ADV. THEOR. MATH. PHYS.
Volume 24, Number 5, 1203-{1245} 2020

The regularity transformation equations:
An elliptic mechanism for smoothing
gravitational metrics in general relativity

MORITZ REINTJEST AND BLAKE TEMPLE

A central question in General Relativity (GR) is how to deter-
mine whether singularities are geometrical properties of spacetime,
or simply anomalies of a coordinate system used to parameterize
the spacetime. In particular, it is an open problem whether there
always exist coordinate transformations which smooth a gravita-
tional metric to optimal regularity, two full derivatives above the
curvature tensor, or whether regularity singularities exist. We re-
solve this open problem above a threshold level of smoothness by
proving in this paper that the existence of such coordinate transfor-
mations is equivalent to solving a system of nonlinear elliptic equa-
tions in the unknown Jacobian and transformed connection, both
viewed as matrix valued differential forms. We name these the Reg-
ularity Transformation equations, or RT-equations. In a companion
paper we prove existence of solutions to the RT-equations for con-
nections I' € W™P  curvature Riem(I") € W™P assuming m > 1,
p > n. Taken together, these results imply that there always exist
coordinate transformations which smooth arbitrary connections to
optimal regularity, (one derivative more regular than the curva-
ture), and there are no regularity singularities, above the threshold
m > 1, p > n. Authors are currently working on extending these
methods to the case of GR shock waves, when gravitational met-
rics are only Lipschitz continuous, (m =0, p = 00), and optimal
regularity is required to recover basic properties of spacetime.
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1. Introduction

Solutions of the Einstein equations of General Relativity (GR) are con-
structed in coordinate systems in which the associated partial differential
equations (PDE’s) take on a solvable form. A very first question in GR is
then, which properties of the spacetime represent the true geometry, and
which are merely anomalies of the particular coordinate system used to pa-
rameterize the spacetime? Here we consider solutions of the Einstein equa-
tions which appear to be singular in the sense that the metric connection
fails to be one derivative smoother than the curvature tensor in the coor-
dinate system in which the solutions are constructed. For any such non-
optimal spacetime, we prove the existence of coordinate transformations
which smooth the metric and connection to optimal regularity, is equivalent
to solving a system of nonlinear elliptic equations which we name the RT-
equations, (for Regularity Transformation equations or, as of lately, Reintjes-
Temple equations [25]), equations in the unknown Jacobian and transformed
connection, viewed as matrix valued differential forms. This, together with
an existence theory for the RT-equations presented in the companion paper
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[24], establishes that there always exist coordinate transformations which
smooth connections of arbitrary signature to optimal regularity, (one deriva-
tive more regular than the curvature). Thus there are no regularity singu-
larities, for connections I' € WP with Riem(I') € WP assuming m > 1,
p > n. In words, a crinkled map of spacetime can always be smoothed by
coordinate transformation above a threshold level of regularityﬂ

To derive the RT-equations we develop an Euclidian Cartan algebra of
matrix valued differential forms, and introduce special operations which have
no scalar analogue. Remarkable to us is that the RT-equations reduce the
question of regularity singularities in Lorentzian spacetimes, to an existence
problem for a system of elliptic Poisson-type equations. As a corollary we see
that metric signature is of no relevance to the question of regularity singulari-
ties. In the lower regularity case of GR shock-waves, e.g., I, Riem(I") € L,
the RT-equations place the problem of regularity singularities within the
well-studied framework of elliptic regularity theory. The most important is-
sue to resolve is the existence of coordinate transformations which provide
a gain of one derivative in I', not so much the precise LP space in which
the gain is achieved. Lifting an L°° connection precisely one full Sobolev
derivative would place it in C%! = W1>°_ and this presents difficulties con-
nected to the issue of classical Calderén-Zygmund singularities in elliptic
PDE theoryf]

The problem of optimal regularity for Riemannian metrics with curva-
ture tensors of low regularity was first addressed by Kazdan and DeTurck
[8]. In the case of Lorentzian metrics, this problem was first addressed by
Anderson in [I] for GR vacuum spacetimes, and for non-vacuum spacetimes,
subject to certain assumptions on the regularity of the Einstein tensor on the
foliation assumed. Anderson’s results were revisited in [4] in the case of GR
vacuum solutions. Results on L?-curvature-solutions of the vacuum Einstein
equations in [I8] do not establish optimal regularity. The above papers do
not address GR shock waves, the case when the matter sources are non-zero,
[16, 21, 29]. Our new approach to optimal metric regularity based on the
RT-equations is different from these earlier approaches in that it does not
employ any apriori coordinate ansatz, like wave gauge or harmonic coordi-
nates, etc. This eliminates the need for any additional assumptions beyond

!The framework introduced in this paper and the existence theory in [24] are the
basis for proving optimal regularity and Uhlenbeck compactness for L™ connections
in our followup paper [26]. The results in [24] 26] and in this paper are summarized
in our RSPA article [25], and extended to the setting of vector bundles in [27].

2By this we mean counterexamples demonstrating that solutions of the linear
Poisson equation are not always in C1'! when the sources are in L*°, [17].



1206 M. Reintjes and B. Temple

what is required to formulate the question of optimal regularity. Our view
at the start was that the coordinate systems of optimal regularity are, in
general, too difficult to guess apriori, and one should seek equations for the
optimal coordinates themselves. These are realized in the RT-equations.

GR shock waves provide an intriguing motivating example of non-optimal
solutions of the Einstein equations, [2], [14] 16l 2], 291 32]. In [14], shock wave
solutions of the Einstein equations generated by the Glimm scheme could
only be constructed in coordinate systems in which the metric is only Lip-
schitz continuous (C%!) at shocks, even though both the connection and
curvature tensor of such solutions stay bounded in L°°. That is, the connec-
tion is non-optimal in the sense that it is no more regular than the Riemann
curvature tensor. The question as to whether such C%! metrics can always be
smoothed one order to optimal regularity C*! by coordinate transformation,
is intimately related to the existence of locally inertial coordinate systems,
the Hawking-Penrose singularity theorems, the equivalence of strong and
weak solutions of the Einstein equations, and the local correspondence of
GR with the physics of Special Relativity, [12] 15, 21]. In the RSPA publica-
tion [2I] authors began by making the point that if such coordinate systems
do not always exist, then non-optimality of the metric would be geometric,
and hence shock waves would create new kinds of mild singularities which
the authors termed regularity singularities, (see also [20, 22]). We start here
by generalizing the notion “regularity singularity” to arbitrary connections
by defining it to be any point where the connection is non-optimal in the
sense that it fails to be one full derivative more regular than its curvature
tensor, in any coordinate system within the atlas of coordinate transforma-
tions whose Jacobians are one level more regular than the connection. We
state this precisely in the following definition:

Definition 1.1. Let I' be a connection given in a coordinate system x such
that (each component of ) its Riemann curvature tensor Riem(T") is in WP
for some m >0, p > 1, but is no smoother in the sense that Riem(T") is not
in W™P for any m' > m. We say I’ has optimal regularity in x-coordinates
if I € WP (one order smoother than Riem(T')). We say T’ has a regular-
ity singularity at a point q if I' fails to transform to optimal regularity under
any W™H2P coordinate transformation x — y defined in a neighborhood of

af]

3We recover the notion of regularity singularity for GR shock waves when p = oo,
m =0, c.f. [23].
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To motivate the definition, and to understand the role non-optimal so-
lutions of the Einstein equations play in GR, consider the following: if one
were to construct a solution to the Einstein equations G = kT in a given
coordinate system y in which the equations produce a unique optimal so-
lution within a given smoothness class, say metric ¢ € W™+2P_ connection
[ € WmtbPand Riem(I') € W™P, then application of a transformation
y — = with Jacobian J € W™t will in general lower the regularity of the
metric and its connection I" by one order, but will preserve Riem(T") € W™P
because it is a tensor. Thus, if that existence theory were posed in z-
coordinates, it would produce the unique transformed solution g € Wm+1r,
I' e W™P and Riem(I') € W™P_ In the latter case, we would not know that
our unique solution exhibited optimal smoothness in a different coordinate
system without knowing about the existence of the inverse transformation
x — y. In this paper we address the problem of reversing this argument, i.e.,
given a non-optimal metric in z-coordinates, does a smoothing transforma-
tion x — y always exist, and if so, how do we find it?

To illustrate the difficulty in the problem of raising the metric regularity
by coordinate transformation, consider the case of shock waves, where the
components of the gravitational metric tensor g;; are CY%! functions, and
the associated connection coefficients F}'jk, and Riemann curvature tensor
R} i are L™ functions given in a fixed coordinate system x. Since the met-
ric transforms as a tensor, for such a transformation x — y to exist such
that the component JaB = Jég,-ng, in y-coordinates are C'™!, would re-
quire that discontinuities in derivatives of J cancel the discontinuities in
derivatives of g;; in the Leibniz products that arise from taking derivatives
of the transformed metric, to make

(1.1) ai@gafg = 830‘ {J;gijJé} e OO

This requires the Jacobian J to have the same regularity as the metric. Thus
the regularity of the mappings x — y and the atlas these generate should
be C1, one order smoother than the metric. This atlas then preserves the
L regularity of Riem(I') because the curvature transforms as a tensor.
Condition on J is in general impossible to meet for arbitrary Lips-
chitz metrics, for example, whenever the metric curvature contains delta

4We use the Einstein summation convention assuming summation over repeated
up-down indices, and let Latin indices to denote z-coordinates and Greek indices
to denote y-coordinates.
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function sources, [21], 29]. Thus, the existence of such a smoothing transfor-
mation requires the assumption that the Riemann curvature tensor be in
L°°, an additional constraint because the curvature involves second deriva-
tives of g. To enlighten the point, note that a metric g is always one order
smoother than its connection I' by Christoffel’s formulas, however I" need
not be one derivative smoother than Riem(I') because the curvature only
involves the exterior derivatives dI', not the co-derivatives oI, (see Section
below). These difficulties in smoothing metrics in C%! carry over essentially
unchanged to the problem of smoothing non-optimal connections at all lev-
els of regularity, I' € W"P. Our argument based on the RT-equations here
establishes that, for m > 1, p > n, the only assumption required to lift the
regularity of a connection one order by coordinate transformation, is the
assumption that dI', and hence the curvature, have the same regularity as
the connection, and no additional assumptions on the regularity of the co-
derivatives I are required.

The authors’ research program regarding the smoothing of non-optimal
metrics in GR arose from the study of GR shock waves. At smooth non-
interacting shock surfaces, coordinate transformation to Gaussian normal
coordinates at the surface, suffices to smooth an L* gravitational connec-
tion by one order to C%! at shocks, by a now classical result of Israel in 1966
[16]E| But for more general shock wave interactions, the only result we have
is due to Reintjes [20], who proved that the gravitational metric can always
be smoothed one order to C1! in a neighborhood of the interaction of two
shock waves from different characteristic families, in spherically symmet-
ric spacetimes. Reintjes’ procedure for finding the local coordinate systems
of optimal smoothness is orders of magnitude more complicated than the
Riemann normal, or Gaussian normal construction process. The coordinate
systems of optimal C1! regularity are constructed in [20] by solving a compli-
cated non-local PDE highly tuned to the structure of the interaction. Trying
to guess the coordinate system of optimal smoothness apriori, for example
harmonic or Gaussian normal coordinates [3], didn’t work. In Reintjes’ con-
struction, several apparent miracles happen in which the Rankine-Hugoniot
jump conditions come in to make seemingly over-determined equations con-
sistent, but, the principle behind what PDE’s must be solved to smooth

5The Riemann normal coordinate construction for locally inertial frames is prob-
lematic for metrics g € C%!, and is not sufficient to smooth a metric or a connection
in general.
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the metric in general, or when this is possible, appears entirely mysteri-
ous. Extending Reintjes’ result to general GR shock waves remains an open
problem.

Our first general principle regarding metric smoothing which did not rely
on any specific structure of the shock interaction surfaces, came with the
authors’ discovery of the Riemann-flat condition, a necessary and sufficient
condition for the existence of a coordinate transformation which smooths a
connection in L> to C%!, [23]. The Riemann-flat condition is the condition
that there should exist a tensor ', one order smoother than T, such that
Riem(I' — T') = 0. Now T is continuous, so I and I' — T have the same sin-
gular set of shock discontinuities. Thus at first we thought the Riemann-flat
condition was telling us that to smooth an L°° shock wave connection one
needed to extend the singular shock set to a flat connection by some sort
of Nash embedding theorem. Our point of view changed with the successful
idea that we might use the Riemann-flat condition to derive a system of
elliptic equations, equivalent to the Riemann-flat condition. This led to the
discovery of RT-equations, and we prove here that the existence of solutions
to these equations is equivalent to the Riemann-flat condition.

In this paper we establish the theory of metric smoothing based on the
RT-equations for T',dl" € W™P m > 1, p > n, so Riem(I") € W™P_ and for
metrics g € W™ +LP. By this we mean that component functions F;k (x) are
in W"P in some given coordinate system z, and dI' denotes the exterior
derivative of I' viewed as a matrix valued 1-form. The case m > 1, p >n
casts the theory of the RT-equations in its cleanest form, but assumes one
order of regularity above the shock wave case m = 0, p = co. The Riemann-
flat condition extends easily to higher regularities. By Gaffney’s inequality,
our assumption I',dI’ € W™P implies all of the loss of derivative in I" oc-
curs in oI, c.f. [6] and below. Here we derive the RT-equations and
prove Theorem [2.1] which gives the equivalence of the RT-equations with
the Riemann-flat condition when m > 1, p > n. In [24] we give the existence
theory for the RT-equations when m > 1, p > n. Taken together, these re-
sults prove that there always exists a coordinate transformation = — y with
Jacobian J € W™*LP such that in y-coordinates, the connection is one de-
gree smoother, I' € W™ tLP 5o long as m > 1, p > n. Authors are currently
working on extending these methods to the lower regularity of GR shock
waves []

6Since the writing of this paper, this result was established in [26].
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2. Statement of results

To state the main theorem, assume I' is a connection given by components in
a coordinate system x, and view I' = Fffkdxk as a matrix valued 1-form. The
unknowns in the RT-equations are T, J, A also taken to be matrix valued
differential forms as follows: J = .J} is the Jacobian of the sought after co-
ordinate transformation which smooths the connection, viewed as a matrix-
valued O-form; T’ = f’yﬁkda:k is the unknown tensor one order smoother than I'
such that Riem(I' —T') = 0, viewed as a matrix-valued 1-form; and A = A}
is an auxiliary matrix valued 0-form introduced to impose Curl(J) = 0, the
integrability condition for the Jacobian.

Theorem 2.1. Assume I' is defined in a fized coordinate system x on €,
for Q C R™ open and with smooth boundary. Assume that ' € W™P(Q) and
dl' € W™P(Q) for m > 1, p > n. Then the following equivalence holds:

Assume there exists J € W™LP(Q) invertible, T € W™tP(Q) and A €
W™P(Q) which solve the elliptic system

(2.1) AT = 6dl — §(d(J ) AdJ) +d(JA),
(2.2) AJ = §(J-T) — (dJ;T) — A,

(2.3) dA = div(dJ AT) + div(.J dT) — d((dJ;T}),
(2.4) 6A =,

with boundary data
(2.5) Curl(J) = 9;J;" — 9;J; =0 on 9Q,

where v € W™=LP(Q) is some vector valued 0-form free to be chosen. Then
for each p € Q, there exists a neighborhood Q' C Q of p such that J is the
Jacobian of a coordinate transformation x — y on ', and the components
of T in y-coordinates are in W™TLP(Q)).

Conversely, if there exists a coordinate transformation x — y with Jacobian

J = % € WmHLP(Q) such that the components of I' in y-coordinates are in
WmHLP(Q), then there evists T € W™TLP(Q) and A € W™P(Q) such that

(J,T, A) solve @1)-@-F) in Q for some v € wm=1Lp(Q).

Equations (2.1)—(2.4) are the RT-equations. To clarify the choice of
Sobolev space, note that LP is not closed under products, and as a result
the regularity I', Riem(I") € W™P m > 1, p > n, is assumed in the proof of
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convergence of the iteration scheme in [24] to control the nonlinear products
on the right hand side of the RT-equations 7, m > 1, p > n being
the lowest regularity which implies I', Riem(I') are Holder continuous by
Morrey’s inequalitym

In Section [3| we introduce the wvectorization of A, denoted ff, as the
vector valued 1-form A = Al'dz?, so dA = Curl(A). Equation (2.3) is then
obtained by settlng d of the Vectorlzed rlght hand side of (2 . 2.2)) equal to zero,
so the identity dA = Curl (A) implies that ( is equivalent to the integra-
bility COndlthi) Curl(J) =0 for the Jacoblan c.f. Lemma [7.1] below. The
operations -, div and (- ), introduced in Sections I are special operations
on matrix valued differential forms meaningful when the dimension of the
matrices equals the dimension of the physical space. New features arise in
the auxiliary Euclidean Cartan algebra essentially because we view J both
as a matrix valued zero form and a vector valued 1-form at different stages
of the argument. This framework, which bridges matrix and vector valued
differential forms through special operations, appears to be forced on us to
close the equations.

The vector valued O-form v in the RT-equations f is free to
be chosen, and reflects the freedom in the problem to apply sufficiently
smooth coordinate transformations, which preserve optimal metric regular-
ity. Equation - ) has been introduced so that . . ) take the Cauchy-
Riemann form dA = f, §A = g. Such systems require the consmtency condi-
tions df =0, 6g = 0, (c.f. Sect10n'. Condition df = 0 is met in (2.3) because
the derivation shows the right hand side is exact, (again, equation is
obtained by setting d of the vectorized right hand side of equal to zero),
and g =0 in because dv = 0 holds as an identity for O-forms.

A crucial point in the derivation of the RT-equations is the regular-
ization of the term d(5(J -I' ) This term appears when we take d of the
right hand side of to derive , and appears to be one deriva-
tive too low to get the required regularity A € W™P, That is, our as-
sumptions control dI' in WP but not §I" which measures the derivatives
not controlled by dI', c.f. . The regularity A € WP is required for

"Controlling the nonlinear products is a main obstacle to extending the existence
theory for the RT-equations to connections of lower regularity, say L?, or m < 1.
Alternatively, assuming connections in L* C LP, a natural setting of GR shock
waves, is sufficient to control the nonlinear products, but is problematic due to the
existence of Calderén-Zygmund singularities.
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and to imply the sought after regularity for J and T'. Surpris-
ingly, d(é(J -I ) is one order smoother than it initially appears to be be-
cause it can (and has been) re-expressed in terms of dI' via the identity
d(d(J-F;) = (ﬁ/(dJ AT) + (ﬁf(JdF), (see Lemma below). This extra
derivative “miracle”, necessary for the consistency of f with the
Riemann-flat condition, made us believe that resolving the problem of opti-
mal regularity in GR by the RT-equations would work.

The second order system f comes from first order Cauchy-
Riemann equations equivalent to the Riemann-flat condition Riem(I' — I') =
0. The advantage of the second order system over the first order system is
that it gives us the freedom to solve with arbitrary boundary condi-
tions, and with the boundary data , without being forced to use
problematic implicit boundary data of the form (5.6 which is required for
the standard equivalence between solutions of Cauchy-Riemann and Poisson
type equations, c.f. Section |5} This freedom of assigning boundary conditions
is a propitious feature of the RT-equations.

We end the section with an overview of the derivation of the RT-equations
below. The idea is to view the Riemann-flat condition Riem(I' —T') = 0 as
an equation for dI', namely, dT’ = dI’ + (I — T') A (I — '), and then to aug-
ment this to a first order system of Cauchy-Riemann equations by addi-
tion of the equation for 0T’ = h with arbitrary h. But to obtain a solv-
able system, it is necessary to couple this Cauchy-Riemann system in the
unknown I' to an equation in the unknown Jacobian J. For this, we use
an equivalent form of the Riemann-flat condition, J'dJ =T —T. Now
dl =dl'+ (U =T)A(I' = T) and J~'dJ =T — T are not independent, both
being equivalent to the Riemann-flat condition. To obtain two independent
equations, we next employ the identity dd + dd = A to derive two semi-linear
elliptic Poisson equations, one for AT, and one for AJ. This results in the
two second order equations 7, which closes in (f, J) for fixed A.
The equations are formally correct at the levels of regularity sufficient for I
to be one order smoother than I', consistent with known results on elliptic
smoothing by the Poisson equation in LP-spaces, [0, [10} [13]. To impose the
integrability condition for J, we use the freedom in 0T to introduce the vari-
able A into the right hand sides of and , and impose CurlJ =0 by
asking that the equation in A be obtained by requiring d of the vectorized
right hand side of the J equation , be zero. This is . To obtain the
final form of the RT-equations, we apply our fortuitous identity by which
all bad terms in the equations involving 6" can be re-expressed in terms
of dI', leading to a gain of one derivative on the right hand side. Equation
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then represents the “gauge freedom” to impose d A = v, and the bound-
ary condition ([2.5) simply imposes the integrability condition for J on the
boundary. The resultlng system -, the RT-equations, requlres no
boundary condition for T or for A only the boundary condition ) for
J. Now the regularity on the right hand sides of the RT- equatlons 1mply
that solutions T, J of the RT- equations provide ' with one more derivative
than T, but it turns out that T’ need not satisfy the Riemann-flat condition
because the RT-equations have a larger solution space than the first order
equations from which they are derived. To complete the forward implication
in Theorem we define TV =T — J~'dJ which meets the Riemann-flat
condition by definition but an additional argument based on elliptic regu-
larity is required to show that I" is indeed one level smoother than T.

In summary, we start with two equivalent first order equations, one for dT’
and one for dJ, both equivalent to the Riemann-flat condition. Out of these,
we create two independent nonlinear Poisson equations in T’ and J, and
the system has the freedom to impose an auxiliary solution A through the
gauge freedom to impose oT. Not all solutions of the RT- equations provide a
I’ which solves the Riemann-flat condition, but given any solution (I‘ J, A)
of ({ . -, we show that there is enough freedom in A such that there
always exists A’ such that (I, J, A’), with T" = T' — J~1J, also solves the RT-
equations, and I meets the Riemann-flat condition by construction. Now
the RT-equations are formally consistent with smoothing according to the
linear theory of elliptic smoothing in L? spaces, but the RT-equations are
nonlinear, and the boundary data is non-standard. Thus an existence
theory based on finding a suitable convergent iteration with modified initial
data, is required to reduce the existence theory to known theorems on linear
elliptic PDE’s, and to thereby establish that the whole theory actually works.
This is accomplished for the first time in [24].

In Section [3] we introduce the auxiliary Euclidean Cartan algebra_of
matrix-valued k-forms, and define the operations div and (-;-), (c.f. 1.’
and (| -, respectively). In Section ' we express the Rlemann ﬂat condi-
tion within the framework of matrix and vector valued differential forms. In
Section [5| we clarify the connection between the first order Cauchy-Riemann
equations and the Poisson equation in the setting of matrix valued differ-
ential forms. In Sections |§| and we derive the RT-equations f
together with an alternative formulation (in Section , and prove our main
result, Theorem
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3. Matrix valued differential forms

In this section we develop a theory of matrix valued differential forms in the
special case when the dimension of the matrix components agrees with the
dimension of the space, n. The exterior derivative d and its co-derivative §
operate on matrix valued k-forms component-wise, and the wedge product
introduces the matrix commutator, both of which are independent of the size
of the matrices. However, to close the equations, we need to introduce two
new operations, c.f. (2.4). The first operation maps matrix valued 0O-forms
A to vector valued 1-forms A via contraction of one matrix indices with da'.
The second is a vectorized divergence div which maps matrix valued k-forms
to vector valued k-forms by taking the divergence with respect to the lower
matrix index. These vectorizing operations are meaningful only for matrix
valued forms in which the matrices and the dimension of the space are both
equal.

Keep in mind, this is a Fuclidean framework because we only consider
matrix valued differential forms in the fixed coordinate system x in which
our connection I' = Ffj is originally assumed to be given, and we take the
auxiliary metric on x to be Euclidean. Since z is assumed fixed, the covari-
ance properties of these differential forms is not an issue.

To start, we interpret the connection I' as a matrix valued 1-form I') =
F‘;idxi, in which case the Riemann curvature tensor of I' can be written as
the matrix valued 2-form

(3.1) Riem(') = dI' + T AT,

c.f., Lemma By a matrix valued differential k-form A we mean an (n x
n)-matrix whose components are k-forms over n-dimensional base space 2 C
R", and we write

A= A[ilmik}dxil A ANdat = Z Ag, g dx A A dat

iy < i

for (n x n)-matrices A;, ; that are totally anti-symmetric in the indices
i1,...,0k € {1,...,n}. As is standard, we always indicate an increasing or-
dering of indices by a square bracket around the indices and we set

(3.2) dz A - Adzt = Z sgn(r) da'"® @ - @ dr'*®)
TES



Regularity singularities 1215

where Sj denotes the set of all permutations of {1,...,k}. We define the
exterior derivative of a matrix valued k-form by

dA = d(Ag, i) Ada" A Ada'™
(3.3) = 61A[i1mik]d:cl Adz AN dmik,

and we define the wedge product of a matrix valued k-form A with a matrix
valued I-form B = Bj, . j dzi A -+ Adxdt as

1 ) ) . .
(3.4) AANB= WAil,,,ik-lemjl dz'* N ANdz'™ Ndx? AN dad

where the dot denotes standard matrix multiplication. The wedge product
of a matrix valued k-form with itself is in general non-zero unless the com-
ponent matrices commute. In fact, for any matrix valued 1-forms A = A;dz’
commutativity of its component matrices is a necessary and sufficient con-
dition for A A A = 0, as we now show by computing

(A,dxl) VAN (Ajdﬂfj) = AZA]dl‘z A da?
= A;-Aj (dmi ®dr! — d? @ dxi)
and this vanishes if and only if A;A; — A;A; = 0. The main point is that
' AT in (3.1)) is in general non-vanishing.

To define the co-derivative 6 and the Laplace operator A for matrix
valued k-forms, define the Hodge star operator * by

(3.6) AN (xB) = (A;B)da* A --- A da™,
for matrix valued k-forms A and B, where we define

(3.7) (A;B)h= > Ab.  BY ..

1y <---<ig

The matrix valued inner product (3.7)) generalizes the Euclidean inner prod-
uct on the components of k-forms; (3.7)) is symmetric in A and B if and only
if A and B commute and for a matrix valued 0-form J we have

(3.8) J-(A;B)=(J-A;B) and (A-J;B)=(A;J-B).
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Now, the Hodge-star operator * maps k-forms linearly to (n — k)-forms and
commutes with matrices, %(J-B) = J-(*B) for any matrix J, since

AN*(JB) = (A;JB)dz* A--- A da"™
= (AJ;B)ydaz' A--- A da™
=AJ ANxB

by (3.6) and (3.8)). Moreover, (3.6) is equivalent to the orthogonality condi-

tion (for increasing indices)
dal™ Ao A dx™ Ak (dzbt A - A da)
(39) :{dazl/\~~/\dx", if i =i =
0 otherwise,
since we find from definition of the wedge product that

(AA(xB))) = At

olin...ix] Bg[jl---jk

] dz Ao A dz' A *(d:njl AREE /\d:z:j’“),
while we find from definition (3.6)) of the Hodge-star that
(AN (*B))Z =(A;B)! dx' Ao N da™.

so that follows directly by comparing coefficients. Now, by , the
Hodge star maps a basis element to its complementary element, from which
we find that % x A = (—1)%("=%) A, where the factor (—1)*("=*) appears when
passing the dual basis element to the left hand side, and so

*71 — (_1)k(nfk) .

The co-derivative of a k-form A is now defined (in the standard way) as the
(k — 1)-form

(3.10) SA = (—1)"F x (d(x71A))
and the Laplace operator as
(3.11) A = dd+ do.

The Laplacian acts on each component of A as the scalar Laplacian,

(3.12) (AA)ﬁil...ik = A(Azﬁ/til..‘ik) = Z 9;0; (Alrjil...ik)7
j=1
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c.f. Theorem 3.7 in [6], (where the last identity in holds when ! are
Euclidean coordinates, the case we have here). A straightforward computa-
tion shows that 6 A = 0 for O-forms A, and if k = 1, then the co-derivative
is the divergence,

n

(3.13) (BA) =D 0:AL,.

i=1

With the exception of property of the wedge product, matrix valued
differential forms behave like standard scalar differential forms with scalar
multiplication replaced by matrix multiplication whenever components are
multiplied. In particular, the derivative operations , and @
simply act component-wise on matrix components. We now prove that @
holds for the Riemann curvature tensor

Riem(T')* = R". .da’ ® da?

1Z%]
the components of which are given by

=T

vy,

(3.14) Riem(T)".. = R"

vij 1Z4

_FM »—FF“IW _FM'FO'

vi,j ol vj ojvi

and where we interpret p and v as matrix indices.

Lemma 3.1. In fized coordinates x*, the Riemann curvature tensor is the
matriz-valued 2-form (3.1) with matriz components

(3.15)  Riem(T)" = R"

o] dz' A da? = d(Th,da") +Th.da* A I'y,da?.

Proof. We use (3.2) and the antisymmetry of Rffij in 4 and j to write

Rl da’ Ado? = Rl (da' @ da? — da? © da)
— Z Rﬁijdxi ® dzd + Z Rffjidzbj ® dxt
i<j i<j
= R" daz' @ dat,

vij

without losing any information of the curvature tensor, which turns Riem(T")
into a matrix valued 2-form. To prove the second equality in (3.15)), use (3.3)
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to compute

d(T¥.da") = T4, da? Nda' =T%, (da! @ da' — da’ @ da?)

[Z% vi,j
_(Tr  _THM { J
- (Fuj,i Fui,j)dx ® dx

and use (3.4) to compute

Ida' ANT;da? =TT, da’ Ada? =ThT7 (do' @ da? — da? ® da')

o1 Vj fTi vj .
= (Ph,0y; — Th.ry)de' @ da?
which combined yields the sought after second equality in (3.15)). U

To proceed, let WP (£2) be the Sobolev space of functions with partial
derivatives up to m-th order in LP. We say that a matrix valued k-form
w is in WP (Q) if its components are functions in WP (Q), with respect
to the fixed coordinate system x. Assume now that m > 1 and p > n, so
that the Sobolev embedding theorem implies functions in WP are Holder
continuous, c.f. Morrey’s inequality in [10]. The following Leibnitz rule holds.

Lemma 3.2. Let A€ WYP(Q) be a matriz valued k-form and let B €
WLP(Q) be a matriz valued j-form, and assume p > n, then

(3.16) d(ANB)=dAAB+ (-1)*ANdB € LP(Q).

Proof. Assuming first that A and B are smooth, a straightforward compu-
tation gives

d(A-B) = fd(AY, . BS. o odx™ Ao Ada't Adz?t A Adat)

Oi1.0k V1.1
_ Ti.al (Ag:ilmik ;fjlmjl)dl,l Adrt A Adz™ Adx?t A - A da?t
— alAZ[i det Adxt A - Adat™ A BS
1...Zk] v

+ AL A (DR By, qdat AdaT A dat

(3.17)  =dA* ABS + (-1)k A% dBY,

which is the sought after identity . To extend the above computation
to WP we use that the difference quotient (along the j-th coordinate axis)
Dy f of a function f € WhP() converges to its weak derivative 9;f in L!
as h — 0. It follows that for the product of two functions f, g € W1P(Q) we
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have at = € Q)

(3.18) Di(f9)le = Dr(f)le 9(x + h) + f(2)Dn(g)]e-

Now, since p > n, we know by the Sobolev embedding theorem that g and
f are Holder continuous, so that the right hand side in (3.18)) converges in
L' as h — 0 and implies

lim Dy(fg) = g 0;f + f 939 € L7 ().

Thus, since Dp,(fg) converges to the weak derivative 9;(fg) in L! as h — 0,
we conclude that

(3.19) 9i(fg) =9 0;f + [ 9;9 € LP(Q)

and thus fg € WHP(Q). Applying (3.19) component-wise for the third equal-
ity in (3.17)) leads to the sought after equation ([3.16]). O

We also require the following Leibnitz rule for the co-derivative.

Lemma 3.3. Let J € W2P(Q) be a matriz valued O-form and w € W?P(Q)
a matrixz valued 1-form, then

(3.20) §(Jw) = J-dw + (dJ; w)
where (-;-) is the matriz valued inner product defined in (3.7)).

Proof. Using that § of a 1-form is the divergence (3.13)), we find that
(0(Jw)){ = 6(Jgwk da?) Za = Jpwk + TR (dw)f
7j=1

and this proves the lemma. O

We close this section by introducing the two operations we require to
close the equations, which relate matrix valued to vector valued differential
forms. Note, a matrix valued 0-form J turns into a vector valued 1-form
Jdz" by contracting the lower matrix index with a Cartan basis element,
(where « labels the components of the vector). To start, let an arrow over
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a matrix valued 0-form A convert A to its equivalent vector valued 1-form,
i.e.,

(3.21) A= A¥da.

By this, we can express the integrability of the Jacobian J, (c.f., Frobenius
Theorem, [31]), as

(3.22) dJ =0,
since
1 @ « j i @ j i .0\ — g T

For our elliptic system to close, we need one more operation to convert
matrix valued to vector valued differential forms. Namely, for w € A,lg’p (Q),
we define

(3.23) d1v )¢ = Zal (@i, 0 ) AT A oo A da™,
=1

which is the divergence with respect to the lower matrix index, thus creating
a vector valued k-form out of a matrix valued k-form. We close this sub-
section with the following intriguing identity for commuting d and § which
has no analogue for classical scalar valued differential forms and is the key
identity for the regularity of the final elliptic system to close.

Lemma 3.4. Let ' € W™P(Q) and J € W™HP(Q) for p > n and m > 1,
then

(3.24) d(5(J 1) = div(dJ AT) + div(J-dT").

Proof. Since 0 of a matrix valued 1-form is the divergence (for fixed matrix
components), we have

(6(JT)) = 6(JRT}da") Zal JETH)

and thus

(3(JT))* = (8(J dxf Zal (JpTh)d
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from which we find that

d(3(JT))" = 0;(8(JT)) Fda’ A da? = Za O (JETh ) da' A dad

where in the case m =1 second derivatives are taken in a distributional
sense. Now, since weak derivatives commute, we obtain from the product
rule (which applies since I" and derivatives of J are Holder continuous) that

d(s(JT))" Zala (JoTh)da’ A da?
=1
= o(Jg ) da’ Ada? +> 0 (JRTY ) da’ A da?
= =1
= div(dJ AT)™ + div(J-dr)".

This completes the proof. Il

4. The Riemann-flat condition in terms of matrix valued
differential forms

Consider the transformation law for a connection

K

(4.1) (JHE (0,00 + I T)TG,) =T%

where Fk denotes the components of the connection in z’-coordinates, Fvﬁ
denotes 1ts components in y“-coordinates, and where J* = gy denotes the
Jacobian of the coordinate transformation. Assume now that Fk e WmP(Q),
J* € WmHLP(Q) and IS, € WmHLp(Q), for m > 1, so the Jacobian J
smooths the connection I‘k by one order. For these given coordinates =

and y, define

=

(4.2) b= (JHEIP TS,

2

Then requiring I to transform as a (1,2)-tensor, (£.2) defines the tensor T
By this, (4.1)) can be written equivalently as

(4.3) (J7HE 9500 = (I~ Tk
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Now, since adding a tensor to a connection yields another connection, is
just the condition that J transforms the connection I' — T to zero. ThlS im-
plies T' — I is a Riemann-flat connectlon Riem(T' — T') = 0. In the language
of matrix valued differential forms reads

(4.4) J Y =T-T,

where J is a matrix valued 0-form and T' and T are matrix valued 1-forms.
Equation plays a central role in this paper.

Note apply to Fk € L>(Q) and I'J; € C%1(Q), and it is
proven in [23} that the reverse 1mphcat10n is also true, even at this low
level of regularity of I' € L*°. The equivalence is this: One can smooth an
L> connection I' one order to C%! by a C%! coordinate transformation if
and only if the Riemann-flat condition holds, and we say that the Riemann-
flat condition holds if there exists a Lipschitz continuous rank (1,2)-tensor
ff] with symmetry f‘Z = f‘;“z such that Riem(I' —T') = 0 holds. (In light of
Theorem we sometimes also refer to as the Riemann-flat condi-
tion.) Based on this, we now record the following version of the Riemann
flat condition and related equivalencies applicable to the smoothness classes
I' € W™P relevant for this paper.

Theorem 4.1. Let Fk be a symmetric connection in W™P(Q) for m > 1
and p >n (in coordmates xz)ﬁ Then the following points are equivalent:

(i) There exists a coordinate transformation x' — y® with Jacobian J €
WmHLP(Q) such that I, € Wm+LP(Q) in y-coordinates.

(ii) There exists a symmetric (1,2)-tensor T € WTLP(Q) and a matriz

field J € W™TLP(Q) which solve

(4.5) JYdJ=T-T,

Jg — J2 =0

(iii) There exists a symmetric (1,2) tensor I € W HLP(Q) such thatT — T
is Riemann-flat,

(4.7) Riem(I' —T') = 0.

8Note that symmetry of I is not required for our main result, Theorem
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(w) There exists a symmetric (1,2) tensor T' € W™LP(Q) which, when
viewed as a matriz valued 1-form in x-coordinates, solves

(4.8) dl =dl' + (D —T) A (T - T).

Proof. The equivalence of (i) and (ii) follows from (4.1)—(4.3), where (4.6)) is

the Frobenius integrability condition. That (ii) implies (iii) follows because
implies the Riemann-flat condition (4.7). The equivalence of (iii) and
(iv) follows from Lemma3.1] Finally, the implication (iii) to (i) is established
in [23] in the case of the lower regularity class I' € L, T',J € C%!. The
more regular case of '€ WP, T,J e W™tLP here, follows by a similar
argument using compactness in W™P of the unit ball in W™+1P_in place

of the Arzela-Ascoli theorem. (Details omittedED g

In Sections we derive a pair of nonlinear Poisson equations equiv-
alent to the Riemann-flat condition in the form , such that it closes
up in the unknowns (J, f), with regularity in each term formally consistent
with T € W™?_ but T, J € W™tLP. This accomplishes the first step in our
program to apply elliptic regularity results to solve the problem of regu-
larity singularities. To start, observe that equations f are under-
determined for unknowns (J,T'). On the other hand, is a system of
equations for I' alone which is consistent with I’ being one degree more reg-
ular than ', T € W™ +L? but a necessary condition to solve them is that the
exterior derivative of the right hand side must vanish. The latter imposes
additional conditions on T' that must be satisfied. The objective of Sections
6{7| is to derive equations f from 7, a system of elliptic
PDE’s which closes up in (J, f‘), and prove that finding solutions of this
PDE is equivalent to solving the Riemann-flat condition —.

5. Cauchy Riemann systems and Poisson equations

In this section we get started by briefly reviewing the classical equivalence
between Poisson equations and Cauchy Riemann type equations for matrix
valued differential forms at the level of smoothness we are dealing with. This
is the starting point for our derivation of the elliptic system — in
Sections [6] and [l The Riemann-flat condition is stated in terms of exterior

9In fact, although the Riemann-flat condition motivates this paper, the formal
proofs only use the straightforward implication (i) implies (iii), that if one can
smooth the connection, then the Riemann flat condition holds.
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derivatives, and we apply the ideas in this section to replace the J equa-
tion, which as a first order equations is formally unsolvable, into a second
order Poisson equation which is solvable. The starting point is the following
classical result for scalar valued differential forms, c.f. [6]. (We prove a gen-
eralization of this in Lemma [5.1| below.)

Theorem: Assume f is a smooth (k+ 1)-form and g is a smooth (k —1)-
form such that df =0 and 6g = 0. Then a k-form u solves

(5.1) du = f and u=g
if and only if u solves

(5.2) Au=0f+dg

with boundary data du = f and du = g on Of).

To introduce some ideas underlying Theorem we now state and
record the proof of a version of the classical result regarding the equivalence
of 7, which applies to solutions of nonlinear PDE’s involving matrix
valued differential forms which more closely model f. For this, as-
sume f maps k-forms to (k 4+ 1)-forms and g maps k-forms to (k — 1)-forms,
let A;"P(Q2) denote the space of matrix-valued k-forms with components in
W™P(Q), and assume that

Foo ATTIQ) — A9,

(5.3) g: ATIQ) — ATR(Q).

The loss and gain of derivatives in f and g are introduced to model the right

hand side of (2.1])—(2.4]).

Lemma 5.1. Assume f and g as in (5.3), and assume m > 2,1 < p < oo,
such that d(f(w)) =0 and §(g(w)) =0 for any w € A?H’p(Q). Then u €
ATYP(Q) solves

(5.4) du = f(u) and ou = g(u),

if and only if u solves

(5.5) Au =5(f(u)) + d(g(w))
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with boundary data
(5.6) du = f and ou=g on 0f.

Proof. To prove that (5.4]) implies (5.5)), recall that A = dd + éd by (3.11)).
Taking ¢ of du = f(u) and d of du = g(u) and adding the resulting equations,

gives , and restricting to 08 gives . This proves the forward
implications.

For the backward implication, assume and . To show that u
solves du = f(u), take the exterior derivative d of the Poisson equation (5.5]).
Observing that A = d§ + dd commutes with d (and §) and using d?> = 0 and
df (u) = 0, we obtain

(5.7) A(du — f(u)) = 0.

Thus each component of du — f(u) is a harmonic function in 2. Moreover,
by (5.6), each component of du — f(u) vanishes on the boundary, implying
du — f(u) = 0in €, thereby establishing the first equation in (5.4)). Similarly,
taking d of (5.5)), using 6> = 0 and dg(u) = 0, we find

(5.8) A(du —g(u)) =0,

which combined with boundary data (5.6)) implies du — g(u) = 0 in 2, so the
second equation in ({5.4]) also holds. This proves the backward implication.
O

The above theorem and proof are correct at the level of classical derivates,
but for the A equation in system (2.1)—(2.4) we need to see that Lemmal5.1]
holds for solutions one degree less regular. We state this as a lemma:

Lemma 5.2. Lemmal[5.1] is also true form >1,1 < p < oo.

Proof. The forward implication follows as in Lemma [5.1] because the bound-
ary data makes sense in LP by the trace theorem, [10].

For the backward implication at the lower regularity m = 1, we must take
derivatives in a distributional sense. For this, take the L? inner product on
matrix valued forms to be

(5.9) (e = /Q tr ((-3)),

where tr(-) denotes the trace of a matrix and (- ;-) is the matrix valued
inner product defined in (3.7)). Using the definition of Hodge star (3.6)), the
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product rule (3.16]) for matrix value forms, and Stokes Theorem, its easy to
see that the standard integration by parts formula for k-forms extends to
matrix valued forms,

(510) (dw, U>L2 + (’LU, (5’U>L2 =0,

where w is a matrix valued k-form and v a matrix valued k + 1-form, both
differentiable and at least one of them vanishing on 052, (c.f. [6, Theorem
1.11]).

Now assume Au = 6 f + dg holds in €, du = f, du = g on 9L, and u €
W?2P, We show du = f(u) holds in the L” sense. By Riesz representation, it
suffices to show that

(5.11) ((du—f),d)r2 =0,

for all ¢ € LP"(Q), where }% + % = 1. Since the Laplacian is invertible, there
exist a 1 € W2P (Q) such that Ay = ¢, and ) =0 on IQ. Since by as-
sumption, du — f(u) = 0 on 9, we can apply the integration by parts for-

mula (5.10) and compute

((du = [), ¢}z = ((du — f), Ap) L2
= —(6(du — f),5¢) 12 — (d(du — [), dy)) 12
(5.12) = —(6(du — f),69) e,

where in the last equality we use d?u = df = 0. Since 62 = 0 and du — g(u) =
0 on 01, we have

0= ((6u—g),6%P) 2 = —(d(6u — g),6¢) 2.
Adding this to , gives

((du— [f),¢)r2 = —(3(du — f),09) 2 — (d(du — g), %) 1
= ((Au—0f —dg,6¢)r2 = 0,

which proves du — f(u) = 0 in Q. A similar reasoning proves that du = g(u)
holds as well. This completes the proof. U
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6. A first equivalence of the Riemann-flat condition to an
elliptic system

In this section we derive a system of nonlinear Poisson equations equivalent
to the Riemann-flat condition in the case I' and Riem(I") € W™P(Q), m >
1, p > n. For m > 1, solutions of the RT-equations are regular enough to
impose boundary conditions, (c.f. Lemma, and p > n guarantees WP is
closed under taking products[?'| Assuming Riem(I') € W™?(Q) is equivalent
to assuming dI' € W™P(Q), so only 0T is free to be one level less smooth
than I" and dI'.

To begin, recall that by Theorem the Riemann-flat condition
Riem(T' —T') = 0 can be written equivalently as

(6.1) dl =dl' + (T -T)A (I -T).

Condition is an equation on T’ alone (not involving J), but it is not a
solvable equation for dr , in part because we need to impose the consistency
condition that d of the right hand side of be zero. To complete (6.1])
to a solvable system of equations, we look to couple to an equation for
the Jacobian J. To construct such a system, we start with the equivalent
expression of the Riemann-flat condition in terms of J, given by Lemma 4.1

(c.f. (@F) and (L3)),

(6.2) J7'dJ = (I -T).

The following lemma explains why the exterior derivative of the right hand
side of (|6.1)) vanishes when coupled to (6.2)), since (6.1]) together with equa-
tion (6.5)) of the lemma implies that

(6.3) T -T)A(0-T)=—d(J'dJ).

Lemma 6.1. Any matriz valued O-form J € W?P(Q) satisfies

(6.4) d(J7'dJ) =d(J ) AdT
(6.5) = —(J7rdT) A (J1dT).

10Gince the nonlinearities in the equations involve products of functions in LP,
(and more generally in W™ P) and products of L functions are not generally in L?,
we assume p > n so the Sobelev embedding implies LP functions are Holder con-
tinuous. Then we can estimate || fg|l, < || f|lz|lgllrr for f,g € WP, and similarly
for f,g in WP,
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Proof. Since the exterior derivative defined in (3.3]) acts component-wise on
matrix valued forms, it follows that d2J = 0. By the Leibniz rule for k-forms

(3.16)), we obtain that

d(J7'dJ) =d(J ) AdT + T AT
d(J Y AndJ,

which gives (6.4). Moreover, using the Leibniz rule to compute

d(J71T) = 0;(J 1 ))da
= 0;J Yda'J + J10;Jds
=d(J YT+ JtdJ,

we conclude from d(J~1J) = 0 that
d(J ) =-J" dJ- T
The above identity now yields
d(JYANdT =T dTT AdJ,
and since matrices commute with basis elements of k-forms we have
d(JYAdT =—-J7 dT AT 1dJ,
which proves . O

We now derive a set of equations in (T, J) which is consistent and closes.
For the T" equations, in light of (6.3)), we take the Riemann-flat condition

as
(6.6) dl' = dl' — d(J'dJ).

The right hand side is consistent with the left hand side since both are
exterior derivatives. (Note, taking the exterior derivative of gives ,
thereby showing how information in is encoded in .)~Motivated by
the fact that only dI' appears in the curvature, we allow 61" to be a free
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function, and set
(6.7) o' = h,

where h € WP is an arbitrary matrix valued 0-form. The freedom in choos-
ing h reflects the freedom in choosing smooth coordinate transformations to
maintain the smoothness of a spacetime connection.

For fixed function J, one could solve f for T’ by the existence
theory in [6], (the Poincaré Lemma), since the consistency condition is that
the exterior derivative of the right hand side of vanishes, and éh =0
for matrix valued O-forms. Alternatively, adding 6 of and d of
produces the second order Poisson equation

(6.8) AT =6d(T — J7'dJ) + dh.

By Lemma it follows that any solution of which satisfies f
on 012, is also a solution of the Cauchy-Riemann system 1) in Q.

The problem of deriving the J equation is not so simple. It turns out
we need a second order equation, since the consistency condition that the
right hand side of the first order equation have a vanishing exterior
derivative, leads to circularity. To see this, we introduce the following lemma.

Lemma 6.2. Assume holds for J,T € W™HLP(Q) and T € W™P(Q)
form > 1, then

(6.9) d(J-(F - f)) = dJ A ((r ) - J*ldj).

Proof. A straightforward computation using the Leibniz rule for k-forms
(13.16) gives

d(J(L' =T)) =dJ A(T =T) + J-(dl' - dI)
(6.10) =dJ A —T)+ J-d(JdJ),
where we used for the last equality, and substituting for d(J~1d.J)
yields
d(J(T =T)) =dJ A —T) —dJ AJ ' dJ,
which is the sought after equation . (]

To see the circularity in the first order equation for J, note that one
can solve the Riemann-flat condition (6.2 for J only under the consistency
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condition that the exterior derivative of J times its right hand side should
vanish. By , the exterior derivative of the right hand side vanishes if
either either dJ = 0, (in which case I" = I, and I does not have the regularity
we seek), or if holds, which just reproduces the equation for J we
started with, which is circular; or else the right hand side of produces
a nonlinear PDE in J more complicated than the one we started with.

Thus, differently from the case of T', we need a second order equation
in J in order to obtain a solvable PDE. The second order equation for J
obtained from is again a non-linear Poisson equation which does not
require the constraint that the right hand side of should vanish. To
obtain this, again use A = dd + d¢, and note that for the 0-forms J we have
0J =0, so that AJ = ddJ. Then taking § of equation , we obtain

(6.11) AJ =4(J-(T —1)).

Applying gives

6(J-T) = J-oT + (dJ;T).
Thus, replacing ST =h by yields equation in its final form,
(6.12) AJ =6(JT) — J-h—(dJ;L),

where again h is a free function. In contrast to the first order equation
, solving the nonlinear Poisson equations allows for more general
boundary data and does not require the right hand side to have a vanishing
exterior derivative.

To summarize, every solution (.J,T') of the Riemann-flat condition
also solves the second order equations and . In the next theorem
we prove equivalence of and with the Riemann-flat condition
6.2), in the sense that a solution (J,I') of the Poisson system and
@D gives rise to a solution of the original Riemann-flat condition
after suitable modification of I". Remarkably, in contrast to Lemma the
second order system and generates solutions of the first order
system without requiring any boundary conditions.

Theorem 6.3. LetT',dl' € W™P(Q), form > 1,p > n. Then if (J, f‘) solves
the Riemann-flat condition (6.2) for a matriz valued 0-form J € W™HLP(())
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and a matriz valued 1-form T € W™HLP(Q), then (J,T) solves

(6.13) AT = §dl — §(d(J 1) AdJ) + dh,
(6.14) AJ =6§(JT) —J-h—{(dJ;T),

for h=6T e W™P(Q). Conversely, if (J,T') € W™HLr(Q) solves (6.13) (6.14)

for some matriz-valued 0-form h € WP (), then, defining
(6.15) I'=T-JtdJ,

the modified pair (J,I") solves the Riemann-flat condition (6.2)) with T’ €
WmHLp(Q)), (the regularity required by the equivalences of Theorem |4.1]),
on any compactly contained open set ' CC Q.

Proof. For the forward implication, assume that J and T satisfy the
Riemann-flat condition (6.2)) in 2. Taking the exterior derivative d of (6.2))
implies , while (6.7 follows by definition of h. Adding now ¢ of (6.6))

and d of (6.7)) gives
AT = 6dT" — 6d(J~'dJ) + dh,

and applying the identity d(J~'d.J) = d(J~') A dJ of Lemma yields the
sought after Poisson equation EThe argument leading to shows
that any solution of also solves the Poisson equation for J. This
proves the forward implication.

To prove the backward implication, assume (J,T) € W™+1P(Q) solves
(6.13)—(6.14) for some matrix-valued 0-form h € W"P(Q). Then, by defini-
tion (6.15)), (J, ") solves the Riemann-flat condition and IV € W™P(Q),
since J~1dJ € W™P(Q) and ' € W™P(Q). The nontrivial part of the proof
is to show that I is one degree more regular than the terms J~'dJ and T’
on the right hand side of (6.15)), that is, to show that [’ € W™+Lp, For this,

HTet us remark that we could have established the equivalence of Theorem

for (6.14) together with the first order system 1) for T. However, system
6.0)-(6.7

6.13)—(6.14) is preferable, since the existence theory for the first order system
7) in [0] is more delicate than for the Poisson-type equation (6.13)), c.f.

[24].
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we first show that
(6.16) ALY e WmLP(Q),
so that standard estimates of elliptic regularity theory imply the sought after
regularity IV € W™+LP(Q') for any open set ' CC €.

We now establish (6.16)). For this, we first use (6.4) of Lemma to
write equation (6.13]) in the equivalent form

AT =6d(T' — J'dJ) + dh,

so that substituting I’ = T' — J~1dJ gives
(6.17) 6dl’ = AT — dh.

To determine the second term on the right hand side of AT = §dI” + déT”,
we compute

T’ 6T —5(J1dJ)

ST — (A1) dJ) — J-15dJ
(6.18) =0T — (d(JY);dT) — T 1A,

where the last equality follows since AJ = ddJ for 0-forms. Substituting
(6.14])) gives

T = 6T — (d(J~Y);dJ) — J (6(J-F) — J-h—{dJ; f>>,
and since 0(J-I') = JOI' 4+ (dJ;T') by equation (3.20) we obtain that
(6.19) or = —(d(J~Y);dJ) + h— J HdJ;T —T),

where the terms containing dI" canceled, resulting in a gain of one derivative.
Taking now the exterior derivative d of (6.19) and adding the resulting

equation to (6.17)) results in

(6.20) AT’ = AT — d((dJ—l; dJ) + JNdJ;T — f))

Since (J, f’) € WmTLP(Q) and since by Lemma products of functions in
W™P(Q) are again in W™P(Q) for m > 1, p > n, it follows that the right

hand side of (6.20) is in W™~ 1P (Q) which proves (6.16)).
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To complete the proof, we apply the elliptic estimate (A.3)) of Lemma
component-wise to (6.20)). In more detail, in each fixed component the
Poisson equation ([6.20) is of the form

Au=f

for some scalar valued functions f € W™ 1P(Q) and u € W™P(Q). Then,
by elliptic estimate (A.3]) of Lemma there exists for each Q' CC Q a
constant C' > 0 (depending only on Q' Q, m,n,p), such that

621)  lulwmorsgoy < C(I e + lullwnom).

Thus, since I' € WmP(Q) and since the right hand side of (6.20) is in
ijl’p (), estimate (6.21]) implies the sought after gain of one derivative,
i.e. I7 € WmHLP(QY) for any open set Q' CC (. O

In summary, and , being equivalent forms of the Riemann-flat
condition, are not independent. But reassured by the fact that the Riemann-
flat condition is necessary and sufficient for metric smoothing, we apply the
identity A = dd + dd to and separately to construct two indepen-
dent equations in AT and AJ. At the end, we use the “gauge freedom” in
6T = h to prove that solutions (f‘, J, h) can always be transformed into solu-
tions (I”,J, h'), where I solves the Riemann-flat condition (and hence the
RT-equations) at the appropriate order of smoothness. At the end, the au-
thors find it remarkable that two equations, which at the start are equivalent,
can be transformed into independent solvable equations (the RT-equations),
and yet the independent J and T solving the RT-equations can always be
transformed into a I which solves (and hence the Riemann-flat con-
dition) with the same J.

7. Our main equivalence theorem

We now consider the problem of imposing , that is, the condition that
J be a true Jacobian, integrable to coordinates. The goal of this section is
to augment system f with a first order PDE on the free function
h in f to replace the integrability condition . Assume again
throughout that I', Riem(I") € W™P(Q) for m > 1 and p > n.

The key idea to augment system f with an additional equa-
tion for the free function A which is equivalent to expressed in terms
of exterior derivatives. To accomplish this, note first that the integrability
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condition (4.6)) is equivalent to

(7.1) dJ =0,
since
a 1 «a a j i o j i a g0\ — JTQ

Now, to combine ([7.1)) with the Poisson equation (|6.14)), observe that
(7.2) AJ = (AJN)de' = A(J2dat) = AT,

since A acts component-wise on matrix valued k-forms by (3.12)). Thus,

interpreting the Poisson equation (6.14) in a vector sense, applying ([7.2))
and taking d of the resulting equation ([6.14]), we obtain

- —
AdJ = d(5(J 1) — d(J-h) — d((dJ;T)),
where we used that A and d commute. Therefore, if .J solves ([7.1]) in addition
to (6.14)), then A = J-h must satisfy the equation
5 —
(7.3) dA = d(é(J-F ) — d((dJ; F))

The right hand side of (7.3)) is a vector valued 2-form and vanishes when
taking its exterior derivative (since d?> = 0) so that (7.3)) is well-posed for
A given J and I'. Our next goal is to show the backward implication, that

(7.3) together with the Poisson equation (6.14]) on J imply (7.1]).

Lemma 7.1. LetT € W™P(Q) forp >n andm > 1, and let T € Wm™+Lp(Q),
J € WmTLP(Q) and A € W™P(Q) be given. Assume J solves

(7.4) AJ =6(JT) - (dJ;T) — A,

(the Poisson equation (6.14]) with h = J~1A). Then J satisfies the Curl-free
condition (7.1)), if and only if A solves

- — =
(7.5) dA=d(5(J-T)) —d({dJ;T))

and

(7.6) dJ=0 on Q.
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Proof. For the forward implication, assume J solves (|7.1). Then A = J-h

solves (|7.5)) by the argument in (7.1]) through ((7.3)). Moreover, (7.6)) follows
upon restriction of (7.1) to 02, (using that derivatives of J are Holder

continuous because p > n). This proves the forward implication.

For the backward implication, assume A solves and . Now,
consider as an equation on vector valued 1-forms and assume for the
beginning that m > 2. Then, taking d of , we get

s
A(dJ) =d(6(J-T)) — d((dJ;T)) — dA4,

so that implies
A(dJ) =0.

Therefore, since d.J is assumed to vanish on 9Q as a Hélder continuous
function, we conclude that holds in 2. This establishes the backward
implication for m > 2.

Consider now the case that m =1, then AJ € LP(§2) and we need to
take d in a distributional sense. For this, we proceed as in Lemma [5.2} By
Riesz representation, it suffices to show that

(7.7) (d T, ¢)r2 =0,

for all scalar valued 2-forms ¢ € LP" (Q), where # + % = 1, and where (-, )2
denotes the standard L? inner product on differential forms which we apply

component-wise to vector-valued forms. For each such ¢, there exists a scalar
valued 2-form ¢ € W2P"(2) such that Ay = ¢, and 1) = 0 on 9. Using the
product rule (5.9) we compute

(d], ¢) = = (AT, &) 2
= —(6d.T, 5 1>
(7.8) = (AT, 6¢) 12,
where the last equality follows since

(d6T, 0) 2 = (8J,8%) > = 0.

Substituting now ([7.4)) for AJ = A—} in (|7.7), we find
- — = -
(AT.69) 1 = (8(JT) = (d5T),00) | — (A,5u)ss
—_— i
(7.9) - <5(JT —{dJ; r>,5w> V(A P e

L2
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Substituting (|7.5]) for dA and using the product rule one more time gives

N —_—
(dA )2 = <d(6(J-P ) — d((dJ; F)),zp>
—_—
(7.10) - —<5(J-F —{dJ; r>,5w>

L2
r2’

and substituting back into (7.9)), a cancellation gives
(dJ, ¢)r2 = 0.

This completes the proof. O

Before we state our main theorem, we discuss the regularity of A. Since
we seek T' € W™t and dh = d(J~'A) is a source term on the right hand
side of the Poisson equation for T, we need A € W™P (for m > 1)
to be consistent with T’ € W™+LP_ But this appears to contradict the fact
that the first term on the right hand side of contains two derivatives
on I' e W™P. Most remarkably, the consistency follows by our incoming
assumption dI' € W™P alone, in light of identity of Lemma

d(5(JTY) = div(dJ AT) + div(J-dI),

H
where div is defined in (3.23)). Therefore, since we assume dI' € W™P(Q),
we find that

d(6(JI)) e W12 (Q)

and we conclude that the regularity of the right hand side of is consis-
tent with the regularity on the left hand side.

We now show that the existence of solutions (.J,I') of the Riemann-flat
condition together with the Curl-free condition is equivalent to
the existence of solutions (J,I', A) to a coupled system of non-linear elliptic
equations, system 7, and the equations are formally consistent at
the levels of regularity we seek. This establishes Theorem

Theorem 7.2. Let I' and Riem(T") be in W™P(Q) for p>n and m > 1.
Then the following equivalence holds:
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If there exists an invertible matriz-valued 0-form J € WL (Q) and a
matriz-valued 1-form T' € W™LP(Q) which solve

J'dJ=T-T,
dJ =0,

c.f. (6.2) and (7.1), then there exists A € W™P(Q) such that (J,T, A) solve
the elliptic system

(7.11) AT = 6dl — §(d(J~ ) AdJ) +d(TA),
(7.12) AJ =6(JT) - (dJ;T) — A,

L — — — =
(7.13) dA = div(dJ AT) + div(J dT') — d((dJ;T))
(7.14) SA=u

i Q with boundary data
(7.15) dJ =0 ondQ,

where v € W™~LP(Q) is a vector valued O-form free to be chosen.

Conversely, if there exists J € W™HLP(Q) invertible, f‘NG WmtLr(Q) and
A€ W™P(Q) solving (7.11)(7.15)), then there exists a I' € W™P(Q) such
that for every ' compactly contained in Q we have I € WmHP(Q) and

(J,T") solve (6.2) and (7.1)) in .

Proof. For the forward implication, assume there exists I' € W”*+17(Q) and
J € WmHLP(Q) which solve the Riemann-flat condition together with
the Curl-free condition . Theoremimplies that J and T solve (6.13)—
6.14)) for some h € W™P(Q), and setting A = Jh it follows that (J,T) solve
7.11)(7.12)). Since J satisfies (7.1)), Lemma [7.1] implies that A € W™P(()
solves . This proves the forward implication.

For the backward implication, assume J € W™12(Q), T € Wmt12(Q)
and A € W™P(Q) solve the elliptic system 7.117, with J invertible.
Now, Theorem implies that J and I" = J1dJ — T solve the Riemann-
flat condition in each ' compactly contained in Q, and T € W™+ ()
has the required regularity. Moreover, since and hold together
with the boundary condition , Lemma applies and yields that J
satisfies the integrability condition in Q and therfore also in Q' C Q.
This completes the proof. O
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Equations (7.11))—(7.14) are the fundamental equations of this paper,
the RT-equations. Theorem establishes our main theorem, Theorem [2.1

of the Introduction, due to the equivalence of (i) and (ii) of Theorem 4.1
which also holds true if I' and I' are not symmetric. Again, authors prove

an existence theory for (7.11)—(7.15) in [24].
8. An alternative equivalent elliptic system

In this subsection, we prove the following proposition which shows that
system can also be written equivalently as a system of coupled semi-
linear Poisson equations, but to assign classical boundary data for A we
must assume one more order of smoothness than in Theorem [7.2l

Proposition 8.1. Let m > 2 and assume thatT' and dT" are both in W™P(Q)

forp>n. Let (J,T) € WtLr(Q) solve (7.11)-(7.12), where J is invertible.
Then A € W™P(Q) solves (7.13]) in Q if and only if A solves

(81) AL =6(din(d] AT) + div(J dr) — d((dJ;T))) +dv,

in Q) with boundary data

(8.2) dA = div(dJ AT) + div(J dT) — d({d.J; T),

(8.3) A=
on 09, where v € W™=LP(Q) is a vector valued O-form free to be chosen.

Proof. This proposition is a consequence of Lemma[5.1] and [5.2] We summa-
rize the argument here for completeness. To prove the forward implication
and derive , add J of to d of the free vector valued function
§A = v. This gives . Restricting and 64 = v to the boundary
gives 7.

To prove the backward implication assume first that m > 3, then take d
of (8.1]) to get
> — — =
AdA = db(div(dJ AT) + div(J-dT) - d((dJ;T)))

a5(d(6(I ) — d((dJ: 1))
— AA(IT)) — d((dT ).
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which is equivalent to
Aw =0,
with w defined by

- —
w=dA—d(6(JT)) +d((dJ;T)).

Thus, since w vanishes on the boundary by (8.2)), we conclude that w = 0 in
Q which is the sought after equation (7.13[). The low regularity case m = 2
follows by Lemma [5.2] This completes the proof. O

Appendix A. Basic estimates from elliptic regularity theory

We review basic elliptic regularity results relevant for the RT-equations
f. Note, the Laplacian A = dd + dd acts component-wise on differ-
ential forms, so regularity estimates for the scalar Poisson equation extend
directly to matrix valued differential forms. We assume from now on that 2
is a bounded open set in R™ with smooth boundary, (at least C11).

Theorem (Elliptic Regularity): Let u € W2P() be a scalar, oo > p > 1.
Then there exists a constant C' > 0 depending only on §2, m,n,p, such that

(A1) lllwara) < O (1Al oy + el + 1l s )

Estimate (A.1) is equation (2,3,3,1) in [I3]. Estimates for the regularity
of the first order equations that parallel the estimates for the classical
Poisson equation are given by the Gaffney inequality, which we now
state, (c.f. Theorem 5.21 in [6]).

Theorem (Gaffney Inequality): Let u € W™HLP(Q) be a k-form for m >
0,pe (1,00), 1 <k <n-—1and (for simplicity) n > 2. Then there erists a
constant C > 0 depending only on 2, m,n,p, such that

(A2) Julwssiey < C(dullwnsoy + I6ulwesiay + Nl s ).

Again, estimate (A.2)) for scalar valued differential forms extend to ma-
trix valued differential forms. In this paper, more specifically in Theorem[6.3]
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we only rely on the following elliptic estimate with respect to the W™ +i.p-
norm, for m > 1, on compactly contained subsets of €2, which we prove here
for completeness.

Lemma A.1. Let f € W™ P(Q) be a scalar, where m > 1, p € (1,00).
Assume the scalar u € W™TLP(Q) solves Au = f. Then, for any open set
Q' compactly contained in §Q, there exists a constant C' > 0, depending only
on Q, Q, m,n,p, such that

(A.3) lullwoerory < CULF lwnro) + lullws)-

Proof. Let € be an open set that is compactly contained in . Equation
(9.36) of Theorem 9.11 in [IT] gives estimate (A.3]) in the case m = 1, that

is,

(A.4) ullwezs oy < C Il e + lullpo))-

Now, from the definition of the W™+ P-norm, we find that

(A.5) lullwmsin@y < ID%ullw2ega,

laj<m—1

where o denotes a standard multindex and D% the corresponding combi-
nation of partial derivatives, c.f. [I0]. Differentiating Au = f by D% and
applying (A.4) to each term on the right hand side of (A.5) then yields

lullwmirroy < C Z (1D fll Loy + 1D%ul| 1o 02))

|a|<m—1
< C([Ifllwm-rr@) + lullwm-rs@)
< C(Ilf llwm-ro@) + llullwmr@)),

which is the sought after estimate ({A.3)). O

Conclusion, discussion and outlook

We have reduced the problem of whether a connection I' € W™P(§) can

be smoothed one order by coordinate transformation, under the assump-
tion dI' € W™P(Q), to the problem of finding solutions (J,I', A) of the RT-

equations (2.1)—(2.4) with boundary data (2.5) within the regularity class
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J,T e Wmtlp(Q), A € W™P(Q). The main difficulty for constructing an ap-
propriate existence theory for f is that the right hand sides are cou-
pled nonlinearly, and is not standard Dirichlet or Neumann boundary
data. Existence for the case I' € W™P(Q), for p > n, m > 1, is established
in authors’ companion paper [24].

The case I',dI’ in L*°, relevant to regularity singularities in GR, shock
wave theory, is delicate, and is the topic of authors’ current researchB In
particular, the condition requires Curl(J) =0 on the boundary of
the domain, so Lipschitz continuity of J is a regularity too weak to assign
boundary conditions in a classical (strong) sense. (The method of assign-
ing Dirichlet data in our companion paper [24] is sufficient to resolve this
problem, even in the case of L> connections.) Moreover, the existence the-
ory for the linear Poisson equation admits Calderon-Zygmund singularities
when the source functions are in L°°, so solutions of the RT-equations can
fail to be two levels more regular than the sources. Note that consistency of
the RT-equations f is not an issue even in the L case. That is,
there exists non-trivial solutions of the RT-equations because any Lipschitz
continuous connection can be transformed to a connection no smoother than
L™ by application of a C™! coordinate transformation, and reversing this,
the inverse Jacobian together with I will solve the Riemann-flat condition
for the transformed connection, where I is the Lipschitz connection in
the original coordinates we started with.

We can explore the possibility that Calderon-Zygmund singularities
might be ruled out by imposing further conditions on I', for example as-
suming I lies in the space BMO (Bounded Mean Oscillation), a space con-
taining L°°, or assuming I' lies in BV (Bounded Variation), a subspace of
L*> appropriate for shock wave theory, [7, 28]; or, since the problem is local,
by modifying I' off an arbitrarily small neighborhood of a given point. We
also have the freedom to choose v in system f.

Consider briefly the freedom to change I' for the problem of regular-
ity singularities. The problem is to establish the existence of a coordinate
transformation z — y that smooths the connection in a neighborhood of
any given point p. For this purpose, there is no loss of generality in taking
Q to be Be(p), the ball of radius € centered at p in R™. Moreover, since the
Riemann-flat condition is a point-wise condition, there is no loss of gener-
ality in replacing I by a connection I'. which agrees with T" on B.(p), but
extends I beyond B.(p) by an auxiliary smooth connection. To make this

12This is accomplished in [26].
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precise, let ', € C°(R™) be such an auxiliary connection and define
Ie=01=00)Toc+ 6.1,

where ¢S is the standard smooth cutoff function satisfying ¢%(z) =1 if
x € Be(p) and ¢S(z) =0 if € B,(p)°¢, where B,(p)¢ denotes the comple-
ment of B,(p) in R", r > €. Clearly, dI'} € L>(R™). Thus, if we can solve the
RT-equations with I'* in place of I', we can employ Theorem to conclude
that the Riemann-flat condition holds for the original I'; in a neighborhood
of p. Note here that we have the freedom to choose I', and f‘oo to be a
known solution of the Riemann-flat condition at the start, and can use € as
a small parameter in an existence theory. We conclude that there is enor-
mous freedom, all the freedom to choose ', v and ¢, r, available to modify
the sources in f in order to avoid Calderon-Zygmund singularities
when the sources of the RT-equations are in L°°. Addressing the problem of
regularity singularities for connections of regularity lower than WP, p > n,
is the topic of authors current research
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