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On the counting of O(N) tensor invariants
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O(N) invariants are the observables of real tensor models. We use
regular colored graphs to represent these invariants, the valence of
the vertices of the graphs relates to the tensor rank. We enumer-
ate O(N) invariants as d-regular graphs, using permutation group
techniques. We also list their generating functions and give (soft-
ware) algorithms computing their number at an arbitrary rank
and an arbitrary number of vertices. As an interesting property,
we reveal that the algebraic structure which organizes these in-
variants differs from that of the unitary invariants. The underlying
topological field theory formulation of the rank d counting shows
that it corresponds to counting of coverings of the d− 1 cylin-
ders sharing the same boundary circle and with d defects. At fixed
rank and fixed number of vertices, an associative semi-simple al-
gebra with dimension the number of invariants naturally emerges
from the formulation. Using the representation theory of the sym-
metric group, we enlighten a few crucial facts: the enumeration of
O(N) invariants gives a sum of constrained Kronecker coefficients;
there is a representation theoretic orthogonal base of the algebra
that reflects its dimension; normal ordered 2-pt correlators of the
Gaussian models evaluate using permutation group language, and
further, via representation theory, these functions provide other
representation theoretic orthogonal bases of the algebra.
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1. Introduction

Since their inception [1–3], random tensor models offer a framework for
studying random discrete geometries as they aim at extending the success
of matrix models [4] in describing 2D quantum gravity, to higher dimensions.
The main goal of this approach is to devise a transition of discrete geome-
tries to continuum geometries in any dimension. It is however only recently
that random tensor models have witnessed significant progress [5] with the
advent of a new large N expansion generalizing ‘t Hooft genus expansion
[6] for higher dimensional pseudo-manifolds. The existence of a large N ex-
pansion for tensors [7] naturally unveiled several analytical results, among
which the discovery of their critical behavior (branched polymers [8, 9]),
the universality property of random tensors [10], and the discovery of new
families of renormalizable non-local quantum field theories with interesting
UV [11–13] and nonperturbative behaviors supporting the discovery of new
universality classes for gravity [14–16].

More recently, and quite unexpectedly, tensor models become the center
of new attention in condensed matter physics: the dominant contributions
of the so-called Sachdev-Ye-Kitaev (SYK) model [17, 18] in the large mode
expansion of the disorder match with the large N expansion of a quantum
mechanical tensor model without disorder [19]. For its deep connections with
black hole physics and AdS/CFT correspondence, the SYK model embodies
a vibrant topic of research. The conjunction of tensor and SYK models has
incidentally produced a new fast-evolving field on which a growing commu-
nity is working.

Several, if not all of these studies, heavily rest on the understanding
of the combinatorics of Feynman graphs and observables of tensor models.
To that extent, the investigations of tensor models have produced a wealth
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of results. We will focus on two particular contributions on tensor model
graphs that the present work extends.

In [20], the authors worked out the enumeration of the unitary invari-
ants, as observables in complex tensor models. One way of comprehending
the theory space of rank d complex tensor models is to specify its set of
observables. The latter are merely U(N)⊗d invariants (at time, we simply
call them U(N) or complex tensor invariants). A convenient manner to rep-
resent U(N) invariants defines as a canonical mapping to d-regular bipartite
colored graphs [21]. Stated in this way, the inventory of tensor invariants
formulates by uniquely using permutation groups. One should record that
these symmetry group techniques and its representation theory have been
developed during the last years [22]–[33]. They turned out to be powerful,
flexible and versatile enough to address diverse enumeration problems and
bijections from scalar field theory, matrix models, to gauge (QED, 2D and 4D
Yang-Mills) and string theories. In physics, for instance, they brighten the
half-BPS sector of N = 4 SYM [22]–[27]. Moreover, unforeseen correspon-
dences arise from these studies, for instance, counting Feynman graphs in ϕ4

scalar field theory relates to string theory on a cylinder or listing Feynman
graphs of QED relates to the counting of ribbon graphs [26]. These corre-
spondences emerge from another interface playing a hinge role between enu-
meration problems: via the Burnside lemma, with each enumeration problem
using the symmetric group (and its subgroups), we can associate a Topolog-
ical Field Theory on a 2-complex (named TFT2) with gauge group given by
the symmetric group (and its subgroups). Such a formulation also unfolds
multiple interpretations of the counting formulae with links with the theory
of covering spaces in algebraic and complex geometry (see references in [26]).

The reference [20] establishes several enumeration formulae pertaining
to observables of complex tensor models. Using the Burnside lemma, one
recasts that the enumeration of U(N) invariants into a partition of a per-
mutation lattice gauge field theory, a TFT2. It is via this mapping that one
elucidates that counting unitary invariants corresponds to counting branched
covers of the 2-sphere. Branched covers are well known objects in algebraic
and complex geometry [34], in topological string theory, and in dimension
2, they correspond to complex maps [25]. Thus, there is an underlying ge-
ometry inherited by tensor models from the TFT2 formulation that still
needs to be understood. There is however a proviso: the counting formulae
are valid when the size N of the tensor indices are larger than the number
of tensors convoluted. More generally, one should resort to a more careful
study [32, 33].
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The study of tensor invariants has a follow-up in [35]. Their equivalent
classes are viewed as the base elements of a vector space Kd(n), a subspace
of C(Sn)

⊗d, the rank d group algebra of the symmetric group Sn. Kd(n)
shows stability under an associative product, and it is endowed with a non-
degenerate pairing. Therefore, at a fixed rank d and fixed number of vertices
n, tensor invariants span a semi-simple algebra. (Note that, importantly,
other algebraic structures could set up on tensor invariants [36–38]. The
above structure is however unique, up to isomorphism.) As a consequence
of the Wedderburn-Artin theorem, any semi-simple algebra decomposes as
a sum of irreducible matrix subalgebras. The representation theory of the
symmetric group sheds more light on the remaining analysis as it enables to
reach the Wedderburn-Artin matrix decomposition of the algebra of tensor
observables: the dimension of the algebra is a sum of squares of the Kro-
necker coefficients (these are multiplicity dimensions in the decomposition
of a tensor product of representations in irreps; Kronecker coefficients are
still under active investigation in Combinatorics and Computational Com-
plexity Theory, see, for instance, [39, 40] and more references therein), each
square matching exactly the dimension of a matrix subalgebra. The orthog-
onal bases of the algebra and its matrix subalgebras have been worked out,
meanwhile the Gaussian 2pt-correlators also provide new representation the-
oretic orthogonal bases.

In this paper, we consider O(N) tensor models and their observables
and investigate if they support the same previous enumeration and algebraic
analysis. Fleshed out the first time in [41], such models extended the large
N expansion to real tensors. The graphs that determine the O(N) invariants
keep the edge coloring but are not bipartite. This naturally leads to a class of
observables, wider than that of the U(N) tensor models, by including those
that are not orientable. To enumerate O(N) invariants, we use a standard
counting recipe: we use tuples of permutations on which act permutation
(sub)groups that define equivalence classes. We then count the points in the
resulting a double coset space. The equivalence relation in the present setting
is radically different from the U(N) situation and requires more work to
obtain a valuable counting formula. With their generating functions in hand,
we provide software (Mathematica, Sage) codes to achieve the counting of
O(N) observables for any tensor rank. We emphasize that our results match
the seminal work of Read in [42] that dealt with the enumeration k-regular
graphs with 2n vertices with k edge coloring. However, Read’s formula was
only evaluated for the k = 3-regular graphs with 2n = 2, 4, 6 vertices with
edges of 3 different colors. Our code extends this counting for any k and
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any n. We produce integer sequences that are new (un-reported yet) to the
On-Line Encyclopedia of Integer Sequences [43].

Moreover, seeking other correspondences, we address the TFT formula-
tion of our counting and show that to count O(N) observables amounts to
count covers of glued cylinders with defects (the rank of tensor relates to the
number cylinders and defects). After introducing the algebra of O(N) invari-
ants, we show that it is semi-simple, and as such, it admits a Wedderburn-
Artin decomposition. An invariant orthogonal base of the algebra transpires
in our analysis but, it does not yield the decomposition of the algebra in
matrix subalgebras. We proceed to the representation theoretic formula-
tion of the counting and its consequences. As to be distinguished from the
U(N) case, the dimension of the algebra is a sum of constrained Kronecker
coefficients restricted to partitions will all even length rows. The represen-
tation theoretic tools exhibit a base of the algebra the dimension of which
directly reflects the sums of constrained Kronecker’s. The Gaussian 2pt and
1pt-correlators also compute in terms of permutation group formulae. A
corollary of that analysis is that 2pt-functions, in the normal order, select
a representation theoretic orthogonal base of the algebra. In that sense, the
Gaussian integration in the representation Fourier space performs as a pair-
ing of observables.

This paper’s structure follows. Section 2 sets up our notations for real
tensor models and their O(N) invariants. The following Section 3 devel-
ops the double coset counting using permutation group formalism. We also
discuss therein the TFT formulation of the counting and its consequences,
introduce the basics of the representation theory of the symmetric group,
and re-interpret the counting in that language. Section 4 discusses the double
coset algebra built out of the O(N) invariants and lists its properties. Next,
Section 5 details the 2pt- and 1pt-correlators of the Gaussian tensor models
and their representation theoretic consequences. Section 6 briefly lists a few
remarks on the counting of invariants of the real symplectic group Sp(2N).
The counting principle here is similar to that of the O(N) models, but with
subtleties that one should pay attention to. Section 7 summarizes this work
and draws some of its perspectives. Finally, the paper closes with an ap-
pendix that divides into two main parts: an appendix that collects identities
of the representation theory of the symmetric group that are useful in the
text, and another appendix that details the software codes that generate the
sequences of numbers of invariants at sundry tensor ranks d = 3, 4, . . .
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2. O(N) invariants and real tensor models

We first set up our notations in this part.
Consider d ≥ 2 real vector spaces Va, a = 1, . . . , d, of respective dimen-

sions Na, and the group action ⊗d
a=1O(Na) on ⊗d

a=1Va. Let T be a tensor of
rank d with components Ti1,...,id transforming under the tensor product of d
fundamental representations of the groups O(Na). Each group O(Na) acts
independently on a tensor index ia and we can write

TO
i1,...,id =

∑

j1,...,jd

O
(1)
i1j1

O
(2)
i2j2

. . . O
(d)
idjd

Tj1j2...jd .(1)

The observables in this model are the contractions of an even number, say 2n
with n ∈ N, of tensors T which are obviously invariant under ⊗d

a=1O(Na)
transformations. We simply name them O(N) invariants. Such invariants
generalize real matrix traces and will be denoted likewise:

OK(T ) = Tr(T 2n) =
∑

j
(k)
l

Tj
(1)
1 j

(1)
2 ...j

(1)
d
Tj

(2)
1 j

(2)
2 ...j

(2)
d

. . . Tj
(2n)
1 j

(2n)
2 ...j

(2n)
d

×K({j(1)l }; {j(2)l }; . . . ; {j(2n)l }),

where the kernel K(·) factors in Kronecker delta’s and identifies the indices
of the tensors in a particular pattern; the sole contractions permitted involve
the tensor indices with identical color labels i = 1, . . . , d. An elegant way of
encoding the contraction pattern of tensors consists in a d-regular graph
with edge coloring with d different colors, and one of each color at every
vertex (representing each tensor). Calling b the colored graph, the invariant
denotes equivalently OK(T ) = Ob(T ). We will detail this in the next section.

We build a physical model by introducing a partition function

Z =

∫
dν(T ) exp(−SN (T )) ,(2)

where the action SN (T ) =
∑

b λbN
−ρ(b)Ob(T ) is defined as a finite sum over

some O(N) tensor invariants representing the model interactions each with
coupling λb and ρ(b) scaling parameter; dν(T ) is a tensor field measure.

In this work, we will consider only correlators that are Gaussian. This
means that the field measure will be Gaussian and of the form

(3) dν(T ) =
∏

jl

dTj1j2...jd e
−O2(T ) , O2(T ) =

∑

jk

(Tj1j2...jd)
2 .
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In other terms, O2(T ) plays the role of a quadratic mass term. The free
propagator of the Gaussian measure is given by

(4) ⟨Ti1i2...idTj1j2...jd⟩ =
∫

dν(T )Ti1i2...idTj1j2...jd = δi1j1δi2j2 . . . δidjd ,

and will be used in the Wick theorem for computing Gaussian correlators.
We will be interested in the mean values of observables that are defined by

⟨Ob(T )⟩ =
1∫

dν(T )

∫
dν(T )Ob(T ) ,

⟨Ob(T )Ob′(T )⟩ =
1∫

dν(T )

∫
dν(T )Ob(T )Ob′(T ) .(5)

The second correlator will be restricted to normal order allowing only Wick
contractions from Ob(T ) to Ob′(T ). In Section 5, enlightened by the symmet-
ric group formulation of the O(N) invariants, we will reformulate (5) and
analyse the representation algebraic structure brought by the 2pt-correlator.
The first correlator is sketched as it evaluates by modifying the previous cal-
culation method.

3. Counting O(N) invariants

Counting the number of invariants based on the contractions of 2n copies
of tensors Ti1,...,id , starts by a symmetric group construction. Actually, this
enumeration problem expresses as a permutation-TFT that we also discuss.
Finally, switching to representation theory, we derive the same counting
formula in terms of the famous Kronecker coefficients.

3.1. Enumeration of rank d ≥ 3 tensor invariants

Orthogonal invariants are in one-to-one in correspondence with d-regular
colored graphs (see for instance [41]). Contrary to the graphs correspond-
ing to unitary invariants [7, 20], the present graphs are not bipartite and,
so, might be non-orientable. It is always possible to make a graph bipar-
tite by inserting another type of vertex of valence 2 called “black” (hence-
forth the initial vertices are called “white”) on each edge of the graph. We
therefore perform that transformation and the new vertices are denoted vji ,
i = 1, . . . , 2n (recall that 2n is the number of tensors) and j = 1, . . . , d. The
resulting graph is neither regular, nor properly edge-colored. It is however
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bipartite as illustrated in Figure 1. This property concedes a description of
a colored graph in symmetric groups language.

Figure 1. Rank d = 3 orthogonal tensor contractions.

We shall focus on d = 3. The general case d will follow from this case. We
denote S2n the symmetric group of order (2n)!. Counting possible graphs
consists of enumerating the triples

(6) (σ1, σ2, σ3) ∈ S2n × S2n × S2n

subjected to the equivalence

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ) ,(7)

where γ ∈ S2n and the γi belong to the so-called wreath product subgroup
∈ Sn[S2] ⊂ S2n. We intend to count the points in the double coset

(Sn[S2]× Sn[S2]× Sn[S2])\(S2n × S2n × S2n)/Diag(S2n) .(8)

Let us denote Z3(2n) the cardinality of this double coset.
In a broader setting [42], for two subgroups H1 ⊂ G and H2 ⊂ G, the

cardinality of the double coset |H1\G/H2| is given by

|H1\G/H2| =
1

|H1||H2|
∑

C

ZH1→G
C ZH2→G

C Sym(C) .(9)

The sum is over conjugacy classes of G, and ZH→G
C is the number of elements

of H in the conjugacy class C of G.
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The conjugacy classes of S2n × S2n × S2n are determined by triples
(p1, p2, p3), where each pi is a partition of 2n. The presence of the sub-
group Diag(S2n) implies that only conjugacy classes determined by a triple
(p, p, p) should be conserved in the above sum.

Applying (9), we get

Z3(2n) =
1

[n!(2!)n]3(2n)!

∑

p⊢2n
Z

(Sn[S2])×3→(S2n)×3

(p,p,p) ×
( (2n)!

Sym(p)

)
(Sym(p))3

=
1

[n!(2!)n]3

∑

p⊢2n
Z

(Sn[S2])×3→(S2n)×3

(p,p,p) × (Sym(p))2

with Sym(p) :=

n∏

i=1

(ipi)(pi!) ,(10)

and where the sum over p = (pℓ)ℓ is performed over all partitions of 2n =∑
i ipi. The cardinality of a conjugacy class Tp of S2n with cycle structure

determined by a partition p is given by |Tp| = (2n)!/Sym(p). Next, we must

determine the size of Z
(Sn[S2])×3→(S2n)×3

(p,p,p) which is

(11) Z
(Sn[S2])×3→(S2n)×3

(p,p,p) = (ZSn[S2]→S2n
p )3 .

We can get a single factor in this product as

(12)
1

n!(2!)n
ZSn[S2]→S2n
p = Coefficient [ZS∞[S2]

2 (t, x⃗), tnxp1

1 xp2

2 . . . xp2n

2n ] ,

where appears the generating function of the number of wreath product
elements in a certain conjugacy class p ⊢ 2n, namely

(13) ZS∞[Sd]
d (t, x⃗) =

∑

n

tnZSn[Sd](x⃗) = e

∑
∞

i=1
ti

i

[
∑

q⊢d

∏d
ℓ=1

(
xiℓ
ℓ

)νℓ 1

νℓ!

]

,

where x⃗ = (x1, x2, . . . ), and q = (νℓ)ℓ is a partition of d, such that∑
ℓ ℓνℓ = d.
The expression (10) finally computes to

(14) Z3(2n) =
∑

p⊢2n

(
Coefficient [ZS∞[S2]

2 (t, x⃗), tnxp1

1 xp2

2 . . . xp2n

2n ]
)3
(Sym(p))2.
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In general, for arbirtrary d, the above calculation is straightforward and
yields, for any d ≥ 2,

Zd(2n) =
∑

p⊢2n

(
Coefficient [ZS∞[S2]

2 (t, x⃗), tnxp1

1 xp2

2 . . . xp2n

2n ]
)d

(15)

× (Sym(p))d−1 .

We can generate the sequences Z3(2n) and Z4(2n) (both with n = 1, . . . , 10)
using a Mathematica program in Appendix B and obtain, respectively,

(16) 1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330

and

1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,

220685007519070, 75649235368772418 .(17)

Following Read [42], the number Zd(2n) of d-regular colored graphs made
with 2n vertices is the coefficient of tn in

∏
mΦm(t), with m sufficiently large

to collect all such coefficients, and where

(18) Φm(t) =





∑∞
j=0

(Am/2(j))d

j!mj tmj/2 if k = 1,

∑∞
j=0

(2j)d−1

j!d

(
md−2

2k

)j
tmj if m is odd,

and the function Ak(j) is related to the j-th Hermite polynomial by Ak(j) =
(i
√
k)jHj(

1
2i
√
k
).

We generate the corresponding sequences Z3(2n), n = 1, . . . , 10, and
Z4(2n), n = 1, . . . , 10, using a Mathematica program (in Appendix B) and
the results match with (16) and (17), respectively. Hence, both methods yield
the same results. The sequence (16) naturally corresponds to the OEIS se-
quence A002830 (number of 3-regular edge colored graphs with 2n nodes)
[43]. The sequence (17) is not yet reported on the OEIS. Hence, the formula
(15) generates arbitrary new sequences for each d > 3.

We must underline that the above counting of observables concerns con-
nected and disconnected graphs (generalized multi-matrix invariants). To
obtain only connnected invariants, we use the plethystic logarithm (Plog)
transform on the generating series of the disconnected invariants. Such a
generating function also easily programs with the Möbius µ-function. We
obtain the enumeration of connected invariants (see Appendix B) for rank
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d = 3 and 4, respectively, up to order n = 10 as,

(19) 1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138 ,

and

1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991,

219822379032704, 75417509926065404 .(20)

As an illustration, Figure 2 depicts the rank 3 connected orthogonal invari-
ants up to valence 6. The colors ci = 1, 2, 3, should be permuted to generate
the full set of connected invariants.

3.2. TFT formulation

From the above symmetric group formulation of the counting of tensor in-
variants, one extracts more information via other correspondences. In partic-
ular, the enumeration reformulates as a partition function of a Topological
Field Theory on a 2-complex (in short TFT2) with S2n and its subgroup
Sn[S2] as gauge groups. For a review of TFT’s, see [44, 45] and, in notation
closer to what we aim at, see [25, 26].

Consider the counting of classes in the double coset (8), denote it as
Z3(2n), and then consider the relation (9). Using Burnside’s lemma, we
have in standard notations:

Z3(2n) =
1

[n!(2!)n]3(2n)!

×
∑

γi∈Sn[S2]

∑

σi∈S2n

∑

γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 ),(21)

where δ is the Kronecker symbol on S2n. This counting interprets as a par-
tition function of a TFT2 on a cellular complex given by Figure 3. On that
lattice, we use two gauge groups S2n and Sn[S2]. The topology of that 2-
complex is that of three cylinders sharing the same end circle. Thus, enumer-
ating orthogonal invariant corresponds to a S2n–TFT2 on 3 glued cylinders
along one circle, with a restriction of the gauge group to be Sn[S2] at the op-
posite boundary circle. This TFT2 has boundary holonomies endowed with
Sn[S2] group elements.

By successively integrating some delta functions, the TFT2 formulation
produces alternative interpretations of the same counting. We extract γ from
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Figure 2. Connected colored graphs associated with rank 3 orthogonal ten-
sor invariants with up to 6 vertices.

(21) and get γ = σ−1
3 γ−1

3 σ3 such that

Z3(2n) =
1

[n!(2!)n]3(2n)!

×
∑

γi∈Sn[S2]

∑

σi∈S2n

δ(γ1σ1(σ
−1
3 γ−1

3 σ3)σ
−1
1 )δ(γ2σ2(σ

−1
3 γ−1

3 σ3)σ
−1
2 ) .(22)
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Figure 3. TFT2 associated with the counting of orthogonal invariants.

A change of variables σ1,2 → σ1,2σ
−1
3 leads us to

(23) Z3(2n) =
1

[n!(2!)n]3

∑

γi∈Sn[S2]

∑

σ1,2∈S2n

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) .

This integration illustrates, in Figure 4, as the removal of a 1-cell associated
with the variable γ in the 2-complex. The partition function therefore shows
two types of invariances: the extraction of γ corresponds to one type of
topological invariance, and then, it is followed by the change of variables
σ1,2 → σ1,2σ

−1
3 corresponding to a topological invariance of a second kind.
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Figure 4. Topological transformations of the 2-complex leaving the partition
function stable.

Thus, the partition function (23) can also be written as

(24) Z3(2n) = Z(S1 × I; (DSn[S2])
×3) ,
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where Z(S1 × I; (DSn[S2])
×3) is the partition function obtained by inserting

3 Sn[S2]-defects, one at each end of the cylinder S1 × I, and another one at
finite time t0 ∈ I, see Figure 5. A defect defines as a closed non-intersecting
loop with a marked point. The relation (24) shows that orthogonal invariants
are in one-to-one correspondence with n-fold covers of the cylinder with 3
defects, up to a (symmetry) factor, the stabilizer subgroup of the graph that
we denote Aut(Gσ1,σ2,σ3

).

1

2

3 1

2

Figure 5. Cylinder with 3 defects.

The order of the stabilizer infers from

(25) Sym(σ1, σ2) =
∑

γi∈Sn[S2]

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) = Aut(Gσ1,σ2,σ3

)

which also relates to the number of equivalences (Sn[S2]× Sn[S2])\(Sn ×
Sn)/Diag(Sn[S2]) corresponding to a fixed (σ1, σ2).

The TFT formulation of the counting could enrich it with a geometrical
picture. Most of the time, the base space of the TFT is viewed as a string
worldsheet. The counting becomes now counting of worldsheet maps over a
cylinder with defects. As noticed elsewhere [20, 35], this once again shows
that a link may exist between tensor models and string theory, which could
be elucidated via the TFT formalism. Such link may be worth investigating
in the future.

Rank d counting and TFT2 –More generally, for rank d ≥ 3, the counting
Zd(2n) has a TFT2 formulation that generalizes what we discuss above in a
straightforward manner:

Zd(2n) =
1

[n!(2!)n]d(2n)!

∑

γi∈Sn[S2]

∑

σi∈S2n

∑

γ∈S2n

d∏

i=1

δ(γiσiγσ
−1
i )(26)

=
1

[n!(2!)n]d

∑

γi∈Sn[S2]

∑

σi∈S2n

d−1∏

i=1

δ(γiσiγdσ
−1
i ) .
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The first equation of (26) shows that, in rank d, the TFT2-formulation of
the counting extends Figure 3 as the gluing of d cylinders along one circle.
After integration, the second equations reveals that the counting orthogonal
invariants amounts therefore counting of weighted covers of d− 1 cylinders
with d defects, with one of the defects shared by all cylinders. In formula,
we have Zd(2n) = Z(S1 × I; (DSn[S2])

×d).

3.3. The counting as a Kronecker sum

We now revisit the counting (21) under a different light, that of the rep-
resentation theory of the symmetric group (Appendix A reviews the main
identities used in this section and the following). Irreducible representations
(irreps) of the symmetric group S2n are labeled by partitions R ⊢ 2n, that
are also Young diagrams.

Starting from the Burnside lemma formulation of the counting (21),
consider the following expansion of the counting of rank 3 invariants using
the representation theory of S2n:

Z3(2n) =
1

[n!(2!)n]3(2n)!

×
∑

γl∈Sn[S2]

∑

σl∈S2n

∑

γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 )

=
1

[n!(2!)n]3(2n)!

×
∑

γl∈Sn[S2]

∑

γ∈S2n

∑

Rl ⊢ 2n

χR1(γ1)χ
R1(γ)χR2(γ2)χ

R2(γ)χR3(γ3)χ
R3(γ)

=
1

[n!(2!)n]3

×
∑

Rl ⊢ 2n

C(R1, R2, R3)




∑

γ1∈Sn[S2]

χR1(γ1)






∑

γ2∈Sn[S2]

χR2(γ2)


(27)

where χR(·) denotes the character in the representation R; we used the
identity (A.4) in Appendix A.1 to compute the delta’s, and the Kronecker
coefficient is defined as

(28) C(R1, R2, R3) =
1

2n!

∑

γ∈S2n

χR1(γ)χR2(γ)χR3(γ) .
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The Kronecker defines the multiplicity of the representation R3 in the tensor
product R1 ⊗R2, or the multiplicity of the trivial representation in R1 ⊗
R2 ⊗R3 when expanded back in irreps.

Above, the sums over the subgroup Sn[S2] have been not yet performed.
To proceed with these sums, we will use a useful result by Howe [46] (see
also a result by Mizukawa, proposition 4.1 in [47], and also [48, 49] or a more
recent use of it in [30]):

(29)
∑

γ∈Sn[S2]

χR(γ) = |Sn[S2]|mR

wheremR = 1 if R is an “even” partition, that is, all its row lengths are even,
and mR = 0 otherwise. This result is derived from a more general formula∑

γ∈Sn[S2]
χA(γ)χR(γ) = |Sn[S2]|mA|R, where A is an irreps of Sn[S2] sub-

duced by R irreps of S2n, and then inserting A as the trivial representation
[2n] of Sn[S2].

Then, we obtain, inserting this in (27)

(30) Z3(2n) =
∑

Rl ⊢ 2n/Rl is even

C(R1, R2, R3) .

Comparing this sequence and (16), we produce a Sage code (see Appendix B)
showing that the numbers generated by (30) match with (16).

In the next section, we will show that, this number is also the dimension
of an algebra K3(n). It is an interesting problem to investigate how the
counting of colored graphs could contribute to the famous problem of giving
a combinatorial interpretation to the Kronecker coefficients [39, 40] (in the
same way that Littlewood-Richardson coefficient have found a combinatorial
description). From previous work [35], we know that the sum of squares of
Kronecker coefficients associated with Sn equals the number of d-regular
bipartite colored graphs made with n black and n white vertices. Here the
interpretation is the following, the number of d-regular colored graphs (not
necessarily bipartite) equals the sum of all Kronecker’s precluded those that
are defined with partitions with odd rows. An idea to contribute to the
above problem is to refine the counting of graphs in a way to boil down to a
single Kronecker coefficient. In other words, given a non vanishing Kronecker
coefficient is it possible to list all graphs contributing to that Kronecker
coefficient? This is certainly a difficult problem that will require new tools
in representation theory.
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Counting rank-d tensor invariants - The above counting generalize quite
naturally at any rank d as

Zd(2n) =
1

[n!(2!)n]d(2n)!

∑

γl∈Sn[S2]

∑

σl∈S2n

∑

γ∈S2n

d∏

i=1

δ(γiσiγσ
−1
i )(31)

=
1

[n!(2!)n]d

∑

Rl ⊢ 2n

∑

γl∈Sn[S2]

Cd(R1, . . . , Rd)χ
R1(γ1) . . . χ

Rd(γd)

=
∑

Rl ⊢ 2n/Rl is even

∑

γl∈Sn[S2]

Cd(R1, . . . , Rd)

where we introduced the notation

(32) Ck(R1, . . . , Rk) =
1

(2n)!

∑

γ∈S2n

χR1(γ) . . . χRk(γ) .

This counts the multiplicity of the one dimensional trivial S2n irrep in the
tensor product of irreps R1 ⊗ · · · ⊗Rk. It expresses as a convoluted product
of Kronecker coefficients as

(33) Ck(R1, . . . , Rk) =
∑

Sl⊢2n
C(R1, R2, S1)

×
[
k−4∏

i=1

C(Si, Ri+2, Si+1)

]
C(Sk−3, Rk−1, Rk) .

4. Double coset algebra

We now discuss the underlying structure, an algebra, determined by the
counting of the O(N) invariants. The rank 3 case is first addressed for the
sake of simplicity, and from that, we will infer the general rank-d case when-
ever possible.

Consider C[S2n], the group algebra of S2n. Our construction depends on
tensor products of that space.

Kd(2n) as a double coset algebra in C[S2n]
⊗d - We fix d = 3. Consider

σ1 ⊗ σ2 ⊗ σ3 as an element of the group algebra C[S2n]
⊗3, and three left

actions of the subgroup Sn[S2] and the diagonal right action Diag(C(S2n))
on this triple as:

(34) σ1 ⊗ σ2 ⊗ σ3 →
∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ .
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K3(2n) is the vector subspace of C[S2n]
⊗3 which is invariant under these

subgroup actions:
(35)

K3(2n) = SpanC





∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ, σ1, σ2, σ3 ∈ S2n





It is obvious that dimK3(2n) = Z3(2n), since each base element represents
the graph equivalent class counted once in Z3(2n). Pick two base elements,
called henceforth graph base elements, and consider their product

[
∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ

]
(36)

×
[

∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ

]

=
∑

γi,τi∈Sn[S2]

∑

γ,τ∈S2n

γ1σ1γτ1σ
′
1τ ⊗ γ2σ2γτ2σ

′
2τ ⊗ γ3σ3γτ3σ

′
3τ

=
∑

τi∈Sn[S2]

∑

γ∈S2n

[
∑

γi∈Sn[S2]

∑

τ∈S2n

γ1(σ1γτ1σ
′
1)τ ⊗ γ2(σ2γτ2σ

′
2)τ ⊗ γ3(σ3γτ3σ

′
3)τ

]

This shows that the multiplication remains in the vector space. Hence,
K3(2n) is an algebra and (36) defines a graph multiplication. The proof
is totally similar for Kd(2n) (considering d factors in the tensor product)
which is thus an algebra of dimension Zd(2n).

The product of graphs in the algebra K3(2n) illustrates as in Figure 6.

Gauge fixing - There is a gauge fixing procedure in the construction of
orthogonal invariants. One initially fixes a permutation σi but is still able to
generate all invariants. Consider ξ = (12)(34) . . . (2n− 1, 2n), and we fix σ1
to belong to the stabilizer of ξ, i.e. σ−1

1 ξσ1 = ξ. Since the Stabξ = Sn[S2], we
simply mean that we choose σ1 to be in that subgroup. We already observe
a difference with the unitary case [35]. Indeed, while the gauge fixing in the
unitary case leads to the definition of a permutation centralizer algebra, the
gauge fixing here will not bring such an algebra. The main difference with
the unitary case also rests on the fact that the left and right invariances on
the triple (σ1, σ2, σ3) in this case are radically different.
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Figure 6. Product of two graph base elements (on the left) gives a sum of
graphs (on the right).

Associativity - In the graph base, we can check the associativity of the
product of elements of K3(2n):

([ ∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ

]
(37)

×
[ ∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ

])

×
[ ∑

αi∈Sn[S2]

∑

α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α

]

=
∑

τi, αi

∑

γ, τ

[∑

γ,α

γ1σ1γτ1σ
′
1τα1σ

′′
1α

⊗ γ2σ2γτ2σ
′
2τα2σ

′′
2α⊗ γ3σ3γτ3σ

′
3τα3σ

′′
3α

]

=

[ ∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ

]

×
([ ∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ

]

×
[ ∑

αi∈Sn[S2]

∑

α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α

])
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The proof easily extends to any d, and we therefore claim the following:

Proposition 4.1. Kd(2n) is an associative unital sub-algebra of C[S2n]
⊗3.

The unity is given by the equivalence class of (id, id, id). Such element
corresponds to the disconnected graph made with n connected components
with full contraction of n pairs of tensors.

Pairing - There is an inner product (that we will call pairing) on Kd(2n)
defined from the linear extension of the delta function from the symmetric
group to the tensor product group algebra (see (A.22) in Appendix A.3 for
details pertaining to the following notation). Take two base elements (in
obvious notation) and evaluate using proper change of variables:

δ

(∑

γi,γ

⊗d
i γiσiγ;

∑

τi,τ

⊗d
i τiσ

′
iτ

)
=
∑

γi,γ

∑

τi,τ

d∏

i

δ(γiσiγ(τiσ
′
iτ)

−1)(38)

= [(2n)!(n!2n)]
∑

γi,γ

d∏

i

δ(γiσiγ(σ
′
i)
−1) .

Thus, either the tuples (σ1, σ2, . . . , σd) and (σ′
1, σ

′
2, . . . , σ

′
d) define equivalent

graphs Gσ1,σ2,...,σd
and Gσ′

1,σ
′
2,...,σ

′
d
, respectively, or the result is 0. This pre-

cisely tells us that the graph base forms an orthogonal system. The above
computes further using the order of the automorphism group of the graph

δ

(∑

γi,γ

⊗d
i γiσiγ;

∑

τi,τ

⊗d
i τiσ

′
iτ

)
(39)

= [(2n)!(n!2n)]δ(Gσ1,σ2,...,σd
;Gσ′

1,σ
′
2,...,σ

′
d
)Aut(Gσ1,σ2,...,σd

) .

Therefore, there exists a non degenerate bilinear pairing on Kd(2n) and the
following holds:

Theorem 4.2. Kd(2n) is an associative unital semi-simple algebra.

As a corollary of Theorem 4.2, the Wedderburn-Artin theorem guaran-
tees that Kd(2n) decomposes in matrix subalgebras. It might be interesting
to investigate a base of such a decomposition of Kd(2n) in irreducible ma-
trix subalgebras. One could be tempted to think that, at d = 3, restricting
to K3(2n), the Kronecker coefficients for even partitions could be themselves
squares, and therefore define the dimensions of the irreducible subalgebras.
This is not the case as this can be easily shown using the same Sage code
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given in Appendix B (by printing the Kronecker). This point is postponed
for future investigations. In the mean time, it is legitimate to ask a represen-
tation base with labels that reflect the dimension (30). This is the purpose
of the next paragraph.

Constructing a representation theoretic base Q of K3(2n) - Let us
introduce the representation base of C[S2n] given by the elements

(40) QR
ij =

κR
(2n)!

∑

σ∈S2n

DR
ij(σ)σ , with κ2R = (2n)!d(R) ,

that obey the orthogonality relation δ(QR
ij ;Q

R′

i′j′) = δRR′δii′δjj′ . The base

{QR
ij} counts

∑
R⊢2n(d(R))2 = (2n)! elements and forms the Fourier theo-

retic base of C[S2n]. Appendix A.3 collects a few other properties of this
base for a general permutation group.

We fix d = 3 and build now the invariant representation theoretic (Fourier
for short) base of the algebra K3(2n) (35). Consider the right diagonal action
ρR(·) and the three left actions ϱi(·) on the tensor product C[S2n]

⊗3. Then
we write:

∑

γ1, γ2, γ3∈Sn[S2]

∑

γ∈S2n

ϱ1(γ1)ϱ2(γ2)ϱ3(γ3)ρR(γ)Q
R1

i1j1
⊗QR2

i2j2
⊗QR3

i3j3
(41)

=
∑

γa

∑

γ

γ1Q
R1

i1j1
γ ⊗ γ2Q

R2

i2j2
γ ⊗ γ3Q

R3

i3j3
γ

=
∑

γa

∑

γ

∑

pl ,ql

DR1

p1i1
(γ1)Q

R1
p1q1D

R1

j1q1
(γ)

⊗DR2

p2i2
(γ2)Q

R2
p2q2D

R2

j2q2
(γ)⊗DR3

p3i3
(γ3)Q

R3
p3q3D

R3

j3q3
(γ)

=
(2n)!

d(R3)

∑

γa

∑

pl ,ql

∑

τ

CR1,R2;R3,τ
j1,j2;j3

CR1,R2;R3,τ
q1,q2;q3

×DR1

p1i1
(γ1)D

R2

p2i2
(γ2)D

R3

p3i3
(γ3)Q

R1
p1q1 ⊗QR2

p2q2 ⊗QR3
p3q3 .

We used (A.20) to multiply group elements with the Q base, see Appendix
A.3; then use (A.16) to sum over γ the 3 representation matrices, see in
Appendix A.2.



✐

✐

“1-BenGeloun” — 2020/8/18 — 0:23 — page 842 — #22
✐

✐

✐

✐

✐

✐

842 R. C. Avohou, J. Ben Geloun, and N. Dub

We couple this last result with a Clebsch-Gordan coefficient, in order to
get, using (A.14):

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

γa

∑

γ

ϱ1(γ1)ϱ2(γ2)ϱ3(γ3)ρR(γ)Q
R1

i1j1
⊗QR2

i2j2
⊗QR3

i3j3
(42)

= (2n)!
∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

∑

γ1

DR1

p1i1
(γ1)

∑

γ2

DR2

p2i2
(γ2)

∑

γ3

DR3

p3i3
(γ3)

×QR1
p1q1 ⊗QR2

p2q2 ⊗QR3
p3q3 .

Once again, we should stress the fact that
∑

γ∈Sn[S2]
DR

pq(γ) ̸= 0, if and only
if R is a partition of 2n with even rows. This condition will be always as-
sumed in the next calculations. Now, we can split the Wigner matrix element
using branching coefficients of Sn[S2] in S2n. Consider V

R a irreps S2n (see
Appendix A listing a few basic facts on representation theory of Sn and our
notations), and the subgroup inclusion Sn[S2] ⊂ S2n, we can decompose V R

in irreps V r of Sn[S2] as

V R = ⊕rV
r ⊗ VR,r(43)

where VR,r is a vector space of dimension the multiplicity of the irreps r
in R. A state in this decomposition denotes |r,mr, νr⟩, where mr labels the
states of V r and νr = 1, . . . ,dimVR,r.

The branching coefficients that are of interest are the coefficients of
|r,mr, νr⟩ when decomposed in an orthonormal base of the irreps R:

BR; r,νr

i;mr
= ⟨R, i |r,mr, νr⟩ = ⟨r,mr, νr |R, i⟩ .(44)

The last relation is deduced from the fact that we use real representations.
Using the decomposition of the identity, the branching coefficients satisfy
the following identities

∑

i

BR; r,νr

i;mr
BR; s,νs

i;ms
= δrsδνrνs

δmrms
(45)

∑

r,mr,νr

BR; r,νr

i;mr
BR′; r,νr

i′;mr
= δRR′δii′ .(46)

We have the following useful relation, for σ ∈ Sn[S2],

(47)
∑

j

DR
ij(σ)B

R; r,νr

j;mr
=
∑

m′
r

Dr
mrm′

r
(σ)BR; r,νr

i;m′
r

,
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where Dr
mrm′

r
(σ) is the representation matrix of σ as an element of Sn[S2].

Restricting this to r = [2n], the trivial representation of Sn[S2] that is one
dimensional and with multiplicity always 1 for all R, we obtain:

(48)
∑

j

DR
ij(σ)B

R;[2n],1
j;1 = D

[2n]
11 (σ)B

R;[2n],1
i;1 = B

R;[2n],1
i;1 .

We now treat the sum over the representation matrices in (42). Inserting
twice a complete set of states therein, we get
(49)∑

σ∈Sn[S2]

DR
ij(σ) =

∑

σ∈Sn[S2]

∑

r,νr,mr;s,νs,ms

BR; r,νr

i;mr
BR; s,νs

j;ms
⟨r, νr,mr|σ|s, νs,ms⟩.

Noting that
∑

s∈Sn[S2]
σ =

∑
s∈Sn[S2]

σχ[2n](σ) is, up to the factor 1/[n!2n],

nothing but the projector onto the trivial [2n] representation of Sn[S2], the
overlap computes to

(50)
∑

σ∈Sn[S2]

⟨r, νr,mr|σ|s, νs,ms⟩ = (2nn!)δr,[2n]δs,[2n]δ1mr
δ1ms

δ1νs
δ1νr

,

since we have

∑

σ∈Sn[S2]

σ|s, νs,ms⟩ =
∑

σ∈Sn[S2]

χ[2n](σ)
∑

k

Ds
msk(σ)|s, νs, k⟩(51)

=
∑

σ∈Sn[S2]

D
[2n]
11 (σ)

∑

k

Ds
msk(σ)|s, νs, k⟩

=
2nn!

d([2n])

∑

k

δ[2n],sδ1ms
δ1νs

δ1k|s, νs, k⟩

= (2nn!)δ[2n],sδ1ms
δ1νs

|[2n], 1, 1⟩ .

Hence,

(52)
∑

σ∈Sn[S2]

DR
ij(σ) = (2nn!)BR; tr

i BR; tr
j ,

where we have defined BR; tr
i = ⟨R, i |[2n], 1, 1⟩.
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From the above calculation, we finally get from (42):

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

γa

∑

γ

ϱ1(γ1)ϱ2(γ2)ϱ3(γ3)ρR(γ)Q
R1

i1j1
⊗QR2

i2j2
⊗QR3

i3j3
(53)

= (2n)!(n!2n)3BR1;tr
i1

BR2;tr
i2

BR3;tr
i3

×
∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3 BR1; tr

p1
BR2; tr

p2
BR3; tr

p3
QR1

p1q1 ⊗QR2
p2q2 ⊗QR3

p3q3

We now define an element

QR1,R2,R3,τ = κR⃗

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3 BR1; tr

p1
BR2; tr

p2
BR3; tr

p3
QR1

p1q1 ⊗QR2
p2q2 ⊗QR3

p3q3

= κR⃗
κR1

κR2
κR3

((2n)!)3

×
∑

σi

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

[
3∏

i=1

BRi; tr
pi

DRi
piqi(σi)

]
σ1 ⊗ σ2 ⊗ σ3(54)

where κR⃗ is a normalization constant to be fixed later and the notation R⃗
stands for (R1, R2, R3). The set {QR1,R2,R3,τ} is of cardinality the counting
of orthogonal invariants given by (30).

Invariance - Let us check that the element QR1,R2,R3,τ is invariant under
left multiplication on each factor and diagonal right multiplication:

(γ1 ⊗ γ2 ⊗ γ3)Q
R1,R2,R3,τ (γ ⊗ γ ⊗ γ)(55)

= κR⃗

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3 BR1; tr

p1
BR2; tr

p2
BR3; tr

p3

∑

ℓ1,j1

DR1

ℓ1p1
(γ1)Q

R1

ℓ1j1
DR1

q1j1
(γ)

⊗
∑

ℓ2,j2

DR2

ℓ2p2
(γ2)Q

R2

ℓ2j2
DR2

q2j2
(γ)⊗

∑

ℓ3,j3

DR3

ℓ3p3
(γ3)Q

R3

ℓ3j3
DR3

q3j3
(γ)

= κR⃗

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

pl,ℓl

DR1

ℓ1p1
(γ1)B

R1; tr
p1

DR2

ℓ2p2
(γ2)B

R2; tr
p2

×DR3

ℓ3p3
(γ3)B

R3; tr
p3

QR1

ℓ1j1
⊗QR2

ℓ2j2
⊗QR3

ℓ3j3

= κR⃗

∑

jl,ℓl

CR1,R2;R3,τ
j1,j2;j3

BR1; tr
ℓ1

BR2; tr
ℓ2

BR3; tr
ℓ3

QR1

ℓ1j1
⊗QR2

ℓ2j2
⊗QR3

ℓ3j3

= QR1,R2,R3,τ ,

where we used once again (A.20) and (A.14) at intermediate step and the
identity (48) to get the last line.
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We check a few properties of the product of elements of K3(2n).

Product - The elements (40) of the Fourier base of C[S2n] multiply as
follows (see Appendix A.3.)

QR
ijQ

R′

kl =
κR
d(R)

δRR′δjkQ
R′

il .(56)

The definition (54) and relation (56) allow us to compute the product

QR1,R2,R3,τQR′
1,R

′
2,R

′
3,τ

′

(57)

=
κR⃗κR⃗′κR1

κR2
κR3

d(R1)d(R2)d(R3)
δR⃗R⃗′

∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

b1,b2;b3

×BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′
1; tr

a1
BR′

2; tr
a2

BR′
3; tr

a3

×Q
R′

1

p1b1
⊗Q

R′
2

p2b2
⊗Q

R′
3

p3b3
δq1a1

δq2a2
δq3a3

=
κR⃗κR1

κR2
κR3

d(R1)d(R2)d(R3)
δR⃗R⃗′

×
[∑

ql

CR′
1,R

′
2;R

′
3,τ

q1,q2;q3 BR′
1; tr

q1 BR′
2; tr

q2 BR′
3; tr

q3

]
QR′

1,R
′
2,R

′
3,τ

′

.

Hence, the product of two base elements expands in terms of QR1,R2,R3,τ . In
a compact notation, we write

(58) QR1,R2,R3,τQR′
1,R

′
2,R

′
3,τ

′

= δR⃗R⃗′k(R⃗′, τ)QR′
1,R

′
2,R

′
3,τ

′

.

which shows that the product is almost orthogonal. Still it cannot represent
the base of Wedderburn-Artin matrix decomposition. The base {QR1,R2,R3,τ}
therefore decomposes K3(2n) in blocks mutually orthogonals in the labels
R1, R2, R3. Still in each block the decomposition remains unachieved.

Associativity - We check the associativity of the product in the Q-base.
On the one hand, we have

(
QR1,R2,R3,τQR′

1,R
′
2,R

′
3,τ

′
)
QR′′

1 ,R
′′
2 ,R

′′
3 ,τ

′′

(59)

=
κR⃗κR1

κR2
κR3

d(R1)d(R2)d(R3)
δR⃗R⃗′

[∑

ql

CR′
1,R

′
2;R

′
3,τ

q1,q2;q3 BR′
1; tr

q1 BR′
2; tr

q2 BR′
3; tr

q3

]

× κR⃗′κR′
1
κR′

2
κR′

3

d(R′
1)d(R

′
2)d(R

′
3)
δR⃗′R⃗′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

′

q1,q2;q3 BR′′
1 ; tr

q1 BR′′
2 ; tr

q2 BR′′
3 ; tr

q3

]

×QR′′
1 ,R

′′
2 ,R

′′
3 ,τ

′′
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and on the other,

QR1,R2,R3,τ
(
QR′

1,R
′
2,R

′
3,τ

′

QR′′
1 ,R

′′
2 ,R

′′
3 ,τ

′′
)

(60)

=
κR⃗′κR′

1
κR′

2
κR′

3

d(R′
1)d(R

′
2)d(R

′
3)
δR⃗′R⃗′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

′

q1,q2;q3 BR′′
1 ; tr

q1 BR′′
2 ; tr

q2 BR′′
3 ; tr

q3

]

× κR⃗κR1
κR2

κR3

d(R1)d(R2)d(R3)
δR⃗R⃗′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

q1,q2;q3 BR′′
1 ; tr

q1 BR′′
2 ; tr

q2 BR′′
3 ; tr

q3

]

×QR′′
1 ,R

′′
2 ,R

′′
3 ,τ

′′

.

The two expressions are identical.

Pairing - We use the pairing on C[S2n]
⊗3 along the lines (A.24) and eval-

uate:

δ(QR1,R2,R3,τ ;QR′
1,R

′
2,R

′
3,τ

′

)(61)

= κR⃗κR⃗′

∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

b1,b2;b3

×BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′
1; tr

a1
BR′

2; tr
a2

BR′
3; tr

a3

× δ(QR1
p1q1 ⊗QR2

p2q2 ⊗QR3
p3q3 ;Q

R′
1

a1b1
⊗Q

R′
2

a2b2
⊗Q

R′
3

a3b3
)

= κR⃗κR⃗′

∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

b1,b2;b3

×BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

BR′
1; tr

a1
BR′

2; tr
a2

BR′
3; tr

a3

× δR⃗R⃗′δp1a1
δp2a2

δp3a3
δq1b1δq2b2δq3b3

= κ2
R⃗
d(R3)

∑

pl

[ 3∏

i=1

BRi; tr
pi

]2
δR⃗R⃗′δττ ′ = κ2

R⃗
d(R3)δR⃗R⃗′δττ ′

where, in the first line, we used (A.24), in the last, (A.11), and the fact that,
by (45), the following holds

∑

p

[BR; tr
p ]2 =

∑

p

⟨[2n], 1, 1|R, p⟩⟨R, p |[2n], 1, 1⟩ = 1,

for all R ⊢ 2n. We could therefore fix the normalization κ2
R⃗

= 1/d(R3).
The following statement holds:

Proposition 4.3. {QR1,R2,R3,τ} is an invariant orthonormal base of K3(2n).
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Proof. It is sufficient to show that the graph base expands in terms of the
Q-base. We hold the non degenerate pairing δ and express any graph base
element Gσ1,σ2,σ3

=
∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ as

(62) Gσ1,σ2,σ3
=
∑

Rl,τ

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3
)QR1,R2,R3,τ

The definition of QR1,R2,R3,τ calls a linear combination of triples (τ1 ⊗ τ2 ⊗
τ3) that must have a non trivial overlap with Gσ1,σ2,σ3

. Let us compute the
overlap between the bases. Start with (54) and then write (using (A.14) and
then (48))

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3
) = κR⃗

κR1
κR2

κR3

((2n)!)3
((2nn!))3(2n!)(63)

×
∑

al ,bl

CR1,R2;R3,τ
b1,b2;b3

[ 3∏

i=1

BRi; tr
ai

DRi

aibi
(σi)

]
.

This number is, up to the normalization ((2nn!))3(2n!), the coefficient of the
triple (σ1 ⊗ σ2 ⊗ σ3) in QR1,R2,R3,τ . □

We note that the base {QR1,R2,R3,τ} is of the correct cardinality, that of
Z3(2n) as we sought.

Finding of the Wedderburn-Artin matrix base of K3(2n) means that
Z3(2n) can be written as a sum of squares. Interestingly, within the TFT2

formulation of the counting, we note that the partition function (23) com-
putes further using (A.4) as

Z3(2n) =
1

[n!(2!)n]3

∑

Rl⊢2n

(∑

γ1

χR1(γ1)

)
(64)

×
(∑

γ2

χR2(γ2)

)(∑

γ3

χR1(γ3)χ
R2(γ3)

)

=
1

n!(2!)n

∑

Rl⊢2n / Rl even

∑

γ3

χR1(γ3)χ
R2(γ3)

=
1

n!(2!)n

∑

γ3

( ∑

R⊢2n / R even

χR(γ3)

)2

,

thus, as a normalized sum of squares. This shows that Z3(2n) could ad-

mit several decompositions in squares. If
(∑

R⊢2n / R even χ
R(γ3)

)2
is the
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dimension of a subalgebra (given that the characters are integers via the
Murnaghan-Kakayama rule), this would mean that this decomposition in
sub-algebras would be labeled by γ3 and will be even different from the
Wedderburn-Artin decomposition. This decomposition deserves further clar-
ification in the present O(N) setting.

About projectors – Let us define the normalized projectors as

P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 PS2n

R =
1

[n!(2!)n]3(2n)!

×
∑

γl∈Sn[S2]

∑

γ∈S2n

ϱ1(γ1)ϱ2(γ2)ϱ3(γ3)ρR(γ) ,(65)

and check that the trace of their product yields the dimension of the algebra
K3(2n):

(66) dimK3(2n) = trC[S2n]⊗3(P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 PS2n

R ) = trK3(2n)(1) .

We have

∑

γa∈Sn[S2]

∑

γ∈S2n

ϱ1(γ1)ϱ2(γ2)ϱ3(γ3)ρR(γ)Q
R1

i1j1
⊗QR2

i2j2
⊗QR3

i3j3
(67)

=
∑

γa

∑

γ

∑

pl ql

DR1

p1i1
(γ1)D

R1

j1q1
(γ)DR2

p2i2
(γ2)D

R2

j2q2
(γ)DR3

p3i3
(γ3)D

R3

j3q3
(γ)

×QR1
p1q1 ⊗QR2

p2q2 ⊗QR3
p3q3 .

To compute the trace, pair this withQR1

i1j1
⊗QR2

i2j2
⊗QR3

i3j3
using the orthonor-

mality property δ(QR
ij ;Q

S
kl) = δRSδikδjl and sum over Rl, il, jl yielding

∑

Rl⊢S2n

∑

γa

∑

γ

∑

pl ql,il,jl

DR1

p1i1
(γ1)D

R1

j1q1
(γ)DR2

p2i2
(γ2)D

R2

j2q2
(γ)(68)

×DR3

p3i3
(γ3)D

R3

j3q3
(γ)δi1p1

δj1q1δi2p2
δj2q2δi3p3

δj3q3

=
∑

Rl⊢S2n

∑

γa

∑

γ

∑

il,jl

DR1

i1i1
(γ1)D

R1

j1j1
(γ)DR2

i2i2
(γ2)

×DR2

j2j2
(γ)DR3

i3i3
(γ3)D

R3

j3j3
(γ)

= (2n)!
∑

Rl⊢S2n

∑

γa

C(R1, R2, R3)χ
R1(γ1)χ

R2(γ2)χ
R3(γ3) .

Hence we find (27) using Burnside’s lemma, and we have Z3(n) = dimK3(2n).
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5. Correlators

Let us analyze Gaussian correlators, starting with d = 3 and then extending
it at any d. We consider the normal ordered correlator of two observables
Ob(T )Ob′(T ) in the Gaussian measure dν(T ) (3). Normal order means that
we only allow contraction from Ob(T ) to Ob′(T ).

Rank d = 3 correlator - Before computing the correlators, a few remarks
must be done. A 3-tuple of permutations labels the observables: Ob(T ) =
Oσ1,σ2,σ3

(T ) andOb′(T ) = Oτ1,τ2,τ3(T ). Recall that an observableOσ1,σ2,σ3
(T )

is in fact defined by a contraction of tensor indices. This contraction pat-
tern, that gives in return the color edges of the graph associated with the
observable, is not defined by the triple (σ1, σ2, σ3) but by the following triple

(69) (σ̃1, σ̃2, σ̃3) = (σ−1
1 ξσ1, σ

−1
2 ξσ2, σ

−1
3 ξσ3),

where we recall that ξ is the fixed permutation (12)(34) . . . (2n− 1, 2n). The
justification of this is immediate: each swop in ξ corresponds to a label of
the half-lines of the vertex vij , see Figure 1. Consider the l-th edge of color

i from the l-th tensor. The vertex links vij the image of σi(l) and the pre-
image through σi of ξ(σi(l)). We need the following convenient notation for
tensors: Tai1ai2ai3

, the index i = 1, . . . , 2n stands for the label of the tensor
which at the end will not matter in the definition of the observable. Using
this, an observable made of the contraction of 2n tensors can be expressed
as:

(70) Oσ1,σ2,σ3
(T ) =

∑

aij

2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

2n∏

i=1

Tai1ai2ai3

where aij = 1, . . . , N . There are many redundant Kroneckers δ in the pre-
vious expression. However, the calculus here is discrete and so there are
no particular issues. When we will compute the correlator using the Wick
theorem, it is the triple (σ̃1, σ̃2, σ̃3) that is concerned.

The Wick contraction between two observables, in the normal order,
introduces a permutation µ ∈ S2n. A correlator simply counts cycles of a
convolution of permutations. Let us determine which convolution is that,
using twice (70) and the free propagator (4):
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⟨Oσ1,σ2,σ3
(T )Oτ1,τ2,τ3(T )⟩ =

1∫
dν(T )

∫
dν(T )Oσ1,σ2,σ3

(T )Oτ1,τ2,τ3(T )

=
∑

µ

∑

aij ,bkl

[ 2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

δ
bij
bτ̃j(i)j

][ 2n∏

i=1

3∏

j=1

δ
aij

bµ(i)j

]
.(71)

Summing over the bl variables and using a change of variable, bij = aµ−1(i)j ,
lead us to

⟨Oσ1,σ2,σ3
(T )Oτ1,τ2,τ3(T )⟩ =

∑

µ

∑

aij

[ 2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

δ
aµ−1(i)j

aµ−1τ̃j(i)j

]
(72)

=
∑

µ

∑

aij

[ 2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

δaij
aµ−1τ̃jµ(i)j

]

=
∑

µ

∑

aij

[ 2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

δaij
aµ−1τ̃jµσ̃(i)j

]
,

where we also used σ̃−1
j = σ̃j . We already guess that the correlator expresses

as a power of N in a number of cycles of µ−1τ̃jµσ̃j . However, the proof is
not obvious because of the redundancy of the δ introduced in the definition
of the observable, see (70).

The following statement holds

Lemma 5.1. Let ai be an integer, ai = 1, . . . , N , for i = 1, . . . , 2n. Then,
(at fixed color j that we will omit in the ensuing notation)

(73)
∑

ai

[ 2n∏

i=1

δai
aσ̃(i)

δai
aµ−1τ̃µσ̃(i)

]
= Nc(µ−1τ̃µσ̃) ,

where c(σ) is the number of cycles of the permutation σ.

Proof. The sole issue here is the redundancy of the Kronecker’s. In fact, there
is enough information in the above sum to withdraw the correct number of
cycles. Call “vertex δ’s” those appearing in the product

∏2n
i=1 δ

ai
aσ̃(i)

, and
(Wick) “contraction δ’s” the remaining ones coming from the resolution of
the Wick contraction. Note there are redundancies in each product of δ’s.

Consider a fixed index i: to make things easy, we start by the simple case
given by µ−1τ̃µσ̃(i) = i. If µ−1τ̃µσ̃−1(i) = i, then (i) is a 1-cycle of µ−1τ̃µσ̃
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and we also have σ̃(i) = µ−1τ̃µ(i). Thus, we have, among the contraction
δ’s , 2 distinct δ’s which become trivial δai

ai
and δ

aσ̃(i)

aσ̃(i)
. The sums over ai and

aσ̃(i) boil down to a single sum precisely because of the vertex δai
aσ̃(i)

. Hence
that cycle is counted once.

Let us inspect the general case. For an arbitrary i, call qi ≥ 1 the smallest
integer such that (µ−1τ̃µσ̃)qi(i) = i, and which defines a qi-cycle of µ

−1τ̃µσ̃.
(The case qi = 1 has been dealt above.) In the product (73), we collect all
contraction δ’s involved in the cycle starting at some fixed i

(74)

qi∏

l=1

δ
a(µ−1τ̃µσ̃)l−1(i)

a(µ−1τ̃µσ̃)l(i)
.

Since this product is at arbitrary i, we have a companion and distinct prod-
uct of contraction δ’s that starts at σ̃(i):

∏qi
l=1 δ

a(µ−1τ̃µσ̃)l−1(σ̃(i))

a(µ−1τ̃µσ̃)l(σ̃(i))
. Hence, we

combine both products and multiply by one vertex δ

(75) δai
aσ̃(i)

qi∏

l=1

δ
a(µ−1τ̃µσ̃)l−1(i)

a(µ−1τ̃µσ̃)l(i)
δ
a(µ−1τ̃µσ̃)l−1(σ̃(i))

a(µ−1τ̃µσ̃)l(σ̃(i))

which evaluates to N after performing the sum over the corresponding aj ’s.
Again, the qi-cycle is counted once. It just remains to observe that the cycles,
each defined by a subset of indices aj , define partitions of the entire set of
indices ai (once an index is used in a cycle it cannot appear in another
one). Thus, the sum over ai factorizes along cycles and this complete the
proof. □

Note that there may be alternative ways of defining real tensor observ-
ables using pairings and without introducing the gauge redundancy. In any
case, we could work in this setting, keeping track of the necessary informa-
tion.

From Lemma 5.1 applied to each color i = 1, 2, 3, we finally come to

(76) ⟨Oσ1,σ2,σ3
(T )Oτ1,τ2,τ3(T )⟩ =

∑

µ

N
∑3

i=1 c(µ
−1τ̃iµσ̃i) .

The 1pt-correlator can be recovered from the above discussion. First, the
1pt-correlator cannot be normal ordered. Introduce the Wick contraction µ
that belongs to S∗

2n the subset defined by the pairings of S2n (a permutation
pairing is made only of transpositions). Then, we obtain

(77) ⟨Oσ1,σ2,σ3
(T )⟩ =

∑

µ∈S∗
2n

∑

aij

[ 2n∏

i=1

3∏

j=1

δaij
aσ̃j(i)j

][ 2n∏

i=1

3∏

j=1

δaij
aµ(i)j

]
.
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Next, we adapt Lemma 5.1 to
∑

ai

[∏2n
i=1 δ

ai
aσ̃(i)

δai
aσ̃µ(i)

]
= Nc(σ̃µ), and then

we obtain

(78) ⟨Oσ1,σ2,σ3
(T )⟩ =

∑

µ∈S∗
2n

N
∑3

i=1 c(µσ̃i) .

Representation theoretic base and orthogonality - We re-express the
2pt-function in order to make explicit some of its properties. Inserting 3
auxiliary permutations αi ∈ S2n, the above sum (76) reads as

⟨Oσ1,σ2,σ3
(T )Oτ1,τ2,τ3(T )⟩ =

∑

µ

∑

αi

N
∑3

i=1 c(αi)
3∏

i=1

δ(µ−1τ̃iµσ̃iαi)(79)

= N6n
∑

µ

3∏

i=1

δ(µ−1τ̃iµσ̃iΩi),

where we introduced the central element Ωi =
∑

αi∈S2n
Nc(αi)−2nαi. The

proof of that rests on the equality c(α−1
i ) = c(αi) and that holds because

each cycle has an inverse, a cycle of the same length. Then, we can re-
express (79) as

⟨Oσ1,σ2,σ3
(T )Oτ1,τ2,τ3(T )⟩(80)

= N6n
∑

µ

δ[(µ−1)⊗3(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ
⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(Ω1 ⊗ Ω2 ⊗ Ω3)]

= N6n
∑

µ

δ[(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ
⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ

−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)],

where in the last equation we use the fact the Ωi are central. We introduce
the representation theoretic element by pairing a base element QR1,R2,R3,τ

(54) and an observable Oσ1,σ2,σ3
as

OR1,R2,R3,τ =
∑

σl

δ(QR1,R2,R3,τσ−1
1 ⊗ σ−1

2 ⊗ σ−1
3 )Oσ1,σ2,σ3

(81)

= κR⃗

[ 3∏

i=1

κRi

2n!

]∑

σl

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏

i=1

BRi; tr
pi

DRi
piqi(σi)

]
Oσ1,σ2,σ3
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As a linear combination of observables, we can calculate their correlators:

⟨OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′⟩(82)

= N6nκR⃗κR⃗′

[
3∏

i=1

κRi

2n!

κR′
i

2n!

]
∑

µ

δ

[
∑

σl,σ′
l

∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3∏

i=1

BRi; tr
pi

DRi
piqi(σi)B

R′
i; tr

p′
i

D
R′

i

p′
iq

′
i
(σ′

i)

]

× (σ̃′
1 ⊗ σ̃′

2 ⊗ σ̃′
3)µ

⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ
−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6nκR⃗κR⃗′

[
3∏

i=1

κRi

2n!

κR′
i

2n!

]
∑

µ

δ

[
∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[
⊗3

i=1 B
R′

i; tr
p′
i

∑

σ′
i

(σ′
i)
−1ξD

R′
i

p′
iq

′
i
(σ′

i)σ
′
i

]
µ⊗3

×
[
⊗3

i=1 B
Ri; tr
pi

∑

σi

(σi)
−1ξDRi

piqi(σi)σi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]
.

Next, we introduce the operator Tξ : S2n → S2n that acts on S2n as Tξ(σ) =
σ−1ξσ = σ̃ and extends by linearity on C(S2n). The operator Tξ actually
maps any permutation to a pairing. Its image in C(S2n) is the vector
subspace generated by all pairings (more properties are derived in Ap-
pendix A.3). We re-express the above correlator as

⟨OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′⟩

(83)

= N6nκR⃗κR⃗′

∑

µ

δ

[
∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[
⊗3

i=1 B
R′

i; tr
p′
i

TξQ
R′

i

p′
iq

′
i

]
µ⊗3

×
[
⊗3

i=1 B
Ri; tr
pi

TξQ
Ri
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑

µ

δ

[[
T⊗3
ξ

∑

p′
l,q

′
l

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

⊗3
i=1 B

R′
i; tr

p′
i

Q
R′

i

p′
iq

′
i

]
µ⊗3

×
[
T⊗3
ξ

∑

pl,ql

CR1,R2;R3,τ
q1,q2;q3 ⊗3

i=1 B
Ri; tr
pi

QRi
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]
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= N6n
∑

µ

δ

[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)µ⊗3(T⊗3
ξ QR1,R2,R3,τ )(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n(2n!) δ
[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)(T⊗3
ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]
,

where we used the right diagonal invariance of the base QR′
1,R

′
2,R

′
3,τ

′

to
achieve the last stage of the calculation. Hence, this correlator computed
with the Gaussian measure of O(N) tensor models in the normal order,
regarded as an inner product on the space of observables, corresponds to
the group theoretic inner product of the algebra K3(2n) calculated on a
product of the transformed base T⊗3

ξ QR1,R2,R3,τ with an insertion of the

factor Ω1 ⊗ Ω2 ⊗ Ω3. The action T⊗3
ξ on QR1,R2,R3,τ reflects the fact that it

is the triple (σ̃1, σ̃2, σ̃3) which plays a major role for computing the cycles
associated with Feynman amplitudes in this theory (meanwhile the triple
(σ1, σ2, σ3) was associated with the class counting of the double coset space
and its resulting algebra). In U(N) models [20], there is a correspondence
between Gaussian 2pt-correlators in normal order and the inner product on
the algebra of observables but without the presence of the operator T⊗3

ξ .

The presence of T⊗3
ξ determines therefore a feature proper to O(N) tensor

models.
We can further evaluate the above inner product as in Appendix A.4

and find:

⟨OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′⟩ =
[ 3∏

i=1

δR′
iRi

]
δτ ′τF (R1, R2, R3, τ)

(84)

F (R1, R2, R3, τ) =
∑

Si,τi

[ 3∏

i=1

DimN (Si)

][ ∑

bi,ci,pi

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;pi
BRi; tr

pi

]2

which expresses the orthogonality of the representation theoretic base
{OR1,R2,R3,τ} (corresponding to normal ordered Gaussian correlators) of
K3(2n). Note also that the pairing between base elements is a representation
translation of the Gaussian integration.

Rank d 2pt-correlator - We obtain the 2pt-correlator at rank d in a
straightforward manner from the above derivation. We generalize (70) and
(71) by extending the product over j up to d ≥ 3 and considering a tensor
Tai1ai2...aid

. The calculations are direct: we get (76) and (78) by changing
the sum over i running over the colored cycles up to d. Meanwhile, the
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orthogonality of the 2pt-function is a property specific to the rank 3 and
cannot be reproduced easily at any rank.

6. On Sp(2N) tensor invariants

We provide a few remarks on the counting of real Sp(2N) tensor invari-
ants. Carrozza and Pozsgay recently addressed symplectic complex tensor
models in the context of tensor-like SYK models [50]. The authors focused
on the complex group U(N) ∩ Sp(2N,C) (its quantum mechanical tensor
model admits a large N expansion and shares similar properties of the SYK
model) and, at the combinatorial level, on the improvement of the numerical
computations of the number of its singlets in rank 3. We could ask, in the
same vein as discussed above using symmetric group formulae, how to enu-
merate real symplectic invariants in the pure tensor model setting, i.e. with
no spacetime attached to the tensor. We stress that, unlike in [50], we are
interested in real and Bosonic fields and address in the following the sym-
plectic group itself Sp(2N,R) = Sp(2N) and its - symplectic - invariants in
any rank. We show below that they follow an enumeration principle with the
same diagrammatics of that of the O(N) invariants but some changes occur
at the level of the coset equivalence relation. Interestingly in this Sp(2N)
setting, the “virtual” vertices vij , in Figure 1, find an interpretation: their
correspond precisely to symplectic matrix J insertions in the Sp(2N) invari-
ants.

Let us recall the usual notation and introduce the real 2N × 2N sym-
plectic matrix J which writes in blocks

(85) J =

(
0 IN

−IN 0

)
, J2 = −I2N ,

where IN , for all N , is the identity matrix of MN (R). A matrix K ∈ Sp(2N)
obeys KJKT = J, and KTJK = J .

A rank d real tensor T , with components Tp1,...,pd
, pj = 1, . . . , 2N , trans-

forms under the fundamental representation of ⊗d
a=1Sp(2Na) for fixed Na, if

each group Sp(2Na) acts on the index pa such that the transformed tensor
satisfies:

(86) TK
q1,...,qd =

∑

p1,...pd

K(1)
q1p1

· · ·K(d)
q1p1

Tp1,...,pd
,

where K(a) ∈ Sp(2Na), a = 1, . . . , d.
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Observables in Sp(2N) tensor models are the contractions of an even
number of tensors T . They are invariant under ⊗d

a=1Sp(2Na) transforma-
tions and we call them Sp(2N) invariants.

In understood notation, we define a new trace on two rank d tensors as

(87) Tr(T Jd T ) =
∑

pi,qi

J (1)
p1q1J

(2)
p2q2 · · · J (d)

pdqd Tp1,...,pd
Tq1,...,qd .

Thus, the tensor indices that are contracted couple with J . This is the
generalization of the symplectic form over matrices which is defined as
ωJ(M,W ) = tr(MTJW ), and that is invariant under symplectomorphisms.

We check that Tr(T Jd T ) is invariant under symplectic transformations:

Tr(TK Jd TK) =
∑

ri,si

∑

pi,qi

(
Kp1,r1Kq1,s1J

(1)
p1q1

)
· · ·
(
Kpd,rdKqd,sdJ

(d)
pdqd

)
(88)

× Tr1,...,rdTs1,...,sd

= Tr(TJdT ) .

Now, we extend the trace (87) to arbitrary number of tensors. Still the
contraction obtained is an Sp(2N) invariant. We can easily observe that the
Sp(2N) invariants can be viewed once again in terms of ‘d-regular colored
graphs with a decoration on each edge. The decoration seals the symplectic
matrix J on each pair of contracted tensor indices. Therefore, J can be
represented by a new vertex on each edge which precisely plays the same
role of a black vertex vij in Figure 1.

The counting of Sp(2N) invariants is more subtle than that of O(N)
invariants. Indeed, for simplicity, let us consider in rank 3 (generalizing the
following argument at any rank d is straightforward), 2n tensors and count
the possible triples (σ1, σ2, σ3) ∈ S2n × S2n × S2n subjected to the following
invariance:

(89) (σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ)

where, on the right, we have the ordinary diagonal action of Diag(S2n) on
the triple. Meanwhile, on the left, the γi belong to an identical subgroup
Gi = G′ but that is not any more Sn[S2]. Switching the half-edges of the
vertices vij produces a sign. This hints the fact that we should switch to the
group algebra C(S2n)× C(S2n)× C(S2n) to perform the coset. At this point,
note that nothing excludes that the number of Sp(2N) invariants matches
the number of orthogonal invariants. Such interesting questions require much
more work and is left for future investigations.
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Let us make a final small remark. At this moment, we can give a pre-
cision about the complete graph, namely K4, that is identically vanishing
in the complex Bosonic model with U(N) ∩ Sp(2N,C) invariance, as shown
in [50]. In the present setting, we can show that it remains a nontrivial
rank 3 symplectic invariant. We have developed a code proving this fact for
Sp(2N = 4). See the last code of Appendix B. Of course here 2N = 4 is not
large and rather fixed, and one may question its physical interest. However,
it is encouraging to see that it is not identically zero as its counterpart de-
scribed above. Such a K4 invariant plays a central role in the study of the
large N and IR spectrum of the so-called ladder operators in the tensor-like
SYK models. Hence, working with real Bosonic fields but with real Sp(2N)
invariance might become an important axis of research in that direction.

7. Conclusion

This paper paves the way to a new formulation of real tensor models, their
observables and correlators in terms of symmetric groups and its represen-
tation theory. The formulation is particularly convenient for implementing
heavy computations using software resources, thus, leading to a gain of con-
fidence in the computational process. Furthermore, with its multiple facets,
the formalism elaborated here may shed a different light on the same results
since it bridges theories, combinatorics, TFT and physics through observ-
ables and correlators, which from the outset may look rather different.

We have enumerated O(N) or rank d real tensor invariants as d-regular
colored graphs using a permutation group formalism. These invariants define
the points of a double coset of S×d

2n . We use Mathematica and Sage codes to
generate the sequences associated with the number of these invariants from
their generating functions. The sequences obtained at d ≥ 4 are new accord-
ing to the OEIS. Translated in the TFT2 formulation, the same counting
delivers the number of covers of gluing of cylinders with defects. Such cov-
ers have been also observed while counting Feynman graphs of scalar field
theory [26] and relate to a string theory on cylinders. Thus, there should
be an equivalent way of describing tensor observables in purely string the-
ory language. Moreover, this link with covers must be made precise: covers
in 2D are related to holomorphic maps and may, in return, give a geome-
try to the space of orthogonal invariants. This point fully deserves further
investigation.

Another piece of information reveals itself with the representation the-
oretic formulation of the counting: the number of orthogonal invariants is
a sum of constrained Kronecker coefficients. The Kronecker coefficient is a
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core object in Computational Complexity theory: either finding a combina-
torial rule describing it (finding which combinatorial objects it counts), or
its vanishing property or otherwise remain under active investigation (see
references in [39, 40]). It concentrates a lot of research efforts since one ex-
pects that, roughly speaking, an understanding that object could lead to
a separation of complexity classes P vs NP. In our present work (and in a
similar way in [35]), we show that the number of tensor model observables
- represented by colored graphs and thus combinatorial structures - links
to a sum of Kronecker coefficients (in [35], it is a sum of square of these
coefficients). It remains of course the question: how this would help with
one of the famous problems stated above? Perhaps a refined counting of
colored graphs (endowed with specific properties) could boil down the sum
to a single Kronecker element. Such a study could bring some progress in
the field.

The equivalence classes associated with the colored graphs are mapped
in the tensor product of the group algebra C[S2n]

⊗d. They form the base
vectors of a subspace, namely Kd(2n), that is in fact a semi-simple alge-
bra. We call it a double coset algebra. Note also that, as element of an
the algebra, d-regular colored graphs multiply in a specific way, and yield
back a combination of d-regular colored graphs. In rank 3, we have found
“natural” representation theoretic base, {QR,S,T,τ}, of K3(2n), that means
invariant and orthonormal. Unlike the unitary case [35], this base decom-
poses in blocks the algebra but does not provide its Wedderburn-Artin (WA)
decomposition in matrix subalgebras. This brings other questions: in which
base the WA decomposition is made explicit? Is there a simple enough com-
bination starting from QR,S,T,τ that produces that WA decomposition? A
starting point of that analysis might be given by the work by Bremner [51]
that constructs the WA base of a finite dimensional unital algebra over ra-
tionals. Finally, is there a way to understand why the sum of constrained
Kronecker coefficients is actually a sum of squares (each of which is the di-
mension of a matrix subalgebra entering in the WA decomposition)? Such
points deserve future clarifications.

We also addressed normal ordered Gaussian 2pt correlators in this work
and show that, they formulate completely as a function of the size N of
the tensor indices and permutation cycles. We generate an orthogonal rep-
resentation base from these 2pt correlators. This result is similar to what is
observed in the unitary case, with the following distinction: there is an oper-
ator acting on the triple defining the observables. We show that computing
Gaussian correlators in representation theory space is actually computing an
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inner product. Finally, we briefly sketch the main feature of Sp(2N) invari-
ants: although they obey the same diagrammatics of the O(N) invariants,
they satisfy a different rule concerning their equivalence classes. Thus, for
the symplectic group and its invariants, the story could be radically different
from the orthogonal case and will require need more work.
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Appendix A. Symmetric group and its representation theory

This appendix gathers useful identities and notations about the symmetric
group Sn and its representation theory. The presentation here is a summary
of Appendix A, withdrawn from [35], and the textbook by Hammermesh
[52].

A.1. Representation theory of the symmetric group

Let n be a positive integer and Sn, the group of permutation of n elements.
The Young diagrams or partitions R of n, denoted R ⊢ n, label the irre-
ducible representations (irreps) of Sn. Consider VR a space of dimension
d(R) (that will be made explicit below). An irreps ϱR : Sn → End(VR) is

given by a matrix DR with entries ϱR(σ)|R, i⟩ =∑d(R)
l=1 DR

li (σ)|R, l⟩ with
σ ∈ Sn and with |R, i⟩, i = 1, . . . , d(R), an orthogonal base of states for VR

(this base obeys ⟨R, j|R, i⟩ = δij).
We write in short ϱR(σ) = σ and then ⟨R, j|σ|R, i⟩ = DR

ji(σ). It is com-
mon to assimilate the irreducible representation ϱR and the carrier space VR

with their label R.
From the commuting action of the unitary group U(N) and Sn on a ten-

sor product space V ⊗n, the Schur-Weyl duality teaches us that we associate
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an irreps R of Sn with an irreps of U(N), provided N bounds the length
l(R) of the first column of R, in symbol l(R) ≤ N .

Let us denote d(R) the dimension of R and DimN (R) the dimension of
an irreps of U(N), then those are given by

(A.1) d(R) = n!/h(R) , DimN (R) = fN (R)/h(R) ,

where h(R) is the product of the hook lengths and fN (R) is the prod-
ucts of box weights given by h(R) =

∏
i,j(cj − j + ri − i+ 1) and fN (R) =∏

i,j(N − i+ j); the pairs (i, j) label the boxes of the Young diagram with
i the row label and j is the column label. The i’th row length is ri and cj is
the column length of the j’th column.

We now restrict to real representations and so DR
ij(σ) must be real ma-

trices. The matrix satisfies the following properties:
∑

i

DR
ai(σ)D

R
ib(σ

′)=DR
ab(σσ

′), DR
ab(id)=δab , DR

ij(σ
−1)=DR

ji(σ),(A.2)

∑

σ∈Sn

DR
ij(σ)D

S
kl(σ) =

n!

d(R)
δRS δikδjl (orthogonality) .(A.3)

The character of a given irreps R is simply the trace of DR(σ), χR(σ) =
Tr(DR(σ)) =

∑
iD

R
ii (σ). The Kronecker delta δ(σ) of the symmetric group

(defined to be equal 1 when σ = id and 0 otherwise) decomposes as δ(σ) =∑
R⊢n

d(R)
n! χR(σ).

The following identities are easily proved using the orthogonality rela-
tions of the representation matrices:

(A.4)

∑

γ∈Sn

δ(γσγ−1τ−1) =
∑

R⊢n
χR(σ)χR(τ) ,

∑

σ∈Sn

χR(σ)χS(σ) = n! δRS (orthogonality)

(A.5)∑

γ∈Sn

χR(AγBγ−1)=
n!

d(R)
χR(A)χR(B)

If B is a central element
= n!χR(AB).

Also a useful identity expresses as

(A.6)
1

n!

∑

σ

χR(σ)Nc(σ) = DimN (R) ,
∑

σ∈Sn

DR
ij(σ)N

c(σ) = δijfN (R) ,

where c(σ) is the number of cycles of σ.
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Defining the central element Ω ∈ C(Sn), as Ω =
∑

σ∈Sn
Nn−c(σ)σ, the

first relation in (A.6) can be also written as

(A.7)
Nn

n!
χR(Ω) = DimN (R) .

A.2. Clebsch-Gordan coefficients

Consider two carrier spaces VR1
and VR2

of two irreps of Sn labeled by two
Young diagrams R1, and R2, respectively. The tensor product representa-
tion VR1

⊗ VR2
can be decomposed into a direct sum of irreps VR3

with
multiplicities

(A.8) VR1
⊗ VR2

=
⊕

R3⊢n
VR3

⊗ V m
R3

.

The tensor product space is spanned by a tensor product of the base
|R1, i1⟩ ⊗ |R2, i2⟩ =: |R1, i1;R2, i2⟩. On the right hand side, the direct sum
corresponds to a base set |R3, i3, τR3

⟩. The label i3 runs over states of R3,
and τR3

, the so-called multiplicity, runs over an orthogonal base in the mul-
tiplicity space V m

R3
.

The Clebsch-Gordan coefficients are the branching coefficients between
these bases:

C
R1,R2;R3, τR3

i1,i2; i3
:= ⟨R1, i1;R2, i2|R3, τR3

, i3⟩(A.9)

= ⟨R3, τR3
, i3|R1, i1;R2, i2⟩

Note that they are real.
The following relations are detailed in Appendix A.2 in [35]:

∑

j1,j2

DR1

i1j1
(γ)DR2

i2j2
(γ)CR1,R2;R3, τ

j1,j2; j3
=
∑

i3

CR1,R2;R3, τ
i1,i2; i3

DR
i3j3(γ) ;(A.10)

∑

i1,i2

CR1,R2;R3, τ
i1,i2; i3

C
R1,R2;R′

3, τ
′

i1,i2; j3
= δR3R′

3
δττ ′ δi3j3 ;(A.11)

∑

R3,i3,τ

CR1,R2;R3, τ
i1,i2; i3

CR1,R2;R3, τ
j1,j2; i3

= δi1j1 δi2j2 ;(A.12)

∑

R3,τ ; i3,j3

CR1,R2;R3, τ
i1,i2; i3

DR3

i3j3
(γ)CR1,R2;R3, τ

j1,j2; j3
= DR1

i1j1
(γ)DR2

i2j2
(γ) ;(A.13)
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∑

j1,j2,j3

DR1

i1j1
(γ)DR2

i2j2
(γ)DR3

i3j3
(γ)CR1,R2;R3, τ

j1,j2; j3
= CR1,R2;R3, τ

i1,i2;i3
;(A.14)

∑

il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

(A.15)

×DR1

i1j1
(γ1σ1γ2)D

R2

i2j2
(γ1σ2γ2)D

R3

i3j3
(γ1σ3γ2)

=
∑

il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1

i1j1
(σ1)D

R2

i2j2
(σ2)D

R3

i3j3
(σ3) ;

∑

σ∈Sn

DR1

i1j1
(σ)DR2

i2j2
(σ)DR3

i3j3
(σ) =

n!

d(R3)

∑

τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

.(A.16)

Furthermore, we can generalize the second relation (A.6) as follows: given
two permutations A and B, we have

∑

σ∈Sn

DR
ij(σ)N

c(σ−1AσB) =
∑

γ,σ∈Sn

DR
ij(σ)δ(γ

−1σ−1AσB)Nc(γ)(A.17)

=
∑

S,a

d(S)

n!

∑

γ,σ

DR
ij(σ)D

S
aa(γ

−1σ−1AσB)Nc(γ)

=
∑

S,a

d(S)

n!

∑

m,n,o,p

[∑

γ

DS
ma(γ)N

c(γ)

]

×
[∑

σ

DS
nm(σ)DS

op(σ)D
R
ij(σ)

]
DS

no(A)DS
pa(B) ,

with the property c(γ) = c(γ−1). We now use (A.6) and (A.16) to write

∑

σ∈Sn

DR
ij(σ)N

c(σ−1AσB)(A.18)

=
∑

S,a

d(S)

n!

∑

m,n,o,p

δmafN (S)

×
(

n!

d(R)

∑

τ

CS,S;R,τ
n,o;i CS,S;R,τ

m,p;j

)
DS

no(A)DS
pa(B)

=
∑

S,τ

d(S)

d(R)
fN (S)

(∑

n,o

CS,S;R,τ
n,o;i DS

no(A)

)

×
(∑

a,p

CS,S;R,τ
a,p;j DS

pa(B)

)
.
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A.3. Base of the group algebra C(Sn)

The matrix base of the group algebra C(Sn) is defined by the elements

(A.19) QR
ij =

κR
n!

∑

σ∈Sn

DR
ij(σ)σ ,

where the constant κ2R = n!d(R) is a fixed by a normalization. The base set
{QR

ij} is of cardinality
∑

R⊢n(d(R))2 = n!. The elements QR
ij form a repre-

sentation theoretic Fourier base for C(Sn).
The left and right multiplication by group elements on QR

ij expand as

(A.20) τ QR
ij =

∑

l

DR
li (τ)Q

R
lj , QR

ij τ =
∑

l

QR
il D

R
jl(τ) .

Using the definition of the base and (A.20), one gets

QR
ijQ

R′

kl =
κRκR′

(n!)2

∑

σ∈Sn

∑

τ∈Sn

DR
ij(σ)σD

R′

kl (τ)τ =
κR
n!

∑

σ∈Sn

DR
ij(σ)σQ

R′

kl

=
κR
n!

∑

σ∈Sn

DR
ij(σ)

∑

m

DR′

mk(σ)Q
R′

ml =
κR
n!

∑

m

n!

d(R)
δRR′δimδjkQ

R′

ml

=
κR
d(R)

δRR′δjkQ
R′

il .(A.21)

We consider the Kronecker δ on Sn, and extend it (by linearity) as a
pairing denoted again δ on C(Sn), and then once again extend the result to
C(Sn)

⊗d, d > 1, such that

(A.22) δ(σ1 ⊗ · · · ⊗ σd;σ
′
1 ⊗ · · · ⊗ σ′

d) = δ(σ1σ
′−1
1 ) · · · δ(σ−1

d σ′−1
d ) .

Calculating the inner product δ(QR
ij ;Q

R′

i′j′), we obtain

(A.23) δ(QR
ij ;Q

R′

i′j′) =
κ2R

n!d(R)
δRR′δii′δjj′ = δRR′δii′δjj′ .

Then, for multiple tensor factors, we obtain

δ(QR1

i1j1
⊗ · · · ⊗QRd

idjd
; Q

R′
1

i′1j
′
1
⊗ · · · ⊗Q

R′
d

i′dj
′
d
)(A.24)

= δR1R′
1
δi1i′1δj1j′1 . . . δRdR′

d
δidi′dδjdj′d .

Hence, the base {QR1

i1j1
⊗ · · · ⊗QRd

idjd
} is an Fourier theoretic orthonormal

base for C(Sn)
⊗d.
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In the text, we focus on S2n and we introduce the operator Tξ : S2n →
S2n that acts on S2n as Tξ(σ) = σ−1ξσ. In a natural way, Tξ extends by
linearity on C(S2n). Then, without any possible confusion with the tensor
notation T itself, Tξ ∈ End(C(S2n)) is the image of a mapping T : S2n →
End(C(S2n)), such that ξ 7→ Tξ. We then extend T by linearity over T :
C(S2n) → End(C(S2n)), such that λξ + ρ 7→ Tλξ+ρ = λTξ + Tρ, λ ∈ C.

We are interested in the properties of the transformed base TξQ
R
ij which

is nothing but the Fourier transformed of the pairing σ−1ξσ. First, let us
see how they multiply:

(A.25) (TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

DR
ij(σ)D

R′

i′j′(ρ)σ
−1ξσρ−1ξρ .

Note that the group order is now 2n!. Introduce a change of variable σ →
σρ−1, and

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

∑

k

DR
ik(σ)D

R
kj(ρ)D

R′

i′j′(ρ)ρ
−1σ−1ξσξρ

=
κR′

(2n!)

∑

ρ∈S2n

DR′

i′j′(ρ)
∑

k

DR
kj(ρ)T(TξQR

ik)ξ
(ρ)

=
κR′

(2n!)

∑

ρ∈S2n

DR′

i′j′(ρ)T
∑

k DR
kj(ρ)(TξQR

ik)ξ
(ρ) .(A.26)

Thus, the product of the transformed base elements does not re-express
easily in terms of the transformed base elements. The left and right mul-
tiplications of fixed permutations on the elements TξQ

R
ij , counterparts of

(A.20), are given by:

(A.27)

τ(TξQ
R
ij) =

∑

a

(TξQ
R
ia)D

R
aj(τ)τ ,

(TξQ
R
ij)τ =

∑

a

(TξQ
R
ia)D

R
ja(τ)τ .

The inner product of these elements expresses as:

(A.28) δ(TξQ
R
ij , TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

DR
ij(σ)D

R′

i′j′(ρ) δ(Tξ(σ), Tξ(ρ)) .

This is simply the Fourier transform of the delta δ(σ−1ξσρ−1ξρ) which tells
us that the sole terms remaining in this sum are those which define the same
pairing. A closer look shows that δ(σ−1ξσρ−1ξρ) = δ(ξσρ−1ξρσ−1). Then,
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this means that the elements that contribute to the sum are those σρ−1

that belong to the stabilizer of ξ, that is σρ−1 ∈ Sn[S2]. Hence, we change
variable as σ → σ̄ = σρ−1, rename again σ̄ as σ and then rewrite, using the
orthogonality of the representation matrices:

δ(TξQ
R
ij , TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

ρ∈S2n

∑

σ∈Sn[S2]

DR
ij(σρ)D

R′

i′j′(ρ)(A.29)

=
κRκR′

(2n!)2

∑

a

∑

σ∈Sn[S2]

DR
ia(σ)

∑

ρ∈S2n

DR
aj(ρ)D

R′

i′j′(ρ)

= δRR′δjj′
κ2R

(2n!)2
2n!

d(R)

∑

a

∑

σ∈Sn[S2]

DR
ia(σ)δai′

= δRR′δjj′
∑

σ∈Sn[S2]

DR
ii′(σ) .

In the text, we compute a formula for that sum in terms of branching coeffi-
cients, see (52). It turns out that the sum is nonvanishing only if the partition
R is even, meaning that the length of each of its rows is even. Hence, from
the above relation, (A.29), the set of the transformed base elements does
not form an orthogonal system.

It is instructive to perform the same evaluation in an alternative way to
discover new identities satisfied by the Clebsch-Gordan coefficients. Consider
the expansion of the above inner product as follows:

δ(TξQ
R
ij , TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

σ,ρ∈Sn

DR
ij(σ)D

R′

i′j′(ρ)χ
S(σ−1ξσρ−1ξρ)

=
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

a,b,c,d,e,f

DS
bc(ξ)D

S
ef (ξ)

×
∑

σ,ρ

DS
ba(σ)D

S
cd(σ)D

R
ij(σ)D

S
fa(ρ)D

S
ed(ρ)D

R′

i′j′(ρ)

=
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

(2n!)2

d(R)d(R′)

×
∑

τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′

∑

a,d

CS,S;R,τ
a,d;j CS,S;R′,τ ′

a,d;j′

=
κRκR′

d(R)d(R′)

∑

S

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

×
∑

τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′ δRR′δττ ′δjj′



✐

✐

“1-BenGeloun” — 2020/8/18 — 0:23 — page 866 — #46
✐

✐

✐

✐

✐

✐

866 R. C. Avohou, J. Ben Geloun, and N. Dub

= δRR′δjj′
κ2R

d(R)2

∑

S,τ

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)C

S,S;R,τ
b,c;i CS,S;R,τ

f,e;i′

= δRR′δjj′
1

d(R)

∑

S,τ

d(S)F (S,R, τ ; i)F (S,R, τ ; i′) ,(A.30)

where, at some intermediate steps, we used successively (A.16) and (A.11),
and where F (S,R, τ ; i) =

∑
b,cD

S
bc(ξ)C

S,S;R,τ
b,c;i . Using

∑
σ∈Sn[S2]

DR
ij(σ) =

(2nn!)BR; tr
i BR; tr

j (see (52)), we arrive to a new identity:

∑

S,τ

d(S)

(∑

b,c

DS
bc(ξ)C

S,S;R,τ
b,c;i

)(∑

e,f

DS
ef (ξ)C

S,S;R,τ
e,f ;j

)
(A.31)

=
(2nn!)

d(R)
BR; tr

i BR; tr
j .

Note the similarity of the left-hand-side member with (A.18) (adjusted for
the symmetric group S2n).

There exist graphical ways of representing identities in representation
theory in general. For the permutation group, Appendix A2 of [35] lists
such graphical representations for most of the identities given above. For
instance, we use the graphical representation of the representation matrix

DR
ij(σ) as σi j , the Clebsch-Gordan coefficient CR2,R2;R3,τ

i1,i2;i3
represents as

follows
τ

i1

i2

i3
R3

R1

R2

and the branching coefficient BR; r,νr

i;mr
looks like

i
νr

mr
R r

. Then the convolution given by (A.31) translates as the

factorization:
(A.32)

∑

S,τ

d(S)
τ τ

ξ ξi j

S

S S

S

R R
=

(2nn!)

d(R)

i
1

0
R tr

j
1

0
R tr

,

hence, a new identity satisfied by the Clebsch-Gordan of the symmetric
group.
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A.4. 2pt-correlator evaluation

We prove in this part (84). To proceed, we will make use of (A.6), (A.11)
and (A.16), or alternatively (A.18), of Appendix A.2. Introducing kR⃗ =
κR⃗

κR1
κR2

κR3

((2n)!)3 , then from (83), we focus on the δ function:

δ
[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)(T⊗3
ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]
(A.33)

= kR⃗k
′
R⃗

∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]

×
∑

σ′
i,σi

∑

αi

[ 3∏

i=1

Nc(αi)−2n

]

×
[ 3∏

i=1

D
R′

i

p′
iq

′
i
(σ′

i)D
Ri
piqi(σi)δ((σ

′
i)
−1ξσ′

i(σi)
−1ξσiαi)

]

= kR⃗k
′
R⃗

∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]∑

σ′
i,σi

[ 3∏

i=1

D
R′

i

p′
iq

′
i
(σ′

i)D
Ri
piqi(σi)

]

×
∑

Si,ai,gi

∑

αi

[ 3∏

i=1

Nc(αi)−2nDSi
giai

(αi)

]

×
∑

bi,ci,di,ei,fi

3∏

i=1

d(Si)

2n!
DSi

aibi
((σ′

i)
−1)DSi

bici
(ξ)DSi

cidi
(σ′

i)

×DSi

diei
((σi)

−1)DSi

eifi
(ξ)DSi

figi
(σi)

= kR⃗k
′
R⃗

N−6n

(2n!)3

∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

] ∑

Si,ai,gi

[ 3∏

i=1

δgiai
fN (Si)d(Si)

]

×
∑

bi,ci,di,ei,fi

∑

σ′
i,σi

[ 3∏

i=1

DSi

biai
(σ′

i)D
Si

cidi
(σ′

i)D
R′

i

p′
iq

′
i
(σ′

i)

×DSi

figi
(σi)D

Si

eidi
(σi)D

Ri
piqi(σi)

][ 3∏

i=1

DS
bici(ξ)D

S
eifi(ξ)

]
.
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It is the moment to use (A.16) to integrate the representation matrices and
get:

kR⃗k
′
R⃗

N−6n

(2n!)3

∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

(A.34)

×
[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]∑

Si

[ 3∏

i=1

(2n!)DimN (Si)

]

×
∑

ai,bi,ci,di,ei,fi

3∏

i=1

[
2n!

d(Ri)d(R′
i)

∑

τ ′
i ,τi

C
Si,Si;R′

i,τ
′
i

bi,ci;p′
i

C
Si,Si;R′

i,τ
′
i

ai,di;q′i

× CSi,Si;Ri,τi
fi,ei;pi

CSi,Si;Ri,τi
ai,di;qi

][ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)

]

= k2
R⃗
N−6n

3∏

i=1

[
2n!

d(Ri)d(R′
i)

] ∑

pl,ql,p′
l,q

′
l

CR1,R2;R3,τ
q1,q2;q3 C

R′
1,R

′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]∑

Si

[ 3∏

i=1

DimN (Si)

]

×
∑

bi,ci,ei,fi

3∏

i=1

[∑

τ ′
i ,τi

C
Si,Si;R′

i,τ
′
i

bi,ci;p′
i

CSi,Si;Ri,τi
fi,ei;pi

δR′
iRi

δτ ′
iτiδq′iqi

]

×
[ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)

]

=
(2n!)3k2

R⃗
N−6n

∏3
i=1 d(Ri)2

[ 3∏

i=1

δR′
iRi

] ∑

pl,ql,p′
l

CR1,R2;R3,τ
q1,q2;q3 CR1,R2;R3,τ ′

q1,q2;q3

×
[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]∑

Si

[ 3∏

i=1

DimN (Si)

]

×
∑

bi,ci,ei,fi

3∏

i=1

[∑

τi

CSi,Si;Ri,τi
bi,ci;p′

i
CSi,Si;Ri,τi
fi,ei;pi

][ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)

]

= κ2
R⃗
N−6n

[ 3∏

i=1

δR′
iRi

]
δτ ′τ

∑

q3

δq3q3
∑

pl,p′
l

[ 3∏

i=1

B
R′

i; tr
p′
i

BRi; tr
pi

]

×
∑

Si

[ 3∏

i=1

DimN (Si)

] ∑

bi,ci,ei,fi

3∏

i=1

[∑

τi

CSi,Si;Ri,τi
bi,ci;p′

i
CSi,Si;Ri,τi
fi,ei;pi

]

×
[ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)

]
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= κ2
R⃗
d(R3)N

−6n

[ 3∏

i=1

δR′
iRi

]
δτ ′τ

∑

Si,τi

[ 3∏

i=1

DimN (Si)

]

×
3∏

i=1

[ ∑

bi,ci,p′
i

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;p′
i

BRi; tr
p′
i

][ ∑

pi,ei,fi

DSi

eifi
(ξ)CSi,Si;Ri,τi

fi,ei;pi
BRi; tr

pi

]

= N−6n

[ 3∏

i=1

δR′
iRi

]
δτ ′τ

∑

Si,τi

[ 3∏

i=1

DimN (Si)

]

×
[ ∑

bi,ci,pi

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;pi
BRi; tr

pi

]2
.

The evaluation finally yields

⟨OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′⟩ =
[ 3∏

i=1

δR′
iRi

]
δτ ′τF (R1, R2, R3, τ)

(A.35)

F (R1, R2, R3, τ) =
∑

Si,τi

[ 3∏

i=1

DimN (Si)

][ ∑

bi,ci,pi

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;pi
BRi; tr

pi

]2
.

This is (84) and implies the orthogonality of the representation theoretic
base {OR1,R2,R3,τ}.

Appendix B. Codes

We list here some algorithms which count the number of orthogonal invari-
ants as given in the text. We use Mathematica and Sage softwares in the
following.

Mathematica code for Zd(t). We wish to compute the number Zd(2n)
of rank d orthogonal invariants made with 2n tensors. In order to obtain
that number, we first code the generating function, denoted Z[X, t], of
the counting of the number of elements of the wreath product Sn[S2] in
a certain conjugacy class of S2n. Doing this, we use the built-in function
Count[list, pattern] which counts the number of elements in a list

matching a pattern. Then, we extract a coefficient of tn in Z[X, t] that is
involved in Zd[X, n, d] that encodes Zd(2n). We finally give the counting for
ranks 3 and 4, successively, for n = 1, . . . , 10.
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X = Array[x, 20];

PP[n_] := IntegerPartitions[n]

Sym[q_, n_] := Product[i^(Count[q, i]) Count[q, i]!, {i, 1, n}]

Symd[X_, k_, q_] := Product[(X[[k*l]]/l)^(Count[q, l])

/(Count[q, l]!), {l, 1, 2}]

Z[X_, t_] := Product[Exp[(t^i/i)*Sum[Symd[X, i, PP[2][[j]]],

{j, 1, Length[PP[2]]}]], {i, 1, 15}]

Zprim[X_, n_] := Coefficient[Series[Z[X, t], {t, 0, n}], t^n]

CC[X_, n_, q_] := Coefficient[Zprim[X, n],

Product[X[[i]]^(Count[q, i]), {i, 1, 2*n}]]

Zd[X_, n_, d_] := Sum[(CC[X, n, PP[2*n][[i]]])^d*(Sym[PP[2*n][[i]],

2*n])^(d - 1), {i, 1, Length[PP[2*n]]}]

Table[Zd[X, i, 3], {i, 1, 10}]

(out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[Zd[X, i, 4], {i, 1, 10}]

(out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,

220685007519070, 75649235368772418}

Mathematica code: Counting with Hermite polynomials. This part
is dedicated to the implementation of an algorithm realizing Read’s enumer-
ation of k-regular graphs on 2n vertices with edges of k different colors where
one of each color is at every vertex. We want to compare Read’s results with
the previous sequences.

Read’s generating function that encodes the above enumeration denotes
ZR[t, d, n], in the following program. Then, ZR[d, n] yields the counting
at rank d with 2n vertices and that is given by the coefficient of tn in ZR[t,

d, n]. We evaluate Z3(2n) and Z4(2n) for the ranks 3 and 4, respectively,
and confirm that the results of Read match with the previous results.

Next, the number of connected rank d tensor invariants made with 2n
tensors, written below ZRc[d, n], can be obtained using the plethystic log-
arithm (Plog) function. The Plog function PlogZd(t), denoted Plog[ZR, t,

d, n], is defined with the MoebiusMu implementing the Möbius function.

A[p_, v_] := (I Sqrt[p])^v HermiteH[v, 1/(2 I Sqrt[p])]

ZR[t_, d_, n_] = 1;

For[m = 0, m <= 20, m++

{If[OddQ[m],
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Phi[m, t_, d_, n_] := (Sum[((2 v)!)^(d - 1)/(v!)^(d)*

(m^(d - 2)/2^d)^v t^(m v), {v, 0, n}]),

Phi[m, t_, d_, n_] := (Sum[(A[m/2, v])^d/(v! m^v) t^(m v/2),

{v, 0, n}])]

};

ZR[t_, d_, n_] = ZR[t, d, n]*Phi[m, t, d, n]

]

ZR[d_, n_] := Coefficient[Series[ZR[t, d, n], {t, 0, n}], t^n]

Plog[F_, t_, d_, n_] := Sum[MoebiusMu[i]/i

Log[F[t^i, d, n]], {i, 1, n}]

ZRc[d_, n_] := Coefficient[Series[Plog[ZR, t, d, n], {t, 0, n}], t^n]

Table[ZR[3, i], {i, 1, 10}]

(Out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[ZR[4, i], {i, 1, 10}]

(Out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,

220685007519070, 75649235368772418}

Table[ZRc[3, i], {i, 1, 10}]

(Out) {1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138}

Table[ZRc[4, i], {i, 1, 10}]

(Out) {1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991,

219822379032704, 75417509926065404}

Sage code: Counting from the sum of Kroneckers in rank d = 3. We
provide here a Sage code that recovers the same counting through the sum
of constrained Kronecker coefficients with even partitions (30).

We need the library SymmetricFunctions(QQ) which introduces sym-
metric functions. The Kronecker coefficient associated with three partitions
R,S and T deduces as the usual Hall scalar product of Schur symmetric
functions. In the following, s(S) is the Schur function associated with the
partition S.

s = SymmetricFunctions(QQ).s()

for n in range(1,4) :

Total=0

for R in Partitions(2*n) :
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i=0

rep=0

while ( (i < R.length()) & (rep==0) ):

if ( (R.get_part(i)%2) !=0 ):

rep = 1

i=i+1

if (rep ==0) :

for S in Partitions (2*n) :

j=0

rep2=0

while ( (j < S.length()) & (rep2==0) ):

if ( (S.get_part(j)%2) !=0 ):

rep2 = 1

j=j+1

if (rep2 ==0) :

for T in Partitions (2*n) :

k=0

rep3=0

while ( (k < T.length()) & (rep3==0) ):

if ( (T.get_part(k)%2) !=0 ):

rep3 = 1

k=k+1

if (rep3 ==0) :

a = ( s(S).itensor(s(T)) ).scalar( s(R) )

Total =Total+a

print "Number of invariants at 2n =", 2*n, "is", Total

(out) Number of invariants at 2n = 2 is 1

Number of invariants at 2n = 4 is 5

Number of invariants at 2n = 6 is 16

Number of invariants at 2n = 8 is 86

Sage code: The symplectic K4 invariant is not vanishing at d = 3.
The present Sage code computes a specific invariant, given by complete
graph K4 with colored edges. The tensor rank is d = 3 and the symplectic
group Sp(2N = 4). We then extract a coefficient of the resulting polynomial
which does not vanish. Thus this Sp(4) invariant exists.

The list T of variables denoted T−ijk represents the rank 3 tensor. We
then need bijections to map T[l]↔ T−ijk. This is the work of f and f−inv.
J4 is the symplectic matrix of size 2N = 4. To speed up the computation,
whenever possible, we perform multiplications outside the cascade of internal
loops when the factors multiplied do not involve the variable of that loop.
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T =[]

N = 4

for i in range(N):

for j in range(N):

for k in range(N):

T.append(var(’T_’+str(i)+str(j)+str(k)))

J4 = [ [0, 0, 1, 0], [0, 0, 0, 1], [-1, 0, 0, 0], [0, -1, 0, 0] ]

def f(x,N):

a,b,c = var (’a’,’b’,’c’)

a = x % N

b = (x//N) % N

c = (x//(N^2)) % N

return c, b, a

def f_inv(x,y,z,N):

return x*N^2 + y*N + z

N,t,A,TAB,TABB,TABC = var (’N’,’t’,’A’,’TAB’,’TABB’,’TABC’)

TABCC,TABCD,TABCDD = var (’TABCC’,’TABCD’,’TABCDD’)

t = 0

N = 4

for a1 in range(N) :

for a2 in range(N) :

for a3 in range(N) :

A = f_inv(a1,a2,a3,N)

for b1 in range(N) :

TAB = J4[a1][b1]

for b2 in range(N) :

for b3 in range(N) :

TABB= TAB*T[A]*T[f_inv(b1,b2,b3,N)]

for c1 in range(N) :

for c2 in range(N) :

TABC = TABB*J4[a2][c2]

for c3 in range(n) :

TABCC = TABC*T[f_inv(c1,c2,c3,N)]*J4[b3][c3]

for d1 in range(N) :

TABCD = TABCC*J4[c1][d1]

for d2 in range(N) :

TABCDD = TABCD*J4[b2][d2]

for d3 in range(N) :

t = t + TABCDD*T[f_inv(d1,d2,d3,N)]*

J4[a3][d3]
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t.coefficient(T_000*T_000)

(Out) 0

t.coefficient(T_000)

(Out) 4*T_032*T_212*T_220 - 4*T_023*T_202*T_221 + 4*T_022*T_203*T_221

+ 4*T_032*T_213*T_221 + 4*T_023*T_201*T_222 - 4*T_021*T_203*T_222

- 4*T_032*T_210*T_222 - 4*T_022*T_201*T_223 + 4*T_021*T_202*T_223

- 4*T_032*T_211*T_223 - 4*T_022*T_212*T_230 + 4*T_012*T_222*T_230

- 4*T_023*T_212*T_231 + 4*T_012*T_223*T_231 + 4*T_022*T_210*T_232

+ 4*T_023*T_211*T_232 - 4*T_021*T_213*T_232 - 4*T_012*T_220*T_232

+ 4*T_021*T_212*T_233 - 4*T_012*T_221*T_233 - 4*T_122*T_220*T_302

- 4*T_123*T_221*T_302 + 4*T_120*T_222*T_302 + 4*T_121*T_223*T_302

- 4*T_122*T_230*T_312 - 4*T_123*T_231*T_312 + 4*T_120*T_232*T_312

+ 4*T_121*T_233*T_312 + 4*T_122*T_202*T_320 + 4*T_132*T_212*T_320

- 4*T_102*T_222*T_320 - 4*T_112*T_232*T_320 + 4*T_122*T_203*T_321

+ 4*T_132*T_213*T_321 - 4*T_102*T_223*T_321 - 4*T_112*T_233*T_321

+ 4*T_123*T_201*T_322 - 4*T_120*T_202*T_322 - 4*T_121*T_203*T_322

- 4*T_132*T_210*T_322 + 4*T_102*T_220*T_322 + 4*T_112*T_230*T_322

- 4*T_122*T_201*T_323 - 4*T_132*T_211*T_323 + 4*T_102*T_221*T_323

+ 4*T_112*T_231*T_323 + 4*T_122*T_210*T_332 + 4*T_123*T_211*T_332

- 4*T_120*T_212*T_332 - 4*T_121*T_213*T_332

t.coefficient(T_032*T_212*T_220)

(Out) 4*T_000
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