R), the
twist parameter in question is the “twist” variable in Fenchel-Nielsen or
length-twist coordinates; see section 3.4.1. If we denote such a relative twist
parameter as ϱ, then to build a measure on MY from a product of measures
on MY1

and on MY2
, we need to add a factor dϱ as well as removing a factor

da. As we will see, dividing by τRS accomplishes both of these tasks.

3.4. Computations for G = SL(2,R)

3.4.1. Flat connections and hyperbolic geometry. JT gravity in the
absence of time-reversal symmetry is related to BF theory with gauge group
PSL(2,R) in the case of a purely bosonic theory, or SL(2,R) in the case of

34A mathematical reference on the gluing law for the analytic torsion in its most
general form is [92]. An explanation of the gluing law for the combinatorial torsion
can be found, for example, in section 4 of [90].
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a theory with fermions and spin structures.35 The difference is that a flat
SL(2,R) connection encodes the spin structure as well as the geometry, while
a flat PSL(2,R) connection only encodes the geometry.

We may or may not want to consider a theory with fermions, but in
any event, the torsion, with which we are concerned here, is not sensitive
to the difference between PSL(2,R) and SL(2,R), basically because it is a
one-loop effect of fields with values in the adjoint representation. We will
use the language of SL(2,R) because it is more convenient to write 2× 2
matrices, not just because we might want to study a theory with fermions.

Actually, the relation of JT gravity to BF theory of SL(2,R) refers to
just one component36 of the moduli space of flat SL(2,R) connections. This
is the component we are interested in, though some of our considerations
can be applied to other components.

Three-holed spheres are a basic example, because (with a few exceptions
that have non-negative Euler characteristic) any oriented two-manifold Y
can be built by gluing together three-holed spheres. So let us discuss the
hyperbolic geometry of a three-holed sphere.

If Y is a three-holed sphere, then every flat SL(2,R) connection on Y (in
the appropriate component, but we will not keep stating this qualification
in what follows) is associated to a hyperbolic metric on Y , with constant
scalar curvature R = −2, and with geodesic boundaries. The lengths of the
three geodesic boundaries are arbitrary positive real numbers, so the rel-
evant moduli space for a three-holed sphere (ignoring the spin structure,
about which more in a moment) is a simple product R3

+ of three copies of
R+ (the set of positive real numbers). In particular, the moduli space has
dimension 3.

What is the connection between the length or circumference of a geodesic
boundary component and the corresponding flat SL(2,R) connection? This
question has a rather simple answer. The monodromy of the flat connection
around a boundary component of length ℓ is conjugate to

(3.19) U±
ℓ = ±

(
eℓ/2 0

0 e−ℓ/2

)
.

35SL(2,R) is the group of 2× 2 real matrices of determinant 1, and PSL(2,R) is
its quotient by {±1}.

36The group SL(2,R) is contractible to U(1), so an SL(2,R) bundle over a topo-
logical space has a first Chern class, just like a U(1) bundle. A flat SL(2,R) bundle
over a Riemann surface Y of genus g > 1 can have any value of the first Chern class
from g − 1 to −(g − 1). The component that is related to hyperbolic geometry is
the component of first Chern class g − 1.
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Figure 9: Y1 and Y2 are three-holed spheres with geodesic boundaries S1
and S2. The only necessary condition for being able to glue S1 onto S2,
producing a smooth hyperbolic surface Y , is that S1 and S2 should have the
same circumference. If the gluing is possible, then one can make an arbitrary
rotation of S1 relative to S2, by a “twist” parameter ϱ, prior to the gluing.

The sign, which we do not see if we project to PSL(2,R), determines the
spin structure; a spin structure of NS or R type around the circle in question
corresponds to a − or + sign, respectively. We see that

(3.20) TrU±
ℓ = ±2 cosh ℓ/2.

Conversely, any element of SL(2,R) whose trace is ±2 cosh ℓ/2 is conjugate
to U±

ℓ . So the conjugacy class that contains U+
ℓ or U−

ℓ is (for all ℓ ̸= 0) of
codimension 1 in SL(2,R) and hence of dimension 2.

Given this, we can do a simple dimension counting and check the claim
that the moduli space of flat SL(2,R) connections on the three-holed sphere
has dimension 3. Let U, V,W be the monodromies around the three holes;
they are subject to one condition UVW = 1. The space of all triples U, V,W ∈
SL(2,R) is nine-dimensional; after imposing the condition UVW = 1 and di-
viding by an overall conjugation by an arbitrary element of SL(2,R), we are
left with a moduli space of dimension 9− 3− 3 = 3. One can take the three
moduli to be the three boundary lengths or equivalently the three traces
TrU , TrV , TrW .

It is not difficult to describe explicitly the monodromies of a family of
flat connections with variable boundary lengths on a three-holed sphere Y .
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We can take, for example,

(3.21) U = δa

(
ea/2 κ

0 e−a/2

)
, V = δb

(
e−b/2 0

1 eb/2

)
.

depending on three real parameters a, b, κ. Here a and b are length param-
eters; the geodesics in question have lengths |a| and |b|. And δa and δb are
1 or −1 for a spin structure of Ramond or NS type. To get UVW = 1, the
third monodromy must be

(3.22) W = V −1U−1 = δaδb

(
e−(a−b)/2 −κeb/2
−e−a/2 e(a−b)/2 + κ

)
.

This gives a flat SL(2,R) connection for any real κ, but it is only associated
with a hyperbolic metric on Y with geodesic boundaries if 2 cosh 1

2(a− b) +
κ < −2. In that case, the third length is |c| where TrW = 2δc cosh c/2 (where
δc controls the spin structure of the third geodesic), and

(3.23) 2 cosh
c

2
= −κ− 2 cosh

a− b

2
.

We have used the fact that δaδbδc = −1 for any compatible set of spin
structures (since the number of Ramond boundaries is always even). To
get a hyperbolic three-holed sphere (rather than a flat SL(2,C) connection
in a different component of the moduli space) we must chose κ consistent
with cosh c

2 > 1. Some more detail on this flat connection is described in
appendix D.3.

Now let Y1 and Y2 be hyperbolic two-manifolds with geodesic bound-
ary components S1 and S2, respectively. Suppose that we want to make a
hyperbolic manifold Y by gluing S1 ⊂ Y1 to S2 ⊂ Y2. An obvious necessary
condition for this gluing to produce a hyperbolic manifold is that S1 and S2
must have the same circumference. There is actually no further condition,
because hyperbolic geometry is rather rigid; the geometry of a hyperbolic
surface near a geodesic boundary component is completely determined by
the circumference of that boundary.

Not only are we free to glue S1 to S2 as long as they have the same
length, but an arbitrary parameter ϱ enters in this gluing, because we are
free to rotate S1 relative to S2. This parameter was mentioned at the end
of section 3.3. We understand ϱ as the distance (not angle) of the relative
rotation between S1 and S2, so the range of ϱ is 0 ≤ ϱ ≤ ℓ, where ℓ is the
circumference of S1 or S2. (Alternatively, one can replace ϱ with the angle
θ = 2πϱ/ℓ, which ranges from 0 to 2π.)
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The parameter ϱ can be described in the language of gauge theory and
flat connections. When we glue S1 to S2, we are free to make a relative gauge
transformation of the fields on the two sides by any element of SL(2,R) that
commutes with the monodromy around S1 or equivalently around S2. If as in
eqn. (3.19), the monodromy of the hyperbolic flat connection around S1 or
S2 is by the group element U±

ℓ = ±diag(eℓ/2, e−ℓ/2), then the element U+
ϱ =

diag(eϱ/2, e−ϱ/2) commutes with Uℓ, and a relative gauge transformation by
U+
ϱ corresponds to the relative rotation between the two sides that was

discussed in the last paragraph. One may wonder about the interpretation
of a relative gauge transformation by the element U−

ϱ = −diag(eϱ/2, e−ϱ/2),
which also commutes with Uℓ. The answer is that the minus sign represents
a sign change of fermions on S1 relative to those on S2, prior to gluing. This
sign change, which produces a different spin structure on the glued manifold,
was important in our discussion of the bulk dual of fermion anomalies.

Incorporating time-reversal symmetry replaces the gauge group by a
double cover. In a purely bosonic theory, incorporating time-reversal sym-
metry means replacing PSL(2,R) by its double cover PGL(2,R) (the group
of 2× 2 invertible real matrices, modulo multiplication by a nonzero real
scalar). The essential difference is that PGL(2,R) contains an element
diag(1,−1) of determinant −1, and PSL(2,R) does not. In the presence
of fermions, one has to take a double cover of SL(2,R), but there are two
different double covers, corresponding to pin+ and pin−. For pin+, one wants
the group of 2× 2 real matrices of determinant ±1, meaning that again one
includes the element diag(1,−1). For pin−, one wants the group of 2× 2
matrices of determinant 1 that are either real or imaginary, meaning that
one extends SL(2,R) to include the element diag(i,−i) = i diag(1,−1). In
any of these cases, one can make an orientation-reversing gluing, in which
S1 is glued to S2 with a relative gauge transformation diag(eϱ/2,−e−ϱ/2) (or
i diag(eϱ/2,−e−ϱ/2) in the pin− case); these commute with U±

ϱ . This more
general type of gluing produces, for example, the twisted double trumpet
that we studied in section 2. Note that in either pin+ or pin−, one distin-
guishes the group elements diag(−1,−1) and diag(1, 1), which are equivalent
in PGL(2,R).

From what we have said, every gluing of two three-holed spheres is asso-
ciated to a pair of moduli ℓ, ϱ. They are called length-twist or Fenchel-Nielsen
coordinates. For example, if we build a genus 2 Riemann surface Y by glu-
ing two three-holed spheres along circles S1, S2, S3 (fig. 8), one gets three
pairs of length-twist coordinates, making 6 parameters in all. Locally these
parametrize the moduli space of Riemann surfaces of genus 2, whose real
dimension is indeed 6. The subtlety is that there are many ways to build the
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same Y by gluing together three-holed spheres, so the same moduli space
can be parametrized locally by length-twist coordinates in many different
ways. A given set of length-twist coordinates gives a good parametrization
when the ℓi are sufficiently small, but when the ℓi increase beyond a certain
point, there exists an alternative description by a different set of length-
twist coordinates with smaller lengths. There is no simple description of the
inequalities on the lengths that one should impose to get a single copy of
the moduli space of hyperbolic metrics or conformal structures on Y .

3.4.2. The torsion of a three-holed sphere. In computing the torsion
of a three-holed sphere, a circle, and a crosscap, we follow steps that are
mostly explained more fully in sections 4.3, 4.4, and 4.6 of [90]. There are a
few differences in detail because the gauge group is not compact.

We begin with a three-holed sphere and gauge group G = SL(2,R). We
henceforth write just τ rather than τR for the torsion. The torsion is a mea-
sure; it will be convenient to represent this measure by a differential form.
A measure is really better understood as the absolute value of a differential
form, but we omit the absolute value sign. For a purely bosonic group such
as SL(2,R), the torsion is positive-definite, so we do not need to keep track
of overall signs.

In general, let Y be a two-manifold and P a point in Y . Let R be the
moduli space of flat connections on Y , modulo gauge transformations, and
R̂ the moduli space of “based” flat connections, constructed by dividing by
gauge transformations that are trivial at P . There is an obvious fibration
π : R̂ → R, with fiber G, defined by dividing by gauge transformations that
are possibly nontrivial at P .

We have already explained how the combinatorial torsion defines a mea-
sure τ on R. By omitting in the definition of C0 the 0-cell that corresponds
to P , but otherwise following exactly the same definitions, one can use the
combinatorial torsion to define a measure τ̂ on R̂. The definition of the
combinatorial torsion made use of a volume form on the Lie algebra g of G.
Such a volume form also determines a volume form on the group manifold.
We will call this volume form volG. (Note that volG is a volume form, not
a number; we are interested in noncompact gauge groups whose volume is
infinite.) The three volume forms τ , τ̂ , and volG have a simple multiplicative
relationship37

(3.24) τ̂ = volG · π∗(τ).

37This statement is equivalent to eqn. (4.39) in [90], which is formulated a little
differently as the volume of G was assumed to be finite.
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Figure 10: The shaded region is a three-holed sphere Y - or more precisely
a topological space that is equivalent to Y up to homotopy. It has a simple
cell decomposition with a single 0-cell P , three 1-cells that have been labeled
by the holonomies U, V,W of a flat connection, and a single two-cell X.

In general, omitting a single 0-cell in the definition of C0 might not
lead to a major simplification. However, for the three-holed sphere (or more
exactly for a topological space that is equivalent to a three-holed sphere up
to homotopy, which is good enough in computing the torsion), one can pick
a very simple cell decomposition with only a single 0-cell P (fig. 10). This
means that after omitting P , we get C0 = 0, and this does lead to a major
simplification. In the cell decomposition of the figure, there is a single 2-cell
X, and three 1-cells that have been labeled by the holonomies U, V,W of a
flat connection. Hence C2 = VX , C1 = VU ⊕ VV ⊕ VW . Since C0 = 0, we can
compute the torsion just using the boundary map ∂ : C2 → C1. But matters
are even simpler than that. If Θ : C1 → VW is the obvious projection, then
Θ ◦ ∂ : C2 → VW is an isomorphism. It follows then from the definition of the
torsion that if we discard C2 and VW , the torsion is unchanged. This means
that we can compute the torsion τ̂ taking C2 = C0 = ∂ = 0, C1 = VU ⊕ VV .

On a three-holed sphere, the holonomies of a flat connection are group
elements U, V,W satisfying UVW = 1. To construct the moduli space R, we
would identify two such triples that differ by conjugation by an element R of
G: (U, V,W ) ∼= (RUR−1, RV R−1, RWR−1). To construct the based moduli
space R̂, we do not divide by conjugation. Since UVW = 1, R̂ ∼= G×G,
parametrized by U and V . With C2 = C0 = ∂ = 0, C1 = VU ⊕ VV , eqn. (3.15)
just says that τ̂ is the natural volume form on G×G. Since there are several
copies of G in this discussion, we will write volG(U) for the volume form of
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a copy of G parametrized by U , and similarly for volG(V ) and volG(R). So

(3.25) τ̂ = volG(U) · volG(V ).

We parametrize U and V by the obvious R-dependent generalization of
eqn. (3.21):

(3.26) U = RU0R
−1, V = RV0R

−1,

with

(3.27) U0 =

(
ea/2 κ

0 e−a/2

)
, V0 =

(
e−b/2 0

1 eb/2

)
.

Thus a, b, and κ (or U0 and V0) parametrize the ordinary moduli space R,
while a, b, κ, and R parametrize the extended moduli space R̂. Eqns. (3.24)
and (3.25) tell us that

(3.28) volG(U) · volG(V ) = volG(R) · τ,

and this condition will determine τ .
We introduce a standard basis for the Lie algebra sl2 of SL(2,R):

(3.29) e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Now we can describe explicitly what measures we will use on the Lie al-
gebra and on the group. If x is an element of the Lie algebra sl2, write

it as x =

(
xh xe
xf −xh

)
= xee+ xff + xhh, and then define the measure on

sl2 to be 4dxedxfdxh.
38 Similarly, if U is an element of the group SL(2,R),

then U−1dU is a Lie algebra valued one-form, and we expand it as U−1dU =

38 The factor of 4 has been chosen with foresight so that our final result for a
measure on moduli space will agree (in the oriented case) with standard formulas.
The measure we are using can be derived from the inner product (x, x) = 2Trx2 =
4x2h + 4xexf on the Lie algebra. This inner product corresponds to the metric ds2 =
4dx2h + 4dxedxf on g, so that the metric tensor g satisfies

√
| det g| = 4 and the

Riemannian measure is 4dxedxfdxh. Using a different measure would multiply the
final result for the torsion by a factor (const.)χ where χ is the Euler characteristic.
Such a factor can be absorbed by adjusting the coefficient of χ in the action of the
underlying JT theory.
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(U−1dU)ee+ (U−1dU)ff + (U−1dU)hh. Then the volume form on the group
is the three-form

(3.30) volG(U) = 4(U−1dU)e(U
−1dU)f (U

−1dU)h.

To use equation (3.28) to compute τ , it suffices to work at R = 1. Ex-
panding R = 1 + r +O(r2), we have dR = dr +O(r), dR−1 = −dr +O(r).
Thus at R = 1,

volG(R) = 4dredrfdrh.

The general form of τ is F (a, b, κ)da db dκ, for some function F (a, b, κ) that
we want to compute. Thus the right hand side of eqn. (3.28) reads

(3.31) 4dredrfdrh F (a, b, κ)da db dκ,

and we need to compare this to the left hand side.
To evaluate the left hand side, we first note that at R = 1,

(3.32)
U−1dU = U−1

0 dU0 + U−1
0 drU0 − dr,

V −1dV = V −1
0 dV0 + V −1

0 drV0 − dr.

Since U0 is upper triangular, there is a simple result for the lower triangular
part of U−1dU :

(3.33) (U−1dU)f = (ea − 1)drf .

Similarly, there is a simple result for the upper triangular part of V −1dV :

(3.34) (V −1dV )e = (eb − 1)dre.

We can now eliminate drf , (U
−1dU)f , dre, and (V −1dV )e from eqn. (3.28),

reducing to

4(ea − 1)(eb − 1)(U−1dU)e(U
−1dU)h(V

−1dV )f (V
−1dV )h(3.35)

= drh F (a, b, κ)da db dκ.
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In the further evaluation of the left hand side of eqn. (3.35), we can set
dre = drf = 0. After doing so, we get some simple formulas:

(U−1dU)h =
1

2
da

(U−1dU)e = e−a/2dκ+
κ

2
e−a/2da+ 2κe−a/2drh

(V −1dV )h = −1

2
db

(V −1dV )f =
1

2
e−b/2db− 2e−b/2drh.(3.36)

The left hand side of eqn. (3.35) is therefore just 8 sinh a
2 sinh

b
2 drhda db dκ.

From eqn. (3.35), we therefore get

(3.37) τ = F (a, b, κ)da db dκ = 8 sinh
a

2
sinh

b

2
da db dκ.

Concretely, starting with eqn. (3.35), we first replace (U−1dU)h (V
−1dV )h in

(3.35) with −1
4da db, cancel da and db from the equation, and set da = db =

0 in the formulas for (U−1dU)e and (V −1dV )f . Then (U−1dU)e(V
−1dV )f

reduces to −2e−a/2−b/2dκdrh, and this leads to eqn. (3.37).
In view of eqn. (3.23), we can here replace dκ with sinh c

2 dc, where c
is the length parameter of the third boundary component. Thus finally the
torsion of a three-holed sphere Y with boundary length parameters a, b, c is

(3.38) τY = 8 sinh
a

2
sinh

b

2
sinh

c

2
da db dc.

As a check on the calculation, we note that this is symmetric in a, b, c, though
the derivation lacked that symmetry. We recall that the overall sign in eqn.
(3.38) is unimportant, as the torsion of the three-holed sphere is really the
absolute value of the three-form that appears on the right hand side. The
factor of 8 is meaningful but depended on how we normalized the measure
on the Lie algebra.

3.4.3. The torsion of a circle. Now we consider a circle S endowed with
a flat SL(2,R) bundle E → S. We take the holonomy of this flat bundle to
be U = diag(ea/2, e−a/2).

We can endow S with a very simple cell decomposition, with a single
0-cell P and a single 1-cell C (fig. 11). The computation of the torsion is
thus going to be rather simple. C1 and C0 are both copies of the Lie algebra
sl2, while C2 = 0. In the definition of the boundary operator ∂ : V1 → V0, we
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Figure 11: A simple cell decomposition of a circle, with one 0-cell P , and
one 1-cell C, with holonomy U .

need to take into account that both ends of C are on P . Let us trivialize the
bundle E at and just to the right of the point P ; we use this trivialization
in identifying V1 and V0 with sl2. For s ∈ V1, the boundary operator acts on
S by

(3.39) ∂s = UsU−1 − s.

The two terms are the contributions of the two ends of C. The contribution
from C ending on P from the left is proportional to UsU−1, because to
evaluate it we have to parallel transport s along C from one end of C to
the other. There is a relative minus sign between the two terms because of
a relative orientation between the two ends of C.

It is convenient to decompose the sl2 Lie algebra as sl02 ⊕ sl⊥2 , where sl02
consists of diagonal matrices and sl⊥2 consists of matrices whose diagonal
matrix elements vanish. The operator ∂ commutes with this decomposition,
so ∂ = ∂0 ⊕ ∂⊥, where ∂0 and ∂⊥ act on sl02 and on sl⊥2 , respectively. The
torsion τS of a flat bundle on S correspondingly factorizes

(3.40) τS = τ⊥S · τ0S ,

where τ⊥S and τ0S are the torsion defined using ∂⊥ and ∂0, respectively.
The operator ∂⊥ : sl⊥2 → sl⊥2 is invertible, so we can use the simplest def-

inition (3.14) of the torsion. In the present case, with V2 = 0, and V1,V0 both
copies of sl⊥2 , the definition (3.14) reduces to τ⊥ = α0(∂

⊥t1, ∂⊥t2)/α1(t1, t2),
where t1, t2 is any basis of sl⊥2 . But with the two measures α0 and α1 being
the same, this ratio is, according to eqn. (3.13), the absolute value of the
determinant | det ∂⊥|. The eigenvalues of ∂⊥ are e±a − 1, so

(3.41) τ⊥S = | det ∂⊥| = |(ea − 1)(e−a − 1)| = 4 sinh2
a

2
.
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On the other hand, ∂0 is actually identically 0, since UsU−1 − s = 0 if s
is diagonal. This being so, the definition (3.17) reduces to τ0 = α0(v)/α1(u),
where v and u are basis vectors of the 1-dimensional spaces C0

0 and C0
1 . This

just means that τ0 is the ratio of the natural measures on C0
0 and C0

1 . Since
those spaces are both copies of sl02, the natural measures are the same, and
one could claim that τ0 = 1. It is more convenient not to take that step
because, although C0 and C1 are both copies of sl02, the physical meaning
is different. C1 is the tangent space to the moduli space of flat connections
on the circle. C0 is the Lie algebra of the subgroup of SL(2,R) that com-
mutes with a given flat connection. If we parametrize the moduli space by
the parameter a that appears in the monodromy U = diag(ea/2, e−a/2), and
similarly write diag(eϱ/2, e−ϱ/2) for a group element that commutes with U ,
then the ratio of the natural measures is

(3.42) τ0S = da · (dϱ)−1.

Combining these statements, we get the torsion of a flat connection on
the circle:

(3.43) τS = 4 sinh2
a

2
· da · (dϱ)−1.

3.4.4. The torsion of an oriented surface. Let Y1 and Y2 be two three-
holed spheres endowed with hyperbolic metrics, and with respective bound-
ary components S1 and S2, each with length parameter a. As explained in
section 3.4.1, we can build a larger hyperbolic manifold Y by gluing S1 ⊂ Y1
onto S2 ⊂ Y2. According to eqn. (3.18), the torsion of Y is related to the
torsions of Y1, Y2, and S = S1 = S2 by τY = τY1

τ−1
S τY2

.
Let us isolate in this formula the factors that depend on variables that

are defined along S. From both τY1
and τY2

, we get a factor of 2 sinh a
2da.

On the other hand, from τ−1
S , we get dϱ/4 sinh2 a2da. When we multiply

these quantities together, the factors of sinh a/2 cancel, and we are left with
just dadϱ. As promised in section 3.3, an unwanted extra factor of da has
disappeared. We have also gotten a factor of dϱ, a measure on the subgroup
of SL(2,R) that commutes with the monodromy around S. We can, in other
words, think of dϱ as a measure for integrating over the gluing parameter ϱ
that was described in section 3.3.

Since any oriented two-manifold can be constructed by gluing together
three-holed spheres, we can, without further ado, construct the torsion for
an arbitrary oriented two-manifold. For simplicity, let us consider the case
of an oriented two-manifold Y of genus g without boundary. It can be built
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by gluing together 2g − 2 three-holed spheres Yα along 3g − 3 circles Si (for
g = 2, this was drawn in fig. 8). For each circle, we get a pair of length-twist
coordinates ai and ϱi, and the above computation leads to an integration
measure dai dϱi for those variables. We also get a factor 8 for each three-
holed sphere, which cancels the 1/4 for each circle. Thus the volume form
for the moduli space M of hyperbolic structures on Y that we get from the
torsion is

(3.44) τY =

3g−3∏

i=1

daidϱi.

For a different normalization of the measure on sl2, this would be multiplied
by (const.)χ.

A few words about this formula are in order. First, length-twist coor-
dinates on M are far from unique, since there are infinitely many ways to
decompose Y into a union of three-holed spheres. The formula (3.44) is valid
for any choice of length-twist coordinates.

Second, this formula for the measure (for the case of an oriented two-
manifold Y ) is actually well-known, but it is not usually derived using the
torsion. A more common procedure is to use the fact that if Y is oriented,
then M is a symplectic (and in fact Kahler) manifold. The symplectic form
of M in length-twist coordinates is

∑
i daidϱi, and this leads to the volume

form (3.44). The two approaches give the same volume form because, as
we described in the beginning of this section, the torsion is “trivial” for
orientable Y , which just means that it is equivalent to the volume form
that can be defined using the symplectic or Riemannian structure of M.
The symplectic or Riemannian structure of M is more elementary than the
torsion in the sense that these structures are defined just in terms of zero-
mode wavefunctions on Y , while the torsion involves a quantum correction
coming from the non-zero modes. There are two reasons that we have used
the torsion to arrive at the formula for the volume form: this is the natural
definition in JT gravity, and (therefore) it generalizes to unorientable two-
manifolds.

Finally, though the formula (3.44) is simple, it does not lead to any
simple results for the volume of M, because the region in length-twist co-
ordinates that corresponds to M is not simple to describe. This is actually
the problem that was overcome in the work of Maryam Mirzakhani on the
volumes of moduli spaces.

3.4.5. The torsion of a cross-cap. To complete the picture, we also
need to compute the torsion of a crosscap.
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Figure 12: The shaded region in this picture is the crosscap manifold C or
more exactly a topological space equivalent to it in homotopy. It has a simple
cell decomposition with one 2-cell X, two 1-cells labeled by their holonomies
U and V , and one 0-cell P . V appears twice in the drawing, but the two
copies are supposed to be identified to create C.

By a crosscap, we mean here a two-manifold C that is constructed from
a cylinder by making a suitable identification on one boundary. For example,
we can start with the cylinder I × S1, where I is the unit interval 0 ≤ x ≤ 1,
and S1 is the circle θ ∼= θ + 2π. Then at x = 1, we make the identification
θ ∼= θ + π, while doing nothing at x = 0. This gives an unorientable two-
manifold C, whose boundary is a single circle S, the circle at x = 0. At
x = 1, there is a second circle S′ with 0 ≤ θ ≤ π, but because of the gluing,
this is an “internal” circle, not a boundary. C can be viewed as a Möbius
strip or as a copy of RP2 with an open ball removed.

Let U be the monodromy of a flat connection on C around S, and let
V be the monodromy of the same connection around S′. Clearly they are
related by U = V 2. For hyperbolic monodromies, up to conjugacy we can
take U = diag(ea/2, e−a/2), V = diag(ea/4,−e−a/4). There is an important
minus sign in the formula for V which reflects the fact that the orientation
of C is reversed in going around S′. Spin structures are not important in
the discussion of the torsion (because the fields of the BF model are all in
the adjoint representation of SL(2,R)) so for simplicity we ignore the overall
sign of the monodromies and subtleties of pin− and pin+. (We will have to
incorporate those subtleties when we get to the supersymmetric case.)

C has a simple cell decomposition (fig. 12), with one 2-cell X, a pair
of 1-cells associated to holonomies U and V , respectively, and one 0-cell P .
Thus C2 ∼= sl2, C1 ∼= sl2 ⊕ sl2, with the two summands corresponding to the
1-cells labeled U and V , respectively, and C0 ∼= sl2. In defining the boundary
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map, we trivialize the flat bundle E just to the right of the point P in the
figure. Then the boundary map ∂2 : C2 → C1 is

(3.45) ∂2(s) = s⊕ (−s− V sV −1),

while ∂1 : C1 → C0 is

(3.46) ∂1(t⊕ u) = UtU−1 − t+ V uV −1 − u.

One may verify that ∂1 ◦ ∂2 = 0, using V 2 = U .
Because V and U are diagonal, the torsion of C has the same sort of

factorization as in section 3.4.3:

(3.47) τC = τ⊥C · τ0C .

To compute τ⊥C and τ0C , note first that if we compose ∂2 with the projec-
tion map on the first summand of C1 = sl2 ⊕ sl2, it is the identity. This
means that τ⊥C is unchanged if we just drop C2 and the first summand
of C1. This reduces us to the torsion of the map ∂′1 : sl2 → sl2 defined by
∂′1(u) = V uV −1 − u.

From here on, the discussion is similar to the discussion of the torsion
of a circle in section 3.4.3. Restricted to sl⊥2 , ∂

′
1 is invertible, and τ⊥C is just

the absolute value of its determinant. The eigenvalues of ∂′1 acting on sl⊥2
are −1− e±a/2, so its determinant is (1 + ea/2)(1 + e−a/2) = 4 cosh2 a/4:

(3.48) τ⊥C = 4 cosh2
a

4
.

On the other hand, restricted to sl02, ∂
′
1 = 0. So its torsion is just a ratio

of two copies of the natural measure on sl02. As in section 3.4.3, though we
could call this ratio 1, it is more useful to think of it as a ratio of measures
on two copies of sl02: one copy is the tangent bundle to the moduli space
of flat connections on C, and the other copy generates the automorphism
group of such a flat connection. Relative to section 3.4.3, we have to be
careful with a factor of 2. The definition of ∂′1 is such that ∂′1 maps flat
sections on S′ (elements of the second summand in C1) to flat sections at
p, but when we glue C to some other Riemann surface, the gluing takes
place along S, not S′. So what was da · dϱ−1 in section 3.4.3 here becomes
da · dϱ−1, where a is the length parameter of S′, but ϱ generates twists of
S. Since a = a/2 (the monodromy around S is diag(ea/2, e−a/2), while that
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Figure 13: A boundary of a two-manifold Y0 can be replaced by a crosscap
by gluing the crosscap manifold C to a boundary S of Y0.

around S′ is diag(ea/2,−e−a/2)), we have

(3.49) τ0C = da · (dϱ)−1 =
1

2
da · (dϱ)−1

and

(3.50) τC = 2 cosh2
a

4
· da · (dϱ)−1.

3.4.6. The torsion of an unorientable two-manifold. Now let Y be
an unorientable two-manifold, without boundary for simplicity. Such a man-
ifold is not a complex Riemann surface, but – assuming its Euler charac-
teristic is negative – it does admit a hyperbolic metric, that is a metric of
constant scalar curvature R = −2.

A compact oriented hyperbolic two-manifold can be built by gluing to-
gether three-holed hyperbolic spheres with geodesic boundaries. To build
a hyperbolic metric on an arbitrary possibly unorientable Y , we need an-
other kind of building block. This is obtained from a three-holed sphere Y0
by replacing one or more of its boundary circles with crosscaps. If one of
the boundaries of Y0 is a geodesic circle S defined by θ ∼= θ + 2π, then to
replace S with a crosscap, we just make a further identification θ ∼= θ + π,
after which Y0 becomes unorientable and S is replaced by a circle S′ that is
a geodesic of one-half the length of S. S′ is a “one-sided” geodesic, because
in going around S′, its two sides are exchanged.
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If we make such a replacement on one or two boundary components of
Y0, we get a hyperbolic two-manifold Y ′ with two or one remaining bound-
ary components that can be used in further gluing.39 In such gluing, we use
as “elementary building blocks” either a three-holed sphere or its modifi-
cation by replacing some boundaries with crosscaps, as just described. By
gluing such elementary building blocks together along their geodesic bound-
aries, one can construct (in general in infinitely many different ways) hyper-
bolic metrics on an arbitrary possibly unorientable two-manifold Y without
boundary.40

If Y is presented in such a fashion, then the moduli space of hyperbolic
structures on Y can be described locally by a generalization of the length-
twist or Fenchel-Nielsen coordinates that we used in section 3.4.4. Gluing of
two elementary building blocks along a boundary circle always produces a
pair of length-twist moduli a, ϱ. But if one of the elementary building blocks
has a one-sided geodesic as one of its ends, then this one-sided geodesic
carries a length parameter but no corresponding twist parameter, as it is
not going to be glued onto anything.

To get a general formula for the torsion of any two-manifold in length-
twist coordinates, we just need to know what happens when a boundary
circle is replaced by a one-sided geodesic. There is a local universal formula
for this. Let Y0 be a three-holed sphere and let C be the crosscap manifold
whose torsion was computed in section 3.4.5. Thus C has a single boundary
circle S. By gluing S onto one of the boundary circles of Y0, we make a new
manifold Y ′ in which a boundary circle has been replaced by a one-sided
geodesic (fig. 13). Since we already have computed the torsions of Y0, C,
and S, it is straightforward to compute the torsion of Y ′ using the gluing
law:

(3.51) τY ′ = τY0

1

τS
τC .

We focus on the factors in the torsion that involve the boundary compo-
nent S of Y0 at which the gluing is occurring. If the holonomy around S

39If we make the same replacement on all three boundary components of Y0,
we get a hyperbolic structure on a particular compact two-manifold Y ′ without
boundary. As Y ′ has no boundary, it is not a building block for further gluing. But
the discussion in the text applies for computing its torsion.

40The gluing maps used here can be orientation-reversing. If Y is unorientable
but has even (negative) Euler characteristic, then hyperbolic metrics on Y can be
constructed without the use of crosscaps by gluing together three-holed spheres
with gluing maps some of which are orientation-reversing.
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is diag(ea/2, e−a/2) (and therefore the length parameter of the one-sided
geodesic in C is a = a/2), then the factor in τY0

that involves a is 2 sinh a
2 da.

Including additional a-dependent factors in eqns. (3.43) and (3.50), one finds
that the a-dependent part of τY0

τ−1
S τC is 1

2 coth
a
4 da.

A two-manifold Y of genus g with n crosscaps attached can be built
by gluing together 2g − 2 + n building blocks, namely three-holed spheres
with a total of n boundaries replaced by crosscaps, along 3g − 3 + n circles.
The Euler characteristic of such a surface is χ = 2− 2g − n. Associated with
the ith circle is a pair of length-twist parameters ai, ϱi, and associated with
the αth crosscap is a length parameter aα/2 (the length of its one-sided
geodesic). Putting the pieces together, and keeping track of factors of 2, we
learn that the torsion of Y is

(3.52) τY =

3g−3∏

i=1

daidϱi

n∏

α=1

1

2
coth

aα
4
daα.

This volume form on the moduli space of hyperbolic structures on an
unorientable two-manifold Y was actually first defined by Norbury (see The-
orem 5 in [52]; note that Norbury’s ℓα is our aα/2). This volume form has
been further studied in [93]. The starting point in [52] was not the torsion.
Rather, the starting point was the hypothesis that there might be a vol-
ume form that takes a simple factorized form in length-twist coordinates
and is independent of the particular choice of such coordinates. As there
are infinitely many sets of length-twist coordinates on a given surface, the
condition that a particular factorized expression does not depend on the
choice is very restrictive. It turned out that the expression in eqn. (3.52)
does have this property (and no other factorized expression does [93]). In
our derivation here, the starting point was the torsion, which manifestly is a
topological invariant, not depending on a choice of length-twist coordinates.
That starting point did not make it completely obvious that we would get a
factorized expression in length-twist coordinates, but the gluing law for the
torsion goes a long way towards explaining why this happens.

As originally noted in [52] and further elaborated in [93], if one actually
tries to integrate the volume form τY to compute the volume of the mod-
uli space, one runs into what in string theory would be called an infrared
divergence. Indeed, the measure behaves as daα/aα for small aα.

3.4.7. Application to JT gravity. In applications to JT gravity, one is
usually not interested in a compact two-manifold Y , but in a two-manifold
with non-compact “ends” that are asymptotic to a cutoff version of AdS2,
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Figure 14: A trumpet.

which we will call NAdS2. A Schwarzian mode propagates along the bound-
ary of NAdS2.

The most basic example is NAdS2 itself. An important ingredient in
describing other possibilities is a “trumpet” T (fig. 14), which looks like
NAdS2 on the “outside” and has an “internal” boundary consisting of a circle
S whose boundary is a geodesic with length parameter a. The boundary of
T can be glued onto a boundary component of a compact two-manifold,
or onto a two-manifold with additional noncompact ends. For example, one
can glue together two trumpets along a common boundary of length a to
make a “double trumpet,” which we already discussed in section 2.4.1. Let
ZTJT(a) be the JT path integral on a trumpet T whose internal boundary
has length a. An important factor in ZTJT(a) is the path integral of the
Schwarzian mode. The JT path integral of a double trumpet is the product
of two factors of ZTJT(a), one for each trumpet, integrated over a and over
the gluing parameter ϱ. The measure that must be integrated is

(3.53) ZTJT(a) dadϱZ
T
JT(a).

It is not immediately clear how to compute ZTJT(a) in the language of the
torsion. It may be hard to combine the combinatorial approach to the tor-
sion with the boundary conditions that are needed to include the Schwarzian
mode on the “outer” boundary of the trumpet. Even on the “inner” bound-
ary of the trumpet, there is a nontrivial issue to consider: the boundary
condition that we have used in computing the torsion on a manifold with
boundary actually does not coincide with what is usually used in defining
the JT trumpet path integral ZJT(a). That is why in the gluing law for
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the torsion, which we described in section 3.3, one has to divide by τS , the
torsion of a circle.

Rather than trying to deal with these issues directly, we will take a
shortcut. We will write Z̃TJT(a)da for a JT path integral on the trumpet
computed with “Schwarzian” boundary conditions on the outer boundary,
and with “torsion” boundary conditions on the inner boundary. We will not
try to compute Z̃JT(a) directly, but rather we will infer it by comparing to
eqn. (3.53). To get from Z̃TJT(a)da to a JT path integral on the double trum-
pet, we simply glue together two trumpets on their inner boundaries, using
the torsion gluing rule since Z̃TJT(a)da is defined with “torsion” boundary
conditions on the inner boundary. So eqn. (3.53) should be compared to
Z̃TJT(a)daτ

−1
S Z̃TJT(a)da. Using eqn. (3.43) for τS , we get41

(3.54) ZTJT(a)dadϱZ
T
JT(a) = Z̃TJT(a)

dadϱ

4 sinh2 a2
Z̃TJT(a).

So

(3.55) Z̃TJT(a) = ZTJT · 2 sinh a
2
.

(Since the bosonic JT path integral is positive and the torsion is a positive
measure, we do not need to worry about a sign here in extracting a square
root.)

Now that we know the trumpet path integral with “torsion” boundary
conditions on the inner boundary, we can predict the path integral for any
manifold made by gluing a compact surface Y onto a trumpet (or a collection
of trumpets). We just treat Y and its gluing onto the trumpet using the
usual rules for the torsion. For example, the basic crosscap spacetime is
made by replacing the boundary of the trumpet with a crosscap. Replacing
a boundary with a crosscap is done by gluing in a copy of the crosscap
manifold C, so it gives a factor of 1

τS
τC , where τS is given in eqn. (3.43) and

τC in eqn. (3.50). Using also eqn. (3.55) for Z̃TJT(a), we find that the path
integral measure for the crosscap spacetime is simply

(3.56) ZTJT · 1
2
coth

a

4
da,

where the circumference of the one-sided geodesic in the crosscap is a = a/2.

41Recall that we are really discussing measures, so the overall signs in these
formulas are not important.
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In a theory with fermions, this is the result for a particular pin− or pin+

structure. It must be multiplied by another factor that arises from the sum
over pin± structures, as described in section 2.5.3.

3.5. Supersymmetry and the torsion

3.5.1. Supersymmetry and time-reversal in two dimensions. As
discussed in section 2.5.1, a time-reversal symmetry T, in a theory with
no relevant global symmetry other than (−1)F, will satisfy either T

2 = 1
or T

2 = (−1)F. The two cases correspond to pin− and pin+, respectively.
In either case, there might be a c-number anomaly, so the distinction is
really that for pin−, T2 commutes with fermionic fields, and for pin+, it
anticommutes with them.

In a quantum mechanical system with just a single supercharge Q, a T

symmetry is necessarily of pin− type, since T2 = (−1)F would force fermionic
operators (such as the supercharge Q) to come in pairs.

A similar statement holds in a bulk dual theory, when there is one. As
we will explain, in a two-dimensional model with N = 1 supersymmetry and
no relevant global symmetries, time-reversal symmetry of pin− type is the
only option. Explaining this will involve a few details, but the necessary
details will anyway serve as preparation for analyzing the torsion in N = 1
supergravity.

In general, in D dimensions, AdSD spacetime has symmetry SO(2, D −
1) in Lorentz signature, or SO(1, D) in Euclidean signature. D = 2 happens
to be the only case in which these groups are isomorphic. We start in Lorentz
signature with AdS2 defined as the universal cover of the space parametrized
by X,Y, Z with a constraint

(3.57) X2 + Y 2 − Z2 = R2,

where R is the radius of curvature, and the metric tensor is ds2 = −dX2 −
dY 2 + dZ2. The constraint (3.57) can be solved by introducing a time coor-
dinate t with

(3.58) X =
√
R2 + Z2 cos t, Y =

√
R2 + Z2 sin t.

This makes it evident that we can take time-reversal T to act by (X,Y, Z) →
(X,−Y, Z), while (X,Y, Z) → (X,Y,−Z) is a spatial reflection R. In a rel-
ativistic theory, T is a symmetry if and only if R is, and (in the absence of
other symmetries with which T or R could be combined) the properties of T
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determine the properties of R. We will consider both T and R because this
will make the passage to Euclidean signature obvious.

To include spin, but not supersymmetry, one replaces SO(2, 1) by its
double cover SL(2,R). In the generalization with N = 1 supersymmetry,
SL(2,R) is extended to the supergroup OSp(1|2), which can be regarded as
the group of linear transformations of two bosonic variables u, v and one
fermionic variable θ that preserve the symplectic form

(3.59) ω̂ = dudv +
1

2
dθ2.

The corresponding Lie superalgebra osp(1|2) can be described explicitly in
terms of matrices acting on u, v|θ. It will be helpful to have a concrete
description of the Lie superalgebra osp(1|2). This Lie algebra has dimension
3|2 – three bosonic generators and two fermionic ones. Acting on the triple

u
v
θ


, one can pick a basis of bosonic generators

(3.60)

e =




0 1 0
0 0 0
0 0 0


 , f =




0 0 0
1 0 0
0 0 0


 ,

h =




1 0 0
0 −1 0
0 0 0




and fermionic ones

(3.61) q1 =




0 0 1
0 0 0
0 −1 0


 , q2 =




0 0 0
0 0 1
1 0 0


 .

The Lie superalgebra is characterized by a mixture of commutators and
anticommutators, depending on whether an element of osp(1|2) is “bosonic”
(supported in the diagonal blocks of the matrix) or “fermionic” (supported
in the off-diagonal blocks). In detail, the anticommutators are

(3.62) q21 = −e, q22 = f, {q1, q2} = h,

and the nonzero commutators are

(3.63)
[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

[h, q1] = q1, [h, q2] = −q2, [e, q2] = q1, [f, q1] = q2.
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Symmetry groups or supergroups in Lorentz signature are always real, so
we consider the real form of OSp(1|2), with u, v, θ considered real. Actually,
OSp(1|2) contains a central element that acts as −1 on u, v, θ. This element
commutes with all of the fields of BF theory (since they transform in the
adjoint representation) so we do not want to regard it as a symmetry. Thus
on an orientable manifold with N = 1 supersymmetry, we should consider
BF theory of the supergroup OSp′(1|2) = OSp(1|2)/Z2. In OSp′(1|2), the
group elements diag(1, 1,−1) and diag(−1,−1, 1) are equivalent; either one
is the operator (−1)F that distinguishes bosons and fermions.

Now we want to include R and T and show that it is unavoidable to
get R2 = (−1)F and T

2 = 1, corresponding to a pin− structure.42 As an au-
tomorphism of sl(2,R), R : (X,Y, Z) → (X,Y,−Z) corresponds to e↔ −f ,
h→ −h. The extension of this to the odd generators is q1 → q2, q2 → −q1.
So as a transformation of the Lie superalgebra, R2 = (−1)F. Note that the
eigenvalues of R acting on q1, q2 are ±i. It is a little tricky to analyze T

because it is anti-unitary (not unitary) in quantum mechanics. As a short-
cut, we note that T : (X,Y, Z) → (−X,Y, Z) commutes with the subgroup
SO(1, 1) of boosts of the Y Z plane. This subgroup acts on the pair q1, q2 with
distinct real eigenvalues and eigenvectors. So T, acting on the fermionic part
of the Lie superalgebra, has 1-dimensional representations, and therefore it
must satisfy T

2 = 1, not T2 = (−1)F.
We go to Euclidean signature by continuing Y → iY . The metric is

now ds2 = −dX2 + dY 2 + dZ2. The reflection R : (X,Y, Z) → (X,Y,−Z)
will still have eigenvalues ±i in acting on the fermions. In Euclidean signa-
ture, the subgroup of SO(2, 1) that commutes with R is the group SO(1, 1)
of Lorentz boosts of the X − Z plane. So the eigenvectors of R, acting on
q1, q2 (or on u, v) are the eigenvectors of a nontrivial element of SO(1, 1).
Such an element corresponds to a hyperbolic element of SL(2,R).

The only unorientable manifold that we will have to study in any detail
is the crosscap manifold C of section 3.4.5. We recall that C has a boundary
circle S and an “internal” circle S′ (a one-sided geodesic), such that the
monodromies U and V of a flat connection around S and S′ satisfy U = V 2.

Suppose that acting on the triple



u
v
θ


, U = diag(eℓ/2, e−ℓ/2,±1) where ℓ

is a length parameter and a spin structure of R or NS type corresponds

42See footnote 19 in section 2.5.3 for an explanation of why T
2 and R

2 have
opposite properties.
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to a + or − sign.43 To satisfy V 2 = U where V (like R) should act with
imaginary eigenvalues on q1, q2, we choose the minus sign in U , and we take
V = diag(eℓ/2,−e−ℓ/2,±i). The choice of sign corresponds to a choice of one
of the two pin− structures on C. The fact that we had to take a minus sign
in U explains, in the present context, an assertion that was made in section
2.5.3: in the case of time-reversal symmetry of pin− type, a cylinder can end
on a crosscap only if its spin structure is of NS type.

The fact that V is not real means that as soon as we are on an unori-
entable manifold, the gravitino field of JT supergravity is not real.44 This
is a common occurrence when a Lorentz signature field theory is continued
to Euclidean signature. For example, in Euclidean signature, the fermions
of the Standard Model are not real.

3.5.2. Generalities about the torsion. The generalities about BF the-
ory and the analytic and combinatorial torsion carry over directly for a semi-
simple supergroup such as OSp′(1|2). In particular, we anticipate that the
proof in [87–89] of equivalence of the analytic and the combinatorial tor-
sion generalizes from non-compact semi-simple groups such as SL(2,R) to
corresponding supergroups such as OSp′(1|2). The proof of the topological
invariance of the combinatorial torsion certainly does go through in the same
way for a supergroup as for a group, as does the proof of the gluing law for
the torsion. If Y is an oriented two-manifold without boundary, then the
moduli space R of flat connections on Y valued in a semi-simple supergroup
can be given a symplectic structure that is defined by the same formula as
for an ordinary group, and this determines a measure on R. On such a mani-
fold, the torsion is “trivial” in the sense that it coincides with the symplectic
measure. For unorientable Y , the torsion is not equivalent to anything more
elementary and we compute it using the combinatorial definition.

The definition of the combinatorial torsion in the case of a supergroup
can be made by formally imitating the definitions for a bosonic group.

43In SL(2,R), we used the matrices ±diag(eℓ/2, e−ℓ/2) to describe R or NS spin
structures (see eqn. (3.19)). In OSp(1|2)/Z2, diag(−eℓ/2,−e−ℓ/2, 1) is equivalent to
diag(eℓ/2, e−ℓ/2,−1), and the latter form is sometimes convenient.

44In terms of pin− structures, one would explain this as follows. To build a pin−

structure on a Euclidean signature two-manifold, one starts with a rank 2 Clifford
algebra {γµ, γν} = −2δµν . This algebra can be represented by 2× 2 matrices, but
not by real 2× 2 matrices, so a fermion field coupled to the pin− structure is not
real. In Lorentz signature, one would have {γµ, γν} = −2ηµν (with η = diag(−1, 1)),
and this algebra does have a representation by real 2× 2 matrices, so the gravitino
field in Lorentz signature can be real.
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The Lie algebra osp(1|2) of OSp′(1|2)/Z2 has an invariant nondegenerate
quadratic form. Just as in the bosonic world, a nondegenerate quadratic
form on a vector space such as osp(1|2) determines a measure on that space.
The meaning of a measure on a super vector space is more subtle than in the
bosonic case, but we postpone discussing that point and proceed formally
for the moment. First of all, the vector spaces Cq, q = 2, 1, 0, are defined in
the same way as in section 3.2 as the direct sum of copies of the Lie algebra
osp(1|2), with one copy for each q-cell. Hence each Cq gets a measure αq.
The boundary maps ∂ : Cq → Cq−1 are defined precisely as in section 3.2.
The basic definition (3.14) of the torsion and the generalizations (3.15) and
(3.17) that are needed when the homology is nontrivial are still valid. How-
ever, when one picks the basis vectors of a vector space, some of these basis
vectors are bosonic and some are fermionic. For example, if Cq has dimen-
sion nq|mq (bosonic dimension nq and fermionic dimension mq), then a basis
of C2 consists of n2 bosonic vectors and m2 fermionic ones. We might write
such a basis schematically as s1, . . . , sn2

|s̃1, . . . , s̃m2
, where the si are bosonic

and the s̃j are fermionic. Similarly, to complete ∂s1 · · · ∂sn2
|∂s̃1 · · · ∂s̃m2

to
a basis of C1 (assuming for simplicity that the homology vanishes) we add
bosonic and fermionic vectors t1, . . . , tn1−n2

|t̃1, . . . , t̃m1−m2
.

All these bosonic and fermionic vectors are then included in the defini-
tion of the torsion in eqn. (3.14) and its generalizations, but some subtlety is
hidden in the question of what is meant by a measure on a vector space. The
basic idea is that measures for bosons transform oppositely to measures for
fermions. To identify the essential point, suppose that V is a 1-dimensional
bosonic vector space with measure α, and let v ∈ V be a basis vector, and λ a
complex scalar. Then α(λv) = |λ|α(v). But if V is a 1-dimensional fermionic
vector space with measure α and basis vector ψ, then α(λψ) = λ−1ψ. More
generally, suppose that V is a vector space of dimension n|m with basis
s1, . . . , sn|s̃1, . . . , s̃m. Suppose that another basis r1, . . . , rn|r̃1, . . . , r̃m is ob-
tained by acting on the first basis with a supermatrix M :

(3.64)




r1
...
rn

r̃1
...
r̃m




=M




s1
...
sn

s̃1
...
s̃m




=

(
A B
C D

)




s1
...
sn

s̃1
...
s̃m




,
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where A and D are bosonic blocks and B and C are fermionic. Then the
defining property of a measure α (or a density, in the terminology of [94],
section 3.9; see also [95, 96]) is that it is a function on bases such that, if we
denote the two bases just as r⃗ and s⃗ respectively, then

(3.65) α(r⃗) = Ber′(M)α(s⃗).

This is the superspace generalization of the bosonic formula (3.13).
But we need to explain the meaning of Ber′. First of all, the superanalog

of the determinant is the Berezinian, denoted Ber. Like the determinant, it
obeys Ber(M1M2) = Ber(M1)Ber(M2) (this is necessary for the consistency
of eqn. (3.65)). There is a particularly simple formula for BerM if M is
upper or lower block triangular, in the sense that one of its fermionic blocks
B or C vanishes. In that case,

(3.66) BerM = detA · 1

detD
.

In evaluating Berezinians, there is also an analog of the usual row and column
reduction for determinants. This is really all we will need to know about the
Berezinian.

However, if α is supposed to be a measure (rather than a superspace
analog of a differential form of top degree), we need a slight refinement of

the Berezinian. Ber′ is defined for a matrix M =

(
A B
C D

)
that has the

property that A is invertible and moreover is real modulo nilpotent variables.
This being so, detA is real and nonzero modulo nilpotents and has a well-
defined sign, which moreover is invariant under conjugation of M (so this
sign does not depend on a specific choice of how to decomposeM in bosonic
and fermionic blocks). Thus we can define

(3.67) Ber′(M) = sign(detA) Ber(M).

This is the natural superanalog of | detM | in the bosonic case.45

One difference between groups and supergroups is that the torsion for a
supergroup has no obvious positivity properties, and therefore, in contrast

45The fact that one uses an absolute value for the block A and not for its
fermionic analog D is related to the following fact about Gaussian integrals. A
bosonic Gaussian integral involves an absolute value; for instance the integral
1
2π

∫∞

−∞
dxdy exp(iλxy) is defined for real λ, and its evaluation involves an ab-

solute value: 1
2π

∫∞

−∞
dxdy exp(iλxy) = 1/|λ|. But an analogous fermionic integral

is defined for all λ and is holomorphic in λ:
∫
dψ dχ exp(λψχ) = λ.
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to the bosonic case, one does need to be careful with the overall sign. This
is unfortunately easier said than done. We will see that on an unorientable
manifold, the torsion is actually complex-valued. This should not be too
startling, because in many theories, fermionic path integrals in Euclidean
signature are complex-valued. The Standard Model is an example. What
is slightly unusual about super JT gravity is that its path integral is real
on an orientable manifold, and becomes complex only on an unorientable
manifold. This, however, is also not unique; a Majorana fermion in 2 + 1
dimensions has the same behavior.

In section 3.5.3, we compute the torsion of an OSp′(1|2) flat connection
on a circle or a crosscap. These calculations are an almost immediate analog
of what we have already done in the bosonic case. With these results, we
can generalize the analysis of section 3.4.7 and predict the contribution in
supersymmetric JT gravity of a spacetime that consists of a trumpet ending
on a crosscap. To be able to compute for a general unorientable spacetime,
we also need the torsion of a three-holed sphere, which is evaluated in sec-
tion 3.5.4. Concluding remarks are in section 3.5.5.

3.5.3. First cases and application. A hyperbolic element U of
OSp′(1|2), acting on the usual triple (u, v, θ), is of the form diag(ea/2, e−a/2, δ),
where δ = 1 or −1 for a spin structure of R or NS type and a is real. If U
is the holonomy of a geodesic in a super Riemann surface with a hyperbolic
metric, then the length of the geodesic is |a|. In computing the torsion of
a flat connection on a circle S, we can assume that the holonomy is of this
form.

We can proceed exactly as in section 3.4.3. S has a cell decomposi-
tion with one 0-cell and one 1-cell, so C0 and C1 are both copies of the
Lie superalgebra osp(1|2). As in eqn. (3.39), the boundary map is ∂s =
UsU−1 − s. Moreover, as in the bosonic case, we can decompose osp(1|2)
as osp(1|2)0 ⊕ osp(1|2)⊥, where osp(1|2)0 is the Lie algebra generated by
h, and osp(1|2)⊥ is the orthocomplement of this. (Thus osp(1|2)⊥ has di-
mension 2|2, and is generated by e, f, q1, q2.) The boundary operator has a
similar decomposition ∂ = ∂0 ⊕ ∂⊥, and hence the torsion factorizes:

(3.68) τS = τ0S · τ⊥S .

Just as in the bosonic case, ∂0 = 0 and hence τ0S = da · (dϱ)−1. The in-
terpretation of this formula is the same as it was in the bosonic case; in
applications, ϱ will be a gluing parameter. Moreover, ∂⊥ is invertible, as
in the bosonic case, and therefore τ⊥S = Ber′(∂⊥). This is the analog of the
fact that in the bosonic case, we had τ⊥S = | det ∂⊥|. The eigenvalues of ∂⊥
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acting on bosonic states are ea − 1 and e−a − 1, while its eigenvalues act-
ing on fermions are δea/2 − 1 and δe−a/2 − 1. So Ber′(∂⊥) = |(ea − 1)(e−a −
1)|/(δea/2 − 1)(δe−a/2 − 1) = −δ(ea/4 + δe−a/4)2, and therefore

τS =− δ(ea/4 + δe−a/4)2 da (dϱ)−1

=

{
4 sinh2 a4 da (dϱ)

−1 NS spin structure

−4 cosh2 a4 da (dϱ)
−1 R spin structure.

(3.69)

We can treat the crosscap manifold C in the same way. For the holon-
omy around the boundary circle S, we take U as above but with δ = −1, so
U = diag(ea/2, e−a/2,−1). For the holonomy V around the “inner” circle S′,
which should satisfy V 2 = U , we take V = diag(ea/4,−e−a/4, i). (This cor-
responds to one of the two possible pin− structures. The second is obtained
by replacing i with −i, which will have the effect of complex conjugating all
of the following formulas.) The boundary operator ∂ is defined by the same
formulas (3.45) and (3.46) as in the bosonic case. It has the familiar de-
composition ∂ = ∂0 ⊕ ∂⊥, and the torsion factorizes again as τC = τ0C · τ⊥C .
The same steps as before show that τ0C = 1

2da · (dϱ)−1 (with a factor of
1/2 that has the same origin as before), and that τ⊥C = Ber′(∂′1), where
∂′1 : osp(1|2)⊥ → osp(1|2)⊥ is defined by ∂′1(u) = V uV −1 − u.

The eigenvalues of ∂′1 on bosons are −ea/2 − 1 and −e−a/2 − 1, while
its eigenvalues on fermions are −iea/4 − 1 and ie−a/4 − 1. So Ber′(∂′1) =
2 cosh2(a4 )/(1 + i sinh a

4 ) = 2(1− i sinh a
4 ) and the torsion of the crosscap

(with the chosen pin− structure) is

(3.70) τC =
(
1− i sinh

a

4

)
da · (dϱ)−1.

Now we can follow the logic of section 3.4.7 and predict, in supersym-
metric JT gravity, the contribution of a trumpet that ends on a crosscap.
Let ZTSJT be the path integral in supersymmetric JT gravity for a trumpet
T that ends on a circle of circumference a. Then the path integral measure
for a double trumpet in super JT gravity is

(3.71) ZTSJT dadϱZTSJT.

As in our discussion of ordinary JT gravity, we do not have a convenient way
to incorporate the super Schwarzian mode in the framework of combinatorial
torsion, so we proceed indirectly. We write Z̃TSJT for a path integral of super
JT gravity on the trumpet with “super Schwarzian” boundary conditions
on the outer boundary and “torsion” boundary conditions on the inner one.
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Then using the gluing law for the torsion, the path integral on the double
trumpet with super Schwarzian boundary conditions on both boundaries is

(3.72) Z̃TSJT
da dϱ

4 sinh2 a4
Z̃TSJT.

Comparing to (3.70) gives46

(3.73) Z̃TSJT = 2 sinh
a

4
ZTSJT.

By the gluing law for the torsion, the supersymmetric JT path integral
for a trumpet that ends on a crosscap is just Z̃TSJT · τ−1

S τC . Using the above

formulas for Z̃TSJT, τS and τC , we get

(3.74) ZTSJT · 1
2

(
−i +

1

sinh a
4

)
da

for the SJT path integral of a trumpet that ends on a crosscap.
As explained in section 2.6, this has to be multiplied by a factor

exp(−iπN ′η/2) associated with the anomaly. With η = 1/2 for a crosscap,
this is exp(−iπN ′/4). Then we have to sum over pin− structures. The two
pin− structures give complex conjugate contributions, since flipping the pin−

structure changes the sign of η, and also replaces V in the above derivation
by its complex conjugate, as a result of which all the formulas leading to
eqn. (3.74) get complex conjugated.

So after summing over pin− structures, the super JT path integral mea-
sure for a trumpet ending on a crosscap is

ZTSJT · 2Re
(
exp(−iπN ′/4) · 1

2

(
−i +

1

sinh a
4

))
da(3.75)

= ZTSJT ·
(
− sin

πN ′

4
+

cos πN
′

4

sinh a
4

)
da.

Here a/2 is the length of the one-sided geodesic on which the crosscap
“ends.” The integral over a diverges for a→ 0, as in the bosonic theory,
unless N ′ is congruent to 2 or 6 mod 8.

We should acknowledge a gap in this computation. Although it is true
that the values of η for a pin− structure on a crosscap are ±1/2, and that the

46We have to take a square root here. Because of reflection positivity, we expect
that we should take the positive square root.
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two pin− structures are characterized by V = diag(ea/2,−e−a/2,±i), we did
not carefully work out how the two choices of sign are correlated. Reversing
this relationship would have the same effect as N ′ → −N ′. Actually, since
the sign of the anomaly coefficient N ′ depends on the sign with which time-
reversal acts on the elementary fermions in an underlying description such
as an SYK-like model, a physically meaningful statement about the sign
ultimately depends on comparing to a microscopic definition.

3.5.4. The three-holed sphere revisited. The torsion of a three-holed
sphere can be computed by adapting the considerations of section 3.4.2.
The holonomies U, V,W of a flat connection around the three holes satisfy
UVW = 1. This means that we can specify U and V independently (except
that we want to restrict U, V,W to be hyperbolic) and then W = V −1U−1.

The moduli space of flat OSp′(1|2)/Z2 connections on a three-holed
sphere has dimension 3|2. (Indeed, the pair U, V depends on 3|2 + 3|2 = 6|4
parameters, but 3|2 parameters are removed when we divide by conju-
gation, leaving 3|2 parameters.) A convenient parametrization is to take
U = RU0R

−1, V = RV0R
−1, where R is an arbitrary element of the gauge

group and

(3.76)

U0 = δa




ea/2 κ 0

0 e−a/2 0
0 0 δa


 exp(ξq1),

V0 = δb




e−b/2 0 0

1 eb/2 0
0 0 δb


 exp(ψq2).

As before, a and b are real length parameters, and δa, δb = ±1 represent
the spin structures on the corresponding circles. The prefactors δa, δb are
inessential, since we really work in OSp′(1|2) = OSp(1|2)/Z2, but are in-
cluded to agree more smoothly with the natural formulas in SL(2,R). The
three bosonic moduli are a, b, κ, and the two fermionic moduli are ξ, ψ. We
have W = V −1U−1 = RW0R

−1 with
(3.77)

W0 = δaδb




e−(a−b)/2 −κeb/2 −δaξe
b/2

−e−a/2 κ+ e(a−b)/2 − δbψξe
a/2 δaξ − δaδbψ

−ψe−(a−b)/2 ψκeb/2 + δbξe
a/2 δbδa + δaψξe

b/2


 .

W will be conjugate to δcdiag(e
c/2, e−c/2|δc) for some c and δc; the length

of the third hole is |c|, and its spin structure is controlled by δc = ±1. To
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determine c, we use the fact that the supertrace is invariant under conju-
gation.47 So StrW = δc(2 cosh c/2− δc). Setting this equal to StrW0, and
using the fact that δaδbδc = −1, we get

(3.78) − 2 cosh
c

2
= 2 cosh

a− b

2
+ κ− ψξ(ea/2δb + eb/2δa)

or

(3.79) κ = −2 cosh
c

2
− 2 cosh

a− b

2
+ ψξ(ea/2δb + eb/2δa).

The same reasoning as in the bosonic case leads to the condition

(3.80) volG(U) · volG(V ) = volG(R) · τ,

which determines τ . As in the bosonic case, it suffices to impose this condi-
tion at R = 1.

However, we need a convenient way to describe concretely a measure
such as volG(U). Suppose that N is a super vector space of dimension n|m.
Let

f⃗ = (f1, f2, . . . , fn|g1, g2, . . . , gm)

be a basis of N , and let (f1, f2, . . . , fn|g1, g2, . . . , gm) be the dual basis of
the dual vector space N∗. Then as a tautology there is a measure on N that
we denote symbolically as α = [f1, f2, . . . , fn|g1, g2, . . . , gm]. It is defined by
saying that the value it assigns to the basis f⃗ is α(f⃗) = 1, while the value
for any other basis of N is then determined by eqn. (3.65). Under a change
of basis of N∗ by

(3.81)




f1
...
fn

g1
...
gm




=M




f ′1
...
f ′n

g′1
...
g′m




47The supertrace of a matrix M =

(
A B
C D

)
is defined to be StrM = TrA−

TrD.
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with some matrix M , we have

(3.82) [f1, . . . , fn|g1, . . . , gm] = Ber′(M)[f ′1, . . . , f
′
n|g1, . . . , g′m].

As special cases of this, if we rescale a bosonic basis vector of the dual space,
say by f1 → λf1, the measure is rescaled by a factor of |λ|,

[λf1, f2, . . . , fn|g1, g2, . . . , gm](3.83)

= |λ| [f1, f2, . . . , fn|g1, g2, . . . , gm],

but if we similarly rescale a fermionic basis vector of the dual space, say by
g1 → λg1, then the measure is rescaled by a factor of λ−1:

[f1, f2, . . . , fn|λg1, g2, . . . , gm](3.84)

= λ−1[f1, f2, . . . , fn|g1, g2, . . . , gm].

This λ−1 is the reason that, in contrast to an ordinary manifold, a measure
on a supermanifold cannot be interpreted as a differential form. Eqn. (3.84)
generalizes the following property of fermionic integration: if θ is a fermionic
variable, then

∫
d(λθ)(A+Bθ) = λ−1

∫
dθ(A+Bθ) = λ−1B.

A measure volG(U) is a measure on the tangent bundle of G, whose
dual space is the cotangent bundle. In section 3.4.2, to get a basis of the
cotangent bundle, we expanded U−1dU in the basis e, f, h of sl2 as U

−1dU =
(U−1dU)ee+ (U−1dU)ff + (U−1dU)hh. Then we defined the measure
volG(U) as the three-form 4(U−1dU)e(U

−1dU)f (U
−1dU)h. In the present

context, to get a basis of the cotangent space, we make a similar but longer
expansion of U−1dU . As it is valued in osp(1|2), it can be expanded in the
basis described in eqns. (3.60) and (3.61):

U−1dU = (U−1dU)ee+ (U−1dU)ff + (U−1dU)hh(3.85)

+ (U−1dU)1q1 + (U−1dU)2q2.
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Then we define the measure48

(3.86) volG(U) = [(U−1dU)e, (U
−1dU)f , (U

−1dU)h|(U−1dU)1, (U
−1dU)2].

The measures volG(V ) and volG(R) are defined similarly.
At R = 1, we expand R = 1 + r +O(r2), and expand r = ree+ rff +

rhh+ r1q1 + r2q2. The general form of the torsion is49

(3.87) τ = F (a, b, κ|ξ, ψ)[da db dκ|dξ dψ]

with an unknown function F . The right hand side of eqn. (3.80) can be
written

(3.88) [dre drf drh|dr1 dr2]F (a, b, κ|ξ, ψ)[da db dκ|dξ dψ].

In the bosonic case, what made possible a simple computation of the
torsion was that at R = 1, U was upper triangular and V was lower tri-
angular; this led to simple formulas (3.33) and (3.34) for (U−1dU)f and
(V −1dV )e as multiples of rf and re. That made it possible to eliminate
(U−1dU)f , (V

−1dV )e, and likewise dre, drf from eqn. (3.80), and thereby
to get a simple result for the torsion.

The ansatz (3.76) has been chosen to lead to similar simplifications.
First, at R = 1, we have

(3.89) (U−1dU)f = (ea − 1)drf , (V −1dV )e = (eb − 1)dre.

These formulas enable us to eliminate from eqn. (3.80) all the 1-forms written
on the left or right hand sides of eqn. (3.89). We may then set drf = dre = 0,

48 This is the Riemannian measure for the Riemannian metric on the Lie alge-
bra osp(1|2) associated with the quadratic form (x, x) = 2 Strx2. With x = xhh+
xee+ xff + x1q1 + x2q2, we have 2 Strx2 = 4x2h + 4xexf + 8x1x2. The Berezinian
of the corresponding metric tensor is 1, so the Riemannian measure is 1 ·
[dxedxfdxh|dx1 dx2]. The metric tensor that we have used here restricts on sl2 ⊂
osp(1|2) to the metric tensor that we used to define a measure on sl2 (see foot-
note 38). The latter was chosen so that the induced symplectic structure on the
moduli space of Riemann surfaces is the Weil-Petersson form with standard nor-
malization. So the torsion that we will compute using the measure (3.86) will agree
with the volume form on the moduli space of super Riemann surfaces that one
would get from a symplectic form on supermoduli space normalized so that on its
reduced space (which is the moduli space of Riemann surfaces with spin structure)
it coincides with the usual Weil-Petersson form.

49Here and later, when the basis vectors are 1-forms, we omit commas and write
[da db dκ|dξ dψ] rather than the clumsy [da, db, dκ|dξ, dψ].
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and compute

(3.90) (U−1dU)2 = (δae
a/2 − 1)dr2, (V −1dV )1 = (δbe

b/2 − 1)dr1.

We can use these formulas to remove some more factors from eqn. (3.80),
but in doing so, we have to take into account that rescaling dr1 or dr2 by a
factor λ will multiply the measure by λ−1, as in eqn. (3.84). After these two
steps, the reduced version of eqn. (3.80) is

(ea − 1)(eb − 1)

(δaea/2 − 1)(δbeb/2 − 1)
[(U−1dU)e (U

−1dU)h|(U−1dU)1](3.91)

× [(V −1dV )f (V
−1dV )h|(V −1dV )2]

= F (a, b, κ|ξ, ψ)[drh da db dκ|dξ dψ],

where R is set to 1 and dre, drf , dr1 and dr2 are set to 0. This is the analog
of eqn. (3.35).

To complete the calculation, we work out the generalization of eqn. (3.36):

(U−1dU)h =
1

2
da

(U−1dU)e = e−a/2dκ+
κ

2
e−a/2da+ 2κe−a/2drh + ξdξ

(U−1dU)1 = dξ +
1

2
da ξ + drhξ

(V −1dV )h = −1

2
db

(V −1dV )f =
1

2
e−b/2db− 2e−b/2drh − ψdψ

(V −1dV )2 = dψ +
1

2
db ψ − drhψ.(3.92)

Using these results in eqn. (3.91) with the help of the change of variables
formula (3.82), we finally arrive at

(3.93) F (a, b, κ|ξ, ψ) = 2 sinh a
2 sinh

b
2

(δaea/2 − 1)(δbeb/2 − 1)
.

Concretely, the steps that lead to this formula are analogous to the ones that
lead to eqn. (3.37). We first replace (U−1dU)h and (V −1dV )h in eqn. (3.91)
with da/2 and −db/2, cancel da and db in (3.91), and set da = db = 0 in
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the remaining equations in (3.92). At this stage, eqn. (3.91) reduces to

1
4(e

a − 1)(eb − 1)

(δaea/2 − 1)(δbeb/2 − 1)
(3.94)

× [(U−1dU)e|(U−1dU)1] · [(V −1dV )f |(V −1dV )2]

= F (a, b, κ|ξ, ψ)[drh dκ|dξ dψ],

and we have (U−1dU)1 = dξ + drhξ and (V −1dV )2 = dψ − drhψ. The
Berezinian of a linear transformation from the basis of 1-forms drh, dκ|dξ, dψ
to the basis drh, dκ|(dξ + drhξ), (dψ − drhψ) is 1, so on the right hand side
of eqn. (3.94), we can replace [drh dκ|dξ dψ] with [drh dκ|(dξ + drhξ) (dψ −
drhψ)]. Then we can cancel (U−1dU)1 and (V −1dV )2 on the left of eqn. (3.94)
against (dξ + drhξ) (dψ − drhψ) on the right, and set dξ + drhξ = dψ −
drhψ = 0 in the remaining equations. At this point, (U−1dU)e(V

−1dV )f
reduces to 2e−(a+b)/2dκdrh, and eqn. (3.94) reduces to (3.93).

Instead of writing the torsion as τ = F (a, b, κ|ξ, ψ)[da db dκ|dξ dψ], we
can use eqn. (3.78) and replace dκ in this formula with sinh c

2dc (there is
no sign here, because a measure as opposed to a differential form does not
change sign in changing variables from κ to c). So the torsion is

(3.95) τ =
2 sinh a

2 sinh
b
2 sinh

c
2

(δaea/2 − 1)(δbeb/2 − 1)
[da db dc|dξ dψ].

This formula is not symmetric in a, b, and c. This happened because we
defined the fermionic moduli in a way that did not treat the three bound-
aries symmetrically. The formula actually is invariant under a symmetry
that exchanges a and b, because the ansatz that we used is invariant up to
conjugation under such an operation. Interchanging U ↔ V and conjugating
by

(3.96)




√−κ 0 0
0 1√

−κ 0

0 0 1


 ·




0 −1 0
1 0 0
0 0 1




(where −κ > 0 according to eqn. (3.79)) maps a↔ b, δa ↔ δb and trans-
forms the fermionic moduli by (ξ, ψ) → (−ψ√−κ, ξ/√−κ), or equivalently

(3.97) ξ ± iψ
√
−κ→ ±i(ξ ± iψ

√
−κ).

The measure is invariant under this operation, as it should be since the
torsion is intrinsically defined once we pick a measure on the osp(1|2) Lie
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algebra. It may be possible to define the fermionic moduli in a way that
respects the full permutation symmetry of the three boundaries, but a con-
venient way to do this is not immediately obvious.

3.5.5. Assembling the pieces. Since we have computed the torsion of
a flat OSp′(1|2)/Z2 connection on a three-holed sphere, a circle, or a cross-
cap, it is straightforward now, following the same steps as in sections 3.4.4
and 3.4.6, to glue the pieces together and compute the torsion of such a
connection on any two-manifold Y .

For example, we can build a closed oriented surface Y of genus g with-
out boundary by gluing together 2g − 2 three-holed spheres along 3g − 3
circles. Let S be the set of three-holed spheres and T be the set of circles.
Schematically, the gluing formula says that the torsion of Y is a simple
tensor product:

(3.98) τY = ⊗t∈T τt ⊗s∈S τ
−1
s

of the torsions of the three-holed spheres t ∈ T and the inverse torsions
of circles s ∈ S. The variables that the torsion depends on are a length
parameter ℓs and a gluing parameter ρs for each circle s ∈ S, and a pair of
fermionic moduli ξt, ψt for each three-holed sphere t ∈ T .

In the product (3.98), various trigonometric factors appear. According
to eqn. (3.69), the inverse torsion of a circle with circumference ℓ and spin
structure δ contains a factor 1/(eℓ/4 + δe−ℓ/4)2. On the other hand, the sth

circle is a boundary of two different three-holed spheres t, t′ ∈ T (excep-
tionally it is possible to have t = t′). It is natural to combine one factor
1/(eℓs/4 + δe−ℓs/4) with τt and one with τt′ . The trigonometric factor that
appears in the formula (3.95) for the torsion simplifies when multiplied by a
product of three factors 1/(eℓs/4 + δse

−ℓs/4) in which ℓs is taken to be a, b,
or c. The product of all those factors is

(3.99)
1

4
δaδbe

−(a+b)/4(ec/4 − δce
−c/4).

Multiplying everything together, and multiplying by 1
2 to take account50 of

the Z2 symmetry generated by (−1)F, the result that we get for the torsion

50If we want to think of the moduli space of flat OSp′(1|2) connections as a
supermanifold (with some orbifold singularities of positive bosonic codimension),
then we do not want to divide the parameter space by this Z2; instead we take the
Z2 symmetry into account by dividing τY by 2.
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of Y is

τY =
1

2
(−1)wR

∏

s∈S
[dℓs dϱs](3.100)

×
∏

t∈T

1

4
δat

δbte
−(at+bt)/4(ect/4 − δcte

−ct/4)[dξt dψt].

The parameter wR is the number of circles s ∈ S with δ = 0; this factor
arises from the sign in the torsion of a circle. Eqn. (3.100) is a superanalog
of the usual formula for a measure on the moduli space of ordinary Riemann
surfaces, in length-twist coordinates. By gluing crosscaps onto some of the
three-holed spheres, one can get an analogous formula for unorientable Y ,
generalizing eqn. (3.52).

In the orientable case, it is possible to obtain the same formula by sym-
plectic methods. (In a different but somewhat similar coordinate system, the
symplectic structure on the moduli space of super Riemann surfaces has been
described explicitly in [97].) It is straightforward to generalize eqn. (3.100)
for the case that Y is a genus g surface with n boundary components.51

The only difference is that trigonometric factors associated to the boundary
circles do not cancel so neatly; for a boundary circle of length ℓ, one is left
with a factor eℓ/4 + δe−ℓ/4. These factors disappear if the external boundary
circles have NS spin structure (δ = −1) and we glue them onto trumpets,
In that case, according to eqn. (3.73), we get a factor 2 sinh ℓ

4 in converting

from a “torsion” path integral Z̃SJT on the trumpet to a conventional SJT
path integral ZSJT; gluing via τ−1

S gives a factor 1/4 sinh2 ℓ
4 , according to

eqn. (3.69). The product of these factors with eℓ/4 + δe−ℓ/4 is simply 1.
At first, the formula (3.15) might make one suspect that for any sur-

face Y obtained by gluing of three-holed spheres (possibly with crosscaps),
the moduli space of flat connections on Y would have zero volume, on the
grounds that the volume form in eqn. (3.15) does not depend on the odd
moduli, and so appears to vanish upon integration over those variables. The
fallacy in this argument is that the region of length-twist coordinates that
describes the moduli space of super Riemann surfaces is defined by inequal-
ities that involve the fermionic coordinates as well as the bosonic ones. To
see why this can lead to a nonzero integral, consider a toy problem with one
bosonic variable κ, two fermionic variables ξ, ψ, and a measure dκdξdψ (or
[dκ|dξ dψ], to be more pedantic). The volume of the region 0 ≤ κ ≤ 1 is 0,

51When Y has a boundary, the torsion is not equivalent to the symplectic volume,
since the identity (3.6) does not hold.
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as one sees by integrating first over κ:

(3.101)

∫

0≤κ≤1
dκ dξ dψ · 1 =

∫
dξ dψ · 1 = 0.

But suppose the integration region is 0 ≤ κ ≤ 1 + ξψ. Then integrating first
over κ, we get

(3.102)

∫

0≤κ≤1+ξψ
dκ dξ dψ · 1 =

∫
dξ dψ(1 + ξψ) = 1.

In fact, we will encounter a phenomenon somewhat like that in generalizing
Mirzakhani’s results to super Riemann surfaces.

The volumes do, however, vanish in genus 0, that is if Y is a hyper-
bolic sphere with n holes. This is explained in appendix A. In the con-
text of JT supergravity, this vanishing implies that a connected correlator
⟨(Tr exp(−βH))n⟩c vanishes in genus 0, and receives contributions only in
higher orders in the topological expansion. The analogous statement is cer-
tainly not true for ordinary JT gravity.

4. Loop equations

In this section, we will explain a technique called the “loop equations” for
analyzing the 1/L expansion of matrix integrals. This technology will make
it possible to compare matrix integrals to JT gravity and supergravity in
section 5 below.

The loop equations have been studied since the work of Migdal in [47],
but a significant streamlining was achieved in the work of Eynard for the
case of β = 2 ensembles [39]. Using a dispersion relation method, it was
shown how to turn the loop equations into a recursion relation that closes on
correlation functions of resolvents. A nice feature of the resulting equations
is that they do not depend explicitly on the potential of the matrix integral,
only on the “spectral curve” or leading density of eigenvalues. The recursive
step in this formalism is a contour integral that reduces to a sum of residues:
the particular structure that appears was later abstracted as the formalism
of “topological recursion” [38].

For the case of the general β ensembles, some of the simplifications of
[39] are still possible. But the resulting recursion relation is somewhat more
complicated: the recursive step involves an integral around a cut, rather
than a sum of residues. This has been studied from a somewhat different
perspective in works including [54, 55]. In section 4.1, we will explain the
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loop equations for general β, pointing out the simplification that occurs for
β = 2. We will limit ourselves to so-called “one-cut” models, where the large
L density of eigenvalues is supported in a single interval of the real axis.

For the Altland-Zirnbauer (α,β) ensembles, the basic method of [39] is
again possible. For a special case (α,β) = (1, 2), the recursion reduces to a
residue computation that is equivalent to a form of “topological recursion.”
For more general values of (α,β), the recursive step involves a nontrivial in-
tegral. In section 4.2, we will explain the loop equations for these ensembles.

4.1. Loop equations for the β ensembles

As described in section 2.1.1, the Dyson β ensembles are characterized by a
measure for eigenvalues of the form

(4.1)
∏

1≤i<j≤L
|λi − λj |β

L∏

i=1

e−L
β

2
V (λi)dλi.

where we included a general potential function V (λ) in addition to the mea-
sure factor described in section 2.1.2. V (x) and β should be thought of as
parameters of the distribution. As a probability measure, it makes sense for
continuous values of β, but β = 1, 2, 4, are the values relevant for random
matrix theory. The potential V should be a function that grows rapidly
enough at infinity that the integral converges. The manipulations below will
assume that V is analytic in a neighborhood of the region where the classical
(large L) eigenvalue distribution is nonzero.

The goal is to set up machinery for computing the 1/L expansion of
expectation values in the ensemble defined by (4.1). As a basis for “single-
trace” observables, we will use the resolvent. This is a function that depends
on a parameter x in addition to all of the eigenvalues {λ}, and it is defined
by

(4.2) R(x, {λ}) =
L∑

i=1

1

x− λi
.

In what follows, we will leave the λ dependence of the resolvent implicit,
and write simply R(x). From this quantity, any other single trace quantity∑L

i=1 f(λi) can be obtained. For example, one can start by computing the
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density of eigenvalues from the discontinuity of R(x) across the real axis:

(4.3) ρ(x) =

L∑

i=1

δ(x− λi) = − 1

2πi
(R(x+ iϵ)−R(x− iϵ)) .

Then one can write
∑L

i=1 f(λi) =
∫
dx ρ(x)f(x).

Below, we will use a shorthand notation for products of resolvents

(4.4) R(x1, . . . , xn) = R(x1)R(x2) . . . R(xn)

and further abbreviate by writing the LHS as R(I), where

(4.5) I = {x1, . . . , xn}, |I| = n.

Connected correlation functions of resolvents have an asymptotic expansion
in powers of 1/L, which we can write using the above notation:

(4.6) ⟨R(I)⟩c ≃
∑

g=0, 1
2
,1, ...

Rg(I)

L2g+|I|−2
.

This expression defines the quantities Rg(I) as the coefficients in the 1/L
expansion. In general, the “genus” summation index g takes both integer and
half-integer values, although we will see that only integer values contribute
for the special case β = 2.

The loop equations are simply the observation that

0 =

∫ ∞

−∞
dLλ

∂

∂λa


 1

x− λa
R(I)

∏

i<j

|λi − λj |β
∏

i

e−L
β

2
V (λi)


 ,(4.7)

where a ∈ {1, . . . , L} is some fixed index. Distributing the derivative, we find

0 =

〈[
1

(x− λa)2
+ β

1

x− λa

∑

j ̸=a

1

λa − λj
− Lβ

2

V ′(λa)
x− λa

]
R(I)(4.8)

+
1

x− λa
∂λa

R(I)

〉
.

Here the angle brackets mean an expectation value in the ensemble defined
by (4.1). Because the eigenvalue distribution is permutation-invariant, we
do not learn any new information by setting a to any particular value, and
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below we will sum over a. As much as possible, we would like to reduce (4.8)
to an expression involving expectation values of products of resolvents. We
will do this in three steps.

(i) The second term inside the brackets in (4.8) can be rewritten using

1

x− λa

1

λa − λj
→ 1

2

(
1

x− λa

1

λa − λj
+

1

x− λj

1

λj − λa

)
(4.9)

=
1

2

1

x− λa

1

x− λj
.(4.10)

In the first step, we replaced the LHS by its symmetrization under a↔ j.
Summing over a, we can then rewrite the first two terms inside brackets in
(4.8) as

∑

a

1

(x− λa)2
+

β

2

∑

a,j ̸=a

1

x− λa

1

x− λj

=
∑

a

1− β
2

(x− λa)2
+

β

2

∑

a,j

1

x− λa

1

x− λj
(4.11)

= −(1− β
2 )∂xR(x) +

β

2
R(x, x).(4.12)

(ii) The term involving the potential cannot be completely rewritten in
terms of resolvents, but we can improve the situation by writing

(4.13)
∑

a

V ′(λa)
x− λa

R(I) = V ′(x)R(x, I)− P (x; I)

where we define

(4.14) P (x; I) ≡
∑

a

V ′(x)− V ′(λa)
x− λa

R(I).

The first term on the LHS of (4.13) is now written in terms of resolvents.
The remainder term P (x; I) is not, but a key point is that P (x; I) is analytic
in x (assuming V is itself analytic). For example, if V is a polynomial, then
P is also a polynomial. Below, we will use a dispersion relation that will
allow us to ignore the analytic P (x; I) term.

(iii) Finally, the last term in (4.8) can be rewritten as follows. We start
with

(4.15) ∂λa
R(I) =

n∑

k=1

1

(xk − λa)2
R(I \ xk)
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where I \ xk means the coordinates {x1, . . . , xn} with xk removed. Then
using

(4.16)
1

(x− λa)(xk − λa)2
= ∂xk

1
x−λa

− 1
xk−λa

x− xk

and summing over a, we have

(4.17)

L∑

a=1

1

x− λa
∂λa

R(I) =

n∑

k=1

∂xk

R(x, I \ xk)−R(I)

x− xk
.

Putting these steps together, and multiplying through by 2
β
, one can rewrite

(4.8) as

〈
(1− 2

β
)∂xR(x, I) +R(x, x, I)

− LV ′(x)R(x, I) +
2

β

n∑

k=1

∂xk

R(x, I \ xk)−R(I)

x− xk

〉

= −L⟨P (x; I)⟩.(4.18)

Next, we would like to write (4.18) in terms of connected correlation
functions, and use the lower-order equations to simplify. This is a little
tricky. It is helpful to focus on a proper subset J ⊊ I and collect all terms
that multiply ⟨R(J)⟩c. One can show that the sum of all terms that multiply
this expression is precisely the quantity that vanishes due to (4.18) with
I → I \ J . So in writing (4.18) in terms of connected correlators, we can
omit any terms that have a factor of ⟨R(J)⟩c with J ⊊ I. The same argument
allows us to omit the terms involving ⟨R(I)⟩c except for the one that arises
from the last term on the first line of (4.18). Writing out what remains, we
have

(
1− 2

β

)
∂x⟨R(x, I)⟩c + ⟨R(x, x, I)⟩c

+
∑

J⊆I
⟨R(x, J)⟩c⟨R(x, I \ J)⟩c − LV ′(x)⟨R(x, I)⟩c

+
2

β

n∑

k=1

∂xk

(⟨R(x, I \ xk)⟩c − ⟨R(I)⟩c
x− xk

)
= −L⟨P (x; I)⟩c.(4.19)

We will now discuss the application of this equation to three special cases,
before treating the generic case below.
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4.1.1. A first special case R0(x), and the spectral curve. First,
we consider I = ∅, and further simplify the equation by inserting (4.6) and
keeping only the leading terms, proportional to L2. Then (4.19) reduces to

(4.20) R0(x)
2 − V ′(x)R0(x) = (analytic in x)

where the analytic RHS comes from the P (x) term. After adding an analytic
quantity V ′(x)2/4 to both sides, we can write this as

(4.21) y2(x) = (analytic in x)

where y is defined by

(4.22) R0(x) =
V ′(x)
2

+ y(x).

Eqn. (4.21) defines a hyperelliptic curve, with two sheets differing by the
sign of y. This is referred to as the spectral curve of the matrix integral.

The quantity y has a physical intepretation as the leading approximation
to the density of eigenvalues. To see this, recall that in general, the resolvent
is a multivalued function, with a discontinuity across the real axis given by
the density of eigenvalues (4.3). So, in particular, the discontinuity of the
genus-zero resolvent R0(x) gives the leading approximation to the density
of eigenvalues:

(4.23) R0(x+ iϵ)−R0(x− iϵ) = −2πiρ0(x), ρ0(x) = lim
L→∞

1

L
⟨ρ(x)⟩.

Here, ρ0(x) is normalized so that
∫
dxρ0(x) = 1. We will consider the sim-

plest “one-cut” matrix integrals, for which ρ0(x) is supported in a single
interval of the real axis a− ≤ x ≤ a+. Resolvents are naturally defined with
a branch cut that coincides with this interval. Since R0(x) and y(x) differ
only by an analytic term 1

2V
′(x), the same is true for y(x), and we can

rewrite the LHS of (4.23) as the discontinuity of y(x) across the real axis.
Because y2 is analytic, the only possible discontinuity in y is a change of
sign. This implies that if we approach the cut from one side or the other,
y(x) has to be one-half of the value of its discontinuity:

(4.24) y(x± iϵ) = ∓iπρ0(x).

So, along the real axis and inside the region of support of ρ0(x), y(x) is pure
imaginary, with a sign that depends on which half-plane we approach from.
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𝜌

𝑥
- _𝑎 +𝑎
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𝑥'𝑥

𝓒
Figure 15: At left we show a typical ρ0(x) function, supported between
endpoints x = a±. At right we show the x′ plane for the manipulation in
(4.40). The original contour surrounds the point x, and the final contour
surrounds the cut that runs bewteen x′ = a±. For the special case of an
ensemble with β = 2, the cut is replaced by poles at the endpoints.

Outside the region of support, y(x) is real. At each endpoint of the cut, y(x)
has a square-root singularity

√
a± − x.

In principle, one can solve for y(x) starting from the potential V (x)
that defines the matrix integral. But, as we will see below, in the recursion
relation we will not need to know V (x) directly, only y. So in practice it is
more convenient to think about things the other way around: we specify the
matrix integral by giving the function y(x) rather than the potential.

The resolvent can be expressed in terms of the eigenvalue density:

(4.25) R0(x) =

∫ a+

a−

dλ
ρ0(λ)

x− λ
.

This integral is manifestly holomorphic in x on the complement of the inter-
val [a−, a+], where it has a cut. To be more exact, the integral defines R0(x)
on what is known as the “first sheet.” The formula R0(x) = V ′(x)/2 + y(x),
where y(x) is defined on the spectral curve, a double cover of the x plane,
shows that R0(x) can be continued through the cut onto a second sheet.
Multiresolvents can similarly be expressed in terms of a joint eigenvalue
density ρ(λ1, λ2, . . . , λk). In lowest order in 1/L, the joint density is just a
product ρ0(λ1)ρ0(λ2) · · · ρ0(λk), but in higher orders there are corrections.
Thus in general

(4.26) Rg(I) =

∫ a+

a−

dλ1
x1 − λ1

. . .
dλn

xn − λn
ρg(λ1, λ2, . . . , λn),

where ρg(λ1, λ2, . . . , λN ) is the genus g contribution to ρ(λ1, λ2, . . . , λn).
Eqn. (4.26) defines a function that is manifestly holomorphic in x1, x2, . . . , xn
as long as they are on the complement of the interval [a−, a+]. Moreover, the
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formula determines the behavior of this function when any of the xi become
large. For any reasonably behaved function ρg(λ1, λ2, . . . , λn), eqn. (4.26)
implies that Rg(I) vanishes at least as 1/xi for xi → ∞. But since the total
number of eigenvalues is a fixed constant L, with no fluctuations or higher
order corrections, it actually follows that Rg(I) vanishes as 1/x2i or faster,
except for the special case g = 0 and |I| = 1. In what follows, in writing
dispersion relations for the multiresolvents, we begin on the “first sheet,”
on which Rg(I) has the properties just stated. However, from the analy-
sis, we will learn that like R0(x), the functions Rg(I) can be continued (in
each variable separately) to a second sheet, on which in general there are
additional singularities. For example, on the second sheet, R0(x1, x2) has a
double pole at x1 = x2.

The reader might ask how we know that the functions ρg(λ1, λ2, . . . , λn)
have the same support as the product ρ0(λ1)ρ0(λ2) · · · ρ0(λn). One answer
comes from the fact that the procedure of topological recursion that we
will describe leads to a unique answer with this property. We can also
reason as follows. The fact that the eigenvalues are supported in some
interval is stable against small changes in the effective potential V . But
might 1/L2 corrections change the precise interval [a−, a+]? In a sense,
this does happen, and it is reflected in the fact that Rg(I) as computed
by topological recursion has increasingly strong singularities at the end-
points of the interval as g or |I| is increased. The Taylor series expan-
sion

√
λ− a− + c/L2 =

√
λ− a− + c

2L2 (λ− a−)−1/2 +O(1/L4) illustrates
the point: a perturbative shift in the endpoint of the cut is equivalent, in
the 1/L expansion, to keeping the endpoints of the cut fixed and generating
increasingly severe singularities at the endpoints.

4.1.2. A second special case R0(x, x1). Next, we consider the case
I = {x1} and again keep only the leading terms in the 1/L expansion, this
time proportional to L. Then (4.19) gives

2R0(x)R0(x, x1)− V ′(x)R0(x, x1)

+
2

β
∂x1

R0(x)−R0(x1)

x− x1
= (analytic in x).(4.27)

Using (4.22), and moving some analytic terms to the RHS, this can be
rewritten as

2y(x)R0(x, x1) +
2

β

y(x)

(x− x1)2

= (analytic in x in neighborhood of cut).(4.28)
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Here we are assuming that x1 is away from the cut, so we allowed ourselves
to move terms to the RHS that are singular at x = x1. We would like to use
this equation to determine R0(x, x1) using a dispersion relation. In general,
y(x) could be growing rapidly at infinity, so before we do this, one would like
to simplify the equation by dividing by y(x). However, since 1/y is singular
at the endpoints of the cut, this will make some of the terms on the RHS
singular. Instead, we proceed as follows. We write

(4.29) σ(x) = (x− a+)(x− a−)

and define
√
σ(x) with a branch cut running between the endpoints of the

cut a±. Then
√
σ(x)/y(x) is analytic in a neighborhood of the cut, and we

can safely multiply (4.28) by this quantity, to obtain

R0(x, x1)
√
σ(x) +

1

β

√
σ(x)

(x− x1)2

= (analytic in x in neighborhood of cut).(4.30)

Now, to determine R0(x, x1), we write a dispersion relation

R0(x, x1)
√
σ(x) =

1

2πi

∮

x

dx′

x′ − x
R0(x

′, x1)
√
σ(x′)(4.31)

= − 1

2πi

∫

C

dx′

x′ − x
R0(x

′, x1)
√
σ(x′)

=
1

2πi

∫

C

dx′

x′ − x

1

β

√
σ(x′)

(x′ − x1)2
.

In the first equality, we used the Cauchy residue formula. In the second
equality, we deformed the contour to surround the cut, see figure 15. To
justify this deformation, we use our knowledge that R0(x, x1) is holomorphic
in x away from the cut. In the final step we used (4.30), taking advantage of
the fact that terms that are analytic in a neighborhood of the cut will not
contribute. After evaluating the integral, one finds

(4.32) R0(x1, x2) =
1

β(x1 − x2)2

(
x1x2 − a++a−

2 (x1 + x2) + a+a−√
σ(x1)

√
σ(x2)

− 1

)
.

An important feature of this expression is that it is regular at x1 = x2 if
both coordinates are on the same sheet, but has a double pole if they are
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on opposite sheets:

(4.33)
R0(x, x) =

(a+ − a−)2

8β(a+ − x)2(a− − x)2
,

R0(x̂1, x
′
2) = − 2

β(x1 − x2)2
+ (regular).

Here we are using the notation x̂ to mean that we continue the x coordinate
to position x on the second sheet.

It will be useful below to know eqn. (4.32) in a limit in which a+ → ∞
with a0 = 0. This is

(4.34) R0(x1, x2) =
1

2β
√−x1

√−x2 (
√−x1 +

√−x2)2
.

4.1.3. A third special case R0(x, x1, x2). As a final special case, we
take I = {x1, x2} and again work at leading order in 1/L, which is now L0.
Then (4.19) gives

2y(x)R0(x, x1, x2) + 2R0(x, x1)R0(x, x2)

+
2

β

(
R0(x, x2)

(x− x1)2
+
R0(x, x1)

(x− x2)2

)
∼ 0.(4.35)

where the ∼ means up to terms that are analytic in x in a neighborhood
of the cut. After multiplying through by

√
σ(x)/(2y(x)), one can write

R0(x, x1, x2) using a dispersion relation as in (4.31):

(4.36) R0(x, x1, x2)
√
σ(x) =

1

2πi

∫

C

dx′

x′ − x

√
σ(x′)

y(x′)

×
(
R0(x

′, x1)R0(x
′, x2) +

1

β

R0(x
′, x2)

(x′ − x1)2
+

1

β

R0(x
′, x1)

(x′ − x2)2

)
.

One can check from the explicit formula (4.32) that the integrand is actually
meromorphic in a neighborhood of the cut, having a simple pole at each
endpoint. So the integral reduces to a sum of two residues.

4.1.4. The generic case. Now we consider the generic case. To do so,
we plug the genus expansion (4.6) into the loop equations (4.19), and collect
the terms that appear at order L2−2g−n, where n is the number of elements
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in the set I = {x1, . . . , xn}. The resulting equation can be written as

(4.37) 2y(x)Rg(x, I) + Fg(x, I) ∼ 0

where

Fg(x, I) = (1− 2
β
)∂xRg− 1

2

(x, I) +Rg−1(x, x, I)

+
∑

stable

Rh(x, J)Rg−h(x, I \ J)(4.38)

+ 2

n∑

k=1

(
R0(x, xk) +

1
β

1
(x−xk)2

)
Rg(x, I \ xk).(4.39)

As before, the ∼ symbol in (4.37) means equality up to terms that are
analytic in x in a neighborhood of the cut. Working modulo such terms
allowed us to drop the expressions involving P (x; I) and 1

(x−xk)2
R(I) in

(4.19).
Naively, the sum on line (4.38) should be over integer and half-integer h

satisfying 0 ≤ h ≤ g and over subsets J ⊆ I. However, the subscript “stable”
means that we omit the special cases where one of the factors is R0(x)
or R0(x, xk). These special cases are treated separately: the contribution
where one factor is R0(x) combines with the −LV ′(x) term on the second
line of (4.19) to form the combination 2y(x)Rg(x, I) present in (4.37). The
contribution where one of the factors is R0(x, xk) combines with the R(x, I \
xk) term in (4.19) to give the final term on the second line of (4.39).

Eq. (4.37) determines the parts of y(x)Rg(x, I) that are singular at the
cut, and knowledge of these terms allows us to recover the full Rg(x, I) using
a dispersion relation as in (4.31):

Rg(x, I)
√
σ(x) =

1

2πi

∮

x

dx′

x′ − x
Rg(x

′, I)
√
σ(x′)

= − 1

2πi

∫

C

dx′

x′ − x
Rg(x

′, I)
√
σ(x′)(4.40)

=
1

2πi

∫

C

dx′

x′ − x
Fg(x

′, I)

√
σ(x′)

2y(x′)
.(4.41)

In the second equality, we deformed the contour as in figure 15. The prop-
erties needed to justify this contour deformation were argued at the end of
section 4.1.1: Rg(x, I) is holomorphic in x away from the cut and vanishes
as 1/x2 or faster at x = ∞. It can further be proved inductively using (4.41)
that on the first sheet, Rg(x, I) is actually holomorphic in x except at the
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endpoints of the cut (and hence can be continued through the cut). This is
equivalent to saying that the eigenvalue distribution ρg(I) in eqn. (4.26) is
real analytic except at the endpoints.

The relation (4.40), together with the special cases discussed above, gives
a recursion that determines all Rg(x, I).

4.1.5. Why β = 2 is special. When β = 2, the first term in (4.39) is
absent. This leads to two simplifications. First, it is easy to see that this
implies that all Rg(I) with half-integer g vanish, so the 1/L expansion be-
comes a 1/L2 expansion. Second, the contour integral around the cut in
(4.41) reduces to a sum of residues at the endpoints.

The second point is due to the fact that for β = 2, the multivaluedness of
the Rg(I) becomes very simple. We will use the notation x̂ in the argument of
a function to indicate a coordinate that has been continued to location x but
on the second sheet. So, for example, y(x̂) = −y(x) and

√
σ(x̂) = −

√
σ(x).

Then with the exception of R0(x1) and R0(x1, x2), we claim that

(4.42) Rg(x̂1, x2, . . . xn) = −Rg(x1, x2, . . . , xn).

This can be proven by induction. First we note that if (4.42) holds, then
Fg(x, I) is actually single-valued in x. This is obvious for the terms
Rg−1(x, x, I) and Rh(x, J)Rg−h(x, I \ J) that appear in (4.39). It would not
be true for the ∂xRg− 1

2

(x, I) term, but this is absent for β = 2. For the final

term in (4.39), it is true using the explicit formula (4.32).
Next, we note that single-valuedness of Fg implies that the integrand in

(4.41) is itself single-valued, because
√
σ(x)/y(x) is also single-valued. So,

assuming (4.42), one finds that the contour integral around the cut just picks
up the contribution of poles at the endpoints of the cut. The result of this
integral will be analytic in x, and therefore Rg(x, I)

√
σ(x) is analytic in x,

so Rg(x, I) satisfies (4.42). To complete the induction, we also need to check
explicitly the special base case R0(x, x1, x2), which amounts to showing that
the sum of the second and third terms from (4.35) are single-valued in x.
This follows from (4.32).

The fact that the integral (4.41) reduces to residues at the endpoints of
the cut is a major simplification. In practical terms, it makes the loop equa-
tions much easier to implement. Conceptually, it makes the loop equations
for β = 2 a special case of the Eynard-Orantin “topological recursion” [38].

4.1.6. Relation between β = 1 and β = 4. The β = 1 and β = 4 en-
sembles are very closely related to each other [60]. The relationship is clearest
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if, on the β = 4 side, we work in terms of R̃ defined by (assuming L even)

(4.43) R̃(x;L) = 2R(x; L2 ), R̃(I;L) = 2|I|R(I; L2 ).

Here we temporarily made the L argument explicit. One can interpret R̃(x)
as Tr 1

x−H where H is a matrix that has L
2 independent eigenvalues from the

β = 4 ensemble, each with two-fold degeneracy. This is actually the situation
that describes a ensemble of matrices with Sp(L) symmetry: such matrices
have β = 4 statistics and twofold degeneracy. We can write a 1/L expansion
of connected correlators of R̃(I) as

(4.44) ⟨R̃(I;L)⟩c ≃
∑

g

R̃g(I)

L2g+|I|−2
= 2|I|

∑

g

Rg(I)

(L2 )
2g+|I|−2

which implies that

(4.45) R̃g(I) = 22(g+|I|−1)Rg(I).

Substituting (4.45) into (4.38), one finds that the R̃g quantities for the β = 4
ensemble satisfy

(4.46) 2y(x)R̃g(x, I) + F̃g(x, I) ∼ 0

where

F̃g(x, I) = ∂xR̃g− 1

2

(x, I) + R̃g−1(x, x, I)

+
∑

stable

R̃h(x, J)R̃g−h(x, I \ J)(4.47)

+ 2

n∑

k=1

(
R̃0(x, xk) +

1
(x−xk)2

)
R̃g(x, I \ xk).(4.48)

Now, the point is that this is the same recursion satisfied by Rg for the β = 1
ensemble, except for the sign of the first ∂xRg− 1

2

term (which would have

been −1 for the β = 1 ensemble). In the solution to the recursion, changing
this sign has the effect of reversing the sign of all terms with half-integer g. In
terms of ’t Hooft double-line diagrams (or in the JT gravity interpretation
below), these correspond to unorientable surfaces with an odd number of
crosscaps, so we conclude that the difference between the β = 1 and β = 4
ensembles is to insert a relative factor of (−1)nc where nc is the number of
crosscaps [60]. Related matters are discussed in appendix B.
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4.2. Loop equations for the (α,β) ensembles

In this section, we will study the loop equations for the (α,β) ensembles of
Altland and Zirnbauer [44].52 As discussed in section 2.1.2, these ensembles
are characterized by a measure

(4.49)
∏

1≤i<j≤L
|ω2
i − ω2

j |β
L∏

i=1

|ωi|αe−L
β

2
V (ω2

i )dωi

where V (x),α,β are parameters. The distribution makes sense for contin-
uous values of α,β, but for special values of these parameters, it has an
interpretation in terms of random matrix theory, as reviewed in section 2.1.

As shown in [66–68] and discussed in section 2.6 above, the symmetry
classes associated to these ensembles are relevant the supercharge Q in the
N = 1 supersymmetric SYK model [81]. An important detail is that the
eigenvalues of Q come in pairs ω,−ω. Also, for β = 4, there is twofold de-
generacy. We emphasize that the probability distribution (4.49) is written
for a set of independent variables, meaning just one of each pair of distinct
eigenvalues ω,−ω. We will deal with the degeneracy later when we compare
to JT supergravity.

In supersymmetric quantum mechanics, the Hamiltonian is the square
of the supercharge H = Q2, so eigenvalues of the Hamiltonian are λ = ω2.
The measure (4.49) for the independent eigenvalues of Q implies a measure
for the distinct eigenvalues of H:

(4.50)
∏

1≤i<j≤L
|λi − λj |β

L∏

i=1

|λi|
α−1

2 e−L
β

2
V (λ)dλi, λi ≥ 0.

It will be slightly easier to derive the loop equations using the variables ω.
However, because we will ultimately be interested in viewing λi = ω2

i as the
physical eigenvalues, we work in terms of resolvents defined as

R(x) =

L∑

i=1

1

x− ω2
i

.(4.51)

52At least one of these ensembles, namely the bifundamental of U(L)×U(L), was
studied in early literature on matrix models and two-dimensional gravity [98–100].
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As before, we use the notation R(x1, . . . , xn) = R(x1) . . . R(xn), and I =
{x1, . . . , xn}. Connected correlators of these resolvents still have a 1/L ex-
pansion of the same form (4.6), and our goal will be to find a recursion for
the Rg(I) using the loop equations.

The loop equations follow from the statement

0 =
1

βx

∫ ∞

−∞
dLω

∂

∂ωa


 ωa
x− ω2

a

R(I)
∏

i<j

|ω2
i − ω2

j |β
L∏

i=1

|ωi|αe−L
β

2
V (ω2

i )


 .

(4.52)

Distributing the derivative and simplifying using analogs of the three steps
in (4.12), (4.13), (4.17), one finds

〈(
(1− 2

β
)∂x +

α−1

βx
− LV ′(x)

)
R(x, I) +R(x, x, I)

+
2

βx

n∑

k=1

∂xk

xR(x, I \ xk)− xkR(I)

x− xk

〉

= −L
x
⟨P (x; I)⟩,(4.53)

where now

(4.54) P (x; I) =

L∑

a=1

xV ′(x)− ω2
aV

′(ω2
a)

x− ω2
a

R(I).

Again, P (x; I) is analytic in x assuming an analytic potential. This can be
rewritten in terms of connected correlators using the same logic as in the
β-ensemble case. One finds

(
(1− 2

β
)∂x +

α−1

βx
− LV ′(x)

)
⟨R(x, I)⟩c

+ ⟨R(x, x, I)⟩c +
∑

J⊆I
⟨R(x, J)⟩c⟨R(x, I \ J)⟩c

+
2

βx

n∑

k=1

∂xk

x⟨R(x, I \ xk)⟩c − xk⟨R(I)⟩c
x− xk

= −L
x
⟨P (x; I)⟩c.(4.55)

We will use this equation to compute the Rg(I) following our steps for the
β-ensemble. First, we will work out three special cases. Then we will write
a recursion relation for the other cases.
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𝑥
+𝑎

𝜌
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+𝑎
𝑥'𝑥

𝓒
Figure 16: At left we plot a typical ρ0(x), the density of eigenvalues for
H = Q2. Note the 1/

√
x divergence at the origin, and the

√
x vanishing at

x = x+. At right we show the cut x′ plane and the contour manipulation
used in deriving the dispersion relation.

4.2.1. A first special case R0(x). As in the β-ensemble case, we start
with the special case I = ∅, and further simplify by keeping only the terms
proportional to L2. Then (4.55) reduces to

(4.56) R0(x)
2 − V ′(x)R0(x) =

1

x
(analytic in x).

which can be written as

(4.57) y(x)2 =
1

x
(analytic in x), R0(x) =

V ′(x)
2

+ y(x).

Again, we find a hyperelliptic curve, and the relationship between y(x) and
ρ0(x) in (4.24) remains true, where ρ0(x) is interpreted as the density of
eigenvalues λ = ω2. Since these are non-negative, the density ρ0(x) has to
be supported for x ≥ 0. We will specialize to the simplest “one-cut” case,
where ρ0(x) is nonzero in a single interval between zero and some value
a+ > 0. This interval will be referred to as “the cut.”

The important difference between the present case and the β-ensembles
is the factor of 1/x in (4.57). What this means is that y(x) will have a 1/

√
x

singularity at the origin, and an ordinary
√
x branchpoint at a+. As an

example, we can work out y(x) for the case V (x) = x. Then (4.57), together
with the requirement that R0(x) ≈ 1/x for large x, implies that

(4.58) y(x) = −1

2

√
x− 4

x
=⇒ ρ0(x) =

1

2π

√
4− x

x
.

This is a special case of the Marchenko-Pastur distribution. It is the ana-
log of the Wigner semicircle distribution for Wishart matrices H = Q2. See
figure 16.
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The 1/
√
x singularity in y, compared to the typical behavior y ∼ (x−

a)1/2 near a branch point in the case of a Dyson ensemble, reflects the
fact that the eigenvalues λi = ω2

i are strictly nonnegative in an Altland-
Zirnbauer ensemble. This constraint leads to a divergence in the eigenvalue
density at x = 0. Thus regardless of the values of α,β, an Altland-Zirnbauer
ensemble is never equivalent to a Dyson ensemble, even though if one ignores
the constraint λi ≥ 0, the measure (4.50) in the special case α = 1 would
coincide with that of a Dyson ensemble.

4.2.2. A second special case R0(x, x1). Next, take the case I = {x1}
and study (4.55) at leading order L1. This leads to

− V ′(x)R0(x, x1) + 2R0(x)R0(x, x1)

+
2

βx
∂x1

xR0(x)− x1R0(x1)

x− x1
=

1

x
(analytic in x).(4.59)

Using (4.57), and moving some terms to the RHS, this can be rewritten as

2y(x)R0(x, x1) +
2

β

y(x)

(x− x1)2

=
1

x
(analytic in x in a neighborbood of the cut).(4.60)

We assume that x1 is located away from the cut, so expressions like 1/(x−
x1)

p are analytic in x in a neighborhood of the cut. After multiplying through
by x, this is

(4.61) xy(x)R0(x, x1) +
x

β

y(x)

(x− x1)2
∼ 0.

where as before, the ∼ means equal up to terms that are analytic in x in a
neighborhood of the cut. To analyze this equation, we specalize σ(x) from
(4.29) to the case with a− = 0,

(4.62) σ(x) = x(x− a+),

and then multiply (4.60) by
√
σ(x)/(xy(x)). This ratio is analytic in x in a

neighborhood of the cut, thanks to the fact that y(x) has a 1/
√
x singularity
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at x = 0, and a
√
x branch point at x = a+. The resulting equation

(4.63) R0(x, x1)
√
σ(x) +

2

β

√
σ(x)

(x− x1)2
∼ 0

is the same as we had for the β-ensemble. So we conclude that R0(x1, x2) is
still given by the formula (4.32), but now with a− = 0.

4.2.3. A third special case R0(x, x1, x2). As a final special case, we
take I = {x1, x2} and again work at leading order in 1/L, which is now L0.
Then (4.55) implies

xy(x)R0(x, x1, x2) + xR0(x, x1)R0(x, x2)

+
x

β

(
R0(x, x2)

(x− x1)2
+
R0(x, x1)

(x− x2)2

)
∼ 0.(4.64)

where the ∼ means up to terms that are analytic in x in a neighborhood of
the cut. After multiplying through by

√
σ(x)/(xy(x)), one can write exactly

the same dispersion relation as (4.36). A difference is that in the present
case, the factor

√
σ(x)/y(x) has a zero at x = 0 which cancels the pole from

the rest of the integrand in (4.36). This means that R0(x, x1, x2) receives a
contribution only from the a+ endpoint. This implies that R0(x1, x2, x3) will
vanish in a double-scaled (α,β) ensemble, where we take a+ to infinity. In
turn, this implies that all correlators R0(x1, . . . , xn) with g = 0 and n ≥ 3
vanish in a double-scaled ensemble of this type.

4.2.4. The generic case. To consider the generic case, one plugs the
general form of the genus expansion (4.6) into (4.55) and collects terms at
order L2−2g−|I|. The result can be written

(4.65) 2xy(x)Rg(x, I) + xFg(x, I) ∼ 0

where

.Fg(x, I) =

(
(1− 2

β
)∂x +

α−1

βx

)
Rg− 1

2

(x, I) +Rg−1(x, x, I)(4.66)

+
∑

stable

Rh(x, J)Rg−h(x, I \ J)

+ 2

n∑

k=1

(
R0(x, xk) +

1
β

1
(x−xk)2

)
Rg(x, I \ xk)
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The resulting dispersion relation is

(4.67) Rg(x, I)
√
σ(x) =

1

2πi

∫

C

dx′

x′ − x
Fg(x

′, I)

√
σ(x′)

2y(x′)
.

We will have more to say about special cases of these equations below.
For now, we note that in the special case (α,β) = (1, 2), the first term in
(4.66) vanishes. This implies by induction that all half-integer g coefficients
vanish, and the dispersion relation reduces to a sum of residues at the end-
points. The argument for this is the same as for ordinary β = 2 ensembles
in section 4.1.5.

Also, one can show that the ensembles with (α,β) equal to (α, 1) and
(−2α+ 3, 4) are related in the same way as discussed for the β = 1 and β = 4
ensembles in section 4.1.6. After rescaling the (−2α+ 3, 4) resolvents as in
(4.45), the results differ from the (α, 1) case only by the sign of the terms
with half-integer g. Looking back to Table 4 of section 2.6.2, we deduce in
the context of JT supergravity53 that if N is even, then a shift N → N + 4
has the effect only of changing the sign of crosscap contributions. The same
is true for odd N . For N = 3, 7, the conclusion follows from the behavior
under an exchange (α, 2) ↔ (2− α, 2). For N = 1, 5, one uses the original
statement for β = 1 and β = 4 Dyson ensembles. See also appendix B.

4.2.5. The crosscap R 1

2

(x). For comparision to JT supergravity in sec-
tion 5.3, it will be helpful to have a formula for the one-crosscap contribution
to the resolvent, R 1

2

(x). This is determined by setting g = 1
2 and I = ∅ in

(4.66). The resulting equation can be written as

(4.68) 2xy(x)R 1

2

(x) + x

(
(1− 2

β
)∂x +

α−1

βx

)
y(x) ∼ 0.

This leads to

R 1

2

(x) =
1

2πi

∫

C

dx′

x′ − x

√
σ(x′)√
σ(x)

(
(1− 2

β
)y′(x′)

2y(x′)
+

α−1

2βx′

)
(4.69)

4.2.6. Double-scaling. An important detail is that JT gravity or super-
gravity is related not to an ordinary matrix integral of the type we have
discussed here, but instead a particular type of limit that is referred to as a
double-scaled matrix integral. We will briefly describe what this means.

53We state the following for q̂ = 1 mod 4, as assumed in the table. For q̂ = 3 mod
4, one must exchange N → 8−N in all statements.
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In terms of the data of the spectral curve, to study a double-scaled
matrix integral we scale the upper endpoint of the cut to infinity a+ → ∞,
and we relax the constraint that ρ0(x) should have unit integral. Such a
system can be understood as a limit of an ordinary matrix integral in which
L is taken to infinity holding fixed the classical approximation to the density
of eigenvalues near the lower endpoint. In an ordinary matrix integral, the
classical approximation to the density of eigenvalues is ρtotal0 (x) = Lρ0(x),
where ρ0 is normalized so that the integral is one. To define a double-scaled
integral, we write

(4.70) ρtotal0 (x) = eS0ρ0(x).

Then we take L to infinity and adjust the potential so that eS0 remains fixed
and ρ0(x) approaches the desired function.

We retain the definition y(x+ iϵ) = −iπρ0(x). Since the loop equations
depend only on y(x), they commute with the double-scaled limit. However,
because L has been replaced by eS0 in (4.70), the genus expansion is now in
powers of e−S0 :

(4.71) ⟨R(I)⟩ ≃
∑

g=0, 1
2
,1, ...

Rg(I)

(eS0)2g+|I|−2
.

5. Comparison to JT gravity and supergravity

In this section, we will compare JT gravity and JT supergravity to the
predictions of the loop equations for the matrix ensembles described in sec-
tion 2.1. For ordinary JT gravity, there are three basic cases that correspond
to the Dyson ensembles. As described in detail in sections 2.4 and 2.5, ordi-
nary JT gravity theories with spin or pin structure sums reduce to these cases
and need not be discussed further. On the other hand, there are ten versions
of super JT gravity, covering both the Dyson and the Altland-Zirnbauer
ensembles.

We will go through the cases and compare what we can between JT
(super) gravity and the predictions of the loop equations. For quantities
where we can compute the predictions of JT gravity and supergravity, we
will find agreement with the loop equations. For other quantities, we will find
predictions from the loop equations for the volumes of supermoduli space.
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The basic dictionary that we will use to compare matrix integral quan-
tities and JT gravity quantities is

〈
Tr
(
e−β1H

)
. . .Tr

(
e−βnH

)〉
matrix int.

(5.1)

↔
(super) JT path integral summed over

topologies, with n asymptotic “trum-

pet” boundaries of regularized lengths

βj

On the LHS, H is the random matrix from an appropriate ensemble, includ-
ing degeneracy if there is any.54 On the RHS, we have a path integral in JT
gravity or super gravity, with an asymptotic boundary of regularized length
β for each insertion of Tr e−βH on the LHS.

In (5.1), we are studying the full (connected plus disconnected) corre-
lation function on the LHS. And on the RHS, we have a sum over all bulk
topologies, including disconnected ones. But to establish (5.1), it is suffi-
cient to compare the connected correlators (or “cumulants”) constructed
from both sides of (5.1). On the LHS this means that we subtract products
of lower-order correlators. On the RHS, it means that we consider only con-
nected geometries. After making this restriction, both sides have a “genus”
expansion in powers of e−S0

(5.2)

∞∑

g=0

Zg(β1, . . . , βn)

(eS0)2g+n−2
,

and we will compare the coefficients in the expansion Zg(β1, . . . , βn). In
general, the sum will involve both half-integer and integer values of the
“genus” summation index g.

On the matrix integral side, this genus expansion is determined by the
loop equations. More precisely, in our discussion of the loop equations, we
saw how to compute the e−S0 expansion of correlation functions of resolvents,
but one can go back and forth between resolvents and partition functions
using Laplace and inverse Laplace transforms.

On the JT gravity side, Zg(β1, . . . , βn) is the path integral over two-
dimensional connected geometries with fixed genus g. The weighting by pow-
ers of eS0 comes from an Euler characteristic term we can add to the bulk

54In cases where the relevant ensemble corresponds to a theory with an odd
number of fermions, then we should multiply each trace in the LHS by

√
2, as

explained in (2.7). For the most part we will consider NS boundaries, but we will
comment on R boundaries in section 5.4.
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JT action, as is familiar in string theory. The rest of the bulk action can
be written as a topological BF theory, with gauge group G = SL(2,R) for
ordinary JT gravity and G = OSp′(1|2) for JT supergravity. As described in
section 3, the path integral of a BF theory reduces to an integral over the
moduli space of flat connections, with measure given by the torsion.55 So,
the main part of the computation of Zg(β1, . . . , βn) is a computation of the
volume of a moduli space with this measure.

More precisely, the path integral reduces to an integral over such a mod-
uli space, together with a path integral over “wiggles” associated to the n
asymptotic boundaries:

(5.3) Zg(β1, . . . , βn) =

∫
d(moduli)

∫
D(wiggles)e−ISch .

These wiggles are described by the Schwarzian theory in the ordinary JT
gravity case [4–6], and by the super-Schwarzian theory in the super JT
gravity case [30]. These path integrals can be done in advance, and then
glued together with the computation of the moduli space volume. For more
on this, see appendix C.

Two different Schwarzian and super-Schwarzian path integrals will be
needed, see figure 17. The first path integral, ZD(β) is an integral over the
wiggles at the boundary of a disk. In this situation, the only parameter is
the regularized length of the wiggly boundary, β. The second path integral,
ZT (β, b), is an integral over the wiggles at the “big end” of a trumpet. The
trumpet is defined so that the “small end” is a geodesic of length b, and
the answer depends on this parameter as well as β, the regularized length
of the big end. For both cases, the path integrals depend on the normal-
ization of the path integral measure, and also on the normalization of β.
Both of these normalizations are arbitrary, but must be chosen consistently.
With a particular choice that we will describe in more detail in appendix C,
the Schwarzian and super-Schwarzian path integrals for the disk and the
trumpet are explicitly

ZDJT(β) =
1

4π1/2β3/2
e

π2

β ZTJT(β, b) =
1

2
√
πβ

e−
b2

4β(5.4)

ZDSJT(β) =

√
2

πβ
e

π2

β ZTSJT(β, b) =
1√
2πβ

e−
b2

4β .(5.5)

55One also has to restrict to the appropriate topological component of the moduli
space, and quotient by the action of the mapping class group.
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geodesic of length 𝑏
Figure 17: The disk (left) and trumpet (right) partition functions are path
integrals over a wiggly regularized AdS2 boundary, together with a fermionic
partner mode in the super case. The length of the wiggly boundary is pro-
portional to β. In the case of the trumpet, the other end of the trumpet is a
geodesic of length b, across which the geometry can be glued to a bordered
(super) Riemann surface.

The ordinary JT cases were computed in [12–20] and the super cases are
computed in appendix C.

For the disk topology, there is no moduli space to integrate over, so the
path integral over the Schwarzian “wiggles” is actually the whole answer:

(5.6) Z0(β) = ZD(S)JT(β).

In comparing to matrix integrals, the disk plays a special role, because it
determines the spectral curve, or equivalently the ρ0(x) function. We can
read this off by interpreting Z0(β) =

∫∞
0 dx e−βxρ0(x) and solving for ρ0(x).

For the two cases of JT gravity and super JT gravity, one finds the ρ0(x)
functions and corresponding spectral curves

ρ0 JT(x) =
sinh(2π

√
x)

4π2
yJT(x) =

sin(2π
√−x)

4π
(5.7)

ρ0 SJT(x) =

√
2 cosh(2π

√
x)

π
√
x

ySJT(x) = −
√
2 cos(2π

√−x)√−x .(5.8)

As we have seen, together with the discrete choice of matrix ensemble, the
data of the spectral curve completely determines the genus expansion of a
matrix integral. So from the perspective of a correspondence between (super)
JT gravity and matrix integrals, the disk topology should be regarded as
input that allows us to fit the correct matrix integral. All other topologies
constitute nontrivial tests of the correspondence.

In (super) JT gravity, the path integrals on other topologies Zg are given
by a combination of the Schwarizan trumpet path integral and the volumes
of moduli space. There are two cases that have to be treated individually.
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One of them is the “double trumpet,” for which the path integral gives

(5.9) Z0(β1, β2) = c

∫ ∞

0
b db ZT(S)JT(β1, b)Z

T
(S)JT(β2, b).

In this expression, two trumpets have been glued together by integrating
over the length of their shared geodesic b and the relative twist. The integral
over the relative twist gives the factor of b in the measure. In a theory where
we sum over neither spin structures nor orientation reversal, the constant
c should be one. In a theory where we sum over one but not the other, we
have c = 2. Finally, in a theory where we sum over both spin structures and
orientation reversal, we have c = 4.

Another special case is the crosscap spacetime:

(5.10) Z 1

2

(β) =

∫ ∞

0
db V 1

2

(b)ZT(S)JT(β, b).

This case is special because when we glue the trumpet to the crosscap, there
is only a single modulus involved in the gluing, the size. There is no twist
modulus because of the rotational symmetry of the crosscap. The result of
this is that the measure factor is simply db rather than bdb as we have in
other cases.

All other Zg(β1, . . . , βn) are given by the generic formula56

(5.11) Zg(β1, . . . , βn) = cn

∫ ∞

0

n∏

j=1

[
bjdbjZ

T
(S)JT(βj , bj)

]
Vg(b1, . . . , bn).

The volumes Vg(b1, . . . , bn) are computed using the torsion as described in
section 3.4.7 and section 3.5.3. We define them to also include the sum over
spin structures (if present) holding fixed the NS spin structure on the bound-
aries.57 The constant cn should be one in a theory where we do not gauge
orientation reversal, and it should be 2n−1 in a theory where we do. This
accounts for the possibility of gluing the n trumpets in with independent
orientation-reversals, up to an overall orientation reversal.

56In principle, the genus one case with a single boundary is also special: because
the torus with one hole has a Z2 symmetry, we should integrate the twist from zero
to b/2 instead of b. Instead, we simply define V1(b) to be one-half of the true moduli
space volume of the torus with one hole, and integrate the twist as usual. See also
footnote 72.

57We will consider Ramond boundaries briefly in section 5.4.
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In order to compare to the loop equations, we will often work in terms
of resolvents instead of partition functions. These can be obtained using
R(x) = −

∫∞
0 dβeβxTr(e−βH). In order to apply this integral transform to

the (super) JT partition functions, we will often use the formulas

(5.12)

∫ ∞

0
dβe−βz

2

ZTJT(β, b) =
1

2z
e−bz,

∫ ∞

0
dβe−βz

2

ZTSJT(β, b) =
1√
2z
e−bz.

5.1. Ordinary JT gravity with time-reversal symmetry

JT gravity on orientable surfaces was related to a double-scaled β = 2 ma-
trix ensemble in [35]. In this section we will relate β = 1, 4 versions of the
same matrix ensemble to a JT gravity theory in which orientation-reversal
is viewed as a gauge symmetry.

Concretely, gauging orientation-reversal means we can glue surfaces to-
gether with an orientation reversal, so in particular we should include unori-
entable surfaces as well as orientable ones. There are two versions of the bulk
theory, depending on whether or not we include a factor of (−1)nc where
nc is the number of crosscaps. These two versions are related to β = 1 and
β = 4 ensembles. Because of the discussion in 4.1.6, it will be sufficient to
compare just one of these cases, and we choose the β = 1 ensemble, which
is dual to a bulk theory in which we do not include (−1)nc .

To compare the matrix and JT gravity predictions, we will start with
genus zero. Here we can use as input the fact from [35] that JT gravity is
dual to a β = 2 ensemble. It is easy to check from the recursion that genus
zero resolvents in the β = 1 and β = 2 ensemble are related by the simple
factor

(5.13) Rβ=1
0 (I) = 2n−1Rβ=2

0 (I), n = |I|.

We wrote this equation in terms of resolvents, but partition functions
Z0(β1, . . . , βn) will also be related by the same factor of 2n−1. So, to show
agreement with the matrix integral, we need to find the same factor in the
relationship between JT gravity partition functions in the theories with and
without orientation-reversal gauged. Indeed, this is just the factor cn dis-
cussed in (5.11). Topologically, Z0(β1, . . . , βn) involves n trumpets glued into
a sphere. We can glue each trumpet to the sphere with or without an orien-
tation reversal, giving a factor of 2n. Gauging the overall orientation gives
a single factor of 1/2, so cn = 2n−1, which matches (5.13).
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Next we discuss genus one-half with a single boundary. From the loop
equations for the ordinary β-ensembles, the equation (4.37) for R 1

2

(x) is

(5.14) 2y(x)R 1

2

(x) +

(
1− 2

β

)
∂xy(x) ∼ 0.

where we replaced ∂xR0(x) by ∂xy(x) at the cost of introducing an analytic
term that we ignore in this expression. The corresponding dispersion relation
is

(5.15) R 1

2

(x)
√
σ(x) =

1− 2
β

2πi

∫

C

dx′

x′ − x

√
σ(x′)

∂x′y(x′)
2y(x′)

.

For a double-scaled matrix integral with a− = 0 and a+ = ∞, this becomes
(for β = 1)

(5.16)
√
−xR 1

2

(x) = − 1

2π

∫ ∞

0

√
x′ dx′

x′ − x

∂x′y(x′)
y(x′)

.

For a spectral curve y(x) that is asymptotically a power of x, this integral
would converge. But for the y(x) in (5.7), it is logarithmically divergent at
large x′. What this means is that the limiting procedure needed to define the
double-scaled β = 1 theory for JT gravity doesn’t produce a finite e−S0 ex-
pansion. (The divergence is regulated in the minimal string, see appendix F.)

For our purposes, this is actually a good thing, because as we saw in
section 3.4.6, the volume of the moduli space of unorientable surfaces is
in general divergent. For the quantity R 1

2

, we will be able to compare the
integrands of the matrix and JT expressions, and find precise agreement. To
proceed, we substitute in (5.7) and rewrite (5.16) as

(5.17) R 1

2
M(−z2) = − 1

2z

∫ ∞

0

dx′

x′ + z2
coth(2π

√
x′).

Here we added a subscript “M” to indicate that it is the matrix integral
answer. One would like to use this formula to predict an answer for the
path integral measure for the crosscap, and then check it against the torsion
computation (3.56). If we didn’t know the measure for the crosscap in JT
gravity, we would write (5.10) with V 1

2

(b) unknown. This can be converted
to an expression for the resolvent:

(5.18) R 1

2
JT(−z2) = −

∫ ∞

0
dβ e−βz

2

Z 1

2
JT(β) = − 1

2z

∫ ∞

0
db e−azV 1

2

(b).
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In the last step we inserted (5.10) and did the integral over β explicitly using
(5.12). So, matching (5.17) and (5.18), the equation to be solved for V 1

2

(b)
is

(5.19)

∫ ∞

0
db e−bzV 1

2

(b) =

∫ ∞

0

dx′

x′ + z2
coth(2π

√
x′).

Taking an inverse Laplace transform of both sides of the equation, one finds

V 1

2

(b) =

∫
dz

2πi
ebz
∫ ∞

0

dx′

x′ + z2
coth(2π

√
x′)(5.20)

=

∫ ∞

0

dx′√
x′

sin(b
√
x′) coth(2π

√
x′)(5.21)

= 1
2 coth(

b
4).(5.22)

This matches the answer we got from the computation of the torsion of the
crosscap (3.56).

It may be possible to make further comparisons between these two diver-
gent theories, but we will stop at this point and move to super JT gravity.

5.2. Super JT without time-reversal symmetry

We will begin by considering a version of JT supergravity in which we do
not gauge orientation-reversal. This means that we are restricted in how
surfaces can be glued together. In particular, the twisted double-trumpet
and its relatives are not allowed, and nor are unorientable surfaces. This is
expected to be dual to a matrix ensemble that does not respect any time-
reversal symmetry. As described in section 2.6 and table 3, there are two
versions of the matrix ensemble, and two versions of the bulk theory.

In this section and in the next one, we will focus on the case that the
boundaries have NS spin structures. We will comment on the case with R
boundaries in section 5.4.

5.2.1. Sum of even and odd spin structures. We start with the case
corresponding to odd N . This is a theory with an anomaly in (−1)F, which
(as described in section 2.6.3) is already accounted for in the contribution of
the boundary fermion in the Schwarzian supermultiplet. So in the bulk the-
ory we should not include the (−1)ζ TFT. This means that bulk spin struc-
tures are all weighted equally, with no minus signs. As argued in section 2.6,
the random matrix ensemble is specified by saying that the supercharge Q
is drawn from an ordinary β = 2 ensemble.
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Since we are in an ensemble with an odd number of fermions, the rela-
tionship between the path integral and the trace in the Hilbert space involves
a factor of

√
2, see (2.7). So we expect to have the relationship

(5.23) ZSJT(β) =
√
2Tr(e−βQ

2

).

To determine the spectral curve of the matrix ensemble, we need the leading
density of eigenvalues of Q. This can be obtained by taking the genus zero
approximation of both sides of (5.23):

(5.24) ZDSJT(β) =
√
2

∫ ∞

−∞
dx ρ0(x)e

−βx2

.

After plugging in (5.5) for the LHS, we need to solve this equation for ρ0(x).
It is easy to check the solution

(5.25) ρ0(x) =
cosh(2πx)

π
.

This is the leading density of eigenvalues for the matrix Q. The correspond-
ing spectral curve is determined by (4.24). It is somewhat unusual, with a
branch cut running along the whole real axis. This can be arranged as a
limit of a conventional matrix integral where both endpoints a± have been
scaled away, to plus and minus infinity.

We can get the expression for R0(x1, x2) for such a matrix integral by
taking a± = ±∞ in (4.32). The result for β = 2 is

(5.26) R0(x1, x2) =

{
0 x1, x2 on same side of cut

− 1
(x1−x2)2

x1, x2 on opposite sides.

Here the cut runs along the whole real axis, so the statement is that R0

is nonzero (on the principal sheet) only if the two arguments are in oppo-
site half-planes. Eq. (5.26) gives the two-resolvent correlator for resolvents
constructed from the eigenvalues of Q. To compare to JT supergravity, it is
helpful to first convert to a formula for the resolvents of H. Using

(5.27)
1

x+ λQ
− 1

x− λQ
=

2x

x2 − λ2Q
=

2x

x2 − λH

we can relate the resolvents (using an obvious notation) as

(5.28) R(Q)(x)−R(Q)(−x) = 2xR(H)(x2).
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The pair correlator of the resolvents of H is determined by this formula and
the pair correlator of resolvents of Q in (5.26). The result is

(5.29) R
(H)
0 (−z21 ,−z22) =

1

2z1z2(z1 + z2)2
.

Including the factor of
√
2 in (5.23), the matrix integral result will be con-

sistent with JT supergravity if R0 SJT is equal to (
√
2)2 = 2 times this value.

Let’s now check against the prediction from JT supergravity. From (5.9) and
after plugging in (5.5), we have

(5.30) Z0 SJT(β1, β2) = 2

∫ ∞

0
b db ZTSJT(β1, b)Z

T
SJT(β2, b) =

2
√
β1β2

π(β1 + β2)
.

The factor of two out front corresponds to the value c = 2 in (5.9) which is
appropriate for the current case where we sum over spin structures
but not over orientation-reversal. Translating to resolvents using R(x) =
−
∫∞
0 dβeβxZ(β) and (5.12), we indeed find twice the value in (5.29).
A property of this type of scaled matrix integral is that all higher-order

correlators vanish. This is due to the following. In a β = 2 ensemble, as we
remarked in section 4.1.5, the recursion reduces to a sum of residues at the
endpoints of the cut. Because of the factor 1/(x′ − x) in the integrand of
the dispersion relation (4.41), these residues vanish in the limit that the
endpoints go to infinity. So for a β = 2 matrix integral that has been double
scaled to give a spectral curve like (5.25), all higher order correlators are
zero.

The conjectured correspondence of JT supergravity with a matrix inte-
gral then predicts that the volumes of the moduli spaces of bordered super-
Riemann surfaces (summing equally over even and odd spin structures) are
zero. We confirm this at the end of appendix D.

5.2.2. Difference of even and odd spin structures. Now we consider
the random matrix ensemble appropriate to the case with an even number
of Majorana fermions. We expect this to be related to JT supergravity in-
cluding a factor of (−1)ζ , which means that we take the sum of even spin
structures minus the sum of odd ones. As argued in section 2.6, the appro-
priate random matrix ensemble is a (α,β) = (1, 2) ensemble. Because the
Hamiltonian is two-fold degenerate, we expect

(5.31) ZSJT(β) = Tr(e−βH) = 2
∑

distinct
eigs. of H

e−βλi = 2ZM(β).
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Here, we are using the subscript M to indicate a matrix integral quantity
where we sum only over the distinct eigenvalues of H, as we did in our study
of the loop equations above.

Because of the degeneracy, the density of distinct eigenvalues ρM is half
of the total density of eigenvalues. For JT supergravity, the genus zero ex-
pression for the total density of eigenvalues is given in (5.8). So we learn
that ρ0M and the spectral curve y of the matrix integral are given by

(5.32) ρ0M(x) =
ρ0 SJT(x)

2
=

cosh(2π
√
x)

π
√
2x

, yM(x) = −cos(2π
√−x)√

−2x
.

Recall that for the (α,β)-ensembles, we work directly with resolvents for
H, and not for Q. So here we have written the leading density of distinct
eigenvalues of H.

We would now like to use the loop equations of the matrix integral to
predict answers for JT supergravity. It is convenient to compare the resol-
vents in the two theories. Because of the degeneracy, multi-resolvents in JT
supergravity will be related to multi-resolvents of the distinct eigenvalues as

(5.33) RSJT(I) = 2|I|RM(I).

As a first example, we can compare the leading two-point correlator. From
the expression (4.34) specialized to (α,β) = (1, 2), one finds

(5.34) R0M(−z21 ,−z22) =
1

4z1z2(z1 + z2)2
.

Because of (5.33), the prediction for JT gravity is four times this, which is
indeed the answer that follows from (5.30).

To evaluate higher order correlators on the matrix side, we use the recur-
sion relation (4.67). For a double-scaled theory of the type we are studying,
it is convenient to write this dispersion relation using a uniformizing coor-
dinate z =

√−x as

(5.35) RgM(−z2, I) = 1

2πiz

∫ ϵ+i∞

ϵ−i∞

z′2dz′

z′2 − z2
FgM(−z′2, I)
yM(−z′2) .

In terms of z, the spectral curve (5.32) is

(5.36) x = −z2, yM = −cos(2πz)√
2 z

.
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The quantity Fg is given in (4.66). An important feature is that the first
term in the definition of Fg vanishes for the ensemble (α,β) = (1, 2). An
argument similar to the one in section 4.1.5 then shows that the disper-
sion relation (4.67) reduces to a sum over residues at the endpoints of the
cut in the x plane. (For the double-scaled case (5.35), this is simply one-
half the residue at z′ = 0.) This implies that the loop equations reduce to
“topological recursion” for the spectral curve (5.36).

Now, assuming a correspondence between JT supergravity and matrix
integrals, this recursion can be used to predict the volumes of super moduli
space. The idea is as follows. In JT supergravity, correlators of partition
functions are related to volumes of super moduli space by (5.11). For the
present case where we do not sum over orientation-reversal, we have cn = 1.
Using R(x) = −

∫∞
0 dβeβxZ(β), and using (5.12), we find the JT supergrav-

ity formula for the resolvents in terms of the volumes

(5.37) Rg SJT(−z21 , . . . ,−z2n) = (−1)n
∫ ∞

0
Vg(b1, . . . , bn)

n∏

j=1

bjdbj
e−bjzj√
2 zj

.

In this expression, the Vg(b1, . . . , bn) are the volumes of moduli space of
bordered super Riemann surfaces, with sum over spin structures weighted by
(−1)ζ .58 An inverse expression gives the volumes in terms of the resolvents:
(5.38)

Vg(b1, . . . , bn) = (−1)n
∫

c0+iR
Rg SJT(−z21 , . . . ,−z2n)

n∏

j=1

dzj
2πi

√
2 zj
bj

ebjzj .

Assuming the correspondence between SJT and a matrix integral (5.33)
and using the matrix intgral recursion (5.35), one can efficiently compute the
Rg SJT functions. Then one can compute the inverse Laplace transform (5.38)
to obtain Vg. As an example, the following three cases can be computed (in
order) using the recursion:

(5.39)

R1 SJT(−z21) =
1

27/2z31
R1 SJT(−z21 ,−z22) =

1

24z31z
3
2

R2 SJT(−z21) =
9

217/2z51
+

9π2

215/2z31
.

58Alternatively, since we know that the sum without this factor vanishes, we can
regard it as twice the sum over even spin structures, or minus two times the sum
over odd spin structures.
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After using (5.38), one finds the corresponding volumes (see footnote 56)

(5.40) V1(b1) = −1

8
V1(b1, b2) =

1

8
V2(b1) = − 3

29
(b21 + 12π2).

In practical terms, this is the most efficient method to compute the volumes.
But it is also possible to rewrite the recursion (5.35) directly in terms of
the volumes. This gives a recursion that is structurally identical to the one
derived by Mirzakhani for the volumes of ordinary moduli spaces.

To derive this relation, one can substitute the recursion (5.35) into the
RHS of (5.38) taking care of the factors of two due to (5.33). This gives an
expresion for Vg(b1, . . . , bn) in terms of some integrals of resolvents. Then
using (5.37) one rewrites these resolvents in terms of “lower order” vol-
umes. The resulting expression contains many integrals, but most of them
are Laplace and inverse Laplace transforms that cancel each other. What
remains is a small number of z and b integrals. One of the z integrals can
be done by trivial contour integration, and the other can be treated using
the following function

D(x, y) =

∫ i∞

−i∞

dz

2πi

e−xz

cos(2πz)
sinh(yz)(5.41)

=
1

8π

(
1

cosh x−y
4

− 1

cosh x+y
4

)
.

The final b integrals are explicit in the final form of the recursion relation,
which is

bVg(b, B) = −1

2

∫ ∞

0
(b′db′)(b′′db′′)D(b′ + b′′, b)

×
(
Vg−1(b

′, b′′, B) +
∑

stable

Vh1
(b′, B1)Vh2

(b′′, B2)

)

−
|B|∑

k=1

∫ ∞

0
b′db′

(
D(b′ + bk, b) +D(b′ − bk, b)

)
Vg(b

′, B \ bk).(5.42)

In this expression, we are using the notation B = {b1, . . . , bn}. In the second
term on the first line, the sum marked “stable” is over h1 + h2 = g and
B1 ∪B2 = B, with terms involving the unstable cases V0(bi) and V0(bi, bj)
excluded. We can start the recursion with V1(b1) = −1/8 along with the
vanishing of the volumes in genus 0.



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1609 — #135
✐

✐

✐

✐

✐

✐

JT gravity and the ensembles of random matrix theory 1609

The volumes of supermoduli space, like the volumes of moduli space,
depend on the normalization of the symplectic form. Rescaling this form
will multiply the entire RHS of (5.42) by a constant factor. Formula (5.42)
is supposed to be correct with the symplectic form normalized so that the
bosonic part of it reduces to the form ω =

∑
i dbi dτi in terms of Fenchel-

Nielsen (length-twist) coordinates measured in units where the hyperbolic
curvature length is one, so the scalar curvature is R = −2.

The recursion relation (5.42) has also been obtained in unpublished work
by Norbury, extending work on the “cosine” spectral curve [56] (and earlier
work on the related “Bessel” spectral curve [57]). Norbury has also computed
examples such as those of eqn. (5.40).

In the case of ordinary moduli space, a recursion relation structurally
similar to (5.42) was derived by Mirzakhani [37] using a sum rule for geodesics
on hyperbolic surfaces. Shortly afterwards, Eynard and Orantin showed that
Laplace transforms of Mirzakhani’s volumes satisfy topological recursion
[36]. We have here obtained eqn. (5.42) purely as a statement about a ma-
trix ensemble, without reference to super Riemann surfaces. However, in
appendix D, we show how eqn. (5.42) can be obtained, as a statement about
supermoduli space volumes, by a supersymmetric analog of Mirzakhani’s
approach. This will establish the connection between super JT gravity and
the random matrix ensemble, in the same sense that the relation between
bosonic JT gravity and a matrix ensemble was shown in [35].

5.3. Super JT with time-reversal symmetry

Next we will study the correspondence between JT supergravity and ma-
trix integrals in the case where we include time-reversal symmetry. In JT
supergravity, this means that we will gauge orientation-reversal in the bulk.
In section 3.5.1, it was shown that the bulk theory will involve a sum over
pin− structures, rather than pin+. In section 2.6 and table 4, we described
the various matrix ensembles that appear, and the eight corresponding bulk
topological field theories e−iπηN ′/2. We will now compare what we can be-
tween the matrix ensembles and JT theories, starting with genus zero.

5.3.1. Genus zero.

One boundary. At genus zero with one boundary, we do not have any
prediction from the matrix integral. Instead, by matching to super JT grav-
ity, we simply learn what the spectral curve of the matrix integral should
be.
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To get this right, we have to understand a normalization factor in the re-
lationship between matrix integral quantities and JT gravity quantities. One
nontrivial factor was noted in (2.7) above: in the case with an odd number
of fermions, the path integral gives

√
2 times the trace in the Hilbert space.

The other factor is due to the degeneracy of the levels of the Hamiltonian.
It is convenient to combine these together into a variable γ

(5.43) γ =

{
(degeneracy in H) N even√
2 · (degeneracy in H) N odd

so that the relationship between the super JT quantities and the matrix
quantities is expected to be

(5.44) RSJT(I) = γ|I|RM(β).

The values of γ for the various cases are given in table 4. For the six cases
corresponding to (α,β) ensembles, it is straightforward to obtain the spec-
tral curve, generalizing the argument that led to (5.32) for the case γ = 2.
The density of distinct eigenvalues of H is equal to 1/γ times the total den-
sity inferred from the JT supergravity path integral, and the spectral curve
is therefore

(5.45) yM(x) =
1

γ
ySJT(x), ySJT(x) = −

√
2 cos(2π

√−x)√−x .

For the two β-ensemble cases, the relevant spectral curve is the one
related to the density of eigenvalues of Q. In (5.25) we determined the den-
sity of distinct eigenvalues of Q for the case with γ =

√
2. Repeating the

argument for a general value of γ, we find

(5.46) ρ
(Q)
0 (x) =

√
2

γ

cosh(2πx)

π
.

Two boundaries. At genus zero with two boundaries, the SJT gravity
prediction is

(5.47) Z0 SJT(β1, β2) = 2 · 2
∫ ∞

0
b db ZTSJT(β1, b)Z

T
SJT(β2, b) =

4
√
β1β2

π(β1 + β2)
.

The factors of two out front are because of the sum over pin− structures
and the sum over the double trumpet and twisted double trumpet. Using
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R(x) = −
∫∞
0 dβeβxZ(β), this implies

(5.48) R0 SJT(−z21 ,−z22) =
2

z1z2 (z1 + z2)
2 .

We would like to compare this to the random matrix ensembles. For
the six (α,β) cases in table 4, the leading two-resolvent correlator is given
in (4.34). The x dependence is the same as in (5.48), but the prefactor is
1
2β instead of 2. However, to convert from R0M(x1, x2) to R0 SJT(x1, x2), we

need to multiply by γ2. For each of the six (α,β) cases in the table, one
finds that γ2/(2β) = 2, so we find agreement with (5.47).

For the remaining two β-ensemble cases from table 4, we need a separate
argument. For these cases, H = Q2, where Q is either a β = 1 or β = 4
matrix from a regular β-ensemble. Repeating the steps that led to (5.29) for
a general value of β, one finds

(5.49) R0M(−z21 ,−z22) =
1

βz1z2(z1 + z2)2
.

Multiplying by γ2, we again find agreement with (5.48) for the two β-
ensemble cases in table 4.

More boundaries. As shown in appendix A, in super JT gravity, all
higher correlators vanish at genus zero, because they are proportional to the
volume of a symplectic supermanifold with more fermionic than bosonic co-
ordinates. This is consistent with the matrix integral. For the six (α,β) cases,
this follows from the discussion in section 4.2.3. For the two β-ensemble
cases, one can argue as follows. At genus zero, we noted in our discussion of
β-ensembles in section 4.1.3 that the dispersion relation for R0(x1, x2, x3)
reduces to a sum of residues at the endpoints of the cut. So we can apply the
logic from the end of section 5.2.1: in the double-scaled limit that is applied
to Q, both endpoints move to ±∞. Then the residues vanish due to the
factor of 1

x′−x , where x remains finite and x′ is evaluated at one of the end-
points. It is easy to check from the recursion that vanishing of R0(x1, x2, x3)
implies that all higher R0(I) vanish.

5.3.2. Genus one-half. At genus one-half, we will get a more detailed
check on the correspondence by computing R 1

2

(x). As before, we start with

the six (α,β) ensemble cases. The matrix integral formula forR 1

2

(x) is (4.69).
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Substituting in the spectral curve (5.45) and simplifying, one finds

(5.50) R 1

2
M(−z2) = 1

2z

∫ ∞

0

√
x′dx′

x′ + z2

[(
1− 2

β

) tanh(2π
√
x′)√

x′
+

α− β
2

πβx′

]
.

As in the bosonic case, let us pretend that we don’t know the answer in
super JT, and write

R 1

2
SJT(x) = −

∫ ∞

0
dβeβxZ 1

2
SJT(x)(5.51)

= −
∫ ∞

0
dβeβx

∫ ∞

0
db ZTSJT(β, b)V 1

2

(b)(5.52)

with an undetermined V 1

2

(b). Evaluating this at x = −z2 and doing the

integral over β using (5.12), we find

(5.53) R 1

2
SJT(−z2) = − 1√

2 z

∫ ∞

0
db e−bzV 1

2

(b).

Setting R 1

2
SJT = γR 1

2
M, and taking the inverse Laplace transform with re-

spect to z, we find

V 1

2

(b) = − γ√
2

∫
dz

2πi
ebz
∫ ∞

0

√
x′dx′

x′ + z2

[(
1− 2

β

) tanh(2π
√
x′)√

x′
+

α− β
2

πβx′

]
(5.54)

= − γ√
2

∫ ∞

0
dx′ sin(b

√
x′)

[(
1− 2

β

) tanh(2π
√
x′)√

x′
+

α− β
2

πβx′

]
(5.55)

= − γ√
2

[
1− 2

β

2 sinh( b4)
+

α− β
2

β

]
.(5.56)

We will compare this to the JT supergravity answer in a moment.
For the two β-ensemble cases, the genus one-half resolvent forQ is (5.15).

We can then use RH(−z2) = 1
2iz (RQ(iz)−RQ(−iz)) to find the resolvent for

H:59

(5.57) R 1

2
M(−z2) =

1− 2
β

z

∫ ∞

−∞

dx′Q
x′2Q + z2

tanh(2πx′Q).

59One has to take care with
√
σ(x) and

√
σ(x′). In the limit where both endpoints

of the cut go to infinity, the ratio of these factors is one if x, x′ are in the same
half-plane, and minus one if they are in opposite half-planes.
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After changing variables to x′ = x′2Q, we recognize this as two times the

expression (5.50) with α = β
2 . So, by comparing to (5.56), the prediction for

the volume is

(5.58) V 1

2

(b) = −
√
2γ

1− 2
β

2 sinh( b4)
.

Now, using the values in table 4, and applying (5.56) for the (α,β)-
ensemble cases and (5.58) for the β-ensemble cases, one finds that the answer
can be written uniformly as

(5.59) V 1

2

(b) =





cos πN′

4

sinh b

4

− sin πN ′

4 q̂ = 1 mod 4

cos πN′

4

sinh b

4

+ sin πN ′

4 q̂ = 3 mod 4.

This agrees with the computation of the torsion in (3.75), up to the sign
that was not fixed in that computation. Note that although a sign was not
fixed, it is easy to see from a bulk perspective that the q̂ = 1 and q̂ = 3 cases
should be related by flipping the sign of the second term. This is because
the action of T on the supercharge (and thus the gravitino) has opposite
sign in the two cases, which leads to the sign of the η invariant reversing.
Since η appears in the combination exp(−iπηN ′/2), reversing the sign of η
is equivalent to reversing the sign of N ′, as in (5.59).

Generically, this volume is divergent at b = 0 because of the 1/ sinh b
4

term. This is similar to the divergent coth b
4 term in the purely bosonic case.

So for the same reason one finds that the volume of supermoduli space,
weighted by the η-invariant factor, is divergent. However, for the special
cases with β = 2 (which correspond to (α,β) = (0, 2) and (2, 2)), the coeffi-
cient of the first term vanishes, and we find V 1

2

(b) = ±1. For these two cases,
the volume is finite and we can proceed to higher orders.

5.3.3. Higher orders. In fact, the matrix integral prediction for these
two cases is that all further correlators vanish in the double-scaled limit.
In other words, we claim that for (α,β) = (0, 2) or (2, 2), the following is a
solution to (4.55):

⟨R(x)⟩ − LV ′(x)
2

= eS0y(x)− α−1

4x
(5.60)

⟨R(x1)R(x2)⟩c =
1

4
√−x1

√−x2 (
√−x1 +

√−x2)2
(5.61)

⟨R(I)⟩c = 0 |I| ≥ 3.(5.62)
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Here, we are assuming that the matrix integral is a double-scaled one-cut
model, with a single branch point at the origin where y(x) has a 1/

√−x
singularity. We are using a notation appropriate for a double-scaled limit,
with both L and eS0 appearing; for the purposes of power-counting, eS0

should be considered of order L.
We can summarize (5.60), (5.61), (5.62) by saying that only terms of

order L and order one appear; there are no terms proportional to negative
powers of L. To check that we have a solution to the loop equations, one can
substitute into (4.55) and consider a 1/L expansion. The terms at order L2 in
(4.55) determine y(x) as a function of the potential (or vice versa). The terms
at order L determine the order-one pieces of ⟨R(x)⟩ and ⟨R(x1)R(x2)⟩c.
Since (5.60), (5.61), (5.62) do not contain any negative powers of L, all that
remains is to check that (4.55) is satisfied at order one. This amounts to
checking that the loop equations in the form

(5.63) 2xy(x)Rg(x, I) + xFg(x, I) ∼ 0

are satisfied for the three cases (g, |I|) ∈ {(1, 0), (12 , 1), (0, 2)}. We will now
check each case.

For (g, |I|) = (1, 0), the Fg(I) quantity is

(5.64) F1(x) =
α−1

2x
R 1

2

(x) +R0(x, x) +R 1

2

(x)2.

For α ∈ {0, 2}, this vanishes exactly after using R 1

2

(x) = −(α− 1)/(4x) and

also using the formula for R0(x, x1) in (5.61). This means that (5.63) is
indeed satisfied with R1(x) = 0. Next, for the case (g, |I|) = (12 , 1), we have

F 1

2

(x, x1) =
α−1

2x
R0(x, x1) + 2

(
R0(x, x1) +

1

2

1

(x− x1)2

)
R 1

2

(x)(5.65)

= − α−1

4x(x− x1)2
.(5.66)

This expression is nonzero, but xFg(x, I) is analytic in x in a neighborhood
of the cut so (5.63) is satisfied. The final case to consider is (g, |I|) = (0, 1),
which determines R0(x1, x2, x3). This always vanishes in the double-scaled
(α,β)-ensembles, as discussed in section 4.2.3.

This matrix integral result, together with the correspondence with JT
supergravity, predicts that certain super moduli space volumes are zero.
Specifically, the volumes where we sum over pin− structures, weighting by
exp(iπη) or by exp(−iπη). The first nontrivial case is at genus one with one
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boundary, where there is apparently a cancellation between the disk with a
handle glued in, and the disk with two crosscaps glued in.

In the matrix integral, we expect that although there are no perturba-
tive corrections in powers of e−S0 , there will be nonperturbative effects; see
appendix E.

5.4. Ramond boundaries in the super case

So far, in our discussion of super JT gravity, we have focused on the case that
all boundaries have NS spin structure. From the perspective of random ma-
trix theory, any correlator with Ramond spin structures should vanish. For
oddN , this is because the Ramond path integral vanishes, as in eqn. (2.8) (or
is a constant, still with vanishing correlators, in the ensembles with ν), and
for even N it is because for the models we have discussed, the fermionic and
bosonic states have precisely the same energies, so Tr (−1)Fe−βH vanishes.

One would like to use this to learn something about the volumes of
moduli spaces of super Riemann surfaces with R boundaries.60 However, in
super JT gravity, this vanishing can actually be explained in a simpler way,
just from the fact that the super-Schwarzian path integral gives zero in the
Ramond sector. On the disk this is because no R spin structure is possible.
For the trumpet, it is because the Schwarzian path integral vanishes (see
eqn. (C.11)).

To get around this problem, one can consider instead the quantity
Tr
(
Q(−1)Fe−βH

)
, where Q is the supercharge. Now the trumpet super-

Schwarzian path integral is nonzero: to leading order for small fluctuations
about a classical solution, the supercharge Q of the super-Schwarzian theory
is proportional to Sη, where S is the classical value of the bosonic Schwarzian
derivative. S is nonzero for the “trumpet” solution, see appendix C, so an
insertion of Sη will soak up the zero mode of η. Since the trumpet is nonzero,
if we can show that Tr

(
Q(−1)Fe−βH

)
has to vanish in a given matrix en-

semble, this will imply that in the corresponding bulk theory, volumes of
super moduli space with Ramond boundaries must vanish.

In fact, for the matrix ensembles with even N , it is easy to show that
Tr
(
Q(−1)Fe−βH

)
vanishes identically. The operator inside the trace takes

bosonic states to fermionic ones and vice versa, so it has no diagonal com-
ponents and zero trace. For odd N , the situation is more complicated: in
this case by “Tr

(
Q(−1)Fe−βH

)
” we really mean a path integral with peri-

odic boundary conditions and an insertion of Q. Such a path integral can

60For some anomalies involving these objects, see appendix A.5.
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be written in operator language in the Hilbert space of dimension 2(N−1)/2

where we defined the odd N SYK model. One can show that it reduces to
±
√
2Tr Qe−βH , with an ambiguous overall sign. For the cases where Q is

drawn from an Altland-Zirnbauer ensemble, this vanishes identically because
the eigenvalues of Q come in pairs ω,−ω. For the case where Q is drawn
from a GUE ensemble (odd N , no time-reversal), all “stable” correlators
vanish, because we argued in section 5.2.1 that all correlators of resolvents
of Q beyond R0(x) and R0(x1, x2) are zero. This argument extends to corre-
lators of any single-trace quantities (including Tr Qe−βH), since they can be
written in terms of resolvents. This leaves the two cases in which Q is drawn
from a GOE-like or GSE-like ensemble. For these cases, all genus-zero con-
tributions will vanish, since GOE and GSE are equivalent to GUE in genus
zero. But it seems that in general the correlators with Ramond boundaries
are nonzero.

Our conclusion is that correspondence with the matrix integral predicts
that volumes of super moduli space with Ramond boundaries must vanish
for all of the bulk theories considered, with the exception of unorientable
surfaces in the theories with bulk TFT equal to 1 or exp(−4iπη/2). For
these cases, the volumes will be infinite due to the crosscap divergence, so it
seems that there are no cases with finite and nonzero volumes with Ramond
boundaries.

5.5. Unbroken supersymmetry and ramond punctures

Several of the ensembles that we have discussed can be generalized to depend
on another parameter. This happens if the random matrix C is a bifunda-
mental of a symmetry group U(L)×U(L), O(L)×O(L), or Sp(L)× Sp(L).
As discussed in section 2.6.2, these ensembles have a generalization in which
C is a bifundamental of U(L+ ν)×U(L), O(L+ ν)×O(L), or Sp(L+ ν)×
Sp(L) for some integer ν (an even integer in the Sp case). This corresponds
in the ansatz of eqn. (2.63) to a theory with L+ ν bosonic states and L
fermionic states. Hence the value of the supersymmetric index is ν, and in
fact

(5.67) Tr (−1)F exp(−βH) = ν,

independent of β. For ν ̸= 0, supersymmetry is unbroken; for generic C in
this ensemble, there are |ν| supersymmetric states, of precisely zero energy.

Let us first consider a bifundamental of U(L+ ν)×U(L), corresponding
to a theory with no T symmetry and with even N . By slightly generalizing



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1617 — #143
✐

✐

✐

✐

✐

✐

JT gravity and the ensembles of random matrix theory 1617

the derivation that was given at the end of section 2.1.2, one can show that
the eigenvalue measure for such an ensemble takes the Altland-Zirnbauer
form (2.3) with

(5.68) (α,β) = (1 + 2|ν|, 2).

How can JT supergravity be modified to accomodate this and to give a
model in which supersymmetry is unbroken? We claim that the parameter ν
can be incorporated in JT supergravity by including Ramond punctures.61

Ideally, we would include Ramond punctures by adding some sort of spin
field to the action of JT supergravity. As is usual in string theory, it is
difficult to find a good framework for doing that, but there is no problem
to incorporate Ramond punctures perturbatively. The recipe is to sum, in
every computation, over the number of Ramond punctures that are inserted,
weighting each such puncture with a factor of ν. Adding a puncture decreases
the Euler characteristic by one, so the total factor associated to such an
insertion is

(5.69) f = νe−S0 .

The factor of e−S0 means that a Ramond puncture has the same effect in the
genus expansion as a crosscap. In each order of the topological expansion,
there is a maximum possible number of Ramond punctures.

Let us first see how this prescription reproduces eqn. (5.67). The lowest
order contribution to Tr (−1)F exp(−βH) comes from a disc with a single
Ramond puncture. The Schwarzian path integral in this situation is equal
simply to 1 (eqn. (C.12); note that the factor e−S0 in the Ramond weight
eqn. (5.69) was included in writing this formula), and the Euler characteris-
tic of the punctured disk is zero, so the contribution to Tr (−1)F exp(−βH)
is simply ν, which is the expected result. In the matrix ensemble, the result
Tr (−1)F exp(−βH) = ν is an exact formula, with no corrections and no fluc-
tuations in the presence of other operator insertions. The same is true in JT
supergravity because any other topology contributing to Tr (−1)F exp(−βH)
can be constructed by gluing a trumpet, with Ramond spin structure, onto
something else. But the Schwarzian path integral of the trumpet vanishes
(eqn. (C.11)).

61A Ramond puncture is not simply the small b limit of a Ramond hole of cir-
cumference b, the objects considered in section 5.4. Roughly, a Ramond puncture
is obtained by taking b→ 0 and discarding a fermionic mode. See appendix A.3.
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The NS sector provides a more elaborate test. Let us first express the
partition function ZSJT(β) of SJT supergravity in terms of the corresponding
partition function ZM(β) of the Altland-Zirnbauer ensemble with (α,β) =
(1 + 2|ν|, 2):

(5.70) ZSJT(β) = |ν|+ 2ZM(β).

The additive term |ν| is the contribution of the zero-energy ground states,
and as usual the factor of 2 reflects the degeneracy of the energy levels.
Equivalently, the SJT and matrix model resolvents are related by

(5.71) RSJT(x) =
|ν|
x

+ 2RM(x).

A similar formula holds for multi-resolvents.
RSJT(x) is supposed to be computed by summing over two-manifolds

with a single boundary that has NS spin structure. The number of Ramond
punctures in such a situation will always be even. Hence only even powers
of ν will appear, and in particular, there is no contribution linear in |ν| to
RSJT(x). At first sight, this appears to contradict eqn. (5.71). But actu-
ally, the linear term cancels, as one can learn by evaluating RM(x). From
eqn. (4.68) or (4.69), one sees that shifting α by 2|ν| will shift R 1

2
,M by

−|ν|/2x. Thus

(5.72) R̂ 1

2
,M(x) = −|ν|

2x
,

where R̂ will denote the lowest order |ν|-dependent contribution. When this
is inserted in eqn. (5.71), the term linear in |ν| cancels and a contradiction
with SJT supergravity is avoided.

In SJT supergravity, the lowest order ν-dependent contribution to the
resolvent comes from a disc with two Ramond punctures, with χ = −1. Such
a disc can be constructed by gluing a trumpet to a sphere with one hole
and two Ramond punctures. The moduli space of super Riemann surface
structures on such a sphere is a point, of volume 1. So the contribution of a
disc with two punctures to ZSJT(β) is just

(5.73) e−S0
ν2

2

∫ ∞

0
bdb ZTSJT(β, b) = ν2e−S0

√
β

2π
.

We included a factor of ν for each Ramond puncture, and a factor of 1/2
because a π rotation of the circle on which gluing occurs will exchange the
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two Ramond punctures. We also used (C.10) for ZTSJT. Integrating over β to
convert this to a resolvent, we get62

(5.74) R̂1,SJT(x) = − ν2

2
√
2(−x)3/2

.

On the matrix model side, the ν2 term in F1 is, from eqn. (4.66),

(5.75) F̂1 =
|ν|
x
R̂ 1

2
,M(x) + R̂ 1

2
,M(x)2 = − ν2

4x2
.

Inserting this in the dispersion relation (4.67) and using

yM = − cos(2π
√
−x)/

√
−2x,

we get R̂1,M = −ν2/4
√
2(−x)3/2. When this is inserted in eqn. (5.71), the

result is in accord with the supergravity result (5.74).
This discussion applies to the matrix ensemble appropriate for the theory

in which spin structures are weighted with a factor (−1)ζ . For the theory
without (−1)ζ , one uses a GUE ensemble, and there is no analog of the
parameter ν. In appendix A.5, we explain from a bulk point of view why
Ramond punctures are only possible in the theory with (−1)ζ .

Now let us consider the ensembles with symmetry group O(L+ ν)×
O(L) or Sp(L+ ν)× Sp(L). These are appropriate to a T-invariant theory
with N congruent to 0 or 4 mod 8. A similar derivation to the above still
applies, with some modifications. First of all, a bifundamental of O(L+
ν)×O(L) or Sp(L+ ν)× Sp(L) corresponds, respectively, to an Altland-
Zirnbauer ensemble with (α,β) = (|ν|, 1) or (3 + 2|ν|, 4). In each case, the ν-
dependent shift in α is α → α+ 2β|ν|/γ. Weighting each Ramond puncture
by ν, the Ramond sector is as before: a disc with one Ramond puncture
makes the desired contribution ν to Tr (−1)F.

In the NS sector, we now have to use

(5.76) RSJT(x) =
|ν|
x

+ γRM(x).

A similar calculation to the previous one shows that R̂ 1

2
,M = −|ν|/γx, as a

result of which R 1

2
,SJT does not depend on ν. This is as expected, since in

the NS sector it is not possible to have a single Ramond puncture. For the

62There is no factor e−S0 here merely because the coefficients Rg,SJT(x) in the
genus expansion are defined with powers of eS0 removed.
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same reason, we expect there to be no contribution linear in |ν| in R1,SJT.
This depends on a cancellation between various terms in F1,M (eqn. (4.66))
and the identity (1− 2/β)− (α− 1)/β = 0, which holds at (α,β) = (0, 1) or
(3, 4). In order ν2, we get F1,M = −ν2/γ2x2. This differs from eqn. (5.75) by
a factor of (2/γ)2. When we insert F1,M in the dispersion relation to compute

R̂1,M, we get a factor γ/2 relative to the previous calculation because for

these ensembles, there is an extra factor 2/γ in yM. Then in R̂1,SJT, there is
another factor of γ/2 relative to the previous calculation because the 2 on
the right hand side of eqn. (5.70) is replaced by γ in eqn. (5.76). The upshot
is that R̂1,SJT is the same as it was for the U(L+ ν)×U(L) ensemble. The
corresponding SJT computation is also the same as before (since it is not
affected by time-reversal symmetry), so again we get agreement between
random matrix theory and supergravity.

The analysis in appendix A.5 shows that in the bulk, Ramond punctures
are only possible for even N . We expect that a more precise analysis of the
anomaly that was involved will show in the unorientable case that N must
be congruent to 0 or 4 mod 8, not to 2 or 6.
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Appendix A. Volumes of symplectic supermanifolds

A.1. Preliminaries

Our goal in this appendix is to obtain a formula in purely bosonic terms
for the volume of a symplectic supermanifold – such as the moduli space of
super Riemann surfaces. This will make clear some basic properties of those
volumes, which we can compare to random matrix theory. It will also enable
us to make contact with formulas of Norbury [56], who studied the spectral
curve y = 1

z cos 2πz (where z =
√−x) from a different starting point than

that of the present paper.
In the bosonic world, a symplectic manifold is a manifoldM of dimension

n = 2d endowed with a closed two-form ω that is everywhere nondegenerate.
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Nondegeneracy means that the volume form

(A.1) volM =
ωd

d!

is everywhere nonzero. The volume of M is Vol(M) =
∫
M volM , and is man-

ifestly positive if M is oriented appropriately (nondegeneracy of ω implies
that M is orientable). An equivalent formula for the volume is

(A.2) Vol(M) =

∫

M
eω.

To justify this, one expands eω in powers of ω, and observes that only the
term of degree d contributes.

In local coordinates u1, . . . , un, the symplectic form is explicitly ω =
1
2

∑
i,j wij(u

K)duiduj , where the coefficient matrix wij is antisymmetric. An
alternative formula for the volume form is

(A.3) volM = Pf(w)du1du2 · · · dun,

where Pf is the Pfaffian.
Now consider a smooth supermanifold M̂ of dimension n|m, where n =

2d is even. Suppose that M̂ can be described by local bosonic coordinates ui,
i = 1, . . . , n and local fermionic coordinates θa, a = 1, . . . ,m. The one-forms
dui are treated as fermionic variables and the one-forms dθa are bosonic.63

A two-form ω̂ is homogeneous and quadratic in these variables. In local
coordinates

(A.4) ω̂ =
1

2

∑

i,j

wijdu
iduj +

∑

i,a

wiadu
idθa +

1

2

∑

a,b

wabdθ
adθb,

where wij = −wji but wab = +wba. If we write generically XI for the full
set of bosonic and fermionic coordinates ui|θa, and regard wij , wia, and wab

63In supergeometry, one has to decide whether the exterior derivative d commutes
or anticommutes with odd constants. The two approaches are equivalent in the sense
that results in one can be reformulated in the other; for a precise account, see pp.
62-4 of [94]. However, which approach is more convenient depends on the context.
In gauge theory on an ordinary manifold with a supergroup as gauge group – which
was the context in our computation of the torsion in section 3.5 – it is more natural
to consider the exterior derivative to commute with odd constants. Symplectic
geometry on a supermanifold is more straightforward if the exterior derivative is
considered to anticommute with odd constants, as we assume here.
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as blocks of a supermatrix W , then we can write simply

(A.5) ω̂ =
1

2

∑

I,J

WIJdX
IdXJ .

The closed two-form ω̂ is said to be nondegenerate if the Berezinian BerW
is everywhere defined and not nilpotent.64 In that case, M̂ is called a sym-
plectic supermanifold with symplectic form ω̂.

On a supermanifold, we cannot imitate the definition (A.1) of the vol-
ume form, because a volume form on a supermanifold is not a differential
form (basically because dθ regarded as a measure transforms oppositely to
dθ regarded as a one-form). There is also no analog of the Pfaffian for a
supermatrix. However, we can use the Berezinian, and write

(A.6) vol
M̂

=

√
BerW

(2π)m/2
[du1du2 · · · dun|dθ1dθ2 · · · dθm].

(The factor of 1/(2π)m/2 will avoid factors of 2π in the final results.) This
formula is independent of the local coordinates used – except possibly for an
overall sign, coming from the choice of sign of

√
BerW and the ordering of

the factors in [du1du2 · · · dun|dθ1dθ2 · · · dθm]. There can be a topological ob-
struction to choosing this sign consistently. When this obstruction vanishes,
after picking the sign, one defines the volume of M̂ as Vol(M̂) =

∫
M̂

vol
M̂
.

In contrast to the case of an ordinary symplectic manifold, this volume has
no positivity properties. When the sign cannot be defined consistently, one
may leave the volume of M̂ undefined or say that it is zero.

We used an arbitrary system of local coordinates in defining vol
M̂
. In

general, we can cover M̂ by small open sets Oα, such that in each Oα, we
pick local bosonic and fermionic coordinates uiα, θ

a
α. In an intersection of

open sets Oα ∩ Oβ , the local coordinates uiα|θaα are functions of uiβ |θiβ . One

says that the supermanifold M̂ is “split” if the bosonic coordinates uiα are

64The Berezinian of a supermatrix W =

(
A B
C D

)
is infinite, or undefined, if

detD = 0, and it is nilpotent if detA = 0. So nondegeneracy of ω̂ means that the
matrices wij and wab, which correspond to A and D, both have nonzero determi-
nant. Note that the square root in eqn. (A.6) below does not make sense if BerW
is nilpotent. Of course, that formula also does not make sense if BerW is infinite
or undefined.
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functions of ujβ only (and not of θaβ) while the θaα are linear in the θaβ :

uiα = f iαβ(u
k
β)

θaα =
∑

b

gabαβ(u
k
β)θ

b
β .(A.7)

In this situation, the uiα are local coordinates for a purely bosonic manifold
M , and the θaα parametrize the fibers of a vector bundle V →M . More
geometrically, instead of talking about local coordinates, one can say that
M̂ is the total space of the vector bundle V →M , which has purely fermionic
fibers.65

The fundamental structure theorem of smooth supermanifolds says that
every smooth supermanifold can be split.66 Thus in analyzing the volume of
a smooth symplectic supermanifold M̂ , we can assume that M̂ is the total
space of some V →M . In this situation, the symplectic form ω̂ of M̂ , when
restricted to M (by setting θa = dθa = 0) becomes a symplectic form ω on
M , and therefore M is an ordinary symplectic manifold. We will see that
the volume of M̂ depends only on the cohomology class of the symplectic
form ω of M and the topology of the vector bundle V →M .

Restricted to θa = 0, but without setting dθa = 0, the symplectic form
ω̂ of M̂ takes the form

(A.8) ω̂ =
1

2


∑

i,j

wij(u
k)duiduj + wab(u

k)dθadθb


 .

65This is sometimes described by saying that M̂ is the total space of ΠV →M ,
where the symbol Π means that the fibers are fermionic. We will just write V rather
than ΠV , but we will understand that V is fermionic, that is the fibers of V →M
are parametrized by fermionic coordinates.

66The proof proceeds roughly by starting with any systems of local coordinates
uiα|θaα, and then trying to improve the coordinates, by adding terms quadratic and
higher order in the fermionic variables, so as to put the transition functions in
the desired form of eqn. (A.7). The possible obstructions that one encounters are
cohomology classes of a smooth manifold with values in a sheaf of smooth functions.
Such cohomology vanishes, so M̂ can be split. The splitting is far from unique, but
the topology of M , the cohomology class of ω, and the topological type of the
vector bundle V →M are uniquely determined. (This is most directly proved as
follows, without any discussion of coordinates or splitting. M can be defined as the
reduced space of M̂ , obtained by reducing M̂ modulo the odd coordinates. As such,
M is naturally embedded in M̂ . V is the normal bundle to M in M̂ and ω is the
restriction of ω̂ to M .)
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Nondegeneracy of ω̂ means that the matrices wij and wab are both every-
where invertible. In particular, since wab is symmetric and everywhere non-
degenerate, we can view it as a metric tensor on the vector bundle V →M .
This reduces the structure group of V to an orthogonal group O(m) or pos-
sibly (if w is not positive- or negative-definite) to an indefinite orthogonal
group O(m1,m2) where m1 +m2 = m. We will continue the derivation as-
suming that wab is negative-definite, as is the case67 for the moduli space
of super Riemann surfaces; the generalization does not change much and
will be briefly explained at the end. With the nondegenerate metric wab at
hand, we can restrict ourselves to orthonormal systems of local fermionic
coordinates, so we can take henceforth wab = −δab.

There is actually no problem with the sign of
√
BerW if wab is every-

where invertible. However, a sign change of one of the θa will reverse the
sign of [du1du2 · · · dun|dθ1dθ2 · · · dθm] and thus change the sign vol

M̂
. So the

overall sign of vol
M̂

is reversed if we reverse the orientation of the bundle
V →M . Thus the case that the sign of the volume form can be globally
defined is the case that V is orientable, or in other words, that its struc-
ture group can be further reduced from O(m) to SO(m). If V is orientable,
then the sign of the volume form depends on a choice of orientation of V ;
this is an inescapable choice that must be made to define the volume of a
symplectic supermanifold.

A.2. Computation

Now we will make use of the projection π : M̂ →M that forgets the odd
coordinates to put the symplectic structure in a convenient form (first de-
scribed in [101]). The purely bosonic symplectic form

ω =
1

2

∑

i,j

wij(u
k)duiduj

67The negative-definiteness is visible in Omnibus Theorems B and C of [97]. The
symplectic form ω̂ is described explicitly (in a coordinate system different from that
used in the present paper) in Omnibus Theorem B. Its fermionic part is negative-
definite, and comparison with Omnibus Theorem C shows that it has been defined
so that its bosonic part is the ordinary Weil-Petersson symplectic form ω on the
bosonic moduli space. The negative-definite nature of the fermionic part of the
symplectic form is also visible in eqn. (C.7) of the present paper, where the bosonic
part of the symplectic form related to the super-Schwarzian was described in a
way that is consistent with the standard Weil-Petersson symplectic form, and the
fermionic part is negative-definite.
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can be “pulled back” to a closed, but degenerate, two-form on M̂ that we will
call π∗ω. Because the fibers of π are contractible (being purely fermionic),

the cohomology of M is naturally isomorphic to the cohomology of M̂ . The
full symplectic form ω̂ is therefore equivalent cohomologically to π∗ω. Con-
cretely, this means that there is a 1-form λ such that

(A.9) ω̂ = π∗ω + dλ.

On an ordinary symplectic manifold M , adding an exact form to the
symplectic form does not change the volume of M . On a symplectic super-
manifold, the same statement holds, as long as the nondegeneracy condition
that was needed to define the volume form is maintained. Therefore, as long
as the nondegeneracy condition is maintained, the volume of M̂ will not de-
pend on the one-form λ. Because we do need to maintain this nondegeneracy
condition, we cannot simply set λ = 0. But we can choose a convenient λ to
simplify the computation of Vol(M̂).

A convenient λ may be chosen as follows. Pick a gauge connection A
on V , with structure group SO(m). Explicitly, A =

∑
iAi ab(u

k)dui, where
Ai ab = −Ai ba. The one-forms dθa +Aai bduiθ

b (where indices are raised and
lowered using the metric wab = −δab) are gauge-covariant, so

(A.10) λ = −1

2

∑

a

θa(dθa +Aai bdu
iθb)

is gauge-invariant and globally defined. Explicitly, with this choice of λ,

ω̂ = π∗ω − 1

2

∑

a

dθadθa(A.11)

+
1

2

∑

a,b

θaθb∂iAj abdu
iduj − θaAi abdu

idθb.

The volume of a supermanifold with a symplectic structure of this
form can be computed rather simply. It is possible to do this directly from
eqn. (A.6), but a particularly transparent approach is as follows. First we
reconsider an ordinary symplectic manifoldM . We view the symplectic form
ω = 1

2wij(u
k)duiduk as a function of bosonic variables uk and fermionic vari-

ables duk. Together these variables parametrize a supermanifold M ′ which
is a fiber bundle over M with fermionic fibers (parametrized by the duk).
Though there is no natural measure onM , there is a natural measure onM ′

(the integration measures for integrating over the bosonic variable uk and
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the fermionic variable duk transform oppositely under a change of coordi-
nates, so their product does not depend on a choice of coordinates). Let us
call this measure D(uk, duk). The volume of M is then

(A.12) Vol(M) =

∫
D(uk, duk) exp

(
1

2
wij(u

k)duiduj
)
.

After thinking through the implications of Berezin integration over the odd
variables duj (the usual definition being

∫
D(duj) · 1 = 0,

∫
D(duj) duj = 1

for each j), the reader can hopefully see that eqn. (A.12) is completely
equivalent to the definition of the volume in eqn. (A.2). The same approach

holds in the case of a supermanifold. If M̂ is a supermanifold with bosonic
and fermionic coordinates XI , then one introduces for each I a new vari-
able dXI with statistics opposite to those of XI . Again the XI and dXI

parametrize a supermanifold M̂ ′, and this supermanifold has a natural mea-
sure D(XI , dXI). Our previous formula for Vol(M̂) is equivalent to

(A.13) Vol(M̂) =

∫ D(XI , dXI)

(2π)m
exp


1

2

∑

I,J

WIJ(X
K)dXIdXJ


 .

The Gaussian integral over the dXK generates the factor
√
BerW in the

definition of the volume form in eqn. (A.6).
The formula (A.13) is particularly convenient for a symplectic form with

the structure in eqn. (A.11), because the Gaussian integral over dθa gives
a simple result, after which the integral over the θa is also simple. We have
explicitly

Vol(M̂) =

∫

M̂ ′

D(ui, dui)D(θa, dθa)

(2π)m
(A.14)

× exp

(
1

2
ωij(u

k)duiduj − 1

2

∑

a

dθadθa

+
1

2

∑

a,b

θaθb∂iAj abdu
iduj − θaAi abdu

idθb

)
.
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The Gaussian integral over the dθa gives a simple result:

Vol(M̂) =

∫ D(ui, dui)D(θa)

(2π)m/2
(A.15)

× exp


1

2
ωij(u

k)duiduj +
1

4

∑

a,b

θaθbFij abdu
iduj


 .

Here Fij ab = ∂iAj ab − ∂jAi ab + [Ai, Aj ]ab are the components of the cur-
vature two-form F = dA+ [A,A]. The integral over the θa gives a gauge-
invariant polynomial in F of degree m/2. Because of the fermionic nature
of the θa and the dui, this polynomial is proportional to what one gets from
the product Fi1i2 a1a2

Fi3i4 a3a4
· · ·Fim−1im am−1am

of m/2 copies of F by anti-
symmetrizing in all indices i1i2 · · · im and in all indices a1a2 · · · am. Taking
into account the explicit 1/(2π)m/2 in eqn. (A.15), this operation builds the
Euler class χ(V ), understood as a function of the ua and dua that is ho-
mogeneous of degree m in the dua. The only other factor in eqn. (A.15) is
exp

(
1
2ωijdu

iduj
)
. So

(A.16) Vol(M̂) =

∫

M̂ ′

D(ui, dui) exp

(
1

2
ωijdu

iduj
)
· χ(V ).

A more conventional way to write the same formula is

(A.17) Vol(M̂) =

∫

M
exp(ω) · χ(V ).

Thus we have achieved our goal of expressing the volume of a symplectic
supermanifold M̂ purely in terms of bosonic geometry. The result can be
compared to explicit computations in examples, such as those in [102].

A.3. Application

In the main example of the present paper, M̂ is the moduli space of super
Riemann surfaces, and M is the corresponding reduced space, which is the
moduli space of Riemann surfaces with spin structure. In studying this ex-
ample, it is useful to be able to give V a complex structure. For example, in
the case of a Riemann surface Σ without boundary,M is a complex manifold
(the moduli space that parametrizes a Riemann surface Σ with a choice of
a square root K1/2 of its canonical bundle K). The fiber of the bundle V

is H1(Σ,K−1/2) (which parametrizes the fermionic directions in M̂). So in
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particular in this case, V is a holomorphic vector bundle, not just a complex
vector bundle. If Σ has boundaries, then M is no longer a complex manifold
so it does not make sense to say that V is holomorphic. But for boundaries
of NS type, one can still show that V can be given the structure of a complex
vector bundle. The explanation of this is somewhat subtle and will be given
below, along with an explanation that χ(V ) = 0 if there are boundaries of
Ramond type. Thus in our main example, we can always assume that V is a
complex vector bundle. A vector bundle with a complex structure acquires
a natural orientation, so the complex structure of V gives us a way to define
the sign of χ(V ). In fact, the class that is naturally called χ(V ) if V is viewed
as a real vector bundle of some rank m is equivalently the top Chern class
cm/2(V ) if V is viewed as a complex vector bundle of rank m/2.

This gives a succinct way to orient the bundles V for all Σ in a uniform
fashion, and moreover in a way that behaves well under gluing. But it is im-
portant to point out that a choice is involved. If J is a complex structure on
V , then −J is an equally good complex structure. For example, if one choice
identifies V withH1(Σ,K−1/2), the other choice will identify V with the dual
complex vector bundle, which is H0(Σ,K3/2). Reversing the complex struc-
ture of V will multiply the orientation of V by (−1)m/2, where m is the rank

of V (the odd dimension of the symplectic supermanifold M̂). In our prob-
lem of genus g super Riemann surfaces with s boundaries, m = 4g − 4 + 2s
so (−1)m/2 = (−1)s. Purely from the point of view of symplectic superge-
ometry, two formalisms differing by a factor of (−1)s are equally natural.
In this paper, we resolve this ambiguity to make the disc partition function
positive (as one expects from reflection positivity of supergravity). As a disc
has s = 1, the sign of the disc amplitude does resolve the ambiguity. The sign
of the measure of a three-holed sphere is also sensitive to the same choice.
We only fully fix this sign in appendix D.7, where we fix the meaning of the
symbol [dξ dψ] by using

∫
[dξ dψ] ξψ = +1 in the derivation of eqn. (D.42).

The choice amounted to a choice of orientation of the bundle V , for the case
of a three-holed sphere. Once this choice is made, the measure for all other
cases is determined by gluing (eqn. (3.100)). Our choices for the disc and the
three-holed sphere are compatible; this is visible in the fact that the results
deduced in appendix D, both for the recursion relation and for the input
V1(b) of the recursion relation, agree with the results of section 5.2.

As explained in footnote 48 of section 3.5.4, we have defined the metric
on the osp(1|2) Lie algebra so that the symplectic form ω̂ on M̂ restricts on
M to the standard Weil-Petersson symplectic form ω. On the other hand,
the “triviality” of the torsion on an orientable two-manifold means that the
measure τ on M̂ that comes from the torsion is τ =

√
Ber ω̂. To get the
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natural formula (A.17) with no factors of 2π, we started in eqn. (A.6) not

with
√
Ber ω̂ but with

√
Ber ω̂/(2π)m/2, where m is the odd dimension of M̂ .

In our application to super Riemann surfaces, m = −2χ(Σ). So a measure
µ that leads to the natural normalization (A.17) of the volumes is actually
not τ but

(A.18) µ = (2π)χτ.

The formula (A.17) has a number of interesting corollaries. If m is odd,
then χ(V ) vanishes trivially at least modulo torsion (as it is supposed to be
a polynomial of degree m/2 in F ), so a symplectic supermanifold with an
odd fermionic dimension has zero volume. If the rank of the vector bundle
V exceeds the dimension ofM , then the class χ(V ) vanishes for dimensional
reasons, so a supermanifold of dimension n|m with m > n has zero volume.

In general, as χ(V ) is a class of degreem, the volume Vol(M̂) is proportional
to ω(n−m)/2.

These statements have interesting implications for our problem of hyper-
bolic Riemann surfaces with boundary, in which M̂ has dimension 6g − 6 +
2s|4g − 4 + 2s. In particular, if g = 0, this is of the form n|m with n < m, so
the volumes vanish. Now let us discuss what happens for g > 0. The topo-
logical type of the vector bundle V and the integral cohomology class χ(V )
are determined by discrete data, so they are independent of the bi. Hence
the dependence of Vol(M̂) on the bi comes entirely from the dependence of
ω on the bi. Mirzakhani showed that the cohomology class of ω is a linear
function of the variables b2i . (Her analysis was phrased for bosonic Riemann
surfaces, but is not significantly affected by incorporating a spin structure.)

With M̂ having dimension n|m = 6g − 6 + 2s|4g − 4 + 2s, its volume is a

polynomial in ω of degree (n−m)/2 = g − 1. So Vol(M̂) will be a polyno-
mial in the b2i of that degree. We do not have a general proof of this behavior
from the matrix model, but the examples in eqn. (5.40) do have the claimed
property.68

Now let us explain why V can be given a complex structure in the case of
NS boundaries, and why χ(V ) vanishes when there are Ramond boundaries.
A hyperbolic conjugacy class in OSp(1|2) with spin structure of NS type

68This property has been proved by Norbury in unpublished work, using the
recursion relation (5.42), which he discovered independently of the present paper,
by extending the topological recursion constructed in [56].
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contains an element

(A.19) Ub =




eb/2 1 0

0 e−b/2 0
0 0 −1


 .

where b > 0 is a length parameter. For any positive b, the matrix element
of Ub above the diagonal could be removed by conjugation. The reason for
including it is that this ensures that the hyperbolic conjugacy class that
contains Ub has a smooth limit for b→ 0. In that limit, Ub goes over to

(A.20) U0 =




1 1 0
0 1 0
0 0 −1


 ,

which is a parabolic element of OSp(1|2). The conjugacy class of OSp(1|2)
containing U0 has the same dimension, namely 2|2, as the hyperbolic conju-
gacy class that contains Ub, and the conjugacy class containing Ub goes over
smoothly for b→ 0 to the conjugacy class containing U0. U0 is the mon-
odromy of a flat OSp(1|2) connection around an NS puncture (not hole). So
in the NS case, a hole of length b goes over smoothly to a puncture for b→ 0.
In the limit that the holes are replaced by punctures, the moduli space of
super Riemann surfaces becomes a complex manifold, and therefore V gets
a complex structure. For questions (like computing the integral cohomol-
ogy class χ(V )) that are independent of continuously variable parameters
such as the lengths, we can set the length parameters of NS boundaries to 0.
Therefore, in the case of NS boundaries, V can be given a complex structure,
as was claimed earlier.

For holes of Ramond type, a corresponding argument shows instead that
the volumes vanish, as we found in another way in section 5.4. A hyperbolic
conjugacy class with Ramond spin structure contains an element

(A.21) Ũb =




eb/2 1 0

0 e−b/2 0
0 0 1


 .

for some b > 0. Naively setting b = 0, we get a parabolic element of OSp(1|2):

(A.22) Ũ0 =




1 1 0
0 1 0
0 0 1


 ,
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Ũ0 is the monodromy of a flat OSp(1|2) connection around a Ramond punc-
ture (as opposed to a Ramond boundary). The limit from Ũb to Ũ0 is not
smooth. The orbit of Ũb in OSp(1|2) is of dimension 2|2, but the orbit of
Ũ0 is of dimension 2|1, because Ũ0 commutes with a certain linear combi-
nation of the odd generators of OSp(1|2). Hence, a moduli space of super
Riemann surfaces with a Ramond boundary of length b does not approach
a corresponding moduli space with a Ramond puncture in the limit b→ 0.
If one sets b = 0, one of the odd moduli is lost. Thus if V parametrizes the
odd moduli of a super Riemann surface with a specified Ramond bound-
ary of length b (along with other boundaries), and V ′ parametrizes the odd
moduli if the boundary in question is replaced by a Ramond puncture, then
the rank of V ′ is 1 less than the rank of V . In the limit b→ 0, one can
define a “forgetful” map V → V ′ in which one identifies two super Riemann
surfaces that are equivalent at b = 0. If V ′′ is the kernel of this forgetful
map, then V ′′ is a real vector bundle of rank 1, and there is an exact se-
quence 0 → V ′′ → V → V ′ → 0. This implies that χ(V ) = χ(V ′′)χ(V ′). But
χ(V ′′) = χ(V ′) = 0 (as rational cohomology classes) since V ′ and V ′′ are of
odd rank, so χ(V ) = 0. Let us note that this argument also shows that cor-
relators with Ramond punctures (as opposed to holes) are essentially new
quantities. They are analyzed in section 5.5.

The bundle V can be given a natural complex structure in the case of
Ramond punctures, but not in the case of Ramond boundaries.

Two generalizations are worth mentioning. First, we assumed that wab
was negative-definite. More generally, we can decompose V as the direct
sum V1 ⊕ V2 of subbundles on which wab is positive-definite or negative-
definite, respectively. If V1 and V2 have ranks m1 and m2, respectively, one
can make a similar derivation, leading to the result that χ(V ) is replaced by
(−1)m1/2χ(V1)χ(V2) = (−1)m1/2χ(V ). Second, we have implicitly assumed

that the smooth supermanifold M̂ is real, meaning that the fermions carry
a real structure and the vector bundle V is real. A generalization that has
been called a cs supermanifold is important in superstring theory [94, 103].
Here the fermions do not carry any real structure. However, in the symplectic
case, the generalization from real supermanifolds to cs supermanifolds does
not add much, in the following sense. A priori, if M̂ is a cs supermanifold, the
structure group of V →M is the complex linear group GL(m,C). A general
GL(m,C) bundle cannot be reduced to a bundle with real structure group
GL(m,R), so in general a cs supermanifold cannot be given a real structure.
But in the case of a symplectic cs supermanifold, the metric tensor wab
reduces the structure group from GL(m,C) to the complex orthogonal group
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O(m,C). A further reduction to a maximal compact subgroup is always
possible. A maximal compact subgroup of O(m,C) is the ordinary compact
orthogonal group O(m). The m-dimensional representation of this group is

real, showing that if M̂ is a symplectic cs supermanifold, it actually can
always be given a real structure.

A.4. Comparison to the results of Norbury

In [56], Norbury studied the spectral curve y = 1
z cos(2πz) (with z =

√−x)
from a different starting point than the one of the present paper. Seeking
to generalize the results of Eynard and Orantin for the spectral curve y =
sin(2πz) (which they had shown to be related to formulas of Mirzakhani
for volumes of moduli spaces of Riemann surfaces), Norbury was led to
introduce the spaceM that parametrizes a Riemann surface with a choice of
spin structure, along with the vector bundle that we have called V . He found
that the analog for the “cosine” curve of the usual moduli space volumes
for the “sine” curve were the quantities that appear on the right hand side
of eqn. (A.17). The sense in which these quantities actually are volumes
was unclear, but we have provided an answer: they are the volumes of the
supermanifolds M̂ that parametrize super Riemann surfaces. Norbury’s class
Θg,s is defined as (the sum over spin structures of) the top Chern class of a
vector bundle Eg,s whose fiber is H0(Σ,K3/2) (see Definition 2.1 in [56]).

The analysis in section D.4 makes it clear that to define the volume of
a symplectic supermanifold, one needs to pick an orientation of the vector
bundle V that parametrizes the fermionic moduli. To compare our results
to Norbury’s, it is necessary to compare the two orientation conventions,
which in fact do not agree.

The two choices are as follows:
(1) In this paper, after picking a measure on the Lie superalgebra

osp(1|2), we use the torsion to orient the moduli spaces. Differently put,
the torsion has a sign, and this sign is an orientation of the bundle V .
Though it involves more machinery than a purely symplectic approach, the
torsion has the advantage of making sense on an unorientable two-manifold.
It also has nice gluing properties, in the spirit of topological field theory.
For a two-manifold Y , let orY be the orientation of V determined by the
torsion (in other words, orY is the orientation of V that matches the sign of
the torsion measure τY ). If Y is built by gluing two-manifolds Y1, Y2 along
one or more circles, then the gluing law for the torsion gives

(A.23) orY = (−1)wRorY1
orY2

.
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Here wR is the number of circles with Ramond spin structure on which gluing
has occurred. Like the similar factor in eqn. (3.100), this factor comes from
the sign of the torsion of a circle (eqn. (3.69)).

(2) For orientable Y , Norbury orients V by using the complex structure
in which V = H0(Y,K3/2). As we explained in appendix A.3, a variant of
this procedure would be to use the opposite complex structure on V . This
would multiply the orientation (and hence the volume) for a genus g surface
with s boundary components by a factor (−1)s.

To see that these two choices do not agree, it suffices to consider the ex-
ample of a genus 1 surface with a single boundary component. In eqn. (5.40),
we found that if we sum over spin structures with a factor (−1)ζ , we get
V1(b) = −1/8, while at the end of section 5.2.1, we showed that a similar sum
without the factor (−1)ζ gives V1(b) = 0. The two results together show that
with our orientations, the moduli spaces with even and odd spin structures
(and not including a factor (−1)ζ in the odd case) have volumes −1/16 and
+1/16, respectively.

On the other hand, Norbury shows that in genus 1 with a single boundary
component, and summing over spin structures with no (−1)ζ ,

∫
M1,1

c1(E1,1)

= +1/8 (see Proposition 2.10, and note that
∫
M1,1

ψ1 = 1/24). Moreover the

even and odd spin structures make equal contributions to this integral.69 So
the integral for either the even or odd spin structure is +1/16.

Thus our results agree with Norbury’s for the case of an odd spin struc-
ture, but disagree for the case of an even spin structure. Accordingly, our
results will differ from Norbury’s by a factor (−1)s(−1)ζ . The factor (−1)s

is inessential, in the sense that it could be removed by using the opposite
complex structure on V . But the factor (−1)ζ really is essential.

In appendix A.5, we will show in another way why the two approaches
must differ by a factor (−1)ζ .

A.5. Ramond punctures and an anomaly

In the presence of Ramond punctures (rather than boundaries), the bundle
V has a complex structure, and this gives a natural way to orient it. In par-
ticular, the Ramond punctures behave as identical bosons; one can define the
volumes without specifying how they should be ordered. Thus, in approach

69This was explained to us by P. Norbury. Note that
∫
M1,1

c1(E1,1) can be a

rational number (rather than an integer) because the moduli space is an orbifold,
not a smooth manifold.
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(2) to orienting the moduli spaces, the volumes with Ramond punctures are
manifestly well-defined, as long as one does not include a factor (−1)ζ .

However, once Ramond punctures are present, there is no distinction
between even and odd spin structures, since the monodromy that occurs
when a Ramond puncture loops around a one-cycle in a two-manifold Y can
permute the spin structures of Y in an arbitrary fashion.70 Hence it is not
possible to define the factor (−1)ζ in the presence of Ramond punctures, and
therefore in approach (2), if Ramond punctures are present, the volumes can
only be defined without the factor (−1)ζ .

If one considers Ramond boundaries rather than Ramond punctures,
the situation is opposite. The difference between a Ramond boundary and a
Ramond puncture, as explained in appendix A.3, is that replacing a Ramond
puncture with a very small Ramond boundary adds one fermionic modulus,
which is localized near the boundary. So as Ramond punctures behave as
identical bosons when approach (2) is used to orient the moduli spaces,
Ramond boundaries behave as identical fermions in that approach. This is
an anomaly of sorts. It means that the volume would depend on an ordering
of the Ramond boundaries, modulo even permutations. This dependence can
be canceled by supplying a factor of (−1)ζ . To see this, note that another way
to associate a fermionic mode to a Ramond boundary would be to introduce
a Majorana fermion that propagates on this boundary. This is the anomaly
that is canceled by a bulk factor (−1)ζ , as we discussed in section 2.4.

In approach (1) to orienting the moduli spaces, matters are reversed.
The torsion with possible Ramond boundaries was analyzed in section 3.5
and did not depend on any ordering of the boundaries; the Ramond bound-
aries behaved like identical bosons. So Ramond boundaries make sense in
approach (1) to orienting the moduli spaces with no factor (−1)ζ . Ramond
boundaries become anomalous if one tries to include a factor (−1)ζ in the
sum over spin structures, because this causes the Ramond boundaries to
behave as fermions.

What if we replace Ramond boundaries with Ramond punctures? This
entails removing a fermionic mode from every Ramond boundary, so if the
Ramond boundaries behave as bosons, the Ramond punctures behave as
fermions, and vice-versa. This means, in approach (1), that the Ramond

70A spin structure in the presence of Ramond punctures is a spin structure on
the complement of the punctures that has a certain type of singularity at the
punctures. (A fermion that is parallel transported on a small loop around a Ramond
puncture has monodromy −1.) When such a singularity moves around a 1-cycle γ,
the monodromy for a fermion path that has an odd intersection number with γ is
reversed in sign.
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punctures are bosonic in the theory with (−1)ζ and fermionic in the theory
without it. (It would be possible to show this explicitly by extending the
torsion computations of section 3.5 to include Ramond punctures.) Hence
in approach (1), in the presence of Ramond punctures, the volumes can be
defined in the theory with (−1)ζ but not in the theory without it.

In this discussion, we have treated Ramond punctures and Ramond
boundaries in parallel. However, in the context of the present paper, there is
an important difference. We treat Ramond punctures (when we do include
them) as an intrinsic part of the theory; their positions are some of the
moduli that parametrize the moduli spaces whose volumes we compute. If
the Ramond punctures behave as fermions, the volumes cannot be defined
and the theory is inconsistent. But we treat Ramond (or NS) boundaries
as external probes of the theory. If they behave as fermions, these external
probes have unexpected properties, but the theory does not become incon-
sistent. We could eliminate this asymmetry by incorporating in the theory
D-branes and thus dynamical boundaries. If a dynamical Ramond boundary
is a fermion, the theory is anomalous or inconsistent. Hence, which D-branes
are possible will depend on whether a factor (−1)ζ is present. This should
not be a surprise, since the same is true for related theories such as the 0A
and 0B theories that are briefly described in appendix F.

Appendix B. Behavior under N → N + 4

For any of the ten matrix ensembles discussed in section 2.1, after picking a
suitable matrix potential, one gets a matrix integral that can be expanded
in Feynman diagrams. The diagrams can be conveniently drawn using the
“double line” notation of ’t Hooft [77], in which a propagator is drawn as a
thin ribbon. The edges of the ribbon represent the indices of the matrix, and
join into “index loops.” By gluing the boundary of a disc onto each index
loop in such a diagram, one can build a two-manifold. This is the starting
point for the relation between random matrices and two-dimensional gravity.

For the most basic case of a hermitian matrix with unitary symmetry
– related to GUE statistics – the two-manifolds constructed from Feynman
diagrams are orientable. The same is true for one of the Altland-Zirnbauer
ensembles: the bifundamental of U(L)×U(L). It is undoubtedly not a coin-
cidence that this particular ensemble appears to be related to the volumes
of moduli spaces of orientable super Riemann surfaces. This fact, and its
analog for other cases, suggests that Altland-Zirnbauer ensembles are some-
how related to random supergeometries just as the Dyson ensembles are
related to random geometries. But it is unclear how to make this precise.
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Figure B1: Drawn in a) and b) are portions of two Feynman diagrams that
differ only by a relative “twist” in one propagator – the one drawn vertically.
When these pictures are embedded in a more complete Feynman diagram,
the twist will change the number of index loops and therefore the Euler
characteristic of the resulting two-manifold by ±1.

The Feynman diagram expansion of a model based on the bifundamental
of U(L)×U(L) was actually studied some time ago [98]; the results were
not related to supergeometry in an obvious way. An alternative idea is that
discretization of supergeometry might be described by a random ensemble
of supermatrices; see [104] for recent work on supermatrices.

For the other eight ensembles, unorientable as well as orientable two-
manifolds appear. These eight ensembles all enter, as we have reviewed in
section 2.6.2, in the random matrix classification of T-invariant models,
with or without supersymmetry. In that context, the eight ensembles are
exchanged in pairs under N → N + 4. (For example, for the case of a su-
persymmetric matrix model with N = 1 or 5 mod 8, N → N + 4 exchanges
GOE and GSE.) As we discussed in section 2.5.3, from a topological field
theory point of view, one expects the exchange N → N + 4 to multiply the
contribution of a two-manifold of Euler characteristic χ by (−1)χ.

One would hope to find the same behavior in the Feynman diagram
expansion of a matrix integral. This appears to be the case, but the literature
does not seem to contain a complete proof. For the basic case of comparing
GOE-like and GSE-like ensembles, a proof was given in [60]. This proof was
surprisingly complicated. The difficulty of the proof comes from the fact
that in this case, as N → N + 4 changes the symmetry group, it changes
the vertices as well as the propagators in a Feynman diagram.

We will not summarize this proof, and instead will just point out a pair of
Altland-Zirnbauer ensembles that differ byN → N + 4 and can be compared
in a simple way because the symmetry groups are the same. We consider the
two models in which the matrix C is a symmetric or antisymmetric second
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rank tensor of G = U(L) (corresponding to supersymmetric models with
N = 2, 6 mod 8). The matrix action is Tr f(CC†) for a suitable function f .
The matrix propagator is, up to a possible constant multiple,

(B.1) ⟨CijC†kl⟩ = 1

2

(
δki δ

l
j ± δkj δ

l
i

)
,

with a + or − sign depending on whether C is a symmetric or antisymmetric
tensor. The only difference between the Feynman diagram expansions of the
two models comes from this sign. Now consider two Feynman diagrams that
differ only by which term we take in one of the propagators. In the double
line notation, they differ only by whether an extra “twist” is given to the
ribbon that corresponds to this propagator (fig. B1). Adding or removing
such a twist changes the number of index loops by ±1, so it shifts χ by ±1.
If the tensor C is symmetric, adding or removing a twist does not affect the
sign of the diagram, but if C is antisymmetric, it does, because of the minus
sign in eqn. (B.1). So the Feynman diagram expansion of the antisymmetric
tensor model differs from that of the symmetric tensor model by an extra
factor (−1)χ, as expected.

Appendix C. Super-Schwarzian path integrals for the disk

and trumpet

As explained for the bosonic case in [35], the JT path integral reduces to
an integral over the moduli space of bordered (super) Riemann surfaces,
together with a path integral over the “boundary wiggles” associated to
the asymptotically AdS boundary. In this section, we will compute the path
integral over the boundary wiggles. There are two cases to consider: the case
where the wiggles are at the boundary of the hyperbolic disk, and the case
where they are at the “big end” of a hyperbolic trumpet whose other end
connects to a bordered Riemann surface, see figure 17.

In the bosonic case, these boundary wiggles are governed by the
Schwarzian theory, and the measure that follows from the JT path inte-
gral is the natural symplectic measure with respect to which the Schwarzian
theory is one-loop exact [35]. In the supersymmetric case, the wiggles (to-
gether with a fermionic superpartner) are governed by the super-Schwarzian
theory [30] introduced in [81]. In principle, for super JT gravity, one could
follow the steps in the bosonic case and determine the associated measure by
starting from the formulation of JT supergravity as an OSp(1|2) BF theory.
We will assume that the measure that one obtains from this procedure is
the natural symplectic one that makes the path integral one-loop exact.
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The purely bosonic part of the super-Schwarzian action is the ordinary
Schwarzian derivative Sch(f(u), u), where u is the Euclidean time coordinate
of the boundary theory, running from zero to β. The u coordinate measures
rescaled proper time along the wiggly boundary:

(C.1) ds∥ =
du

ϵ
,

where ϵ is interpreted as a holographic renormalization parameter, see [5].
The total length of the wiggly boundary is therefore β/ϵ. The detailed
shape of the boundary is specified by the function f(u). This gives the
Euclidean “Poincare time” of the wiggly boundary as a function of the
coordinate u. More precisely, the f coordinate is such that the metric of
hyperbolic space is

(C.2) ds2 =
df2 + dz2

z2
.

Specifying f(u) and (C.1) specifies the boundary curve, up to isometries.
There are two special cases that will be important for us. First, we have the
classical solution corresponding to a circular boundary for the disk, which is
f = tan(πu/β) up to SL(2,R) transformations (which becomes OSp(1|2) in
the super-Schwarzian case). For this solution, Sch(f(u), u) = 2π2/β2. Sec-
ond, we have the classical solution corresponding to a circular boundary
for the trumpet, which is f = tanh( bu2β ) up to U(1) transformations, with

Sch(f(u), u) = −b2/(2β2).
The super-Schwarzian theory [81] adds to this bosonic piece a fermion

η that is coupled to f . A useful fact is that, with respect to the symplec-
tic measure, the path integral of the super-Schwarzian theory is one-loop
exact [15], so we can determine it by analyzing the one-loop path integral
around the relevant classical solution. Let’s imagine that {f = f0(u), η = 0}
is a classical solution. The equation of motion implies that Sch(f0(u), u) is
constant, and we will refer to its constant value as S. Then we expand near
this solution, by making a small reparametrization f(u) = f0(u+ ε(u)).71

To quadratic order in ε and the fermion η, the super-Schwarzian action is
[81]

(C.3) I = −γ
∫ β

0
du

(
S − 1

2
ε′′2 + S ε′2 + 2η′η′′ − S ηη′

)
.

71This ε(u) is unrelated to the holographic renormalization parameter ϵ.
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Here γ is a constant with dimensions of length that can be absorbed by
rescaling β (this is equivalent to an overall rescaling of the matrix in the
dual matrix integral). We will follow the conventions of [35] and choose
units such that γ = 1

2 . Then β becomes dimensionless.
To evaluate the one-loop path integral, it is convenient to expand in

Fourier modes

(C.4)

ε(u) =
∑

n

e−
2π

β
inu
(
ε(R)
n + iε(I)n

)
,

η(u) =
∑

m

e−
2π

β
imu
(
η(R)
m + iη(I)m

)
.

We take ε to be periodic and η to be antiperiodic, so n ∈ Z and m ∈ Z+ 1
2 .

In order for the fields to be real, the real parts ε(R), η(R) should be even in n
and m, and the imaginary parts ε(I), η(I) should be odd. In these variables,
the action (C.4) is

I = −β
2
S +

∑

n>0

β

2

((
2πn

β

)4

− 2S

(
2πn

β

)2
)(

(ε(R)
n )2 + (ε(I)n )2

)
(C.5)

−
∑

m>0

4β

((
2πm

β

)3

− S

2

2πm

β

)
η(R)
m η(I)m .(C.6)

In general, this action has zero-modes. For a generic value of S, the only zero
mode is the n = 0 mode of ε, but for special values of S, there can be more. In
the super JT theory, these zero modes are interpreted as pure gauge modes.
For example, rotations of the wiggly boundary of the trumpet relative to an
arbitrary reference coordinate system, or OSp(1|2) transformations of the
wiggly boundary of the disk relative to an arbitrary reference. We should
not integrate over these modes.

An important fact for the one-loop exactness of the super Schwarzian
theory is that the quotient of the path integral space by the space of these
zero modes is a symplectic supermanifold. The symplectic form is the
Kirillov-Kostant-Souriau form for the coadjoint orbits of super Virasoro, and
it has the property that with respect to the symplectic form, the Schwarzian
action is a Hamiltonian that generates the U(1) symmetry of translations
in u. To quadratic order in the fields, the form is the restriction to nonzero
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modes of

ω̂ =
α

2

∫ β

0
du
[
dε′(u)dε′′(u)− 2S dε(u)dε′(u)− 4dη′(u)2 + 2Sdη(u)2

]
.

(C.7)

A quick way to justify this is to check that with respect to this form, the
action (C.3) generates u-translations. Concretely, one needs to show that
dH is proportional to the interior product of the u-derivative vector field
with ω̂. This is computed by replacing one of the factors of dε and dη by
ε′(u) and η′(u).

The constant α that multiplies (C.7) is arbitrary, but it is correlated with
a similar arbitrary constant in the normalization of the symplectic form on
supermoduli space (in the orientable case). This is due to the fact that both
symplectic forms are restrictions of the same underlying symplectic form
of BF theory. Changing the overall normalization of this form corresponds
to the freedom to adjust the coefficient of the topological term in the JT
action. We will follow the convention in [35] and set the constant equal
to α = 1. The bosonic computation in [35] implies that the corresponding
normalization for the symplectic form on super moduli space is such that
the bosonic component is

∑
i dbi dτi in terms of the Fenchel-Nielsen (length-

twist) coordinates. Setting α = 1 and inserting the Fourier expansion, one
finds

ω̂ =
∑

n>0

2β

((
2πn

β

)3

− 2S
2πn

β

)
dε(R)

n dε(I)n

−
∑

m>0

4β

((
2πm

β

)2

− S

2

)(
(dη(R)

m )2 + (dη(I)m )2
)
.

With these formulas, it is straightforward to evaluate the Gaussian in-
tegral

∫ ∏

n>0

D(ε(a)n , dε(a)n )
∏

m>0

D(η
(a)
m , dη

(a)
m )

(2π)2
exp (ω̂ − I)(C.8)

= e
β

2
S
∏

n>0

2β

n

∏

m>0

m

2β
.

We are interested in applying this formula to two different cases. The first
case is the disk partition function, for which the classical solution has S =
2π2/β2. For this case, the action has three bosonic and two fermionic zero



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1641 — #167
✐

✐

✐

✐

✐

✐

JT gravity and the ensembles of random matrix theory 1641

modes, corresponding to n = 0,±1 andm = ±1
2 . These three zero modes are

the infinitesimal action of OSp(1|2) on the classical solution, and we should
quotient the path integral space by this group. This means that in (C.8), we
should take the product over n = 2, 3, 4, . . . and m = 3

2 ,
5
2 ,

7
2 , . . .. Using zeta

function regularization or an exponential cutoff, one finds the result

(C.9) ZDSJT(β) = eS0

√
2

πβ
e

π2

β .

The second case we need is the “trumpet” geometry, for which S =
−b2/2β2, see [35]. In this case, the only zero mode is the n = 0 mode of ε.
Inserting this value of S in (C.8) and taking the renormalized product over
n = 1, 2, 3, . . . and m = 1

2 ,
3
2 ,

5
2 , . . ., one finds

(C.10) ZTSJT(β, b) =
1√
2πβ

e−
b2

4β .

It is also possible to consider the Schwarzian path integral in the trum-
pet geometry for the case of a Ramond spin structure on the trumpet. The
difference is that the fermionic field η is now integrally moded and in par-
ticular has a zero-mode, which causes the path integral to vanish. Thus if
T̃ is a trumpet with Ramond spin structure, the corresponding Schwarzian
path integral is just

(C.11) Z T̃SJT(β, b) = 0.

On the other hand, instead of a trumpet with Ramond spin structure, we
can consider a disc with a Ramond puncture at the center. The monodromy
around a Ramond puncture was described in eqn. (A.22). The important dif-
ference between a disc with Ramond puncture and a trumpet with Ramond
spin structure is that a certain linear combination of the fermionic gener-
ators of osp(1|2) is a symmetry of a disc with Ramond puncture, since it
commutes with the monodromy. In the Schwarzian path integral, unbroken
generators of osp(1|2) are treated as gauge symmetries and the correspond-
ing modes of the Schwarzian multiplet are omitted. In the present case, this
means that we omit the zero-mode of the field η. The remaining Schwarzian
path integral is extremely simple. The classical action is S = 0 (we just set
b = 0 in the formula S = −b2/2β2 for a trumpet, since geometrically a disc
with a puncture is the b→ 0 limit of a trumpet). Moreover, because of un-
broken supersymmetry, the 1-loop path integral of the fields ε, η is equal
to 1 (these fields are both integrally moded, and their determinants cancel



✐

✐

“4-Stanford” — 2021/7/12 — 2:17 — page 1642 — #168
✐

✐

✐

✐

✐

✐

1642 D. Stanford and E. Witten

mode by mode). So the Schwarzian path integral for a disc with Ramond
puncture is just

(C.12) ZR
SJT(β) = 1.

There is no factor of eS0 in eqn. (C.10) or (C.12), since the Euler char-
acteristic of a trumpet or a once-punctured disc is 0.

Appendix D. Mirzakhani’s recursion relation and its

superanalog

In this appendix, we will review Mirzakhani’s derivation of a recursion rela-
tion on volumes of moduli spaces of Riemann surfaces, and generalize this
derivation to super Riemann surfaces. The underlying super McShane iden-
tity has also been proved, for the basic case of a once-punctured torus, by
Y. Huang, R. Penner, and A. Zeitlin [59].

D.1. The sum rule

Mirzakhani’s sum rule for hyperbolic Riemann surfaces with geodesic bound-
ary generalized an earlier version by McShane for hyperbolic Riemann sur-
faces with cusps (or punctures) [105]. There is actually a useful short expla-
nation in section 2 of [52], where some of the considerations were generalized
to the unorientable case. Here we will consider orientable surfaces only.

We consider a hyperbolic surface Y with a geodesic boundary γ, of length
b, on which we will focus. Y may have a set I of additional geodesic bound-
aries γ1, . . . , γn, of lengths B = {b1, . . . , bn}. We assume that Y is not itself
a three-holed sphere. If Y is a three-holed sphere, then the moduli space
of hyperbolic structures on Y with given boundary lengths is a point, of
volume 1; this will ultimately be the trivial case with which Mirzakhani’s
recursion relation begins.

Starting at any point p ∈ γ, there is a unique inward going geodesic
ℓp on Y that is orthogonal to γ. We decompose γ as the disjoint union of
three sets A, B, C, as follows. A point p ∈ γ is in A if ℓp intersects itself, or
returns to γ, before meeting any of the other γi; p is in B if ℓp reaches one
of the other γi before intersecting itself or returning to γ; and p is in C if
it continues forever in the interior of Y without self-intersection. In case A
or B, we truncate ℓp as soon as it intersects itself or reaches the boundary
of Y .
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𝑝𝛾
𝛾𝑖
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ℓ𝑝𝑝 𝛾ℓ𝑝

(a) (b) (c)

Figure D1: We show three-holed spheres associated to the different fates
of a geodesic ℓp starting orthogonally at a point p on boundary γ. In (a)
p ∈ Bi, and the geodesic makes it to boundary γi. A thickening of ℓp, γ, γi
is topologically the three-holed sphere shown shaded. In (b) and (c), p ∈ A
and the geodesic either self-intersects or returns to the original boundary. In
both cases, a thickening of ℓp, γ determines a topological class of three-holed
sphere, shown shaded.

A theorem of Birman and Series implies that the set C is of measure 0;
roughly, it is very difficult for a geodesic in a hyperbolic surface to continue
indefinitely without self-intersection. Therefore, if we write µ(A) and µ(B)
for the measures of A and of B, then the sum of these measures is the total
measure of γ, namely b:

(D.1) b = µ(A) + µ(B).

The set B has an obvious decomposition as the union of subsets Bi,
where p ∈ Bi if ℓp reaches γi first. Thus B =

∐
i∈I Bi, where

∐
denotes the

disjoint union of sets. However, Bi has a much more subtle and surprising
decomposition, as follows. Suppose that p ∈ Bi, and consider the subset of
Y that consists of the union of γ, γi, and the segment of ℓp that connects
them, see fig. D1(a). Thickening this subset slightly, we get a subset S of
Y that is topologically a three-holed sphere. S has three boundary circles;
two of them – namely γ and γi – are geodesics. The third is not a geodesic,
but by minimizing its length within its homotopy class, we do get a geodesic
ℓ̃ ⊂ Y . And then γ, γi, and ℓ̃ are geodesic boundaries of a three-holed sphere
Λ ⊂ Y . Because we have assumed that Y is not itself a three-holed sphere,
ℓ̃ is in the interior of Y , and Λ is a proper subset of Y .

Let Υi be the set of all three-holed spheres in Y whose boundary consists
of γ, γi, and an internal geodesic ℓ̃ ⊂ Y . In general there are infinitely many
choices of ℓ̃, so Υi – and similarly Υ below – is a (countably) infinite set.
We have seen that every p ∈ Bi is naturally associated with some Λ ∈ Υi.
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So we have a decomposition

(D.2) B =
∐

i∈I,Λ∈Υi

Bi,Λ,

where Bi,Λ consists of points p ∈ Bi such that the three-holed sphere that is
obtained from the construction that was just described is Λ. Hence

(D.3) µ(B) =
∑

i∈I,Λ∈Υi

µ(Bi,Λ).

The set A has a similar decomposition. If p ∈ A, we consider the subset
of Y that consists of the union of γ with ℓp. Thickening this set slightly gives
a subset S of Y that is again topologically a three-holed sphere, see fig. D1(b)
and D1(c); remember that ℓp is truncated as soon as it intersects itself or
returns to γ. S has a single geodesic boundary, namely γ, and two boundary
circles that are not geodesics. By minimizing the lengths of the nongeodesic
boundaries in their homotopy classes, we can find geodesics which together
with γ bound a three-holed sphere Λ. It might be the case that one of these
two additional geodesics is an external boundary γi, so that Λ ∈ Υi. Or it
might be the case that both are internal boundaries. Then we say Λ ∈ Υ,
where Υ is the set of all three-holed spheres in Y whose boundary consists
of γ and two internal geodesics. This leads to

(D.4) µ(A) =
∑

Λ∈Υ
µ(AΛ) +

∑

i∈I,Λ∈Υi

µ(Ai,Λ),

where AΛ, Ai,Λ ⊂ A are defined by saying that p ∈ AΛ or p ∈ Ai,Λ if ℓp
is related to Λ ∈ Υ or Λ ∈ Υi in the way just described. Combining (D.3)
and (D.4), we can write the sum rule (D.1) as

(D.5) b =
∑

Λ∈Υ
µ(AΛ) +

∑

i∈I,Λ∈Υi

(
µ(Bi,Λ) + µ(Ai,Λ)

)
.

In this formula, the quantities µ(AΛ), µ(Ai,Λ), and µ(Bi,Λ) have the nice
property that they depend only on Λ, and not on anything else about Y . In
other words, we can compute them by studying orthogonal geodesics in a
three-holed sphere Λ, without worrying about the rest of Y . Suppose that Λ0

is a three-holed sphere with geodesic boundaries γ, γ′, γ′′ of lengths b, b′, b′′.
Apart from a set of measure 0, analogous to C above, we decompose γ as the
union of disjoint sets A0, B′

0, and B′′
0 , where p ∈ A0 if ℓp intersects itself or

returns to γ before reaching γ′ or γ′′, while p ∈ B′
0 if ℓp reaches γ′ first, and
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𝑌' 𝑌'𝑌'
Figure D2: We show three ways of building a g = 2 surface Y with two
boundaries by gluing a three-holed sphere onto another hyperbolic surface
Y ′, possibly disconnected. These three types of gluing correspond respec-
tively to the three types of terms on the RHS of (D.11).

p ∈ B′′
0 if ℓp reaches γ

′′ first. We set T(b, b′, b′′) = µ(B′
0), so that by symmetry

µ(B′′
0) = T(b, b′′, b′). Similarly we let D(b, b′, b′′) = µ(A0). We will compute

T(b, b′, b′′) in section D.4. This will determine D(b, b′, b′′) because of the sum
rule

(D.6) b = D(b, b′, b′′) + T(b, b′, b′′) + T(b, b′′, b′).

Every three-holed sphere Λ is isomorphic to Λ0 for some values of b, b′, b′′,
so for any Λ, the quantities µ(AΛ), µ(Ai,Λ), and µ(Bi,Λ) in eqn. (D.5), which
measure the sets of orthogonal geodesics with a specified behavior inside Λ,
can be expressed in terms of the functions T(b, b′, b′′) and D(b, b′, b′′). In
fact, µ(AΛ) = D(b, b′, b′′), while µ(Bi,Λ) = T(b, bi, b

′), µ(Ai,Λ) = D(b, bi, b
′).

So a somewhat more explicit version of eqn. (D.5) is

b =
∑

Λ∈Υ
D(b, b′, b′′) +

∑

i∈I,Λ∈Υi

(
T(b, bi, b

′) + D(b, bi, b
′)
)

(D.7)

=
∑

Λ∈Υ
D(b, b′, b′′) +

∑

i∈I,Λ∈Υi

(
b− T(b, b′, bi)

)
.(D.8)

D.2. The recursion relation

As preparation for explaining Maryam Mirzakhani’s recursion relation for
volumes, we will describe how one might proceed if there were no need to
divide by the mapping class group.

Let Y be a hyperbolic surface with boundary lengths b and bi, i ∈ I.
Suppose that Y can be built by gluing a three-holed sphere Λ of boundary
lengths b, b′, b′′ onto another hyperbolic surface Y ′ with boundary lengths
b′, b′′, and bi, i ∈ I, see fig. D2. If Y has genus g with n+ 1 boundaries,
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then Y ′ might be, for example, a surface of genus g − 1 with n+ 2 bound-
aries (Y ′ can also be disconnected, as shown in the figure). Looking back
to eqn. (3.44), we see that the torsions (or volume forms) of Y and Y ′ are
related by τY = db′dϱ′ db′′dϱ′′ τY ′ . If the mapping class group were not rel-
evant, this relation between the volume forms would lead after integration
to a relation between the volumes:

(D.9) Vg(b, B)
?
=

1

2

∫
db′dϱ′ db′′ dϱ′′ Vg−1(b

′, b′′, B).

Here B represents the collection b1, . . . , bn, and the factor of 1/2 takes into
account the symmetry under exchange of b′ and b′′, to avoid double-counting.
We can make this formula more explicit by noting that b′, b′′ run over the
half-lines [0,∞), while ϱ′, ϱ′′ run over 0 ≤ ϱ′ ≤ b′, 0 ≤ ϱ′′ ≤ b′′. Moreover, the
volumes do not depend on ϱ′, ϱ′′, so the integration over those variables just
gives a factor b′b′′. Thus the formula would reduce to

(D.10) Vg(b, B)
?
=

1

2

∫ ∞

0
b′db′ b′′db′′ Vg−1(b

′, b′′, B).

The analog of this formula for a compact group such as SU(2) is actually
correct, as discussed for example in section 2 of [72]. However, for SL(2,R),
one needs to divide by the mapping class group. Eqn. (D.9) is wrong because
the mapping class group of Y is larger than the mapping class group of Y ′, or
to put it differently, because modular invariance would force us in eqn. (D.10)
to sum over contributions of infinitely many choices of the three-holed sphere
Λ. This sum will give a divergent factor, so clearly the formula (D.10) is not
correct. (In fact, the volumes Vg(b1, . . . , bs) are polynomials in b21, . . . , b

2
s, so

the integral on the right hand side of eqn. (D.10) will diverge.)
If one could find a function f(b, b′, b′′) with the property that its sum

over all possible choices of Λ is 1, then one could find a correct version of
eqn. (D.10) by inserting in the definition Vg(b, B) =

∫
Mg,n+1

τY a factor of

1 =
∑

Λ f(b, b
′, b′′). Then, instead of summing over Λ and dividing by the

mapping class group of Y , it would be equivalent to pick a particular Λ and
divide by the mapping class group of Y ′. The upshot would be a recursion
relation rather like eqn. (D.10), but with an extra factor f(b, b′, b′′) in the
integral on the right hand side.

There is no function f(b, b, b′′) that has quite the property we stated, but
as oberved by Mirzakhani, the sum rule of eqn. (D.7) can be used similarly.
On the right hand side of eqn. (D.7), the summation over Λ includes a sum
over all topological ways of obtaining Y by gluing a three-holed sphere Λ
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onto some other surface Y ′ (with the constraint that one of the boundaries
of Λ is a specified boundary of Y ). So a recursion relation derived from this
sum rule involves a sum over all topological types of gluing. It reads72

bVg,n+1(b, B) =
1

2

∫ ∞

0
b′db′ b′′db′′D(b, b′, b′′)(D.11)

×
(
Vg−1(b

′, b′′, B) +
∑

stable

Vh1
(b′, B1)Vh2

(b′′, B2)

)

+

|B|∑

k=1

∫ ∞

0
b′db′

(
b− T(b, b′, bk)

)
Vg(b

′, B \ bk).

This is Mirzakhani’s recursion relation [37], which was interpreted by Eynard
and Orantin [36] in terms of topological recursion for matrix ensembles. For
a certain supersymmetric matrix ensemble, we deduced in eqn. (5.42) a
recursion relation with the same structure. We will aim to find a superanalog
of Mirzakhani’s derivation to account for that result.

D.3. More on hyperbolic geometry and three-holed spheres

As preparation for computing T(b, b′, b′′), and for understanding the super-
analog of Mirzakhani’s derivation, we need some more details on hyperbolic
geometry.

Let z = x+ iy with real x, y. The group SL(2,R) acts on the upper half-
plane y > 0, leaving fixed the hyperbolic metric

(D.12) ds2 =
dzdz

Im2z
=

dx2 + dy2

y2
.

We call this half-plane H. The line x = 0 plus a point at infinity constitute
the “conformal boundary” of H, which we will call ∂H. As is usual in holo-
graphic duality, the conformal boundary is “at infinity,” not contained in
H. Including the point at infinity, ∂H is a circle topologically.

H is complete, so a geodesic in H propagates for infinite distance in
each direction, but a geodesic in H has at each end a “virtual endpoint” in

72 There is a subtlety in terms involving V1(b). Because of the Z2 symmetry of
the torus with one hole, when we glue in such a surface, we should restrict the
twist to be between zero and b/2 instead of between zero and b. In order to avoid
awkward factors of two that result from this, we are simply going to define V1(b) to
be one half of the true moduli space volume. Then we can integrate the twist from
zero to b as usual.
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ℓ𝑏^ℓ𝑏'^

ℓ𝑏''^
∂𝐻

𝑝1 𝑝2 𝑝1
𝑝2=∞

(a) (b)

∂𝐻∂𝐻
Figure D3: In (a) we view ∂H as the real line, and we show a geodesic with
virtual endpoints at finite locations in ∂H, as well as one with a virtual
endpoint at infinity. In (b) we view ∂H as S1, and we show a non-nested
configuration of three geodesics.

∂H. Conversely, any two points in ∂H are connected by a unique geodesic
in H. These geodesics are easily described in terms of the Euclidean metric
ds2E = dx2 + dy2 on H. If p1, p2 are finite points in ∂H, then the geodesic
between them is a semicircle, centered at the midpoint of the interval [p1, p2],
and with diameter such that it passes through p1 and p2. If, say, p2 is the
point at infinity, then the geodesic between p1 and p2 is a vertical straight
line from p1. See fig. D3(a).

The conformal boundary ∂H can be understood as a copy of RP1, with
homogeneous real coordinates u, v. SL(2,R) acts on RP1 in the natural way

(D.13)

(
u
v

)
→
(
a b
c d

)(
u
v

)
, ad− bc = 1.

The corresponding action on x = u/v is familiar:

(D.14) x→ ax+ b

cx+ d
.

The point at x = ∞ is, of course, the point in RP1 with (u, v) = (1, 0).
The action of SL(2,R) on H is described by the same formula, but with

x replaced by a complex variable z (constrained to have Im z > 0):

(D.15) z → az + b

cz + d
.

Now we will discuss some details about three-holed spheres that were not
needed in the body of the paper. If Y is a three-holed hyperbolic sphere, with
geodesic boundaries, then its universal cover Ŷ is a region in H bounded by
three geodesics.
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Let us work this out for the case studied in section 3.4 of a three-holed
sphere with monodromies

(D.16) U0 = δb

(
eb/2 κ

0 e−b/2

)
, V0 = δb′

(
e−b

′/2 0

1 eb
′/2

)
,

and W0 = V −1
0 U−1

0 . (We write b, b′, b′′ for what in section 3.4 were a, b, c.)
The length parameters of U0, V0, and W0 are b, b′, and a parameter b′′ that
satisfies

(D.17) 2 cosh
b′′

2
= −2 cosh

b− b′

2
− κ

or

(D.18) κ = −2 cosh
b− b′

2
− 2 cosh

b′′

2
.

Eqn. (D.17) does not determine the sign of b′′, and we can pick b′′ > 0 as a
convention.

Let ℓb be the the boundary of Y whose monodromy is U0. Then ℓb lifts
on H to a U0-invariant geodesic ℓ̂b. For ℓ̂b to be U0-invariant is equivalent
to saying that its virtual endpoints on ∂H are U0-invariant. A hyperbolic
element of SL(2,R), such as U0, has precisely two fixed points on ∂H ∼= RP1.
These fixed points correspond to the eigenvectors of the 2× 2 matrix U0,
since if

(D.19) U0

(
u
v

)
= λ

(
u
v

)
,

for some λ, this means that U0 leaves invariant the point in RP1 that cor-

responds to

(
u
v

)
. The endpoints of ℓ̂b are thus the points on RP1 that

correspond to eigenvectors of U0.

The eigenvectors of U0 are

(
1
0

)
and

(
− κ

2 sinh b

2

1

)
. So the endpoints of

the geodesic ℓ̂b corresponding to U0 are the points with x = ∞ and x =
−κ/(2 sinh b

2), respectively.

Similarly, the eigenvectors of V0 are

(
0
1

)
and

(
−2 sinh b′

2
1

)
. So the end-

points of the geodesic ℓ̂b′ corresponding to V0 are the point at x = 0 and the
point at x = −2 sinh b′

2 .
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The endpoints of the third geodesic ℓ̂b′′ similarly correspond to the eigen-
vectors of W0, which can be found using the explicit formula (3.22). The
endpoints of ℓ̂b′′ are at x = −(eb

′/2 + e(b±b
′′)/2).

At this point, we can verify that the matrices U0, V0,W0 really are the
monodromies of a three-holed sphere Y with hyperbolic metric (and not of
a flat SL(2,R) connection in a different component of the moduli space). If
such a Y does exist, then, after we lift to the upper half-plane, the geodesics
ℓ̂b, ℓ̂b′ , and ℓ̂b′′ are nonintersecting and moreover they are not “nested”; the
cyclic ordering of the endpoints of the three geodesics on ∂H = S1 must be
as shown in fig. D3(b), up to a possible permutation of the three geodesics.
A sufficient condition is to take b, b′ both positive. (As noted above, there is
no loss of generality to assume that also b′′ > 0.) From the above formulas,
the endpoints of ℓ̂b are more positive than those of ℓ̂b′ which in turn are
more positive than those of ℓ̂b′′ . So the endpoints are arranged appropriately
and we do get a hyperbolic metric on a three-holed sphere for any positive
boundary lengths b, b′, b′′.

D.4. Computation

We will now compute the function T(b, b′, b′′) that was introduced in ap-
pendix D.1. Consider a three-holed sphere Λ with geodesic boundaries γb,
γb′ , γb′′ of lengths b, b

′, b′′. The universal cover of Λ can be identified as a re-
gion in the upper half-plane H bounded by geodesics γ̂b, γ̂b′ , and γ̂b′′ , which
are obtained respectively by unwrapping γb, γb′ , γb′′ .

Up to an SL(2,R) transformation, we can identify γ̂b as a vertical straight
line in H located at, say, x = x0. In the same description, γ̂b′ will be a
(Euclidean) semi-circle in H with endpoints at, say, x1, x2. Since γ̂b and γ̂b′

do not intersect, we can assume (up to relabeling and reversal of orientation)
that the endpoints are arranged with x2 < x1 < x0 (fig. D4). We want to
compute the measure of the set B′ ⊂ γ̂b defined by saying that x ∈ B′ if
the orthogonal geodesic ℓp to γ̂b at p meets γ̂b′ . From the figure, it is fairly
easy to see that B′ is an open interval. The endpoints of the closure of
this interval are points s1, s2 ∈ γ̂ with the property that ℓs1 and ℓs2 do not
actually intersect γ̂′, but rather have an endpoint on ∂H that coincides with
one of the endpoints of γ̂b′ .

From this description, and the fact that geodesics in H are Euclidean
semicircles, it follows that the (x, y) coordinates of the points s1, s2 are
(x0, x0 − x1) and (x0, x0 − x2). µ(B′) is simply the distance between these
points in the hyperbolic metric of eqn. (D.12). A simple integration gives
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x1 x0

γ̂b

γ̂b′

B′

x2

(x0, x0 − x1)

(x0, x0 − x2)

Figure D4: Here the geodesic γ̂b is the vertical straight line x = x0 in H and
γ̂b′ is a semicircle with endpoints at (x, y) = (x1, 0) and (x2, 0). B′ consists
of points p ∈ γ̂b such that the orthogonal geodesic ℓp to γ̂b at p intersects
γ̂b′ . B′ is an open interval; the endpoints of its closure are the points p
such that ℓp has an endpoint in common with γ̂b′ . These are the points
(x, y) = (x0, x0 − x1) and (x, y) = (x0, x0 − x2). The distance between those
two points in the metric on H is log(x0 − x2)/(x0 − x1).

µ(B′) = log(x0 − x2)/(x0 − x1). (To express this more invariantly, the ratio
(x0 − x2)/(x0 − x1) is a cross-ratio of the four points x0, x1, x2,∞, where ∞
is the second endpoint of γ̂b.)

To turn this into a formula for T(b, b′, b′′), we use the values of x0, x1, x2
that were computed in appendix D.3 for a three-holed sphere with boundary
lengths b, b′, b′′. Thus x0 = −κ/2 sinh b

2 = (cosh b′′

2 + cosh b−b′
2 )/ sinh b

2 , x1 =

0, x2 = −2 sinh b′

2 . Hence

(D.20) T(b, b′, b′′) = log
x0 − x2
x0 − x1

= log
cosh b′′

2 + cosh b+b′

2

cosh b′′

2 + cosh b−b′
2

,

which is Mirzakhani’s result.
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In using this formula, Mirzakhani differentiated the recursion relation
(D.11) with respect to b, so as to replace the functions D and T with trigono-
metric functions. We will see that in the supersymmetric case, the integration
over the odd moduli automatically gives us trigonometric functions.

D.5. Some supergeometry

To generalize this computation to the case with N = 1 supersymmetry, we
will have to be familiar with some aspects of the supersymmetric analog Ĥ
of the upper half-plane. Some old and new references on this material are
[97, 106–109].

In section 3.5.1, we defined OSp(1|2) as the symmetry group of a copy of
R2|1, parametrized by bosonic and fermionic coordinates u, v|θ, that preserve
the symplectic form ω̂ = dudv + 1

2dθ
2. If we view u, v|θ as homogeneous co-

ordinates, then they parametrize a copy of RP1|1. This will be the conformal
boundary ∂Ĥ of the supersymmetric analog Ĥ of the upper half-plane.

RP1|1 can be parametrized by ordinary coordinates x|θ, defined by x =
u/v, θ = θ/v, along with a divisor at infinity (which corresponds to the
case v = 0). The Lie algebra osp(1|2) is represented in these coordinates as
follows:73

e = ∂x

h = 2x∂x + θ∂θ

f = −x2∂x − xθ∂θ

q1 = −∂θ + θ∂x

q2 = x(∂θ − θ∂x).(D.21)

As coordinates on ∂Ĥ, x and θ are real. To describe Ĥ and the action
on it of osp(1|2), we simply complexify these formulas. Thus we replace the
real even and odd coordinates x|θ with complex even and odd coordinates
z|ϑ, with z constrained by Im z > 0. The action of osp(1|2) is given by the

73These vector fields actually generate the “opposite” Lie superalgebra to the
algebra of matrices in eqns. (3.62) and (3.63). The opposite superalgebra is defined
by reversing the signs of commutators and leaving the anticommutators unchanged.
(The superalgebra osp(1|2) and its opposite are equivalent under (e, f, h, q1, q2) →
(−f,−e, h, q2, q1).)
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same formulas as before, with x|θ replaced by z|ϑ:

e = ∂z

h = 2z∂z + ϑ∂ϑ

f = −z2∂z − zϑ∂ϑ

q1 = −∂ϑ + ϑ∂z

q2 = z(∂ϑ − ϑ∂z).(D.22)

For our purposes here,74 a super Riemann surface is a real supermanifold
of dimension 2|2. The complex conjugate coordinates z|ϑ transform under
osp(1|2) in the same way as z|θ; one can simply take the complex conjugate
of all formulas in eqn. (D.22).

One point about this definition is that the bulk supermanifold Ĥ is of
real dimension 2|2, while its conformal “boundary” is of dimension 1|1, and
thus is of codimension 1|1, as opposed to the codimension 1|0 of an ordinary
boundary. That might come as a surprise, but this behavior is actually
typical when holographic dualities are described in superspace. Dimension
2|2 is appropriate to realize OSp(1|2) as a supergroup of symmetries in
bulk, and dimension 1|1 is appropriate to realize OSp(1|2) as a supergroup
of superconformal symmetries on the boundary. The relation between Ĥ and
∂Ĥ was described from a different perspective in [109].

Now, recall that in the bosonic case, any two points p1 and p2 in ∂H, say
the points with x = x1 or with x = x2, are the endpoints of a unique geodesic
γ in H. Using the embedding of H in Ĥ, we embed γ in Ĥ and declare it
to be the geodesic connecting the points x1|0 and x2|0. To generalize this to
boundary points with nonzero θ, we just note that any desired pair x1|θ1 and
x2|θ2 can be reached from x1|0 and x2|0 by an OSp(1|2) transformation g
(which moreover is unique up to a symmetry of γ). We declare γ̃ = g(γ) to be
the geodesic in Ĥ with endpoints x1|θ1 and x2|θ2. It is possible to work out

74In superstring theory, a super Riemann surface must be understood in a more
subtle way, not simply as a real supermanifold. This is because the holomorphic
and antiholomorphic spin structures and odd moduli vary independently (Type
II superstrings) or because the supersymmetric structure is purely holomorphic
(the heterotic string). See for example section 5 of [103]. Our present problem is
more straightforward, because as long as we are on an orientable two-manifold,
all supermanifolds we encounter can be understood as real supermanifolds. On an
unorientable two-manifold, one has to extend OSp(1|2) in such a way that the odd
variables no longer carry a real structure (see section 3.5.1), and then some of the
issues that arise in superstring theory do become relevant.
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an explicit formula for γ̃, but we will not need it; our explicit calculations will
only involve the endpoints of geodesics, and special geodesics at ϑ = ϑ = 0.

In the bosonic world, if γ1 and γ2 are geodesics with endpoints at x = a1
and x = a2, respectively, then we say that γ1 and γ2 have a common endpoint
if a1 = a2. In the supersymmetric case, if γ1 and γ2 have respective endpoints
a1|θ1 and a2|θ2, the naive generalization of this is to require a1 = a2, θ1 = θ2.
This is too strong, however. It is usually more useful to impose only the single
condition

(D.23) a1 − a2 − θ1θ2 = 0,

which for most purposes is the closest analog of “having a common endpoint”
in the bosonic case.

An alternative way to state this condition is as follows. The vector field
Dθ = ∂θ + θ∂x is not OSp(1|2)-invariant, but it is OSp(1|2) invariant up to
a transformation Dθ → ef(x|θ)Dθ. (More specifically, Dθ transforms as a su-
perconformal primary of weight −1/2, a fact that is used in constructing
superconformally invariant Lagrangians.) The orbits generated by Dθ are
invariant under Dθ → efDθ, so they are superconformally invariant. Con-
cretely the orbit containing the point x1|θ1 is parametrized by an odd vari-
able α as follows:

(D.24) x|θ = x1 + αθ1|θ1 + α.

These orbits are said to be the “leaves” of an “unintegrable distribution.”
For our purposes, the relevant point is that the condition a1 − a2 − θ1θ2 = 0
is equivalent to saying that a1|θ1 and a2|θ2 are contained in the same leaf.
Indeed, if a1 − a2 − θ1θ2 = 0, then the leaf through the point a1|θ1 contains
the point a2|θ2, as we see by setting α = θ2 − θ1 in eqn. (D.24).

A similar idea is actually built into the naive statement “Y is a super
Riemann surface with geodesic boundary.” A super Riemann surface in the
sense of our present discussion has real dimension 2|2. Its boundary should
have codimension 1|0, so should be a supermanifold of dimension 1|2. But a
geodesic has dimension 1|0. The point is that the vector fields on Ĥ defined
by Dϑ = ∂ϑ + ϑ∂z and Dϑ = ∂ϑ + ϑ∂z generate a superconformally invari-
ant distribution whose leaves are of dimension 0|2. Hence a geodesic γ (or
similarly any generic curve of dimension 1|0) has a canonical dimension 1|2
thickening, consisting of all the leaves that pass through γ. It is this thick-
ening that is really the boundary of a super Riemann surface.

In H, which is of dimension 2, it is natural for two geodesics γ1 and γ2,
each of which has codimension 1, to intersect. (Of course, not all pairs of
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geodesics in H do intersect.) What is a good analog in Ĥ of the statement
that two geodesics in H intersect? Since geodesics in Ĥ have codimension
1|2 while Ĥ has dimension 2|2, it is nongeneric for two geodesics in Ĥ to
have a point in common. The useful notion of “intersection of geodesics” in
a super Riemann surface is to say that two geodesics γ1 and γ2 intersect if
the thickening of γ1, in the sense described in the last paragraph, intersects
γ2. This condition can be stated more symmetrically by saying that the
distribution generated by Dϑ and Dϑ has a leaf that intersects both γ1 and
γ2 in the naive sense.

Finally, we need to know what it means for two geodesics in Ĥ to be
orthogonal. If a geodesic γ ⊂ Ĥ actually lies in H ⊂ Ĥ, and p is a point in γ,
then by the geodesic ℓp that is orthogonal to γ at p, we just mean the geodesic

in H ⊂ Ĥ that is orthogonal to γ at p, in the classical sense. Any case can
be reduced to this case by an OSp(1|2) transformation, since by definition
any geodesic in Ĥ can be mapped to H by an OSp(1|2) transformation.

D.6. The supersymmetric recursion relation

Now we consider the same setting as in appendix D.1, but in the supersym-
metric case. Thus, Y is a super Riemann surface with a specified geodesic
boundary γ of length b, and additional geodesic boundaries γi, i ∈ I, of
lengths bi. γ has a natural Riemannian measure, since its lift γ̂ to Ĥ is an
orbit of an SO(1, 1) subgroup of OSp(1|2). The total measure of γ̂ is b.

For p ∈ γ, let ℓp be the normal to γ at p. Just as in the bosonic case,
we decompose γ as a union of disjoint subsets A, B, and C according to
whether ℓp first intersects itself or returns to γ; first intersects one of the
γi; or does neither. The last case corresponds again to a set of measure 0,
and in the first two cases, just as before,75 ℓp is contained in a distinguished
three-holed sphere Λ one of whose geodesic boundaries is γ.

75Upon reducing modulo the odd variables (the fermionic coordinates of Y and
also the fermionic moduli), Y reduces to a bosonic Riemann surface Y0 and the
same argument as before associates to ℓp a three-holed sphere Λ0 ⊂ Y0 with geodesic
boundaries γa (one of which is the original γ). Picking any map i : Y0 → Y that
reduces to the identity modulo the odd variables, we embed the γa in Y as closed
loops i(γa), which reduce modulo the odd variables to the original geodesics γa. The
i(γa) are in general not geodesics, but in the homotopy class of each of them (and
differing from it only by nilpotent terms, proportional to the odd variables) is a
unique geodesic. Indeed, the monodromy of the hyperbolic flat OSp(1|2) connection
around any of the γa is a hyperbolic element ha ∈ OSp(1|2). Pass to Ĥ by replacing
Y with its universal cover. A hyperbolic element of OSp(1|2), such as ha, leaves
fixed a unique geodesic in Ĥ, namely the geodesic that connects its two fixed points
in RP1|1. This descends to the desired geodesic in Y . The three geodesics obtained
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Thus after decomposing A and B as in (D.3) and (D.4), we have the
analog of eqn. (D.5):

(D.25) b =
∑

Λ∈Υ
µ(AΛ) +

∑

i∈I,Λ∈Υi

(
µ(Bi,Λ) + µ(AΛ)

)
.

As before, the measures µ(AΛ) and µ(Bi,Λ) that appear in these formulas
depend only on Λ and not on anything else about Y . Thus they come from
universal functions. The main difference is that now a three-holed sphere
has two odd moduli as well as the three boundary lengths, and we will have
to take these into account.

Let Λ0 be a three-holed sphere with geodesic boundaries γ, γ′, γ′′ of
lengths b, b′, b′′, and with odd moduli α, β. For fixed b, b′, b′′, the odd variables
α and β parametrize a supermanifold Mb,b′,b′′ of dimension 0|2. As before, γ
is the union of sets A0, B′

0, and B′′
0 (plus a set of measure 0) defined by the

behavior of orthogonal geoedesics. Writing D̂(b, b′, b′′|α, β), T̂(b, b′, b′′|α, β),
and76 Û(b, b′, b′′|α, β) for the measures of A0, B′

0, and B′′
0 , we get a sum rule

just like eqn. (D.6), with new universal functions:

(D.26) b = D̂(b, b′, b′′|α, β) + T̂(b, b′, b′′|α, β) + Û(b, b′, b′′|α, β).

Just as in eqn. (D.11), inserting this identity in the definition of the
volume as an integral over the supermoduli space leads to a recursion relation
that involves a sum over all ways that Y can be built by gluing a three-holed
sphere Λ to some other super Riemann surface Y ′. The main difference
is that after specifying the boundary lengths b, b′, b′′ of Λ, there is a still
a moduli space Mb,b′,b′′ of flat connections on Λ over which we have to
integrate. We will describe in section D.7 the integration measure µ for this
integral. Including some more trivial factors that are explained in a moment,

this way (one of which is γ) are the boundaries of the desired three-holed sphere
Λ ⊂ Y .

76
Û is obtained from T̂ by exchanging b′ with b′′ and suitably transforming α and

β. We will soon integrate out α and β, so we avoid writing explicit formulas as this
stage.
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the analog of eqn. (D.11) is then

bVg(b, B) =
1

2

∫ ∞

0
b′db′ b′′db′′

∫

Mb,b′,b′′

dµ D̂(b, b′, b′′|α, β)(D.27)

×
(
Vg−1(b

′, b′′, B) +
∑

stable

Vh1
(b′, B1)Vh2

(b′′, B2)

)

+ 2

|B|∑

k=1

∫ ∞

0
b′db′

×
∫

Mb,bk,b′

dµ
(
b− Û(b, bk, b

′|α, β)
)
Vg(b

′, B \ bk).

In the sum over spin structures, we may or may not include a factor
(−1)ζ . However, as explained in section 5.2, the more interesting case is
that we do include such a factor (otherwise the volumes are expected to
all vanish). We have written the formula for this case. With a factor (−1)ζ

included, if any of the circles on which we glue Λ to Y ′ has a spin structure
of Ramond type, then the sum over the spin structure “orthogonal” to that
circle vanishes, as we learned in section 2.4.3. So we assume that all of
those circles have NS spin structure. Similarly, we assume the same for
all external boundaries. A factor of 2 in the term proportional to b− Û

has the following origin. We define the volumes to include a sum over spin
structures, which includes a sum over spin structures “orthogonal” to the
boundary components (that is, the spin bundle is trivialized on ∂Y , and spin
structures are considered equivalent only if there is an equivalence between
them that respects this trivialization). In the gluing that leads to the b− Û

term in eqn. (D.27), but not in the gluing that leads to the D̂ term, the
spin structure sum on the left has an extra factor of 2 compared to the spin
structure sum on the right. We compensate for this with an explicit factor
of 2 multiplying the b− Û term.

To get a formula for the volumes in purely bosonic terms, we should
integrate over Mb,b′,b′′ . We define

∫

Mb,b′,b′′

dµ D̂(b, b′, b′′|α, β) = D(b, b′, b′′)

∫

Mb,b′,b′′

dµ T̂(b, b′, b′′|α, β) = T (b, b′, b′′).(D.28)
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Once we integrate over the odd variables, T̂ and Û differ only by exchange
of b′ and b′′, so

(D.29)

∫

Mb,b′,b′′

dµ Û(b, b′, b′′|α, β) = T (b, b′′, b′)

The supersymmetric recursion relation then reduces to

bVg(b, B) =
1

2

∫ ∞

0
b′db′ b′′db′′D(b, b′, b′′)(D.30)

×
(
Vg−1(b

′, b′′, B) +
∑

stable

Vh1
(b′, B1)Vh2

(b′′, B2)

)

− 2

|B|∑

k=1

∫ ∞

0
b′db′ T (b, b′, bk)Vg(b

′, B \ bk).

In writing this equation, we used that the moduli space Mb,b′,b′′ has zero
volume, like all of the genus 0 moduli spaces, so the integral over this moduli
space of a constant function vanishes:

(D.31)

∫

Mb,b′,b′′

dµ · b = 0.

This fact has another useful implication. When we integrate the sum rule
(D.25) over Mb,b′,b′′ , we learn that

(D.32) 0 = D(b, b′, b′′) + T (b, b′, b′′) + T (b, b′′, b′).

Therefore, to make eqn. (D.30) explicit, it suffices to compute T (b, b′, b′′).

D.7. Final calculations

To compute the function T̂, we consider a three-holed sphere Λ with the
monodromies of eqn. (3.76), namely

(D.33)

U0 = δb




eb/2 κ 0

0 e−b/2 0
0 0 δb


 exp(ξq1),

V0 = δb′




e−b
′/2 0 0

1 eb
′/2 0

0 0 δb′


 exp(ψq2),
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(again we replaced a, b, c with b, b′, b′′) and W0 = V −1
0 U−1

0 . The parame-
ter κ can be expressed in terms of the third boundary parameter b′′ as in
eqn. (3.79):

(D.34) κ = −2 cosh
b′′

2
− 2 cosh

b− b′

2
+ ψξ(eb/2δb′ + eb

′/2δb).

Let γb, γb′ , and γb′′ be geodesic boundaries of Λ with respective mon-
odromies U0, V0, and W0. In the universal cover of Λ, these geodesics lift to
“unwrapped” geodesics γ̂b, γ̂b′ , and γ̂b′′ . The endpoints of these unwrapped
geodesics can be found, by the same logic as in the bosonic case, from the
eigenvectors of the monodromies acting on u, v|θ. To be more precise, each
monodromy has two bosonic eigenvectors, which are the endpoints of the
corresponding unwrapped geodesic. (The monodromy also has a fermionic
eigenvector, but it will not play a role.)

For example, one bosonic eigenvector of U0 is



u
v
θ


 =



1
0
0


. This cor-

responds to an endpoint of γ̂b at infinity. The second bosonic eigenvector is


−κ/(2 sinh b
2)

1

ξ(1− δbe
−b/2)−1


. So the second endpoint of γ̂b is

(D.35) x0|θ0 = −κ/(2 sinh b
2)|ξ(1− δbe

−b/2)−1.

Similarly, the bosonic eigenvectors of V0 are



0
1
0


 and




−2 sinh b′/2
1

ψ(eb
′/2 + δb′)


,

so γ̂b′ has endpoints

x1|θ1 = 0|0
x2|θ2 = −2 sinh( b

′

2 )|ψ(eb
′/2 + δb′).(D.36)

Before making use of these formulas to compute the function T̂, it is con-
venient to first make a supersymmetry transformation x|θ → x+ θ0θ|θ − θ0,
where θ0 was defined in eqn. (D.35). After this transformation, the endpoints
of γb are at infinity and at

(D.37) x′0|θ′0 = −κ/(2 sinh b
2)|0.
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Accordingly, in this description, γ̂b is simply a vertical straight line in H ⊂
Ĥ, and all of the orthogonals to γ̂b are likewise contained in H. Thus, we do
not need to consider more general geodesics in Ĥ.

The supersymmetry transformation x|θ → x+ θ0θ|θ − θ0 maps the end-
points of γ̂b′ to

x′1|θ′1 = x1 + θ0θ1|θ1 − θ0

x′2|θ′2 = x2 + θ0θ2|θ2 − θ0.(D.38)

The function T̂ is the length of the segment of B′ ⊂ γ̂b consisting of
points p such that the orthogonal geodesic ℓp to γ̂b at p intersects γ̂b′ .
The endpoints of B′ are the points p ∈ γ̂b such that ℓp and γb′ satisfy
the condition (D.23), which says that ℓp and γ̂b′ just barely fail to inter-
sect. This happens if the endpoints of ℓp (which are at θ = 0, since ℓp
is contained in H) are x′1|0 or x′2|0. Since ℓp is a semicircle in H cen-
tered at x = x0, the same reasoning as in the bosonic case tells us that
the endpoints of B′ are at the points in H with (x, y) = (x′0, x

′
0 − x′1) and

(x, y) = (x′0, x
′
0 − x′2). Hence rather as in the bosonic case, the length of

B′ is T̂ = log(x′0 − x′2)/(x
′
0 − x′1). In view of eqn. (D.38), this is equiva-

lent to T̂ = log ((x0 − x2 − θ0θ2)/(x0 − x1 − θ0θ1)). Here in fact, (x0 − x2 −
θ0θ2)/(x0 − x1 − θ0θ1) is a superconformal cross ratio of the points x0|θ0,
x1|θ1, x2|θ2, and a fourth point at infinity. So the result is a sort of minimal
supersymmetric generalization of the bosonic formula.

Using the above formulas for the endpoints and eqn. (D.34) for κ, we
get

T̂(b, b′, b′′|ξ, ψ)(D.39)

= log

(
−κ+ 4 sinh b

2 sinh
b′

2 − ξψ(eb/2 + δb)(e
b′/2 + δb′)

−κ

)

= log
cosh b′′

2 + cosh b+b′

2 − ξψ
2

(
e(b+b

′)/2 + δbδb′
)

cosh b′′

2 + cosh b−b′
2 + ξψ

2

(
eb/2δb′ + eb′/2δb

) .

To reduce this to the purely bosonic function T (b, b′, b′′) that appears
in the final form (D.30) of the recursion relation, we have to integrate this
expression over the odd moduli ξ, ψ. The torsion measure can be read off
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from77 eqn. (3.100) (where we substitute at, bt, ct|ξt, ψt → b, b′, b′′|ξ, ψ):

(D.40) τ =
δbδb′

4
e−(b+b′)/4(eb

′′/4 − δb′′e
−b′′/4)[dξ dψ].

But according to eqn. (A.18), if we want to define volumes that satisfy the
particularly natural normalization of eqn. (A.17), the measure we must use
is not τ but

(D.41) µ = (2π)χτ =
τ

2π
,

where we use the fact that χ = −1 for a three-holed sphere. So

T (b, b′, b′′) =
∫

Mb,b′,b′′

dµ T̂(b, b′, b′′|ξ, ψ)(D.42)

= −δbδb′

16π

(e(b+b
′)/4 + δbδb′e

−(b+b′)/4)(eb
′′/4 − δb′′e

−b′′/4)

cosh b′′

2 + cosh b+b′

2

− δbδb′

16π

(e(b−b
′)/4δb′ + e−(b−b′)/4δb)(eb

′′/4 − δb′′e
−b′′/4)

cosh b′′

2 + cosh b−b′
2

.

This formula is valid for any spin structures on the boundary of Λ. For
the application to the recursion relation (D.30), we want the spin structures
to be all of NS type, so we take δb = δb′ = δb′′ = −1. After a few uses of the
identity 2 coshA coshB = cosh(A+B) + cosh(A−B), one finds

T (b, b′, b′′) =
1

16π

(
1

cosh b−b′+b′′
4

+
1

cosh b−b′−b′′
4

(D.43)

− 1

cosh b+b′+b′′

4

− 1

cosh b+b′−b′′
4

)
.

From eqn. (D.32), we then have also

D(b, b′, b′′) = −T (b, b′, b′′)− T (b, b′′, b′)(D.44)

= − 1

8π

(
1

cosh b′+b′′−b
4

− 1

cosh b′+b′′+b
4

)
.

77The overall sign of this measure depends on some conventions. For example, in
the symplectic approach of appendix A, the sign depends on a choice of orientation
of the fermionic bundle V . Analogous issues arise in the torsion. Reversing this sign
would multiply the volumes by (−1)χ, which for an orientable surface is the same
as (−1)n, where n is the number of boundary components.
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When these results for D and T are inserted in the recursion relation (D.30),
one finds perfect agreement with the recursion relation (5.42) derived from
random matrix theory.

It is interesting to observe that the start of the topological recursion
with V1(b) = −1/8 can actually be computed similarly. We can build a torus
with a single boundary of length b by starting with a one-holed sphere of
boundaries b, b′, b′ and gluing together the two boundaries of length b′ to
make a single circle C. Repeating the derivation that leads to eqn. (D.30),
assuming that spin structures are weighted with (−1)ζ , we get

(D.45) bV1(b) =

∫ ∞

0
b′db′D(b, b′, b′).

Here we should divide by 2 because (due to the Z2 symmetry of the torus
with one hole) we define V1(b) to be one-half of the true moduli space volume,
as explained in footnote 72. But we also get a factor of 2 from the sum over
spin structures. A priori, the spin structure on C could be of NS or R type.
However, in the theory with the factor (−1)ζ , contributions in which the
spin structure is of R type vanish because of the usual cancellation in the
sum over the spin structure “orthogonal” to C. If the spin structure on C
is of NS type; then the sum over orthogonal spin structures gives a factor
of 2, compensating for the factor of 1/2 from the symmetry and leading to
(D.45). One can evaluate the integral in (D.45) using eqn. (D.44), and one
recovers V1(b) = −1/8.

If instead one considers the theory without the factor (−1)ζ , one can
recover the expectation that V1(b) = 0. For this, we have to allow both types
of spin structure on the circle C. The volume will then satisfy

(D.46) bṼ1(b) =

∫ ∞

0
b′db′

(
D(b, b′, b′)− D̃(b, b′, b′)

)
,

where D̃(b, b′, b′′) is a function similar to D(b, b′, b′′), but for a three-holed
sphere with spin structures of types NS, R, R. The minus sign has the same
origin as the factor (−1)wR in eqn. (3.100); it comes from the factor −δ

in the formula (3.69) for the torsion of a circle. We have, as in eqn. (D.32),
D̃(b, b′, b′′) = −T̃ (b, b′, b′′)− T̃ (b, b′′, b′), where now T̃ (b, b′, b′′) is obtained by
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setting δb = −1, δb′ = δb′′ = 1 in eqn. (D.42). We get

T̃ (b, b′, b′′) =
1

16π

(
− 1

cosh b−b′+b′′
4

+
1

cosh b−b′−b′′
4

(D.47)

− 1

cosh b+b′+b′′

4

+
1

cosh b+b′−b′′
4

)
,

leading to D̃(b, b′, b′′) = D(b, b′, b′′), and therefore to the expected Ṽ1(b) = 0.
Using the equality of D and D̃ and the vanishing of volumes in genus zero,
a recursion similar to (D.30) implies that all volumes vanish in the theory
without (−1)ζ .

Appendix E. Comments on nonperturbative effects

In the main text of the paper, we focused on aspects of JT gravity and of
matrix integrals that are perturbative in e−S0 . In this appendix, we make a
few comments on nonperturbative effects. For the most part, we will consider
an Atland-Zirnbauer-type matrix integral, with measure of the form

(E.1)
∏

i<j

|λi − λj |β
∏

i

λ
α−1

2

i e−LV (λi)dλi, λi > 0,

and with α = 0, 1, 2 and β = 2. These three cases are dual to JT supergravity
theories without a crosscap divergence. We will also comment on a fourth
case with this property in section E.3.

E.1. The Bessel curve

A useful starting point is the solvable “Bessel” spectral curve y2 = −1/x, or
equivalently ρ0 = 1/(π

√
x). This spectral curve describes the small x region

of any Altland-Zirnbauer ensemble, including the ones dual to JT gravity.
It plays the role of the “Airy” curve y2 = −x in the standard Dyson ensem-
bles. A matrix integral with spectral curve y2 = −1/x can be obtained as
a double-scaled limit of a conventional matrix integral with V (λ) = λ. For
this potential, the orthogonal polynomials are the α̃-Laguerre polynomials,
with α̃ = (α− 1)/2. Using asymptotics for these functions, Nagao and Slevin
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[110] computed the exact density of eigenvalues in the double-scaled limit:

⟨ρ(x)⟩ = e2S0

(
Jα̃+1(ξ)

2 − Jα̃(ξ)Jα̃+2(ξ) + 2
Jα̃(ξ)Jα̃+1(ξ)

ξ

)
(E.2)

ξ = 2eS0
√
x.

This function has an asymptotic expansion for large eS0 . The expansion
contains two types of terms: odd powers of e−S0 , and both even and odd
powers of e−S0 multiplied by a nonperturbative term oscillating with fixed
frequency. The leading terms of both types are

(E.3) ⟨ρ(x)⟩ ≈ eS0

π
√
x
+ · · ·+ sin

(
−π

2α+ 4eS0
√
x
)

4πx
+ · · · .

The terms that form the first class of dots can be obtained from the recursive
treatment of the loop equations that we descibed in section 4. The oscillating
terms are nonperturbative in e−S0 and are not obtained this way.

When α ∈ {0, 2}, we argued in section 5.3.3 that after double-scaling, the
only nonzero terms in the genus expansion were the disk R0(x), the cylinder
R0(x1, x2), and the crosscap R 1

2

(x). Indeed, for α ∈ {0, 2}, the dots in (E.3)
vanish and the two terms are the exact answer. We can use this to compute
the resolvent R(x) =

∫∞
0 dx′ ρ(x

′)
x−x′

. It is natural to define the resolvent with
a branch cut along the positive real axis, where the eigenvalue density is
nonzero. Then

(E.4) ⟨R(x)⟩ = − eS0

√−x ± 1

4x
∓ exp

(
−4eS0

√−x
)

4x
.

where the top sign is for α = 0 and the bottom sign is for α = 2. The first
term is eS0y(x). The second term is the crosscap contribution R 1

2

(x), and
the final term is a nonperturbative correction. The truncation of the pertur-
bative series is precisely consistent with the expectations of section 5.3.3.

When α = 1, the Bessel functions in (E.2) have a nontrivial asymptotic
expansion, which implies an expansion of the resolvent that we will find
useful below. To compute this, it is convenient to take a slight detour and
first compute the expectation value of Z(β) =

∫∞
0 dxρ(x′)e−βx

′

. This can be
done by inserting an integral representation

(E.5) Jν(ξ) =
(12ξ)

ν

2πi

∫

ϵ+iR
exp

(
t− ξ2

4t

)
dt

tν+1
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of each of the Bessel functions in (E.2), with integration parameters t1, t2
for the two factors of J . Then ⟨Z(β)⟩ beomces an integral over x, t1, t2. The
x and t1 integrals can be done easily. After a change of variables, the final
t2 integral leads to

(E.6) ⟨Z(β)⟩ =
∫ a

0

du

2π

√
a− u

u
e−u, a =

4e2S0

β
.

To find the e−S0 expansion of this formula, we expand the square root in
a power series in u/a, and integrate from zero to infinity. At each order
in 1/a, this gives a simple expression involving gamma functions. Using
R(x) = −

∫∞
0 dβeβxZ(β), and integrating the expansion of ⟨Z(β)⟩ term-by-

term, one finds a result that can be written (for g ≥ 1) as

(E.7) Rg(x) =
(2g)!

28g(2g − 1)

(
2g

g

)2 1

(−x)g+ 1

2

.

E.2. More general spectral curves

Still with β = 2 and α = 0, 1, 2, we would like to generalize (E.3) beyond
the curve y2 = −1/x. It is convenient to start out by considering the the
operator ψ(x) = e−LV (x)/2 det(x−H). For the Bessel curve y2 = −1/x, the
expectation value of ψ(x) is

(E.8) ⟨ψ(x)⟩ = (const.)
Jα̃(ξ)

ξα̃
≈ (const.)

[
cos
(
2eS0

√
x− π

4α
)

x
α

4

+ · · ·
]

where ξ is defined in (E.2), and the final expression is the leading asymptotics
for large eS0 and positive x.78 For a general spectral curve, we can’t hope
to find an exact expression, but we would like to generalize the leading
asymptotics. To do so, one can write

(E.9) det(x−H) = exp

(∫ x

dx′R(x′)

)

78For a conventional finite L matrix integral of type (α, 2), the expectation value
of det(x−H) is equal to the order L monic polynomial from the set of polynomials
orthogonal with respect to the measure x(α−1)/2e−LV (x) on the positive real axis.
For the potential V (x) = x, these polynomials are the α̃-Laguerre polynomials.
Double-scaling to obtain y2 = −1/x gives the Bessel function quoted.
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in terms of the resolvent R, and then expand in correlation functions of the
resolvent using

(E.10) ⟨eX⟩ = exp

(
⟨X⟩+ 1

2
⟨X2⟩c + · · ·

)
.

In this expansion, terms of order eS0 and order one come from only three
places: R0(x), R 1

2

(x), and R0(x1, x2). So to compute the expectation value
of the determinant to this order, we exponentiate these terms. This leads to
an approximate expression for ⟨ψ(x)⟩ in terms of the function Ψ(x), defined
by

Ψ(x) = exp

[
Disk(x) + Xcap(x) +

1

2
Cyl(x, x)

]
(E.11)

= (const.)
exp(Disk(x))

(−x)α

4

.

Here, the disk, crosscap and cylinder functions are defined for x < 0 by

Disk(x) =

∫ x

0
dx′
(
eS0R0(x

′)− LV ′(x′)
2

)
= eS0

∫ x

0
dx′ y(x′)(E.12)

Xcap(x) =

∫ x

dx′R 1

2

(x) = −α−1

4
log(−x) + (const.)(E.13)

Cyl(x1, x2) =

∫ x1

−∞
dx′1

∫ x2

−∞
dx′2 R0(x

′
1, x

′
2)(E.14)

= − log(
√−x1 +

√−x2) + (const.).

The main complication is that that ⟨ψ(x)⟩ is entire, while the function
Ψ(x) is multi-valued. As explained in [111], one has to sum over branch
choices for Ψ(x) with the right coefficients. These can be determined by
matching to the formula (E.8) for small x. A shortcut for doing this is to
start with (E.8) and simply replace the factor ±2ieS0

√
x by its generalization

Disk(x) = ±i
∫ x
0 dx′ρ0(x′). This leads to the following formula for the leading

asymptotics for large eS0 and positive x:

(E.15) ⟨ψ(x)⟩ ≈ (const.)
cos
(
−π

4α+ πeS0

∫ x
0 dxρ0(x)

)

x
α

4

+ · · ·

This simple replacement is possible because the crosscap and cylinder terms
R 1

2

(x) and R0(x1, x2) are completely universal for double-scaled (α, 2) theo-
ries. So, to this order, the only dependence on the spectral curve comes from
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the disk amplitude, which is easy to isolate as the term in the exponential
multiplying eS0 .

So far we have just discussed the determinant operator, but the logic for
the density of eigenvalues is similar. One can write ⟨ρ(x)⟩ in terms of correla-
tion functions of determinants, so we expect the same universality to apply.
Starting with the oscillating term in (E.3) and making the replacement of
±2ieS0

√
x by Disk(x) = ±i

∫ x
0 dx′ρ0(x′), one finds

⟨ρ(x)⟩ ≈ eS0ρ0(x) + · · ·(E.16)

+
sin
(
−π

2α+ 2πeS0

∫ x
0 dx′ρ0(x′)

)

4πx
+ · · · .

We emphasize that this formula is only supposed to apply for double-scaled
(α, 2) theories.

If we further specialize to the cases α ∈ {0, 2}, both sets of dots should
vanish in perturbation theory. We don’t want to claim that (E.16) is the
exact answer though, because there could be “instanton” corrections related
to nontrivial critical points of the effective potential of the matrix integral.
However, unlike the oscillating term in (E.16), these instanton effects (if
present) are expected to be exponentially small, of order exp(−#eS0).

E.3. A case without the oscillating term

There is one more JT supergravity theory without a crosscap divergence: the
case without time-reversal symmetry, and with equal weighting for even and
odd spin structures in the bulk. It makes sense to ask about nonperturbative
effects for this model. The random matrix ensemble for the supercharge Q
is a standard Dyson β = 2 ensemble, double-scaled in such a way that both
endpoints of the cut move to ±∞. As we saw in section 5.2.1, all perturbative
correlators vanish except R0(x) and R0(x1, x2).

We expect the oscillating contribution in (E.16) to be absent for this case.
The reason is that for a standard β = 2 ensemble, the oscillating corrections
to the density of eigenvalues fade as we move farther from the endpoints
of the cut, and in a limit where the endpoints have been scaled away, the
oscillating correction should vanish. Note, however, that in ⟨ρ(x)⟩ there could
still be exp(−#eS0) instanton effects that arise from nontrivial critical points
of the effective potential.
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E.4. Comments on volumes

The formula (E.7) can be used to determine the large b asymptotics of vol-
umes Vg(b) for the case that corresponds to a matrix integral with (α,β) =
(1, 2). This is the case discussed in section 5.2.2: orientable surfaces and a
bulk topological field theory (−1)ζ .

The logic is as follows. First, since the spectral curve for JT gravity
reduces for small x to a multiple of the Bessel curve y2 = −1/x, the small
x asymptotics of the resolvent are determined by the formula (E.7):

Rg SJT(x) = 2 ·
√
2
2g−1·Rg Bessel(x) + · · ·(E.17)

=

√
2

27g
(2g)!

2g − 1

(
2g

g

)2 1

(−x)g+ 1

2

+ · · ·(E.18)

where the dots are subleading by powers of x as x→ 0. In the first line, the
first factor of two is to account for the difference between Rg SJT and Rg,M
as in (5.33). The second factor

√
2
2g−1

is to account for the fact that for
small x, the relevant spectral curve (5.32) limits to y2 = −1/(2x) instead
of y2 = −1/x. To convert we need to rescale y by

√
2, which introduces the

factor shown. In the second line we inserted (E.7) for RgBessel(x).
Now, Rg,SJT(x) is an integral transform of Vg(b), and in order to produce

the small x limit (E.18), we need the leading term in Vg(b) as b→ ∞ to be

(E.19) Vg(b) = −22−7gg

2g − 1

(
2g

g

)2

b2g−2 + · · · .

where the dots are subleading by powers of 1/b2 as b→ ∞. We emphasize
that this formula is valid for arbitrary g, but it only gives the leading term
in powers of b.

In the bosonic case, an analogous formula for the leading coefficient in
powers of b is also known exactly. Apart from this formula, and low-genus
results, little is known exactly. However, there are good large genus approx-
imate formulas, based on Zograf’s [112] conjectures for the asymptotics of
intersection numbers. These imply asymptotic formulas for the bosonic vol-
umes Vg(b1, . . . , bn) for large g, with the restriction that all lengths bi be
much smaller than g. Zograf’s formulas were motivated by comparison to
explicit low-genus computations, but aspects of his conjectures were later
established rigorously [113, 114]. For the special case of one boundary, a
formula was proposed in [35] for Vg(b) in a somewhat larger domain: large g
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and arbitrary b. This formula was inspired by a matrix integral calculation
and has not been established rigorously.

For the volumes of super moduli space Vg(b), we used a method similar
to that of [35], together with (E.16), to generate the following conjecture for
large g and arbitrary b:

(E.20) Vg(b) ≈ −Γ(2g − 1)

2gπ3−2gi

∮
dz

bz

sinh(bz)

(sin(2πz))2g−1 , g ≫ 1.

The contour integral around the origin reduces to a residue, which is an
even polynomial in b. The method that led us to (E.20) is not rigorous,
and we prefer not to try to present a partial derivation. But we feel that
it is worth writing the formula, because agreement with low genus exact
results (computed by topological recursion) seems promising. As a function
of b, the maximum percentage error for g = 12 is around 2.1%. One can
also try to extrapolate the error in 1/g, and we found the best results by
holding bg fixed in the extrapolation. Using a five-term extrapolation in 1/g
from g = 7, . . . , 12, the maximum over b of the extrapolated error is around
0.015%.

As another piece of evidence, one can check that the leading term in
(E.20) for large b is proportional to b2g−2, and the coefficient agrees with
the exact result (E.19) for large g. This is encouraging, especially since
the large b region is where the largest percentage error is for g = 1, . . . , 12.
Finally, as an opposite limit one can take g to be much larger than b. This
is analogous to the limit where the Zograf conjecture applies in the ordinary
bosonic case. In this limit, saddle points at z = ±1

4 dominate the integral
in (E.20), and we find

(E.21) Vg(b) ≈ − Γ(2g − 3
2)

2g−
5

2π
7

2
−2g

sinh( b4)

b
g ≫ b, g ≫ 1.

We don’t have a known result to compare to in this case, but we note that
the dependence on b is similar to the bosonic case, although with sinh(b/4)
instead of the bosonic sinh(b/2).

Appendix F. Comments on the minimal string

A matrix integral is described by a discrete choice of symmetry class, to-
gether with a choice of spectral curve. In the main text of this paper, we
encountered all ten of the standard symmetry classes of matrix integral, but
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we only studied two essentially different spectral curves: one for the bosonic
models and one for the supersymmetric ones.

To access different spectral curves, one would have to replace JT gravity
or supergravity with a different bulk theory. A class of such bulk theories
has been studied extensively in the literature: the “minimal string” theo-
ries. These are 2d worldsheet gravity theories that consist of a (2, p) mini-
mal model, together with Liouville theory and the reparametrization ghosts.
There are both bosonic and supersymmetric versions of these theories. We
will briefly comment on both cases.

In the bosonic case, the connection was made in [62, 64] between the β =
1, 4 ensembles and unoriented versions of the bulk minimal string theories,
with the β = 4 case distinguished by including a (−1)nc factor. In the context
of the present paper, there is one interesting detail. Up to arbitrary choices
of normalization, the leading density of eigenvalues for the bosonic (2, p)
minimal string is [115, 116]

(F.1) ρ0(x) =
1

4π2
sinh

(
p

2
arccosh

(
1 +

8π2

p2
x

))

where p is an odd integer. In the limit p→ ∞, this reduces to the spectral
curve of JT gravity [35]. However, for fixed p, the large x behavior is dramat-
ically modified. Indeed, substituting (F.1) and y = ±iπρ0 into the formula
for the “crosscap” contribution (5.16), we find a finite integral. As p→ ∞,
one has

(F.2) R 1

2

(x) =
log(p)√−x + (finite)

so crosscap divergence in the JT theory is regulated in the finite p minimal
string.

Now we turn to the supersymmetric case. For orientable surfaces, two
versions of the supersymmetric minimal string have been defined. These are
referred to as 0A and 0B, and they differ in the weighting of the sum over
spin structures. The 0B theory involves a sum with uniform weighting, and
the 0A theory includes a factor of (−1)ζ .79

79In general for type 0 string theories (unlike in type II) the left-moving and
right-moving worldsheet fermions experience the same spin structure, and the GSO
projection depends only on the total (left + right) fermion number; see section
10.6 of [117]. The projection simply requires that NS sector states must be bosonic,
and R sector states must be fermionic in type 0A and bosonic in type 0B. This
projection is equivalent to summing over all spin structures, with equal weighting
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These two versions of the minimal string were related to matrix integrals
in [116, 118–120], building in part on earlier work [98–100, 121, 122]. The
type 0B theory (with an appropriate sign of the super-Liouville cosmological
constant µ) was related to a double-scaled unitary matrix integral with
no endpoints in the eigenvalue distribution. In the double-scaled limit, the
distinction between unitary and hermitian matrix integrals disappears, so
this is the same type of matrix ensemble that we found for the supercharge Q
in the case without (−1)ζ . The type 0A theory was related to a double-scaled
complex matrix integral. For square complex matrices, this is the same thing
as an (α,β) = (1, 2) Altland-Zirnbauer ensemble, which is the symmetry
class that we found in the case with (−1)ζ . For rectangular matrices, this is
the generalization that we studied in section 5.5.

So the symmetry classes that we identified in this paper for the super-
symmetric case without time-reversal symmetry are consistent with the pre-
vious results. We expect that large p limits of these minimal string theories
(with the appropriate sign of µ) will coincide with JT supergravity.

The supersymmetric minimal string has a time-reversal symmetry, and
one can gauge this symmetry, leading to a theory that includes a sum over
unorientable as well as orientable surfaces. In this situation, each of the
0A and 0B theories have a four-fold bifurcation, for a total of eight different
theories. These differ by weighting the pin− sum by a factor exp(−iπηN ′/2),
where N ′ is an integer mod eight. The cases with odd N ′ generalize the 0A
theory, and the cases with even N ′ generalize 0B. We expect these to be
related to matrix integrals of the classes described in table 4.
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