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On the conformal method for the Einstein

constraint equations

Michael T. Anderson

In this work, we use the global analysis and degree-theoretic meth-
ods introduced by Smale to study the existence and multiplicity of
solutions of the vacuum Einstein constraint equations given by the
conformal method of Lichnerowicz-Choquet-Bruhat-York. In par-
ticular this approach gives a new proof of the existence result of
Maxwell and Holst-Nagy-Tsogtgerel. We also relate the method
to the limit equation of Dahl-Gicquaud-Humbert and the non-
existence result of Nguyen.
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1. Introduction

Let (M, g,K) be a triple consisting of a closed 3-manifold M , a Riemannian
metric g and a symmetric bilinear form K on M . The constraint equations
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for the vacuum Einstein equations are given by

δ(K −Hg) = 0,(1.1)

|K|2 −H2 −Rg = 0,(1.2)

where δ is the divergence with respect to g, H = trgK and Rg is the scalar
curvature of (M, g). The equation (1.1) is called the divergence or momen-
tum constraint while (1.2) is the Hamiltonian or scalar constraint. They are
the Gauss-Codazzi and Gauss equations respectively of a hypersurface em-
bedded in a 4-dimensional Ricci-flat Lorentzian space-time (M, g(4)). The
space of solutions of the constraint equations (1.1)–(1.2) will be denoted
by C.

The fundamental theorem of Choquet-Bruhat [8] guarantees that a
smooth triple (M, g,K) satisfying the constraints (1.1)–(1.2) form an ini-
tial data or Cauchy hypersurface of a space-time solution (M, g(4)) of the
vacuum Einstein equations Ricg(4) = 0. The metric and second fundamental

form of g(4) induced on M are given by (g,K).
The equations (1.1)–(1.2) are highly underdetermined; there are 4 equa-

tions for the 12 unknown components of (g,K). A basic issue of interest
has been to determine whether there is a natural space of “free” or “uncon-
strained” data D, formally with 8 degrees of freedom, which upon specifying
an element in D, reduce the equations (1.1)–(1.2) to a determined set of
equations. Ideally, one would then be able to uniquely solve these equations,
giving then an effective parametrization of the dynamical gravitational de-
grees of freedom, i.e. the space C, from the data in D.

A priori there are of course many possible choices for the free data space
D. One would like D to be as simple as possible topologically. On the other
hand, very little seems to be known about the topology of the space C of
solutions of the constraint equations.

By far the best understood and most well-studied choice, especially for
the case of closed manifolds considered here, is that given by the conformal
method of Lichnerowicz-Choquet-Bruhat-York, cf. for instance [4], [9], [23],
or one of its variants [4], [27]. For the conformal method, D has the following
product structure. Let G be the space of (pointwise) conformal equivalence
classes [g] of C∞ smooth metrics g on M and let T be the fibration over
G with fiber over [g] given by the space of equivalence classes [g, σ] of C∞

smooth symmetric 2-tensors σ which are transverse-traceless with respect
to g. Thus δgσ = trgσ = 0, where (g, σ) is any representative of ([g, σ]);
the equivalence relation is given by (g, σ) ∼ (ψ4g, ψ−2σ), cf. [27]. Next, let
C∞(M) denote the space of smooth scalar functions H on M . Then D
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(i.e. DC∞) is given by

D = T × C∞(M).

It is easily verified that D has formally 8 degrees of freedom and is con-
tractible. The space D is commonly called the space of seed data for the
conformal method.

Roughly speaking, given a pair (g,K), [g] represents the conformal class
of g, σ represents the transverse-traceless part of K with respect to g, and
H represents the mean curvature H = trgK. The remaining degrees of free-
dom are then a conformal factor φ for the metric and a vector field X for
the action of diffeomorphisms on symmetric bilinear forms. Given a choice
of background metric g0 for the conformal class [g], (which then breaks the
conformal symmetry), the constraint equations (1.1)–(1.2) give a determined
system of equations for (φ,X), cf. (1.7)–(1.8) below. The basic issue is then
understanding the existence and uniqueness of such solutions. However, for
the conformal method, the data (φ,X) should be determined from the con-
formal data ([g, σ]), i.e. the structure of the set of solutions (φ,X) should
be independent of the choice of representative g0 ∈ [g].

Let C be the space of all C∞ smooth pairs (g,K) on M satisfying the
constraint equations (1.1)–(1.2). Instead of studying the solvability of the
equations (1.1)–(1.2) for fixed data ([g, σ], H) ∈ D, (given a choice of rep-
resentative g0 ∈ [g]), we consider the behavior of the natural (projection)
maps

(1.3)
Πα : C → D,

Πα(g,K) = ([g, σ], H).

As first made clear by Maxwell [27], such maps are only defined via an aux-
iliary choice of volume form α on M . The choice of α gives an identification
of the tangent space T[g]G with the cotangent space T ∗

[g]G via the pairing

⟨kα(u), v⟩ =
∫

M
⟨u, v⟩gα,

for g ∈ [g]. This identification is necessary since the trace-free part K0 of K
is a tangent vector, K0 ∈ T[g]G, while σ ∈ T ∗

[g]G is in the cotangent space.
The spaces TG and T ∗G transform differently under conformal changes of
the representative g ∈ [g]. Thus in (1.3), [g] is the conformal class of g,
H = trgK and

σ = Pα(K0)
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where Pα is the L2 orthogonal projection with respect to α of K0 onto the
transverse-traceless tensors with respect to g. We refer to [27] for a detailed
discussion of this issue.

We note that the maps Πα depend continuously (and even smoothly in a
natural sense) on α. However, as discussed in [28], there are examples where
specific fibers of Πα, i.e. the space of solutions (φ,X) of the constraint
equations, depend significantly on the choice of gauge α. Recall also that
two volume forms α and α′ of the same total volume on M are related by a
diffeomorphism of M , i.e. α′ = ψ∗α, for some ψ ∈ Diff(M).

To describe the fibers of the map Πα, let g0 be a representative metric
in [g] with volume form dvg0 and let

(1.4) N =
1

2

dvg0
α

;

the scalar field N is called the densitized lapse. Let σ be a transverse-
traceless (2,0) tensor with respect to g0. One then forms (g,K) by setting

(1.5) g = φ4g0,

(1.6) K = φ−2

(
σ +

1

2N
L̂Xg0

)
+

1

3
Hφ4g0,

where L̂Xg0 is the conformal Killing operator with respect to g0: L̂Xg0 =
LXg0 − 2

3divg0Xg0. The constraint equations (1.1)–(1.2) then become a cou-
pled system of equations for (φ,X) which take the form

(1.7) δ( 1
2N L̂Xg0) = −2

3φ
6dH,

for the divergence constraint while the Hamiltonian or scalar constraint takes
the form of the Lichnerowicz equation

(1.8) 8∆φ = R0φ− |σ + 1
2N L̂Xg0|2φ−7 + 2

3H
2φ5.

Here δ and ∆ are the divergence and Laplacian with respect to g0 ∈ [g] and
R0 is the scalar curvature of g0.

It is straightforward to verify (cf. again [27]) that if g1 = ψ4g0, σ1 =
ψ−2σ is a different representative of ([g, σ]) and the gauge is changed so
that α1 = ψ6α, then solutions (φ,X) with respect to (g0, σ,H, α) transform
exactly to solutions (ψ−1φ,X) with respect to (g1, σ1, H, α1). This shows the
coupling between the choice of gauge α and choice of representative g0 ∈ [g].
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It is well-known that the equations (1.7)–(1.8) form a determined elliptic
system for (φ,X), given (g0, σ,H), cf. also §3. In much of the literature on
the conformal method, when g0 is fixed, the gauge α is chosen so that N = 1

2 ,
i.e. α = dVg0 .

The basic question is then, given a choice of gauge α, for what free
data ([g, σ], H) ∈ D are these equations solvable, or even better, uniquely
solvable. A complete answer regarding existence and uniqueness is known in
the CMC case where H = const, cf. [23], based on work of [25], [9], [31] and
others. The near-CMC case, where the derivative dH is sufficiently small
compared with H is also almost fully understood, cf. [24] and references
therein for a recent survey. The far-from-CMC case has been shown to be
much more difficult and much less is understood. Two of the major results in
this regime are the result of Holst-Nagy-Tsotgerel [22] and Maxwell[26], and
that of Dahl-Gicquaud-Humbert [12]; these results are also discussed further
below. The first fundamental non-existence result was proved by Nguyen
[32]. An excellent view of the current state of understanding is given in [13],
which provides strong numerical evidence for a great deal of complexity in
the space of solutions.

The reason for the simplification in the CMC case is well-known; in this
case one may set X = 0 in (1.7) and the system (1.7)–(1.8) reduces to the
Lichnerowicz equation (1.8) for φ involving only the given data R0, σ,H. The
map Πα = Π in (1.3) is then independent of α. The Lichnerowicz equation is
closely related to the well-understood Yamabe equation for constant scalar
curvature metrics.

In this paper, we take a somewhat different perspective from previous
work on this issue, namely a global analysis perspective going back to the
work of Smale [34]. As will be seen in §3, although the spaces C and D are
not smooth manifolds globally, they do have formal tangent spaces T(g,K)C,
T([g,σ],H)D everywhere. The linearization

DΠα : T(g,K)C → TΠ(g,K)D,

is a Fredholm map, of Fredholm index zero.
The main interest is the global behavior of the maps Πα. In particular,

one would like to understand the image of Πα and the injectivity of Πα,
corresponding to the existence and uniqueness of solutions of (1.7)–(1.8).
On the CMC class where H = const, i.e.

Ccmc = C ∩ {H = const},
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as noted above, the restricted map

Πcmc = Π|Ccmc : Ccmc → Dcmc = D ∩ {H = const}

is independent of α. Although Πcmc does not surject onto Dcmc, its image
ImΠcmc ⊂ Dcmc and its injectivity are fully understood, cf. also §2.

Returning to the general situation regarding (1.3), the key to under-
standing global properties of Π is to understand in what regions (if any)
Π is proper. Recall that a continuous map F : X → Y between topological
spaces is proper if F−1(K) is compact in X, for any compact set K ⊂ Y .
This issue is essentially equivalent to the existence of apriori estimates for
solutions of the constraint equations (1.7)–(1.8).

Let G′ ⊂ G be the space of conformal classes which have no (non-zero)
conformal Killing field, so that

G′ = {[g] ∈ G : KerL̂g0 = 0},

for any g0 ∈ [g]. Let

(1.9) D′ ⊂ D

be the restriction of the fibration D to the domain G′ and let

C′ = Π−1
α (D′) ⊂ C,

with the induced map

(1.10) Π′
α : C′ → D′.

We note that for trivial reasons, Πα in (1.3) is not expected to be proper
over the region D \ D′. Namely, if Z is a conformal Killing field in the
conformal class [g] and (φ,X) solve the constraint equations (1.7)–(1.8),
then so do (φ,X + Z). This shows that one has control on X only modulo
the space of conformal Killing fields. Although only the term L̂Xg0 enters
the constraint equations, the presence of low eigenvalues for the operator
δ( 1

2N L̂Xg0) suggests LXg0 cannot be controlled in general near a class [g0]
with conformal Killing fields. For this reason, we essentially restrict to the
map (1.10) throughout this paper. It is well-known that the presence of
conformal Killing fields causes difficulties in the conformal method, cf. in
particular the discussion in [21]. These difficulties bear some relation with
the classical Nirenberg problem of prescribed Gauss or scalar curvature, for
metrics conformal to the standard round sphere Sn(1).
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Now Smale [34] proved that proper Fredholm maps F : X → Y of in-
dex zero between separable Banach manifolds have a well-defined (mod 2)
degree, degZ2

F , the Smale degree, given by the cardinality (mod 2) of the
fiber F−1(y), for any regular value y ∈ Y of F . If degZ2

F = 1, then F is
surjective. The approach in this work is to study the application of these
ideas to the maps Π′

α in (1.10).
However, it is very difficult to understand in what regions Π′

α is proper
or the cause of non-proper or divergent behavior in C′ with respect to Π′

α. As
an aid in this issue, it will be useful to choose a family of hypersurfaces of C′

on which Π′
α is more well-controlled. There are a number of possible choices,

but for convenience we choose the following: for a given p > 1 consider the
functional

Fp : C′ → R
+,

Fp(φ) =

∫

M
φpdvg0 .

This requires a choice of background representative g0 ∈ [g]. Throughout
the paper, we choose g0 to be the unit volume Yamabe representative for
[g]. Such metrics are unique, and vary smoothly with the conformal class
[g], for an open-dense set U0 of conformal classes, cf. [2]. It follows that Fp

is a well-defined continuous function on the open-dense set over U0 in C′

and bounded on the complement C′ \ U0. Hence, it may be mollified in a
neighborhood of ∂U0 to give a continuous function on C′, cf. §3.

There is not a unique choice for p but for convenience, we choose p = 8
and consider the level sets of F8. Thus let

Cω =

{
(g,K) ∈ C′ :

∫

M
φ8dvg0 = ω

}
⊂ C′.

The maps Π′
α in (1.10) restrict to give maps

(Π′
α)

ω : Cω → D′.

All results of this paper hold for any choice of α. In the following, to simplify
the notation we denote by Π any of the maps Π′

α above.
The first main result of this paper is the following:

Theorem 1.1. For each ω ∈ (0,∞), (and each α), the map

(1.11) Πω = Π|Cω : Cω → D′
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is a continuous, proper map.

Theorem 1.1 implies in particular that for given data ([g, σ], H) ∈ D′,
the set of solutions (φ,X) to the constraint equations (1.7)–(1.8) in Cω is
compact.

Formally the map Πω is a Fredholm map, of Fredholm index −1, and
so it is natural to study the intersection properties of the image ImΠω with
1-dimensional submanifolds, i.e. curves, in D′. It follows from Theorem 1.1
that for any properly embedded curve L : R → D′, and any compact interval
I ⊂ R, the intersection

ImΠω ∩ L(I),
is compact; equivalently the inverse image Cω ∩Π−1(L(I)) is compact in Cω.
Generically (when L is transverse to Πω), the intersection is a finite number
of points:

#(ImΠω ∩ Im(L(I)) <∞.

To obtain a well-defined intersection number, one needs to strengthen the
statement above to the statement that the full intersection

ImΠω ∩ ImL,

is compact.
There are a number of natural choices for such curves L. In this paper, we

restrict to only one choice closely related to previous studies of the conformal
method. Thus consider lines in the space of transverse-traceless tensors σ,
i.e. lines of the form

Lσ(λ) = ([g, λσ], H) ∈ D′,

with ([g, σ], H) fixed.

Theorem 1.2. The intersection

(1.12) ImΠω ∩ ImLσ,

is compact, for any ([g, σ], H) ∈ D′ and generically the intersection (1.12)
consists of a finite number of points. There is a well-defined Z2-intersection
number

IZ2
(ω, {g, σ}) = #{(Πω

ε )
−1(Lσ)}, (mod 2),

independent of ω, ε, and the data ([g, σ], H), and

IZ2
(ω, {g, σ}) = 0.
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The map Πω
ε is an ε-perturbation or regularization of Πω, cf. (3.14), (6.1)

for the exact definition. A more precise version of Theorem 1.2 is given in
Theorem 6.1. The intersection number IZ2

(ω, {g, σ}) corresponds roughly to
the Smale Z2-degree of the map

(1.13) Π̃ω : Cω → P ′,

where P ′ is the projectivization of D′, i.e. P ′ = (D′ \ Z)/ ∼ where the equiv-
alence classes {g, σ} are given by ([g, σ], H) ∼ ([g, λσ], H) and Z is the zero
section ([g, 0], H). However, the map (1.13) is not quite proper due to the
singular behavior near the zero-section Z.

The transversality and intersection number properties discussed above
require smooth separable Banach manifold structures on the domain C′ and
target D′ spaces. In the case of the constraint space C, this is the issue
of linearization stability of solutions of the Einstein equations, studied in
detail by Fischer, Marsden and Moncrief, cf. [16], [18], [29]. One has the
decomposition

(1.14) C = Creg ∪ Csing,

corresponding to the regions where 0 is a regular or singular value of the
constraint map. This gives a C∞ smooth (Frechet) manifold structure to the
regular region Creg. The space Csing consists of Killing initial data (g,K),
(for which the vacuum development has a non-zero Killing field). There is a
basic conjecture, cf. [6], that Creg is open and dense in C. While this is known
to be true in the CMC case, cf. [15], [6], this remains an open problem in
general.

However, as pointed out by Bartnik in [5], the proof in [16], [18], [29]
cannot be adapted to give a finite differentiablity or Banach manifold struc-
ture to Creg. Based on the conformal method, we prove in §3, cf. Theorem
3.1, that Creg can be given a separable Banach manifold structure. The sin-
gular set Csing will be regularized to a smooth Banach manifold structure by
considering the space of solutions to the ε-perturbed constraint equations
Cε; this is carried out in detail in §3.

Theorem 1.2 shows that solutions (φ,X) of the constraint equations in
any given level Cω over the line {σ} = {λσ} (with ([g, σ], H) fixed) typically
come in pairs, or there are no solutions over {σ}. One sees this very easily in
the CMC case, where X = 0 and λ only appears as λ2 in the Lichnerowicz
equation (1.8). Thus when H = const, (φ, 0) ∈ Cω is a solution with data
([g, λσ], H) if and only if it is also a solution with data ([g,−λσ], H).
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Next we study the behavior of solutions (φ,X) ∈ Cω as ω varies over
R
+. Consider the map

Π̃ : C′ → P ′,

as in (1.13), without the restriction to Cω. In the smooth or regular region,
Π̃ is a smooth Fredholm map of index one. Thus, choose (for instance) a
regular value ({g, σ}, H) of Π̃. Let Lσ = {([g, λσ], H) : λ ∈ R} be the line
forming the equivalence class of ({g, σ}, H). Then the inverse image

Γ = Π̃−1({g, σ}, H)

is a collection of curves (1-manifolds) {ℓ(t) = (φ(t), X(t)} mapping to the
line Lσ. The intersection of Γ with any level set Cω of F is compact, and
generically an even number (possibly zero) of points. It follows that Γ is a
collection of embedded circles S1 or properly embedded arcs ∼ R in C′. As
will be seen below, a special role is played by the value λ = 0 on Γ. Let

Cω1
ω0

= C′ ∩ {φ : ω0 ≤ F (φ) ≤ ω1},

and let Y [g] denote the Yamabe constant of the conformal class [g].

Theorem 1.3. Suppose Y [g] > 0. Given any line ([g, λσ], H), σ ̸= 0 (with
([g, σ], H) arbitrary), there is an ω0, depending on ([g, σ], H), such that

Γω0
:= Γ ∩ Cω0

0 ,

is a pair of disjoint arcs (φ±(t), X±(t)), t ∈ (0, t0]. The level parameter ω ∈
(0, ω0] is a smooth parametrization of Γω0

. One has λ > 0 on Γ+, λ < 0 on
Γ− with |λ| monotone increasing with ω on Γ± and

Π(Γ±) = [λ−, 0) ∪ (0, λ+].

There is no solution in Cω0

0 with λ = 0.
If Y [g] < 0, then

Γ ∩ Cω0

0 = ∅,
i.e. there are no solutions of the constraint equations with ω sufficiently
small.

Again we refer to Theorem 6.3 and Corollary 6.5 for a more precise
statement of Theorem 1.3.
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Theorem 1.3 gives the existence of solutions (φ,X) of the constraint
equations with data ([g, λσ], H) for Y [g] > 0, λ sufficiently small, σ ̸= 0 and
([g, σ], H) arbitrary; moreover, such solutions have ω small, and so also have
small volume and are the unique solutions with ω small. This existence result
was previously proved by Maxwell [26], cf. also Holst-Nagy-Tsotgerel [22].
The proof of Theorem 1.3 is quite different than these approaches.

The transition between the existence and non-existence of solutions with
small ω in passing from Y [g] > 0 through Y [g] = 0 to Y [g] < 0 is quite subtle,
cf. Remark 6.6.

We conclude the paper with a discussion of the large-scale, i.e. large
ω, behavior of solutions in C′; this is governed by the “limit equation” of
Dahl-Gicquaud-Humbert [12]:

(1.15) δ( 1
2N L̂X̄g0) = −

√
2
3 | 1

2N L̂X̄(g0)|
dH

H
.

This is discussed further in Proposition 6.7 and together with the results
above leads to the following:

Theorem 1.4. Let Ω be a domain in G′ × C∞(M) with Y [g] > 0 and H > 0
and suppose the limit equation (6.11) has no non-zero solution for ([g], H) ∈
Ω.

Then for any σ ̸= 0 there is a solution (φ,X) of the constraint equations
(1.7)–(1.8) over the data ([g, σ], H) with ([g], H) ∈ Ω.

We refer to Corollary 6.8 for a more detailed statement of this result.

The contents of the paper are briefly as follows. In §2, we introduce
background material and results needed for the work to follow. We also
summarize the known existence and uniqueness results for CMC solutions
and prove that the map Πcmc is a diffeomorphism in a neighborhood of
Ccmc, cf. Theorem 2.1. This leads to a simple proof of previous near-CMC
results in many cases, cf. Corollary 2.2. In §3, we study the constraint map
and prove the Banach manifold structure results for the vacuum and ε-
perturbed vacuum solutions to the constraint equations, cf. Theorem 3.1.
It is also proved that the target space D is a Banach manifold away from
data admitting conformal Killing fields. The basic initial a priori estimates
for the map Π are derived in §4. Theorem 1.1 is proved in §5 together with
some initial estimates on the behavior of solutions (φ,X) with small ω.
Theorems 1.2, 1.3 and 1.4 are then proved in §6.

I am very grateful to David Maxwell for pointing out an error in a
previous version of this paper and for his invaluable help in explaining the
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current state-of-the-art of the conformal method. My thanks also to The-
Cang Nguyen for his interest and correspondence.

2. Background and preliminary material

In this section, we present background material needed for the work to follow.
Throughout the paper,M denotes a compact 3-manifold, without boundary.
(All of the results of this work hold with only minor changes in higher
dimensions dimM ≥ 3).

To begin, we discuss the topology of the spaces C and D. The C∞ topol-
ogy is a Fréchet space topology, which is not suitable for analysing nonlinear
Fredholm maps, mainly due to the failure of the inverse function theorem.

The simplest Banach spaces on which elliptic operators are well-behaved
are the Hölder spaces Cm,α and Sobolev spaces W k,p for suitable (m,α) or
(k, p). For the Einstein evolution equations where energy estimates play a
key role, one usually uses the Sobolev spaces Hs =W s,2, for suitable s ≥ 2.
However, we will use the Hölder spaces Cm,α here, since the projection map
Π in (1.3) is only known to be well-behaved in Hölder spaces Cm,α; this is
discussed further in §3. (It is possible one could work in the class of Morrey
spaces [1], but this will not be pursued here). Throughout the paper we
assume m ≥ 2, α ∈ (0, 1). (We will not be concerned with obtaining the
lowest possible regularity results).

Moreover, it is well-known that Hölder spaces Cm,α are not separable
Banach spaces; they do not admit a countable basis. Since separability will
be an important property, we work instead with a maximal closed separable
subspace of Cm,α, namely the so-called little Hölder space cm,α. This may
be defined to be the completion of Cm+1 or C∞ with respect to the Cm,α

norm. Equivalently, functions f on smooth domains Ω ⊂ R
n are in c0,α(Ω)

if f ∈ C0,α(Ω) and, for x, y ∈ Ω,

lim
r→0

sup
0<dist(x,y)<r

|f(x)− f(y)|
dist(x, y)α

= 0.

The space cm,α(Ω) consists of functions f whose partial derivatives up to
orderm exist and are in c0,α(Ω). The space cm,α is a separable Banach space,
embedded as a closed subspace of Cm,α, cf. [7]. Note that Cm,α′ ⊂ cm,α for
all α′ > α.

Let Metm,α(M) be the space of cm,α metrics g on M ; thus in a smooth
atlas forM , the coefficients of g are cm,α functions. Similarly let Sm−1,α

2 (M)
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be the space of cm−1,α symmetric bilinear forms K on M . Define then

C := Cm,α ⊂Metm,α(M)× Sm−1,α
2 (M)

to be the subspace satisfying the constraint equations (1.1)–(1.2), with the
induced topology.

Next, let Gm,α be the space of cm,α conformal equivalence classes of
metrics in Metm,α(M); thus g1 ∼ g2 if g2 = φ4g1, for some positive function
φ ∈ cm,α. Let T m−1,α be the fibration of cm−1,α transverse-traceless tensors σ
over Gm,α; thus T m−1,α consists of pairs (g, σ) with trgσ = δgσ = 0, modulo
the equivalence relation (g, σ) ∼ (ψ4g, ψ−2σ), cf. [27] for details. Define also

D := Dm−1,α = T m−1,α × cm−1,α(M).

Thus, for each choice of α, we have the map Π as in (1.3),

(2.1) Π : C → D.

As discussed in the Introduction, the subscript α is dropped for notational
simplicity.

The spaces C and D are not globally smooth manifolds and it will be
important to understand the structure of the domains Creg and Dreg in C,
D which are smooth manifolds. The space G is not a manifold at the points
[g] which admit a conformal Killing field. For both this reason and the fact
that Π is not proper over such conformal classes, as in §1 we will generally
restrict to the map Π′ as in (1.10). In §3 we discuss the manifold regions of
C and D; the singular region Csing of C will be analysed by using a simple
perturbation or regularization to “near” solutions of the vacuum constraint
equations.

Next we discuss the results established in the CMC case where H =
const, cf. [23], [27]. Let Dcmc ⊂ D′ be the subset of ([g, σ], H) where H =
const. Although the main existence and uniqueness results discussed below
hold for Dcmc ⊂ D, we exclude the data [g] which contain conformal Killing
fields; it then follows from Proposition 3.3 below that Dcmc is a smooth
Banach manifold. Let Y [g] be the Yamabe constant of [g] and let

(2.2)
Dcmc

+ = {([g, σ], H) ∈ Dcmc : Y [g] > 0, σ ̸= 0},
Dcmc

0 = {([g, σ], H) ∈ Dcmc : Y [g] = 0, σ ̸= 0 and H ̸= 0},
Dcmc

− = {([g, σ], H) ∈ Dcmc : Y [g] < 0, H ̸= 0},
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where σ or H ̸= 0 denotes σ or H is not identically zero. Setting

Dcmc
ex = Dcmc

+ ∪ Dcmc
0 ∪ Dcmc

− ,

(ex is meant to denote ‘exists’), one sees that Dcmc
ex is a connected, open

subset of Dcmc.
Let Ccmc

ex = (Π′)−1(Dcmc
ex ). Then the map

(2.3) Πcmc
ex : Ccmc

ex → Dcmc
ex ,

is a smooth, proper homeomorphism; in particular Πcmc
ex is one-to-one and

onto. (We recall that Πcmc is independent of α).
Let Dcmc

nx = Dcmc \ Dcmc
ex be the complementary closed set, (nx is meant

to denote ‘non-existence’), so that Dcmc
nx ⊂ Dcmc is given by

(2.4) Dcmc
nx =





Y [g] < 0 : H = 0,

Y [g] = 0 : σ = 0 or H = 0,

Y [g] > 0 : σ = 0.

Correspondingly, let Ccmc
nx = Π−1(Dcmc

nx ). Then

Πcmc
nx : Ccmc

nx → Dcmc
nx ,

is the empty map, i.e. Ccmc
nx = ∅, except in the exceptional, boundary, situa-

tion where Y [g] = 0, σ = H = 0 in which case one has the trivial solutions
(φ,X) = (const, 0) with g = c4g0 scalar-flat metrics with K = 0.

This gives a very clear distinction between the regions of existence and
non-existence of solutions of the constraint equations (1.7)–(1.8). The map
Πcmc

ex must thus degenerate essentially everywhere on approach to ∂Ccmc
ex ,

where the boundary is taken as a subset ofMetm,α(M)× Sm−1,α
2 (M). Since

X = 0, this means that φ must degenerate, as a positive function in cm,α,
on approach to essentially any point in ∂Ccmc

ex . This will be seen in further
detail in the analysis in §4.

It follows from Theorem 3.1 below, (cf. (3.7)), that the space Ccmc
ex is a

smooth Banach manifold, so that Πcmc
ex in (2.3) is a smooth map of Banach

manifolds.

Theorem 2.1. The map Πcmc
ex in (2.3) is a smooth diffeomorphism.

Proof. Since Πcmc
ex is a smooth homeomorphism between Banach manifolds,

it suffices to prove that Π has no critical points at solutions (φ,X) with
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data ([g, σ], H) ∈ Dcmc
ex . Thus, suppose (φ′, X ′) is a solution of the linearized

constraint equations (1.7)–(1.8) with fixed data ([g, σ], H), so that g′0 = σ′ =
H ′ = 0. Here g0 is chosen to be a unit volume Yamabe metric realizing Y [g0],
cf. also §3. Since H = const., the linearized divergence constraint gives

δ( 1
2N L̂X′g0) = 0.

Pairing this with X ′ and applying the divergence theorem, it follows easily
that X ′ = 0. The linearized Lichnerowicz equation then gives

(2.5) 8∆φ′ = R0φ
′ + 7|σ|2φ−8φ′ + 10

3 H
2φ4φ′.

If R0 ≥ 0, all coefficients of φ′ on the right in (2.5) are positive and it follows
from the maximum principle that φ′ = 0. This completes the proof in case
Y [g] ≥ 0.

Next suppose Y [g] < 0. Evaluating the Lichnerowicz equation (1.8) at a
point p realizing minφ gives R0φ+ 2

3H
2φ5 ≥ 0 at p, so that

R0 +
2
3H

2φ4 ≥ 0

for all x ∈M , since H and R0 are constant. Substituting this in (2.5) gives

8φ′∆φ′ ≥ 7|σ|2φ−8(φ′)2 + 8
3H

2φ4(φ′)2.

Since the right side here is non-negative, it follows for instance by integration
by parts that φ′ = 0. This completes the proof when Y [g] < 0. □

The next result gives a simple proof of the existence of solutions of the
constraint equations near CMC data, i.e. the CMC existence results above
are stable under perturbation in H.

Corollary 2.2. The map Π is a diffeomorphism in a neighborhood of Ccmc ⊂
C′. In particular, for any data ([g], σ,H) with H close to a constant, and
satisfying the conditions (2.2), there is a unique solution (φ,X) to the con-
straint equations near the corresponding CMC solution.

Proof. This is an immediate consequence of the proof of Theorem 2.1 and
the inverse function theorem. □

For the work to follow in later sections, we recall here some basic facts
from global analysis on separable Banach manifolds first developed by Smale
[34]. Let F : X → Y be a smooth map between connected separable Banach
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manifolds X, Y . The map F is Fredholm if for each x ∈ X, the linearization
DxF : TxX → TF (x)Y is a Fredholm map, i.e. DxF has finite dimensional
kernel and cokernel, with DxF of closed range. A point x ∈ X is a regular
point of F if the linearization DxF is a surjective bounded linear map. A
point is a singular point if it is not a regular point. A point y ∈ Y is a
regular value of F if every point in the inverse image F−1(y) is a regular
point; otherwise y is a singular value. By the Sard-Smale theorem [34], the
regular values of F are of second category in Y , so given as the intersection
of a countable collection of open and dense sets in Y . Note that by definition,
any point y /∈ ImF is a regular point of F .

If the Fredholm index of F is zero, F is a local diffeomorphism in a
neighborhood of any regular point. If y ∈ Y is a regular value of F , the
inverse image F−1(y) is a discrete, countable collection of points in X.

Next, let V be a compact connected finite dimensional manifold, possibly
with boundary, of dimension at least one. Then for any ε > 0, any smooth
embedding g : V → Y admits a smooth perturbation g′ : V → Y , ε-close to
g, such that g′ is transverse to F ; this means that for any (x, v) ∈ X × V
such that F (x) = g′(v) = y, TyY is spanned by the image of DxF and Dvg

′;

TyY = ImDxF + ImDvg
′.

In addition, for such maps g′ transverse to F , the inverse image F−1(g′(V ))
is a smooth embedded submanifold of X of dimension equal to dimV +
indexF .

The results above do not require that F is a proper Fredholm map. If
F is proper, then the regular values of F are open and dense in Y . For
any y ∈ Y , the inverse image F−1(y) is compact and for y a regular value,
the inverse image F−1(y) is a finite collection of connected manifolds of
dimension indexF .

Any proper Fredholm map F : X → Y of index zero has a well-defined
(mod 2) degree, the Smale degree

degZ2
F ∈ Z2,

defined as the cardinality (mod 2) of the inverse image F−1(y) for y any
regular value of F . We recall briefly the proof that degZ2

F is well-defined. If
y, y′ are two regular values of F , consider the inverse images F−1(y), F−1(y′),
each a finite set of points. Let y(s) be a smooth path in Y , transverse to
F , with endpoints y, y′. The inverse image F−1(y(s)) is a finite collection of
1-manifolds in X, hence a collection of embedded circles (S1) or arcs Ij with
boundary ∂Ij ⊂ F−1(y ∪ y′). This gives a cobordism between F−1(y) and
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F−1(y′) and it follows that the cardinality of F−1(y) is well-defined (mod
2).

For the same reasons, if F : X → Y is a proper Fredholm map of in-
dex −1 and V is any properly embedded 1-manifold in Y , with V ∩ ImF
compact, then the Z2 intersection number

(2.6) IZ2
(F, V ) ∈ Z2,

is defined as the cardinality of F−1(V ′), for any transversal approximation
to V ′. As above, this is well-defined.

Next we note a few standard elliptic regularity estimates to be used
below. For the rest of the paper, we denote

(2.7) δ∗0X = L̂Xg0.

Modulo a factor of 2, this is the trace-free part of the L2 adjoint of the
divergence operator δ. The operator δ( 1

2N L̂(·)g0) = δ( 1
2N δ

∗
0) is formally self-

adjoint and elliptic, and so has a discrete spectrum in L2 with eigenvalues
µi ∈ [0,∞). Of course the eigenvectors with eigenvalue zero are exactly the
conformal Killing fields.

Let (φ,X) be a solution of the constraint equations (1.7)–(1.8). Elliptic
regularity applied to the divergence constraint (1.7) gives the estimate

(2.8) |X|C1,α ≤ C|φ6|L∞ |dH|L∞ ,

where the C1,α and L∞ norms are with respect to g0; the constant C de-
pends only on M , α and the representative g0 for [g] ∈ G, cf. [30, Theorem
6.2.5]. Also, observe that, modulo constants, |X|Cm,α ≤ |δ( 1

2N δ
∗
0X)|Cm−2,α ≤

|φ6dH|Cm−2,α , so that

(2.9) |X|Cm,α ≤ C|φ6|Cm−2,α |H|Cm−1,α ,

m ≥ 2, with again C depending only on M , α and g0 ∈ G. The estimates
(2.8) and (2.9) require that (M, g0) has no conformal Killing fields; they hold
for general g0 ∈Metm,α(M) if one assumes that X is L2 orthogonal to the
space of conformal Killing fields on (M, g0). However, the constant C in (2.8)
or (2.9) will blow up on sequences (g0)i ∈ C′ which converge to g0 ∈ C \ C′,
i.e. when g0 has a conformal Killing field. This corresponds to the fact that
the inverse operator to δ( 1

2N δ
∗
0) blows up on the space of eigenspaces with

(arbitrarily) small eigenvalues.
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For (φ,X) as above, let m = maxφ and let

(2.10) φ̄ =
φ

m
, X̄ =

X

m6
.

Then (2.9) gives

(2.11) |X̄|Cm,α ≤ C|φ̄6|Cm,α |H|Cm−1,α .

To conclude this section, note that the scale-invariance of the space of
vacuum (Ricci-flat) Einstein metrics induces a scaling action on C. Thus if
(g,K) ∈ C, then (d4g, d2K) ∈ C, for any d > 0. Under this action,

(2.12) φ→ dφ,H → d−2H,X → d4X,σ → d4σ.

3. Manifold structures

In this section, we study Banach manifold structures on the spaces C′ and
D′ and analyse the map Π in (2.1) in more detail.

Let Λm−2,α
1 (M) be the space of 1-forms on M with coefficients in cm−2,α

and consider the constraint map

(3.1) Φ :Metm,α(M)× Sm−1,α
2 (M) → cm−2,α(M)× Λm−2,α

1 (M),

Φ(g,K) =

(
Rg − |K|2 +H2

δK + dH

)
.

A simple inspection shows that the map Φ is well-defined and is a C∞ smooth
map of Banach spaces, (or more precisely open domains of Banach spaces). If
one fixes a volume form α and a representative y = (g0, σ,H) ∈ Dm−1,α then
it follows from the York decomposition as in (1.5)–(1.6) that the constraint
map Φ takes the form

(3.2) Φy : cm,α(M)× χm,α(M) → cm−2,α(M)× Λm−2,α
1 (M),

Φy(φ,X) =

(
φ−5

φ−6

)
·
(

−∆φ+ 1
8R0φ− 1

8 |σ + 1
2N δ

∗
0X|2φ−7 + 1

12H
2φ5

δ( 1
2N δ

∗
0X) + 2

3φ
6dH

)
.

Here χm,α is the space of cm,α vector fields on M and we have used the
notation from (2.7). Of course (φ,X) depend on the choice of background
metric g0 ∈ [g] and volume form α while (g,K) do not. Again Φy is a smooth
map of Banach spaces.
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It is well-known and easy to see that the system (3.2) is a (non-linear, sec-
ond order) elliptic system for the unknowns (φ,X). For (g0, σ,H) ∈ Dm−1,α

and N = 1
2
dvg0

α ∈ cm,α, the coefficients of the 2nd order derivatives of (φ,X)
are in Cm,α, (in fact in cm,α ⊂ Cm,α), the coefficients of the 1st order deriva-
tives are in Cm−1,α while the coefficients of the 0-order terms are in Cm−2,α.
Basic elliptic regularity estimates, cf. [30, Theorem 6.2.5], show that

(3.3) ||(φ,X)||Cm,α ≤ C[||DΦy(φ,X)||Cm−2,α + ||(φ,X)||C0 ],

where C depends only on the Hölder norms of the coefficients above. One
has the same estimate for the formal L2 adjoint of DΦy.

It follows from elliptic theory that the fiber map Φy = Φ|Φ−1(y) is Fred-
holm. It is for this reason that we choose to work with Hölder spaces. The
elliptic estimate (3.3) does not hold for the non-linear map Φy when work-
ing with Sobolev spaces, cf. again [30, Theorem 6.2.5]. It is unknown, (and
probably not true) that Φy is Fredholm with respect to a Sobolev space
topology.

The rows of (3.2), corresponding to the equations (1.7)–(1.8), are in
general coupled, but are uncoupled and of Laplace type at leading order.
Hence the Fredholm index of the map Φy is zero. The full constraint map
Φ in (3.1) is an underdetermined elliptic operator; the linearization DΦ
is semi-Fredholm, with finite dimensional cokernel but infinite dimensional
kernel.

We first use the discussion above to describe the region where C has the
structure of a smooth Banach manifold. Given (g,K), let D(g,K)Φ be the
linearization of Φ at (g,K) and let (DΦ)∗ denote the L2 adjoint. Define the
regular set

(3.4) Creg ⊂ C

to be the set of points (g,K) ∈ C such that Ker(D(g,K)Φ)
∗ = 0. We then

have:

Theorem 3.1. The space Creg ⊂ Cm,α is a smooth separable Banach man-
ifold.

Proof. Naturally, the proof uses the implicit function theorem for Banach
manifolds. To begin, one has the L2 orthogonal splitting

(3.5) cm−2,α(M)× Λm−2,α
1 (M) = ImDΦ⊕Ker(DΦ)∗.
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Since Ker(DΦ)∗ = 0 on Creg, to apply the implicit function theorem, we need
to show that DΦ has closed range and KerDΦ splits. As discussed above,
the fiber map DΦy is of closed range with image of finite codimension. Let
S be a slice to ImDΦy, so that S is finite dimensional. Since DΦ has dense
range, one may perturb S slightly if necessary so that S ⊂ ImDΦ and choose
a finite collection of “vectors” (hj , κj) in the domain of DΦ such that the
collection {DΦ(hj , κj)} span S. It then follows easily that DΦ is of closed
range.

To see that KerDΦ splits, write

T (Metm,α(M)× Sm−1,α
2 (M)) = H ⊕ V,

where V = ι(T (cm,α(M)× χm,α(M))); here T (cm,α(M)× χm,α(M)) is the
domain of DΦy and ι is the natural “inclusion” map ι(φ,X) = (g,K) as in
(1.7)–(1.8), given fixed data in D. The subspace H corresponds to TD. Since
KerDΦy is finite dimensional and splits, one has

V = KerDΦy ⊕ L,

where L closed and of finite codimension in V . By construction, KerDΦ ∩
L = 0. We claim that KerDΦ⊕ L is of finite codimension in T (Metm,α(M)×
Sm−1,α
2 (M)). To see this, let (g′,K ′) be any variation of (g,K) in
T (Metm,α(M)× Sm−1,α

2 (M)) and let DΦ(g′,K ′) = w. Recall that ImDΦy

is of finite codimension. Thus if w ∈ ImDΦy, there exists unique (φ
′, X ′) ∈ L

such thatDΦ(g′,K ′)− ι(φ′, X ′)) = 0. This proves the claim. Since any space
of finite codimension splits, it follows that KerDΦ splits.

This shows that DΦ is a submersion on Creg and the implicit function
theorem (or regular value theorem) for Banach manifolds implies that the
zero set

Creg = Φ−1(0)

is a smooth Banach manifold. Thus Creg is an open Banach submanifold
within C. □

Remark 3.2. Theorem 3.1 is discussed in detail and proved in the C∞

setting in [16] and [18], by working in Sobolev spaces Hs ×Hs−1 and passing
to the limit s→ ∞. However, as pointed out in [5], the proof of the manifold
structure given in [16] or [18] does not hold when restricting to Sobolev
spaces Hs of finite differentiability. This issue is also discussed in detail in
[11]. The proof the manifold theorem in [5] holds in the low regularity space
H2 ×H1, but that argument does not generalize to Hs spaces with s > 2,
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due to the failure of elliptic regularity estimates for the non-linear operator
Φ, as in [30, Theorem 6.2.5].

The proof of Theorem 3.1 above, based on the conformal method, is
somewhat different from the approaches above.

Let

(3.6) Csing ⊂ C

denote the space of solutions with Ker(D(g,K)Φ)
∗ ̸= 0, so that Csing = C \

Creg is closed and

C = Creg ∪ Csing.

The structure of C near points (g,K) ∈ Csing has been analysed in de-
tail in particular by Moncrief, Fischer and Marsden. To describe this, let
(M, g(4)) be the maximal vacuum Cauchy development of the initial data
set (M, g,K). Let ν be the unit (future-directed) time-like normal to M in
(M, g(4)). Then by [29], (N,Y ) ∈ Ker(DΦ)∗ if and only if the vector field
Z = Nν + Y ∈ TM|M extends to a space-time Killing field on (M, g(4)).

Let Ccmc ⊂ C denote the subspace of solutions where H = const. It is
proved in [18] that the space C has cone-like singularities at the locus Csing ∩
Ccmc. Moreover, it is proved in [15], cf. also [6], that for H = const, space-
time Killing fields Z are necessarily tangent to M (so N = 0), except in the
trivial case where g0 is flat, φ = const and N = const. Such Z then give
conformal Killing fields for [g], which have been excluded in the definition
above.

It follows that for the region Ccmc ⊂ C′,

(3.7) Ccmc ∩ Csing = ∅.

In particular, it follows that Ccmc is a smooth Banach manifold. Moreover, it
is well-known that the space of conformal classes with no conformal Killing
field is open and dense in G, cf. [14] for instance. Hence, when Ccmc is con-
sidered as a subset of C, one has

(3.8) Creg ∩ Ccmc = Ccmc.

The basic property (3.8) is unknown however when H ̸= const, cf. [6]. Some
of the arguments in this work could be simplified if the analog of (3.8) held,
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i.e. if one had

(3.9) Creg = C.

For the work to follow we restrict the spaces Creg and Csing to C′, so
work with the decomposition

(3.10) C′ = Creg ∪ Csing.

We will discuss natural regularizations of Csing below, but first need to
study the manifold structure of the target space D. As preceding (1.9), let
G′ = (G′)m,α be the space of cm,α conformal classes which have no (non-zero)
conformal Killing field. As in §1, we have the fibration

(3.11) π : D′ → G′.

Proposition 3.3. The space D′ = (D′)m−1,α is a smooth separable Banach
manifold and the projection map π : D′ → G′ is a smooth bundle map.

Proof. This result is essentially well-known; the proof is based on the York
decomposition [36], cf. also [16], [17]. To begin, consider the operator

δ0 = δ + 1
3dtr :Metm,α(M)× Sm−1,α

2 (M) → Λm−1,α(M),

(g, h) → δgh+ 1
3dtrgh.

Note that δ0 is the L2 adjoint of the conformal Killing operator L̂, modulo
a factor of 2. We first claim that δ0 is a submersion, so that the implicit
function theorem implies that Z = δ−1

0 (0) is a smooth separable Banach
submanifold of Metm,α(M)× Sm−1,α

2 (M). To see this, analogous to (3.5),
one has

Λm−1,α
1 = Im δ0 ⊕Ker δ∗0 .

By assumption, Ker δ∗0 = 0. To show that δ0 has closed range, let g̃ be a

metric in (G′)m+1,α sufficiently close to g ∈ (G′)m,α and let δ0 = (δ0)g, δ̃0 =
(δ0)g̃. Consider the mapping

(3.12) δ0δ̃
∗
0 : χm+1,α → Λm−1,α

1 .

This is an elliptic operator and so Fredholm for g̃ sufficiently near g. Also
Ker δ0δ̃

∗
0 = 0, since this operator is a small perturbation of δ0δ

∗
0 which has

no kernel by definition. It follows that δ0 is of closed range and surjective.
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To see that the kernel splits, given any h ∈ T (Sm,α
2 (M)), form δ0h. The

discussion above shows that for any such δ0h, there is a unique X such
that δ0δ̃

∗
0X = δ0h. Hence h = (h− δ̃∗0X) + δ̃∗0X is the required splitting since

δ̃∗0X ∈ Sm,α
2 (M). It thus follows from the implicit function theorem that Z

is a smooth separable Banach manifold.
Next, observe that the trace operator tr :Metm,α(M)× Sm−1,α

2 (M) →
cm,α(M), (g, h) → trgh is clearly a smooth submersion, so that V = tr−1(0)
is a smooth separable Banach submanifold of Metm,α(M)× Sm−1,α

2 (M).
The intersection Z ∩ V is transverse, cf. [17] for instance, and hence the space
of transverse-traceless tensors Z ∩ V is a smooth separable Banach subman-
ifold of Metm,α(M)× Sm−1,α

2 (M). Dividing out by the equivalence relation
(g, σ) ∼ (φ4g, φ−2σ) gives a smooth separable Banach manifold structure to
the quotient space T ′. Crossing with the space Cm−1,α(M) of mean curva-
ture functions, it follows again from the transversal intersection of Z ∩ V
that π : D′ → G′ is a smooth bundle projection. □

Next we turn to the singular locus Csing. As noted above, the structure
of the singular locus Csing is not understood away from the the space of
CMC solutions. For this reason, it is useful to regularize Csing by showing
it can be naturally perturbed to a smooth manifold structure. To do this,
consider the smooth map of Banach manifolds

Ψ = (Π,Φ) :Metm,α(M)× Sm−1,α
2 (M) → D × (cm−2,α × Λm−2,α

1 ),(3.13)

Ψ(g,K) = (Π(g,K),Φ(g,K)).

Note that C = Ψ−1(∗, 0). Further the first factor Π is trivially a surjective
submersion onto D. The proof of Theorem 3.1 shows that Ψ is a smooth
Fredholm map, of Fredholm index zero. By the Sard-Smale theorem, the
regular values of Ψ are thus of second category.

Thus, given any ε > 0, there exist (many) values (µ, ξ) ∈ cm−2,α(M)×
Λm−2,α
1 (M) such that |(µ, ξ)| < ε and the inverse image

(3.14) Cε := Ψ−1(∗, (µ, ξ)),

is a smooth separable Banach submanifold of Metm,α(M)× Sm−1,α
2 (M).

For any such regular value (µ, ξ), the space Cε is a smooth ε-approximation
to the vacuum constraint space C. Choosing ε = εi → 0 and correspond-
ing (µi, ξi) → (0, 0), the spaces Cεi converge to C in the following sense.
If {(µi, ξi)} ∈ Cεi is bounded in Cm−2,α, then a subsequence converges to a
limit (µ, ξ) ∈ C. Conversely, any (µ, ξ) ∈ C is the limit of a bounded sequence
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{(µi, ξi)} ∈ Cεi . Of course any smooth compact subset of the regular set Creg

is smoothly close to a domain in Cε, for ε sufficiently small.

Corollary 3.4. For any regular value ε as in (3.14), the map

(3.15) Πε : Cε → D

is a smooth Fredholm map of Banach manifolds of Fredholm index zero.

Proof. This follows directly from the proof of Theorem 3.1 and Proposition
3.3, using the well-known Fredholm alternative and the fact that DΦy is
Fredholm of index zero. □

For the work to follow in §5, we will use an explicit parametrization
of D, or more precisely a parametrization of the base space G = Gm,α of
conformal classes. Let Y denote the space of Yamabe metrics inMetm,α(M);
thus g0 ∈ Y if and only if g0 is a metric of constant scalar curvature and unit
volume realizing the Yamabe invariant Y [g0] of [g0]. (Yamabe metrics are
always assumed to be minimizing metrics). It is proved in [2] that there is
an open-dense set

(3.16) Y0 ⊂ Y,

such that g0 ∈ Y0 is the unique (minimizing) Yamabe metric in its conformal
class [g0]. Moreover, there is a smooth bijection

(3.17) ι : Y0 → U0 ⊂ G,

onto an open-dense set U0 in G. This gives Y0 the structure of a smooth
Banach manifold, induced from the Banach manifold structure of G. The
space U0 gives a natural parametrization for the space of equivalence classes
G0. Note that if [g] admits a conformal Killing field which is not a Killing
field for some g0 ∈ Y, then g0 /∈ Y0; namely the flow of X then generates a
1-parameter family of distinct Yamabe metrics.

By the solution to the Yamabe problem, the set of Yamabe metrics in a
given conformal class [g] is compact, away from the round conformal class
[g+1] on S

3. Thus if [g] ̸= [g+1] and [gi] is any sequence in U0 with [gi] → [g],
then for the associated sequence of unique Yamabe metrics (g0)i, there is a
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Yamabe metric g0 ∈ [g] such that, in a subsequence,

(g0)i → g0,

in Cm,α. Further, for any other Yamabe metric g′0 ∈ [g] there is a conformal
factor ψ′ such that g′0 = (ψ′)4g0. Thus for the conformal classes G \ G0, the
collection of conformal factors {ψ′} in [g] for (minimizing) Yamabe metrics
is uniformly controlled in Cm,α for [g] ̸= [g+1].

Note that this compactness and control of the conformal factors {ψ′}
does not hold for the case of the conformal class [g+1] of the round metric
on S3. This non-compactness is closely related to the Nirenberg problem
and the Kazdan-Warner obstruction on S3, cf. [21] for further details.

4. Initial estimates

In this section, we derive initial estimates on the behavior of solutions (φ,X)
of the constraint equations. These play an important role in the work to
follow in §5.

We assume throughout this section (and the following) that (φ,X) solve
the constraint equations (1.7)–(1.8) with volume form α fixed and with
representative (g0, σ,H) ∈ D′; in particular [g] has no conformal Killing
fields. Following this, we show that the same arguments extend to solu-
tions of the constraint equations Φ(g,K) = (µ, ξ), for any given fixed (µ, ξ) ∈
cm−2,α(M)× Λm−2,α

1 (M).

Lemma 4.1. Suppose there is a constant D <∞ such that

(4.1) 0 < D−1 ≤ inf φ ≤ supφ ≤ D <∞.

Then there is a constant C, depending only on D and the background data
(g0, σ,H) ∈ D such that

(4.2) |φ|Cm,α + |X|Cm,α ≤ C.

Proof. By (4.1), φ and φ−1 are bounded in L∞ by a fixed constant D. In
particular, the right side of (1.7) is thus bounded in L∞, since dH is bounded
in Cm−2,α. Elliptic regularity applied to the divergence constraint (1.7) as
in (2.8) then gives

|X|C1,α ≤ C,

since Ker δ( 1
2N δ

∗
0) = 0. The right side of the Lichnerowicz equation (1.8)

is thus bounded in Cα and elliptic regularity applied to (1.8) implies φ is
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bounded in C2,α. In turn, this implies the right side of the divergence equa-
tion (1.7) is bounded in Ck,α, k = min(2,m− 2), and so elliptic regularity
again implies X is bounded in Ck+2,α. Continuing this process inductively
gives (4.2). □

Proposition 4.2. Let

(4.3) supφ =M0.

Then there is a constant C <∞, depending only on max(1,M0), and the
target data (g0, σ,H) ∈ D, such that

supφ ≤ C inf φ.

In particular, under an upper bound on φ, inf φ can approach 0 only if supφ
approaches 0.

Proof. The proof uses the well-known Moser iteration argument; we follow
closely the description of this method in [20, pp.194-198]. All computations
below are with respect to the background Yamabe metric g0 with Rg0 = Y [g]
(or more generally a compact set of such metrics if g0 is not unique).

To begin, from (1.8) we have

(4.4) − φ7+k∆φ = −1
8R0φ

k+8 + 1
8 |σ + 1

2N δ
∗
0X|2φk − 1

12H
2φ12+k,

cf. again the notation (2.7). Integrating overM and applying the divergence
theorem gives

−
∫
φ7+k∆φ =

∫
⟨dφ7+k, dφ⟩ = (7 + k)

∫
φ6+k|dφ|2(4.5)

=
7 + k

(4 + (k/2))2

∫
|dφ4+(k/2)|2.

Here and throughout the following, the integration over M is with respect
to the volume form of (M, g0). Also, constants c, C, cS , used below may
change from line to line, or even inequality to inequality, but only depend
on the target data (M, g0, σ,H) and α. The Sobolev constant cS of g0 is
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uniformly controlled, so that

(4.6)

(∫
φ6

)1/3

≤ cS

∫
(|dφ|2 + φ2).

Applying this to φ4+(k/2) and using (4.5), one obtains from (4.4) that

7 + k

(4 + k/2)2

(∫
φ24+3k

)1/3

(4.7)

≤ C

(∫
| 1
2N δ

∗
0X|2φk + sup |σ|2

∫
φk + |R0|

∫
φ8+k

)
,

for k + 7 > 0, where we have dropped the negative H2 term.
If k + 7 < 0, the sign changes; in this case we may drop the σ and δ∗0X

terms and obtain

(4.8)
|7 + k|

(4 + k/2)2

(∫
φ24+3k

)1/3

≤ C

(
|R0|

∫
φ8+k +

∫
H2φ12+k

)
,

provided k + 8 ̸= 0. The case k + 8 = 0 (the log case), will be considered
later.

We begin with the case k + 7 > 0, (the subsolution case). First, elliptic
estimates for the divergence constraint (1.7) as in (2.8) imply that

(4.9) |δ∗0X|L4 ≤ c|X|L1,4 ≤ c|X|L2,2 ≤ c|δ( 1
2N δ

∗
0X)|L2 ≤ c

(∫
φ12

)1/2

,

where we have used the Sobolev inequality for the second inequality. By the
Hölder inequality, this gives

∫
|δ∗0X|2φk ≤

(∫
|δ∗0X|4

)1/2(∫
φ2k

)1/2

≤ c

(∫
φ2k

)1/2 ∫
φ12.

Inserting this in (4.7) implies that

1

k

(∫
φ24+3k

)1/3

≤ c

(∫
φ2k

)1/2 ∫
φ12 + c

∫
φk + c

∫
φk+8,

where c depends only on the target data (g0, σ,H). One may then iterate
these inequalities, as in the usual Moser iteration, and starting with k = 4,
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obtain

(4.10) supφ ≤ C|φ|L12 ≤ C|φ|L2 ,

where the last inequality follows from a standard interpolation inequality,
[20, p.146]. Again C depends only on (g0, σ,H) ∈ D. Note that the estimate
(4.10) does not require the assumption (4.3). Moreover, the bound (4.3) only
requires a bound on H through the estimate of L̂Xg0 in (4.9).

Next, as in [20], consider the two cases −1 < k + 7 < 0 and k + 7 < −1.
First, by (4.3), H2φ12+k = H2φ8+kφ4 ≤ H2M4

0φ
8+k, so that (4.8) implies

that

(4.11)
|7 + k|

(4 + k/2)2

(∫
φ3(8+k)

)1/3

≤ CM4
0

∫
φ8+k.

Now first choose k + 8 = p ∈ (0, 1) small. Then Moser iteration starting at
p and ending at k + 8 = 2 shows that

(4.12)

∫
φ2 ≤ c

(∫
φp

)2/p

,

for any p > 0 small, with c = c(p,M0).
Next one may perform the same Moser iteration for k + 8 < 0 to obtain,

for p ∈ (0, 1) as in (4.12),

(4.13)

(∫
φ−p

)−1/p

≤ c inf φ,

with again c = c(p,M0). To connect the estimates (4.12) and (4.13), we claim
that there is a constant C = C(g0, σ,H) and p0 ∈ (0, 1) such that

(4.14)

∫
φp0

∫
φ−p0 ≤ C.

For this, the log case, we return to the Lichnerowicz equation (1.8) and
write it as

(4.15) φ−1∆φ = 1
8R0 − 1

8 |σ + 1
2N δ

∗
0X|2φ−8 + 1

12H
2φ4.

Integration, the divergence theorem and the estimate (4.3), together with
the control on R0 and H imply that

∫
|d logφ|2 ≤ CM4

0 ,
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Next, still following [20, p.198], given any p ∈M and r small, let η = η(p, r)
be a cutoff function satisfying η = 1 on the geodesic ball Bp(r), η = 0 on
M \Bp(2r) with |dη| ≤ C/r. One has

∫

Bp(r)
|d logφ| ≤ c

(∫

Bp(r)
|d logφ|2

)1/2

r3/2(4.16)

≤ cr3/2

(∫

Bp(2r)
|dη logφ|2

)1/2

.

Multiplying (4.15) by η2 and integrating by parts in the same way, using
also the Cauchy-Schwarz inequality and the scale change r → 2r, gives for
r small, ∫

Bp(2r)
|d logφ|2 ≤ cr,

and hence by (4.16)
∫

Bp(r)
|d logφ| ≤ Cr2.

It then follows from the John-Nirenberg estimate [20, p.166], as in [20, p.198],
that ∫

φp0

∫
φ−p0 ≤ C,

for some p0 ∈ (0, 1), C = C(M0), which proves (4.14).
Combining then (4.3), (4.10), (4.12)–(4.14) shows that

1 = supφ ≤ C

(∫
φp0

)1/p0

≤ C

(∫
φ−p0

)−1/p0

≤ C inf φ,

which proves the result. □

Proposition 4.2 shows that an upper bound on supφ gives control of the
Harnack constant

(4.17) CHar(φ) =
supφ

inf φ
,

of φ, given control of the target data in D. As an application of Proposi-
tion 4.2, we prove the following:
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Proposition 4.3. Continuing under the assumption (4.3), suppose there is
a constant s0 > 0 such that inf |σ| ≥ s0 > 0. Then there is a constant κ0 > 0,
depending only on M0, s0, α and (g0, σ,H) ∈ D, such that

(4.18) inf φ ≥ κ0 > 0.

Moreover, if Y (g) ≤ −Y0 < 0, then

(4.19) inf φ ≥ κ0 > 0,

where κ0 depends only on M0, Y0 and (g0, σ,H) ∈ D.

Proof. To prove (4.18), by Proposition 4.2 it suffices to obtain a lower bound
on m0 = supφ. Namely if m0 ≤ 1 then the bound on CHar from Proposi-
tion 4.2 shows that a lower bound on inf φ and supφ are equivalent. Now
integrating the Lichnerowicz equation (1.8) over (M, g0) gives

∫

M
|σ + 1

2N δ
∗
0X|2φ−7 ≤ 1

8 |R0|
∫

M
φ+ 1

12 supH
2

∫

M
φ5 ≤ cm0,

for a fixed constant c. We assume here without loss of generality thatm0 ≤ 1.
Since φ−7 ≥ m−7

0 , it follows that

m−7
0

∫

M
|σ|2 ≤ m−7

0

∫

M
|σ + 1

2N δ
∗
0X|2 ≤

∫

M
|σ + 1

2N δ
∗
0X|2φ−7 ≤ cm0,

so that
∫

M
|σ|2 ≤ cm8

0.

Now |σ|2 is controlled in cm−1,α and so the bound inf |σ| := |σ|(p) ≥ s0 > 0
implies there is a fixed r0 such that |σ|(x) ≥ s0/2 for all x ∈ Bp(r0). It follows
that

r40s
2
0 ≤

∫

M
|σ|2 ≤ cm8

0.

This gives a lower bound for m0 in terms of σ and s0, which thus proves
(4.18).



✐

✐

“1-Anderson” — 2021/7/5 — 19:59 — page 1355 — #31
✐

✐

✐

✐

✐

✐

Einstein constraint equations 1355

For (4.19), evaluating the Lichnerowicz equation (1.8) at a point p real-
izing minφ = inf φ gives

0 ≤ 1
12H

2(p)(inf φ)5 + 1
8R0 inf φ,

(regardless of the behavior of σ and δ∗0X). Recall that R0 is the Yamabe
constant Y [g] of [g]. If R0 < 0, then H2(p)(inf φ)4 ≥ 3

2 |R0|, which proves
(4.19). □

Remark 4.4. When Y [g] > 0, simple examples show that (4.18) is not true
without the assumption on σ. Thus, suppose g0 is the standard product
metric on S1(1)× S2(1), so that Rg0 = 2. Choose

σ = κ(−dθ2 + 1
2gS2(1)),

for some constant κ. The form σ is transverse-traceless with respect to g0
and has constant norm |σ|2 = 3

2κ
2. Let also H = c, an arbitrary constant.

Then the divergence constraint (1.7) is satisfied by setting X = 0 while the
Lichnerowicz equation (1.8) holds if φ = ε = const and

0 = 2ε− |σ|2ε−7 + 2
3H

2ε5.

This holds by choosing κ so that 3
2κ

2 = 2ε8 + 2
3H

2ε12.
This example shows that one may have Y (g) > 0 with H an arbitrary

constant, with φ→ 0 uniformly as σ → 0 uniformly.

Remark 4.5. Similarly, there are numerous examples of curves (gt,Kt), t ∈
[0,∞) with Y (gt) ≤ −c < 0 where Ht → 0, σt → 0 and φt → ∞ pointwise
as t→ ∞. The simplest examples are the Milne universe or hyperbolic cone
metric

g(4) = −dt2 + t2g−1,

where (M, g−1) is a hyperbolic 3-manifold. This is a flat (and hence Ricci-
flat) Lorentz metric on R

+ ×M . One easily sees that on the slices M =
Mt = {t = const}, σ = 0, φt =

√
t→ ∞ and Ht =

3
t → 0 as t→ ∞.

Similar behavior occurs in the long-time future behavior of vacuum
space-times near the flat hyperbolic cone space-time by the work of
Andersson-Moncrief [3], as well as in the U(1)-symmetric space-times of
Choquet-Bruhat-Moncrief [10].

Remark 4.6. It is easy to see that all of the results of this section hold for
(φ,X) ∈ Cε, i.e. for (φ,X) satisfying the non-vacuum constraint equations
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Φ(g,K) = (µ, ξ), for fixed (µ, ξ) ∈ cm−2,α(M)× Λm−2,α
1 (M) provided (say)

µ ≥ 0. Namely, the divergence and Lichnerowicz equations (1.7)–(1.8) then
take the form

(4.20) δ( 1
2N δ

∗
0X) = (−2

3dH + ξ)φ6,

(4.21) 8∆φ = R0φ− |σ + 1
2N δ

∗
0X|2φ−7 + (23H

2 + µ)φ5.

Since µ ≥ 0, a brief inspection shows that all the results of this section hold
as before, with constants depending only on the cm−2,α(M)× Λm−2,α

1 (M)
norm of (µ, ξ).

Summarizing briefly, the results of this section show that, given control
on the target data in D′, there is no degeneration of the fiber data (φ,X)
when Y (g) < 0 is bounded away from 0, or when Y (g) ≥ 0 and σ bounded
away from 0 at some point, provided one has a sup bound on φ. This shows
that such control of the target data in D′ and control of supφ implies control
of the fiber data (φ,X). Note also that by (4.10),

supφ ≤ C|φ|Lp ,

for any p ≥ 2 (say), so that it suffices to obtain uniform control on the Lp

norm of φ.

5. Slicings and proper maps

In this section, we consider natural slicings of the space C and analyse the
properness of the map Π when restricted to the individual slices.

While there are many natural slicings one might consider, we work with
the slicing discussed in §1 given by the Lp norm of φ. Let D̂ ⊂ D′ denote the
space over the conformal classes U0 which have a unique Yamabe metric,
cf. §3. Let Ĉ = Π−1(D̂) and note that Ĉ is open and dense in C′. We recall
again that α is fixed (but arbitrary) but the notation Π is used for Πα. For
any p ≥ 1, the functional

Fp(g,K) =

∫

M
φpdvg0 : Ĉ → R

+,

is well-defined and continuous. On the regular set Creg ⊂ Ĉ where C′ is a
smooth Banach manifold, the functional Fp is smooth. Since the space of
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minimizing Yamabe metrics in a fixed conformal class [g] ∈ G′ is compact,
Fp extends to a bounded function on C′, multivalued in C′ \ Ĉ. Using a C0

partition of unity, the function Fp may be mollified in a neighborhood of

C′ \ Ĉ to give a continuous function

Fp(g,K) =

∫

M
φpdvg0 : C′ → R

+.

The most natural choice geometrically for p is p = 6, giving F (g,K) =
volgM . However for the purposes below we will need to choose p > 6 and so
for convenience choose p = 8:

(5.1)
F = F8 : C′ → R

+,
F (g,K) =

∫
M φ8dvg0 .

Let

Cω = {(g,K) ∈ C′ : F (g,K) = ω},

so that C′ is foliated by the level sets Cω of F . Recall from (2.12) that C′ is
invariant under the scaling (g,K) → (d4g, d2K). Under this scaling one has

Cω → Cd8ω,

so that all level sets Cω are homeomorphic and one has a global splitting

C′ = Cω × R
+.

In the regular region where C′ is a smooth manifold, the level sets Cω ∩ Creg

are smooth hypersurfaces of Creg and the splitting

Creg = (Cω ∩ Creg)× R
+,

is smooth.
Now consider the mapping

(5.2)
Πω : Cω → D′,

Πω = ([g, σ], H).

By the results of §3, in the region Cω ∩ Creg the map Πω is smooth and
Fredholm, of Fredholm index −1, for any ω. Similarly, for any regular value
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ε > 0, the map

(5.3)
Πω

ε : Cω
ε → D′,

Πω
ε = ([g, σ], H).

is a smooth Fredholm map of Banach manifolds, with Fredholm index −1.
The first main result of this section corresponds to Theorem 1.1:

Theorem 5.1. For any ω > 0, the map Πω is continuous and proper. Sim-
ilarly, for any ω > 0 and ε > 0, the map Πω

ε is smooth and proper.

Proof. This follows easily from the results in §4, using the Yamabe repre-
sentatives g0 for conformal classes [g], as discussed above. Namely, Propo-
sition 4.2 gives first a sup bound on φ, cf. (4.10) and therefore also an inf
bound. The result then follows from Lemma 4.1. The second statement fol-
lows from Remark 4.6. □

We note that the proof of properness does not use or require a manifold
structure for the domain space Cω. As noted in §1, the maps Π or Πω are not
likely to be proper over points [g] which contain a conformal Killing field.

Next we analyse the intersection properties of the image ImΠω with
natural choices of lines in D′. In this work, we consider lines of the form
{σ} = {λσ}, λ ∈ R, σ ̸= 0. One might also consider lines of the form λH,
H + λ, σ + λσ0 for a fixed σ0, and so on, but this will not be carried out
here.

Proposition 5.2. For any given ω > 0 and any line Lσ = ([g, λσ], H), λ ∈
R, (with ([g, σ], H) fixed), the intersection

(5.4) ImΠω ∩ Lσ

is compact in D′. Equivalently, for ℓσ = Π−1(Lσ),

(5.5) ℓσ ∩ Cω,

is compact in C′.

Proof. By Theorem 5.1, (5.4) and (5.5) are equivalent and it suffices to prove
that

(5.6) |λ| ≤ Λ0 <∞,

for some Λ0 depending only on ([g, σ], H), (and α). Without loss of gener-
ality, we may assume |σ|Cm−1,α = 1.
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To start, the divergence constraint (1.7) does not involve λ. Using ellip-
tic regularity, the L8 bound on φ and control on H imply that X is uni-
formly bounded or controlled in L2,4/3, so that DX is uniformly controlled
in L1,4/3 ⊃ L12/5, by Sobolev embedding in dimension 3. In particular, δ∗0X
is uniformly bounded in L2. Now the Lichnerowicz equation (1.8) gives

8∆φ = R0φ− |λσ + 1
2N δ

∗
0X|2φ−7 + 2

3H
2φ5.

Integrating this over M and using the L8 bound on φ and the control on R0

and H, follows that

∫

M
|λσ + 1

2N δ
∗
0X|2φ−7 ≤ C,

for some fixed constant C.
Since |σ|Cm−1,α = 1, there is an open set U ⊂M and constants d >

0, v0 > 0 (depending only on g0, σ) such that |σ| ≥ d pointwise on U with
volU ≥ v0. One has vol U =

∫
U 1 =

∫
U φφ

−1 ≤ (
∫
U φ

−7)1/7(
∫
U φ

7/6)6/7 and
so ∫

U
φ−7 ≥ (vol U)7/

(∫
φ7/6

)6

.

We have |φ|L7/6 ≤ |φ|L8 , and hence

∫

U
φ−7 ≥ d′,

with d′ depending only on d, v0 and ω. Since

inf
U

|λσ + 1
2N δ

∗
0X|2

∫

U
φ−7 ≤

∫

U
|λσ + 1

2N δ
∗
0X|2φ−7,

it follows that

(5.7) inf
U

|λσ + 1
2N δ

∗
0X|2 ≤ C.

However |λσ| ≥ dλ pointwise everywhere on U so that (5.7) implies (for λ
sufficiently large) that | 1

2N δ
∗
0X| ≥ d

2λ pointwise on U . Since the L2 norm of
1
2N δ

∗
0X on M is uniformly bounded, this proves (5.6). □

It is clear that Proposition 5.2 also holds for the mapping Πω
ε in (5.3).

We will calculate the intersection number of Πω with Lσ generally in §5,
but it is worthwhile to discuss the behavior of Πω on the space Ccmc of CMC
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solutions, i.e.

Πω
cmc : Cω

cmc → Dcmc.

(The script cmc has been lowered for notational convenience). As discussed
in §2, in this case, Πcmc is a smooth diffeomorphism onto its image Dex

cmc and
Πω

cmc is a smooth embedding of codimension 1. For each ([g, σ], H) ∈ Dex,
there exists a unique solution φ = (φ, 0) of the Lichnerowicz equation (1.8).
(The divergence constraint (1.7) is trivially uniquely satisfied by setting
X = 0).

Thus fix the line Lσ = ([g, λσ], H), H = const. For each λ there is a
unique solution φ = φ(λ), so that ω = ω(φ) is then a well-defined smooth
function of λ;

(5.8) ω = ω(λ) : R → R
+.

Proposition 5.3. The function ω in (5.8) is a proper map ω : R → R
+

and

(5.9) deg ω = 0.

The Z2 intersection number is given by

(5.10) IZ2
(Πω

cmc, Lσ) = 0 (mod 2).

Proof. We recall that the degree of a smooth map ω : R → R
+ is the number

of solutions of ω(λ) = ω0, for ω0 a regular value of ω, counted with signed
multiplicity according to whether the derivative ω′ is positive or negative at
a regular point in ω−1(ω0).

As noted in §1, CMC solutions (φ, 0) of the constraint equations (1.7)–
(1.8) naturally come in pairs in that (φ, 0) is a solution with data (]g, λσ], H)
if and only if it is also a solution with data ([g,−λσ], H). This implies
immediately that

ω(±λ) = ω(λ).

It is easy to see that the sign of the derivative ω′ changes on passing from
λ to −λ, which gives (5.9) and (5.10). □

It is worthwhile to describe the behavior of ω in more detail in the
three cases Y [g] > 0, Y [g] = 0 and Y [g] < 0. The results below follow from
a simple analysis of the Lichnerowicz equation (1.8).
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(i). (Y [g] > 0). The inverse image ℓσ = Π−1([g, λσ], H), H = const, con-
sists of two distinct components ℓ±σ with ℓ−σ parametrized by λ ∈ (−∞, 0),
ℓ+σ parametrized by λ ∈ (0,∞) and satisfying

ω → 0 as |λ| → 0, ω → ∞ as |λ| → ∞.

(ii). (Y [g] = 0). If H = const ̸= 0, then there is a minimal value λ0 =
λ0(H) > 0 such that ℓσ has two distinct components ℓ±σ parametrized by
λ ∈ (−∞,−λ0) ∪ (λ0,∞) with

ω → 0 as |λ| → λ0, ω → ∞ as |λ| → ∞.

If H = 0, the only solution is over λ = 0 with φ = const, so that the parame-
trization by λ breaks down.

(iii). (Y [g] < 0). Then H ̸= 0 and ℓσ is a single connected curve with
λ ∈ (−∞,∞) and with ω achieving a minimum value ω0 at λ = 0, so that

ω(λ) ≥ ω0,

with ω(0) = ω0 > 0. As H → 0, ω0 → ∞.

The following lower bound on λ when Y [g] > 0 will be important in §6.
Recall that {g, σ} denotes the equivalence class [g, σ] ∼ [g, λσ].

Proposition 5.4. If Y [g] > 0, there are constants ω0 > 0, c0 <∞, de-
pending only on ({g, σ}, H) such that for any solution (φ,X) ∈ Cω over
({g, σ}, H) with ω ≤ ω0, one has

(5.11) λ ≥ c0ω
1/2 > 0.

Proof. Write the Lichnerowicz equation (1.8) as
(5.12)

2
3H

2φ12 +R0φ
8 − 8φ7∆φ = |λσ + 1

2N δ
∗
0X|2 ≤ λ2|σ|2 + ( 1

2N )2|δ∗0X|2.

At a point p realizing supφ, −∆φ ≥ 0, so that all terms on the left in (5.12)
are non-negative. By the control on (φ,X) from Theorem 5.1 and Propo-
sition 5.2, together with the estimates (2.8) and (4.10), one has |δ∗0X|2 =
O(supφ12) = O(ω3/2). If supφ, or equivalently ω, is sufficiently small, the
dominant term on the left in (5.12) is the R0φ

8 term, (or the possibly larger
−φ7∆φ term). Since |δ∗0X|2 or ( 1

2N )2|δ20X|2, is much smaller than O(supφ8),
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it follows that

(5.13) λ2 ≥ c0ω,

for ω sufficiently small. This proves (5.11) on Cω. □

When Y [g] < 0, the analog of Proposition 5.4 becomes vacuous.

Proposition 5.5. If Y [g] < 0. there exists ω0 > 0, depending only on
({g, σ}, H) such that there are no solutions of the constraint equations (1.7)–
(1.8) in Cω, for ω ≤ ω0.

Proof. If (φ,X) solve the constraint equations, then evaluating the Lich-
nerowicz equation (1.8) at a point p realizing minφ gives

(5.14) 0 ≤ R0φ− |λσ + 1
2N δ

∗
0X|2φ−7 +H2φ5.

By Theorem 5.1, λ is bounded above and hence (as discussed in the proof of
Theorem 5.1) all solutions (φ,X) of the constraints are uniformly controlled
by the target data ({g], σ}, H). Hence if ω is sufficiently small and R0 < 0,

H2φ5 ≪ |R0|φ

when evaluated at p. This contradicts (5.14). □

Remark 5.6. The behavior in the transition or borderline region Y [g] = 0
between Y [g] < 0 and Y [g] > 0 where ω is small is rather subtle. We will
see in §6, cf. Theorem 6.3, that solutions always exist with λ, ω small when
Y [g] > 0, so the transition Y [g] < 0 to Y [g] > 0 is from existence to non-
existence of solutions (with sufficiently small ω). This is discussed in more
detail in Remark 6.6.

We make one further remark in the Y [g] = 0, i.e. R0 = 0 case. Pairing
the Lichnerowicz equation (1.8) with φ7 and integrating over M gives

∫

M

2
3H

2φ12 + 7
2 |dφ4|2 =

∫

M
|λσ|2 + ( 1

2N )2|δ∗0X|2.

By the Sobolev inequality (4.6), this implies

(5.15)

∫

M

2
3H

2φ12 + c

∫

M
(φ4 − φ̄4)6)1/3 ≤

∫

M
|λσ|2 + ( 1

2N )2|δ∗0X|2,

where φ̄4 =
∫
M φ4 and c > 0. As before, by the control on (φ,X) from The-

orem 5.1, Proposition 5.2, and the estimates (2.8), (4.10), one has |δ∗X|2 =
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O(supφ12) = O(inf φ12) = O(ω3/2). Hence, if
∫
M (φ4 − φ̄4)6)1/3 ≫ O(φ12),

one obtains a bound on λ away from 0 analogous to (5.11), i.e.

λ2 ≥ C

∫

M
(φ4 − φ̄4)6)1/3,

with C large. If there is no such estimate, then λ2 ≤ O(supφ12) and more-
over ∫

M
(φ4 − φ̄4)6)1/3 ≤ cφ12.

This means that φ is very close to being a constant function relative to its
size when ω is small. This may be useful for future studies.

Remark 5.7. Just as in Remark 4.6, the results in the section do not
require restriction to the vacuum constraint equations. All results hold for
pairs (g,K) ∈ Cε for which Φ(g,K) = (µ, ξ) with (µ, ξ) controlled in
cm−2,α(M)× Λm−2,α

1 with and µ ≥ 0.

6. Existence and non-existence results

In this section, we combine the work in previous sections to prove Theo-
rems 1.2 and 1.3 and several related results.

Let Cε be an ε-regularization of C′ as in §3 and consider the map

(6.1) Πω
ε : Cω

ε → D′.

This is a smooth Fredholm map between separable Banach manifolds and we
apply the global analysis methods of Smale discussed in §2. Note that Πω

ε is
of Fredholm index −1, (since the map Πε : Cε → D′ is of Fredholm index 0).
By Theorem 5.1, Πω

ε is a proper Fredholm map. We consider then natural
properly embedded 1-manifolds V ⊂ D′ transverse to Πω

ε and consider the
corresponding intersection properties.

As in §5, we choose V = Lσ = ([g, λσ], H), λ ∈ R, with ([g], H) arbitrary.
If P ′ denotes the projectivization of D′ (i.e. one projectivizes the fibers
σ ∼ λσ), the map

(6.2) Π̃ω
ε : Cω

ε → P ′,

is a Fredholm map of Fredholm index 0 away from solutions (φ,X) which
have data with λ = 0. Note that Π̃ω

ε is not defined on (φ,X) with λ(φ,X) =
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0; this is the reason for working with the intersection behavior of lines with
Πω

ε in place of the degree behavior of Π̃ω
ε .

The following result is a more precise version of Theorem 1.2.

Theorem 6.1. For any regular value ε > 0, one has

(6.3) IZ2
(Πω

ε , Lσ) = 0.

Proof. By the results of §5, the intersection number IZ2
defined in (2.6) is

well-defined and independent of ω and the data ({g, σ}, H). When Y [g] < 0,
Proposition 5.5 (and Remark 5.7) shows that IZ2

= 0 for ω sufficiently small.
Hence (6.3) holds for all ω, ε, and all data ({g, σ}, H). □

Remark 6.2. It seems very likely that Theorem 6.1 and (6.3) hold also for
ε = 0, i.e. on C′. Namely, for a given regular value (µ, ξ), consider the region

C(ε0) = {(g,K) : Φ(g,K) = t(µ, ξ), |t| < ε0},

so that C(ε0) is the union of the spaces Ct, |t| < ε0. For a generic line Lσ and
generic t ̸= 0, the intersection Cω

t ∩Π−1(Lσ) consists of an even number of
points {pit}, which converge to a finite set of points in C′ as t→ 0. Note that
C′ separates C(ε0) into distinct path components where t > 0 and t < 0. It
seems very unlikely that such points {pit} could generically merge as t→ 0
to give a limit collection of points with different cardinality (mod 2). We will
not pursue this further however.

Note that if the conjecture (3.9) that KIDs are non-generic holds, then
Theorem 6.1 and (6.3) trivially also hold for ε = 0, since then Cεi → C′

smoothly on an open-dense set.

Next we consider the structure of the set of solutions in Cε and C′ when
the restriction to the ω-level sets of F is removed. Thus, we consider the
map

(6.4) Π̃ε : Cε → P ′,

taking (φ,X) to a point on the line Lσ = ([g, λσ], H). The map Π̃ε is now
a smooth Fredholm map of index one. For a regular value Lσ of Π̃ε, the
inverse image

(6.5) Γ = Π̃−1
ε ({g, σ}, H)

is a collection of curves Γ = {ℓ(t)} = {(φ(t), X(t))} mapping under Πε to
the straight line curve ([g, λσ], H) ∈ D′, λ ∈ R. Apriori the number of such
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curves (the cardinality of Γ) could be infinite. However, setting Cω2
ω1

=
{(φ,X) ∈ Cε : 0 < ω1 ≤ F (φ) ≤ ω2}, the intersection

Γ ∩ Cω2
ω1
,

consists of a finite number of compact curves, for any ω1 ≤ ω2. On the other
hand, there are also data ({g, σ}, H) for which Γ = ∅; this occurs for some
values of ({g, σ}, H) even when H = const.

The basic question is to understand when Γ is non-empty and then
further, the structure of the image Π(Γ), for any fixed ({g, σ}, H). We do
this first in the “small-scale” region where ω is small and following that
consider the large scale region. We also work with ε > 0, so that Cε is a
smooth manifold. However, all the considerations to follow are independent
of ε and hold also for the ε→ 0 limit C′, cf. the proof of Theorem 1.3 below.

Choose a component ℓ(t) of Γ and assume without loss of generality that
t ∈ R. Its image under Π then determines λ as a function of the parameter
t, so that

(6.6) λ = λ(t).

The properness from Theorem 5.1 implies that ω(t) = ω(ℓ(t)) covers the full
range

(6.7) ω(t) ∈ (0,∞).

For if ω(t) → ω0 as t→ ±∞. then the limit of the curve ℓ(t) exists in Cε
and so can be continued, contradicting the fact that ℓ(t) is maximal, i.e. a
component of the full inverse image of Lσ.

In the following results, we show that the small ω, λ behavior discussed
in the CMC case in §5 is stable under large scale deformation into the far-
from-CMC regime when Y [g] ̸= 0.

Theorem 6.3. If Y [g] > 0, then for any given Lσ = ([g, λσ], H) ∈ D′, there
are constants ω0 > 0 and λ0 > 0, such that for any ω satisfying

0 < ω ≤ ω0,

there is a solution (φ,X) ∈ Cω
ε with Π(φ,X) = ([g, λσ], H), for any ε > 0.

Moreover, for such solutions,

0 < |λ| < λ0.
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If Y [g] < 0, then for any given Lσ = ([g, λσ], H) ∈ D′, there is a con-
stant ω0 > 0, such that there are no solutions (φ,X) ∈ Cω

ε with Π(φ,X) =
([g, λσ], H), for any λ, for any ω ≤ ω0 and for any ε sufficiently small.

Proof. The second statement is just a restatement of Proposition 5.5, so
we assume Y [g] > 0. Given a point ({g, σ}, H) ∈ P ′ with Y [g] > 0, choose a
constant H0 and consider a path z(s) in P ′, s ∈ [0, 1] from ({g, σ}, H0) to
({g, σ}, H), e.g.

(6.8) z(s) = ({g, σ}, (1− s)H0 + sH).

Choose a value ω (small) and consider the smooth proper Fredholm map
Πω

ε : Cω
ε → D′. The path z(s) may be perturbed slightly if necessary, keep-

ing endpoints fixed, so that z(s) is transverse to Πω
ε . The inverse image

(Πω
ε )

−1(z(t)) is then a finite collection of curves, i.e. either circles S1 or
arcs ∼ I with endpoints in the fiber (Πω

ε )
−1(z(0) ∪ z(1)) over the endpoints

z(0) ∪ z(1). By the existence and uniqueness for CMC solutions as discussed
in §2, the fiber (Πω

ε )
−1(z(0)) over z(0) consists of two points (g,K±) with

solution (φ, 0) over the pair ([g,±λσ], H0) ∈ D′.
There are now two possibilities. Namely, either the two points (g,K±)

over z(0) are connected by an arc I ⊂ (Πω
ε )

−1(z(s)), so (say) I(0) = (g,K−),
I(1) = (g,K+), or if not, then there are a pair of arcs I± ⊂ (Πω

ε )
−1(z(s)) with

I±(1) ∈ (Πω)−1(z(1)). In the former case, since λ(0) = −λ < 0 and λ(1) =
λ > 0, there must exist s0 ∈ I such that z(s0) maps to ([g, 0], (1− s0H0 +
s0H) under Πω

ε . However, Proposition 5.4 shows this is not possible; λ is
bounded away from zero on Cω

ε for ω sufficiently small, given such control
on ([g, σ], H).

It follows that the second case above holds, which gives the existence of
two distinct solutions (φ±, X±) ∈ Cω

ε over ({g, σ}, H) with |λ| > 0 small and
λ of opposite signs. □

Theorem 6.3 does not rule out the possibility of more than two solution
curves over fixed data in D′ when Y [g] > 0. This is addressed in the next
result.

Proposition 6.4. For Y [g] > 0, ω0 as in Theorem 6.3 and for λ(t) as
in (6.6) one has

λ′(t) ̸= 0,

when ω ≤ ω0. Further, for a given λ with |λ| < λ0 there is a unique solution
(φ,X) in Cω

ε , ω ≤ ω0 with data ([g, λσ], H).
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Proof. Let (φ′, X ′) be the t-derivative of a curve ℓ(t) ∈ Γ ∩ Cω0

0 . Since g0, σ
and H are fixed, the linearization of the divergence constraint (1.7) gives

δ( 1
2N δ

∗
0X

′) = −4φ5φ′dH,

while the linearization of the Lichnerowicz equation gives

8∆φ′ = R0φ
′ + 2

3H
2φ4φ′ + 7|λσ + 1

2N δ
∗
0X|2φ−8φ′(6.9)

− φ−7[λλ′|σ|2 + ( 1
2N )2⟨δ∗0X ′, δ∗0X⟩

+ λ′ 1
2N ⟨σ, δ∗0X⟩+ λ 1

2N ⟨σ, δ∗0X ′⟩].

(Here we have dropped the terms (µ, ξ) from the expression in (6.9); they
enter in a way which makes no difference in the argument to follow). Pair
(6.9) with φ′ and integrate over M . Then the left side of (6.9) is nega-
tive, while all terms except the last bracketed term on right are positive.
For ω small and Y [g] ≥ 0, by (5.11) one has λ ∼ O(φ4), δ∗0X = O(φ6) and
δ∗0X

′ = O(φ5)O(φ′). Suppose then λ′ = 0. The term ⟨δ∗0X ′, δ∗0X⟩ is then
O(φ4)O(φ′)φ′ while last term λ⟨σ, δ∗0X ′⟩ is then O(φ2)O(φ′)φ′. Both of these
are small compared with the R0(φ

′)2 term, and so one must have φ′ = 0. It
follows then also that X ′ = 0.

The proof of uniqueness is the same, using the difference φ1 − φ2 and
X1 −X2 in place of the (limit of) the difference quotient. □

In the following, we choose the direction of parameter t so that λ′(t) > 0
for t ∼ −∞, so for λ small. The next result summarizes the work above,
proving also that ω increases monotonically with λ for λ small. This is the
Cε version of Theorem 1.3, for regular values Lσ.

Corollary 6.5. For Y [g] > 0, and for each σ with |σ|Cm−1,α = 1, there is
λ0 > 0, depending only on ([g], H), such that there is a unique solution
(φ,X) of the constraint equations with Π(φ,X) = ([g, λσ], H) with ω small,
for each

λ ∈ (0, λ0].

Further, λ is a smooth, monotonically increasing function of ω for ω ≤ ω0.

Proof. It suffices to prove the last statement. For this, evaluate (6.9) at a
point p realizing minφ′. The left side of (6.9) is then non-negative, while λ′ >
0 also. A brief inspection shows that if minφ′ < 0, then all the main terms on
the right are negative. In fact, the only term which is not obviously negative



✐

✐

“1-Anderson” — 2021/7/5 — 19:59 — page 1368 — #44
✐

✐

✐

✐

✐

✐

1368 Michael T. Anderson

(or of lower order) is the term φ−7λ′ 1
2N ⟨s, δ∗0X⟩. But δ∗0X = O(φ6) ≪ λ by

(5.11), so this term is small compared with the φ−7λλ′|σ|2 term.
It follows that minφ′ > 0, which easily implies ω′ > 0. Thus ω(t) is

strictly increasing with t for t ∼ −∞ and so also strictly increasing with
respect to λ. □

Proof of Theorem 1.3. It is now straightforward to complete the proof of
Theorem 1.3. Thus Corollary 6.5 proves Theorem 1.3 for generic ε > 0 and
generic lines Lσ. As noted above, the work in §5 and §6, in particular the
compactness properties related to Theorem 5.1, (cf. also Remark 5.7), im-
plies that the behavior described in Theorem 6.3 - Corollary 6.5 is stable
when passing to limits ε→ 0 and to arbitrary Lσ ∈ P ′. (Here we recall that
regular values Lσ are open and dense in P ′, by the Sard-Smale theorem).
This proves Theorem 1.3 in general. □

Remark 6.6. Theorem 6.3 shows that Corollary 6.5 does not hold in the
region Y [g] < 0; there is a transition from existence to non-existence as
Y [g] > 0 passes through Y [g] = 0 to Y [g] < 0 when ω is sufficiently small.
One sees this most clearly when passing through the region Ccmc.

Thus, recall from Theorem 2.1 that all points in Ccmc are regular points
and Π is a diffeomorphism in a neighborhood of Ccmc. Consider a pair of
paths z±(s) = ([gs,±λσ], Hs) ∈ D′, λ ̸= 0, with conformal classes [gs] satis-
fying

Y [g0] > 0, Y [g1] < 0, with Y [g 1

2
] = 0 and H 1

2
= const.

Assume also λ is sufficiently small. Then for s ∈ [0, 12 ] the paths z±(s)
lift uniquely to a pair of curves (φ(s), X(s)) ∈ Cω0

0 , ω0 small, solving the
constraint equations. The diffeomorphism property above implies that the
curves z±(s) continue in Cω0

0 to some open interval containing [0, 12 ]. How-
ever, Theorem 6.3 shows that at some point s > 1

2 , say s = 3
4 , the paths

z±(s) merge or join at s = 3
4 and there is no solution (φ,X) to the con-

straint equations over z±(s) in Cω0

0 for s > 3
4 .

This illustrates a clear (and generic) bifurcation or fold behavior of the
map Π in such regions.

We conclude the paper with a discussion of the large-scale behavior when
ω becomes large, i.e. the global behavior of the collection of curves Γ in (6.5).

For any line Lσ = ([g, λσ], H0) ∈ Dcmc
+ with H0 = const, the fiber Γ =

(Π̃−1
ε )({g, σ}, H0) consists of a pair of lines ℓ± with λ varying smoothly over

(−∞, 0) in ℓ− and λ varying smoothly over (0,∞) in ℓ+. The intersections
ℓ− ∩ Cω, ℓ+ ∩ Cω consist of an odd number of points, for generic ω, and are
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unique for ω ≫ 1 and ω ≪ 1. For Lσ ∈ Dcmc
− , the lines ℓ± meet smoothly at

a point with λ = 0, at a minimum value of ω = ω0 > 0.
Given a general regular value ({g, σ}, H) of Π̃ε, as in the proof of Theo-

rem 6.3, let z(s) be a smooth path in P ′ joining ({g, σ}, H0) to ({g, σ}, H),
for example of the form (6.8), transverse to Π̃ε. The inverse image

S = Π̃−1
ε (z),

is a properly embedded surface, not necessarily connected, in Cε with Γ ⊂
∂S. For a generic ω, the intersections S ∩ Cω

ε are a collection of 1-manifolds,
i.e. circles S1 or arcs ≃ I, with boundary ∂I contained in the fibers Cω

ε ∩
Π̃−1

ε (z(0) ∪ z(1)). The 1-manifold S ∩ Cω
ε gives a cobordism between the

points in the fibers Cω
ε ∩ Π̃−1

ε (z(0)) and Cω
ε ∩ Π̃−1

ε (z(1)).
It would be very interesting to study the topology of such surfaces S

in more detail. Their topology may well be related to the existence of non-
trivial topology in the space Cε or C′ of solutions of the constraint equations.
In this regard, we make only the following remarks.

Suppose there exists a connecting curve z(s) as above and ω ∈ R
+ such

that

λ ̸= 0

everywhere on S ∩ Cω
ε , so that Π̃ε is defined on S ∩ Cω

ε . It then follows just as
in the proof of Theorem 6.2 that there exists λ+ > 0 and λ− < 0 such that
the data ([g, λ±σ], H) are solvable, with (φ,X) ∈ Cω

ε . Of course the proof of
Theorem 6.3 proves this is the case for Y [g] > 0 and ω sufficiently small, so
that S ∩ Cω

0 consists of a pair of disjoint arcs connecting Cω
ε ∩ Π̃−1

ε (z(0)) to
Cω
ε ∩ Π̃−1

ε (z(1)).
This shows that the existence of solutions (φ,X) with λ = 0, i.e. with

data of the form

([g], 0, H),

may give a possible obstruction to the existence of solutions over ({g, σ}, H ′),
for some H ′ near H or [g′] near [g].

As noted above in (6.7), on any component ℓσ of Γ, the function F takes
on all values ω ∈ R

+ and so is a proper function on ℓσ. By Theorem 5.1,
on ℓσ,

(6.10) λ→ ∞ ⇒ ω → ∞.

On the other hand, it is not true that λ is a proper function on ℓσ in general,
i.e. the converse of (6.10) may not hold. This follows from the fundamental
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non-existence result of Nguyen [32]. It is then of basic interest to understand
the value

λ0 = sup{|λ(φ,X)| : Π̃(φ,X) = ({g, s}, H)}.
This leads to the “limit equation” introduced by Dahl-Gicquaud-Humbert

[12]. We give a simple derivation here for completeness, cf. also [19].

Proposition 6.7. Let K be a compact set in P ′ with H > 0 and let (φi, Xi)
be a sequence of solutions of the constraint equations with Π̃(φi, Xi) ∈ K. If
F (φi) → ∞ but

sup
i

|λ(φi, Xi)| <∞,

then there is a C2,α solution X̄ to the limit equation

(6.11) δ( 1
2N δ

∗
0X̄) = −

√
2
3 | 1

2N δ
∗
0X̄|dH

H
.

At points where δ∗0X̄ ̸= 0, the solution X̄ is Cm,α.

Proof. Let mi = supφi, so that m→ ∞. As in (2.10), renormalize the di-
vergence constraint (1.7) by dividing by m6 to obtain

(6.12) δ( 1
2N δ

∗
0X̄) = φ̄6dH,

where X̄ = X/m6, φ̄ = φ/m and we have dropped the subscript i for sim-
plicity. It follows from elliptic regularity that X̄ remains uniformly bounded
in C1,α and so δ∗0X is uniformly bounded in Cα. Similarly, renormalizing
the Lichnerowicz equation (1.8) gives

8m−4∆φ̄ = m−4R0φ̄− |σ̄ + 1
2N δ

∗
0X̄|2φ̄−7 + 2

3H
2φ̄5,

where σ̄ = σ/m6 → 0. Since m−4∆φ̄→ 0 weakly (i.e. as a distribution) and
m−4R0φ̄→ 0 in L∞, it follows that, after passing to a subsequence, that
there is a limit (φ̄, X̄) satisfying

(6.13) | 1
2N δ

∗
0X̄|2φ̄−7 = 2

3H
2φ̄5,

weakly, i.e. as distributions. Since the right side of (6.11) is in L∞, the left
side is also and hence, multiplying by the L∞ function φ̄ gives

|δ∗0X̄|2 = 2
3H

2φ̄12,

in L∞. Substituting this in (6.12) gives (6.11). Bootstrapping via elliptic
regularity in the usual way gives X̄ ∈ Cm,α, where |δ∗0X̄| ≠ 0. Near points
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where |δ∗0X̄| = 0, the function |δ∗0X̄| is Lipschitz, so in Cα, so that X̄ ∈
C2,α. □

This leads naturally to the following result.

Corollary 6.8. Let Ω be a domain in G′ × cm,α(M) with Y [g] > 0 and
H > 0 and suppose the limit equation (6.11) has no non-zero solution for
([g], H) ∈ Ω.

Then for any σ ̸= 0 there is a solution (φ,X) of the constraint equations
(1.7)–(1.8) over the data ([g, σ], H) with ([g], H) ∈ Ω. Further, generically
the number of solutions is finite and odd.

Proof. LetD′
Ω ⊂ D′ be the bundle region over Ω. Proposition 6.7 implies that

whenever F → ∞ in the region C′
Ω = (Π′)−1(D′

Ω) then necessarily λ→ ∞
also. This implies that

(6.14) Π′ : C′
Ω → D′

Ω,

is a continuous proper map; compare with Theorem 5.1. Similarly, the ε-
perturbation

(6.15) Π′
ε : C′

Ω,ε → D′
Ω,

is a smooth proper Fredholm map, of Fredholm index 0. Hence the map
(6.15) has a well-defined Smale degree. We claim that, for any ε sufficiently
small,

(6.16) degZ2
Π′

ε = 1.

To see this, choose a regular value ([g, λσ], H), |σ|Cm−1,α = 1, of Π′
ε. By

Corollary 6.5, for λ sufficiently small, there is a unique solution (φ,X) of the
ε-perturbed constraint equations with Π′

ε(φ,X) = ([g, λσ], H). Since (φ,X)
is the unique regular point over the regular value ([g], λσ,H), this proves
(6.16).

Using the compactness results from §5 and §6 as in the proof of Theorem
1.3, one may pass to the limit ε→ 0 to obtain a solution (φ,X) of the
vacuum constraint equations (1.7)–(1.8) over ([g, σ], H), for any σ ̸= 0. The
last statement then also follows from (6.16). □

Note that the basic non-existence result of Nguyen [32] implies that Ω
is not all of G′ × cm,α(M) and so it remains an interesting open problem to
characterize such domains Ω.
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Remark 6.9. As is well-known, we note that the scaling transformation
(2.12) transforms solutions (φ,X) with small value ω of F to those with large
ω, while also increasing the values of σ,X but decreasing the mean curvature
H. Thus for example, as discussed in [19], the existence and uniqueness result
given in Theorem 6.3 corresponds to a similar result for H close to 0.
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[11] P. Chruściel and E. Delay,Manifold structures for sets of solutions of the
general relativistic constraint equations, Jour. Geom, Phys. 51 (2004),
442–472.



✐

✐

“1-Anderson” — 2021/7/5 — 19:59 — page 1373 — #49
✐

✐

✐

✐

✐

✐

Einstein constraint equations 1373

[12] M. Dahl, R. Gicquaud, and E. Humbert, A limit equation associated to
the solvability of the vacuum Einstein constraint equations by using the
conformal method, Duke Math. Jour. 161 (2012), 2669–2697.

[13] J. Dilts, M. Holst, T. Kozareva, and D. Maxwell, Numerical bifurcation
analysis of the conformal method, arXiv:1710.03201.

[14] D. Ebin, The manifold of Riemannian metrics, in: Global Analysis,
Proc. Symp. Pure Math. 15 (1970), 11–40.

[15] A. E. Fischer and J. Marsden, Linearization stability of the Einstein
equations, Bull. Amer. Math. Soc. 79 (1973), no. 5, 997–1003.

[16] A. E. Fischer and J. Marsden, Topics in the dynamics of general rela-
tivity, in: The Structure of Isolated Gravitating Systems, Ed. J. Ehlers,
Italian Physical Society, (1979), 322–395.

[17] A. E. Fischer and J. Marsden, The manifold of conformally equivalent
metrics, Can. Jour. Math. 29 (1977), 193–209.

[18] A. E. Fischer, J. Marsden, and V. Moncrief, The structure of the space
of solutions of Einstein’s equations, I. One Killing field, Ann. Inst. H.
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