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The Conway Moonshine Module is a

reflected K3 theory

Anne Taormina and Katrin Wendland

Recently, Duncan and Mack-Crane established an isomorphism, as
Virasoro modules at central charges c = 12, between the space of
states of the Conway Moonshine Module and the space of states
of a special K3 theory that was extensively studied some time ago
by Gaberdiel, Volpato and the two authors. In the present work,
we lift this result to the level of modules of the extensions of these
Virasoro algebras to N = 4 super Virasoro algebras. Moreover, we
relate the super vertex operator algebra and module structure of
the Conway Moonshine Module to the operator product expansion
of this special K3 theory by a procedure we call reflection. This
procedure can be applied to certain superconformal field theories,
transforming all fields to holomorphic ones. It also allows to de-
scribe certain superconformal field theories within the language of
super vertex operator algebras. We discuss reflection and its limi-
tations in general, and we argue that through reflection, the Con-
way Moonshine Module inherits from the K3 theory a richer struc-
ture than anticipated so far. The comparison between the Conway
Moonshine Module and the K3 theory is considerably facilitated
by exploiting the free fermion description as well as the lattice ver-
tex operator algebra description of both theories. We include an
explicit construction of cocycles for the relevant charge lattices,
which are half integral. The transition from the K3 theory to the
Conway Moonshine Module via reflection promotes the latter to
the role of a medium that collects the symmetries of K3 theories
from distinct points of the moduli space, thus uncovering a version
of symmetry surfing in this context.
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Introduction

Very few would have anticipated in 1978 that the innocuous decomposition
196884 = 196883 + 1 would spark so much interest in the mathematics com-
munity, culminating with the award of a Fields medal to Borcherds twenty
years later. The defining moment was John McKay’s observation that 196883
is the dimension of the smallest non trivial irreducible representation of the
Monster group M, and that 196884 is the coefficient of the linear term in
the Fourier expansion of the j-function, a Hauptmodul for SL(2,Z). What
had appeared to be a mere coincidence at first turned out to be part of
an intriguing pattern. Not only did all the Fourier coefficients of the j-
function, bar the constant term, coincide with dimensions of representations
of M, exhibiting j as a graded dimension of some M-module V ♮, but all

the so-called McKay-Thompson series [Tho79], which are graded characters
for arbitrary elements of M, are themselves Hauptmoduln of genus zero sub-
groups Γ ⊂ SL(2,R). This phenomenon was coinedMonstrous Moonshine by
Conway and Norton. The connections between the largest sporadic group
and modular functions have deep roots and manifest themselves in string
theory for example. To this day though, and despite the beautiful construc-
tion of the Monster Module by Frenkel, Lepowsky and Meurman [FLM84]
using conformal field theory techniques, as well as its realization in terms
of superstrings [DGH88], there has been little use of these connections in
string theory.

A game changing event took place in 2010, when Eguchi, Ooguri and
Tachikawa [EOT11] noticed an intriguing connection between the elliptic
genus EK3 of K3, and the sporadic group M24. The arena is that of closed
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superstrings propagating on K3 surfaces, where the existence of a world-
sheet N = (4, 4) superconformal symmetry is well established and intimately
related to the hyperkähler structure of K3. One of us, in collaboration
with Eguchi, Ooguri and Yang, used techniques pioneered by Witten to
calculate the elliptic genus of K3 exploiting the structure of string parti-
tion functions based on orbifolds and Gepner models in [EOTY89]. Such
partition functions are expressed in terms of massless and massive, uni-
tary irreducible characters of the N = 4 superconformal algebra at cen-
tral charge c = 6 [ET87, ET88a, ET88b], and it follows that EK3 may be
decomposed into an infinite sum of such characters. The coefficients of
all massive N = 4 characters appearing in that sum were conjectured in
[EOT11] to be the dimensions of representations of M24. In fact, an im-
print of this relation had been anticipated previously by Govindarajan and
Krishna [GK10, Gov11] in their studies of Borcherds-Kac-Moody Lie su-
peralgebras obtained from dyon spectra in ZN -CHL orbifolds. The conjec-
ture became more specific after the work of Cheng [Che10], Gaberdiel, Ho-
henegger and Volpato [GHV10b, GHV10a], and Eguchi and Hikami [EH11],
who determined the expected twining genera. This Mathieu Moonshine was
mathematically proven by Gannon [Gan16], but his approach does not shed
much light on the role of M24 in string theory. This remains an open ques-
tion, which in our eyes, is well worth studying. Indeed, investigations so far
suggest that a full understanding of an M24 action in this context requires
new conceptual thinking.

There have been several lines of attack to probe Mathieu Moonshine.
As mentioned above, shortly after the observation by Eguchi, Ooguri and
Tachikawa, and building on Thompson’s idea of twist [Tho79], several groups
constructed twining elliptic genera that were proven to be graded characters
of an infinite-dimensional M24-module [Gan16]. In another development, a
new family of moonshines was discovered, of which Mathieu Moonshine is
a member. Dubbed Umbral Moonshine, this family of connections between
certain mock modular forms and automorphism groups of Niemeier lattices
has opened the door to some fruitful collaborations that bridge mathemat-
ics and theoretical physics [CDH14a, CDH14b, DGO15]. In the meantime,
we investigated the geometric symmetries of strings propagating on K3 sur-
faces of Kummer type. Using lattice techniques to introduce the concept
of symmetry surfing the moduli space of K3 theories, we showed how the
overarching group Z4

2 : A8 emerges from symmetry surfing [TW13, TW15a].
The basic idea, at this level, is an application of Kondo’s beautiful strategy
of proof [Kon98] of Mukai’s seminal classification result [Muk88] for sym-
plectic automorphisms of K3 surfaces: the lattice of integral cohomology of
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K3, which enters crucially in the construction of the moduli space of K3
theories [AM94, NW01], is replaced by an even, self-dual lattice of the same
rank, which thereby serves as a medium to collect symmetries from distinct
points of the moduli space. To move beyond generating the relevant groups,
in order to construct the expected representations, one needs to leave the
comfort zone of lattice techniques. In the context of Z2-orbifolds of toroidal
conformal field theories, this has been achieved in [TW15b, GKP17], pro-
viding further evidence in favour of the idea of symmetry surfing.

Our present investigation picks up more recent efforts to establish con-
nections between certain conformal field theories and certain super vertex
operator algebras. Indeed, we aim at clarifying the relationship between the
K3 theory studied in [GTVW14] and the Conway Moonshine Module of
Duncan and Mack-Crane [Dun07, DMC16]. As Virasoro modules at central
charge c = 12, Duncan and Mack-Crane showed that the spaces of states
of the two models agree. However, while the former is an N = (4, 4) su-
perconformal field theory at central charges c = c = 6, the latter is a super
vertex operator algebra at central charge c = 12, together with its (unique,
up to isomorphism, irreducible) canonically twisted supermodule. We show
that the two are related1 by a procedure which we call reflection. Only very
special superconformal field theories allow reflection, which transforms all
fields to holomorphic ones. The operator product expansion (OPE) of the
K3 theory thereby induces the super vertex operator algebra and admissible
module structure on the Conway Moonshine Module, and more, since in the
K3 theory, an OPE is defined between any pair of fields. The reflection pro-
cedure provides a bridge between conformal field theory and vertex operator
algebra techniques. This bridge may be used in both directions, hopefully
allowing some of the experts in vertex operator algebras to enter the world
of K3 theories, or even more general superconformal field theories.

By our interpretation of the Conway Moonshine Module as the image
of a K3 theory under reflection, the modular properties of the partition
function and its building blocks receive a natural explanation from super-
string theory. It would be interesting to know whether all the genus zero
properties of Conway Moonshine can be traced back to K3. On the level of
lattices, reflection is an implementation of the techniques mentioned above,
where the K3 lattice with signature (4, 20) is replaced by an even, self-dual

1up to exchanging the roles of bosons and fermions in the Ramond sector of the
Conway Moonshine Module, while accounting for an extra factor of (−1) introduced
by hand in the Ramond sector partition functions between [DMC16, (8.7)] and
[DMC16, (9.10), (9.14)]



✐

✐

“6-Wendland” — 2021/7/5 — 19:49 — page 1251 — #5
✐

✐

✐

✐

✐

✐

The Conway Moonshine Module is a reflected K3 theory 1251

positive definite lattice of the same rank. This allows us to reveal the pro-
posal of [DMC16], that is, the realisation of all symmetries of K3 theories
as automorphisms of the Conway Moonshine Module, as an incarnation of
symmetry surfing by means of lattice techniques [TW13, TW15a]. It also
means that we do not expect a construction of an M24 vertex operator alge-
bra that explains Mathieu Moonshine from the Conway Moonshine Module,
since the latter disregards the twist of [TW15b, GKP17].

The work [CDR18] by Creutzig, Duncan and Riedler complements ours,
with some overlap with our results. To clarify the relation between the Con-
way Moonshine Module and the K3 theory studied in [GTVW14], they in-
troduce the notion of a potential bulk SCFT, which in our language amounts
to the image of a SCFT under reflection, viewed as a module of its chiral-
antichiral algebra. They find sufficient conditions for such a potential bulk
SCFT to agree with (adequately) nice super vertex operator algebras, and
they provide examples where these conditions hold. Given that the poten-
tial bulk SCFT obtained from the above-mentioned K3 theory is among
these examples, they have in particular, independently from us, extended
the identification with the Conway Moonshine Module to the level of mod-
ules of a supersymmetric extension of the previously studied two copies of
the Virasoro algebra.

The present work is organised as follows. In Section 1, we start by re-
visiting the K3 theory based on the Z2-orbifold of the D4-torus theory,
whose symmetry group Z8

2 : M20 is one of the largest symmetry groups
of K3 theories preserving N = (4, 4) supersymmetry [GTVW14]. As a K3
sigma model, this theory is built on the tetrahedral Kummer surface stud-
ied in depth in [TW13, TW15b, TW15a]. With a view to compare this
theory to the Conway Moonshine Module later on, we pay particular at-
tention to its description in terms of twenty-four free Majorana fermions,
twelve left- and twelve right-movers, and highlight its underlying affine cur-
rent algebra2 (ŝo(4)1,L ⊕ ŝo(4)1,R)

3 ⊂ ŝo(8)31. One of the three summands
ŝo(4)1,L ⊕ ŝo(4)1,R is the affine algebra arising from the fermionic super-
partners of the four left and four right-moving U(1) currents of the bosonic
D4-torus theory. We make a choice of a left- (resp. right-)moving U(1) cur-
rent whose zero mode generates the Cartan subalgebra of an affine ŝu(2)1,L ⊂
ŝo(4)1,L (resp. ŝu(2)1,R ⊂ ŝo(4)1,R), which is determined by the left- (resp.

2We use the notation ĝn1 = ĝ⊕n
1 throughout.
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right)-moving N = 4 superconformal algebra3 at central charge c = 6 (resp.
c = 6). We use standard conformal field theory techniques to identify the
spectrum of our special K3 theory in terms of the vacuum, vector and two
spinor representations of ŝo(8)1 and to give an elegant description in terms
of lattice vertex operator algebras. In addition, we provide the full partition
function, including its explicit dependence on the charges measured by the
zero modes of the U(1) currents described above. The underlying charge
lattice Γ of our K3 theory is half integral. Our presentation includes the
classification of all equivalence classes of cocycles for a certain type of half
integral lattices, in particular Γ. Moreover, in each such equivalence class
of cocycles we explicitly construct a representative which obeys all required
compatibility conditions with the real structure on our space of states.

Section 2 is devoted to a recapitulation of the Conway Moonshine Mod-
ule presented in [Dun07, DMC15, DMC16]. We also offer a description in
terms of lattice vertex operator algebras. In addition, we explain how to ob-
tain U(1) currents that allow an interpretation as images of the U(1) currents
in the K3 theory, under reflection, and we present the partition function for
the Conway Moonshine Module with its dependence on the corresponding
charges.

In Section 3, we determine some necessary and sufficient conditions for
non-holomorphic superconformal field theories to allow reflection, that is, a
mathematically consistent transformation of all fields to holomorphic ones.
We show that reflection amounts to a complex conjugation for the anti-
holomorphic parameters of the OPE when restricted to pairs of fields that
create real states.4 The real structure on the space of states of the original
superconformal field theory is thus found to play a crucial role5. We show
that our reflection procedure, if applicable, yields the structure of a super

3In fact, this is the small N = 4 superconformal algebra of [ABD+76]. We simply
call it the N = 4 superconformal algebra to untangle the terminology.

4This procedure is reminiscent of that used by Harvey and Moore in their def-
inition of BPS algebras [HM96]. However, we differ in the following crucial point:
throughout our work, we parametrize fields ϕ(z, z) in the complex plane rather
than on the cylinder. Therefore, on a formal level complex conjugation of the right-
moving degrees of freedom amounts to restricting to z = z. On the other hand,
the prescription given in [HM96, §9], which also changes the right-moving fields to
left-moving fields, amounts to enforcing z = z−1, i.e. using a complex conjugation
on the cylinder. Although the latter may be a natural choice, our construction, in
the context of lattice vertex operator algebras, entails the change in signature of
the charge lattice required to make contact with the super vertex operator algebras.

5As is customary, we denote the real structure on C by z 7→ z for z ∈ C, and we
write i = exp

(
iπ
2

)
for our choice of

√
−1 throughout.
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vertex operator algebra on the Neveu-Schwarz sector HNS and that of an
admissible HNS-module on the Ramond sector of the theory. We furthermore
discuss how reflection induces an additional structure on the resulting super
vertex operator algebra and admissible module.

In Section 4, we show that the Conway Moonshine Module emerges via
reflection of the K3 theory with Z8

2 : M20 symmetry. In this case, we show
that reflection amounts to replacing the lattice of signature (6, 6), which
governs the lattice vertex operator algebra description of the K3 theory, by
a lattice of signature (12, 0). Thereby, we interpret the ideas of [DMC16],
namely to realize all symmetries of K3 theories as automorphisms of the Con-
way Moonshine Module, in terms of symmetry surfing. Although this yields
a natural action of M24 on the Conway Moonshine Module that extends the
action of the geometric symmetry group of the K3 theory, this cannot ex-
plain Mathieu Moonshine. Indeed, the twist that had already been observed
in [TW15b] is not implemented in the Conway Moonshine Module. Three
appendices summarise, respectively, our approach to superconformal field
theory, technical background concerning cocycles on half integral lattices,
and some useful identities for Jacobi theta functions.

1. A K3 theory with Z
8

2
: M20 symmetry

In this section, we present the basic ingredients of the K3 theory which
is central to this work6, namely the K3 theory based on the Z2-orbifold of

the D4-torus theory. This model accounts for one of the largest possible
discrete symmetry groups of K3 theories preserving N = (4, 4) supersym-
metry, namely Z8

2 : M20. That some K3 theory would possess this symmetry
was predicted in the very interesting classification paper [GHV12]. As a con-
sequence, it was a sound enterprise to determine and study such a model
further, constructing its symmetries explicitly in order to gain further in-
sight in relation to the M24 Moonshine phenomenon. The model was first
investigated in [NW01], where it was denoted (2̃)4 in reference to the fact
that it can be constructed as a Gepner type model. It was studied exten-
sively in [Wen02, GTVW14] from several perspectives, one of which involves
a description7 in terms of 12 left-moving Majorana fermions ψj(z) and 12
right-moving Majorana fermions ψj(z), j ∈ {1, . . . , 12}.

6For a summary of relevant notions from (super-)conformal field theory, see Ap-
pendix A.

7The authors of [DMC16] seem unaware of the fact that the free fermion descrip-
tion of the K3 theory predates their own account.
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The description of this model in terms of free fermions, as given in
[GTVW14], is summarized below since it is central in making contact with
the recent works of Duncan and Mack-Crane [DMC15, DMC16]. For later
convenience, we include a detailed discussion of the OPEs in this model,
fixing in particular the delicate choices of phase factors.

1.1. Bosonic D4-torus model

The bosonic D4-torus model, which we consider as a starting point to the
construction of our K3 theory, is a toroidal theory based on the 4-dimensional
torus T = R4/L, where L is the D4-lattice LD4

⊂ R4 and where the B-field
and the metric are chosen in such a way that the generic left-moving affine
û(1)4 algebra is enhanced to the affine algebra ŝo(8)1, and analogously for
the right-movers (see [GTVW14, §2] for details). The lattice of û(1)4L ⊕ û(1)4R
charges, which completely determines the D4-torus model, equals

Γd,d :=

{
(Q;Q) ∈

(
Z
d ⊕ Z

d
)
∪
( (

1
2 + Z

)d ×
(
1
2 + Z

)d)
(1.1)

∣∣∣
d∑

k=1

(
Qk +Qk

)
≡ 0 mod 2

}

with d = 4, c.f. [GTVW14, (2.11)]. The lattice Γd,d ⊂ Rd,d = Rd ⊕ Rd is
equipped with the symmetric bilinear form

(1.2) ∀(Q;Q), (Q′;Q
′
) ∈ Γd,d : (Q;Q) • (Q′;Q

′
) := Q ·Q′ −Q ·Q′

,

where here and in the following, Q ·Q′ ∈ R denotes the standard scalar
product of Q, Q′ ∈ Rd. This yields an even, self-dual lattice Γd,d in general,
and the space of states of the bosonic D4-torus model is

(1.3) HD4-torus =
⊕

γ∈Γ4,4

Hγ

with Hγ , γ = (Q;Q) ∈ Γ4,4, the Fock space representation of 4 left-moving
and 4 right-moving free bosons, built on a ground state υγ of û(1)4L ⊕ û(1)4R
with charge γ and conformal dimensions (h;h) = 1

2(Q ·Q;Q ·Q). We gen-
erally choose such υγ ∈ Hγ with υ∗γ = υ−γ as unit vectors with respect to
the scalar product ⟨·, ·⟩ on HD4-torus. Moreover, we assume that υ0 = Ω is
the vacuum.
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By construction, the space HD4-torus decomposes into four sectors, since

Γ4,4 =

3⋃

a=0

(
γ
(a)
D4

+ Γ
(0)
D4

)
, with(1.4)

Γ
(0)
D4

:=

{
(Q;Q) ∈ Z

4 ⊕ Z
4
∣∣∣

4∑

k=1

Qk ≡
4∑

k=1

Qk ≡ 0 mod 2

}
,

γ
(0)
D4

:= 0, γ
(1)
D4

:= (e4; e4), γ
(2)
D4

:=
1

2

4∑

k=1

(ek; ek) , γ
(3)
D4

:= γ
(1)
D4

+ γ
(2)
D4
,

where here and in the following, (ek)k∈{1,...,d} denotes the standard basis

of Rd.

1.1.1. Holomorphic and anti-holomorphic currents and fermion-
ization. The four holomorphic currents of the model in the Cartan subal-
gebra of ŝo(8)1, jk(z) with k ∈ {1, . . . , 4}, obey the OPEs

(1.5) jk(z)jℓ(w) ∼
δkℓ

(z − w)2
∀k, ℓ ∈ {1, . . . , 4}.

Analogously, in the right-moving sector, one has four anti-holomorphic U(1)
currents ȷk(z), k ∈ {1, . . . , 4}.

One may fermionize the theory by the Frenkel-Kac-Segal construction
[FK81, Seg81, GO84]. To do so, one introduces eight free left-moving Ma-
jorana fermions ψi(z), i ∈ {5, . . . 12} and eight free right-moving Majorana
fermions ψi(z), i ∈ {5, . . . 12}, with OPEs

ψi(z)ψj(w) ∼
δij

z − w
, ψi(z)ψj(w) ∼

δij
z − w

, ∀i, j ∈ {5, . . . , 12},

all with coupled spin structures. In terms of the free holomorphic Dirac
fermions

xk :=
1√
2
(ψk+4 + iψk+8) , x∗k :=

1√
2
(ψk+4 − iψk+8),(1.6)

k ∈ {1, . . . , 4},

which satisfy the OPEs

(1.7) xk(z)x
∗
k(w) ∼

1

z − w
∼ x∗k(z)xk(w), k ∈ {1, . . . , 4},
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the four left-moving U(1) currents are given by

(1.8) jk(z) = :xk(z)x
∗
k(z): = −i :ψk+4(z)ψk+8(z): ,

as can be checked by calculating their OPEs (1.5) with the help of (1.7).
Introducing jk(z) = i∂ϕk(z), one may identify

xk(z) = :exp(iϕk(z)): ck, x∗k(z) = :exp(−iϕk(z)): c−k,(1.9)

k ∈ {1, . . . , 4},

where ck and c−k are cocycle factors that ensure that the fermions of different
species anticommute, as we shall discuss in greater detail below.

The analogous construction holds for the right-moving sector, through
the introduction of four right-moving Dirac fermions

xk :=
1√
2
(ψk+4 + iψk+8), x∗k :=

1√
2
(ψk+4 − iψk+8),(1.10)

k ∈ {1, . . . , 4},

as well as ȷk(z) := :xk(z)x
∗
k(z): = i∂ϕk(z) with

ixk(z) = :exp(iϕk(z)): ck, ix∗k(z) = :exp(−iϕk(z)): c−k, k ∈ {1, . . . , 4}.

It is then straightforward to express the 24 currents of ŝo(8)1 associated
with the roots of D4, namely the vectors ±ej ± ek, 1 ≤ j < k ≤ 4, in terms
of the Dirac fermions (1.9): possibly up to cocycle factors, these 24 conformal
weight (h;h) = (1; 0)-fields may be realized as

(1.11)
Vej+ek

(z) = :xj(z)xk(z):, V
−ej−ek

(z) = :x∗j (z)x
∗
k(z):,

Vej−ek
(z) = :xj(z)x

∗
k(z):, V

−ej+ek
(z) = :x∗j (z)xk(z): .

In other words, Γ
(0)
D4

contains the charge vectors (±ej ± ek; 0) that are re-
sponsible for the extended ŝo(8)1 symmetry of the model.

1.1.2. General momentum-winding fields. The currents (1.11) are
special momentum-winding fields with left and right û(1)4 charges (Q;Q).
The latter, a priori, are vectors of the charge lattice Γ4,4 ⊂ R4,4 of the D4-
torus model as in (1.1). The momentum-winding field for any (Q;Q) ∈ Γ4,4
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may be written as

(1.12) V(Q;Q)(z, z) := :exp

[
i

4∑

k=1

Qkϕk(z) + i

4∑

k=1

Qkϕk(z)

]
: c(Q;Q),

with c(Q;Q) denoting appropriate cocycle factors [FK81, Seg81, GO84]. This
means that for every γ ∈ Γ4,4, we have a linear operator cγ on H, where
(cγ)|Hγ′

= ε(γ, γ′) · idHγ′ for all charge vectors γ, γ′ ∈ Γ4,4, with cocycles

ε : Γ4,4 × Γ4,4 −→ {±1}.

Here, as is common in the physics literature, the term cocyclesmore precisely
refers to 2-cocycles on Γ4,4 with values in {±1} that obey the additional
symmetry requirement (B.5) with respect to the bilinear form (1.2) on Γ4,4.
In Appendix B we review the definition of such cocycles. Since Γ4,4 is an
integral lattice, their explicit construction, also given in Appendix B, is well-
known.

In the notations of (1.12), the bosonic (h;h) = (1; 0)-fields (1.11) have
Q = ±ej ± ek and Q = 0, and we write

V±ej±ek
(z) := V(±ej±ek;0)(z, z).

According to (1.4), the four cosets in Γ4,4/Γ
(0)
D4

, namely γ
(a)
D4

+ Γ
(0)
D4

for
a ∈ {0, . . . , 3}, induce the decomposition of the space of states of the bosonic
D4-torus model into representations of the left and right-moving ŝo(8)1-
algebras as

HD4-torus = (HL,0 ⊗HR,0)⊕ (HL,v ⊗HR,v)

⊕ (HL,s ⊗HR,s)⊕ (HL,c ⊗HR,c),

whereHL,0 is the left-moving ŝo(8)1 vacuum representation, whileHL,v,HL,s

and HL,c are the vector and the two spinor representations, respectively. The
HR,• denote the corresponding right-moving representations. Hence

HL,0 ⊗HR,0 =
⊕

γ∈Γ(0)
D4

Hγ

with the notations of (1.4) and (1.3). The vector representation

HL,v ⊗HR,v =
⊕

γ∈γ(1)
D4

+Γ
(0)
D4

Hγ
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is generated by OPEs of the left and right-moving currents with the vector

(h;h) :=(12 ;
1
2) winding-momentum fields V(Q;Q)(z, z), where

Q = ±ei , Q = ±ej .

The spinor representations HL,s ⊗HR,s, HL,c ⊗HR,c are analogously gen-
erated by the OPEs of the left and right-moving currents with the spin

(h;h) := (12 ;
1
2) winding-momentum fields VQ;Q(z, z) for

Q =
1

2

4∑

j=1

εjej , Q =
1

2

4∑

k=1

δkek ,

where εj , δk ∈ {±1} and

4∑

k=1

(Qk +Qk) ≡ 0 mod 2 .

In fact,

HL,s ⊗HR,s =
⊕

γ∈γ(2)
D4

+Γ
(0)
D4

Hγ , HL,c ⊗HR,c =
⊕

γ∈γ(3)
D4

+Γ
(0)
D4

Hγ ,

i.e.
∑4

k=1Qk and
∑4

k=1Qk are both even for HL,s ⊗HR,s and both odd for
HL,c ⊗HR,c.

Fermionizing the bosonic D4-torus theory as mentioned earlier allows us
to extend the definition of the momentum-winding fields in (1.12) to include
fermionic fields Vγ(z, z) with γ ∈ (Z4 ⊕ Z4) \ Γ4,4 ⊂ (ΓD4

0 )∗, where

ΓD4

0 := (Z4 ⊕ Z
4) ∩ Γ4,4.

Indeed8, in (1.9) and (1.10) we have already presented special cases of such
fermionic fields, namely

(1.13)
xk(z) = Vek

(z), x∗k(z) = V−ek
(z);

ixk(z) = V(0;ek)(z, z), ix∗k(z) = V(0;−ek)(z, z), k ∈ {1, . . . , 4},

where c(±ek;0) := c±k and c(0;±ek) := c±k. Following [GO86], [GNOS86],
[GNO+87], we may actually extend further to Hγ′ with γ′ ∈ ΓD4

,

ΓD4
:= Γ4,4 ∪ ((0; e4) + Γ4,4) = (ΓD4

0 )∗,

8For later convenience, we use slightly different normalizations than the ones
given in [GTVW14].
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a half integral lattice. The lattice ΓD4

0 = (ΓD4
)∗ is a sublattice of ΓD4

of index
4, and as such, (ΓD4

0 ,ΓD4
) form a Z2 lattice pair (Γ0,Γ) of the type used in

Appendix B. In particular, Appendix B includes an explicit construction of
cocycles ε for this half integral lattice. These cocycles are bimultiplicative
in the sense of (B.11), and they are in the special gauge (B.12). They take
values in the group of eighth roots of unity in C∗. To clear notations, we
write the charge lattice, extended to include fermions, as

ΓD4
=

3⋃

a=0

(
γ̃
(a)
D4

+ ΓD4

0

)
, with ∆ :=

{
γ̃
(1)
D4
, γ̃

(2)
D4
, γ̃

(3)
D4

}
,

(1.14)

γ̃
(0)
D4

:= 0, γ̃
(1)
D4

:= (0; e4), γ̃
(2)
D4

:= γ
(2)
D4

=
1

2

4∑

k=1

(ek; ek) , γ̃
(3)
D4

:= γ̃
(1)
D4

+ γ̃
(2)
D4
.

For any γ, γ′ ∈ ΓD4
, the OPEs between momentum-winding fields Vγ , Vγ′

are given by

(1.15) Vγ(z, z)Vγ′(w,w) ∼ (z − w)Q·Q′

(z − w)Q·Q′

ε
(
γ, γ′

)
Vγ+γ′(w,w)

×
{
1 + (z − w)

4∑

k=1

Qkjk(w) + (z − w)

4∑

k=1

Qkȷk(w) + · · ·
}
.

Note that in these OPEs, apart from integral powers of (z − w), (z − w) and
|z − w|, odd integral powers of (z − w)±

1

2 and (z − w)±
1

2 occur iff

γ ∈ δ + ΓD4

0 , γ′ ∈ δ′ + ΓD4

0 and δ, δ′ ∈ ∆, δ ̸= δ′,

or equivalently, γ • γ′ ∈ 1
2 + Z. Then, implementation of (1.15) in an n-point

function affords the restriction of the domain of definition to some con-
tractible open U ⊂ Cn \ ∪i ̸=j{z ∈ Cn|zi = zj}. An unambiguous formulation
of such an extension of (1.15) states for all γ, γ′ ∈ ΓD4

:

(1.16) Vγ(z, z)υγ′ ∼ zQ·Q′

zQ·Q′

ε
(
γ, γ′

)

×
{
1 + z

4∑

k=1

Qka
(k)
−1 + z

4∑

k=1

Qka
(k)
−1 + · · ·

}
υγ+γ′ ,

where z ∈ U with U ⊂ C∗ a contractible open subset, and where a
(k)
n , a

(k)
n

with k ∈ {1, . . . , 4}, n ∈ Z, denote the modes of jk(z), ȷk(z).
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Using (1.16), one checks that the coboundary condition (B.1) ensures
associativity of the OPE,

∀α, β, γ ∈ ΓD4
: Vα(z, z) (Vβ(w,w)υγ) ∼ (Vα(z, z)Vβ(w,w)) υγ .

The additional symmetry condition (B.5) ensures semilocality

∀a ∈ {1, 2, 3}, ∀α, β ∈ ΓD4

0 ∪
(
γ̃
(a)
D4

+ ΓD4

0

)
:

Vα(z, z)Vβ(w,w) ∼ (−1)(α•α)·(β•β)Vβ(w,w)Vα(z, z).

In other words, semilocality is only required to hold between Vα(z, z) and
Vβ(w,w) if α • β ∈ Z. Indeed, this condition cannot be imposed on all pairs
α, β ∈ ΓD4

, since the above-mentioned square root cuts obstruct semilocal-
ity.

The choice of special gauge (B.12) for the cocycles ensures that the OPE
(1.15) is compatible with the real structure on the space of states according
to (A.6). Indeed, for α = (Q;Q) ∈ ΓD4

we see from (1.16) that the condition
ε(α, 0) = 1 ensures that the field Vα(z, z) creates the state υα from the vac-
uum. Furthermore, ε(−α, α) = 1 amounts to the hermiticity condition that

ensures that (Vα(z, z))
† = z−Q·Qz−Q·QV−α(z

−1, z−1) is compatible with our
requirements υ∗α = υ−α and υ0 = Ω. More generally, by (A.7) we have

∀α, β ∈ ΓD4
: < Vα+β(w,w)V−α(x, x)V−β(z, z) >

=< (V−β(z, z))
† (V−α(x, x))

† (Vα+β(w,w))
† >,

such that the above requirement for the Hermitian conjugate fields together
with (1.15) yield the last equation in (B.12).

1.2. Supersymmetric D4-torus model

The supersymmetric D4-torus model is obtained by adjoining d = 4 free Ma-
jorana fermions (ψk(z), ψk(z)), k ∈ {1, . . . , 4}, related to the U(1) currents
jk(z) and their right-moving counterparts by world-sheet supersymmetry.
Similarly to (1.6), it is more convenient to work with the Dirac fermions

(1.17) χj :=
1√
2
(ψ2j−1 + iψ2j), χ∗

j :=
1√
2
(ψ2j−1 − iψ2j), j ∈ {1, 2},
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and their right-moving counterparts, all of which have coupled spin struc-
tures. Hence these Dirac fermions give rise to the affine symmetry

(1.18) ŝo(8)1 ⊃ ŝo(4)1,L ⊕ ŝo(4)1,R ∼= ŝu(2)41 .

Details of the construction of the corresponding currents in terms of the four
Majorana fermions may be found in [GTVW14, §2]. This model enjoys ex-
tended left- and right-moving worldsheet supersymmetry. We choose a par-
ticular left- (resp. right-) moving N = 4 superconformal algebra at central
charge c = 6 (resp. c = 6), which comes with an affine ŝu(2)1,L ⊂ ŝo(4)1,L
(resp. ŝu(2)1,R ⊂ ŝo(4)1,R) for ŝo(4)1,L and ŝo(4)1,R in (1.18). Our choice of
U(1) currents

(1.19) J := :χ1χ
∗
1: + :χ2χ

∗
2:, J := :χ∗

1χ1: + :χ∗
2χ2:,

whose zero modes generate the Cartan subalgebras of the above-mentioned
ŝu(2)1,L and ŝu(2)1,R, is of particular importance in what follows.

Altogether, the total affine symmetry of the supersymmetric D4-torus
model is

ŝo(8)1 ⊕ ŝo(16)1 ⊃ (ŝo(4)1,L ⊕ ŝo(8)1,L)⊕ (ŝo(4)1,R ⊕ ŝo(8)1,R) .

The pair χk, χ
∗
k, χk, χ

∗
k, k ∈ {1, 2}, of two left- and two right-moving

Dirac fermions, all with coupled spin structures, gives rise to a fermionic

CFT at central charges c = 2, c = 2, three copies of which suffice to give a
complete description of the supersymmetric D4-torus model, as was done
in [GTVW14, §3] and shall be recalled shortly. As a preparation, we first
give a description of this fermionic CFT by means of toroidal momentum-
winding fields as in Section 1.1, along the lines of [GTVW14, Appendix D],
including the fermionic contributions. Though the fermionic CFT at central
charges c = 2, c = 2 possesses neither worldsheet nor spacetime supersym-
metry, Neveu-Schwarz and Ramond sectors are well-defined by means of the
fermion boundary conditions. By the above, the supersymmetric D4-torus
model is the tensor product of the bosonic D4-torus model of Section 1.1
and this fermionic CFT.

For each U(1) current j in the ŝo(8)1 current algebra of (1.18), similarly
to (1.8), (1.10), we may introduce j = i∂φ. Thus we bosonize by writing

jk := −i :ψ2k−1ψ2k: = i∂φk, jk := −i :ψ2k−1ψ2k: = i∂φk(1.20)

for k ∈ {1, 2},
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and we recover

χk(z) = :exp(iφk(z)): ck, χ∗
k(z) = :exp(−iφk(z)): c−k,

iχk(z) = :exp(iφk(z)): ck+2, iχ∗
k(z) = :exp(−iφk(z)): c−(k+2).

Analogously to (1.13), all contributions from the free fermions χk, χ
∗
k, χk,

χ∗
k, k ∈ {1, 2}, are now generated by fields V(Q;Q)(z; z) as in (1.12), where

(Q;Q) ∈ Γ̃2,2 ⊂ R2,2, a lattice equipped with the symmetric bilinear form
• that was introduced in (1.2). This half integral lattice, which extends
the charge lattice Γ2,2 given by (1.1) for d = 2, is needed to accommodate
fermionic fields in the same way as was presented in Subsection 1.1.2. One
has

Γ̃2,2 := Γ2,2 ∪ ((0; e2) + Γ2,2 )(1.21)

=
(
Z
2 ⊕ Z

2
)
∪
(
1

2
+ Z

)2

×
(
1

2
+ Z

)2

=

3⋃

i=0

(
γ̃(i) + Γ̃0

)
with

Γ̃0 :=

{
(Q;Q) ∈ Z

2 ⊕ Z
2
∣∣∣

2∑

k=1

(Qk +Qk) ≡ 0 mod 2

}
,

γ̃(0) := 0, γ̃(1) := (0; e2), γ̃
(2) :=

1

2

2∑

k=1

(ek; ek), γ̃
(3) := γ̃(1) + γ̃(2).

The above charge lattice Γ̃2,2 with its sublattice Γ̃0 yields another example of

a Z2 lattice pair (Γ̃0, Γ̃2,2) of the type used in Appendix B. Hence analogously
to the discussion in Section 1.1.2, a general winding-momentum field creating
a ground state υγ ∈ Hγ , γ = (Q;Q) ∈ Γ̃2,2, has the form (1.12),

Vγ(z, z) := :exp

[
i

2∑

k=1

Qkφk(z) + i

2∑

k=1

Qkφk(z)

]
: cγ .

Consistent cocycles governing the cocycle factors cγ , γ ∈ Γ̃2,2, with the ad-
ditional symmetry and gauge requirements (B.5), (B.11), (B.12), are con-
structed in our Appendix B. We refer to the end of Section 1.1.2 for the
justification of these requirements.

Since all spin structures in our pair χk, χ
∗
k, χk, χ

∗
k, k ∈ {1, 2}, of two left-

and two right-moving Dirac fermions are coupled, the space of states arising
from the standard Fock space representations of these fermions decomposes
into the contributions from the vacuum, vector, spinor and antispinor repre-
sentations of ŝo(8)1 ⊃ ŝo(4)1,L ⊕ ŝo(4)1,R labelled 0, v, s, c, above. Similarly
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to the discussion in Section 1.1 and with notations as in (1.3), we collect
these contributions in sectors HS with S ∈ {0, v, s, c} and find

(1.22)

H0 =
⊕

γ∈Γ̃0

Hγ , Hv =
⊕

γ∈γ̃(1)+Γ̃0

Hγ ,

Hs =
⊕

γ∈γ̃(2)+Γ̃0

Hγ , Hc =
⊕

γ∈γ̃(3)+Γ̃0

Hγ .

The bosonic sector of this model is H0 ⊕Hs, while Hv ⊕Hc yields the
fermions. The Neveu-Schwarz sector is H0 ⊕Hv, while the Ramond sector
is Hs ⊕Hc.

Generalizing the definition (1.17) of the Dirac fermions χℓ, χℓ, to include
ℓ ∈ {3, . . . , 6}, the sectors of the bosonic D4-torus theory of Section 1.1 arise
as

(1.23) HL,S ⊗HR,S ∼= HS ⊗HS , S ∈ {0, v, s, c},

where ⊗ denotes a fermionic tensor product, whenever needed. The sector
HL,S ⊗HR,S is governed by the lattice ΓD4

, which yields the charge lattice
with respect to the zero modes of (j1, . . . , j4; ȷ1, . . . , ȷ4) where as in (1.8),
jk = −i :ψk+4ψk+8:, k ∈ {1, . . . , 4}, and similarly for ȷk. Our choice of U(1)
currents on HS ⊗HS is

(j3, . . . , j6; j3, . . . , j6) = (− i :ψ5ψ6:, . . . , −i :ψ11ψ12: ;

− i :ψ5ψ6:, . . . , −i :ψ11ψ12:),

as in (1.20).

1.3. Z2-orbifold of the supersymmetric D4-torus model

In order to obtain a K3 theory, we now consider a Z2-orbifold of the su-
persymmetric D4-torus model. The group Z2 acts in the usual manner on
the fields of the bosonic D4-model, i.e. it maps jk(z) 7→ −jk(z), ȷk(z) 7→
−ȷk(z), k ∈ {1, . . . , 4}, and Vγ 7→ V−γ for all γ ∈ Γ4,4. This action is induced
by the transformation that leaves ψ5(z), . . . , ψ8(z) invariant, while map-
ping ψi(z) 7→ −ψi(z) where i ∈ {9, . . . , 12}, as can be checked by inspection
of (1.8). In other words, we have xk(z) ↔ x∗k(z), and analogously for the
right-moving fermions. Note that the Z2-orbifold action on the eight Majo-
rana fermions ψi(z), i ∈ {5, . . . 12}, and their anti-holomorphic counterparts,
which before orbifolding had coupled spin structures as demanded by the
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ŝo(16)1 symmetry, decouples the boundary conditions of the first four Majo-
rana spinors from the last four. Therefore, the Z2-orbifold action breaks the
ŝo(16)1 symmetry of the supersymmetric D4-torus model to ŝo(8)1 ⊕ ŝo(8)1.

On the fermions ψk(z) and ψk(z) for k ∈ {1, . . . , 4}, which are the super-
symmetric partners of the U(1) currents jk(z) and ȷk(z), the group Z2 acts
as ψk 7→ −ψk and likewise for the right-movers, ψk 7→ −ψk. In particular,
the orbifold leaves the ŝo(8)1 algebra in (1.18) invariant, since it is generated
by all bilinear fermion combinations, whose ŝo(4)1,L currents are given in
[GTVW14, (2.13)–(2.16)].

Altogether, the orbifold thus has an affine current algebra of type

(ŝo(4)1,L ⊕ ŝo(4)1,R)
3 ⊂ ŝo(8)31.

The untwisted sector of the Z2-orbifold is generated by the Z2-invariant
(h;h) = (1; 0)-fields with C-basis

for j < k, V(ej+ek;0)(z) + V(−ej−ek;0)(z), V(ej−ek;0)(z) + V(−ej+ek;0)(z),

along with the Z2-invariant (h;h) = (12 ;
1
2)-fields which are of the form

Vγ(z, z) + V−γ(z, z).

In the twisted sector, the twisted ground states of our Z2-orbifold amount
to the Ramond ground states for pairs of free Dirac fermions χk, χ

∗
k, χk, χ

∗
k

with k ∈ {1, 2}, k ∈ {3, 4} and k ∈ {5, 6}, respectively. Hence our K3 theory
allows an elegant free fermion description with respect to the (ŝo(4)1,L ⊕
ŝo(4)1,R)

3 current algebra (c.f. [GTVW14, §3.2 and Appendix D]) intro-
duced above: the spin structures of left- and right-movers within each of the
three summands ŝo(4)1,L ⊕ ŝo(4)1,R are coupled; the contributions of each
of these summands to the Neveu-Schwarz sector, according to [GTVW14,
(C.3), (C.4)], are

(1.24) (NS,NS,NS) (NS,R,R) (R,NS,R) (R,R,NS),

and those to the Ramond-sector come from

(1.25) (R,NS,NS) (R,R,R) (NS,NS,R) (NS,R,NS).

In terms of the vacuum, vector, spinor and antispinor representations of
ŝo(8)1 ⊃ ŝo(4)1,L ⊕ ŝo(4)1,R let us denote by HS1S2S3

with Sk ∈ {0, v, s, c}
the threefold (fermionic) tensor product of the respective HSk

of (1.22),
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according to the three entries in each triplet of (1.24), (1.25). Then (1.24)
means that the Neveu-Schwarz sector of the theory has the following bosonic
and fermionic spaces of states:

(1.26)
HNS

bos = H000 ⊕H0ss ⊕Hs0s ⊕Hss0,

HNS
ferm = Hvvv ⊕Hvcc ⊕Hcvc ⊕Hccv.

Analogously, by (1.25), the Ramond sector of the theory has the following
bosonic and fermionic spaces of states:

(1.27)
HR

bos = Hs00 ⊕Hsss ⊕H00s ⊕H0s0,

HR
ferm = Hcvv ⊕Hccc ⊕Hvvc ⊕Hvcv.

This is in accord with [DMC16, (11.15), (11.16)].
The explicit form (1.15) of the OPE now confirms that OPEs are well-

defined without square root cuts between any two fields corresponding to
states in HNS

bos ⊕HR
bos, and without such cuts also between any two fields

corresponding to states in HNS
bos ⊕HNS

ferm, as they should.

The charge lattice Γ governing this theory is most conveniently described as
a sublattice

(1.28) Γ ⊂ Γ̃2,2 ⊕ Γ̃2,2 ⊕ Γ̃2,2 ⊂ R6,6,

with Γ̃2,2 as in (1.21), equipped with the symmetric bilinear form • that was

introduced in (1.2). Here, each of the three identical summands Γ̃2,2 in the
overlattice governs the charges of one of the sectors S1, S2, S3 in HS1S2S3

.
Now from (1.26), (1.27) and recalling (1.22), one reads that the bosonic

sector HNS
bos ⊕HR

bos is governed by the even self-dual lattice

Γbos :=
(
Γ̃0 ∪ (γ̃(2) + Γ̃0)

)
⊕
(
Γ̃0 ∪ (γ̃(2) + Γ̃0)

)
⊕
(
Γ̃0 ∪ (γ̃(2) + Γ̃0)

)

∼= Γ2,2 ⊕ Γ4,4 = Γ6,6

and thus agrees, as a bosonic conformal field theory, with the bosonic sector
of the toroidal superconformal field theory on the standard torus R4/Z4

with vanishing B-field. This was in fact already shown in [NW01, Rem. 3.8].
Using the notations of (1.21) and in keeping with the decomposition (1.28)
into contributions from the three summands Γ̃2,2, we set

γ(0) := 0, γ(1) :=
(
γ̃(1), γ̃(1), γ̃(1)

)
,

γ(2) :=
(
γ̃(2), γ̃(2), γ̃(2)

)
, γ(3) := γ(1) + γ(2),
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and find that the charge lattice of our K3 theory is half-integral,

Γ = Γbos ∪
(
γ(1) + Γbos

)
.

The lattice Γ meets all the assumptions on the lattice Γ of Appendix B, with
Γ0 = Γ∗. By our construction in Appendix B, we thus obtain well-defined
cocycles obeying the additional symmetry and gauge requirements (B.5),
(B.11), (B.12).

1.4. Partition function

The free fermion description given above is convenient in order to determine
the partition function of the theory and – by means of the elliptic genus –
to confirm that it is a K3 theory. In fact, by the results of [EOTY89], the
usual Z2-orbifold of every supersymmetric (d = 4)-dimensional torus model
has the elliptic genus of K3 and thus is indeed a K3 theory by definition, see
[Wen15].

In the following, we calculate the various contributions to the partition
function that can be read from (1.26), (1.27). We use the standard notations
for Jacobi theta functions, which we also summarize in Appendix C for the
reader’s convenience.

By (1.26), the contributions to the partition function

Z
ÑS

(τ, z) = trHNS
bos

(
yJ0yJ0qL0−1/4qL0−1/4

)
− trHNS

ferm

(
yJ0yJ0qL0−1/4qL0−1/4

)

from the Neveu-Schwarz sector as defined in (A.3), in terms of the different
ingredients to (1.24), are given by

(NS,NS,NS) :
1

4

(∣∣∣∣
ϑ3(τ)

η(τ)

∣∣∣∣
8

+

∣∣∣∣
ϑ4(τ)

η(τ)

∣∣∣∣
8
)

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

(1.29)

+
1

2

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4

(NS,R,R) :
1

4

∣∣∣∣
ϑ2(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

,(1.30)

(R,NS,R) + (R,R,NS) :
1

2

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

(1.31)

+
1

2

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

.
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Analogously, by (1.27), (1.25), the contributions to the partition function

ZR̃(τ, z) = trHR
bos

(
yJ0yJ0qL0−1/4qL0−1/4

)
− trHR

ferm

(
yJ0yJ0qL0−1/4qL0−1/4

)

from the Ramond sector are

(R,NS,NS) :
1

4

(∣∣∣∣
ϑ3(τ)

η(τ)

∣∣∣∣
8

+

∣∣∣∣
ϑ4(τ)

η(τ)

∣∣∣∣
8
)

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

(1.32)

+
1

2

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

,

(R,R,R) :
1

4

∣∣∣∣
ϑ2(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

,(1.33)

(NS,NS,R) + (NS,R,NS) :
1

2

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

(1.34)

+
1

2

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4

.

Altogether, the four parts of the partition function of (A.3) are given by

ZNS(τ, z) =
1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4
)
,

Z
ÑS

(τ, z) =
1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4
)
,

ZR(τ, z) =
1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4
)
,

ZR̃(τ, z) =
1

2

(
1

2

4∑

k=2

∣∣∣∣
ϑk(τ)

η(τ)

∣∣∣∣
8

·
∣∣∣∣
ϑ1(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ3(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ2(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ3(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ4(τ, z)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
ϑ2(τ)ϑ4(τ)

η2(τ)

∣∣∣∣
4

·
∣∣∣∣
ϑ3(τ, z)

η(τ)

∣∣∣∣
4
)
.
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2. The Conway Moonshine Module

In this section, we summarize Duncan’s construction of the Conway Moon-

shine Module9 V s♮ ⊕ V s♮
tw [Dun07, DMC15]. Section 2.1 closely follows the

exposition in [DMC16, §6] but accompanies it by a description in terms of
a lattice theory, while in Section 2.2, we include some additional structure
that we need for comparison to the K3 theory of Section 1.

By [Dun07, Thm. 5.15], V s♮ is the unique self-dual, C2-cofinite super
vertex operator algebra of CFT type with central charge c = 12, such that
for the Virasoro zero mode L(0) on V

s♮, the kernel of L(0) − 1
2 idV s♮ is trivial.

Moreover, V s♮
tw is an irreducible canonically twisted V s♮-supermodule, and as

such, it is unique according to [DMC15, §4].

2.1. The construction of V s♮ ⊕ V
s♮
tw

Both V s♮ and V s♮
tw are obtained using a standard construction [FFR91,

DMC15] that attaches a super vertex operator algebra A(a) and a canon-
ically twisted module A(a)tw for it to any finite dimensional complex vec-
tor space a equipped with a non-degenerate symmetric bilinear form (·, ·).
For later convenience, we will always assume that the dimension of a is
even. Moreover, by a slight abuse of terminology, we will call a family
(υ1, . . . , υk) of elements of a orthonormal, iff for all i, j ∈ {1, . . . , k}, we
have (υi, υj) = δij .

For every n ∈ Z, one now introduces a copy a(n+1/2)
∼= a and sets

â− :=
⊕

n<0

a(n+1/2), A(a) :=
∧

(â−)Ω ∼=
∧

(â−),

where Ω denotes a choice of a vacuum state, such that in particular, for
w ∈

∧
(â−), w(Ω) := wΩ yields the isomorphism A(a) ∼=

∧
(â−). The con-

struction of the standard super vertex algebra on the vector space A(a)
involves a choice of isomorphism a −→ a(n+1/2) for every n ∈ Z, denoted10

9For the relevant definitions concerning super vertex operator algebras and their
properties, we refer the reader to the literature, see e.g. [Kac98, FBZ04, LL04], as
well as the very accessible summary in [DMC16, §5].

10As a warning to the bilingual reader we remark that our υ(ν) are denoted υ(ν)
in the vertex algebra literature, while their υ(ν) relate to our υ(ν) by a weight-
dependent shift of ν.
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υ 7→ υ(n+1/2). The υ(n+1/2) are regarded as linear maps on A(a), acting by
left multiplication if n < 0, and obeying υ(n+1/2)Ω = 0 for all υ ∈ a and
n ∈ N as well as the Clifford algebra11

(2.1) ∀υ, φ ∈ a, ∀m,n ∈ Z :

υ(n+1/2)φ(m+1/2) + φ(m+1/2)υ(n+1/2) = δm+n+1,0 · (υ, φ).

This uniquely fixes the action of each υ(n+1/2) on A(a) and by [FBZ04,
Thm. 4.4.1] extends uniquely to a super vertex algebra structure on A(a). In
physics terminology, the field associated to υ ∈ a is a free Majorana fermion.
By the standard Sugawara construction [Sug68, Som68], applied to a max-
imal set of U(1) currents with pairwise trivial OPEs (c.f. [FK81, Seg81,
GO86], for example), A(a) enjoys the action of a Virasoro algebra at central
charge c = 1

2 dim a, promoting A(a) to a super vertex operator algebra. The
standard modes generating this Virasoro algebra are denoted L(n), n ∈ Z,
in the following.

The canonically twisted module of A(a) is similarly obtained by in-
troducing a copy a(n)

∼= a and a choice of C vector space isomorphism
a −→ a(n), υ 7→ υ(n) for every n ∈ Z. In addition, one chooses a polariza-
tion a = a+ ⊕ a− for a with respect to (·, ·). Let (a−)(0) denote the image of
a− under a −→ a(0), υ 7→ υ(0). One then sets

â−tw := (a−)(0) ⊕
⊕

n<0

a(n), A(a)tw :=
∧

(â−tw)Ωtw
∼=
∧

(â−tw),

where Ωtw is a choice of a twisted ground state, and similarly to the above, for
w ∈

∧
(â−tw), w(Ωtw) := wΩtw. As above, the υ(n) are regarded as linear maps

on A(a)tw, acting by left multiplication if n < 0, and obeying υ(n)Ωtw = 0
if n > 0, or n = 0 and υ ∈ a+, as well as the Clifford algebra (2.1) in its
incarnation

∀υ, φ ∈ a, ∀m,n ∈ Z : υ(n)φ(m) + φ(m)υ(n) = δm+n,0 · (υ, φ).

As for A(a), this uniquely fixes the action of each υ(n) on A(a)tw. According
to [FS04, §2.2], this extends uniquely to a canonically twisted A(a)-module
structure on A(a)tw.

11Note that the normalization chosen by Duncan and Mack-Crane in [DMC15,
DMC16] differs from ours and [FFR91, (2.41)] by a factor of −2 on the right hand
side of (2.1).
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The above construction ensures a natural action of the standard Clifford
algebra Cliff(a) associated to (a, (·, ·)) on A(a)tw, such that an element rep-
resented within the tensor algebra of a by υ1 ⊗ · · · ⊗ υk with υ1, . . . , υk ∈ a,
k ∈ N, acts by (υ1)(0) ◦ · · · ◦ (υk)(0). The Cliff(a)-submodule CM of A(a)tw
generated by Ωtw is the unique (up to isomorphism) non-trivial irreducible
representation of Cliff(a) [DMC16, (6.16)]. In addition, one chooses a fermion

number operator (−1)F on A(a) and on A(a)tw, where

(−1)Fυ(k) + υ(k)(−1)F = 0 ∀υ ∈ a, k ∈ 1

2
Z,

(−1)FΩ = Ω, (−1)FΩtw = Ωtw.

The algebra generated by the υ(0) with υ ∈ a together with (−1)F , in the
physics literature is known as the fermionic zero mode algebra. In [DMC16],
(−1)F is obtained by choosing a lift of −ida ∈ SO(a) to Spin(a) which is
compatible with the polarization a = a+ ⊕ a− of a. The fermion number
operator (−1)F induces a Z2-grading on A(a) and on A(a)tw, such that

A(a) = A(a)0 ⊕A(a)1, A(a)tw = A(a)0tw ⊕A(a)1tw,

where A(a)j and A(a)jtw, with j ∈ {0, 1}, are the (−1)j eigenspaces of (−1)F

on A(a), A(a)tw.

The super vertex operator algebra V s♮ and its canonically twisted mod-
ule V s♮

tw are now obtained from a ∼= C24 with the standard bilinear form (·, ·)
as

V s♮ := A(a)0 ⊕A(a)1tw, V s♮
tw := A(a)0tw ⊕A(a)1,

where according to [DMC15] (c.f. [DMC16, Prop. 8.1]), the A(a)0-module
structure of V s♮ extends uniquely to a super vertex operator algebra struc-
ture on V s♮, and the A(a)0-module structure of V s♮

tw extends uniquely to a
canonically twisted V s♮-module structure. As mentioned above, by [Dun07,
Thm. 5.15], V s♮ is the unique self-dual, C2-cofinite super vertex operator
algebra with central charge c = 12 and trivial ker

(
L(0) − 1

2 idV s♮

)
. We call

the subspace V s♮, equipped with its structure as a super vertex operator
algebra, the Neveu-Schwarz sector of the Conway Moonshine Module, and
V s♮
tw its Ramond sector.

In physics terminology, every υ ∈ A(a)j or υ ∈ A(a)jtw, j ∈ {0, 1}, is a
state in a free fermion theory (see, e.g., [DW09] for a systematic description
of free fermion theories in the context of heterotic strings on Calabi-Yau
three-folds), obtained from 24 free Majorana fermions with coupled spin
structures. Analogously to the analysis of Section 1.3, any decomposition
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a = b1 ⊕ b2 ⊕ b3 with dim bk = 8 for each k ∈ {1, 2, 3} allows a description
of the contributions to A(a)j and A(a)jtw in terms of threefold (fermionic)
tensor products US1S2S3

, where Sk ∈ {0, v, s, c} for k ∈ {1, 2, 3} labels the
vacuum, vector, spinor or antispinor representation of the affine algebra
ŝo(8)1 corresponding to bk:

(2.2)

V s♮
bos := A(a)0

= (A(b1) ∧A(b2) ∧A(b3))0

= U000 ⊕ U0vv ⊕ Uv0v ⊕ Uvv0,

V s♮
ferm := A(a)1tw

= (A(b1)tw ∧A(b2)tw ∧A(b3)tw)1

= Uccc ⊕ Ucss ⊕ Uscs ⊕ Ussc,

V s♮
tw,bos := A(a)0tw

= (A(b1)tw ∧A(b2)tw ∧A(b3)tw)0

= Uscc ⊕ Usss ⊕ Uccs ⊕ Ucsc,

V s♮
tw,ferm := A(a)1

= (A(b1) ∧A(b2) ∧A(b3))1

= Uv00 ⊕ Uvvv ⊕ U00v ⊕ U0v0,

c.f. [DMC16, (11.20),(11.21)].

This also shows that the structure of V s♮ ⊕ V s♮
tw can be conveniently en-

coded in terms of a lattice vertex operator algebra, by bosonization. Indeed,
analogously to the discussion in Section 1.3, and using the notations intro-
duced there, we find

V s♮ ⊕ V s♮
tw =

⊕

γ∈Γrefl

Hγ ,

where the relevant charge lattice is

Γrefl := Z12 ∪ (12 + Z)12 ⊂ R12,

equipped with the Euclidean scalar product. For later convenience we remark
that

Γrefl ⊂ Γ̃refl
2,2 ⊕ Γ̃refl

2,2 ⊕ Γ̃refl
2,2 ⊂ R

12,

where

Γ̃refl
2,2 := Z4 ∪ (12 + Z)4 ⊂ R4.
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More precisely, with Γ̃refl
0 := {Q ∈ Z4|

∑4
k=1Qk ≡ 0 mod 2}, an index 4 sub-

lattice of Γ̃refl
2,2 ⊂ R4, and the 4-vectors

(2.3) γ̃(0) := 0, γ̃(1) := e4, γ̃(2) := 1
2

4∑
k=1

(ek, ek), γ̃(3) := γ̃(1) + γ̃(2),

the cosets are

∀a ∈ {0, . . . , 3} : Γ̃refl
a := γ̃(a) + Γ̃refl

0 , hence Γ̃refl
2,2 =

3⋃

a=0

Γ̃refl
a .

One has

Γrefl = Γrefl
bos ∪ Γrefl

ferm

with

(2.4)
Γrefl
bos :=

(
Γ̃refl
0 ∪ Γ̃refl

1

)
⊕
(
Γ̃refl
0 ∪ Γ̃refl

1

)
⊕
(
Γ̃refl
0 ∪ Γ̃refl

1

)
= Z

12,

Γrefl
ferm :=

(
Γ̃refl
2 ∪ Γ̃refl

3

)
×
(
Γ̃refl
2 ∪ Γ̃refl

3

)
×
(
Γ̃refl
2 ∪ Γ̃refl

3

)
= (12 + Z)12.

Note that

V s♮
bos ⊕ V s♮

tw,ferm =
⊕

γ∈Γrefl
bos

Hγ , V s♮
ferm ⊕ V s♮

tw,bos =
⊕

γ∈Γrefl
ferm

Hγ ;

our counterintuitive choice of notations will be justified in Section 4.1.
To introduce cocycles, we may again invoke the results of Appendix B,

since Γrefl
0 :=

(
Γrefl

)∗
is an even sublattice of index 4 in the half integral

lattice Γrefl. It is given by

Γrefl
0 =

{
Q ∈ Z

12

∣∣∣∣
12∑

k=1

Qk ≡ 0 mod 2

}
.

With

γrefl(0) := 0, γrefl(1) := (γ̃(3), γ̃(3), γ̃(3)),

γrefl(2) := (γ̃(1), γ̃(1), γ̃(1)) and γrefl(3) := γrefl(1) + γrefl(2),

the four cosets are

Γrefl
a = γrefl(a) + Γrefl

0 ∀a ∈ {0, 1, 2, 3}.
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The two lattices (Γrefl
0 ,Γrefl) form a Z2 lattice pair in the terminology of

[GNO+87]. In this context one may associate the two Lie algebras D12 and
B12 to this lattice pair. Indeed, the set of 264 vectors of length square 2
in Γrefl form a root system of type D12, which together with the set of
24 vectors of length square 1 in Γrefl form a root system of type B12. In
fact, Γrefl

0 is a root lattice of type D12, while Γrefl is a root lattice of type
B12. We obtain well-defined cocycles εrefl on Γrefl from the construction
summarized in Appendix B, and they obey the additional symmetry and
gauge requirements (B.5), (B.11), (B.12).

By construction, V s♮ ⊕ V s♮
tw enjoys a natural action of Spin(a) which

respects the super vertex operator algebra and twisted module structures
and which on A(a) factors over SO(a). Now let Λ denote the Leech lattice
and a = Λ⊗Z C ∼= C24 with the standard bilinear form (·, ·), such that Co0 =
Aut(Λ) ⊂ SO(a). Then by [DMC15] (c.f. [DMC16, Prop. 7.1]), there is a

unique lift Ĉo0, i.e. a subgroup Ĉo0 ⊂ Spin(a) such that the natural map

Spin(a) → SO(a) induces an isomorphism Ĉo0 ∼= Co0, thus yielding a Co0-
action on the super vertex operator algebra V s♮ along with its canonically
twisted module V s♮

tw . Without loss of generality, one assumes (−1)F to yield

the non-trivial central element of Ĉo0 by modifying the polarization of a
accordingly if need be.

2.2. Choosing U(1) currents

According to [DMC16], the choice of an appropriate U(1) current for the
Conway Moonshine Module allows to attach a weak Jacobi form to any
symplectic derived equivalence of a K3 surface that fixes a suitable stability
condition on K3. Following [DMC16, (9.5)], for V s♮ ⊕ V s♮

tw we choose a U(1)
current J with zero mode J0, by distinguishing four free Majorana fermions
which are associated to an orthonormal basis of a four-dimensional subspace
x of a. Analogously to (1.6), these are combined to form Dirac fermions a±X
and a±Z , such that insertion into the bilinear form (·, ·) on a yields (a±X ,a

∓
X) =

(a±Z ,a
∓
Z ) = 1, while inserting any other combination of a±X , a±Z in (·, ·) yields

zero. Then12

(2.5) J := :a+Xa−X: + :a+Za
−
Z: .

12Note that our formula differs from that given in [DMC16, (9.5)] by a factor of
−2 due to the difference in the normalization of the Clifford algebra (2.1).
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This introduces charges ±1 for a±X and a±Z with respect to the zero mode J0
of the associated field J(z), while all fermions corresponding to states in a

that are perpendicular to x remain uncharged. Below, we will see that this
choice is compatible with the identification of V s♮ ⊕ V s♮

tw with the space of
states underlying the K3 theory of Section 1, such that J is mapped to our
choice (1.19) of U(1) current in the left-moving N = 4 superconformal alge-
bra of [GTVW14]. Since in that model, we also naturally have a right-moving
N = 4 superconformal algebra, in addition to the data given in [DMC16], we
need to determine another U(1) current, to serve as the image of a choice of
right-moving U(1) current under the reflection procedure to be described in
Section 3. The most natural candidate Ĵ seems to arise by choosing another,
disjoint set of four free fermions associated to an orthonormal basis of a four-
dimensional subspace x̂ of a, which is perpendicular to the four-dimensional
subspace x. Indeed at first sight, the structure of (J, Ĵ) is analogous to the
one observed in (1.19) for the left- and right-moving U(1) currents in the K3
theory. However, that we should have to make additional choices is coun-
terintuitive. Below we will see that consistency with the identifications of
[DMC16] actually requires to introduce instead, alongside the U(1) current
J , a second U(1) current J with zero mode J0, by setting

(2.6) J := :a+Xa−X:− :a+Za
−
Z: .

This introduces charges ±1 for a±X and a∓Z with respect to J0, while all other
fermions remain uncharged.

In [DMC16], the choice of the four-dimensional subspace x is interpreted
in terms of the choice of a complex structure along with a stability condition
on an algebraic K3 surface following [Huy06, Huy14, Huy16]. However, in
all of these references this structure is only used to attach a new label to the
refined geometric interpretations (c.f. [Wen06]) of the points in the moduli
space of SCFTs on K3, following [AM94, NW01]. Indeed, even the subdi-
vision of the four-dimensional space into two two-dimensional subspaces is
never relevant in the work of [DMC16], other than yielding the interpreta-
tion in terms of stability conditions. The latter introduces the very unnatu-
ral restriction to algebraic K3 surfaces, which is unnecessary in the original
interpretation of the moduli space and its refinements [AM94, NW01].

The above-mentioned observation that the natural U(1) charges for a
choice of orthonormal basis of the four-dimensional subspace x ⊂ a turn out
to be ±(1, 1) and ±(1,−1) is in accord with the observation in [NW01] that
this four-dimensional subspace corresponds to a choice of four charged Ra-

mond ground states of the K3 theory, with U(1) charges ±(1, 1), ±(1,−1).
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Indeed, under the state-field correspondence, the fields associated to a−X ,

a+X ∈ a create the states (a−X)(−1/2)Ω and (a+X)(−1/2)Ω, both in A(a)1 ⊂ V s♮
tw ,

which according to [DMC16, §8] are Ramond states in the Conway Moon-
shine Module. In fact, since the Ramond sector of the Conway Moonshine
Module is V s♮

tw = A(a)0tw ⊕A(a)1, these states actually are Ramond ground

states.

While by the above, the choice of the U(1) current J is crucial to the
main results of [DMC16], the charges with respect to its zero mode are only
given for the twining elliptic genera, there. Let us determine this informa-
tion, along with the charges with respect to J , for all parts of the partition
function. For notational convenience, we introduce

(2.7)

B(τ, z, ζ) :=
1

2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
+
ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(C.13)
=

1

2

(
ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)

2

η(τ)4

+
ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ4(τ)

2

η(τ)4

)
,

F (τ, z, ζ) :=
1

2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
− ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)
,

F̂ (τ, z, ζ) :=
1

2

(
ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)

2

η(τ)4

−ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ4(τ)
2

η(τ)4

)
,

with shorthand notations B(τ) := B(τ, 0, 0), F (τ) := F (τ, 0, 0). We also set
ỹ := e2πiζ for ζ ∈ C. From (2.2), we then find that the bosons in V s♮ are
counted by

ZDM−C
NS0 (τ, z, ζ) := trA(a)0

(
yJ0 ỹJ0qL(0)−1/2

)
(2.8)

=
1

2

(
ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)

η(τ)2
· ϑ3(τ)

10

η(τ)10

+
ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)

η(τ)2
· ϑ4(τ)

10

η(τ)10

)

= B(τ, z, ζ)
(
B(τ)2 + F (τ)2

)
+ F̂ (τ, z, ζ) · 2B(τ)F (τ).
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The fermions in V s♮ are counted by

ZDM−C
NS1 (τ, z, ζ) := trA(a)1tw

(
yJ0 ỹJ0qL(0)−1/2

)
(2.9)

=
1

2
· ϑ2(τ, z + ζ)ϑ2(τ, z − ζ)

η(τ)2
·
(
ϑ2(τ)

η(τ)

)10

(C.3),(C.15)
= F (τ, z, ζ) · 4F (τ)2.

Similarly, the bosons in V s♮
tw are counted by

ZDM−C
R1 (τ, z, ζ) := trA(a)0tw

(
yJ0 ỹJ0qL(0)−1/2

)
(2.10)

=
1

2
· ϑ2(τ, z + ζ)ϑ2(τ, z − ζ)

η(τ)2
·
(
ϑ2(τ)

η(τ)

)10

(C.3),(C.15)
= F (τ, z, ζ) · 4F (τ)2.

The fermions in V s♮
tw are counted by

ZDM−C
R0 (τ, z, ζ) := trA(a)1

(
yJ0 ỹJ0qL(0)−1/2

)
(2.11)

=
1

2

(
ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)

η(τ)2
· ϑ3(τ)

10

η(τ)10

−ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)

η(τ)2
· ϑ4(τ)

10

η(τ)10

)

= B(τ, z, ζ) · 2B(τ)F (τ) + F̂ (τ, z, ζ)
(
B(τ)2 + F (τ)2

)
.

3. Reflecting right-moving degrees of freedom

Since it enjoys an action of a left- and a right moving Virasoro algebra at
central charges c = c = 6, the space of states

HGTVW := HNS
bos ⊕HNS

ferm ⊕HR
bos ⊕HR

ferm

of the K3 theory of [GTVW14], described in Section 1, can be regarded
as a representation of the diagonal Virasoro algebra generated (as a Lie
algebra) by the L(n) := Ln + Ln, n ∈ Z. As such, according to [DMC16,

Prop. 11.1], HGTVW is isomorphic to the space of states V s♮ ⊕ V s♮
tw of the

Conway Moonshine Module [Dun07] of Section 2. The aim of the present
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work is to compare the known additional structures on these two spaces of
states in greater depth.

The most apparent difference between the structures on HGTVW and
V s♮ ⊕ V s♮

tw is the lack of right-movers in the Conway Moonshine Module,
while HGTVW is the space of states of a left-right symmetric theory. In other
words, left- and right-movers in our K3 theory arise on equal footing in every
respect. In [Wen02], this property was used in order to argue that the SCFT
(2̃)4 is mirror self-dual, in fact it has this property with respect to several
versions of mirror symmetry. That different incarnations of that quantum
symmetry may be applied to this theory is already a harbinger of its special
properties. Prompted by the results of [DMC16], in the present work, we
argue that we are confronted with yet another surprising, special property
of this SCFT: without destroying mathematical consistency, one may reflect

all right-movers and view them as holomorphic states, instead, while leaving
left-movers untouched. This reflection property, which we do not expect to
be shared by many SCFTs, is responsible for the beautiful result [DMC16,
Prop. 11.1], which we lift to an isomorphism between modules of u(1) ex-
tensions of the Virasoro algebras in Section 4. This extension follows also
from the results of [CDR18], which have been obtained independently from
ours.

The current section is devoted to a discussion of the process of reflecting
all states in HGTVW so that they become holomorphic, and of its limitations,
in a more general context. Therefore, in the following, let H = HNS ⊕HR

denote the space of states of a SCFT at central charges c, c, according
to the description in Appendix A. We wish to collect some necessary and
sufficient conditions for our SCFT, so that HNS can become a self-dual, C2-
cofinite super vertex operator algebra of CFT type, and HR can become
an admissible twisted HNS-module13, by means of an appropriate process of
reflecting all states in H.

Below, we argue that among the necessary conditions, we find the fol-
lowing restrictions on the central charges c, c of our SCFT:

(3.1) c, c ∈ 6N and c− c ≡ 0 mod 24.

Examples of SCFTs with c = c ∈ 3N are expected to arise from supersym-
metric non-linear sigma model constructions in the context of superstring

13As in Section 1, we refer the reader to the literature for the definition of all no-
tions concerning super vertex operator algebras and their modules. We particularly
recommend the introductory sections of [DMC15, DMC16] for a very accessible
presentation.
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theory. In such constructions, the quantum field theory emerges from the
study of differentiable maps from some Riemann surface Σ, known as the
worldsheet, into a compact Calabi-Yau manifold, known as the target space.
Classically, one would restrict attention to worldsheets that are embedded
into the target space with (locally) minimal area. The equations of motion
governing the coordinates on the target space are wave equations, whose so-
lutions, for boundary conditions corresponding to closed strings, decompose
into contributions solely depending holomorphically or anti-holomorphically

on the complex coordinates of Σ, i.e. comprising left- and right-moving

waves, respectively. In the resulting quantum field theory, the latter descend
to the left- and right-moving degrees of freedom mentioned in Appendix A.
Therefore, a reflection which renders all states of a SCFT holomorphic
should be reminiscent of a complex conjugation for the right-moving de-
grees of freedom. However, our description of SCFTs in Appendix A should
leave the reader in no doubt that the passage from string theory, with its
interpretation in terms of left- and right-moving waves, into mathematically
well-defined superconformal field theories tunnels through a number of black
boxes. In particular, as detailed in Appendix A, for fermionic fields, com-
plex conjugation entails the introduction of additional cocycle factors, and
the many consistency conditions alluded to in Appendix A need to be taken
into account when attempting a manipulation akin to a reflection on the
right-moving degrees of freedom. The circumstances under which one can
consistently perform such a procedure on H are by no means trivial.

3.1. Necessary spectral conditions

On the level of representations of the Virasoro algebra, reflecting right-
movers to become holomorphic is very simple. It amounts to viewing H =
HNS ⊕HR, as assumed above, as a representation of a Virasoro algebra at
central charge c+ c which is generated, as a Lie algebra, by the L(n) :=

Ln + Ln, n ∈ Z, and c+ c. Unitarity of the SCFT at the outset implies that
this representation is unitary, and compatible with the real structure on H.
All additional structures that we like to impose on H in the context of su-
perconformal field theory or super vertex operator algebras depend crucially
on the fine structure of these representations.

Recall that the partition function Z(τ, z) of our SCFT, defined as in
(A.1), is invariant under the special Möbius transform (τ, z) 7→ (τ + 1, z) of
(A.2). Since uniqueness of the vacuum in our theory implies that the leading
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order term of Z(τ, z) is q−c/24q−c/24, we conclude

(3.2) c− c ≡ 0 mod 24,

as announced in (3.1). The same reasoning for each summand

M · yQyQqh−c/24qh−c/24

of Z(τ, z) with M ∈ N \ {0} moreover implies that all conformal spins of
bosonic states υ ∈ Hbos are integral. In other words, for h, h ∈ R,

if υ ∈ Hbos exists with υ ̸= 0, L0υ = hυ and L0υ = hυ, then h− h ∈ Z.

Furthermore, semilocality, together with conformal covariance, forces all
conformal spins to be integral or half integral, where states in HNS

ferm have
half integral conformal spin, i.e. for h, h ∈ R,

if υ ∈ Hferm exists with

υ ̸= 0, L0υ = hυ and L0υ = hυ, then h− h ∈ 1
2Z;

if in addition, υ ∈ HNS
ferm, then h− h ∈ 1

2 + Z.

For HNS to become a self-dual super vertex operator algebra of CFT type
with respect to the action of the L(n), and for HR to become an admissible
twisted HNS-module, by the very definition of these notions14, all eigenvalues
of L(0) on H must be integral or half integral, and those for bosonic states in
the space HNS must be integral, while those for fermionic states in HNS must
be half integral [DMC15, §2.1, Axiom 8]. Hence, as a necessary condition on
our SCFT we find, for h, h ∈ R:
(3.3)
If υ ∈ H exists with

υ ̸= 0, L0υ = hυ and L0υ = hυ, then h, h ∈ 1
4N and h+ h ∈ 1

2N;

υ ∈ HNS
bos, then h, h ∈ 1

2N and h+ h ∈ N;

if in addition,




υ ∈ HNS

ferm, then h, h ∈ 1
2N and h+ h ∈ 1

2 + N;

υ ∈ HR
bos, then h− h ∈ Z.

Recall that our original SCFT was assumed to enjoy space-time supersym-
metry. Hence in particular, the vacuum Ω ∈ HNS, under spectral flow (A.5),

14A C2-cofinite super vertex operator algebra of this type is called nice, according
to Höhn [Höh96].
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is mapped to a non-zero state

Ω̃tw ∈ HR with L0Ω̃tw = c
24 Ω̃tw, L0Ω̃tw = c

24 Ω̃tw.

Thus, if HR meets the spectral requirements (3.3), then c, c ∈ 6N follows,
which together with the above condition (3.2) confirms (3.1).

Our assumption of space-time supersymmetry allows us to further re-
strict the spectrum in (3.3): with notations as in Appendix A, consider
a non-zero state υ ∈ HS

h,Q;h,Q
, S ∈ {NS,R}. Space-time supersymmetry im-

plies that υ ∈ Hbos iffQ−Q ∈ 2Z and υ ∈ Hferm iffQ−Q ∈ 2Z+ 1, in other
words, we have

(3.4) (−1)F = (−1)J0−J0 .

The operator of spectral flow, in general, has U(1) charges (Qsf ;Qsf) =
( c6 ;

c
6), so by the above and (3.1), it is bosonic. We thus may conclude that

spectral flow maps each of Hbos and Hferm isomorphically onto itself. Accord-
ing to Appendix A, it also induces an isomorphism HNS

h,Q;h,Q
∼= HR

h′,Q′;h
′

,Q
′

with (h′, Q′;h
′
, Q

′
) as in (A.5). In particular, HNS

h,Q;h,Q
⊂ Hferm is mapped iso-

morphically to HR
h′,Q′;h

′

,Q
′ ⊂ Hferm with (h′ − h

′
) ∈ (h− h) + 1

2 + Z. So (3.3)

implies for h, h ∈ R,

if υ ∈ H
R exists with υ ̸= 0, L0υ = hυ and L0υ = hυ,(3.5)

then h− h ∈ Z.

The necessary spectral conditions on L0, L0 obtained so far immediately
show that the SCFTs for which a reflection procedure may work are very
sparse within any of the known moduli spaces of SCFTs, but our claim is
that the K3 theory with space of states HGTVW is one of them. Indeed,
the free fermion description of this theory allows to break up HGTVW into
contributions that are constructed from three octuplets of free Majorana
fermions, each with coupled spin structures, according to (1.26) and (1.27).
Since ground states in the sectors HS , S ∈ {0, v, s, c} of Section 1.3 have
conformal weights (0; 0), (12 ; 0) or (0;

1
2), (

1
4 ;

1
4), (

1
4 ;

1
4), respectively, inspec-

tion of (1.26) and (1.27) immediately shows that the spectral conditions
(3.3), (3.5) are indeed fulfilled. We stress that our identification of HGTVW

with the space of states of the Conway Moonshine Module exploits the fact
that the two underlying theories enjoy a free fermion description.
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3.2. Vertex algebra and module structure

By assumption, H comes equipped with the n-point functions of a SCFT,
where the resulting maps z 7→ ⟨ϕ1(z1) · · ·ϕn(zn)⟩, for ϕ1, . . . , ϕn ∈ H, in gen-
eral, are only real analytic on their domains of definition. By the delicate
consistency conditions of SCFTs, the n-point functions encode all opera-
tor product expansions of the theory. Vice versa, reflection positivity (A.8)
determines the two-point functions ⟨ϕ1(z1)ϕ2(z2)⟩ entirely by means of the
scalar product ⟨·, ·⟩ together with the real structure and Virasoro representa-
tions on H, and all other n-point functions are determined by the two-point
functions together with the operator product expansion.

The requirements for H to comprise a super vertex operator algebra
HNS together with a twisted HNS-module HR after reflection are somewhat
weaker: we only need to fix an operator product expansion between fields
ϕ(z), υ(w) in terms of formal power series, where ϕ ∈ HNS and υ ∈ H. We
require expansions in (z − w)±1 if ϕ ∈ HNS

bos or υ ∈ HNS and in (z − w)±
1

2 if
ϕ ∈ HNS

ferm and υ ∈ HR. All this is encoded in the rules for assigning modes

(3.6) ∀ϕ ∈ HNS
bos : n 7→ ϕ(n) ∀n ∈ Z, ∀ϕ ∈ HNS

ferm : n 7→ ϕ(n) ∀n ∈ 1
2Z,

as was detailed for the particular example of the Conway Moonshine Module
in Section 2.

Nevertheless, in general one cannot expect to obtain the required oper-
ator product expansions on the space of states that arises from H by reflec-
tion, not even with these weaker requirements, and this is due to the real
analytic behaviour of the n-point functions of our SCFT. However, if the
spectral conditions (3.3), (3.5) on the eigenvalues of L0, L0 hold, then con-
formal covariance of the n-point functions severely restricts the form of the
power series describing the operator product expansions in the theory: with
notations as in Appendix A, assume that ϕi ∈ H

Si

hi;hi

, ϕj ∈ H
Sj

hj ;hj

, where

Si, Sj ∈ {NS, R}. Then all summands in the operator product expansion
between ϕi(zi) and ϕj(zj), by conformal covariance, have the form

(3.7)

ϕk(zi)

(zi − zj)hi+hj−hk(zi − zj)hi+hj−hk

with ϕk ∈ H
Sk

hk;hk

, Sk = NS if Si = Sj , Sk = R otherwise.

Thus (3.3) implies that all such OPEs ϕi(zi)ϕj(zj) are encoded in terms of

formal power series in |zi − zj |±
1

2 and (zi − zj)
± 1

2 with i ̸= j. This means

that replacing each |zi − zj |±
1

2 by (zi − zj)
± 1

2 , one obtains an ansatz for a
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“reflected” operator product expansion between the fields ϕi(zi) and ϕj(zj),
which after reflection should be viewed as (holomorphic) fields in a super ver-
tex operator algebra. But the spectral conditions (3.3), (3.5) do not ensure
that the OPE between ϕi ∈ HNS

bos and ϕj ∈ HR, after replacing all |zi − zj |±
1

2

by (zi − zj)
± 1

2 , yields a formal power series in (zi − zj)
±1, as it should. We

therefore impose one additional, very natural assumption on our original
SCFT: we require that all eigenvalues of J0 and of J0 are integral, i.e. for
Q, Q ∈ R,

if υ ∈ H exists with υ ̸= 0, J0υ = Qυ and J0υ = Qυ,(3.8)

then Q, Q ∈ Z.

This assumption is equivalent to the requirement that the theory is invariant
under the purely holomorphic and anti-holomorphic two-fold spectral flows15.
This condition holds for every K3 theory by definition, according to [Wen15,
Def. 8]; there, the operators of two-fold spectral flow, together with the U(1)
currents, comprise the ŝu(2)L,1 ⊕ ŝu(2)R,1-subalgebra for the left- and the
right-moving N = 4 superconformal algebras. In particular, this condition
holds for the K3 theory of [GTVW14] described in Section 1. By [EOTY89],
it should hold for all SCFTs that obey (3.1) and arise from a non-linear
sigma model construction with a Calabi-Yau target space.

If the additional spectral condition (3.8) holds, then the properties (3.1),
(3.3) and (3.5) further restrict the spectrum of L0 and L0, since spectral

flow yields a multigraded isomorphism HNS
∼=−→ HR, which obeys (A.5): let

h, h ∈ R.

If υ ∈ H
R exists with υ ̸= 0, L0υ = hυ and L0υ = hυ,(3.9)

then (h;h) =
( c
24

;
c

24

)
+

(
m

2
;
m

2

)
with m,m ∈ Z, m ≡ m mod 2.

With the help of (3.7) as well as the spectral conditions (3.3), (3.5), (3.9),

a case by case analysis for ϕi ∈ HNS
pi

, ϕj ∈ H
Sj

pj
with Sj ∈ {NS, R}, pi, pj ∈

{bos, ferm} reveals two facts: first that the OPE between ϕi(zi) and ϕj(zj)

is encoded in terms of a formal power series in the (zi − zj)
± 1

2 , (zi − zj)
± 1

2 ,

and second that by replacing all (zi − zj)
± 1

2 by (zi − zj)
± 1

2 , these become
formal power series in (zi − zj)

±1 if ϕi ∈ HNS
bos or ϕj ∈ HNS.

The above yields an ansatz for an OPE after reflection between the
fields associated with any ϕi ∈ HNS, ϕj ∈ H, which are viewed as states in

15See for example [Gre97, §3.4] or [Wen00, §3.1.1].
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a super vertex operator algebra and its admissible modules. However, due
to the occurrence of half integral exponents in our formal power series, the
construction leaves room for ambiguities of signs, which may destroy the con-
sistency of our operator product expansions. It is tempting to try an ansatz
by which one chooses a basis of the vector space H such that every state
comes with a decomposition into a left and a right-moving contribution. In
practice, in a given SCFT, this is regularly the case. Then, operator product
expansions can be defined by specifying left-moving and right-moving con-
tributions separately. If reflection acts by complex conjugation on the con-
tributions (zi − zj)

ν with ν ∈ 1
2Z in the operator product expansions arising

from right-movers, then the reflection should be given by an anti-C-linear
map on purely anti-holomorphic fields, and thus also on the right-moving
contributions to every field. However, this introduces further ambiguities of
phases for our operator product expansions, since there is no canonical way
to assign complex scalar factors to a left- or a right-moving contribution,
respectively. Moreover, associativity of a would-be vertex algebra structure
obtained by this procedure is by no means clear.

Hence instead of attempting to separate left-movers from right-movers
in every state in H, with notations as in Appendix A, we choose a real basis,
say, of every HS

h;h
⊂ HS . The compatibility (A.6) of our n-point functions

with the real structure on H together with the unitarity of the representa-
tion of the operator product expansion ensures that all coefficients in the
formal power series of the OPE between two fields corresponding to real
basis elements are real. Then, the first step of reflection on H can indeed
be implemented by replacing all contributions (zi − zj)

ν by (zi − zj)
ν when

ν ∈ 1
2Z in the operator product expansion between ϕi(zi) and ϕj(zj) for real

ϕi, ϕj ∈ H. Since the resulting formal power series agrees with the operator
product expansion of our original SCFT if zi = zi and zj = zj , i.e. for entries
in Rn \ ∪i ̸=j{z ∈ Rn|zi = zj} in our n-point functions, associativity for this
ansatz for an OPE is guaranteed. Interestingly, additional choices of signs
are required. Indeed, if ν, ν ∈ 1

2 + Z for contributions (zi − zj)
ν(zi − zj)

ν of
an OPE in our original SCFT, then our prescription for reflection changes
the parity of this function. Thus, semilocality of some n-point functions may
be destroyed. Whether or not these signs can be implemented consistently,
in general, is a highly nontrivial question which so far, has to be resolved on
a case by case basis. These signs have the same origin as the cocycle factor
κϕ introduced in the formula for ϕ† in (A.9). Note however that these sign
issues do not occur as long as the OPE involves a chiral or an antichiral
field. Indeed, contributions (zi − zj)

ν(zi − zj)
ν to the OPE then only yield

ν, ν ∈ Z. The above-mentioned sign ambiguity therefore does not arise when
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one restricts attention to the structure of a potential bulk SCFT on H, as
is suggested in [CDR18]. Note that by construction, if (3.3) and (3.8) hold,
then the operator product expansion between any two fields corresponding
to real states in H, on restriction to zi = zi and zj = zj , can be described in
terms of the super vertex algebra formalism.

3.3. Reflecting: some necessary and sufficient conditions,
and consequences

As a result of the discussions in Sections 3.1 and 3.2, we arrive at a set of
some necessary and sufficient conditions for our reflection procedure to yield
the desired structures: assume that H is the space of states of a SCFT as
before, such that the necessary spectral conditions (3.1), (3.3) on the cen-
tral charges c, c and eigenvalues of L0, L0 hold. To obtain a well-defined
structure of a super vertex operator algebra and admissible module on H

by the reflection procedure described above, one needs to require that af-
ter replacing all contributions (zi − zj)

± 1

2 , |zi − zj |±
1

2 by (zi − zj)
± 1

2 in the
OPE between ϕi(zi) and ϕj(zj) for any ϕi ∈ HNS

bos, ϕj ∈ HR, the result is a
formal power series in (zi − zj)

±1. By the discussion of Section 3.2, a suf-
ficient condition to ensure this behaviour is invariance under the two-fold
holomorphic and anti-holomorphic spectral flows, or equivalently, (3.8). Fur-
thermore, we must require that the necessary implementation of additional
signs mentioned at the end of Section 3.2 can be performed consistently.
Then the reflection procedure as described above is well-defined. All states
become holomorphic, and reflection yields a consistent super vertex opera-
tor algebra HNS of CFT type, along with an admissible twisted HNS-module
HR. Indeed, once a consistent OPE has been implemented on the reflected
H along the lines described above, the remaining axioms, like the state-field

correspondence, the vacuum and the translation axiom are immediate as a
heritage from the corresponding properties of the original SCFT. If both the
chiral and the antichiral algebra are self-dual and C2-cofinite then this guar-
antees that reflection yields a self-dual, C2-cofinite super vertex operator
algebra.

For the resulting super vertex operator algebra and its twisted module,
one can still define the partition function as a formal power series in terms
of its four parts by means of (A.3). However, in this definition, q must then
be replaced by q, to take into account the fact that H is now viewed as a
Virasoro module under the action of the L(n) = Ln + Ln, n ∈ Z. So indeed,
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we obtain a formal power series

Zrefl(τ, z, ζ) := trHbos

(
yJ0 ỹJ0qL(0)−(c+c)/24

)

in y := e2πiz, ỹ := e2πiζ and q := e2πiτ . Since for q = q, we have Z(τ, z) =
Zrefl(τ, z,−z), the latter is a convergent power series in q ∈ R>0 and y ∈ C,
where each summand

MyQyQqh+h−(c+c)/24

obeys M ∈ N. Thus Zrefl(τ, z, ζ) converges absolutely and can be viewed as
a function in complex variables τ, z, ζ ∈ C with Im(τ) > 0 and ζ = −z. By
the identity theorem for holomorphic functions, it is uniquely determined by
its values for purely imaginary τ and ζ = −z. However, there is no reason
to expect the partition function Zrefl(τ, z, ζ) to behave like the partition
functions of SCFTs under SL(2,Z), since

(3.10)
{
(τ, z, ζ) ∈ C

3 | Re(τ) = 0, Im(τ) > 0, ζ = −z
}

is not mapped to itself under τ 7→ τ + 1. But as the set (3.10) is invariant un-
der the map (τ, z, ζ) 7→ (−1/τ, z/τ,−ζ/τ), Zrefl(τ, z, ζ) will exhibit modular
behaviour under this transformation. In Section 4.1.5 we will confirm that
for the model obtained from the K3 theory of Section 1 by reflecting right-
movers to holomorphic states on HGTVW, the resulting partition function
shares its modular behaviour under S : (τ, z, ζ) 7→ (−1/τ, z/τ,−ζ/τ) with
that of SCFTs, while under the transformation T : τ 7→ τ + 1, the usual in-
variance properties are broken. Note that invariance under T 2 : τ 7→ τ + 2
is immediate due to our spectral assumptions (3.3) on the eigenvalues of
L0 and L0 on H and c+ c ∈ 12N according to (3.1). Hence Zrefl(τ, z, ζ) ex-
hibits modular behaviour under the Hecke group G(2) - also known as the
Theta Group - that is, the level 2, index 3 congruence subgroup of SL(2,Z)
generated by S and T 2. Since the level two principal congruence subgroup
Γ(2) ⊂ G(2) has genus 0, so does the Hecke group G(2). By construction,
the reflected theory obeys the spectral condition that all eigenvalues of L(0)

lie in 1
2N. Thus we have recovered the modular behaviour found by Höhn

[Höh96] for “nice” super vertex operator algebras. In our setting, the mod-
ular behaviour under G(2) is naturally inherited, via reflection, from the
original SCFT, and C2-cofiniteness does not enter as a necessary condition.
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In addition to modular transformations, the reflected partition function
exhibits elliptic behaviour,

Zrefl
(
τ, z +

τ

2
, ζ +

τ

2

)
= q−(c+c)/24y−c/6ỹ−c/6Zrefl(τ, z, ζ),

Zrefl

(
τ, z +

1

2
, ζ +

1

2

)
= Zrefl(τ, z, ζ)

as a consequence of (A.4).
Recalling that for our original SCFT, ZR̃(τ, z) on its own transforms like

Z(τ, z) under SL(2,Z), its reflected version

Zrefl
R̃

(τ, z, ζ) := trHR

(
(−1)F yJ0 ỹJ0qL(0)−(c+c)/24

)

should also have interesting modular properties. Indeed, by the same rea-
soning as for Zrefl(τ, z, ζ), it exhibits modular behaviour under the Hecke
group G(2). In addition, (3.1) and (3.9) imply for h, h ∈ R, υ ∈ HR with
υ ̸= 0, L0υ = hυ, L0υ = hυ:

(
L(0) − c+c

24

)
υ = aυ, a ∈ Z,

where actually a ≥ 0 due to the unitarity requirements of the original theory
[LVW89]. In other words, Zrefl

R̃
(τ, z, ζ) is a power series in q, y±1, ỹ±1 and

thus invariant under T . Altogether, Zrefl
R̃

(τ, z, ζ) exhibits modular behaviour

under the full modular group SL(2,Z).

In closing this section, we emphasize once again that the structure of a
self-dual, C2-cofinite super vertex operator algebra of CFT type on HNS to-
gether with an admissible twisted HNS-module structure on HR, obtained by
reflecting all states in a SCFT with space of states H = HNS ⊕HR, is much
weaker than that of the original SCFT. By our prescription of the reflection,
a priori, we solely obtain the formal power series expansions required for the
definition of the super vertex algebra and twisted module structures on HNS,
HR. That it should yield well-defined n-point functions as in a full-fledged
SCFT, is by no means guaranteed and is also not required in the definition
of a super vertex operator algebra and its admissible modules.

For the Conway Moonshine Module V s♮ ⊕ V s♮
tw , this lack of SCFT-

structure may well mean that its role for Conway or Mathieu Moonshine
should not be expected to match that of the Moonshine Module V ♮ of
Frenkel, Lepowsky and Meurman [FLM84, FLM85, FLM88] for Monstrous
Moonshine. However, the beautiful results of [Dun07, DMC15] show that
the analogues of the McKay-Thompson series for this module are indeed
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normalized principal moduli for genus zero subgroups of SL(2,R). On the
other hand, the K3 theory of Section 1 built on HGTVW offers the more
powerful structures of SCFT. In particular, we have revealed the genus zero
property of Zrefl(τ, z = 0, ζ = 0) as a heritage from this theory under reflec-
tion. It would be interesting to know whether the genus zero properties of
the Conway Moonshine Module, in general, are inherited from its underlying
K3 theory.

4. Reflecting the K3 theory with Z
8

2
: M20 symmetry

In this section, we show that the reflection procedure described in Section 3
transforms the K3 theory with space of states HGTVW of Section 1 into Dun-
can’s Conway Moonshine Module V s♮ ⊕ V s♮

tw , whose construction we have
recalled in Section 2. On the level of Virasoro modules for the respective
natural Virasoro algebras at central charge c = 12, agreement was already
shown by Duncan and Mack-Crane in [DMC16, Prop. 1.11]. In Section 4.1,
we lift this result to the level of modules of the extensions of these Virasoro
algebras by the zero modes J0 and J0 of two commuting U(1) currents,
where it turns out that we have to reverse the role of bosons and fermions in
the Ramond sector, in comparison to [DMC16]. In Section 4.2, we show that
after reflection, HGTVW agrees with V s♮ ⊕ V s♮

tw as a super vertex operator
algebra with an admissible module. This allows us to uncover a considerably
more elaborate structure on the space V s♮ ⊕ V s♮

tw , which it inherits from the
K3 theory on HGTVW. In Section 4.3 we discuss the conclusions on Moon-
shines that we draw from our results.

4.1. Comparison of multigraded modules

With notations as in (1.26), (1.27), let HNS := HNS
bos ⊕HNS

ferm denote the
Neveu-Schwarz sector of the K3 theory with Z8

2 : M20 symmetry of
[GTVW14], while HR := HR

bos ⊕HR
ferm denotes the Ramond sector. As Vira-

soro modules with respect to the Virasoro algebra at central charge c = 12,
which on HGTVW is generated by the diagonal L(n), n ∈ Z, of Section 3,

HNS ∼= V s♮, HR ∼= V s♮
tw ,

according to [DMC16, Prop. 11.1]. Duncan and Mack-Crane obtain this
beautiful result by means of triality, which we will come back to in Sec-
tion 4.2. It is a priori not clear whether under the triality map, the U(1)
charges introduced in Section 2.2 agree with the ones obtained from our
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choices of left- and right-moving U(1)-currents of the K3 theory. This issue
is not addressed in [DMC16] and is studied in detail here. It amounts to a
comparison between HGTVW and V s♮ ⊕ V s♮

tw as modules of the extensions of
the respective Virasoro algebras at central charge c = 12 by two commuting
Lie algebras of type u(1). We continue to denote the generators of the lat-
ter by J0, J0, where on HGTVW, the U(1) currents are chosen according to
(1.19), while on V s♮ ⊕ V s♮

tw , we use (2.5), (2.6). Both J0 and J0 are central in
the extended Lie algebras. To prove agreement as modules of the extended
Lie algebras, it therefore suffices to show that the multigraded traces of
yJ0 ỹJ0qL(0)−1/2 over the respective sectors of HGTVW and V s♮ ⊕ V s♮

tw agree.
We prove this in each sector separately:

4.1.1. Neveu-Schwarz bosons. In our K3 theory, the bosonic contribu-

tions to trHNS

(
yJ0 ỹJ0qL(0)−1/2

)
from the sector (NS,NS,NS), according to

(1.29), are

1

4

((
ϑ3(τ)

η(τ)

)4

+

(
ϑ4(τ)

η(τ)

)4
)2

· 1
2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
+
ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(2.7)
= B(τ, z, ζ)B(τ)2.

This agrees with the contributions from U000 (see (2.2)) to (2.8).
The bosonic contributions from the sector (NS,R,R), by (1.30), are

1

4

(
ϑ2(τ)

η(τ)

)8

· 1
2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
+
ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(2.7),(C.3)
= B(τ, z, ζ)F (τ)2.

In (2.8), these agree with the contributions from the sector U0vv.
The bosons in the final sector (R,NS,R) + (R,R,NS) by (1.30) yield

(
ϑ2(τ)

η(τ)

)4

· 1
2

((
ϑ3(τ)

η(τ)

)4

+

(
ϑ4(τ)

η(τ)

)4
)

× 1

2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
+
ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.3),(C.14)
= F̂ (τ, z, ζ) · 2B(τ)F (τ).

In (2.8), these are the contributions from the sectors Uv0v ⊕ Uvv0.
Altogether, we find agreement with the result of (2.8).
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4.1.2. Neveu-Schwarz fermions. In our K3 theory, the fermionic con-

tributions to trHNS

(
yJ0 ỹJ0qL(0)−1/2

)
from the sector (NS,NS,NS), accord-

ing to (1.29), are

1

4

((
ϑ3(τ)

η(τ)

)4

−
(
ϑ4(τ)

η(τ)

)4
)2

· 1
2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
− ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(2.7)
= F (τ, z, ζ)F (τ)2.

In (2.9), these are the contributions from the sector Uccc.
The fermionic contributions from the sector (NS,R,R), according to

(1.30), are

1

4

(
ϑ2(τ)

η(τ)

)8

· 1
2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
− ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(2.7),(C.3)
= F (τ, z, ζ)F (τ)2.

In (2.9), these are the contributions from the sector Ucss.
From (1.31), fermions in the final sector (R,NS,R) + (R,R,NS) yield

(
ϑ2(τ)

η(τ)

)4

· 1
2

((
ϑ3(τ)

η(τ)

)4

−
(
ϑ4(τ)

η(τ)

)4
)

× 1

2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
− ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.3),(C.10)
= F (τ, z, ζ) · 2F (τ)2.

In (2.9), these are the contributions from Uscs ⊕ Ussc.
Altogether, we find agreement with the result of (2.9).

4.1.3. Ramond bosons. In our K3 theory, the bosonic contributions to

the multigraded trace trHR

(
yJ0 ỹJ0qL(0)−1/2

)
in the sector (R,NS,NS), ac-

cording to (1.32), amount to

1

4

((
ϑ3(τ)

η(τ)

)4

+

(
ϑ4(τ)

η(τ)

)4
)2

· 1
2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
+
ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.14)
= F̂ (τ, z, ζ)B(τ)2.

In (2.11), these are the contributions from the sector Uv00.
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The bosonic contributions from the sector (R,R,R), by (1.33), are

1

4

(
ϑ2(τ)

η(τ)

)8

· 1
2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
+
ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.3),(C.14)
= F̂ (τ, z, ζ)F (τ)2.

In (2.11), these are the contributions from the sector Uvvv.
The bosons in the final sector (NS,NS,R) + (NS,R,NS), by (1.34), yield

(
ϑ2(τ)

η(τ)

)4

· 1
2

((
ϑ3(τ)

η(τ)

)4

+

(
ϑ4(τ)

η(τ)

)4
)

× 1

2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
+
ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(C.3)
= B(τ, z, ζ) · 2B(τ)F (τ).

In (2.11), these are the contributions from the sectors U00v ⊕ U0v0.
Altogether, we find agreement with (2.11), which however counts the

fermions in the twisted module V s♮
tw of [DMC16]. Indeed, we have obtained

the multigraded trace over V s♮
tw,ferm, which according to (2.2) is given by

Uv00 ⊕ Uvvv ⊕ U00v ⊕ U0v0, where every state receives one or three tensor
factors from the vector representation v of ŝo(8)1. This explains why from
the viewpoint of the Conway Moonshine Module, it seems natural to dub
these states fermionic. On the other hand, in the K3 theory, they arise from
HR

bos = Hs00 ⊕Hsss ⊕H00s ⊕H0s0, thus solely receiving contributions from
the vacuum representation 0 and the spinor representation s of ŝo(8)1, all of
which are naturally interpreted as being bosonic. Moreover, the total U(1)
charge with respect to J0 + J0 of each of the states in HR

bos is even, as is the
eigenvalue of J0 − J0 by the spectral condition (3.8). Therefore, according to
(3.4), space-time supersymmetry implies that (−1)F acts by multiplication
with +1 on HR

bos. We therefore continue to interpret these states as bosons,

that is, we choose to interchange the roles of bosons and fermions in V s♮
tw .

This solely introduces a difference by a global factor of (−1) for the action
of (−1)F on V s♮

tw , which we will come back to in Subsection 4.1.5.

4.1.4. Ramond fermions. In our K3 theory, the fermionic contributions
from the sector (R,NS,NS), by (1.32), are
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1

4

((
ϑ3(τ)

η(τ)

)4

−
(
ϑ4(τ)

η(τ)

)4
)2

· 1
2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
− ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.10)
= F (τ, z, ζ)F (τ)2.

In (2.10), these are the contributions from the sector Uscc.
The fermions in the sector (R,R,R), according to (1.33), are counted by

1

4

(
ϑ2(τ)

η(τ)

)8

· 1
2

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2

η(τ)4
− ϑ1(τ, z)

2ϑ1(τ, ζ)
2

η(τ)4

)

(2.7),(C.3),(C.10)
= F (τ, z, ζ)F (τ)2.

In (2.10), these are the contributions from the sector Usss.
The fermionic contributions in the final sector (NS,NS,R) + (NS,R,NS),

by (1.34), yield

(
ϑ2(τ)

η(τ)

)4

· 1
2

((
ϑ3(τ)

η(τ)

)4

−
(
ϑ4(τ)

η(τ)

)4
)

× 1

2

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2

η(τ)4
− ϑ4(τ, z)

2ϑ4(τ, ζ)
2

η(τ)4

)

(C.3)
= F (τ, z, ζ) · 2F (τ)2.

In (2.10), these are the contributions from the sectors Uccs ⊕ Ucsc.
Altogether, we find agreement with the result of (2.10).

4.1.5. Reflected partition function. From the above, we collect the
contributions to the reflected partition function in each sector:

Zrefl
ÑS

(τ, z, ζ) := trHNS

(
(−1)F yJ0 ỹJ0qL(0)−1/2

)
(4.1)

=
1

2

(
1

2

4∑

k=2

(
ϑk(τ)

η(τ)

)8

· ϑ4(τ, z)
2ϑ4(τ, ζ)

2

η(τ)4

+

(
ϑ3(τ)ϑ4(τ)

η2(τ)

)4

· ϑ3(τ, z)
2ϑ3(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ3(τ)

η2(τ)

)4

· ϑ1(τ, z)
2ϑ1(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ4(τ)

η2(τ)

)4

· ϑ2(τ, z)
2ϑ2(τ, ζ)

2

η(τ)4

)
,
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Zrefl
NS (τ, z, ζ) := trHNS

(
yJ0 ỹJ0qL(0)−1/2

)
(4.2)

=
1

2

(
1

2

4∑

k=2

(
ϑk(τ)

η(τ)

)8

· ϑ3(τ, z)
2ϑ3(τ, ζ)

2

η(τ)4

+

(
ϑ3(τ)ϑ4(τ)

η2(τ)

)4

· ϑ4(τ, z)
2ϑ4(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ3(τ)

η2(τ)

)4

· ϑ2(τ, z)
2ϑ2(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ4(τ)

η2(τ)

)4

· ϑ1(τ, z)
2ϑ1(τ, ζ)

2

η(τ)4

)
,

Zrefl
R̃

(τ, z, ζ) := trHR

(
(−1)F yJ0 ỹJ0qL(0)−1/2

)
(4.3)

=
1

2

(
1

2

4∑

k=2

(
ϑk(τ)

η(τ)

)8

· ϑ1(τ, z)
2ϑ1(τ, ζ)

2

η(τ)4

+

(
ϑ3(τ)ϑ4(τ)

η2(τ)

)4

· ϑ2(τ, z)
2ϑ2(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ3(τ)

η2(τ)

)4

· ϑ4(τ, z)
2ϑ4(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ4(τ)

η2(τ)

)4

· ϑ3(τ, z)
2ϑ3(τ, ζ)

2

η(τ)4

)
,

Zrefl
R (τ, z, ζ) := trHR

(
yJ0 ỹJ0qL(0)−1/2

)
(4.4)

=
1

2

(
1

2

4∑

k=2

(
ϑk(τ)

η(τ)

)8

· ϑ2(τ, z)
2ϑ2(τ, ζ)

2

η(τ)4

+

(
ϑ3(τ)ϑ4(τ)

η2(τ)

)4

· ϑ1(τ, z)
2ϑ1(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ3(τ)

η2(τ)

)4

· ϑ3(τ, z)
2ϑ3(τ, ζ)

2

η(τ)4

+

(
ϑ2(τ)ϑ4(τ)

η2(τ)

)4

· ϑ4(τ, z)
2ϑ4(τ, ζ)

2

η(τ)4

)
.

Of these contributions to the partition function, Zrefl
R̃

(τ, z, ζ = 0) agrees with

the result of [DMC16, (9.14)], if there, one inserts the identity element for
g. This reproduces the elliptic genus of K3, as it should, and as was already
confirmed in [EOTY89]. It also reinforces our suggestion to interchange the
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roles of bosons and fermions in V s♮
tw , since otherwise, the graded trace of

(−1)F yJ0yJ0qL(0)−1/2 over V s♮
tw yields the negative of the elliptic genus of

K3. Indeed, between [DMC16, (8.7)] and [DMC16, (9.10),(9.14)], an addi-
tional factor of (−1) was introduced by hand. The parameter ζ has not been
introduced in [DMC16], since there, the U(1) current J of (2.6) was not
considered. Concerning the partition functions for the other three sectors,
solely Zrefl

ÑS
(τ, z = 0, ζ = 0) can be read from [DMC16, (8.6)].

Inspecting the relations between the four parts of the reflected partition
function, note first of all that as usual, Zrefl

ÑS
(τ, z, ζ) and Zrefl

NS (τ, z, ζ), on the

one hand, and Zrefl
R̃

(τ, z, ζ) and Zrefl
R (τ, z, ζ), on the other, are related by

(z, ζ) 7→ (z + 1
2 , ζ +

1
2). This is a heritage from the space-time supersymme-

try of the K3 theory on HGTVW, since there, (−1)F = (−1)J0−J0 , as was
noted in (3.4). Space-time supersymmetry of the underlying K3 theory also
ensures that Zrefl

R̃
(τ, z, ζ) and Zrefl

ÑS
(τ, z, ζ), on the one hand, and Zrefl

R (τ, z, ζ)

and Zrefl
NS (τ, z, ζ), on the other, are related by spectral flow

f(τ, z, ζ) 7→ q
1

2 (yỹ)f(τ, z + τ
2 , ζ +

τ
2 ),

as they should, according to (A.4).
Under modular transformations, we find the following behaviour. Up

to the expected elliptic prefactor, (τ, z, ζ) 7→ (−1/τ, z/τ,−ζ/τ) leaves
Zrefl
NS (τ, z, ζ) and Zrefl

R̃
(τ, z, ζ) invariant, while it interchanges Zrefl

ÑS
(τ, z, ζ)

with Zrefl
R (τ, z, ζ). On the other hand, the transformation τ 7→ τ + 1 inter-

changes Zrefl
ÑS

(τ, z, ζ) with −Zrefl
NS (τ, z, ζ), while Z

refl
R (τ, z, ζ) and Zrefl

R̃
(τ, z, ζ)

are invariant. This means that Zrefl
R̃

(τ, z, ζ) shares its modular transforma-

tion properties under SL(2,Z) with that of the partition functions of SCFTs,
while the sum Zrefl(τ, z, ζ) of the four parts of the partition function does
not; the latter transforms like the partition functions of a SCFT only under
the Hecke group G(2).

Altogether, the total partition function Zrefl(τ, z, ζ) and Zrefl
R̃

(τ, z, ζ) ex-
hibit the expected transformation properties, as we explained in Section 3.3.

4.2. The Conway Moonshine Module as reflection of
a particular K3 theory

By the results of Section 3, our reflection procedure is well-defined on the
space of states HGTVW of the K3 theory with Z8

2 : M20 symmetry of
[GTVW14], if the additional sign choices mentioned at the end of Section 3.2
can be implemented consistently. However, our description of the K3 theory
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as a lattice CFT, built on a half integral lattice (Section 1.3), guarantees
that such sign choices solely amount to the choice of cocycles. Indeed, as we
shall argue below, the reflected theory continues to allow a lattice theory
description, built on a half integral charge lattice that meets the require-
ments used in Appendix B. The existence of cocycles and thereby of consis-
tent sign choices after reflection thus follows from the constructions given
in Appendix B. Thus indeed, reflection is well-defined for our K3 theory.
On the Neveu-Schwarz sector HNS, this introduces the structure of a super
vertex operator algebra at central charge c = 12, while the Ramond sector
HR carries the structure of an admissible HNS-module. By inspection of
the partition functions Zrefl

S , Zrefl
S̃ , S ∈ {NS, R}, of (4.1)–(4.4), one confirms

that the L(0)-eigenspace in the reflected HGTVW at eigenvalue 1
2 is trivial.

Using the uniqueness result of [Dun07, Thm. 5.15], we may conclude that
the reflected HGTVW agrees with V s♮ ⊕ V s♮

tw as a super vertex operator al-
gebra plus admissible module, if we show self-duality and C2-cofiniteness.
Since our theory is described in terms of a lattice vertex operator algebra,
self-duality is immediately checked. C2-cofiniteness follows by the techniques
developed in [DLM00, §12]. Instead of going through the details of the proof
of self-duality and C2-cofiniteness, we will show by direct comparison that
after reflection, HNS is isomorphic to V s♮ as a super vertex operator algebra,
while HR is isomorphic to V s♮

tw as an admissible module of HNS ∼= V s♮.
As already indicated in Section 3.3, we may thereby induce a consider-

ably richer structure on V s♮ ⊕ V s♮
tw than what has been investigated, so far.

First, this space is in fact a module of an N = (4, 4) super Virasoro algebra
at central charges (c, c) = (6, 6), since this is the case for HGTVW. As de-
cribed in Section 2.1, one obtains an elegant description of the super vertex
algebra and module structure in terms of a charge lattice Γrefl , which after
reflection of the superconformal field theory built on HGTVW governs all
OPEs. Indeed, it is straightforward to apply the first step of the reflection
procedure of Section 3 to the OPEs between real or imaginary parts of all
momentum-winding fields Vγ , γ ∈ Γ, in (1.15). It amounts to replacing all

contributions (z − w)Q·Q′

by (z − w)Q·Q′

. For the charge lattice Γ of our
D4-torus theory in Section 1.3, which is equipped with the scalar product
• of (1.2), this amounts to using the standard Euclidean scalar product on
R12, instead. Hence the reflection procedure changes the signature of this
lattice from (6, 6) to (12, 0).

Using the description given in Section 1.3 and the notations of Sec-
tion 2.1, after reflection, the various sectors of the space of states are given
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by

(4.5)
(
ΓNS
bos

)refl ⊕
(
ΓNS
ferm

)refl ⊕
(
ΓR
bos

)refl ⊕
(
ΓR
ferm

)refl ⊂ Γ̃refl
2,2 ⊕ Γ̃refl

2,2 ⊕ Γ̃refl
2,2

with

(4.6)
(
HS

p

)refl
=

⊕

γ∈(ΓS
p )

refl

Hγ , S ∈ {NS, R}, p ∈ {bos, ferm},

where

(
ΓNS
bos

)refl
= (Γ̃refl

0 )3 ∪
(
Γ̃refl
0 ⊕ Γ̃refl

2 ⊕ Γ̃refl
2

)

∪
(
Γ̃refl
2 ⊕ Γ̃refl

0 ⊕ Γ̃refl
2

)
∪
(
Γ̃refl
2 ⊕ Γ̃refl

2 ⊕ Γ̃refl
0

)
,

(
ΓNS
ferm

)refl
= (Γ̃refl

1 )3 ∪
(
Γ̃refl
1 ⊕ Γ̃refl

3 ⊕ Γ̃refl
3

)

∪
(
Γ̃refl
3 ⊕ Γ̃refl

1 ⊕ Γ̃refl
3

)
∪
(
Γ̃refl
3 ⊕ Γ̃refl

3 ⊕ Γ̃refl
1

)
,

(
ΓR
bos

)refl
=
(
Γ̃refl
2 ⊕ Γ̃refl

0 ⊕ Γ̃refl
0

)
∪ (Γ̃refl

2 )3

∪
(
Γ̃refl
0 ⊕ Γ̃refl

0 ⊕ Γ̃refl
2

)
∪
(
Γ̃refl
0 ⊕ Γ̃refl

2 ⊕ Γ̃refl
0

)
,

(
ΓR
ferm

)refl
=
(
Γ̃refl
3 ⊕ Γ̃refl

1 ⊕ Γ̃refl
1

)
∪ (Γ̃refl

3 )3

∪
(
Γ̃refl
1 ⊕ Γ̃refl

1 ⊕ Γ̃refl
3

)
∪
(
Γ̃refl
1 ⊕ Γ̃refl

3 ⊕ Γ̃refl
1

)
.

The final step in the reflection procedure of Section 3, namely the intro-
duction of appropriate signs in the resulting OPEs, now amounts to the
implementation of cocycle factors. Their existence is guaranteed by the re-
sults of Appendix B. There, we also provide an explicit formula (B.13) for
representatives of the cocycles obeying the compatibility conditions (B.5),
(B.12) which are required by the role that the cocycles play in the OPEs,
as detailed at the end of Section 1.1.2. Using formula (B.13) to construct
the cocycles both before and after reflection also shows that the required
additional signs that occur in the final step of the reflection procedure are
governed by cocycles, as is expected from our prescription of the Hermitian
conjugate in (A.9).

In Appendix B, we also show that there are precisely two inequivalent
choices of cocycles in the lattice theory obtained through reflection. How-
ever, the resulting super vertex operator algebra structure after reflection is
independent of that choice, since the two cocycles differ solely by a relative
sign which plays no role in the super vertex algebra. Indeed, this relative
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sign only affects the comparison of the OPEs for ψ(z)ϕ(w) and ϕ(w)ψ(z) in-
volving fields ψ(z), ϕ(w), of which at least one creates a state in the Ramond
sector from the vacuum. Therefore, at least one of the OPEs ψ(z)ϕ(w) and
ϕ(w)ψ(z) is not considered within the structure of the super vertex operator
algebra plus admissible module. This uniqueness result (up to equivalence)
for the induced super vertex operator algebra plus module structure on(
HGTVW

)refl
is in accord with John Duncan’s theorem on the uniqueness of

the Conway Moonshine Module [Dun07, Thm. 5.15].

In summary, the above proves our claim that the Conway Moon-

shine Module is the reflection of the K3 theory with Z8
2 : M20

symmetry.

This also shows that the spaces of states HGTVW and V s♮ ⊕ V s♮
tw are isomor-

phic as N = (4, 4) super Virasoro modules, since for OPEs that involve a
chiral or an antichiral field, by construction, our reflection procedure is only
a formal manipulation. In fact, by the same argument, we have given an
independent proof of [CDR18, Prop. 5.7].

It is instructive to study the transition from HGTVW to V s♮ ⊕ V s♮
tw un-

der reflection more closely. Indeed, comparison to (2.2) reveals an apparent
difference which on the level of Virasoro modules was already explained by
Duncan and Mack-Crane in [DMC16, §11], invoking triality. Here, triality
amounts to a lattice automorphism of the lattice Γ̃refl

2,2 , which maps Γ̃refl
0 to

itself, and

(4.7) Γ̃refl
1 −→ Γ̃refl

3 −→ Γ̃refl
2 −→ Γ̃refl

1 .

On the level of representations of ŝo(8)1, triality thus induces isomorphisms
v → c→ s→ v. This indeed transforms (1.26), (1.27) into to (2.2), up to
interchanging the roles of bosons and fermions in the Ramond sector, which
we have already discussed in Section 4.1, above. On the level of lattices, (4.7)

transforms
(
ΓNS
bos

)refl
and

(
ΓR
bos

)refl
of (4.6) into the subsets of Γrefl

bos of (2.4)
labelling states from the Neveu-Schwarz and Ramond sector, respectively.

Analogously, the states labelled by
(
ΓNS
ferm

)refl
and

(
ΓR
ferm

)refl
in (4.6) are

transformed to those labelled by Γrefl
ferm in (2.4).

That triality plays an important role in the context of bosonization and
fermionization, which we have made repeated use of in our constructions,
was probably first noticed by Shankar [Sha80]. A detailed discussion can
be found in [GO84, GOS85]. Moreover, in [FFR91, Thm. 5.7], it is shown
that triality yields an automorphism between the super vertex operator al-
gebras corresponding to charge vectors in each of the lattices Γ̃refl

0 ∪ Γ̃refl
a



✐

✐

“6-Wendland” — 2021/7/5 — 19:49 — page 1297 — #51
✐

✐

✐

✐

✐

✐

The Conway Moonshine Module is a reflected K3 theory 1297

with a ∈ {1, 2, 3}. In fact, the description of these super vertex operator
algebras as lattice theories yields an alternative proof of this result, since
for integral charge lattices, up to equivalence, cocycles are unique [FK81],
[Kac98, Thm. 5.5] (see Appendix B).

Let us discuss triality in some greater detail. To do so, we may restrict
our attention to a single summand Γ̃refl

2,2 ⊂ R4 in (4.5). With respect to the
standard basis of R4, the triality automorphism (4.7) can be expressed by
the matrix

Θ =
1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1


 ∈ SO(4),

mapping the cosets Γ̃refl
a according to (4.7) and inducing a lattice auto-

morphism on Γ̃refl
0 . In accordance with the results of Appendix B, we may

introduce cocycles ε on Γ̃refl
2,2 by means of formula (B.13), where here we state

the matrix M with respect to the standard basis as

(4.8) M :=




0 0 1 0
−1 0 0 0
0 1 0 0
1 1 −1 0


 .

Using

A :=




1 0 1 1
1 1 0 0
0 1 0 0
0 0 1 −1




as a generating matrix of the lattice Γ̃refl
0 , one easily checks

ATMA ≡ (ΘA)TM(ΘA) mod 2.

Since Θ ∈ SO(4), this proves that on restriction to the sublattice Γ̃refl
0 , triality

yields an automorphism of the OPE (1.15), thus confirming the result of
[FFR91, Thm. 5.7].

The explicit description of triality, above, also justifies our choices of
U(1) currents in (2.5), (2.6). They are the images of the U(1) currents in
(1.19), after reflection and application of triality. To show this, it suffices
to restrict attention to the lattice Γ̃2,2 which governs the pair of two left-
and two right-moving Dirac fermions χk, χ

∗
k, χk, χ

∗
k with k ∈ {1, 2} as in

Section 1.2. Reflection leaves the purely holomorphic fields untouched, such
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that a comparison with the structures introduced in Section 2.2 allows us to
set

a+X = χ1, a−X = χ∗
1, a+Z = χ2, a−Z = χ∗

2.

After reflection to Γ̃refl
2,2 ⊂ R4 and with the notations of (1.20), using bosoniza-

tion like there, the images of the U(1) currents J, J in (1.19) read

J refl = j1 + j2, J
refl

= j3 + j4.

To calculate the images under triality, we simply determine the images under
Θ of the corresponding vectors in R4,

Θ




1
1
0
0


 =




1
1
0
0


 , Θ




0
0
1
1


 =




1
−1
0
0


 .

Thus J refl is invariant under triality, yielding the image

j1 + j2 = :a+Xa−X: + :a+Za
−
Z:

as claimed in (2.5). On the other hand, J
refl

is mapped to

j1 − j2 = :a+Xa−X:− :a+Za
−
Z:

as claimed in (2.6).

4.3. Moon Shines on K3

As already mentioned in [DMC16], one may hope that a detailed under-
standing of the Conway Moonshine Module and its relation to K3 theories
might help unveil the mysteries of Mathieu Moonshine. Our findings make
this relation precise.

Indeed, the Conway Moonshine Module arises by reflection from a par-
ticular K3 theory with space of states HGTVW. As already emphasized in
Section 3.3, the very fact that the reflection procedure yields a well-defined
super vertex operator algebra plus admissible module structure on HGTVW

requires very special properties of this SCFT. It would be interesting to
determine all K3 theories that allow such a procedure – we do not expect
that there are many, although further examples may arise from the poten-
tial bulk SCFTs of [CDR18]. However, the example presented in [CDR18,
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§5.4] requires the notion of a quasi-potential bulk superconformal field the-

ory, introduced in [CDR18]. This in particular weakens the requirements
on pairs of holomorphic and anti-holomorphic conformal weights, allowing
them to differ by arbitrary rational numbers, in contrast to any well-defined
SCFT. Indeed, the quasi-potential N = (2, 2) bulk superconformal field the-
ory in question cannot arise as the image under reflection of any well-defined
SCFT, and it is not a quasi-potential N = (4, 4) bulk superconformal field

theory.
Reflection always yields a super vertex operator algebra plus admissi-

ble module that obeys some of the additional properties required by Höhn
for “nice” theories, namely the spectral ones. It would be interesting to
know whether all reflected SCFTs are nice, i.e. whether C2-cofiniteness is
immediate, and whether vice versa, all self-dual nice super vertex operator
algebras at central charge 6N , N ∈ N, plus admissible modules arise by re-
flection from some SCFTs. According to the classification result of [CDR18,
Thm. 3.1], there are only three such super vertex operator algebras at central
charge 12 and only one at central charge 6.

For the special K3 theory with space of states HGTVW, reflection be-
comes straightforward due to our description in terms of lattice vertex oper-
ator algebras. Here, the underlying SCFT on HGTVW induces a considerably
richer structure by including OPEs between pairs of fields from the admis-
sible module. In other words, the super vertex operator language yields a
forgetful description. Further restricting attention to OPEs in our SCFT
that involve holomorphic or antiholomorphic fields, which up to a formal
manipulation remain unchanged under reflection, one obtains precisely the
structure that defines the potential bulk SCFTs of [CDR18].

The interpretation of the Conway Moonshine Module as image of a K3
theory under reflection elucidates the modular properties of its partition
function. Indeed, that Zrefl

R̃
(τ, z, ζ) is invariant under the full modular group

SL(2,Z), to our knowledge, had not been noticed, so far. It would also be
interesting to know whether the genus zero property for all analogues of the
McKay-Thompson series for Conway Moonshine can be traced back to K3,
as is the case for Zrefl

R̃
(τ, z, ζ = 0).

In [DMC16], the identification of the Virasoro modules HGTVW and
V s♮ ⊕ V s♮

tw is used to arrive at a procedure that realizes all possible symme-
tries of K3 theories, and more, within the Conway Moonshine Module. Our
findings allow a precise interpretation of this process.

Indeed, the symmetries of our K3 theory are naturally described in
terms of lattice automorphisms of certain indefinite lattices. For our spe-
cial K3 theory with Z8

2 : M20 symmetry and those symmetries that respect
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the ŝu(2)61,L ⊕ ŝu(2)61,R structure, this can be done by means of the indefi-

nite charge lattice Γbos
∼= Γ6,6 →֒ R6,6 introduced in Section 1.3. Using the

ideas of [NW01] and [TW15a, App. A], one may translate this into the tra-
ditional description by automorphisms of the lattice of integral cohomology
of K3, which has signature (4, 20). To do so, one relates the lattice Γbos

back to the charge lattice of the underlying toroidal theory, which captures
the dependence on moduli. This amounts to dropping contributions from
the first summand Γ̃2,2 in (1.28) which governs the “external free fermions”
χj , χ

∗
j , χj , χ

∗
j with j ∈ {1, 2} introduced in Section 1.2, and then reducing

to Γ4,4
∼=
(
Γ̃0

)2
∪
(
γ̃(2) + Γ̃0

)2
. The result is the image of the traditional

charge lattice of [Nar86] under the triality map described in [NW01]. Z2-
orbifolding induces a map into the even self-dual lattice of signature (4, 20)
on which the moduli space of K3 theories is modelled. This map is deter-
mined explicitly in [NW01]. By the transition from HGTVW to V s♮ ⊕ V s♮

tw ,
the latter, a priori, also serves as a medium to capture the symmetries of
the K3 theory. At its heart, reflection then amounts to replacing the charge
lattices with signature (d, d), d ∈ N, which govern the behaviour of the par-
ticular K3 theory in question, by the positive definite lattices that are used
in the realm of super vertex operator algebras. Though the precise mech-
anism certainly deserves further investigation, we remark that within this
process, the even self-dual K3 lattice with signature (4, 20) is replaced by
a positive definite even self-dual lattice Λ, to be specified below. Reflection
thus is an implementation of the beautiful strategy of Kondo’s proof [Kon98]
of Mukai’s classification result for symplectic automorphisms of K3 surfaces
[Muk88].

The lattice Λ most naturally features in the construction by generating
the space a over C, which underlies the Conway Moonshine Module. The
authors of [DMC16] choose the Leech lattice for Λ and then extend the
discussion of symmetries to all automorphisms of the Leech lattice. This
in particular includes all possible symmetry groups of K3 theories, by the
results of [GHV12]. Only very few K3 theories lend themselves to transition
from the K3 lattice to Λ through reflection, i.e. by means of a map from the
SCFT to some super vertex operator algebra and admissible module. But
since we have one K3 theory where this is possible, the reflection procedure
does employ the Leech lattice as a medium that collects symmetries of K3
theories from distinct points of the moduli space of such theories. The idea
thus reveals itself as an incarnation of symmetry surfing as advocated in
[TW13, TW15b]. We therefore do not regard the Conway Moonshine Module
as a universal object, but rather as the reflected version of one special K3
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theory which is a particularly convenient point of reference in symmetry
surfing.

Note that the Conway Moonshine Module possesses an infinite symme-
try group. Indeed, in the notations of Section 2, the symmetry group is a
Z2-quotient of Spin(a), by [Dun07, Prop. 4.6]. This is a consequence of the
forgetful description, alluded to, above: the weaker the structure that the
symmetries are required to preserve, the more symmetries one expects to
find. Nevertheless, V s♮ ⊕ V s♮

tw exhibits Conway Moonshine with respect to
a natural action of Co0, since by [DMC15, Prop. 3.1], realizing the Leech
lattice with respect to some choice of real structure as a lattice in the real
part of a, the action of its automorphism group lifts to a finite subgroup
of the symmetry group. More precisely, by [Dun07, Thm. 4.11], Co0 is the
automorphism group that leaves invariant a choice of N = 1 structure on
V f♮ := A(a)0 ⊕A(a)0tw (with the notations of Sect. 2.1), factorizing through
Co1. In [CDD+15], this result is generalized to larger extended chiral alge-
bras, yielding Mock Modular Moonshine for various subgroups of Co0.

From the viewpoint of Mathieu Moonshine, however, we find it more
natural to realize a as a complex vector space generated by the Niemeier
lattice Λ of type A24

1 , whose symmetry group is an extension of the largest
Mathieu groupM24. SinceM24 has trivial Schur multiplier, and it is a simple
group, the proof of [DMC15, Prop. 3.1] can be applied to this group just as
well, showing that the lattice automorphisms inM24 lift to form a symmetry
group of the super vertex operator algebra and admissible module structure
on V s♮ ⊕ V s♮

tw . Symmetry surfing the moduli space of K3 theories allows to

generate the action of the entire group M24 on V s♮ ⊕ V s♮
tw . In the process,

one should keep in mind that it has long become clear that the symmetry
groups of K3 theories cannot explain Mathieu Moonshine, since these groups,
in general, need not even form subgroups of M24. As in our earlier work
[TW13, TW15b, TW15a], we emphasize that this problem can possibly be
cured by restricting attention to geometric symmetry groups of K3 theories16

rather than including all quantum symmetries. The resulting M24-twining
elliptic genera agree with the ones obtained by Duncan and Mack-Crane in
[DMC16]. Note that seven of these twining elliptic genera differ from the ones
of Mathieu Moonshine according to [DMC16, §1.4]. As was emphasized in
[TW13, TW15a], symmetry surfing by merely employing lattice techniques

16Here and in the references [TW13, TW15b, TW15a] by a geometric symmetry

we mean a symmetry which induces a lattice automorphism on the K3 lattice
H∗(K3,Z) which in some geometric interpretation leaves H0(K3,Z) and H4(K3,Z)
pointwise invariant.
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cannot be expected to yield theM24-modules of Mathieu Moonshine. Indeed,
the results of [TW15b, GKP17] show that the construction of the relevant
representations of M24 by symmetry surfing must involve a twist, which is
not implemented in the Conway Moonshine Module.
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Appendix A. Necessary ingredients from conformal

field theory

To pave the way for a meaningful comparison between the K3 theory stud-
ied in [GTVW14] and the Conway Moonshine Module, in this Appendix,
we collect some of the main ingredients to (super-)conformal field theory.
Throughout this work, by a conformal field theory (CFT) we mean a (com-
pact) Euclidean two-dimensional unitary conformal field theory. In fact, we
restrict our attention to superconformal field theories (SCFTs) with at least
N = 2 worldsheet supersymmetry both for the left- and for the right-movers,
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and in addition, we assume spacetime supersymmetry to hold. Our presen-
tation is by no means complete, and we refer to the literature for further de-
tails, see e.g. [BPZ84, Nah87, Gin88, Gra92, DMS96, Kac98, Gaw99, Gan00,
Gab00, BB02, FBZ04, Sch08, Wen15, Wen], and references therein.

The first main ingredient of a conformal field theory is a complex vector
space of states H, equipped with a positive definite scalar product ⟨·, ·⟩ and
a compatible real structure H −→ H, v 7→ v∗. For a superconformal field the-

ory as specified above, the space of states H is assumed to decompose into a
direct sum of simultaneous unitary representations of two super-commuting
copies of an N = 2 super-Virasoro algebra at central charges c and c, respec-
tively, compatible with the real structure of H. The other even standard gen-
erators of these super-Lie algebras are traditionally denoted Ln, Jn; Ln, Jn

with n ∈ Z. These two super-Lie algebras and all structures arising from
them, in the physics literature, are known as left-moving or holomorphic,
and right-moving or anti-holomorphic, respectively, where the latter are de-
noted by overlined letters, in general. By our assumptions on the worldsheet
supersymmetry of our SCFTs, H enjoys a Z2-grading by (−1)F , where F
denotes the worldsheet fermion number operator. The eigenspaces of (−1)F

with eigenvalues ±1 contain the worldsheet bosons and fermions, respec-
tively, and they are denoted Hbos, Hferm, hence H = Hbos ⊕Hferm. In addi-
tion, spacetime supersymmetry imposes a second, compatible Z2-grading by
fermion boundary conditions, which decomposes the space of states17 into a
Neveu-Schwarz sector HNS and a Ramond sector HR, hence H = HNS ⊕HR.
Both Z2-gradings are compatible with the real structure on H.

The linear operators L0, J0; L0, J0 are assumed to restrict to pairwise
commuting self-adjoint linear operators on each of the four sectors

H
S
p := Hp ∩H

S , p ∈ {bos, ferm}, S ∈ {NS,R}.

They are simultaneously diagonalizable with finite dimensional simultaneous
eigenspaces of L0 and L0, and with one-dimensional

ker (L0) ∩ ker
(
L0

)
= ker (L0) ∩ ker

(
L0

)
∩ ker (J0) ∩ ker

(
J0

)
⊂ H

NS
bos.

The latter condition is known as the uniqueness of the vacuum; one chooses
a real Ω ∈ ker (L0) ∩ ker

(
L0

)
with ⟨Ω,Ω⟩ = 1 and calls it the vacuum.

17In general, one should include an R-NS and an NS-R sector, but these are trivial
in our examples. We therefore use the shortcut notation R for the R-R sector, and
NS for the NS-NS sector in this work.
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The second main ingredient of a SCFT is a system of n-point functions,
that is, for every n ∈ N, there are maps

H
⊗n
bos −→ Maps(Cn \ ∪i ̸=j{z ∈ C

n|zi = zj},C),
(HNS)

⊗n −→ Maps(Cn \ ∪i ̸=j{z ∈ C
n|zi = zj},C),

both denoted by ϕ1 ⊗ · · · ⊗ ϕn 7→ ( z 7→ ⟨ϕ1(z1) · · ·ϕn(zn)⟩ ),

since they agree on (HNS
bos)

⊗n. These maps form a semilocal, Poincaré co-

variant, conformally covariant system, which is a unitary representation of
an operator product expansion (OPE). If n ≥ 2, then the n-point functions
have extensions to

(HNS
bos)

⊗(n−2) ⊗H
⊗2 −→ Maps(Cn \ ∪i ̸=j{z ∈ C

n|zi = zj},C)

obeying all the above-mentioned properties. Moreover, for any choice of a
contractible open subset U ⊂ Cn \ ∪i ̸=j{z ∈ Cn|zi = zj}, they can be ex-
tended to maps from H⊗n into Maps(U,C). For details concerning this ter-
minology, along with a list of the many consistency conditions and properties
that the above-mentioned structures are assumed to obey in a full-fledged
SCFT, we need to refer the reader to the literature, since a full account
would lead way beyond the scope of this work. In the following, we will,
however, collect some of the consequences of these consistency conditions
which turn out to be most crucial to us.

For example, one assumes that every SCFT has a well-defined partition

function Z(τ, z). That is, with q := e2πiτ , y := e2πiz for all τ, z ∈ C with
Im(τ) > 0, and with q, y ∈ C denoting the complex conjugates of q, y ∈ C,

Z(τ, z) := trH

(
1

2
(1 + (−1)F ) yJ0yJ0qL0−c/24qL0−c/24

)
(A.1)

= trHbos

(
yJ0yJ0qL0−c/24qL0−c/24

)

is convergent. Moreover, under “integral” Möbius transformations

(A.2) (τ, z) 7→
(
aτ+b
cτ+d ,

z
cτ+d

)
,

(
a b
c d

)
∈ SL(2,Z),

Z(τ, z) transforms like the product of a weak Jacobi form of weight 0 and in-
dex c

6 with the complex conjugate of such a weak Jacobi form at index c
6 . By

our assumptions on supersymmetries, we may decompose Z(τ, z) according
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to

(A.3)





Z(τ, z) = 1
2

(
ZNS(τ, z) + Z

ÑS
(τ, z) + ZR(τ, z) + ZR̃(τ, z)

)
,

where for S ∈ {NS, R},
ZS(τ, z) := trHS

(
yJ0yJ0qL0−c/24qL0−c/24

)
,

ZS̃(τ, z) := trHS

(
(−1)F yJ0yJ0qL0−c/24qL0−c/24

)
,

and the functions ZS(τ, z), ZS̃(τ, z) are well-defined for all τ, z ∈ C with
Im(τ) > 0, as well. As detailed, for example, in [Wen00, Thm. 3.1.4], since
we have assumed worldsheet and spacetime supersymmetry, the above four
summands of the partition function are related as follows:

(A.4)

ZR(τ, z) = qc/24qc/24yc/6yc/6ZNS

(
τ, z +

τ

2

)
,

ZNS(τ, z) = qc/24qc/24yc/6yc/6ZR

(
τ, z +

τ

2

)
,

Z
ÑS

(τ, z) = ZNS

(
τ, z +

1

2

)
, ZR̃(τ, z) = ZR

(
τ, z +

1

2

)
.

Moreover, ZR̃(τ, z), on its own, transforms like Z(τ, z) under the “integral”
Möbius transformations stated above.

The first two lines of (A.4) are an immediate consequence of our as-
sumption of space-time supersymmetry. The latter implies that the the-
ory is invariant under spectral flow (see, for example, [Sen86, Sen87], or

[Gre97, §3.4]), which induces a multigraded isomorphism HNS
∼=−→ HR. On

the eigenspaces HS
h,Q;h,Q

⊂ HS , S ∈ {NS, R}, with eigenvalues (h,Q;h,Q)

with respect to (L0, J0; L0, J0), spectral flow inducesHNS
h,Q;h,Q

∼=−→ HR
h′,Q′;h

′

,Q
′

with

(A.5) (h′, Q′;h
′
, Q

′
) = (h+ Q

2 + c
24 , Q+ c

6 ; h+ Q
2 + c

24 , Q+ c
6).

By what was said above, each subspace

H
S
h;h

:=
{
υ ∈ H

S | L0υ = hυ, L0υ = hυ
}
=
⊕
Q,Q

HS
h,Q;h,Q

⊂ HS

is finite dimensional and obeys (HS
h;h

)∗ ∼= HS
h;h

.

The assumption that the system of n-point functions in a CFT rep-
resents an OPE unitarily implies reflection positivity. This property of a
quantum field theory amounts to a compatibility condition between the
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scalar product, the real structure, and the n-point functions on H, as we
shall recall now (see also [Gab00, §3.5], for example, which however focusses
on bosonic CFTs). First, for every n-point function z 7→ ⟨ϕ1(z1) · · ·ϕn(zn)⟩,
ϕ1, . . . , ϕn ∈ H, that is well-defined on a domain U ⊂ Cn \ ∪i ̸=j{z ∈ Cn|zi =
zj} with z ∈ U for all z ∈ U , the following compatibility condition with the
real structure holds:

(A.6) ∀z ∈ U : ⟨ϕ1(z1) · · ·ϕn(zn)⟩ = ⟨ϕ∗1(z1) · · ·ϕ∗n(zn)⟩.

To give the full statement of reflection positivity, we introduce the fol-
lowing notation: for a complex vector space V , let V{z} denote the vector
space of formal power series of the form
∑

(r,r)∈R
Cr,rz

rzr, Cr,r ∈ V, with finite R ⊂
{
(h, h) ∈ R

2
≥0 | h− h ∈ 1

2Z
}
.

Then, reflection positivity amounts to the existence of an anti-C-linear map
H −→ H{x}, ϕ 7−→ ϕ†, which induces a map

ϕ(z) 7−→ (ϕ(z))† = ϕ†(z−1) with
(
(ϕ(z))†

)†
= ϕ(z)

on the level of the associated fields (usually called Hermitian conjugation in
the physics literature), where

(A.7) ⟨ϕ1(z1) · · ·ϕn(zn)⟩ = ⟨(ϕn(zn))† · · · (ϕ1(z1))†⟩

for ϕ1, . . . , ϕn and z1, . . . , zn as in (A.6). For ψ, ϕ ∈ H, with (ψ(z))† =
ψ†(z−1) as above, and by linear extension of ⟨· · · ⟩ to H{x} ⊗H,

(A.8) ⟨ψ, ϕ⟩ = lim
x,w→0

⟨ψ†(x−1)ϕ(w)⟩,

where (A.7) ensures the compatibility of (A.8) with the Hermitian product
structure ⟨ψ, ϕ⟩ = ⟨ϕ, ψ⟩. For the field ϕ(z), in general, (ϕ(z))† is the image
of (ϕ(z))∗ under the conformal transformation z 7→ z−1. If ϕ ∈ H is quasi-

primary, i.e. L−1ϕ = 0 and L−1ϕ = 0, and if L0ϕ = hϕ and L0ϕ = hϕ, then

(A.9) ϕ† = x2hx2hκϕϕ
∗,

where κϕ = (−1)h−h if ϕ ∈ Hbos. In general, κϕ is an operator that plays
the role of an additional cocycle factor18, thus the notation, reminiscent of

18We remark at this point that already on the level of bosonic fields, the factor
(−1)h−h is forgotten in various standard conformal field theory texts.
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the Kleinian transformations19 [Kle38]. It takes into account the fact that
the very definition of (ϕ(z))∗ requires the specification of complex conju-
gation, which on the Riemann surface Σ that parametrizes a bosonic field
ϕ(z), z ∈ Σ, reverses the co-orientation. For fermionic fields, we effectively
work on a 2: 1 cover of Σ, which entails the choice of a lift of the complex
conjugation on Σ. This choice introduces additional phase factors20 which
may be consistently implemented by means of the cocycle factor κϕ.

Note that the two-point functions ⟨ψ∗(x−1)ϕ(w)⟩ with ψ ∈ HS
p , ϕ ∈ HS̃

p̃ ,

S, S̃ ∈ {NS, R}, kp, p̃ ∈ {bos, ferm}, can only be non-vanishing if S = S̃ and
p = p̃. Hence, despite the restrictions on the validity of (A.6), equation (A.8)
can be used to extract the scalar product ⟨·, ·⟩ on H from these two-point
functions, with ⟨ψ, ϕ⟩ = 0 for ψ, ϕ as above if S ≠ S̃ or p ̸= p̃. Unitarity then
implies that ⟨·, ·⟩ is positive definite.

Reflection positivity together with conformal covariance of the n-point
functions ensures that the state-field correspondence holds in our theory, i.e.
that there is a linear map associating to every state υ ∈ H a field υ(z) which
creates υ from the vacuum.

As a main result of this work, we show that for particular SCFTs, one
can consistently reflect all fields, transforming them into holomorphic fields
to obtain a superconformal vertex operator algebra along with a twisted
module from the original superconformal field theory. To do so, we need to
pay special attention to the above-mentioned consequences of unitarity. Let
us illustrate this for the left- and right-moving components (ψ, ψ) of a free
Majorana fermion, like in the Ising model, where we follow the normalisa-
tions used in [BPZ84, DMS96]:

ψ(z)ψ(w) ∼ 1

z − w
, ψ(z)ψ(w) ∼ 1

z − w
.

By definition, the bosonic field ε(z, z) := i :ψ(z)ψ(z): obeys

⟨ε(z, z)ε(w,w)⟩ = 1

|z − w|2 ,

19James Tener has explained this to us; the cocycle factor κφ is indispensable for
fermionic vertex operators ϕ(z) in order to consistently define adjoint intertwining
operators [Ten17]. In the literature, incarnations of κφ can already be found, for
example, in [Yam13, AL17, Ten19].

20André Henriques has calculated the lift of the complex conjugation to a 2: 1
cover of Σ = C

∗, confirming the occurrence of κφ [Hen17].
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and ε† = xxε. As is customary, we choose our real structure on the space of
states such that ψ∗ = ψ, but then ψ

∗
= −ψ follows. This can also be seen

as a consequence of the ‘reality’ condition [Gin88, Gra92] for a Majorana
spinor (ξ1, ξ2), ξ

+
1 = iξ2, ξ

+
2 = iξ1, and thus ξ∗2 = ξ2 implies ξ∗1 = −ξ1. To

have a purely real left-moving field ψ(z), we have chosen the convention
(ψ, ψ) = i(ξ1, ξ2).

In contrast, for two left-moving free Majorana fermions ψk, k ∈ {1, 2},
with coupled spin structures, the assumption that ψ∗

k = ψk for both k ∈
{1, 2} is consistent with the required ε†12 = x2ε12 for ε12(z) := i :ψ1(z)ψ2(z):.
In other words, the real structure v 7→ v∗ of the underlying spaces of states
is not compatible with a map ψ 7→ ψ1 and ψ 7→ ψ2. One readily checks that
for the left-moving component ψ of the free Majorana fermion, with our con-
ventions, ψ† = ixψ. More generally, as is explained at the end of Section 3.2,
reflection indeed entails the occurrence of additional cocycle factors, as may
well be expected by the above discussion.

Appendix B. Cocycle construction for certain half

integral lattices

In this Appendix, we provide a construction of consistent 2-cocycles obey-
ing a number of additional conditions, for a certain type of lattice which is
central to our work. Our presentation extends to certain half integral lat-
tices the classical results of [FK81, Seg81, GO84], which apply to lattice
vertex operator algebras built on integral lattices. Our analysis is inspired
by [GNOS86, GNO+87], though we found it useful to include a proof of con-
sistency for 2-cocycles on the lattices that are relevant to our work. Indeed,
to extend the solutions offered, for example, in [KLL+88] for the (integral!)
lattices governing certain current algebras to the half integral lattices that
govern the fermionic fields, additional consistency requirements are neces-
sary. In [BPZ16], a solution similar to ours is presented for the lattice we
denote Γ̃2,2 in (1.21).

Let Γ ⊂ RD denote a lattice of rank D. We begin by recalling the general
definition of 2-cocycles on Γ, following the exposition in [Kac98, §5.5]. Let
Z ⊂ C∗ denote a multiplicative finite subgroup with −1 ∈ Z. We call a map

ε : Γ× Γ −→ Z
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a 2-cocycle on Γ with values in Z, if the following coboundary condition
holds:

(B.1) ∀α, β, γ ∈ Γ: ε(α, β)ε(α+ β, γ) = ε(α, β + γ)ε(β, γ).

Two such 2-cocycles ε, ε̃ are said to be equivalent if there is a map η : Γ → Z,
α 7→ ηα, such that

(B.2) ∀α, β ∈ Γ: ε̃(α, β) = ηαηβη
−1
α+βε(α, β).

In other words, the equivalence classes of 2-cocycles with values in Z are the
elements of H2(Γ, Z), the second group cohomology of Γ with values in the
trivial Γ-module Z. Note also that every 2-cocycle ε with values in Z defines
a central extension Γ̃ of Γ by Z, where as a set, Γ̃ = Γ× Z, and one has
the group law (α, λ) · (β, µ) := (α+ β, ε(α, β)λµ) for (α, λ), (β, µ) ∈ Γ× Z.
This induces an isomorphism between H2(Γ, Z) and the equivalence classes
of central extensions of Γ by Z.

Given a 2-cocycle ε with values in Z, it is convenient to introduce the
symmetry factor

S : Γ× Γ −→ Z, (α, β) 7→ S(α, β) := ε(α, β)ε(β, α)−1.

One immediately checks that S satisfies the following conditions:

(B.3)





∀α, β, γ ∈ Γ: S(α, α) = 1,

S(α, β)S(β, α) = 1,

S(α+ β, γ) = S(α, γ)S(β, γ).

According to [Kac98, Lemma 5.5], the above yields a 1: 1 correspondence
between symmetry factors S obeying (B.3) and equivalence classes of 2-
cocycles with values in Z. Note that (B.3) allows us to express S in terms
of its values on a choice α1, . . . , αD of generators of Γ, since

(B.4) for α =

D∑

j=1

ajαj , β =

D∑

k=1

bkαk ∈ Γ: S(α, β) =

D∏

j,k=1

S(αj , αk)
ajbk .

The discussion, so far, is independent of any quadratic form that we may
choose on Γ. In our applications, however, we are interested in special choices
of 2-cocycles, where in addition to the above, we assume that the lattice Γ is
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equipped with a non-degenerate symmetric bilinear form ⟨·, ·⟩ with ⟨α, α⟩ ∈
Z for all α ∈ Γ. Furthermore, for our 2-cocycles, we require the following:

(B.5) ∀α, β ∈ Γ: if ⟨α, β⟩ ∈ Z, then ε(α, β) = (−1)⟨α,β⟩+⟨α,α⟩·⟨β,β⟩ε(β, α).

In other words, the associated symmetry factor S must obey

(B.6) ∀α, β ∈ Γ: S(α, β) = (−1)⟨α,β⟩+⟨α,α⟩·⟨β,β⟩ if ⟨α, β⟩ ∈ Z.

Since for all α ∈ Γ, we have assumed that ⟨α, α⟩ ∈ Z, equation (B.6) ensures
S(α, α) = 1, as required by (B.3).

If the lattice Γ is integral, i.e. if the bilinear form ⟨·, ·⟩ takes values in
Z only, then by the above, there is a unique equivalence class of 2-cocycles
with values in Z that obeys the additional condition (B.5). We now show
how this statement must be modified for certain half integral lattices.
From now on, we restrict our attention to lattices where the following holds:
the lattice

Γ0 := Γ∗ =
{
α ∈ R

D | ⟨α, β⟩ ∈ Z ∀β ∈ Γ
}

is an even sublattice Γ0 ⊂ Γ of index 4, such that for each of the cosets Γa

in Γ/Γ0, a ∈ {0, . . . , 3}, the lattice Γ0 ∪ Γa is integral (and thus self-dual
if a ̸= 0). We write Γa = γ(a) + Γ0, a ∈ {0, . . . , 3}, with γ(0) := 0. In other
words, (Γ0,Γ) is a Z2 lattice pair with Γ/Γ0

∼= Z2
2 in the terminology of

[GNOS86, GNO+87].

We claim that Γ possesses precisely two distinct equivalence classes of
2-cocycles with values in Z that obey (B.5). Indeed, by our assumptions on
Γ, we have ⟨α, β⟩ ∈ 1

2Z for all α, β ∈ Γ, hence given such a 2-cocycle ε with
symmetry factor S, by (B.3) and (B.6),

(B.7) S(α, β) = S(β, α) ∈ {±i} if ⟨α, β⟩ ∈ 1

2
+ Z.

Moreover, by the assumptions on our lattice Γ, we can choose generators
α1, . . . , αD such that

α1 = γ(1), α2 = γ(2), αj ∈ Γ0 ∀j ∈ {3, . . . , D}.

Then ⟨αa, αj⟩ ∈ Z for a ∈ {1, 2} and all j ≥ 3, since Γ0 ∪ Γa is an integral
lattice by assumption. Moreover, ⟨α1, α2⟩ ∈ 1

2 + Z, since our assumptions
imply that Γ is not an integral lattice. In fact, by replacing α2 by −α2 if
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need be, we may assume that

(B.8) ⟨α1, α2⟩ ∈
1

2
+ 2Z.

Now S(αj , αk) is uniquely determined by (B.6) for all (j, k) /∈ {(1, 2), (2, 1)},
and S(α1, α2) = S(α2, α1) = ±i by (B.7). It hence follows from (B.4) that
there are at most two distinct solutions for the symmetry factor S, and thus,
there are at most two inequivalent 2-cocycles on Γ that obey the additional
condition (B.5).

Note however that the existence of any such 2-cocycles is not immediate.
Indeed, if α, α′, β ∈ Γ are such that S(α, β) and S(α′, β) obey (B.6) and
(B.7), then (B.3) implies S(α+ α′, β) = S(α, β)S(α′, β), and one needs to
check that S(α+ α′, β) obeys (B.6) and (B.7) as well. This is immediate
if ⟨α+ α′, β⟩ ∈ 1

2 + Z. If on the other hand, ⟨α, β⟩, ⟨α′, β⟩ ∈ Z, then one
proves that ⟨α, α′⟩⟨β, β⟩ ∈ Z by showing that either ⟨β, β⟩ ∈ 2Z or α, α′, β ∈
Γ0 ∪ Γa for some a ∈ {1, 2, 3}. From this, the claim

S(α+ α′, β) = (−1)⟨α+α′,β⟩+⟨α+α′,α+α′⟩⟨β,β⟩,

as required by (B.6), follows. Finally, if ⟨α, β⟩, ⟨α′, β⟩ ∈ 1
2 + Z, by what was

already shown, one may assume without loss of generality that α, α′, β ∈
spanZ {α1, α2}. One then checks that (B.6) holds for S(α+ α′, β) by a direct
calculation for both choices S(α1, α2) = i and S(α1, α2) = −i. Since as ex-
plained above, symmetry factors S are in 1: 1 correspondence to equivalence
classes of 2-cocycles on Γ, the claim follows.

Given a choice of symmetry factor S that obeys (B.6), for any lattice
Γ of rank D with symmetric bilinear form ⟨·, ·⟩ and generators α1, . . . , αD,
following [GNOS86, GNO+87, Kac98], we obtain 2-cocycles
(B.9)

for α =

D∑

j=1

ajαj , β =

D∑

k=1

bkαk ∈ Γ: ε(α, β) :=

D∏

j,k=1,j>k

S(αj , αk)
ajbk

that obey the additional condition (B.5). We introduce a D ×D matrix
M = (Mjk) such that

∀j, k ∈ {1, . . . , D} : exp (πiMjk) =

{
S(αj , αk) if j > k,

1 if j ≤ k,
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then with notations as in (B.9), we obtain

a := (a1, . . . , aD)
T , b := (b1, . . . , bD)

T ,(B.10)

ε(α, β) = exp
(
πiaTMb

)
.

The 2-cocycles thus inherit the bimultiplicative behaviour from S,

∀α, α′, β, β′ ∈ Γ: ε(α+ α′, β) = ε(α, β)ε(α′, β),(B.11)

ε(α, β + β′) = ε(α, β)ε(α, β′).

In our applications, however, we require a special gauge for our choice of
representative ε̃ in an equivalence class of 2-cocycles as above,

∀α, β ∈ Γ: ε̃(α, 0) = ε̃(0, α) = ε̃(α,−α) = 1,(B.12)

ε̃(α, β) = ε̃(−β,−α).

As is explained in [GNOS86, GNO+87, Kac98], this condition can always
be met. Indeed, given the representative ε of our 2-cocycle constructed in
(B.9), any choice of map

η : Γ −→ Z, α 7→ ηα with η0 = 1, ∀α ∈ Γ: ηαη−α = ε(α, α)

and some Z ⊂ C∗ as above yields a representative ε̃ under the gauge trans-
formation (B.2) which obeys (B.12). Using (B.10), and for all α ∈ Γ and
a ∈ RD as in (B.9) and (B.10), the special choice

ηα := exp
(
πi
2 a

TMa
)

yields representatives ε̃ that obey the special gauge (B.12) and inherit the
bimultiplicativity property (B.11). Indeed, with the notations of (B.9) and
(B.10),

(B.13) ε̃(α, β) = exp
(
πi
2 a

T (M −MT )b
)
.

At this point we would like to emphasize that our entire analysis is indepen-
dent of the signature of the lattice Γ. The explicit formulas, of course, are
dependent on the details of each lattice Γ.

It is also worth mentioning that although we proved the existence and
gave a construction of two inequivalent sets of cocyles for our special K3
theory earlier in this appendix, the choice one makes in the context of the



✐

✐

“6-Wendland” — 2021/7/5 — 19:49 — page 1313 — #67
✐

✐

✐

✐

✐

✐

The Conway Moonshine Module is a reflected K3 theory 1313

present work is not crucial. Actually, there are two inequivalent choices of co-
cycles after reflecting the K3 theory too, leading to two super vertex operator
algebras with admissible module and the cocycles can be fixed consistently
before and after reflection. On the level of the structure of a super vertex
algebra with admissible module alone, one cannot distinguish between the
two choices, as we mention in Section 4.2.

Appendix C. Theta function identities

In this Appendix, we fix our conventions for the various modular functions
that we shall use, and we introduce some helpful identities.

We shall always use the parametrisation q := e2πiτ and y := e2πiz, some-
times along with ỹ := e2πiζ . The Dedekind eta function is defined as

η(τ) := q1/24
∞∏

n=1

(1− qn) ,

while the Jacobi theta functions have product formula presentations of the
form

(C.1)

ϑ1(τ, z) := i

∞∑

n=−∞
(−1)nq

1

2
(n− 1

2
)2yn−

1

2

= iq
1

8 y−
1

2

∞∏

n=1

(1− qn)(1− qn−1y)(1− qny−1),

ϑ2(τ, z) :=

∞∑

n=−∞
q

1

2
(n− 1

2
)2yn−

1

2

= q
1

8 y−
1

2

∞∏

n=1

(1− qn)(1 + qn−1y)(1 + qny−1),

ϑ3(τ, z) :=

∞∑

n=−∞
q

n2

2 yn =

∞∏

n=1

(1− qn)(1 + qn−
1

2 y)(1 + qn−
1

2 y−1),

ϑ4(τ, z) :=

∞∑

n=−∞
(−1)nq

n2

2 yn

=

∞∏

n=1

(1− qn)(1− qn−
1

2 y)(1− qn−
1

2 y−1).

We always use the shorthand ϑk(τ) := ϑk(τ, 0), k = 1, . . . , 4.



✐

✐

“6-Wendland” — 2021/7/5 — 19:49 — page 1314 — #68
✐

✐

✐

✐

✐

✐

1314 A. Taormina and K. Wendland

The following identities can be proved using the Jacobi triple identity,
and they are standard:

ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2η(τ)3,(C.2)

ϑ2(τ)
4 − ϑ3(τ)

4 + ϑ4(τ)
4 = 0,(C.3)

ϑ2(τ)
2 = 2ϑ2(2τ)ϑ3(2τ),(C.4)

ϑ3(τ)
2 = ϑ3(2τ)

2 + ϑ2(2τ)
2,(C.5)

ϑ4(τ)
2 = ϑ3(2τ)

2 − ϑ2(2τ)
2.(C.6)

Using standard theta function techniques, one finds the following general-
izations of (C.3), see e.g. [Töl66] or [Wen00, (A3.1)]:

(C.7)
ϑ2(τ)

2ϑ2(τ, z)
2 − ϑ3(τ)

2ϑ3(τ, z)
2 + ϑ4(τ)

2ϑ4(τ, z)
2 = 0,

ϑ2(τ)
2ϑ1(τ, z)

2 + ϑ4(τ)
2ϑ3(τ, z)

2 − ϑ3(τ)
2ϑ4(τ, z)

2 = 0.

Moreover, by [Töl66] or [Wen00, (A3.3),(A3.5),(A3.6)], we have

(C.8)

2ϑ2(2τ, z)ϑ3(2τ, z) = ϑ2(τ)ϑ2(τ, z),

ϑ3(τ)
2ϑ2(2τ, 2z) = ϑ2(2τ)ϑ3(τ, z)

2 − ϑ3(2τ)ϑ1(τ, z)
2,

ϑ3(τ)
2ϑ3(2τ, 2z) = ϑ3(2τ)ϑ3(τ, z)

2 + ϑ2(2τ)ϑ1(τ, z)
2,

and

(C.9)
ϑ3(2τ, 2z)ϑ3(2τ, 2ζ) + ϑ2(2τ, 2z)ϑ2(2τ, 2ζ) = ϑ3(τ, z + ζ)ϑ3(τ, z − ζ),

ϑ3(2τ, 2z)ϑ3(2τ, 2ζ)− ϑ2(2τ, 2z)ϑ2(2τ, 2ζ) = ϑ4(τ, z + ζ)ϑ4(τ, z − ζ).

We deduce

(
ϑ2(τ, z)

2ϑ2(τ, ζ)
2 − ϑ1(τ, z)

2ϑ1(τ, ζ)
2
)
ϑ2(τ)

4

(C.7)
=
(
ϑ3(τ)

2ϑ3(τ, z)
2 − ϑ4(τ)

2ϑ4(τ, z)
2
) (
ϑ3(τ)

2ϑ3(τ, ζ)
2 − ϑ4(τ)

2ϑ4(τ, ζ)
2
)

−
(
ϑ3(τ)

2ϑ4(τ, z)
2 − ϑ4(τ)

2ϑ3(τ, z)
2
) (
ϑ3(τ)

2ϑ4(τ, ζ)
2 − ϑ4(τ)

2ϑ3(τ, ζ)
2
)

= ϑ3(τ)
4ϑ3(τ, z)

2ϑ3(τ, ζ)
2 + ϑ4(τ)

4ϑ4(τ, z)
2ϑ4(τ, ζ)

2

− ϑ3(τ)
4ϑ4(τ, z)

2ϑ4(τ, ζ)
2 − ϑ4(τ)

4ϑ3(τ, z)
2ϑ3(τ, ζ)

2

=
(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2 − ϑ4(τ, z)

2ϑ4(τ, ζ)
2
) (
ϑ3(τ)

4 − ϑ4(τ)
4
)

(C.3)
=
(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2 − ϑ4(τ, z)

2ϑ4(τ, ζ)
2
)
ϑ2(τ)

4,
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implying the following very useful generalization of (C.3),

ϑ2(τ, z)
2ϑ2(τ, ζ)

2 − ϑ1(τ, z)
2ϑ1(τ, ζ)

2(C.10)

= ϑ3(τ, z)
2ϑ3(τ, ζ)

2 − ϑ4(τ, z)
2ϑ4(τ, ζ)

2.

Moreover,

ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)
4

(C.8),(C.9)
=

(
ϑ2(2τ)

2 + ϑ3(2τ)
2
) (
ϑ3(τ, z)

2ϑ3(τ, ζ)
2 + ϑ1(τ, z)

2ϑ1(τ, ζ)
2
)
,

from which by (C.5) we find

ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)
2(C.11)

= ϑ3(τ, z)
2ϑ3(τ, ζ)

2 + ϑ1(τ, z)
2ϑ1(τ, ζ)

2.

Similarly,

ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ3(τ)
4ϑ4(τ)

2

(C.8),(C.9)
=

(
ϑ3(2τ)

2 − ϑ2(2τ)
2
) (
ϑ3(τ, z)

2ϑ3(τ, ζ)
2 − ϑ1(τ, z)

2ϑ1(τ, ζ)
2
)
ϑ4(τ)

2

+ 2ϑ2(2τ)ϑ3(2τ)
(
ϑ3(τ, z)

2ϑ1(τ, ζ)
2 + ϑ1(τ, z)

2ϑ3(τ, ζ)
2
)
ϑ4(τ)

2

(C.4),(C.6),
(C.7)
=

(
ϑ3(τ, z)

2ϑ3(τ, ζ)
2 − ϑ1(τ, z)

2ϑ1(τ, ζ)
2
)
ϑ4(τ)

4

+ ϑ3(τ, z)
2
(
ϑ3(τ)

2ϑ4(τ, ζ)
2 − ϑ4(τ)

2ϑ3(τ, ζ)
2
)
ϑ4(τ)

2

+ ϑ1(τ, z)
2
(
ϑ3(τ)

2ϑ4(τ, ζ)
2 − ϑ2(τ)

2ϑ1(τ, ζ)
2
)
ϑ2(τ)

2

= −ϑ1(τ, z)2ϑ1(τ, ζ)2
(
ϑ4(τ)

4 + ϑ2(τ)
4
)

+ ϑ4(τ, ζ)
2
(
ϑ4(τ)

2ϑ3(τ, z)
2 + ϑ2(τ)

2ϑ1(τ, z)
2
)
ϑ3(τ)

2

(C.3),(C.7)
=

(
ϑ4(τ, z)

2ϑ4(τ, ζ)
2 − ϑ1(τ, z)

2ϑ1(τ, ζ)
2
)
ϑ3(τ)

4,

from which by (C.10) we find

ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ4(τ)
2(C.12)

= ϑ4(τ, z)
2ϑ4(τ, ζ)

2 − ϑ1(τ, z)
2ϑ1(τ, ζ)

2

= ϑ3(τ, z)
2ϑ3(τ, ζ)

2 − ϑ2(τ, z)
2ϑ2(τ, ζ)

2.

From (C.11) and (C.12) we obtain

ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)
2 + ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ4(τ)

2(C.13)

= ϑ3(τ, z)
2ϑ3(τ, ζ)

2 + ϑ4(τ, z)
2ϑ4(τ, ζ)

2,
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ϑ3(τ, z + ζ)ϑ3(τ, z − ζ)ϑ3(τ)
2 − ϑ4(τ, z + ζ)ϑ4(τ, z − ζ)ϑ4(τ)

2(C.14)

= ϑ2(τ, z)
2ϑ2(τ, ζ)

2 + ϑ1(τ, z)
2ϑ1(τ, ζ)

2.

Again similary,

ϑ2(τ, z + ζ)ϑ2(τ, z − ζ)ϑ2(τ)
2

(C.15)

(C.8)
= 4 · ϑ2(2τ, z + ζ)ϑ3(2τ, z + ζ)ϑ2(2τ, z − ζ)ϑ3(2τ, z − ζ)

= (ϑ3(2τ, z + ζ)ϑ3(2τ, z − ζ) + ϑ2(2τ, z + ζ)ϑ2(2τ, z − ζ))2

− (ϑ3(2τ, z + ζ)ϑ3(2τ, z − ζ)− ϑ2(2τ, z + ζ)ϑ2(2τ, z − ζ))2

(C.9)
= ϑ3(τ, z)

2ϑ3(τ, ζ)
2 − ϑ4(τ, z)

2ϑ4(τ, ζ)
2.
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