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Generalized symmetry relations for

connection matrices in the

phase-integral method

A. G. Kutlin

We consider the phase-integral method applied to an arbitrary or-
dinary linear differential equation of the second-order and study
how its symmetries affect the connection matrices associated with
its general solution. We reduce the obtained exact general relation
for the matrices to its limiting case introducing a concept of the
effective Stokes constant. We also propose a concept of an effective
Stokes diagram which can be a useful tool for analyzing difficult
equations. We show that effective Stokes domains which can be
overlapped by a symmetry transformation are associated with the
same effective Stokes constant and can be described by the same
analytical function. Basing on the derived symmetry relations, we
propose a way to write functional equations for the effective Stokes
constants. Finally, we provide a generalization of the derived sym-
metry relations for an arbitrary order linear system of the ordinary
linear differential equations. This work also contains an example of
usage of the presented ideas in a case of a real physical problem.

1. Introduction

Consider an arbitrary ordinary linear second-order differential equation writ-
ten in the form of a stationary one-dimensional Schrödinger equation

(1) L̂(z,λ)y(z,λ) = 0, L̂(z,λ) =
d2

dz2
+R(z,λ),

where λ is a set of the problem’s parameters. Its approximate local solution
can be obtained with use of the phase-integral approximation generated from
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the unspecified base function [1]:

y(z) ∼ c+y+(z) + c−y−(z),(2a)

y±(z) = q(z,λ)−1/2 exp[±iω(z)],(2b)

ω(z) =

∫ z

(z0)
q(ξ,λ)dξ,(2c)

where the explicit form of q(z) depends on the order and particular type
of the approximation. The simplest and the best-known type is one of the
WKBJ [2–5]; it takes the form (2) with q(z,λ) =

√
R(z,λ).

The function ω(z) is the phase integral, and therefore we call q(ξ,λ) the
phase integrand. Also, we will refer to z0 as a basepoint. A meaning of the
brackets in the lower limit of integration is a bit tricky; such a notation was
introduced by Fröman and Fröman [6] to make the integral look similar for
all orders of approximation. In the lowest order and, particularly, in case of
the WKBJ approximation, this integral is just a usual integral from z0 to z.

The general solution (2a) is a local, not global, solution of (1), i.e. the
coefficients c± vary from one point of the complex plane to another. Provided
that

ε = q−3/2d2q−1/2/dz2 + (R− q2)/q ≪ 1(3)

in the considered area of the complex plane, the variations are, in general,
slow but may have abrupt changes on the so-called Stokes lines (Stokes
phenomenon [1, 7–9]). Such changes have a form of a single-parameter lin-
ear transform [9]; the parameter is called the Stokes constant. Knowing all
Stokes constants associated with a particular equation makes it possible to
obtain a globally defined approximate solution of (1), and the phase-integral
method provides a simple way to do it [8, 9]. Unfortunately, there are very
few cases when this method allows finding all the constants exactly, so ap-
proximations of different kinds are commonly used [8, 25]. This happens
mostly because of a lack of the exact equations for the Stokes constants.

The phase-integral approximation has an extensive application in various
fields of physics. It is widely used in quantum mechanics and nuclear physics
to calculate energy spectrum and study wave functions for both Schrödinger
[10–12] and Dirac [13] equations. It is successfully used in plasma physics
to study electromagnetic waves’ scattering characteristics [14, 15] as long as
many problems in this area can be reduced to a problem of linear coupling
[16–18]. It is also useful in other branches of physics such as high-energy
physics [19] or general relativity [20–22]. Among the publications devoted
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to the phase-integral method there are both classical monographs [1, 8,
9, 23, 24] and modern attempts to improve its accuracy [25, 26]. In the
present paper we provide a way to reduce the number of independent Stokes
constants with use of the symmetries of (1).

The paper is organized as follows. In Section 2 we recall briefly the F-
matrix formalism and introduce a concept of the effective Stokes constant.
We also give a matrix formulation of the well-known Heading’s rules for an-
alytical continuation; such formulation appears to be much more convenient
for our purposes than the traditional one, which can be found, for exam-
ple, in [8]. In Section 3 we derive the symmetry relations for the connection
matrices in the most common case of the second-order differential equation.
In Section 4 we simplify the relations by reducing F-matrix to its limiting
form and obtain the symmetry relations for the effective Stokes constants.
In this section we also discuss a possibility of writing functional equations
for effective Stokes constants. In Section 5 a concept of an effective Stokes
diagram is presented; this concept is a natural consequence of the effective
Stokes constants’ usage. In Section 6 we present an example of a real phys-
ical problem solved with the help of our technique; the symmetry relations
for effective Stokes constants are used to find the exact form of reflection
and transmission coefficients for the Weber equation. In Section 7 we discuss
an applicability of the symmetry relations derived in Section 3 for the case
of an arbitrary order system of ordinary linear differential equations. And,
finally, in Section 8 are the conclusions.

2. Connection matrices and effective Stokes constants

As it was mentioned in the previous section, the coefficients c± vary from
one point of the complex plane to another. Taking into consideration the
linearity of (1), these variations can by described formally by means of the
F-matrices [1]:

ψ(z2) = F (z2, z1)ψ(z1),(4)

where ψ(z) = [c+(z), c−(z)]
T and ‘T’ denotes the transpose operation. In

principle, F-matrix can be obtained exactly from the corresponding differ-
ential equation [1]; then, the approximate solution (2a) with c± = c±(z)
becomes exact1.

1The functions c±(z) can be determined for any exact solution y(z) of (1) and
any phase-integral base functions y±(z) unequivocally from two conditions: the
first one is simply y(z) = c+(z)y+(z) + c−(z)y−(z), and the second one reads as
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F-matrix does not depend on the ψ−vectors, i.e. on the initial/boundary
conditions of (1), and represents properties of its general solution. As long
as the general solution may have branch points, F-matrix can depend on
the particular path γ of analytical continuation; we will indicate the path
by writing F [γ] instead of F (z2, z1), if necessary.

F-matrix also depends on the chosen system of approximate solutions
y± and, particularly, on the chosen basepoint z0. Consider equation (1) and
some definite type of the phase-integral approximation with q(z,λ) as a
phase integrand and z0 as a basepoint. Then, consider two points z1,2(λ) of
the complex plane and an oriented curve γ connecting these points; according
to the definition (4) of the F-matrix, F [γ] relates coefficients c± at the ends
of the curve. We say that Fq,z0 [γ] performs an analytical continuation of the
general solution of (1) along the oriented curve γ in the system {q, z0}; we
will indicate the system by the corresponding subscript of the F-matrix, if
necessary.

Consider equation (1) and two F-matrices, Fq,z0 [γ] and Fq,z̃0 [γ], perform-
ing an analytical continuation of the general solution along the oriented curve
γ; the matrices represent the same analytical continuation, but written with
use of different basepoints. They can be related as

(5) Fq,z̃0 [γ] =W [z̃0, z0]Fq,z0 [γ]W [z0, z̃0],

where

(6) W [b, a] =

(
ei

∫ (b)

(a)
q(z,λ)dz 0

0 e−i
∫ (b)

(a)
q(z,λ)dz

)
;

this follows directly from (4) and (2).
Then, consider the same differential equation, but different F-matrices

Fq,z0 [γ] and F−q,z0 [γ]; this is the simplest nontrivial example of F-matrices
representing the same analytical continuation, but written with use of differ-
ent phase integrands. Accurate to insignificant constant multiplier connected
with slow q(z,λ)−1/2 dependency, these two systems of base phase-integral
approximate solutions differ by their order; the difference can be naturally
described by a permutation matrix Pσ:

(7) F−q,z0 [γ] = PσFq,z0 [γ]P
−1
σ , Pσ =

(
0 1
1 0

)
.

c′+(z)y+(z) + c′−(z)y−(z) = 0; this last condition allows to write first derivative of
y(z) formally as if c±(z) would be constant.



✐

✐

“2-Kutlin” — 2021/7/2 — 0:42 — page 1091 — #5
✐

✐

✐

✐

✐

✐

Symmetry relations for connection matrices 1091

The permutation matrix in this relation maps the system {q, z0} to the
system {−q, z0}, but the direction of the mapping is insignificant in case of
2× 2 matrices because then P−1

σ = Pσ.
In the limit (3) of small epsilon, F-matrix represents the linear trans-

formation mentioned in Section 1 and can be approximately expressed in
terms of the corresponding Stokes constants and phase integrals. As long as
the limiting form of F-matrix is more common and more convenient from
the practical point of view, we will end the present section with its detailed
description.

Let’s start with some basic definitions. Hereinafter we will refer to a
point z of the complex plane as a singular point if epsilon from (3) is in-
finitely large in such a point; its vicinity will be referred to as an interac-
tion area. At every point z of the complex plane except the singularities
we will distinguish two orthogonal directions. Let’s define the Stokes direc-
tion as a direction with Re [q(z,λ)dz] = 0 and the anti-Stokes direction as
a direction with Im [q(z,λ)dz] = 0. We will also use a notion of the Stokes
(anti-Stokes) field as a set of Stokes (anti-Stokes) directions for the entire
complex plane. Following [8, 9], we introduce Stokes (anti-Stokes) lines as a
paths along Stokes (anti-Stokes) field emanating from the singularities. Any
domain of the complex plane bounded by the Stokes (anti-Stokes) lines and
containing no other Stokes (anti-Stokes) lines will be referred to as the anti-
Stokes (Stokes) domain. Particularly, if q2(z,λ) ∼ zn as z goes to complex
infinity, then there are n+ 2 Stokes (anti-Stokes) domains in the vicinity
of the infinity – we will call such domains the Stokes (anti-Stokes) wedges.
Asymptotic phase-integral solutions (2b) oscillate along anti-Stokes lines
with constant flow and increase (or decrease) exponentially with constant
phase along Stokes lines. The increasing (decreasing) solution will be called
dominant (subdominant) in a given Stokes domain. Also, the complex plane
with singular points, Stokes and anti-Stokes lines and branch cuts associated
with a branching structure of asymptotic solutions (2) will be referred to as
a Stokes diagram.

Consider a Stokes domain and the F-matrix associated with crossing
this domain in counterclockwise direction relatively to the chosen basepoint.
According to estimates made by Fröman and Fröman [1], in a limit (3) of
small epsilon such F-matrix can be approximately written as either S[s] or
ST[s], where

(8) S[s] =

(
1 0
s 1

)



✐

✐

“2-Kutlin” — 2021/7/2 — 0:42 — page 1092 — #6
✐

✐

✐

✐

✐

✐

1092 A. G. Kutlin

and s is a Stokes constant associated with the domain. In the present paper,
we will call such a constant an effective Stokes constant to emphasize its
difference from the traditional one. Indeed, there can be multiple Stokes
lines in the Stokes domain, and every such line is associated with its own
traditional Stokes constant [8, 9], whereas the effective Stokes constant is
associated with the whole Stokes domain. It is also worth mentioning that
every effective Stokes constant can be expressed in terms of the traditional
ones; it becomes clear from the reasoning presented in Appendix A.

We will refer to S as a Stokes operator. As it can be inferred from
the Frömans estimates, we must use S for a Stokes domain where y+ is
dominant and ST otherwise. The rules for the Stokes operator are analogous
to the traditional Heading’s rules for analytical continuation, presented, for
example, in [8, 9]. As it follows from the previous discussion and from the
Heading’s rules itself, both traditional and effective Stokes constants depend
on basepoint. In [8, 9] the change of the basepoint is called ‘reconnection’,
thus we will refer to W [b, a] introduced by Equation 6 as a reconnection
operator.

Aside from crossing Stokes line and changing basepoint, the Heading’s
rules include the rule for crossing a branch cut associated with the branch-
ing structure of the phase-integral approximate solutions (2b). According
to Fröman and Fröman [1], the operator, describing crossing a branch cut
emerging from the first order zero of the squared phase integrand q2(z,λ)
in counterclockwise direction, takes the form

(9) C =

(
0 −i
−i 0

)
.

In case of the different order of the branch point the operator must be raised
to an appropriate power.

With help of these three operators, S, W and C, the reader can per-
form any analytical continuation far away from any singularities; the matrix
formulation of the traditional Heading’s rules appears to be much more con-
venient for our purposes.

3. Symmetry relations for the connection matrices

Let’s clarify what we mean by a symmetry of a given equation. Here we
introduce three operators f̂(z,λ), ĝ(z,λ) and ĥ(z,λ) such that

(10) f̂ : {y} → {y}, ĝ : {z} → {z}, ĥ : {λ} → {λ},
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i.e. f̂ (complex conjugation, multiplication, etc.) acts on the set of functions,
preserving the structure of their Stokes diagrams, ĝ (complex conjugation,
invertible function of complex variable, etc.) acts on the field of complex
numbers, and ĥ (complex conjugation, analytical function of λ, etc.) acts
on the parameter’s space. As it will be seen from the following discussion,
the restriction on ĝ to be invertible is crucial.

We define any set of operators {f̂(z,λ), ĝ(z,λ), ĥ(z,λ)} as a symmetry
transformation of (1) if for any its solution y(z,λ) there is another solution
ỹ(z,λ) such that ỹ(z,λ) = f̂(z,λ)y(ĝ(z,λ)z, ĥ(z,λ)λ), i.e.

(11) L̂(z,λ)y(z,λ) ≡ 0 =⇒ L̂(z,λ)
[
f̂(z,λ)y(ĝ(z,λ)z, ĥ(z,λ)λ)

]
≡ 0.

As it follows from the definition, ỹ(z,λ) as well as y(z,λ) can be written in
the form (2a), but with different coefficients c± and c̃± correspondingly. This
difference and, as a consequence, restrictions on the connection matrices can
be obtained directly by applying the symmetry transformation to (2b) as
it was done in [27] for the special case analysed by Frömans, but we prefer
more intuitive derivation.

Let’s choose some definite type of the phase-integral approximation with
q(z,λ) as the phase integrand; this phase integrand will be used all through-
out the present section. Consider y(z,λ), some solution of (1), and its an-
alytical continuation along the oriented curve γ, performed in the system
{q, z0}:

(12) y(z,λ) : γ −→ Fq,z0 [γ,λ].

Then, consider another solution of (1), ỹ(z,λ), and its analytical continua-
tion along the same curve, but performed with use of different basepoint:

(13) ỹ(z,λ) : γ −→ Fq,z̃0 [γ,λ].

As it follows from the previous discussion, Fq,z0 [γ,λ] and Fq,z̃0 [γ,λ] repre-
sent the same operation in different bases and can be related with use of
a reconnection operator. On the other hand, and this is much more impor-
tant, if the solution ỹ(z,λ) is connected with y(z,λ) through the symmetry
transformation {f̂(z,λ), ĝ(z,λ), ĥ(z,λ)}, its analytical continuation along
the curve γ can be obtained directly from the corresponding continuation of
y(z,λ) by a formal application of the symmetry transformation:

(14) ỹ(z,λ) ≡ f̂y(ĝz, ĥλ) : γ −→ f̂Fq,z0 [ĝγ, ĥλ].
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We underline that this last analytical continuation is performed along the
same curve γ as it was in the previous cases because any curve is the or-
dered set of allowed values of z, not ĝz. Thus, f̂Fq,z0 [ĝγ, ĥλ] and Fq,z̃0 [γ,λ]
represent the same analytical continuation, but performed with use of differ-
ent systems of base approximate phase-integral solutions (2b). It is crucial
that the systems can differ not only by the basepoints’ location, but also by
the functions y±. Indeed, accurate to insignificant constant multiplier con-
nected with slow q(z,λ)−1/2 dependency, there are two possible mappings
implemented by the symmetry transformation: y± → y±, or y± → y∓; such
mappings were considered in the previous section and can be described by
a permutation matrix Pσ.

Now, we are ready to write the final relation for the F-matrices. A for-
mula expressing this relation is shown below:

P−1
σ

{
f̂Fq,z0

[
ĝγ, ĥλ

]}
Pσ(15)

=W
[
ĝ−1z0(ĥλ), z̃0(λ)

]
Fq,z̃0 [γ,λ]W

[
z̃0(λ), ĝ

−1z0(ĥλ)
]
.

The inverse operator ĝ−1 in the formula appears due to the variable
exchange in the phase integral:

(16) ĝ

∫ z

(z0)
q(ξ)dξ =

∫ ĝz

(z0)
q(ξ)dξ =

∫ z

(ĝ−1z0)
q(ĝξ)dĝξ.

An explicit form of the permutation matrix Pσ can be determined by a
direct application of the symmetry transformation to the base functions y±.

The relation (15) has a fairly transparent structure. Indeed, assume we
chose y± as a base system of phase-integral approximate solutions with
ĝ−1z0(ĥλ) as a basepoint. To implement the analytical continuation in such
a base with use of known F-matrices f̂Fq,z0 [ĝγ, ĥλ] and Fq,z̃0 [γ,λ], we have

to either change the basepoint from ĝ−1z0(ĥλ) to z̃0 and apply Fq,z̃0 [γ,λ]
(right hand side of (15)) or choose an appropriate order of the base functions
y± and apply f̂Fq,z0 [ĝγ, ĥλ] (left hand side of (15)); our relation reflects the
equivalence of these two approaches.

A presence of the reconnection operator W
[
ĝ−1z0(ĥλ), z̃0(λ)

]
in (15)

implies an integration along some path γW in the complex plane; thus, the
resulting relation may depend on this path if the phase integrand has poles or
branch points. This fact forces us to consider not only the final result of the
symmetry transformation, but even how exactly it was performed; i.e., we
have to parameterize ĝ and ĥ operators. This can be done by introducing of
an auxiliary variable µ varying from 0 to 1 such that, for example, ĝcont(µ) =
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Figure 1: Stokes field for q(z) =
√

z(z − 1)(z − i) and its metamorphosis

under the action of ĥ swapping singular points in z = 1 and z = i as shown
in the panel (b) (f̂ = ĝ = 1). This is an example of how to determine γW , the

integration path for the reconnection operator W
[
ĝ−1z0(ĥλ), z̃0(λ)

]
from

(15). In the panel (a) the curve γ (continuous red) and two different base-
points are shown, z0(λ) and z̃0(λ); the continuous orange line illustrates
the path used for the definition of the phase integral ω(z) from (2), and
the dashed dark blue line shows a path we want to use for the reconnection
from z0 to z̃0. In the panel (b), some intermediate state of the continuously
parameterized symmetry transformation ĥcont(µ) is shown. Finally, in the
right panel (c) the result of the transformation and the path γW are shown;
the first part of the path γW (solid dark blue line) corresponds to the sym-
metry transformation itself, and the second part (dashed dark blue line)
corresponds to the reconnection path shown in the panel (a).

1 + µ(ĝ − 1), and ĝcont(1) = ĝ. Then, the path γW can be determined in
the following way: one have to fix the integration path used in the phase-
integral ω(z) from (2) for the basepoint z0(λ) (continuous orange line in
Fig. 1(a)), study how this path deforms under our transformation, go along
this deformed path from ĝ−1z0(ĥλ) to z0(λ), and then perform just a usual
reconnection from z0(λ) to z̃0(λ) as if there was no symmetry transformation
involved. Note that ĝ−1z0(ĥλ) = z̃0(λ) doesn’t in general mean that the
reconnection operator is the identity operator; in principle, γW can form
closed loops like the one in Fig. 1.

The relation (15) is actually a generalization of the symmetry relations
obtained by Fröman and Fröman [27]. It takes the form presented in their
article with {f̂ = ĝ = ĥ = c.c.}, where c.c. stands for the complex conjuga-
tion, for the first case they considered, and with {ĝ = −1; f̂ = ĥ = 1} for the
second case.
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Figure 2: An illustration for Eq. 17 with f̂ = 1; the point O is a center of
the rotation ĝ, the thin straight dashed lines emanating from O represent
the Stokes directions, the bold dashed lines emanating from the base points
stand for the Stokes lines, and ĝ−1z0(ĥλ) = z0(λ). Here you can see how the
Stokes constants s and s̃ from different Stokes directions can be related due
to the overlap generated by the symmetry transformation: in the left panel
(a) the two paths γ and ĝγ are shown; in the middle panel (b) only the
parameter transformation ĥ is applied moving the basepoints z0 and z̃0, and
in the right panel (c) the rotation ĝ finishes the transformation overlapping
the Stokes direction corresponding to s(ĥλ) with the one which previously
corresponded to s̃(λ).

4. Symmetry relations and functional equations

for effective Stokes constants

The symmetry relation (15) is exact and quite general, but it is not very
useful from the practical point of view because F-matrices are usually used
in a limit (3) of small epsilon; thus, analogous symmetry relations for the
Stokes constants appear to be more convenient. In the present section, we
obtain the symmetry relations for the effective Stokes constants and discuss
the consequences of the relations.

Consider an oriented curve γ located far away from any interaction area
and crossing one Stokes domain associated with the effective Stokes constant
s̃ in counterclockwise direction relative to the chosen basepoint as shown in
Fig. 2. Consider another Stokes domain associated with another effective
Stokes constant s such that the transformed oriented curve ĝγ also crosses
this second domain far from any singularity. Using the relation (15) for the
F-matrices, its limiting form described in the Section 2, and the rules for
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the Stokes operators, we obtain

S(T)
[
f̂ s(ĥλ)

]
=W

[
ĝ−1z0(ĥλ), z̃0(λ)

]
(17)

× S(T) [s̃(λ)]W
[
z̃0(λ), ĝ

−1z0(ĥλ)
]
,

where s and s̃ are the effective Stokes constants having z0 and z̃0 as their
basepoints, and S(T) can be either S or ST. The choice in the right hand
side of (17) must be made on the basis of general rules from Section 2: we
use S for the Stokes domain associated with s̃(λ) if y+ is dominant and ST

otherwise. In the left hand side of (17) we have to use the same form as
in the right hand side; the rule is a consequence of the permutation matrix
presence in (15).

The relation obtained above allows us to take a fresh look at the nature of
the different effective Stokes constants. Two different Stokes domains which
can be overlapped by the transformation ĝ are actually associated with the
same effective Stokes constant but evaluated in the different points of the
parameters’ space. In particular, every set of Stokes wedges can be described
by a single multidimensional analytical complex function s(λ).

Consider an important special case of a complex conjugation symmetry,
analysed by Frömans [27]. For every equation which is real on the real axis
the symmetry f̂ = ĝ = ĥ = c.c. holds, i.e. L̂∗(z∗,λ∗) = L̂(z,λ) and

(18) S(T) [−s∗(λ∗)] =W [z∗0(λ
∗), z̃0(λ)]S

(T) [s̃(λ)]W [z̃0(λ), z
∗
0(λ

∗)] .

A minus sign before the effective Stokes constant in the left hand side of
(18) is a result of the complex conjugation symmetry; it appears for any
transformation ĝ which changes the direction of analytical continuation rel-
ative to the chosen basepoint since the Stokes constant is defined for the
counterclockwise direction, see Fig. 3. If z̃0(λ) = z∗0(λ

∗) and λ is real, we
obtain a result s∗(λ) = −s̃(λ), which can be inferred from the symmetry
relations presented in [27]. If furthermore s = s̃, we get an important and
extremely simple relation s∗(λ) = −s(λ), i.e. such effective Stokes constant
is purely imaginary provided λ is real.

Another important case of (17) is a case with ĝ = 1 and z0(λ) = z̃0(λ):

(19) S(T)
[
f̂ s(ĥλ)

]
=W

[
z0(ĥλ), z0(λ)

]
S(T) [s(λ)]W

[
z0(λ), z0(ĥλ)

]
.

Such case is relevant for every equation. The obtained relation is a functional
equation for the considered effective Stokes constant. Usually such equation
helps to illuminate a branching structure of the effective Stokes constant
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Figure 3: An illustration for the ”conjugation” symmetry for which the com-
plex conjugation symmetry discussed around the Eq. 18 stands as a special
case. The orange dashed line starting at the point O represents the conju-
gation axis, the thin straight dashed lines emanating from O represent the
Stokes directions, and the bold dashed lines emanating from the basepoint
z0 stand for the Stokes lines; for the simplicity we assume here that z0 ≡ z̃0.
You can see how the Stokes constant s can be related to its ”mirror image” s̃
with minus sign: the ”conjugation” applied between the steps (b) and (c) not
only overlapped different Stokes directions but also inverted the directions
on the oriented curves γ and γ̃.

and write it as a new single-valued function multiplied by the known mul-
tivalued one. It is worth mentioning that even simple formal symmetries
like {ĥ = e2iπ, ĝ = f̂ = 1} may produce nontrivial functional equations; it
happens every time when the reconnection operator differs from unity.

5. Effective Stokes diagram

The concept of the effective Stokes constant allows us to introduce a notion
of the effective Stokes line. Since every Stokes domain can be described by a
single effective Stokes constant, we can visualize this fact by plotting a single
effective Stokes line instead of a set of traditional Stokes lines. Similarly,
every set of anti-Stokes lines located in the same anti-Stokes domain can
be replaced by a single effective anti-Stokes line; such a line now is just a
borderline separating different Stokes domains. A Stokes diagram consisting
of effective Stokes and anti-Stokes lines will be referred to as an effective
Stokes diagram. As it can be seen from Figures 4 and 5, effective diagram
is not unique. It can be plotted differently depending on a chosen path
of analytical continuation (Figure 4); that is why it is usually convenient to
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Figure 4: Stokes diagrams for q(z, g) =
√

−z + g2/z; Stokes lines are
dashed. (a) A traditional Stokes diagram; dots and stars indicate corre-
spondingly zeros and poles of the phase integrand. (b) An effective Stokes
diagram with a specified path of analytical continuation γ1. (c) An effec-
tive Stokes diagram with a different path of analytical continuation γ2. The
Stokes constant s1 is meaningful only if g ≫ 1 and all the singularities are
far away from each other – otherwise the phase-integral approximation itself
fails between the pole and the right zero and the exact F-matrix must be
used.

specify the path right on the diagram. But, even when the path is chosen, we
are still free to vary our basepoints’ locations. Actually, the effective Stokes
line can connect any two points of the corresponding Stokes domain if it does
not destroy the topology of the entire Stokes diagram taking into account
the specifics of a particular problem. Choosing what points to connect by
the effective Stokes line we will indicate what basepoints will be used in the
given Stokes domain (Figure 5). Also it can be useful to indicate values of
the phase integrals instead of plotting multiple branch cuts.

The main purpose of the effective Stokes diagram is to indicate clearly
and transparently what basepoint is used to cross a given Stokes domain.
For some values of parameters λ, such diagram can be similar to the tra-
ditional one, but for other values the diagrams will differ for sure because
effective Stokes line is always emerge from the same basepoint z0(λ) while a
traditional one follows the Stokes field. Moreover, effective Stokes diagram
is less detailed than the traditional one and may be more convenient for the
analysis of complicated equations.
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Figure 5: Stokes diagrams for q(z, E) =
√
z4 − E; Stokes lines are dashed.

(a) A traditional Stokes diagram; dots mark the zeros of the phase integrand.
(b) An effective Stokes diagram with a specified path of analytical contin-
uation γ. (c) An effective Stokes diagram with the same path of analytical
continuation but different basepoints.

Figure 6: Stokes field (a), anti-Stokes field (b) and an effective Stokes dia-
gram (c) for the Weber equation (20).

6. Example: the Weber equation

We will use WKBJ approximation all throughout this section. Also in this

section we will use the symbol W [ω] ≡W
[∫ b

a q(z,λ)dz
]
≡W [b, a] to un-

derline a value of the phase integral.
Now let us consider the Weber equation

(20)
d2y(z, δ)

dz2
+ (z2 − δ2)y(z, δ) = 0
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with the boundary conditions of a presence of incident wave from the large
negative z and an absence of such a wave from the large positive z. We define
the reflection (transmission) coefficient R (T ) as a ratio of the amplitudes
of the reflected (transmitted) and incident waves. Our aim now is to find
these scattering characteristics.

The boundary conditions can be written in terms of ψ-vectors as

(21) ψ0 =

(
1
0

)
,

where ψ0 is a ψ-vector in an anti-Stokes wedge containing a ray Arg(z) = 0.
First of all, scattering characteristics must be written through the Stokes
constants. To do this, we must analytically continue our boundary condition
(21) to z with Arg(z) = π. Using Figure 6 and the rules from Section 2, we
write

(22) ψπ = S
[
s3/2

]
W [ω(δ)]ST

[
s1/2

]
ψ0 ≡ eiω(δ)

(
1

s3/2

)
,

where ω(δ) = −iπδ2/2 is a phase integral calculated above the cut from
z = δ to z = −δ. Now we have to identify incident, reflected and transmitted
waves. Since y+ ∝ eiz

2/2 hence it is an outgoing wave for z → +∞ as well as
for z → −∞ and

(23) R =
1

s3/2
, T = i

e−iw

s3/2
.

To find s3/2, let’s try a traditional method described, for example, in
[6, 8]. We can obtain the desired equations for the Stokes constants using
a single-valuedness of the general solution and analytically continuing it
around the origin far away from the interaction area along the oriented
curve γ (Figure 6(c)):

(24) 1 = C2S
[
s3/2

]
W [ω]ST

[
s1/2

]
S
[
s−1/2

]
W [ω]ST

[
s−3/2

]
,

from which follows

(25)





s1/2 = s−3/2

s3/2 = s−1/2

s1/2s3/2 + e−2iw + 1 = 0.

The C operator is squared here because the squared phase integrand R(z,λ)
is asymptotic to z2 as z goes to complex infinity.
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As we can see from the system (25), we cannot find s3/2 using the tra-
ditional method – we need at least one more restriction for the Stokes con-
stants. In [8] a requirement of the flux conservation is used as the restriction
and it gives s−1/2 = −s∗1/2 – it helps to determine the absolute value of
the reflection coefficient, but its phase stays unknown. This example shows
that even in such a simple situation as the Weber equation, the traditional
approach cannot fully resolve the problem.

Actually the flux conservation is a consequence of the real-valuedness
and regularity of the coefficients of the Weber equation and hence the same
relation can be obtained from the complex conjugation symmetry using (18).
Moreover, first two equations from (25) are just a consequence of a symmetry
{ĝ = eiπ, ĥ = f̂ = 1} – and it is clear because the symmetry is just a rota-
tion and can be seen even from the usual analytical continuation. Therefore,
the only original equation in the system (25) is the last one – it cannot be
obtained from any other considerations. But these are not the only conse-
quences of the equation’s symmetries, so let’s write them all.

The first nontrivial symmetry relation can be obtained from the sym-
metry {ĝ = ĥ = i, f̂ = 1}. It can overlap, for example, Stokes domains as-
sociated with s1/2 and s−1/2. Both of the Stokes constants have the same

basepoint z0(δ) = δ and ĝ−1z0(ĥδ) = (−i)iδ = δ, so

(26) S
[
s1/2(iδ)

]
=W [δ, δ]S

[
s−1/2(δ)

]
W [δ, δ] ,

or

(27) s1/2(iδ) = s−1/2(δ).

Considering (25), we can see now that all four Stokes wedges can be de-
scribed by only one function as it was mentioned in the Section 4.

Now consider another symmetry {ĥ = eiπ, ĝ = f̂ = 1}. As it was written
in the Section 4, such a symmetry gives rise to a functional equation, which
can help to illuminate a branching structure of the Stokes constant. For
definiteness, we will talk about s3/2. To understand what to choose as end-

points in the phase integrals in (19), let’s parametrize ĥ as ĥcont(µ) = eiπµ

and look at Figure 7. For s3/2, the basepoint z0(δ) = δeiπ, and the question
is how it is changing under our transformation. Using Figure 7 we can see
that finally it arrives at the point z = δ, but the phase difference between
the initial and the final positions matters because it defines an integration
path. That is why we have to write z0(ĥδ) = δe2iπ and

(28) S
[
s3/2(δe

iπ)
]
=W [−ω]S

[
s3/2(δ)

]
W [ω] ,
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Figure 7: Evolution of the Stokes field and effective Stokes lines under the
continuous parameter’s transformation ĥcont(µ) = eiπµ.

or

(29) s3/2(δe
iπ) = s3/2(δ)e

−2iω = s3/2(δ)e
−πδ2 .

This functional equation can be solved by substitution s3/2(δ) = iδiδ
2

f(δ2),
where f(δ2) is single-valued in a sense f(x) = f(xe2iπ).

And, finally, consider a conjugation symmetry f̂ = ĝ = ĥ = c.c.. This
symmetry relates the Stokes constants in the upper half of the complex
plane to the constants in the lower half. In particular, according to (18),

(30) S
[
−s∗1/2(δ

∗)
]
=W [z∗0(δ

∗), z̃0(δ)]S
[
s−1/2(δ)

]
W [z̃0(δ), z

∗
0(δ

∗)] ,

and, since z0(δ) = z̃0(δ) = δ,

(31) s∗1/2(δ
∗) = −s−1/2(δ).

For real values of δ the last relation is nothing but the law of the flux
conservation mentioned above. But, for complex values, together with (29)
and (25) it gives

(32) s3/2(δ) = s−1/2(δ) = i(iδ2)iδ
2/2p(iδ2),

where p(x) = p(xe2iπ) and p(x) is real on the real axis. Now, using (27) and
the last equation from the system (25), we can write a functional equation
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for p(x):

(33) p(x)p(−x) = 2 cos(πx/2).

This functional equation is similar to the Euler’s reflection formula [28] and
can be reduced to the formula by substitutions p(x) = u(x)

√
2π/Γ(1/2 +

x/2) and x = 1− 2t, where u(x)u(−x) = 1. The function u(x) can be found
from the boundary conditions of (33). Indeed, we know exactly [8] that
s3/2(0) = i

√
2. We also can assume, according to the approximation of iso-

lated singularities [8, 25], that every Stokes constant approaches an imagi-
nary unit as δ goes to plus infinity. Taking into consideration (32), we can
say that

(34)

{
p(0) =

√
2

p(x) ∼ x−x/2 as x → ±i∞.

Using the asymptotics of gamma function and definition of u(x), we can
finally write that u(x) = (2e)−x/2 and

(35) s3/2(δ) = i(iδ2)iδ
2/2

√
2π(2e)−iδ2/2

Γ(1/2 + iδ2/2)
.

This is an exact expression for the effective Stokes constant for the Weber
problem – it can be verified using an exact solution of (20) as it was done
in [25]. Now the desired scattering characteristics (23) can be found.

7. Discussion on the possible generalizations

The symmetry relation (15) for connection matrices presented in Section 3
was obtained for the case of the second-order differential equation, but ap-
pears to be much more general. In the present section we discuss the range
of its applicability.

Consider an arbitrary order system of the first order linear ordinary
differential equations:

(36)
d

dz
y(z,λ) =M(z,λ)y(z,λ),
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where y is a vector of functions to determine andM(z,λ) is a square matrix
of corresponding dimension. Assume we can write an approximate phase-
integral local solution of (36) in the way similar to the case of the second-
order equation (1):

y(z,λ) ∼ c · ỹ(z,λ),(37a)

ỹi(z,λ) = Ai(z,λ) exp[iωi(z,λ)],(37b)

ωi(z,λ) =

∫ z

(z0)
qi(z,λ)dz,(37c)

where Ai is a polarization vector, c is a vector of coefficients (analogue of
c±), ỹ is a vector of approximate phase-integral solutions (37b) (analogue of
y±), and ’·’ stands for their inner product. Then, introducing F-matrix and
defining symmetry completely analogous to Section 2 and Section 3, we can
exploit exactly the same reasoning and arrive to exactly the same symmetry
relation with the only one difference: aside from changing basepoint and
reordering of the set of the base functions, we have to multiply each function
ỹi by an appropriate constant ai; the constant was insignificant for the
previous discussion because y± from (2b) would have been multiplied by
the same constant a = a+ = a−. In the general case considered here the
multiplication must be described by a diagonal matrix Λ such that Λii = ai,
i.e. the generalization of the symmetry relation (15) takes the form

Λ
−1P−1

σ

{
f̂Fq,z0

[
ĝγ, ĥλ

]}
PσΛ(38)

=W
[
ĝ−1z0(ĥλ), z̃0(λ)

]
Fq,z̃0 [γ,λ]W

[
z̃0(λ), ĝ

−1z0(ĥλ)
]
,

where q is a vector of the phase integrands qi and W has an appropriate
dimension. The diagonal elements of the matrixΛ, as well as an explicit form
of the permutation matrix Pσ, can be determined by a direct application of
the symmetry transformation to the base functions ỹi(z,λ).

8. Conclusion

The method of phase integrals is a beautiful and powerful method of a linear
ordinary differential equations’ asymptotic analysis, but its range of appli-
cability is highly restricted to relatively simple problems; more complicated
problems need additional equations for the Stokes constants. The analysis
presented in this paper allows the reader to find functional relations between
connection matrices and thus to reduce the number of unknowns.
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The main result of the present work is stated by Equation 38. This result,
like any other obtained in the paper, is valid for any approximation of the
phase-integral type, not only for WKBJ approximation. Furthermore, this
result holds not only for the second-order, but also for the arbitrary order
system of linear ordinary differential equations.

The symmetry relation (38) and its two-dimensional version (15) are
quite general, but not very useful from the practical point of view. To over-
come the difficulty, we rewrote the relations in the most common case of the
second-order differential equation with use of the limiting form of F-matrix
and the concept of effective Stokes constant. The rewritten symmetry re-
lation is stated by Equation 17; we also introduced a concept of effective
Stokes diagram which can be a useful tool for the analysis of complicated
equations.

We showed that Stokes domains which can be overlapped by the variable
transformation ĝ are actually associated with the same effective Stokes con-
stant and can be described by the same analytical function. We showed that
every differential equation has some formal symmetries (e.g. {ĥ = e2iπ, ĝ =
f̂ = 1}) which may lead to nontrivial relations for the Stokes constants. We
also showed that the symmetry relations allow the reader to write functional
equations for the effective Stokes constants; such functional equations help
to illuminate a branching structure of the effective Stokes constant and write
it as a new single-valued function multiplied by the known multivalued one.

The functional relations which can be obtained from Equation 38 are
likely to be as complex as the initial differential equation; however, they are
strict and can be used as a basis for the construction of perturbation theory
(will be a matter of a separate paper).
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Appendix A. Connection between traditional and

effective Stokes constants

Imagine a Stokes domain with several traditional Stokes lines emerging from
the common basepoint. Crossing this domain in terms of the traditional
Stokes constants implies multiple sequential applications of either S or ST

operators. However, as we can see by a direct calculation, Stokes operators
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S as well as ST form a multiplicative group:

(A.1) S[s2]S[s1] = S[s2 + s1], ST[s2]S
T[s1] = S

T[s2 + s1].

Consequently, every such set of traditional Stokes constants can be replaced
by a single one; the single Stokes constant is just a sum of the traditional
constants.

Now consider the reconnection operatorW . As it follows from the prop-
erties of the phase integral, these operators also form a multiplicative group:

(A.2) W [c, b]W [b, a] =W [c, a].

And, completely analogous to the situation discussed above, every set of
sequential changes of the basepoint can be described by a single reconnection
operator.

Finally, imagine a Stokes domain with multiple Stokes lines and multiple
basepoints. Crossing this domain in terms of S and W operators looks like

(A.3) S[sn]W [an, an−1]S[sn−1]W [an−1, an−2] ... S[s1]W [a1, a0]S[s0].

Note that for any s′ there is such s′′ that S[s′]W [b, a] =W [b, a]S[s′′], there-
fore we can change the order of S andW operators. Hence, every such set of
operators can always be replaced by a single combination S[sl]W [an, a0] or,
if someone prefers different ordering, W [an, a0]S[sr]. Consequently, every
Stokes domain can be described by the effective Stokes constant s despite
the number of Stokes lines it contains.
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